1
|
Guo P, Yan Y, Ngo KN, Peot C, Bollmeyer M, Yi S, Baldwin M, Reid M, Goldfarb JL, Lancaster K, De Clippeleir H, Gu AZ. Improving nutrients ratio in class A biosolids through vivianite recovery: Insights from a wastewater resource recovery facility. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 946:173560. [PMID: 38823710 DOI: 10.1016/j.scitotenv.2024.173560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 05/20/2024] [Accepted: 05/25/2024] [Indexed: 06/03/2024]
Abstract
Class A biosolids from water resource recovery facilities (WRRFs) are increasingly used as sustainable alternatives to synthetic fertilizers. However, the high phosphorus to nitrogen ratio in biosolids leads to a potential accumulation of phosphorus after repeated land applications. Extracting vivianite, an FeP mineral, prior to the final dewatering step in the biosolids treatment can reduce the P content in the resulting class A biosolids and achieve a P:N ratio closer to the 1:2 of synthetic fertilizers. Using ICP-MS, IC, UV-Vis colorimetric methods, Mössbauer spectroscopy, and SEM-EDX, a full-scale characterization of vivianite at the Blue Plains Advanced Wastewater Treatment Plant (AWTTP) was surveyed throughout the biosolids treatment train. Results showed that the vivianite-bound phosphorus in primary sludge thickening, before pre-dewatering, after thermal hydrolysis, and after anaerobic digestion corresponded to 8 %, 52 %, 40 %, and 49 % of the total phosphorus in the treatment influent. Similarly, the vivianite-bound iron concentration also corresponded to 8 %, 52 %, 40 %, and 49 % of the total iron present (from FeCl3 dosing), because the molar ratio between total iron and total incoming phosphorus was 1.5:1, which is the same stoichiometry of vivianite. Based on current P:N levels in the Class A biosolids at Blue Plains, a vivianite recovery target of 40 % to ideally 70 % is required in locations with high vivianite content to reach a P:N ratio in the resulting class A biosolid that matches synthetic fertilizers of 1:1.3 to 1:2, respectively. A financial analysis on recycling iron from the recovered vivianite had estimated that 14-25 % of Blue Plain's annual FeCl3 demand can potentially be met. Additionally, model simulations with Visual Minteq were used to evaluate the pre-treatment options that maximize vivianite recovery at different solids treatment train locations.
Collapse
Affiliation(s)
- Peibo Guo
- School of Civil and Environmental Engineering, Cornell University, NY, USA; District of Columbia Water and Sewer Authority, 5000 Overlook Ave. SW, Washington, DC, USA.
| | - Yuan Yan
- School of Civil and Environmental Engineering, Cornell University, NY, USA.
| | - Khoa Nam Ngo
- District of Columbia Water and Sewer Authority, 5000 Overlook Ave. SW, Washington, DC, USA.
| | - Chris Peot
- District of Columbia Water and Sewer Authority, 5000 Overlook Ave. SW, Washington, DC, USA.
| | - Melissa Bollmeyer
- Department of Chemistry and Chemical Biology, Cornell University, NY, USA.
| | - Sang Yi
- School of Civil and Environmental Engineering, Cornell University, NY, USA.
| | - Mathew Baldwin
- School of Civil and Environmental Engineering, Cornell University, NY, USA.
| | - Matthew Reid
- School of Civil and Environmental Engineering, Cornell University, NY, USA.
| | - Jillian L Goldfarb
- Smith School of Chemical and Biomolecular Engineering, Cornell University, NY, USA.
| | - Kyle Lancaster
- Department of Chemistry and Chemical Biology, Cornell University, NY, USA.
| | - Haydée De Clippeleir
- District of Columbia Water and Sewer Authority, 5000 Overlook Ave. SW, Washington, DC, USA.
| | - April Z Gu
- School of Civil and Environmental Engineering, Cornell University, NY, USA.
| |
Collapse
|
2
|
Luo J, Zhao C, Huang W, Wang F, Fang F, Su L, Wang D, Wu Y. A holistic valorization of treasured waste activated sludge for directional high-valued products recovery: Routes, key technologies and challenges. ENVIRONMENTAL RESEARCH 2024; 262:119904. [PMID: 39270963 DOI: 10.1016/j.envres.2024.119904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 08/26/2024] [Accepted: 08/30/2024] [Indexed: 09/15/2024]
Abstract
Global energy shortages and environmental crises underscore the imperative for a circular economy to tackle resource scarcity and waste management. The circular economy model encourages the recovery and reuse of valuable materials, reducing reliance on finite natural resources and lessening the environmental impact of waste disposal. Among urban organic solid wastes, waste activated sludge (WAS) emerges as a potent reservoir of untapped resources (including various inorganic and organic ones) offering significant potential for recovery. This review delves into a comprehensive analysis of directional valorization of WAS to recover high-valued products, including the inorganic matters (i.e. phosphorus, ammonia nitrogen, and heavy metals), organic resources (i.e. extracellular polymers like alginate and protein, volatile fatty acid, methane, hydrogen, and plant growth hormones) and reutilization of WAS residues for the preparation of adsorbent materials - the biochar. Moreover, the main recovery methodologies associated influencing parameters, product application, and attendant challenges for those diverse recovered resources are unveiled. Future research are encouraged to prioritize the development of integrated multi-resource recovery approaches, the establishment of regulatory frameworks to support resource recovery and product utilization, and the systematic evaluation of disposal strategies to foster a more sustainable and resource-efficient future. This work illuminates avenues for sustainable WAS management with high-valued resource recovery towards circular economy.
Collapse
Affiliation(s)
- Jingyang Luo
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, 1 Xikang Road, Nanjing, 210098, China; College of Environment, Hohai University, 1 Xikang Road, Nanjing, 210098, China.
| | - Chenxin Zhao
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, 1 Xikang Road, Nanjing, 210098, China; College of Environment, Hohai University, 1 Xikang Road, Nanjing, 210098, China
| | - Wenxuan Huang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, 1 Xikang Road, Nanjing, 210098, China; College of Environment, Hohai University, 1 Xikang Road, Nanjing, 210098, China
| | - Feng Wang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, 1 Xikang Road, Nanjing, 210098, China; College of Environment, Hohai University, 1 Xikang Road, Nanjing, 210098, China
| | - Fang Fang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, 1 Xikang Road, Nanjing, 210098, China; College of Environment, Hohai University, 1 Xikang Road, Nanjing, 210098, China
| | - Lianghu Su
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing, 210042, China.
| | - Dongbo Wang
- College of Environmental Science and Engineering and Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha, 410082, China
| | - Yang Wu
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai, 200092, China.
| |
Collapse
|
3
|
Metz R, Kumar N, Schenkeveld WDC, Obst M, Voegelin A, Mangold S, Kraemer SM. Effect of Oxidation on Vivianite Dissolution Rates and Mechanism. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58. [PMID: 39151023 PMCID: PMC11360369 DOI: 10.1021/acs.est.4c04809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 07/30/2024] [Accepted: 07/31/2024] [Indexed: 08/18/2024]
Abstract
The interest in the mineral vivianite (Fe3(PO4)2·8H2O) as a more sustainable P resource has grown significantly in recent years owing to its efficient recovery from wastewater and its potential use as a P fertilizer. Vivianite is metastable in oxic environments and readily oxidizes. As dissolution and oxidation occur concurrently, the impact of oxidation on the dissolution rate and mechanism is not fully understood. In this study, we disentangled the oxidation and dissolution of vivianite to develop a quantitative and mechanistic understanding of dissolution rates and mechanisms under oxic conditions. Controlled batch and flow-through experiments with pristine and preoxidized vivianite were conducted to systematically investigate the effect of oxidation on vivianite dissolution at various pH-values and temperatures. Using X-ray absorption spectroscopy and scanning transmission X-ray microscopy techniques, we demonstrated that oxidation of vivianite generated a core-shell structure with a passivating oxidized amorphous Fe(III)-PO4 surface layer and a pristine vivianite core, leading to diffusion-controlled oxidation kinetics. Initial (<1 h) dissolution rates and concomitant P and Fe release (∼48 h) decreased strongly with increasing degree of oxidation (0-≤ 100%). Both increasing temperature (5-75 °C) and pH (5-9) accelerated oxidation, and, consequently, slowed down dissolution kinetics.
Collapse
Affiliation(s)
- Rouven Metz
- Centre
for Microbiology and Environmental Systems Science, Department for
Environmental Geosciences, University of
Vienna, Josef-Holaubek-Platz 2, 1090 Vienna, Austria
| | - Naresh Kumar
- Soil
Chemistry, Wageningen University and Research, Droevendaalsesteeg 3, 6708 PB Wageningen, The Netherlands
| | - Walter D. C. Schenkeveld
- Soil
Chemistry, Wageningen University and Research, Droevendaalsesteeg 3, 6708 PB Wageningen, The Netherlands
| | - Martin Obst
- Experimental
Biogeochemistry, BayCEER, University of
Bayreuth, Dr. Hans-Frisch-Straße 1-3, 95448 Bayreuth, Germany
| | - Andreas Voegelin
- Swiss
Federal Institute of Aquatic Science and Technology, Department of
Water Resources and Drinking Water, Eawag, Ueberlandstrasse 133, CH-8600 Duebendorf, Switzerland
| | - Stefan Mangold
- Karlsruhe
Institute of Technology, Institute for Photon
Science and Synchrotron Radiation, Hermann-von-Helmholtz Platz 1, D-76344 Eggenstein-Leopoldshafen, Germany
| | - Stephan M. Kraemer
- Centre
for Microbiology and Environmental Systems Science, Department for
Environmental Geosciences, University of
Vienna, Josef-Holaubek-Platz 2, 1090 Vienna, Austria
| |
Collapse
|
4
|
Qiang H, Liu Z, Yin X, Guo Z, Duan Y, Liu W, Yue X, Zhou A. Efficient phosphate and hydrogen recovery from sludge fermentation liquid by sacrificial iron anode in electro-fermentation system. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 360:121110. [PMID: 38733846 DOI: 10.1016/j.jenvman.2024.121110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 03/22/2024] [Accepted: 05/05/2024] [Indexed: 05/13/2024]
Abstract
Electro-fermentation (EF) has been extensively studied for recovering hydrogen and phosphorus from waste activated sludge (WAS), while was limited for the further application due to the low hydrogen yield and phosphorus recovery efficiency. This study proposed an efficient strategy for hydrogen and vivianite recovery from the simulated sludge fermentation liquid by sacrificial iron anode in EF. The optimum hydrogen productivity and the utilization efficiency of short chain fatty acids (SCFAs) reached 45.2 mmol/g COD and 77.6% at 5 d in pH 8. Phosphate removal efficiency achieved at 90.8% at 2 d and the high crystallinity and weight percentage of vivianite (84.8%) was obtained. The functional microbes, i.e., anaerobic fermentative bacteria, electrochemical active bacteria, homo-acetogens and iron-reducing bacteria were highly enriched and the inherent interaction between the microbial consortia and environmental variables was thoroughly explored. This work may provide a theoretical basis for energy/resource recovery from WAS in the further implementation.
Collapse
Affiliation(s)
- Haifeng Qiang
- College of Environmental Science and Engineering, Taiyuan University of Technology, Taiyuan, 030024, China
| | - Zhihong Liu
- College of Environmental Science and Engineering, Taiyuan University of Technology, Taiyuan, 030024, China; Shanxi Academy of Advanced Research and Innovation, Taiyuan, 030006, China.
| | - Xiaoyun Yin
- College of Environmental Science and Engineering, Taiyuan University of Technology, Taiyuan, 030024, China
| | - Zhengtong Guo
- College of Environmental Science and Engineering, Taiyuan University of Technology, Taiyuan, 030024, China
| | - Yanqing Duan
- Department of Environmental and Safety Engineering, Taiyuan Institute of Technology, Taiyuan, 030800, China
| | - Wenzong Liu
- Civil and Environmental Engineering, Harbin Institute of Technology, Shenzhen, 518055, China
| | - Xiuping Yue
- College of Environmental Science and Engineering, Taiyuan University of Technology, Taiyuan, 030024, China; Shanxi-Zheda Institute of Advanced Materials and Chemical Engineering, Taiyuan, 030000, China
| | - Aijuan Zhou
- College of Environmental Science and Engineering, Taiyuan University of Technology, Taiyuan, 030024, China; Shanxi-Zheda Institute of Advanced Materials and Chemical Engineering, Taiyuan, 030000, China.
| |
Collapse
|
5
|
Zhang B, Zhao Z, Ma R, Chen N, Kong Z, Lei Z, Zhang Z. Unveiling the mechanisms of Fe(III)-loaded chitosan composite (CTS-Fe) in enhancing anaerobic digestion of waste activated sludge. J Environ Sci (China) 2024; 138:200-211. [PMID: 38135389 DOI: 10.1016/j.jes.2023.04.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 03/22/2023] [Accepted: 04/03/2023] [Indexed: 12/24/2023]
Abstract
Anaerobic digestion (AD) of waste activated sludge (WAS) is usually limited by the low generation efficiency of methane. Fe(III)-loaded chitosan composite (CTS-Fe) have been reported to effectively enhanced the digestion of WAS, but its role in promoting anaerobic sludge digestion remains unclear. In present study, the effects of CTS-Fe on the hydrolysis and methanogenesis stages of WAS anaerobic digestion were investigated. The addition of CTS-Fe increased methane production potential by 8%-23% under the tested conditions with the addition of 5-20 g/L CTS-Fe. Besides, the results demonstrate that the addition of CTS-Fe could effectively promote the hydrolysis of WAS, evidenced by lower protein or polysaccharides concentration, higher soluble organic carbon in rector adding CTS-Fe, as well as the increased activity of extracellular hydrolase with higher CTS-Fe concentration. Meanwhile, the enrichment of Clostridia abundance (iron-reducing bacteria (IRBs)) was observed in CTS-Fe adding reactor (8.9%-13.8%), which was higher than that in the control reactor (7.9%). The observation further suggesting the acceleration of hydrolysis through dissimilatory iron reduction (DIR) process, thus providing abundant substrates for methanogenesis. However, the presence of CTS-Fe was inhibited the acetoclastic and hydrogenotrophic methanogenesis process, which could be ascribed to the Fe(III) act as electron acceptor coupled to methane for anaerobic oxidation. Furthermore, coenzyme F420 activity in the CTS-Fe added reactor was 34.9% lower than in the blank, also abundance of microorganisms involved in hydrogenotrophic methanogenesis was decreased. Results from this study could provide theoretical support for the practical applications of CTS-Fe.
Collapse
Affiliation(s)
- Boaiqi Zhang
- Graduate School of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8572, Japan; The Key Laboratory of Water and Sediment Sciences, Ministry of Education; State Environmental Protection Key Laboratory of All Material Fluxes in River Ecosystems; College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Ziwen Zhao
- South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510345, China
| | - Rui Ma
- Graduate School of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8572, Japan
| | - Nan Chen
- School of Water Resources and Environment, China University of Geosciences (Beijing), Beijing 100083, China
| | - Zhe Kong
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Zhongfang Lei
- Graduate School of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8572, Japan
| | - Zhenya Zhang
- Graduate School of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8572, Japan.
| |
Collapse
|
6
|
Zhang Z, Liu R, Lan Y, Zheng W, Chen L. Anaerobic co-fermentation of waste activated sludge with corn gluten meal enhanced phosphorus release and volatile fatty acids production: Critical role of corn gluten meal dosage on fermentation stages and microbial community traits. BIORESOURCE TECHNOLOGY 2024; 394:130275. [PMID: 38176597 DOI: 10.1016/j.biortech.2023.130275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 12/26/2023] [Accepted: 12/28/2023] [Indexed: 01/06/2024]
Abstract
The anaerobic co-fermentation of iron bound phosphorus (P) compounds (FePs)-bearing sludge with corn gluten meal (CGM) and the underlying mechanisms associated with P release and volatile fatty acids (VFAs) production were investigated. The optimal CGM dosage for P release was 0.6 g chemical oxygen demand (COD)/g total suspended solid (TSS), which resulted in an increase in efficiency from 7 % (control sample) to 39 %. However, the optimal CGM dosage for VFAs production was 0.4 g COD/g TSS, and the yield increased from 37.4 (control sample) to 331.7 mg COD/g volatile suspended solid. The addition of CGM enhanced hydrolysis and acidogenesis by supplying abundant organic substrates to promote the growth of hydrolytic and acidogenic bacteria. A higher VFAs/ammonium-nitrogen ratio resulted in a lower pH, which promoted greater FePs dissolution and P release from the sludge. This study provides novel insights into the effects of CGM on P release and VFAs production.
Collapse
Affiliation(s)
- Zhipeng Zhang
- Zhejiang Provincial Key Laboratory of Water Science and Technology, Department of Environment, Yangtze Delta Region Institute of Tsinghua University, Zhejiang, Jiaxing 314006, China; State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Rui Liu
- Zhejiang Provincial Key Laboratory of Water Science and Technology, Department of Environment, Yangtze Delta Region Institute of Tsinghua University, Zhejiang, Jiaxing 314006, China.
| | - Yaqiong Lan
- Zhejiang Provincial Key Laboratory of Water Science and Technology, Department of Environment, Yangtze Delta Region Institute of Tsinghua University, Zhejiang, Jiaxing 314006, China
| | - Wei Zheng
- Zhejiang Provincial Key Laboratory of Water Science and Technology, Department of Environment, Yangtze Delta Region Institute of Tsinghua University, Zhejiang, Jiaxing 314006, China
| | - Lujun Chen
- School of Environment, Tsinghua University, Beijing 100084, China
| |
Collapse
|
7
|
Gao Y, Ren N, Wang S, Wu Y, Wang X, Li N. Low intensity magnetic separation of vivianite induced by iron reduction on the surface layer of Fe(III)[Fe(0)] iron scrap. ENVIRONMENTAL RESEARCH 2024; 240:117472. [PMID: 37871790 DOI: 10.1016/j.envres.2023.117472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 10/13/2023] [Accepted: 10/20/2023] [Indexed: 10/25/2023]
Abstract
Phosphorus (P) recovery through vivianite, which can be found in activated sludge, surplus sludge and digested sludge in the wastewater treatment plants (WWTPs), is a cutting-edge and efficient technology in recent years. However, how to generate and separate vivianite in an effective and economical way with natural iron oxide mineral was still the bottleneck to limit its application. Therefore, in this study, the P recovery efficiency (EP) and vivianite recovery efficiency (EV) of three kinds of iron oxides were investigated. We found that the EP of Akaganeite was 1.83 times and 4.88 times higher than that of Geothite and Hematite. Simultaneously, EV of Akaganeite was 1.64 times and 2.88 times higher than that of Geothite and Hematite. As Akaganeite is main component of rust on the surface of iron scrap, we used Fe(III)[Fe(0)] iron scrap with Fe(0) inside and Akaganeite outside as iron source and electron acceptor for vivianite production and magnetic separation. At the terminal stage (60 day), the P recovery efficiency with 20 g/L Fe(III)[Fe(0)] iron scrap was 36%. Applying a magnetical separator with magnetic field intensity of 0.3 T, vivianite was separated from the solution efficiently and immediately. Low intensity magnetic separation with iron scrap would recover P resources economically with the total cost to be $2.23/kg P, which was much lower than recovery via iron salts. Besides, it provided a significant insights into the P recovery and vivianite separation by reusing Fe waste during wastewater treatment.
Collapse
Affiliation(s)
- Yan Gao
- School of Environmental Science and Engineering, Tianjin University, No.92 Weijin Road, Nankai District, Tianjin, 300072, China.
| | - Nanqi Ren
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Shu Wang
- School of Environmental Science and Engineering, Tianjin University, No.92 Weijin Road, Nankai District, Tianjin, 300072, China
| | - Yu Wu
- School of Environmental Science and Engineering, Tianjin University, No.92 Weijin Road, Nankai District, Tianjin, 300072, China
| | - Xin Wang
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, Nankai University, No. 38 Tongyan Road, Jinnan District, Tianjin, 300350, China
| | - Nan Li
- School of Environmental Science and Engineering, Tianjin University, No.92 Weijin Road, Nankai District, Tianjin, 300072, China.
| |
Collapse
|
8
|
Zhao Y, Wei R, He D, Niu D, Zhou T. Enhanced volatile fatty acid production from food waste via anaerobic fermentation: effect of irons with different sizes. ENVIRONMENTAL TECHNOLOGY 2024; 45:50-60. [PMID: 35792808 DOI: 10.1080/09593330.2022.2099309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Accepted: 06/24/2022] [Indexed: 06/15/2023]
Abstract
ABSTRACTFood waste is an excellent organic matter for anaerobic fermentation. This study provided a cost-effective and highly efficient volatile fatty acid (VFA) production strategy by the addition of zero-valent iron (ZVI). Results showed that VFA concentration of 44.6 g/L was obtained with the optimized conditions of 200-mesh iron powder at a dosage of 20.0 g, fermentation time of 11 d, total solids (TS) of 10 wt.%, and fermentation temperature of 37 ℃. Further, the iron of different particle sizes (iron scraps, 200-mesh iron powder, and 800-mesh iron powder) had a differential influence on total organic carbon (TOC), total nitrogen (TN), and VFA concentrations. For the reactor containing 200-mesh iron powder, the conversion rate of organic compound into VFA increased with the increase of dosage, which reached 58.4% at the 40.0 g dosage. The mechanism revealed that the VFA production was enhanced by micro-electrolysis, which can rapidly inactivate bacteria and increase the conversion of macromolecular organics into micromolecular organics.
Collapse
Affiliation(s)
- Youcai Zhao
- The State Key Laboratory of Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Tongji University, Shanghai, People's Republic of China
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai, People's Republic of China
| | - Ran Wei
- The State Key Laboratory of Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Tongji University, Shanghai, People's Republic of China
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai, People's Republic of China
| | - Dongwei He
- The State Key Laboratory of Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Tongji University, Shanghai, People's Republic of China
| | - Dongjie Niu
- The State Key Laboratory of Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Tongji University, Shanghai, People's Republic of China
| | - Tao Zhou
- The State Key Laboratory of Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Tongji University, Shanghai, People's Republic of China
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai, People's Republic of China
| |
Collapse
|
9
|
Wang SN, Cao JS, Luo JY, Ni BJ, Fang F. Revealing the mechanism of quartz sand seeding in accelerating phosphorus recovery from anaerobic fermentation supernatant through vivianite crystallization. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 348:119223. [PMID: 37827085 DOI: 10.1016/j.jenvman.2023.119223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 09/14/2023] [Accepted: 10/02/2023] [Indexed: 10/14/2023]
Abstract
The recovery of phosphorus (P) through vivianite crystallization offers a promising approach for resource utilization in wastewater treatment plants. However, this process encounters challenges in terms of small product size and low purity. The study aimed to assess the feasibility of using quartz sand as a seed material to enhance P recovery and vivianite crystal characteristics from anaerobic fermentation supernatant. Various factors, including seed dosage, seed size, Fe/P ratio, and pH, were systematically tested in batch experiments to assess their influence. Results demonstrated that the effect of seed enhancement on vivianite crystallization was more pronounced under higher seed dosages, smaller seed sizes, and lower pH or Fe/P ratio. The addition of seeds increased P recovery by 4.43% in the actual anaerobic fermentation supernatant and also augmented the average particle size of the recovered product from 19.57 to 39.28 μm. Moreover, introducing quartz sand as a seed material effectively reduced co-precipitation, leading to a notable 12.5% increase in the purity of the recovered vivianite compared to the non-seeded process. The formation of an ion adsorption layer on the surface of quartz sand facilitated crystal attachment and growth, significantly accelerating the vivianite crystallization rate and enhancing P recovery. The economic analysis focused on chemical costs further affirmed the economic viability of using quartz sand as a seed material for P recovery through vivianite crystallization, which provides valuable insights for future research and engineering applications.
Collapse
Affiliation(s)
- Su-Na Wang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China
| | - Jia-Shun Cao
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China
| | - Jing-Yang Luo
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China
| | - Bing-Jie Ni
- Centre for Technology in Water and Wastewater (CTWW), School of Civil and Environmental Engineering, University of Technology Sydney (UTS), Sydney, NSW 2007, Australia
| | - Fang Fang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China.
| |
Collapse
|
10
|
Zhang H, Zhang SS, Zhang W, Ma WC, Pan Y, Chen L, Zhu L, Li YP, Li JR. Clarification of the phosphorus release mechanism for recovering phosphorus from biofilm sludge in alternating aerobic/anaerobic biofilm system. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 904:166811. [PMID: 37673249 DOI: 10.1016/j.scitotenv.2023.166811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 07/16/2023] [Accepted: 09/02/2023] [Indexed: 09/08/2023]
Abstract
A novel wastewater treatment plant process was constructed to overcome the challenge of simultaneous nitrate removal and phosphorus (P) recovery. The results revealed that the P and nitrate removal efficiency rose from 39.0 % and 48.4 % to 92.8 % and 93.6 % after 136 days of operation, and the total P content in the biofilm (TPbiofilm) rose from 15.8 mg/g SS to 57.8 mg/g SS. Moreover, the increase of TPbiofilm changed the metabolic mode of denitrifying polyphosphate accumulating organisms (DPAOs), increasing the P concentration of the enriched stream to 172.5 mg/L. Furthermore, the acid/alkaline fermentation led to the rupture of the cell membrane, which released poly-phosphate and ortho-phosphate of cell/EPS in DPAOs and released metal‑phosphorus (CaP and MgP). In addition, high-throughput sequencing analysis demonstrated that the relative abundance of DPAOs involved in P storage increased, wherein the abundance of Acinetobacter and Saprospiraceae rose from 8.0 % and 4.1 % to 16.1 % and 14.0 %. What's more, the highest P recovery efficiency (98.3 ± 1.1 %) could be obtained at optimal conditions for struvite precipitation (pH = 7.56 and P: N: Mg = 1.87:3.66:1) through the response surface method (RSM) simulation, and the precipitates test analysis indicated that P recovery from biofilm sludge was potentially operable. This research was of great essentiality for exploring the recovery of P from biofilm sludge.
Collapse
Affiliation(s)
- Hao Zhang
- Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing 210098, China; College of Environment, Hohai University, Nanjing 210098, China
| | - Shuang-Shuang Zhang
- Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing 210098, China; College of Environment, Hohai University, Nanjing 210098, China
| | - Wei Zhang
- Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing 210098, China; College of Environment, Hohai University, Nanjing 210098, China
| | - Wu-Cheng Ma
- Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing 210098, China; College of Environment, Hohai University, Nanjing 210098, China
| | - Yang Pan
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Lin Chen
- Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing 210098, China; College of Environment, Hohai University, Nanjing 210098, China
| | - Liang Zhu
- Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing 210098, China; College of Environment, Hohai University, Nanjing 210098, China.
| | - Yi-Ping Li
- Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing 210098, China; College of Environment, Hohai University, Nanjing 210098, China.
| | - Jing-Ru Li
- School of Civil Engineering and Communication, North China University of Water Resources and Electric Power, Zhengzhou 450046, China
| |
Collapse
|
11
|
Huang W, Li Y, Wang F, Feng L, Wang D, Ma Y, Wu Y, Luo J. Disinfectant sodium dichloroisocyanurate synergistically strengthened sludge acidogenic process and pathogens inactivation: Targeted upregulation of functional microorganisms and metabolic traits via self-adaptation. WATER RESEARCH 2023; 247:120787. [PMID: 37918196 DOI: 10.1016/j.watres.2023.120787] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 10/18/2023] [Accepted: 10/26/2023] [Indexed: 11/04/2023]
Abstract
Harmless and resourceful treatment of waste activated sludge (WAS) have been the crucial goal for building environmental-friendly and sustainable society, while the synergistic realization approach is currently limited. This work skillfully utilized the disinfectant sodium dichloroisocyanurate (NaDCC) to simultaneously achieve the pathogenic potential inactivation (decreased by 60.1 %) and efficient volatile fatty acids (VFAs) recovery (increased by 221.9 %) during WAS anaerobic fermentation in rather cost-effective way (Chemicals costs:0.4 USD/kg VFAs versus products benefits: 2.68 USD/kg chemical). Mechanistic analysis revealed that the C=O and NCl bonds in NaDCC could spontaneously absorb sludge (binding energy -4.9 kJ/mol), and then caused the sludge disintegration and organic substrates release for microbial utilization due to the oxidizability of NaDCC. The disruption of sludge structure along with the increase of bioavailable fermentation substrates contributed to the selectively regulation of microbial community via enriching VFAs-forming microorganisms (e.g., Pseudomonas and Streptomyces) and reducing VFAs-consuming microorganisms, especially aceticlastic methanogens (e.g., Methanothrix and Methanospirillum). Correspondingly, the metabolic functions of membrane transport, substrate metabolism, pyruvate metabolism, and fatty acid biosynthesis locating in the central pathway of VFAs production were all upregulated while the methanogenic step was inhibited (especially acetate-type methanogenic pathway). Further exploration unveiled that for those enriched functional anaerobes were capable to activate the self-adaptive systems of DNA replication, SOS response, oxidative stress defense, efflux pump, and energy metabolism to counteract the unfavorable NaDCC stress and maintain high microbial activities for efficient VFAs yields. This study would provide a novel strategy for synergistic realization of harmless and resourceful treatment of WAS, and identify the interrelations between microbial metabolic regulations and adaptive responses.
Collapse
Affiliation(s)
- Wenxuan Huang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing 210098, China; College of Environment, Hohai University, Nanjing 210098, China
| | - Yi Li
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing 210098, China; College of Environment, Hohai University, Nanjing 210098, China
| | - Feng Wang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing 210098, China; College of Environment, Hohai University, Nanjing 210098, China
| | - Leiyu Feng
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Dongbo Wang
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, China
| | - Yingqun Ma
- Shaanxi Key Laboratory of Energy Chemical Process Intensification, School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an, China
| | - Yang Wu
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Tongji University, Shanghai 200092, China.
| | - Jingyang Luo
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing 210098, China; College of Environment, Hohai University, Nanjing 210098, China.
| |
Collapse
|
12
|
Metz R, Kumar N, Schenkeveld WDC, Kraemer SM. Rates and Mechanism of Vivianite Dissolution under Anoxic Conditions. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:17266-17277. [PMID: 37924285 PMCID: PMC10653223 DOI: 10.1021/acs.est.3c04474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Revised: 10/12/2023] [Accepted: 10/13/2023] [Indexed: 11/06/2023]
Abstract
The iron phosphate mineral vivianite Fe(II)3(PO4)2·8H2O has emerged as a potential renewable P source. Although the importance of vivianite as a potential P sink in the global P cycle had previously been recognized, a mechanistic understanding of vivianite dissolution at the molecular level, critical to its potential application, is still elusive. The potential of vivianite as a P sink or source in natural or engineered systems is directly dependent on its dissolution kinetics under environmentally relevant conditions. To understand the thermodynamic and kinetic controls on bioavailability, the oxidation and dissolution processes of vivianite must be disentangled. In this study, we conducted controlled batch and flow-through experiments to quantitatively determine the dissolution rates and mechanisms of vivianite under anoxic conditions as a function of pH and temperature. Our results demonstrate that vivianite solubility and dissolution rates strongly decreased with increasing solution pH. Dissolution was nonstoichiometric at alkaline pH (>7). The rapid initial dissolution rate of vivianite is related to the solution saturation state, indicating a thermodynamic rather than a kinetic control. A defect-driven dissolution mechanism is proposed. Dissolution kinetics over pH 5-9 could be described with a rate law with a single rate constant and a reaction order of 0.61 with respect to {H+}: R exp = 36.0 · e - 1.41 · pH · [ 1 - e ( 0.2 · Δ G / RT ) ] 4.7 The activation energy of vivianite dissolution proved low (Ea = 20.3 kJ mol-1), suggesting hydrogen bridge dissociation as the rate-determining step.
Collapse
Affiliation(s)
- Rouven Metz
- Centre
for Microbiology and Environmental Systems Science, Department for
Environmental Geosciences, University of
Vienna, Josef-Holaubek-Platz 2, 1090 Vienna, Austria
| | - Naresh Kumar
- Soil
Chemistry and Chemical Soil Quality Group, Wageningen University and Research, Droevendaalsesteeg 3, 6708 PB Wageningen, The Netherlands
| | - Walter D. C. Schenkeveld
- Soil
Chemistry and Chemical Soil Quality Group, Wageningen University and Research, Droevendaalsesteeg 3, 6708 PB Wageningen, The Netherlands
| | - Stephan M. Kraemer
- Centre
for Microbiology and Environmental Systems Science, Department for
Environmental Geosciences, University of
Vienna, Josef-Holaubek-Platz 2, 1090 Vienna, Austria
| |
Collapse
|
13
|
Chen R, Dai X, Dong B. Two birds with one stone: The multiple roles of hydrothermal treatment in dewatering municipal sludge and producing value-added products. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 896:165072. [PMID: 37364842 DOI: 10.1016/j.scitotenv.2023.165072] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Revised: 06/20/2023] [Accepted: 06/20/2023] [Indexed: 06/28/2023]
Abstract
Sludge dewatering and resource recovery are key steps in the sustainable treatment of municipal sludge (MS) owing to the high levels of moisture and nutrients. Among the treatment options available, hydrothermal treatment (HT) is promising to efficiently improve dewaterability and recover biofuels, nutrients, and materials from MS. However, hydrothermal conversion at different HT conditions generates multiple products. Integrating the characteristics of dewaterability and value-added products under different HT conditions facilitates the application of HT for the sustainable management of MS. Therefore, a comprehensive review of HT for its multiple roles in MS dewatering and value-added resource recovery is conducted. First, the impact of HT temperature on sludge dewaterability and key mechanisms are summarized. Then, this study elucidates the characteristics of biofuels produced (combustible gases, hydrochars, biocrudes, and H2-rich gases), nutrient recovery (proteins and phosphorus), and value-added materials under a wide range of HT conditions. Importantly, along with the integration and evaluation of HT product characteristics under different HT temperatures, this work proposes a conceptual sludge treatment system that integrates the different value-added products in different HT stages. Furthermore, a critical evaluation of the knowledge gaps in the HT for sludge deep dewatering, biofuels, nutrients, and materials recovery is provided along with recommendations for further research.
Collapse
Affiliation(s)
- Renjie Chen
- School of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China
| | - Xiaohu Dai
- School of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, PR China
| | - Bin Dong
- School of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, PR China; YANGTZE Eco-Environment Engineering Research Center, China Three Gorges Corporation, Beijing 100038, PR China.
| |
Collapse
|
14
|
Ri C, Li F, Mun H, Liu L, Tang J. Impact of different zero valent iron-based particles on anaerobic microbial dechlorination of 2,4-dichlorophenol: Comparison of dechlorination performance and the underlying mechanism. JOURNAL OF HAZARDOUS MATERIALS 2023; 458:131881. [PMID: 37379603 DOI: 10.1016/j.jhazmat.2023.131881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 05/14/2023] [Accepted: 06/15/2023] [Indexed: 06/30/2023]
Abstract
The integration of iron-based materials and anaerobic microbial consortia has been extensively studied owing to its potential to enhance pollutant degradation. However, few studies have compared how different iron materials enhance the dechlorination of chlorophenols in coupled microbial systems. This study systematically compared the combined performances of microbial community (MC) and iron materials (Fe0/FeS2 +MC, S-nZVI+MC, n-ZVI+MC, and nFe/Ni+MC) for the dechlorination of 2,4-dichlorophenol (DCP) as one representative of chlorophenols. DCP dechlorination rate was significantly higher in Fe0/FeS2 +MC and S-nZVI+MC (1.92 and 1.67 times, with no significant difference between two groups) than in nZVI+MC and nFe/Ni+MC (1.29 and 1.25 times, with no significant difference between two groups). Fe0/FeS2 had better performance for the reductive dechlorination process as compared with other three iron-based materials via the consumption of any trace amount of oxygen in anoxic condition and accelerated electron transfer. On the other hand, nFe/Ni could induce different dechlorinating bacteria as compared to other iron materials. The enhanced microbial dechlorination was mainly due to some putative dechlorinating bacteria (Pseudomonas, Azotobacter, Propionibacterium), and due to improved electron transfer of sulfidated iron particles. Therefore, Fe0/FeS2 as a biocompatible as well as low-cost sulfidated material can be a good alternative for possible engineering applications in groundwater remediation.
Collapse
Affiliation(s)
- Cholnam Ri
- MOE Key Laboratory of Pollution Processes and Environmental Criteria/Tianjin Engineering Center of Environmental Diagnosis and Contamination Remediation, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China; Institute of Microbiology, State Academy of Sciences, Pyongyang, Democratic People's Republic of Korea
| | - Fengxiang Li
- MOE Key Laboratory of Pollution Processes and Environmental Criteria/Tianjin Engineering Center of Environmental Diagnosis and Contamination Remediation, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Hyokchol Mun
- MOE Key Laboratory of Pollution Processes and Environmental Criteria/Tianjin Engineering Center of Environmental Diagnosis and Contamination Remediation, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China; Institute of national energy, State Academy of Sciences, Pyongyang, Democratic People's Republic of Korea
| | - Linan Liu
- MOE Key Laboratory of Pollution Processes and Environmental Criteria/Tianjin Engineering Center of Environmental Diagnosis and Contamination Remediation, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Jingchun Tang
- MOE Key Laboratory of Pollution Processes and Environmental Criteria/Tianjin Engineering Center of Environmental Diagnosis and Contamination Remediation, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China.
| |
Collapse
|
15
|
Wu Z, Ji S, Li YY, Liu J. A review of iron use and recycling in municipal wastewater treatment plants and a novel applicable integrated process. BIORESOURCE TECHNOLOGY 2023; 379:129037. [PMID: 37037337 DOI: 10.1016/j.biortech.2023.129037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 04/03/2023] [Accepted: 04/07/2023] [Indexed: 05/03/2023]
Abstract
Chemical methods are expected to play an increasingly important role in carbon-neutral municipal wastewater treatment plants. This paper briefly summarises the enhancement effects of using iron salts in wastewater and sludge treatment processes. The costs and environmental concerns associated with the widespread use of iron salts have also been highlighted. Fortunately, the iron recovery from iron-rich sludge provides an opportunity to solve these problems. Existing iron recovery methods, including direct acidification and thermal treatment, are summarised and show that acidification treatment of FeS digestate from the anaerobic digestion-sulfate reduction process can increase the iron and sulphur recycling efficiency. Therefore, a novel applicable integrated process based on iron use and recycling is proposed, and it reduces the iron salts dosage to 4.2 mg/L and sludge amount by 80%. Current experimental research and economic analysis of iron recycling show that this process has broad application prospects in resource recovery and sludge reduction.
Collapse
Affiliation(s)
- Zhangsong Wu
- School of Environmental and Chemical Engineering, Shanghai University, 333 Nanchen Road, Shanghai 200444, China
| | - Shenghao Ji
- School of Environmental and Chemical Engineering, Shanghai University, 333 Nanchen Road, Shanghai 200444, China
| | - Yu-You Li
- Department of Civil and Environmental Engineering, Graduate School of Engineering, Tohoku University, 6-6-06 Aza, Aramaki, Aoba-ku, Sendai, Miyagi 980-8579, Japan
| | - Jianyong Liu
- School of Environmental and Chemical Engineering, Shanghai University, 333 Nanchen Road, Shanghai 200444, China.
| |
Collapse
|
16
|
Yin Z, Wang J, Wang M, Liu J, Chen Z, Yang B, Zhu L, Yuan R, Zhou B, Chen H. Application and improvement methods of sludge alkaline fermentation liquid as a carbon source for biological nutrient removal: A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 873:162341. [PMID: 36828064 DOI: 10.1016/j.scitotenv.2023.162341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Revised: 02/15/2023] [Accepted: 02/15/2023] [Indexed: 06/18/2023]
Abstract
Alkaline fermentation can reduce the amount of waste activated sludge and prepare sludge alkaline fermentation liquid (SAFL) rich in short-chain fatty acids (SCFAs), which can be used as a high-quality carbon source for the biological nutrient removal (BNR) process. This review compiles the production method of SAFL and the progress of its application as a BNR carbon source. Compared with traditional carbon sources, SAFL has the advantages of higher efficiency and economy, and different operating conditions can influence the yield and structure of SCFAs in SAFL. SAFL can significantly improve the nutrient removal efficiency of the BNR process. Taking SAFL as the internal carbon source of BNR can simultaneously solve the problem of carbon source shortage and sludge treatment difficulties in wastewater treatment plants, and further reduce the operating cost. However, the alkaline fermentation process results in many refractory organics, ammonia and phosphate in SAFL, which reduces the availability of SAFL as a carbon source. Purifying SCFAs by removing nitrogen and phosphorus, directly extracting SCFAs, or increasing the amount of SCFAs in SAFL by co-fermentation or combining with other pretreatment methods, etc., are effective measures to improve the availability of SAFL.
Collapse
Affiliation(s)
- Zehui Yin
- School of Energy and Environmental Engineering, Beijing Key Laboratory of Resource-Oriented Treatment of Industrial Pollutants, University of Science and Technology Beijing, Beijing 100083, China
| | - Jihong Wang
- School of Energy and Environmental Engineering, Beijing Key Laboratory of Resource-Oriented Treatment of Industrial Pollutants, University of Science and Technology Beijing, Beijing 100083, China
| | - Mingran Wang
- School of Energy and Environmental Engineering, Beijing Key Laboratory of Resource-Oriented Treatment of Industrial Pollutants, University of Science and Technology Beijing, Beijing 100083, China
| | - Jiandong Liu
- School of Energy and Environmental Engineering, Beijing Key Laboratory of Resource-Oriented Treatment of Industrial Pollutants, University of Science and Technology Beijing, Beijing 100083, China
| | - Zhongbing Chen
- Faculty of Environmental Sciences, Czech University of Life Sciences Prague, Kamýcká 129, Praha, Suchdol 165 00, Czech Republic
| | - Boyu Yang
- Nanjing Academy of Resources and Ecology Sciences, No. 606, Ningliu Road, Jiangbei New District, 210044 Nanjing, China
| | - Lixin Zhu
- Sinopec Nanjing Chemical Industries Co., Ltd., No. 189, Geguan Road, Liuhe District, Jiangsu 210048, Nanjing, China
| | - Rongfang Yuan
- School of Energy and Environmental Engineering, Beijing Key Laboratory of Resource-Oriented Treatment of Industrial Pollutants, University of Science and Technology Beijing, Beijing 100083, China.
| | - Beihai Zhou
- School of Energy and Environmental Engineering, Beijing Key Laboratory of Resource-Oriented Treatment of Industrial Pollutants, University of Science and Technology Beijing, Beijing 100083, China
| | - Huilun Chen
- School of Energy and Environmental Engineering, Beijing Key Laboratory of Resource-Oriented Treatment of Industrial Pollutants, University of Science and Technology Beijing, Beijing 100083, China.
| |
Collapse
|
17
|
Papaslioti EM, Le Bouteiller P, Carreira H, Greneche JM, Fernandez-Martinez A, Charlet L. Immobilisation of contaminants by 'green'-synthesized magnetite as a remediation approach to the phosphogypsum waste leachates model solution. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 341:117997. [PMID: 37141722 DOI: 10.1016/j.jenvman.2023.117997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 04/09/2023] [Accepted: 04/19/2023] [Indexed: 05/06/2023]
Abstract
Contaminant removal from (waste)waters by magnetite is a promising technology. In the present experimental study, a magnetite recycled from the steel industry waste (zero-valent iron powder) was used to investigate the sorption of As, Sb and U in phosphate-free and -rich suspensions, i.e. as a remediation for the acidic phosphogypsum leachates derived from the phosphate fertilizer industry. The results showed up to 98% U removal under controlled pH conditions, while phosphate did not hinder this immobilisation. In contrast, the results confirmed the limited uptake of As and Sb oxyanions by magnetite in presence of phosphate as the competing anion, displaying only 7-11% removal, compared to 83-87% in the phosphate-free sorption experiments. To limit this wastewater problem, raw ZVI anaerobic oxidation was examined as mechanism to increase the pH and as a source of Fe2+ in a first step, and in a second step to remove phosphate via vivianite precipitation, therefore prior to the reaction with magnetite. UV-Vis, XRD and SEM-EDS showed that vivianite precipitation is feasible at pH > 4.5, mainly depending on the phosphate concentration. The higher the [PO43-], the lower is the pH at which vivianite precipitates and the higher the % removal of phosphate from solution. It is anticipated that an optimum 3-steps design with separate reactors controlling the conditions of ZVI oxidation, followed by vivianite precipitation and finally, reaction with magnetite, can achieve high contaminant uptake in field applications.
Collapse
Affiliation(s)
- Evgenia-Maria Papaslioti
- Univ. Grenoble-Alpes, Univ. Savoie Mont Blanc, CNRS, IRD, Univ. Gustave Eiffel, ISTerre, 38000, Grenoble, France.
| | | | - Hugo Carreira
- Univ. Grenoble-Alpes, Univ. Savoie Mont Blanc, CNRS, IRD, Univ. Gustave Eiffel, ISTerre, 38000, Grenoble, France
| | - Jean-Marc Greneche
- Institut des Molécules et Matériaux du Mans, CNRS UMR-6283, Le Mans Université, F-72085Le Mans, France
| | - Alejandro Fernandez-Martinez
- Univ. Grenoble-Alpes, Univ. Savoie Mont Blanc, CNRS, IRD, Univ. Gustave Eiffel, ISTerre, 38000, Grenoble, France
| | - Laurent Charlet
- Univ. Grenoble-Alpes, Univ. Savoie Mont Blanc, CNRS, IRD, Univ. Gustave Eiffel, ISTerre, 38000, Grenoble, France
| |
Collapse
|
18
|
Wang SN, Cao JS, Zhang JL, Luo JY, Ni BJ, Fang F. Recovery of phosphorus from wastewater containing humic substances through vivianite crystallization: Interaction and mechanism analysis. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 331:117324. [PMID: 36657201 DOI: 10.1016/j.jenvman.2023.117324] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 12/29/2022] [Accepted: 01/16/2023] [Indexed: 06/17/2023]
Abstract
Vivianite crystallization has been regarded as a suitable option for recovering phosphorus (P) from P-containing wastewater. However, the presence of humic substances (HS) would inevitably affect the formation of vivianite crystals. Therefore, the influences of HS on vivianite crystallization and the changes in the harvested vivianite crystals were investigated in this study. The results suggested the inhibition effect of 70 mg/L HS on vivianite crystallization reached 12.24%, while it could be attenuated by increasing the pH and Fe/P ratio of the solution. Meanwhile, the addition of HS altered the size, purity, and morphology of recovered vivianite crystals due to the blockage of the growth sites on the crystal surface. Additionally, the formation of phosphate ester group, hydrogen bonding, and COOH-Fe2+ complexes are the potential mechanisms of HS interaction with vivianite crystals. The results obtained herein will help to elucidate the underlying mechanism of HS on vivianite crystallization from P-containing wastewater.
Collapse
Affiliation(s)
- Su-Na Wang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, China
| | - Jia-Shun Cao
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, China
| | - Jia-Ling Zhang
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment (MEE), Nanjing, 210042, PR China
| | - Jing-Yang Luo
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, China
| | - Bing-Jie Ni
- Centre for Technology in Water and Wastewater (CTWW), School of Civil and Environmental Engineering, University of Technology Sydney (UTS), Sydney, NSW, 2007, Australia
| | - Fang Fang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, China.
| |
Collapse
|
19
|
Zhang C, Lu Q, Li Y. A review on sulfur transformation during anaerobic digestion of organic solid waste: Mechanisms, influencing factors and resource recovery. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 865:161193. [PMID: 36581268 DOI: 10.1016/j.scitotenv.2022.161193] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 12/20/2022] [Accepted: 12/21/2022] [Indexed: 06/17/2023]
Abstract
Anaerobic digestion (AD) is an economical and environment-friendly technology for treating organic solid wastes (OSWs). OSWs with high sulfur can lead to the accumulation of toxic and harmful hydrogen sulfide (H2S) during AD, so a considerable amount of studies have focused on removing H2S emissions. However, current studies have found that sulfide induces phosphate release from the sludge containing iron‑phosphorus compounds (FePs) and the feasibility of recovering elemental sulfur (S0) during AD. To tap the full potential of sulfur in OSWs resource recovery, deciphering the sulfur transformation pathway and its influencing factors is required. Therefore, in this review, the sulfur species and distributions in OSWs and the pathway of sulfur transformation during AD were systematically summarized. Then, the relationship between iron (ferric compounds and zero-valent iron), phosphorus (FePs) and sulfur were analyzed. It was found that the reaction of iron with sulfide during AD drove the conversion of sulfide to S0 and iron sulfide compounds (FeSx), and consequently iron was applied in sulfide abatement. In particular, ferric (hydr)oxide granules offer possibilities to improve the economic viability of hydrogen sulfide control by recovering S0. Sulfide is an interesting strategy to release phosphate from the sludge containing FePs for phosphorus recovery. Critical factors affecting sulfur transformation, including the carbon source, free ammonia and pretreatment methods, were summarized and discussed. Carbon source and free ammonia affected sulfur-related microbial diversity and enzyme activity and different sulfur transformation pathways in response to varying pretreatment methods. The study on S0 recovery, organic sulfur conversion, and phosphate release mechanism triggered by sulfur deserves further investigation. This review is expected to enrich our knowledge of the role of sulfur during AD and inspire new ideas for recovering phosphorus and sulfur resources from OSWs.
Collapse
Affiliation(s)
- Cong Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China
| | - Qinyuan Lu
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China
| | - Yongmei Li
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, PR China.
| |
Collapse
|
20
|
Hu Z, Li W, Duan H, Huang X, Meng J, Yang L, Zheng M. An integrated approach to vivianite recovery from waste activated sludge. BIORESOURCE TECHNOLOGY 2023; 371:128608. [PMID: 36640822 DOI: 10.1016/j.biortech.2023.128608] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 01/07/2023] [Accepted: 01/09/2023] [Indexed: 06/17/2023]
Abstract
The waste activated sludge (WAS) of wastewater treatment system is often rich in phosphorus (P), which is a basic element of human life and could use up in the near future. This study proposed an integrated approach to efficiently recover P as vivianite from WAS and simultaneously enhance the sludge dewaterability. The raw WAS was first acidified using FeCl3, which was then fed to anaerobic fermenter for Fe3+ reduction. After fermentation, a technology named acid-elutriation was introduced to convert Fe and P from solid phase to liquid phase and concomitantly enhance the liquor-solid separation. Finally, vivianite was obtained via sludge eluate neutralization. The enhanced sludge dewaterability not only increases the recovery efficiency of Fe and P but also decreases the cost of sludge disposal.
Collapse
Affiliation(s)
- Zhetai Hu
- Australian Centre for Water and Environmental Biotechnology, The University of Queensland, St Lucia, QLD 4072, Australia
| | - Weiwei Li
- Australian Centre for Water and Environmental Biotechnology, The University of Queensland, St Lucia, QLD 4072, Australia
| | - Haoran Duan
- Australian Centre for Water and Environmental Biotechnology, The University of Queensland, St Lucia, QLD 4072, Australia
| | - Xin Huang
- Australian Centre for Water and Environmental Biotechnology, The University of Queensland, St Lucia, QLD 4072, Australia
| | - Jia Meng
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, 73 Huanghe Road, Harbin 150090, China
| | - Liangzhen Yang
- 2005 Pioneer Park, Longcheng Residential Street, Shenzhen Tongdao Environmental Technology Co., Ltd, Shenzhen 518001, China
| | - Min Zheng
- Australian Centre for Water and Environmental Biotechnology, The University of Queensland, St Lucia, QLD 4072, Australia.
| |
Collapse
|
21
|
Lai LL, Liu C, Liu MY, Wan SZ, Zhao ZG, Wang R, Yuan LJ. Condition optimization of iron-air fuel cell to treat phosphate-containing wastewater regarding sustainable development. CHEMOSPHERE 2023; 313:137507. [PMID: 36495975 DOI: 10.1016/j.chemosphere.2022.137507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 10/21/2022] [Accepted: 12/06/2022] [Indexed: 06/17/2023]
Abstract
Increasing use of phosphorus products and excessive exploitation of phosphorus resources become two major problems in perspective of phosphorus sustainable development. Phosphorus recovery is the shortcut to solve this dilemma. Combining electrochemistry, an iron-air fuel cell was adopted to recover phosphate and electricity from phosphate-containing wastewater in our previous studies. The present study focused on investigating the effects of catholyte/anolyte conductivity, external resistance, and anolyte pH on the performance of iron-air fuel cell, and obtaining the optimized conditions. Furthermore, the electrochemical methods of phosphate recovery were compared and assessed, and it is concluded that iron-air fuel cell has great potential for energy recovery. The phosphate removal efficiencies and vivianite yield roughly positively correlated with the catholyte conductivity and the anolyte pH, but negatively correlated with the external resistance and the anolyte conductivity. The electricity generation roughly positively correlated with the catholyte conductivity and anolyte conductivity, but showed limitations in the test range of anolyte pH and external resistance. To pursue high phosphate removal efficiencies and vivianite yield, the catholyte conductivity, external resistance, anolyte pH and anolyte conductivity were suggested to be 35 g-NaCl/L, 10 Ω, 8 and 0 g-NaCl/L. While if electricity generation was the primary goal, these parameters should be 35 g-NaCl/L, 220 Ω, 5 and 70 g-NaCl/L. The optimized conditions will help to improve the phosphate removal efficiency, vivianite yield and electricity generation, and to promote the development of iron-air fuel cell technology.
Collapse
Affiliation(s)
- Ling-Ling Lai
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, No.13 Yanta Road, Xi'an, 710055, PR China; Key Lab of Northwest Water Resource, Environment and Ecology, MOE. Xi'an University of Architecture and Technology, No.13 Yanta Road, Xi'an, 710055, PR China
| | - Chao Liu
- College of Chemistry and Environmental Engineering, Anyang Institute of Technology, Anyang, 455000, PR China
| | - Meng-Yu Liu
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, No.13 Yanta Road, Xi'an, 710055, PR China; Key Lab of Northwest Water Resource, Environment and Ecology, MOE. Xi'an University of Architecture and Technology, No.13 Yanta Road, Xi'an, 710055, PR China
| | - Si-Zhuo Wan
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, No.13 Yanta Road, Xi'an, 710055, PR China; Key Lab of Northwest Water Resource, Environment and Ecology, MOE. Xi'an University of Architecture and Technology, No.13 Yanta Road, Xi'an, 710055, PR China
| | - Zhi-Guo Zhao
- China National Heavy Machinery Research Institute Co., Ltd., Xi'an, 710014, PR China
| | - Ru Wang
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, No.13 Yanta Road, Xi'an, 710055, PR China; Key Lab of Northwest Water Resource, Environment and Ecology, MOE. Xi'an University of Architecture and Technology, No.13 Yanta Road, Xi'an, 710055, PR China
| | - Lin-Jiang Yuan
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, No.13 Yanta Road, Xi'an, 710055, PR China; Key Lab of Northwest Water Resource, Environment and Ecology, MOE. Xi'an University of Architecture and Technology, No.13 Yanta Road, Xi'an, 710055, PR China.
| |
Collapse
|
22
|
Wu Y, Wu Z, Yang C, Yue X, Zhou A, Song X, Su B. Layered double hydroxides for phosphorus recovery from lipid-rich waste anaerobic fermentation liquor. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 326:116759. [PMID: 36399888 DOI: 10.1016/j.jenvman.2022.116759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 11/09/2022] [Accepted: 11/09/2022] [Indexed: 06/16/2023]
Abstract
This study aimed to extract orthophosphate (ortho-P) from lipid-rich waste AF liquor (AFL) by Mg/Al layered double hydroxides (Mg/Al LDHs) adsorption, evaluate the influence of carbonate and investigate adsorption mechanisms. The carbonate influence experiment using synthetic P-rich wastewater indicated that low carbonate level was favorable for P extraction by LDHs. And then, real AFL rich in volatile fatty acids (VFAs), carbonate and ortho-P was applied as adsorbate to explore the Mg/Al LDHs adsorption performance. Experimental results indicated that 4 g/L Mg/Al LDHs could extract 88.3% of ortho-P from the AFL with low carbonate level (4829.83 mg CaCO3/L), and the adsorption quantity was 62.99 mg P/g LDHs, however, negligible VFAs were extracted. Kinetics and mechanisms analysis indicated that adsorption of P onto Mg/Al LDHs was a rapid physiochemical process, including ion exchange and surface adsorption. Finally, the nutrients release test confirmed the slow-release property of intercalated P.
Collapse
Affiliation(s)
- Yuqi Wu
- College of Environmental Science and Engineering, Taiyuan University of Technology, 209 Daxue Road, Jinzhong, 030600, PR China.
| | - Zichuan Wu
- College of Environmental Science and Engineering, Taiyuan University of Technology, 209 Daxue Road, Jinzhong, 030600, PR China
| | - Chunfan Yang
- College of Environmental Science and Engineering, Taiyuan University of Technology, 209 Daxue Road, Jinzhong, 030600, PR China
| | - Xiuping Yue
- College of Environmental Science and Engineering, Taiyuan University of Technology, 209 Daxue Road, Jinzhong, 030600, PR China
| | - Aijuan Zhou
- College of Environmental Science and Engineering, Taiyuan University of Technology, 209 Daxue Road, Jinzhong, 030600, PR China
| | - Xiulan Song
- College of Environmental Science and Engineering, Taiyuan University of Technology, 209 Daxue Road, Jinzhong, 030600, PR China; National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Beijing University of Technology, Beijing, 100124, PR China
| | - Bingqin Su
- College of Environmental Science and Engineering, Taiyuan University of Technology, 209 Daxue Road, Jinzhong, 030600, PR China
| |
Collapse
|
23
|
Heinrich L, Schmieder P, Barjenbruch M, Hupfer M. Formation of vivianite in digested sludge and its controlling factors in municipal wastewater treatment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 854:158663. [PMID: 36096220 DOI: 10.1016/j.scitotenv.2022.158663] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Revised: 09/06/2022] [Accepted: 09/06/2022] [Indexed: 06/15/2023]
Abstract
Engineering solutions to recover phosphorus from municipal wastewater are required to close the anthropogenic phosphorus cycle. After chemical phosphorus elimination by iron, the ferrous iron‑phosphorus mineral vivianite forms in digested sludge, and its separation is being researched at the pilot scale. In this study, sludge samples from 16 wastewater treatment plants (WWTPs) demonstrated that phosphorus bound to biomass and redox-sensitive iron in activated sludge was transformed into other phosphorus binding forms, including vivianite, during digestion. Vivianite quantity was approximated using X-ray diffraction and two sequential extractions. These three independent methods of approximating vivianite quantity were closely related confirming their relationship to the vivianite content in the samples. The digested sludge from three WWTPs exhibited comparatively high levels of vivianite-bound phosphorus approximated between 31 % and 51 % of total phosphorus. The controlling factors of vivianite formation were investigated in order to enhance its formation in digested sludge and increase the amount of phosphorus recoverable as vivianite. They were identified using single and multivariate correlation (MLR), considering the sludge properties, sludge composition, and process parameters within the operating range of the 16 WWTPs. Increasing iron content was verified as the primary predictor of significantly increased vivianite formation (MLR: p < 0.001). In addition, increasing sulphur content was found to be an additional significant factor that decreased vivianite formation (MLR: p < 0.05). Furthermore, a comparison of plants using sulphur-free (FeCl2 and FeCl3) and sulphur-containing (FeSO4 and FeClSO4) precipitants indicated that the latter could increase the sulphur content in digested sludge (one-tailed Welch two-sample t-test: t(14.6) = 2.3, p = 0.02). Thus, by increasing the sulphur content, the use of sulphur-comprising precipitants may counteract vivianite formation, whereas sulphur-free precipitants may facilitate it and, hence, promote vivianite recovery.
Collapse
Affiliation(s)
- Lena Heinrich
- Department of Ecohydrology and Biogeochemistry, Leibniz Institute of Freshwater Ecology and Inland Fisheries (IGB), Müggelseedamm 301, 12587 Berlin, Germany; Department of Urban Water Management, Technische Universität Berlin, Gustav-Meyer-Allee 25, 13355 Berlin, Germany.
| | - Peter Schmieder
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie, Robert-Rössle-Straße 10, 13125 Berlin, Germany
| | - Matthias Barjenbruch
- Department of Urban Water Management, Technische Universität Berlin, Gustav-Meyer-Allee 25, 13355 Berlin, Germany
| | - Michael Hupfer
- Department of Ecohydrology and Biogeochemistry, Leibniz Institute of Freshwater Ecology and Inland Fisheries (IGB), Müggelseedamm 301, 12587 Berlin, Germany
| |
Collapse
|
24
|
Wu Y, Yue X, Zhou A, Song X, Su B, Cao F, Ding J. Simultaneous recovery of short-chain fatty acids and phosphorus during lipid-rich anaerobic fermentation with sodium hydroxide conditioning. CHEMOSPHERE 2023; 312:137227. [PMID: 36379433 DOI: 10.1016/j.chemosphere.2022.137227] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 11/08/2022] [Accepted: 11/09/2022] [Indexed: 06/16/2023]
Abstract
Anaerobic fermentation (AF) could achieve simultaneous recovery of short-chain fatty acids (SCFAs) and phosphorus (P) when waste activated sludge (WAS) and meat processing waste (MPW) act as co-substrate. However, long-chain fatty acids, the degradation intermediates of lipids, always inhibit anaerobic microbial activity. Therefore, sodium hydroxide (NaOH) conditioning was applied to improve the lipid-rich AF performance in this study. The results demonstrated that 96% WAS (v/v) with NaOH addition that remaining at pH 7.5 could achieve the maximum SCFAs yield (1180.05 mg/g VSfed) at 12 d, and ortho-P content in the AF liquor (AFL) was much more than that of without NaOH addition. Anaerovibrio and Aminobacterium, one kind of lipolytic and proteolytic bacteria, respectively, became the major genus in the lipid-rich AF system. 86% of P in the AFL from 96% WAS + pH 7.5 reactor was recovered through vivianite crystallization method, with 91% of SCFAs remaining in the post-AFL. Meanwhile, analysis results verified vivianite formation in the P precipitate products. Overall, this study provided a new idea to achieve SCFAs and P simultaneous recovery from WAS and MPW through AF with NaOH conditioning and vivianite crystallization.
Collapse
Affiliation(s)
- Yuqi Wu
- College of Environmental Science and Engineering, Taiyuan University of Technology, 209 Daxue Road, Jinzhong, 030600, PR China.
| | - Xiuping Yue
- College of Environmental Science and Engineering, Taiyuan University of Technology, 209 Daxue Road, Jinzhong, 030600, PR China
| | - Aijuan Zhou
- College of Environmental Science and Engineering, Taiyuan University of Technology, 209 Daxue Road, Jinzhong, 030600, PR China
| | - Xiulan Song
- College of Environmental Science and Engineering, Taiyuan University of Technology, 209 Daxue Road, Jinzhong, 030600, PR China
| | - Bingqin Su
- College of Environmental Science and Engineering, Taiyuan University of Technology, 209 Daxue Road, Jinzhong, 030600, PR China
| | - Fang Cao
- College of Environmental Science and Engineering, Taiyuan University of Technology, 209 Daxue Road, Jinzhong, 030600, PR China
| | - Jianzhi Ding
- Taiyuan Design Research Institute for Coal Industry, 18 Qingnian Road, Taiyuan, 030001, PR China
| |
Collapse
|
25
|
Tian M, Liu F, Guo J, Li W, Zhang M, Li X. Effect of Different Acid and Base Potassium Ferrate Pretreatment on Organic Acid Recovery by Anaerobic Digestion of Sludge. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:15093. [PMID: 36429813 PMCID: PMC9689993 DOI: 10.3390/ijerph192215093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Revised: 11/03/2022] [Accepted: 11/09/2022] [Indexed: 06/16/2023]
Abstract
Potassium ferrate has strong oxidation in both acid and alkali environments, which has attracted extensive attention. However, the impact of the pH environment on this coupling process with the goal of resource recovery has not received attention. Under the goal of the efficient recovery of organic acid, the changes of solid-liquid characteristics of sludge after acid and alkaline ferrate pretreatment and during anaerobic digestion were discussed. The results showed that compared with blank control groups, after alkaline ferrate pretreatment, the volatile suspended solids (VSSs) decreased the most, reaching 28.19%. After being pretreated with alkaline ferrate, the sludge showed the maximum VFA accumulation (408.21 COD/g VSS) on the third day of digestion, which was 1.34 times higher than that of the acid ferrate pretreatment. Especially in an alkaline environment, there is no need to add additional alkaline substances to adjust the pH value, and the effect of sludge reduction and acid production is the best.
Collapse
Affiliation(s)
- Mengjia Tian
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Feng Liu
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China
- Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Jiawen Guo
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Wei Li
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Mao Zhang
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Xiang Li
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China
- Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, Suzhou University of Science and Technology, Suzhou 215009, China
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
| |
Collapse
|
26
|
Hu D, Zhu N, Li Y, Yan Y, Zhang C. Acid/alkali pretreatment enhances the formation of vivianite during anaerobic fermentation of waste activated sludge. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 319:115760. [PMID: 35863301 DOI: 10.1016/j.jenvman.2022.115760] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 06/13/2022] [Accepted: 07/12/2022] [Indexed: 06/15/2023]
Abstract
Phosphorus (P) recovery from waste activated sludge (WAS) of wastewater treatment plants is significant in the world suffering from P shortage. Recently, vivianite crystallization has been regarded as an essential method of recovering P from anaerobic fermentation (AF) of WAS. This study performed acid/alkali pretreatment (pH 3/pH 10) on AF of WAS to improve iron reduction and vivianite formation. The results showed that the maximum iron reduction rate (Rmax) in the pH 3 and pH 10 groups was increased by 1.9 and 1.7 times compared with that in the Control-Fe group, and the iron reduction efficiency (EFe) was increased by 17.5% and 12.0% respectively. The Fe bound P (Fe-P) proportion in the sludge in the pH 3 and pH 10 groups increased by 50.0% and 33.7%, respectively. Furthermore, the relative abundance of the iron-reducing bacteria Clostridium_sensusensu in the pH 3 group was higher; and the Fe-P proportion in the sludge and the size of vivianite crystal after AF were larger. With these results, pH 3 pretreatment was preferred for promoting Fe2+ release and vivianite formation during AF.
Collapse
Affiliation(s)
- Dexiu Hu
- State Key Laboratory of Eco-hydraulics in Northwest Arid Region, Xi'an University of Technology, Xi'an, 710048, China.
| | - Nian Zhu
- State Key Laboratory of Eco-hydraulics in Northwest Arid Region, Xi'an University of Technology, Xi'an, 710048, China
| | - Yao Li
- State Key Laboratory of Eco-hydraulics in Northwest Arid Region, Xi'an University of Technology, Xi'an, 710048, China
| | - Yixin Yan
- State Key Laboratory of Eco-hydraulics in Northwest Arid Region, Xi'an University of Technology, Xi'an, 710048, China
| | - Cong Zhang
- State Key Laboratory of Eco-hydraulics in Northwest Arid Region, Xi'an University of Technology, Xi'an, 710048, China
| |
Collapse
|
27
|
Zhang C, Yang X, Tan X, Wan C, Liu X. Sewage sludge treatment technology under the requirement of carbon neutrality: Recent progress and perspectives. BIORESOURCE TECHNOLOGY 2022; 362:127853. [PMID: 36037839 DOI: 10.1016/j.biortech.2022.127853] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 08/21/2022] [Accepted: 08/22/2022] [Indexed: 06/15/2023]
Abstract
In the context of climate policies that advocate carbon neutrality, carbon emission reduction provides a new restriction in evaluating the waste activated sludge (WAS) treatment technologies and procedures. This review provides an overview of current researches and development efforts in WAS treatment, focusing on the dual attributes of WAS as contaminants and resources. Firstly, the improved technical requirements posed by heavy metals, micro(nano) plastics, or other emerging plastics in WAS are studied. Furthermore, in terms of carbon emission reduction, the applications and limitations of widely deployed WAS treatment technologies are discussed. Based on carbon neutrality requirements, the anaerobic co-digestion and co-pyrolysis technologies are comprehensively discussed from the views of pollutants removing efficiencies, enhancement methods, carbon emissions, and resource recovery. Finally, a workable new route for WAS treatment is proposed for future technological advancement and engineering innovation.
Collapse
Affiliation(s)
- Chen Zhang
- Shanghai Municipal Engineering Design Institute (Group) Co., LTD., Shanghai 200092, China
| | - Xue Yang
- Shanghai Municipal Engineering Design Institute (Group) Co., LTD., Shanghai 200092, China
| | - Xuejun Tan
- Shanghai Municipal Engineering Design Institute (Group) Co., LTD., Shanghai 200092, China
| | - Chunli Wan
- Department of Environmental Science and Engineering, Fudan University, Shanghai 200438, China
| | - Xiang Liu
- Department of Environmental Science and Engineering, Fudan University, Shanghai 200438, China.
| |
Collapse
|
28
|
Hao X, Yu W, Yuan T, Wu Y, van Loosdrecht MCM. Unravelling key factors controlling vivianite formation during anaerobic digestion of waste activated sludge. WATER RESEARCH 2022; 223:118976. [PMID: 36001903 DOI: 10.1016/j.watres.2022.118976] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 07/11/2022] [Accepted: 08/12/2022] [Indexed: 05/06/2023]
Abstract
As a product of phosphorous recovery from anaerobic digestion (AD) of waste activated sludge (WAS), vivianite has received increasing attention. However, key factors controlling vivianite formation have not yet been fully addressed. Thus, this study was initiated to ascertain key factors controlling vivianite formation. A simulation of chemical equilibriums indicates that interfering ions such as metallic ions and inorganic compounds may affect vivianite formation, especially at a PO43-concentration lower than 3 mM. The experiments demonstrated that the rate of ferric bio-reduction conducted by dissimilatory metal-reducing bacteria (DMRB) and the competition of methane-producing bacteria (MPB) with DMRB for VFAs (acetate) were not the key factors controlling vivianite formation, and that ferric bio-reduction of DMRB can proceed when a sufficient amount of Fe3+ exists in WAS. The determined affinity constants (Ks) of both DMRB and MPB on acetate revealed that the KHAc constant (4.2 mmol/g VSS) of DMRB was almost 4 times lower than that of MPB (15.67 mmol/g VSS) and thus MPB could not seriously compete for VFAs (acetate) with DMRB. As a result, vivianite formation was controlled mainly by the amount of Fe3+ in WAS. In practice, a Fe/P molar ratio of 2:1 should be enough for vivianite formation in AD of WAS. Otherwise, exogenously dosing Fe3+ or Fe2+ into AD must be applied in AD.
Collapse
Affiliation(s)
- Xiaodi Hao
- Sino-Dutch R&D Centre for Future Wastewater Treatment Technologies/Key Laboratory of Urban Stormwater System and Water Environment, Beijing University of Civil Engineering & Architecture, Beijing, 100044, China.
| | - Wenbo Yu
- Sino-Dutch R&D Centre for Future Wastewater Treatment Technologies/Key Laboratory of Urban Stormwater System and Water Environment, Beijing University of Civil Engineering & Architecture, Beijing, 100044, China
| | - Tugui Yuan
- Sino-Dutch R&D Centre for Future Wastewater Treatment Technologies/Key Laboratory of Urban Stormwater System and Water Environment, Beijing University of Civil Engineering & Architecture, Beijing, 100044, China
| | - Yuanyuan Wu
- Sino-Dutch R&D Centre for Future Wastewater Treatment Technologies/Key Laboratory of Urban Stormwater System and Water Environment, Beijing University of Civil Engineering & Architecture, Beijing, 100044, China
| | - Mark C M van Loosdrecht
- Sino-Dutch R&D Centre for Future Wastewater Treatment Technologies/Key Laboratory of Urban Stormwater System and Water Environment, Beijing University of Civil Engineering & Architecture, Beijing, 100044, China; Dept. of Biotechnology, Delft University of Technology, van der Maasweg 9, 2629 HZ Delft, the Netherlands
| |
Collapse
|
29
|
Enhanced Phosphorus Recovery as Vivianite from Anaerobically Digested Sewage Sludge with Magnetic Biochar Addition. SUSTAINABILITY 2022. [DOI: 10.3390/su14148690] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Sustainable phosphorus (P) recovery from sewage sludge is crucial to reconciling the simultaneous shortage and excess of P. In this study, magnetic biochar (MBC) was synthesized and innovatively applied to enhance P recovery as vivianite. The effects of anaerobic digestion (AD) time, hydrothermal (HT) pretreatment temperature and MBC dose on vivianite formation were investigated using batch experiments and a modified sequential P extraction protocol. The P fractionation results showed that the concentration of pure vivianite-bound P (Fe(II)-P) reached a maximum on the 10th day of AD treatment, and then declined sharply due to vivianite oxidation and P limitation. HT pretreatment operated at relatively high temperatures (135 and 185 °C) reduced vivianite formation; this negative effect of HT pretreatment was partially compensated by MBC supplementation. The proportion of Fe(II)-P in the solid phase of sludge was substantially raised up to 57.1% from 8.3~17.4% with an increasing dose of MBC from 0 to 12.5 g/L, indicating that MBC had a markedly enhanced effect on vivianite formation; this could be attributed to the MBC-improved Fe(II) production, as evidenced by the elevated proportion of Fe(II) in Fe2p XPS spectra and the increased ratio of Fe(II)-P to oxidized vivianite-bound P (Fe(III)-P) in the sludge after MBC supplementation. MBC addition also decreased the proportion of water-extractable P by sorption and promoted organic P decomposition, which further facilitated vivianite production. These findings reveal a new strategy for enhancing P recovery from HT-pretreated AD sludge.
Collapse
|
30
|
Liang J, Zhou Y. Iron-based advanced oxidation processes for enhancing sludge dewaterability: State of the art, challenges, and sludge reuse. WATER RESEARCH 2022; 218:118499. [PMID: 35537253 DOI: 10.1016/j.watres.2022.118499] [Citation(s) in RCA: 43] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 04/12/2022] [Accepted: 04/21/2022] [Indexed: 06/14/2023]
Abstract
The increasing amount of sewage sludge produced in wastewater treatment plants (WWTPs) poses a great challenge to both environment and economy globally. As a requisite process during sludge treatment, sludge dewatering can significantly minimize the sludge volume and lower the operational cost for downstream transportation and disposal. Iron-based advanced oxidation process (AOP), a robust and cost-effective technique with relatively low technical barriers for high-level sludge dewatering, has been widely explored in the past 20 years. The development was mainly driven by the demands of efficient and sustainable sludge conditioning technology and the flexible sludge management approaches. The application of iron-based AOPs in sludge dewatering process attracts more and more attention. In this work, we discussed the current application of iron-based AOPs technology in the sludge dewatering processes in a holistic manner, summarized the factors affecting the sludge dewaterability in the treatment processes, and analyzed the mechanisms of iron-based AOPs to improve dewatering processes. Furthermore, we elaborated potential advantages, limitations, and challenges associated with implementing iron-based AOPs in the full-scale plants and shared the opportunities for sludge reutilization. This review aims to contribute to the development of highly efficient iron-based AOPs for sludge dewatering and offer perspectives and directions towards the new-generation of WWTPs with the sustainable and eco-friendly benefits.
Collapse
Affiliation(s)
- Jialin Liang
- Engineering and Technology Research Center for Agricultural Land Pollution Integrated Prevention and Control of Guangdong Higher Education Institute, College of Resources and Environment, Zhongkai University of Agriculture and Engineering, Guangzhou, 510225, China
| | - Yan Zhou
- Advanced Environmental Biotechnology Centre, Nanyang Environment and Water Research Institute, Nanyang Technological University, 637141, Singapore; School of Civil and Environmental Engineering, Nanyang Technological University, 639798, Singapore.
| |
Collapse
|
31
|
Wang R, Wan S, Lai L, Zhang M, Zeb BS, Qaisar M, Tan G, Yuan L. Recovering phosphate and energy from anaerobic sludge digested wastewater with iron-air fuel cells: Two-chamber cell versus one-chamber cell. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 825:154034. [PMID: 35202690 DOI: 10.1016/j.scitotenv.2022.154034] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 02/16/2022] [Accepted: 02/16/2022] [Indexed: 06/14/2023]
Abstract
Anaerobic sludge digested (ASD) wastewater is widespread in wastewater treatment plants. Recovering phosphate from ASD wastewater not only removes pollutants but also solves the phosphorus deficiency problem. Iron-air fuel cells were chosen to recover phosphate and generate electricity from ASD wastewater. To optimize cell configuration, a two-chamber and a one-chamber iron-air fuel cell were set up. The phosphate removal efficiency, the vivianite yield and the electricity generation efficiency of the two fuel cells were evaluated. It turned out that the volumetric removal rate (VRR) of phosphate of the two-chamber cell was 11.60 mg P·L-1·h-1, which was about five times of that in the one-chamber cell. The phosphate recovery product vivianite was detected on the surface of the iron anodes and the calculated purities of the two-chamber fuel cell and one-chamber fuel cell were 90.6% and 58.7%, respectively. Considering the content and purity, the iron anode surface in the two-chamber fuel cell was the best point to recover phosphate. The proton exchange membrane (PEM) in the two-chamber fuel cell provided low pH conditions suitable for vivianite formation. Moreover, under the low pH condition, metal ions of Fe2+, Ca2+, Al3+ and so on were kept soluble, leading to a high conductivity. The high conductivity caused low internal resistance, which benefited the electricity generation. The total output electric power of the two-chamber fuel cell was 2.4 times that of the one-chamber fuel cell when treating 25 mL ASD wastewater (0.62 vs. 0.26 mW·h). Overall, the two-chamber fuel cell was the better choice for phosphate recovery and electricity generation from ASD wastewater. Further studies on the long-term operation of two-chamber fuel cells should be carried out.
Collapse
Affiliation(s)
- Ru Wang
- Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, PR China
| | - Sizhuo Wan
- Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, PR China
| | - Lingling Lai
- Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, PR China
| | - Meng Zhang
- College of Environmental & Resource Sciences, Zhejiang University, Hang Zhou 310058, PR China
| | - Bibi Saima Zeb
- Department of Environmental Sciences, COMSATS University Islamabad, Abbottabad Campus, Abbottabad, Pakistan
| | - Mahmood Qaisar
- Department of Environmental Sciences, COMSATS University Islamabad, Abbottabad Campus, Abbottabad, Pakistan
| | - Guotao Tan
- Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, PR China
| | - Linjiang Yuan
- Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, PR China.
| |
Collapse
|
32
|
Goedhart R, Müller S, van Loosdrecht MCM, van Halem D. Vivianite precipitation for iron recovery from anaerobic groundwater. WATER RESEARCH 2022; 217:118345. [PMID: 35460977 DOI: 10.1016/j.watres.2022.118345] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 03/16/2022] [Accepted: 03/21/2022] [Indexed: 06/14/2023]
Abstract
Iron in anaerobic groundwater is commonly removed by oxidation followed by sand filtration. This produces large volumes of iron(III)(hydr)oxide sludge with little value. Our research investigates the novel concept of anaerobic iron(II) recovery from groundwater as the valuable mineral vivianite (Fe3(PO4)2 • 8 H2O) by the addition of phosphate to the water. We found that vivianite precipitated both in synthetic and natural groundwater when the saturation index (SI) was higher than 4. The SI can be increased by elevating the pH, which allows for iron removal at lower concentrations. Anaerobic iron removal reached 93.7% in natural groundwater, which increased further to 99.9% after a subsequent aeration step. Vivianite precipitation followed second order kinetics with a rate constant of 2.3 M-1s-1 and the sludge volume decreased by two third compared to iron oxidation. We therefore conclude that anaerobic iron removal is a promising new approach towards sustainable groundwater treatment.
Collapse
Affiliation(s)
- Roos Goedhart
- Water Management Department, Faculty of Civil Engineering and Geosciences, Delft University of Technology, Stevinweg 1, Delft 2628 CN, The Netherlands.
| | - Simon Müller
- Water Management Department, Faculty of Civil Engineering and Geosciences, Delft University of Technology, Stevinweg 1, Delft 2628 CN, The Netherlands
| | - Mark C M van Loosdrecht
- Biotechnology Department, Faculty of Applied Sciences, Delft University of Technology, Van der Maasweg 9, Delft 2629 HZ, The Netherlands
| | - Doris van Halem
- Water Management Department, Faculty of Civil Engineering and Geosciences, Delft University of Technology, Stevinweg 1, Delft 2628 CN, The Netherlands
| |
Collapse
|
33
|
Xu H, Guo L, Gao M, Zhao Y, Jin C, Ji J, She Z. Comparison on anaerobic phosphorus release and recovery from waste activated sludge by different chemical pretreatment methods: Focus on struvite quality and benefit analysis. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 825:154110. [PMID: 35218825 DOI: 10.1016/j.scitotenv.2022.154110] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 02/04/2022] [Accepted: 02/20/2022] [Indexed: 06/14/2023]
Abstract
Phosphorus recovery from waste activated sludge (WAS) is expected to alleviate the shortage of phosphate rock and reduce eutrophication. In this study, acid, alkali and sodium polyacrylate (PAAS) were compared to enhance phosphorus release and recovery from WAS. During anaerobic fermentation (AF) stage, the optimal pretreated conditions for ortho-phosphate release were the pH of 4 (AF 12 h), 13 (AF 12 h) and 22.4 g PAAS/L (AF 24 h) with the phosphorus release efficiencies of 40.9%, 62.6% and 31.7%, respectively. Acid, alkali and PAAS addition were beneficial for apatite phosphorus (AP), non-apatite inorganic phosphorus (NAIP) and organic phosphorus (OP) release from WAS, respectively. Strong acidic (pH = 4) and alkaline (pH = 12 and 13) conditions inhibited the release of soluble ammonia, while PAAS would not have a negative impact on the release of soluble ammonia. By means of precipitation crystallization, the ortho-phosphate could be almost recovered after acid/alkali pretreatment compared with PAAS (88.9%) at optimal Mg/P molar ratio of 1.5:1. The XRD, FT-IR and SEM-EDX analyses confirmed the main component in the product was struvite. The purity of the struvite in the product recovered from acid (named PreAC, 78.9%) and alkali (named PreAL, 89.6%) pretreated sludge were higher than that of the PAAS (named PrePA, 72.3%) by elemental analysis. The mercury and chromium content existed in PreAC were above the Control Standards of Pollutants in Sludge for Agricultural Use, whereas detected heavy metal elements level of the PreAL and PrePA were below the standard. By means of cost analysis, acid/alkali pretreatment could obtain economic benefits compared with PAAS. Thus, those discoveries would broaden the phosphorus recovery way to serve in practice.
Collapse
Affiliation(s)
- Haiqing Xu
- The Key Laboratory of Water and Sediment Sciences, Ministry of Education, School of Environment, Beijing Normal University, Beijing 100875, China; State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China
| | - Liang Guo
- College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China; Key Laboratory of Marine Environmental and Ecology, Ministry of Education, Ocean University of China, Qingdao 266100, China.
| | - Mengchun Gao
- College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China
| | - Yangguo Zhao
- College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China
| | - Chunji Jin
- College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China
| | - Junyuan Ji
- College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China
| | - Zonglian She
- College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China
| |
Collapse
|
34
|
Wen Q, Liu B, Chen Z. Simultaneous recovery of vivianite and produce short-chain fatty acids from waste activated sludge using potassium ferrate as pre-oxidation treatment. ENVIRONMENTAL RESEARCH 2022; 208:112661. [PMID: 35032543 DOI: 10.1016/j.envres.2021.112661] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 12/12/2021] [Accepted: 12/30/2021] [Indexed: 05/16/2023]
Abstract
Recovery resources from waste active sludge (WAS) is an effective way to alleviate the predicament of WAS disposal, and it is also conducive to the carbon neutralization of wastewater treatment systems. This study discussed the strategy of WAS anaerobic fermentation after pre-oxidation with potassium ferrate (K2FeO4, PF), which can simultaneously recover vivianite and enhance SCFAs production. The results showed that PF pre-oxidation considerably shortened the fermentation time of SCFAs to 2 days, and the main Fe-P mineral was vivianite. The optimal PF dosage of 0.06 g Fe (VI)/g TSS for pre-oxidation WAS resulted in the maximum SCFAs production and vivianite recovery rate of 3698.2 ± 118.98 mg COD/g VSS and 32.39%, respectively. The mechanism analysis showed that the oxidizing properties of PF significantly accelerated the disintegration of tight EPS, release of protein and sludge acidification efficiency. Moreover, the PF strengthened the transfer of P to the solid phase, forming the Fe-P mineral and unsaturated coordination state of phosphate group. Then the key microorganism Geobacter reduced the Fe3+ in Fe-P state to Fe2+ and combined unsaturated phosphate to form vivianite. This study provides an alternative method for resource recovery and environmentally friendly disposal of WAS and contributes to the carbon neutrality of urban water systems.
Collapse
Affiliation(s)
- Qinxue Wen
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Baozhen Liu
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Zhiqiang Chen
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, China; School of Civil Engineering, Lanzhou University of Technology, Lanzhou, 730070, PR China.
| |
Collapse
|
35
|
Xu L, Su J, Ali A, Chang Q, Shi J, Yang Y. Denitrification performance of nitrate-dependent ferrous (Fe 2+) oxidizing Aquabacterium sp. XL4: Adsorption mechanisms of bio-precipitation of phenol and estradiol. JOURNAL OF HAZARDOUS MATERIALS 2022; 427:127918. [PMID: 34863560 DOI: 10.1016/j.jhazmat.2021.127918] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 11/03/2021] [Accepted: 11/24/2021] [Indexed: 06/13/2023]
Abstract
In this study, a nitrate-dependent ferrous (Fe2+) oxidizing strain under anaerobic conditions was selected and identified as XL4, which belongs to Aquabacterium. The Box-Behnken design (BBD) was used to optimize the growth conditions of strain XL4, and the nitrate removal efficiency of strain XL4 (with 10% inoculation dosage, v/v) could reach 91.41% under the conditions of 30.34 ℃, pH of 6.91, and Fe2+ concentration of 19.69 mg L-1. The results of Fluorescence excitation-emission matrix spectra (EEM) revealed that the intensity of soluble microbial products (SMP), aromatic proteins and the fulvic-like materials were obvious difference under different Fe2+ concentration, pH, and temperature. X-ray diffraction (XRD) data confirmed that the main components of bio-precipitation were Fe3O4 and FeO(OH), which were believed to be responsible for the adsorption of phenol and estradiol. Furthermore, the maximum adsorption capacity of bio-precipitation for phenol and estradiol under the optimal conditions were 192.6 and 65.4 mg g-1, respectively. On the other hand, the adsorption process of phenol and estradiol by bio-precipitation confirmed to the pseudo-second-order and Langmuir model, which shows that the adsorption process is chemical adsorption and occurs on the uniform surface.
Collapse
Affiliation(s)
- Liang Xu
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Junfeng Su
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China.
| | - Amjad Ali
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Qiao Chang
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Jun Shi
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Yuzhu Yang
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| |
Collapse
|
36
|
Wang Y, Zheng K, Guo H, Tong Y, Zhu T, Liu Y. Unveiling the mechanisms of how vivianite affects anaerobic digestion of waste activated sludge. BIORESOURCE TECHNOLOGY 2022; 343:126045. [PMID: 34592460 DOI: 10.1016/j.biortech.2021.126045] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 09/23/2021] [Accepted: 09/25/2021] [Indexed: 05/21/2023]
Abstract
Recently, phosphorus recovery as vivianite from sludge digestion system has attracted increasing attention because of its high recovery efficiency and economic value. However, the potential impact of vivianite on anaerobic digestion of waste activated sludge remains largely unknown. This study therefore aims to provide such support. Experimental results revealed that the maximal methane yield decreased from 103.55 to 76.55 mL/g volatile solids, with the vivianite level increasing from 0 to 500 mg P/L. Mechanism explorations showed that vivianite caused more substrates remaining in tightly-bound extracellular polymeric substances, and thus suppressed sludge solubilization. In addition, it was observed that hydrolysis, acidiogenesis, acetogenesis and methanogenesis bio-processes were all inhibited by vivianite. Microbial analysis revealed that vivianite significantly decreased the relative abundances of hydrolytic microbes, acidogens and methanogens. Further investigation showed that vivianite benefited sludge agglomeration and can enhance the mass transfer resistance of anaerobic digestion, further supporting the inhibitions on anaerobic digestion.
Collapse
Affiliation(s)
- Yufen Wang
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China
| | - Kaixin Zheng
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China
| | - Haixiao Guo
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China
| | - Yindong Tong
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China
| | - Tingting Zhu
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China
| | - Yiwen Liu
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China.
| |
Collapse
|
37
|
Yu B, Xiao X, Wang J, Hong M, Deng C, Li YY, Liu J. Enhancing phosphorus recovery from sewage sludge using anaerobic-based processes: Current status and perspectives. BIORESOURCE TECHNOLOGY 2021; 341:125899. [PMID: 34523558 DOI: 10.1016/j.biortech.2021.125899] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 08/30/2021] [Accepted: 09/03/2021] [Indexed: 06/13/2023]
Abstract
Anaerobic-based processes are green and sustainable technologies for phosphorus (P) recovery from sewage sludges economically and are promising in practical application. However, the P release efficiency is always not satisfied. In this paper, the P release mechanisms (regarding to different P species) from sewage sludge using anaerobic-based processes are systematically summarized. The obstacles of P release and the updated achievements of enhancing P release from sewage sludges are analyzed and discussed. It can be concluded that different P species can release from sewage sludge via different anaerobic-based processes. Extracellular polymeric substances and excessive metal ions are the two main limiting factors to P release. Acid fermentation and anaerobic fermentation with sulfate reduction could be two promising ways, with P release efficiencies of up to 64% and 63%. Based on the summarization and discussion, perspectives on practical application of P recovery from sewage sludge using anaerobic-based processes are proposed.
Collapse
Affiliation(s)
- Bohan Yu
- School of Environmental and Chemical Engineering, Shanghai University, 333 Nanchen Road, Shanghai 200444, China
| | - Xiangmin Xiao
- Cangzhou Water Supply and Drainage Group Company Limited, 15 West Jiuhe Road, Canghzou, Hebei Province 061001, China
| | - Jianwei Wang
- Cangzhou Water Supply and Drainage Group Company Limited, 15 West Jiuhe Road, Canghzou, Hebei Province 061001, China
| | - Meng Hong
- Cangzhou Water Supply and Drainage Group Company Limited, 15 West Jiuhe Road, Canghzou, Hebei Province 061001, China
| | - Chao Deng
- Cangzhou Water Supply and Drainage Group Company Limited, 15 West Jiuhe Road, Canghzou, Hebei Province 061001, China
| | - Yu-You Li
- Department of Civil and Environmental Engineering, Graduate School of Engineering, Tohoku University, 6-6-06 Aza, Aramaki, Aoba-ku, Sendai, Miyagi 980-8579, Japan
| | - Jianyong Liu
- School of Environmental and Chemical Engineering, Shanghai University, 333 Nanchen Road, Shanghai 200444, China.
| |
Collapse
|
38
|
Wang R, Liu MY, Zhang M, Ghulam A, Yuan LJ. An iron-air fuel cell system towards concurrent phosphorus removal and resource recovery in the form of vivianite and energy generation in wastewater treatment: A sustainable technology regarding phosphorus. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 791:148213. [PMID: 34119783 DOI: 10.1016/j.scitotenv.2021.148213] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 05/19/2021] [Accepted: 05/30/2021] [Indexed: 06/12/2023]
Abstract
Phosphorous (P) recovery from industrial wastewaters solves both P deficiency and P pollution problems. A sequencing batch iron-air fuel cell was set up to recover P from synthetic wastewater containing 0.6 g-P/L Na2HPO4. In the cell, ferrous iron goes into the liquor from iron-anode to precipitate soluble P and form vivianite. Electrons travel from iron-anode to air-cathode through external circuit thus to generate energy. During 3 months' continuous operation, the P removal efficiency stably achieved at around 97.6%, and the average output voltage of cell was 404 mV. After long time operation, performance degradation of iron-air fuel cell was observed due to the electrode passivation caused by the accumulation of P precipitate on the iron-anode surface. The precipitate layer on the iron-anode impeded, but it did not block the mass transfer of ferrous iron to the anode liquor. The cell still worked with 25% decrease of output voltage, 86% decrease of current density, 87% decrease of power density and 9 times increase of internal resistance. Further analyses by XRD, FITR and Mössbauer illustrated that vivianite was the main component in both precipitates on the iron-anode surface and at the bottom of anode chamber with respective content of 66% and 30%. Vivianite on the iron-anode surface was a preferable choice due to higher content for P recovery. The iron-air fuel cell system could be a feasible option for achieving the multiple goals of P pollution control, resource recovery as vivianite, and energy generation, thereby contributing to the sustainable development of wastewater treatment.
Collapse
Affiliation(s)
- Ru Wang
- Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, PR China.
| | - Meng-Yu Liu
- Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, PR China
| | - Meng Zhang
- Advanced Environmental Biotechnology Centre, Nanyang Environment & Water Research Institute, Nanyang Technological University, 1 Cleantech Loop, Singapore 637141, Singapore.
| | - Abbas Ghulam
- Department of Chemical Engineering, University of Gujrat, Gujrat 50700, Pakistan.
| | - Lin-Jiang Yuan
- Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, PR China.
| |
Collapse
|
39
|
Xu L, Mao Y, Zong Y, Peng S, Zhang X, Wu D. Membrane-Current Collector-Based Flow-Electrode Capacitive Deionization System: A Novel Stack Configuration for Scale-Up Desalination. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:13286-13296. [PMID: 34529405 DOI: 10.1021/acs.est.1c03829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The stack configuration in flow-electrode capacitive deionization (FCDI) has been verified to be an attractive and feasible strategy for scaling up the desalination process. However, challenges still exist when attempting to simultaneously improve the desalination scale and the cell configuration. Here, we describe a novel stack FCDI configuration (termed a gradient FCDI system) based on a membrane-current collector assembly, in which the charge neutralization enables the in situ regeneration of the flow electrodes in the single cycle operation, thereby realizing a considerable increase in the desalinating performance. By evaluating standardized metrics such as the salt rejection, productivity (P), average salt removal rate (ASRR), energy-normalized removed salt (ENRS), and TEE, the results indicated that the gradient FCDI system could be a performance-stable and energy-efficient alternative for scale-up desalination. Under optimal operating conditions (carbon content = 10 wt %, feed salinity = 3000 mg L-1, cell voltage = 1.2 V, and productivity = 56.7 L m-2 h-1), the robust desalination performance (ASRR = 1.07 μmol cm-2 min-1) and energy consumption (ENRS = 7.8 μmol J-1) of the FCDI system with a desalination unit number of four were verified at long-term operation. In summary, the stacked gradient FCDI system and its operation mode described here may be an innovative and promising strategy capable of enlarging the scale of desalination while realizing performance improvement and device simplification.
Collapse
Affiliation(s)
- Longqian Xu
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science & Engineering, Tongji University, Shanghai 200092, PR China
| | - Yunfeng Mao
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science & Engineering, Tongji University, Shanghai 200092, PR China
| | - Yang Zong
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science & Engineering, Tongji University, Shanghai 200092, PR China
| | - Shuai Peng
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science & Engineering, Tongji University, Shanghai 200092, PR China
| | - Xiaomeng Zhang
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science & Engineering, Tongji University, Shanghai 200092, PR China
| | - Deli Wu
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science & Engineering, Tongji University, Shanghai 200092, PR China
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, PR China
| |
Collapse
|
40
|
Yu B, Luo J, Xie H, Yang H, Chen S, Liu J, Zhang R, Li YY. Species, fractions, and characterization of phosphorus in sewage sludge: A critical review from the perspective of recovery. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 786:147437. [PMID: 33971595 DOI: 10.1016/j.scitotenv.2021.147437] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 04/10/2021] [Accepted: 04/26/2021] [Indexed: 06/12/2023]
Abstract
Phosphorus recovery from municipal sewage sludge is a promising way to alleviate the shortage of phosphorus resources. However, the recovery efficiency and cost depend greatly on phosphorus species and fractions in different sewage sludges, i.e., waste activated sludge and chemically enhanced primary sludge. In this review, the phosphorous (sub-)species and fractions in waste activated sludge and chemically enhanced primary sludge are systematically overviewed and compared. The factors affecting phosphorus fractions, including wastewater treatment process, as well as sludge treatment methods and conditions are summarized and discussed; it is found that phosphorus removal method and sludge treatment process are the dominant factors. The characterization methods of phosphorus species and fractions in sewage sludge are reviewed; non-destructive extraction of poly-P and microscopic IP characterization need more attention. Anaerobic fermentation is the preferable solution to achieve advanced phosphorus release both from waste activated sludge and chemically enhanced primary sludge, because it can make phosphorus species and fractions more suitable for recovery. A post low strength acid extraction after anaerobic fermentation is recommended to facilitate phosphorous release and improve the total recovery rate.
Collapse
Affiliation(s)
- Bohan Yu
- School of Environmental and Chemical Engineering, Shanghai University, 333 Nanchen Road, Shanghai 200444, China
| | - Jinghuan Luo
- School of Environmental and Chemical Engineering, Shanghai University, 333 Nanchen Road, Shanghai 200444, China
| | - Huanhuan Xie
- School of Environmental and Chemical Engineering, Shanghai University, 333 Nanchen Road, Shanghai 200444, China
| | - Huan Yang
- School of Environmental and Chemical Engineering, Shanghai University, 333 Nanchen Road, Shanghai 200444, China
| | - Shanping Chen
- Shagnhai Environmental & Sanitary Engineering Design Institute Co., Ltd, No.11, Lane 345, Shilong Road, Shanghai 200232, PR China
| | - Jianyong Liu
- School of Environmental and Chemical Engineering, Shanghai University, 333 Nanchen Road, Shanghai 200444, China.
| | - Ruina Zhang
- Shagnhai Environmental & Sanitary Engineering Design Institute Co., Ltd, No.11, Lane 345, Shilong Road, Shanghai 200232, PR China.
| | - Yu-You Li
- Department of Civil and Environmental Engineering, Graduate School of Engineering, Tohoku University, 6-6-06 Aza, Aramaki, Aoba-ku, Sendai, Miyagi 980-8579, Japan
| |
Collapse
|
41
|
Liu H, Basar IA, Nzihou A, Eskicioglu C. Hydrochar derived from municipal sludge through hydrothermal processing: A critical review on its formation, characterization, and valorization. WATER RESEARCH 2021; 199:117186. [PMID: 34010736 DOI: 10.1016/j.watres.2021.117186] [Citation(s) in RCA: 56] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 04/19/2021] [Accepted: 04/20/2021] [Indexed: 06/12/2023]
Abstract
Additional options for the sustainable treatment of municipal sludge are required due to the significant amounts of sludge, high levels of nutrients (e.g., C, N, and P), and trace constituents it contains. Hydrothermal processing of municipal sludge has recently been recognized as a promising technology to efficiently reduce waste volume, recover bioenergy, destroy organic contaminants, and eliminate pathogens. However, a considerable amount of solid residue, called hydrochar, could remain after hydrothermal treatment. This hydrochar can contain abundant amounts of energy (with a higher heating value up to 24 MJ/kg, dry basis), nutrients, and trace elements, as well as surface functional groups. The valorization of sludge-derived hydrochar can facilitate the development and application of hydrothermal technologies. This review summarizes the formation pathways from municipal sludge to hydrochar, specifically, the impact of hydrothermal conditions on reaction mechanisms and product distribution. Moreover, this study comprehensively encapsulates the described characteristics of hydrochar produced under a wide range of conditions: Yield, energy density, physicochemical properties, elemental distribution, contaminants of concern, surface functionality, and morphology. More importantly, this review compares and evaluates the current state of applications of hydrochar: Energy production, agricultural application, adsorption, heterogeneous catalysis, and nutrient recovery. Ultimately, along with the identified challenges and prospects of valorization approaches for sludge-derived hydrochar, conceptual designs of sustainable municipal sludge management are proposed.
Collapse
Affiliation(s)
- Huan Liu
- UBC Bioreactor Technology Group, School of Engineering, The University of British Columbia, Okanagan Campus, 1137 Alumni Avenue, Kelowna, British Columbia, V1V 1V7, Canada.
| | - Ibrahim Alper Basar
- UBC Bioreactor Technology Group, School of Engineering, The University of British Columbia, Okanagan Campus, 1137 Alumni Avenue, Kelowna, British Columbia, V1V 1V7, Canada.
| | - Ange Nzihou
- Université de Toulouse, IMT Mines Albi, RAPSODEE CNRS UMR-5302, Campus Jarlard, Albi, 81013 Cedex 09, France.
| | - Cigdem Eskicioglu
- UBC Bioreactor Technology Group, School of Engineering, The University of British Columbia, Okanagan Campus, 1137 Alumni Avenue, Kelowna, British Columbia, V1V 1V7, Canada.
| |
Collapse
|
42
|
Li C, Sheng Y. Organic matter affects phosphorus recovery during vivianite crystallization. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2021; 83:2038-2050. [PMID: 33905371 DOI: 10.2166/wst.2021.112] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Vivianite crystallization is a promising route for phosphorus (P) recovery from P-rich wastewater. However, organic matter (OM) in wastewater may influence vivianite formation. In this study, the effects of four representative OMs, glucose, bovine serum albumin (BSA), humic acid (HA) and sodium alginate (SA), on P recovery by vivianite were investigated. The results showed that P recovery efficiency was inhibited by HA and SA, declining by 3.7% and 12.1% under HA (100 mg/L) and SA (800 mg/L), respectively. BSA, HA and SA affected the aggregated form of vivianite crystals. Vivianite particle size decreased in the presence of HA and SA. Subsequent mechanistic exploration indicated that the complexation between the OM and Fe2+ was the main cause of P recovery efficiency reduction. The coprecipitation of HA and SA with vivianite could reduce the zeta potential on the crystal surface, resulting in a smaller particle size. The nucleation sites provided by BSA and SA could transfer vivianite from single plate-like agglomerate to multilayer plate-like agglomerate. This study provided a better understanding of P recovery by vivianite from OM-rich wastewater.
Collapse
Affiliation(s)
- Changyu Li
- Research Center for Coastal Environment Engineering Technology of Shandong Province, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, China E-mail: ; University of Chinese Academy of Sciences, Beijing, China
| | - Yanqing Sheng
- Research Center for Coastal Environment Engineering Technology of Shandong Province, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, China E-mail:
| |
Collapse
|
43
|
Wu Y, Wang C, Wang S, An J, Liang D, Zhao Q, Tian L, Wu Y, Wang X, Li N. Graphite accelerate dissimilatory iron reduction and vivianite crystal enlargement. WATER RESEARCH 2021; 189:116663. [PMID: 33307376 DOI: 10.1016/j.watres.2020.116663] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2020] [Revised: 11/11/2020] [Accepted: 11/20/2020] [Indexed: 06/12/2023]
Abstract
Biomineralized vivianite induced by dissimilatory iron reduction bacteria (DIRB) has received increasing attention because it alleviates phosphorus crisis and phosphorus pollution simultaneously. However, the relatively small crystal size and low Fe(III) reduction rate restrict the separation and recovery of vivianite. In this study, graphite was selected as additive to enhance vivianite biomineralization with soluble ferric citrate and insoluble hematite as two representative electron acceptors. As soluble ferric citrate provided abundant accessible electron acceptors, relatively inconspicuous increase (lower than 7%) was observed for graphite on vivianite formation while inoculated with raw sewage or DIRB. In contrast, graphite considerably increased vivianite formation efficiency by 23% in insoluble hematite inoculated with raw sewage. The graphite promotion on vivianite formation in hematite batch was magnified to 70% by DIRB. Dosing hematite inhibited the supply of electron acceptors, while conductive graphite promoted the electrical connection between minerals and DIRB, thus improved the Fe(III) reduction rate and efficiency. In addition, secondary minerals in hematite exhibited a larger aspect ratio and tended to aggregate on graphite. Graphite enlarged the vivianite size in hematite from 10 µm to 90 µm due to aggregation. Enhancing dissimilatory iron reduction (DIR) rate of iron oxides and enlarging crystal size provide new insights for vivianite formation and separation during wastewater treatment.
Collapse
Affiliation(s)
- Yu Wu
- School of Environmental Science and Engineering, Tianjin University, No. 35 Yaguan Road, Jinnan District, Tianjin 300350, China
| | - Cong Wang
- School of Environmental Science and Engineering, Tianjin University, No. 35 Yaguan Road, Jinnan District, Tianjin 300350, China
| | - Shu Wang
- School of Environmental Science and Engineering, Tianjin University, No. 35 Yaguan Road, Jinnan District, Tianjin 300350, China
| | - Jingkun An
- School of Environmental Science and Engineering, Tianjin University, No. 35 Yaguan Road, Jinnan District, Tianjin 300350, China
| | - Danhui Liang
- School of Environmental Science and Engineering, Tianjin University, No. 35 Yaguan Road, Jinnan District, Tianjin 300350, China
| | - Qian Zhao
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, Nankai University, No. 38 Tongyan Road, Jinnan District, Tianjin 300350, China
| | - Lili Tian
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, Nankai University, No. 38 Tongyan Road, Jinnan District, Tianjin 300350, China
| | - Yue Wu
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, Nankai University, No. 38 Tongyan Road, Jinnan District, Tianjin 300350, China
| | - Xin Wang
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, Nankai University, No. 38 Tongyan Road, Jinnan District, Tianjin 300350, China
| | - Nan Li
- School of Environmental Science and Engineering, Tianjin University, No. 35 Yaguan Road, Jinnan District, Tianjin 300350, China.
| |
Collapse
|
44
|
Heinrich L, Rothe M, Braun B, Hupfer M. Transformation of redox-sensitive to redox-stable iron-bound phosphorus in anoxic lake sediments under laboratory conditions. WATER RESEARCH 2021; 189:116609. [PMID: 33254072 DOI: 10.1016/j.watres.2020.116609] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 10/30/2020] [Accepted: 11/05/2020] [Indexed: 06/12/2023]
Abstract
Phosphorus (P) can be retained in mineral association with ferrous iron (Fe) as vivianite, Fe(II)3(PO4)2 ∙ 8 H2O, in lake sediments. The mineral is formed and remains stable under anoxic non-sulphidogenic conditions and, therefore, acts as a long-term P sink. In laboratory experiments under anoxic conditions, we investigated whether P adsorbed to amorphous Fe(III)-hydroxide functioned as a precursor phase of vivianite when added to different sediments as a treatment. The untreated sediments served as controls and were naturally Fe-rich (559 µmol/g DW) and Fe-poor (219 µmol/g DW), respectively. The solid P binding forms analysed by sequential extraction and X-ray diffraction were related to coinciding pore water analyses and the bacterial community compositions of the sediments by bacterial 16S rRNA gene amplicon sequencing. In the treatments, within a period of 40 d, 70 % of the redox-sensitive Fe(III)-P was transformed into redox-stable P, which contained vivianite. The mineral was supersaturated in the pore water, but the presence of Fe(III)-P functioning as a precursor was sufficient for measurable vivianite formation. The composition of the microbial community did not differ significantly (PERMANOVA, p = 0.09) between treatment and control of the naturally Fe-rich sediment. In the naturally Fe-poor sediment, the microbial community changed significantly (PERMANOVA, p = 0.001) in response to the addition of Fe(III)-P to the sediment. The freshly formed redox-stable P was not retransferred to a redox-sensitive compound by aeration for 24 h until 90 % O2 saturation was reached in the sediment slurry. We conclude that 1) Fe(III)-hydroxide bound P, resulting from oxic conditions at the sediment-water interface, is immobilised during anoxic conditions and stable even after re-oxygenation; 2) the process is feasible within the time scales of anoxic lake stratification periods; and 3) in relatively Fe-poor lakes, Fe dosing can provide excess Fe to form the precursor.
Collapse
Affiliation(s)
- Lena Heinrich
- Department of Chemical Analytics and Biogeochemistry, Leibniz Institute of Freshwater Ecology and Inland Fisheries (IGB), Müggelseedamm 301, 12587 Berlin, Germany; Department of Urban Water Management, Technische Universität Berlin, Gustav-Meyer-Allee 25, 13355 Berlin, Germany.
| | - Matthias Rothe
- German Environment Agency (Umweltbundesamt), Wörlitzer Platz 1, 06844 Dessau-Roßlau, Germany
| | - Burga Braun
- Department of Environmental Microbiology, Technische Universität Berlin, Ernst-Reuter-Platz 1, 10587 Berlin, Germany
| | - Michael Hupfer
- Department of Chemical Analytics and Biogeochemistry, Leibniz Institute of Freshwater Ecology and Inland Fisheries (IGB), Müggelseedamm 301, 12587 Berlin, Germany
| |
Collapse
|
45
|
Wu M, Liu J, Gao B, Sillanpää M. Phosphate substances transformation and vivianite formation in P-Fe containing sludge during the transition process of aerobic and anaerobic conditions. BIORESOURCE TECHNOLOGY 2021; 319:124259. [PMID: 33254472 PMCID: PMC7558235 DOI: 10.1016/j.biortech.2020.124259] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2020] [Revised: 10/08/2020] [Accepted: 10/10/2020] [Indexed: 05/30/2023]
Abstract
Excess sludge was considered as a promising raw material for phosphorus recovery. In this study, the P-Fe containing sludge came from the aerobic membrane bioreactor with electrocoagulation (EC), which was refluxed to the anaerobic unit for iron reduction. Under anaerobic condition, the ORP and pH maintained at -350 mV and 7.5, which exactly met the conditions for vivianite formation. According to the analysis of X-ray polycrystalline diffraction (XRD) and field emission scanning electron microscopy (FE-SEM), the final product of the sludge after anaerobic condition was mainly vivianite. Microbial analysis showed that there were iron reducing bacteria (IRB) in sludge before and after anaerobic process, including Dechloromonas, Desulfovibrio. Aeromonas and Methanobacterium. During the transition process of aerobic and anaerobic conditions, amorphous phosphate substances in P-Fe containing sludge could be transformed vivianite just with long term standing, which could promote the recovery of phosphate resource from wastewater.
Collapse
Affiliation(s)
- Mingzhao Wu
- Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China; Key Laboratory of Membrane Separation of Shaanxi Province, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Jiadong Liu
- Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China; Key Laboratory of Membrane Separation of Shaanxi Province, Xi'an University of Architecture and Technology, Xi'an 710055, China.
| | - Bo Gao
- Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China; Key Laboratory of Membrane Separation of Shaanxi Province, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Mika Sillanpää
- Institute of Research and Development, Duy Tan University, Da Nang 550000, Viet Nam; Faculty of Environment and Chemical Engineering, Duy Tan University, Da Nang 550000, Viet Nam; Department of Chemical Engineering, School of Mining, Metallurgy and Chemical Engineering, University of Johannesburg, P. O. Box 17011, Doornfontein 2028, South Africa.
| |
Collapse
|
46
|
Zhang B, Zhao Z, Chen N, Feng C, Lei Z, Zhang Z. Insight into efficient phosphorus removal/recovery from enhanced methane production of waste activated sludge with chitosan-Fe supplementation. WATER RESEARCH 2020; 187:116427. [PMID: 32980603 DOI: 10.1016/j.watres.2020.116427] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 09/07/2020] [Accepted: 09/13/2020] [Indexed: 06/11/2023]
Abstract
Fe(III)-loaded chitosan (CTS-Fe) composite was used for the first time to remove and recover phosphorus (P) from waste activated sludge (WAS) via anaerobic digestion (AD). The P transformation pathway and the effect of CTS-Fe addition on the AD process were investigated using batch experiments. The P fractionation results indicate that non-apatite inorganic phosphorus (NAIP) reduction in the solid phase of sludge at 20 g/L of CTS-Fe addition (6.72 mg/g-SS) was 2.4 times higher than that in the control (2.77 mg/g-SS, no CTS-Fe addition). This is probably brought about by the added CTS-Fe enhanced the reduction of Fe(III)-P compounds in the sludge with phosphate released into the liquid phase. CTS-Fe can efficiently recover 95% of P from the liquid digestate of WAS. Notably, partial Fe(III) on the CTS-Fe was reduced and effectively combined with P to form vivianite crystals on the CTS-Fe surface during the AD process. Characterization analysis demonstrated that ligand exchange and chemical precipitation were the dominant mechanisms for P removal/recovery. Furthermore, the addition of CTS-Fe increased methane production by 11.9 - 32.2% under the tested conditions, likely attributable to the enhanced hydrolysis of WAS under CTS-Fe supplementation. As the P-loaded CTS-Fe particles can be easily separated and recovered from the AD system and further reutilized in agriculture, this study could provide a new approach for simultaneous P removal/recovery and enhanced methane production from AD of WAS.
Collapse
Affiliation(s)
- Boaiqi Zhang
- Graduate School of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8572, Japan
| | - Ziwen Zhao
- Graduate School of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8572, Japan
| | - Nan Chen
- School of Water Resources and Environment, China University of Geosciences (Beijing), Beijing, 100083, China
| | - Chuanping Feng
- School of Water Resources and Environment, China University of Geosciences (Beijing), Beijing, 100083, China
| | - Zhongfang Lei
- Graduate School of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8572, Japan
| | - Zhenya Zhang
- Graduate School of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8572, Japan.
| |
Collapse
|
47
|
Wu Y, Cao J, Zhang Q, Xu R, Fang F, Feng Q, Li C, Xue Z, Luo J. Continuous waste activated sludge and food waste co-fermentation for synchronously recovering vivianite and volatile fatty acids at different sludge retention times: Performance and microbial response. BIORESOURCE TECHNOLOGY 2020; 313:123610. [PMID: 32504871 DOI: 10.1016/j.biortech.2020.123610] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 05/29/2020] [Accepted: 05/30/2020] [Indexed: 06/11/2023]
Abstract
A practical approach of synchronously recovering vivianite and volatile fatty acids (VFAs) by food waste (FW) and waste activated sludge (WAS) co-fermentation in continuous operation was investigated. Approximately 82.88% P as high-purity vivianite (95.23%) and 7894 mg COD/L VFAs were finally recovered. The simultaneous addition of FW and FeCl3 contributed to the fermentation conditions by adjusting pH biologically and increasing the concentration of organic substrates, which enhanced the Fe3+ reduction efficiency and microbial activities (e.g., hydrolases and acidogenic enzymes). Microbial analysis found the functional bacteria related to Fe3+ reduction and VFAs generation were further enhanced and enriched. Besides, results indicated that the efficiencies of Fe2+ and P release and VFAs recovery were highly linked to SRT, the satisfactory fermentation performance was obtained at SRT of 6 d. This research would provide a practical waste recycling technology to treat FW and WAS simultaneously for recovering vivianite and VFAs synchronously.
Collapse
Affiliation(s)
- Yang Wu
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, College of Environment, Hohai University, Nanjing 210098, China; College of Environment, Hohai University, Nanjing 210098, China
| | - Jiashun Cao
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, College of Environment, Hohai University, Nanjing 210098, China; College of Environment, Hohai University, Nanjing 210098, China; Guohe Environmental Research Institute (Nanjing) Co Ltd, Nanjing 211599, China
| | - Qin Zhang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, College of Environment, Hohai University, Nanjing 210098, China; College of Environment, Hohai University, Nanjing 210098, China
| | - Runze Xu
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, College of Environment, Hohai University, Nanjing 210098, China; College of Environment, Hohai University, Nanjing 210098, China
| | - Fang Fang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, College of Environment, Hohai University, Nanjing 210098, China; College of Environment, Hohai University, Nanjing 210098, China; Guohe Environmental Research Institute (Nanjing) Co Ltd, Nanjing 211599, China
| | - Qian Feng
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, College of Environment, Hohai University, Nanjing 210098, China; College of Environment, Hohai University, Nanjing 210098, China; Guohe Environmental Research Institute (Nanjing) Co Ltd, Nanjing 211599, China
| | - Chao Li
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, College of Environment, Hohai University, Nanjing 210098, China; College of Environment, Hohai University, Nanjing 210098, China; Guohe Environmental Research Institute (Nanjing) Co Ltd, Nanjing 211599, China
| | - Zhaoxia Xue
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, College of Environment, Hohai University, Nanjing 210098, China; College of Environment, Hohai University, Nanjing 210098, China; Guohe Environmental Research Institute (Nanjing) Co Ltd, Nanjing 211599, China
| | - Jingyang Luo
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, College of Environment, Hohai University, Nanjing 210098, China; College of Environment, Hohai University, Nanjing 210098, China; Guohe Environmental Research Institute (Nanjing) Co Ltd, Nanjing 211599, China; Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, Shanghai 200000, China.
| |
Collapse
|
48
|
Liu W, Yang H, Ye J, Luo J, Li YY, Liu J. Short-chain fatty acids recovery from sewage sludge via acidogenic fermentation as a carbon source for denitrification: A review. BIORESOURCE TECHNOLOGY 2020; 311:123446. [PMID: 32402992 DOI: 10.1016/j.biortech.2020.123446] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 04/19/2020] [Accepted: 04/21/2020] [Indexed: 06/11/2023]
Abstract
Wastewater treatment plants face the problem of a shortage of carbon source for denitrification. Acidogenic fermentation is an effective method for recovering short-chain fatty acids (SCFAs) as a carbon source from sewage sludge. Herein, the most recent advances in SCFAs production from primary sludge and waste activated sludge are systematically summarised and discussed. New technologies and problems pertaining to the improvement in SCFAs availability in fermentation liquids, including removal of ammoniacal nitrogen and phosphate and extraction of SCFAs from fermentation liquids, are analysed and evaluated. Furthermore, studies on the use of recovered SCFAs as a carbon source for denitrification are reviewed. Based on the above summarisation and discussion, some conclusions as well as perspectives on future studies and practical applications are presented. In particular, the recovery of carbon source/bioenergy from sewage sludge must be optimised considering nutrient removal/recovery simultaneously.
Collapse
Affiliation(s)
- Wen Liu
- School of Environmental and Chemical Engineering, Shanghai University, 333 Nanchen Road, Shanghai 200444, China
| | - Huan Yang
- School of Environmental and Chemical Engineering, Shanghai University, 333 Nanchen Road, Shanghai 200444, China
| | - Jiongjiong Ye
- School of Environmental and Chemical Engineering, Shanghai University, 333 Nanchen Road, Shanghai 200444, China
| | - Jinghuan Luo
- School of Environmental and Chemical Engineering, Shanghai University, 333 Nanchen Road, Shanghai 200444, China
| | - Yu-You Li
- School of Environmental and Chemical Engineering, Shanghai University, 333 Nanchen Road, Shanghai 200444, China; Department of Civil and Environmental Engineering, Graduate School of Engineering, Tohoku University, 6-6-06 Aza, Aramaki, Aoba-ku, Sendai, Miyagi 980-8579, Japan
| | - Jianyong Liu
- School of Environmental and Chemical Engineering, Shanghai University, 333 Nanchen Road, Shanghai 200444, China.
| |
Collapse
|
49
|
Zhang C, Hu D, Yang R, Liu Z. Effect of sodium alginate on phosphorus recovery by vivianite precipitation. J Environ Sci (China) 2020; 93:164-169. [PMID: 32446452 DOI: 10.1016/j.jes.2020.04.007] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 04/03/2020] [Accepted: 04/04/2020] [Indexed: 06/11/2023]
Abstract
There are good prospects for phosphorus recovery from excess sludge by vivianite crystallization while a large number of extracellular polymeric substances in sludge will have impact on vivianite precipitation. In this study, as a representative of extracellular polymeric substance, the effect of sodium alginate (SA) on phosphorus recovery by vivianite precipitation under different initial SA concentrations (0-800 mg/L), pH values (6.5-9.0) and Fe/P molar ratios (1:1-2.4:1) was investigated using synthetic wastewater. The results showed that SA in low concentrations (≤400 mg/L) had little inhibitory effect on the phosphorus recovery rate. However, when the concentration of SA was larger than 400 mg/L, the phosphorus recovery rate decreased significantly with increasing SA concentrations. The inhibition rate of 800 mg/L SA was about 3 times as large as that of 400 mg/L SA. It was worth noting that the inhibitory effect of SA on vivianite precipitation decreased with increasing initial pH and Fe/P molar ratios. Additionally, SA has no obvious influence on the composition of products, but the morphology of harvested crystals was transformed from branches to plates or rods in uneven sizes.
Collapse
Affiliation(s)
- Cong Zhang
- State Key Laboratory of Eco-hydraulics in Northwest Arid Region of China, Xi'an University of Technology, Xi'an 710048, China
| | - Dexiu Hu
- State Key Laboratory of Eco-hydraulics in Northwest Arid Region of China, Xi'an University of Technology, Xi'an 710048, China.
| | - Ruijie Yang
- State Key Laboratory of Eco-hydraulics in Northwest Arid Region of China, Xi'an University of Technology, Xi'an 710048, China
| | - Zichen Liu
- State Key Laboratory of Eco-hydraulics in Northwest Arid Region of China, Xi'an University of Technology, Xi'an 710048, China
| |
Collapse
|
50
|
Wu Y, Cao J, Zhang T, Zhao J, Xu R, Zhang Q, Fang F, Luo J. A novel approach of synchronously recovering phosphorus as vivianite and volatile fatty acids during waste activated sludge and food waste co-fermentation: Performance and mechanisms. BIORESOURCE TECHNOLOGY 2020; 305:123078. [PMID: 32135351 DOI: 10.1016/j.biortech.2020.123078] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 02/21/2020] [Accepted: 02/22/2020] [Indexed: 06/10/2023]
Abstract
This research proposed an innovative approach to synchronously enhance the recovery of phosphorus (P) as vivianite and volatile fatty acids (VFAs) during waste activated sludge (WAS) and food waste (FW) co-fermentation. A high performance was achieved under 30% FW addition and pH uncontrolled, which gained 83.09% of TP recovery as high-purity vivianite (93.90%), together with efficient VFAs production (7671 mg COD/L). The FW supplement could enhance VFAs production and subsequently lower pH to contribute to the release of Fe2+ and PO43-. Also, it could dampen disrupting effects of strong acidic pH on microbial cells (lowering LDH release). Moreover, the flexible pH variation caused by biological acidification could maintain relatively higher microbial activities (increasing enzymes' activities), which was advantageous to the biological effects involved in Fe2+ and PO43 release and VFAs generation. Therefore, this research provide a promising and economic alternative to dispose of WAS and FW simultaneously for valuable resource recovery.
Collapse
Affiliation(s)
- Yang Wu
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, College of Environment, Hohai University, Nanjing 210098, China; College of Environment, Hohai University, Nanjing 210098, China
| | - Jiashun Cao
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, College of Environment, Hohai University, Nanjing 210098, China; College of Environment, Hohai University, Nanjing 210098, China; Guohe Environmental Research Institute (Nanjing) Co., Ltd, Nanjing 211599, China
| | - Teng Zhang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, College of Environment, Hohai University, Nanjing 210098, China; College of Environment, Hohai University, Nanjing 210098, China
| | - Jianan Zhao
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, College of Environment, Hohai University, Nanjing 210098, China; College of Environment, Hohai University, Nanjing 210098, China
| | - Runze Xu
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, College of Environment, Hohai University, Nanjing 210098, China; College of Environment, Hohai University, Nanjing 210098, China
| | - Qin Zhang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, College of Environment, Hohai University, Nanjing 210098, China; College of Environment, Hohai University, Nanjing 210098, China
| | - Fang Fang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, College of Environment, Hohai University, Nanjing 210098, China; College of Environment, Hohai University, Nanjing 210098, China; Guohe Environmental Research Institute (Nanjing) Co., Ltd, Nanjing 211599, China
| | - Jingyang Luo
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, College of Environment, Hohai University, Nanjing 210098, China; College of Environment, Hohai University, Nanjing 210098, China; Guohe Environmental Research Institute (Nanjing) Co., Ltd, Nanjing 211599, China.
| |
Collapse
|