1
|
da Silva NEP, Bezerra LCA, Araújo RF, Moura TA, Vieira LHS, Alves SBS, Fregolente LG, Ferreira OP, Avelino F. Coconut shell-based biochars produced by an innovative thermochemical process for obtaining improved lignocellulose-based adsorbents. Int J Biol Macromol 2024; 275:133685. [PMID: 38971283 DOI: 10.1016/j.ijbiomac.2024.133685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 06/15/2024] [Accepted: 07/03/2024] [Indexed: 07/08/2024]
Abstract
The urgent need for a simple and cost-effective thermochemical process to produce biochar has prompted this study. The aim was to develop a straightforward thermochemical process under O2-limited conditions for the production of coconut-based biochar (CBB) and to assess its ability to remove methylene blue (MB) through adsorption, comparing it with CBB produced by slow pyrolysis. CBBs were obtained under different atmospheric conditions (O2-limited, muffle furnace biochar (MFB); and inert, pyrolytic reactor biochar (PRB)), at 350, 500, and 700 °C, and for 30 and 90'. MFB and PRB were characterized using FTIR, RAMAN, SEM, EDS, and XRD analyses. Adsorption tests were conducted using 1.0 g L-1 of MFB and PRB, 10 mg L-1 of MB at 25 °C for 48 h. Characterization revealed that atmospheric conditions significantly influenced the yield and structural features of the materials. PRB exhibited higher yields and larger cavities than MFB, but quite similar spectral features. Adsorption tests indicated that MFB and PRB had qt values of 33.1 and 9.2 mg g-1, respectively, which were obtained at 700 °C and 90', and 700 °C and 30', respectively. This alternative method produced an innovative and promising lignocellulose-based material with great potential to be used as a biosorbent.
Collapse
Affiliation(s)
| | - Luiz Carlos Alves Bezerra
- Department of Research, Extension and Production, Federal Institute of Education, Science and Technology of Ceará, 63503-790 Iguatu, CE, Brazil
| | - Rayanne Ferreira Araújo
- Department of Research, Extension and Production, Federal Institute of Education, Science and Technology of Ceará, 63503-790 Iguatu, CE, Brazil
| | - Thiago A Moura
- Department of Physics, Federal University of Ceará, 60455-900 Fortaleza, CE, Brazil
| | | | | | | | - Odair P Ferreira
- Department of Physics, Federal University of Ceará, 60455-900 Fortaleza, CE, Brazil; Department of Chemistry, State University of Londrina, 86050-482 Londrina, PR, Brazil
| | - Francisco Avelino
- Department of Research, Extension and Production, Federal Institute of Education, Science and Technology of Ceará, 63503-790 Iguatu, CE, Brazil.
| |
Collapse
|
2
|
Alfei S, Pandoli OG. Biochar-Derived Persistent Free Radicals: A Plethora of Environmental Applications in a Light and Shadows Scenario. TOXICS 2024; 12:245. [PMID: 38668468 PMCID: PMC11054495 DOI: 10.3390/toxics12040245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 03/22/2024] [Accepted: 03/25/2024] [Indexed: 04/29/2024]
Abstract
Biochar (BC) is a carbonaceous material obtained by pyrolysis at 200-1000 °C in the limited presence of O2 from different vegetable and animal biomass feedstocks. BC has demonstrated great potential, mainly in environmental applications, due to its high sorption ability and persistent free radicals (PFRs) content. These characteristics enable BC to carry out the direct and PFRs-mediated removal/degradation of environmental organic and inorganic contaminants. The types of PFRs that are possibly present in BC depend mainly on the pyrolysis temperature and the kind of pristine biomass. Since they can also cause ecological and human damage, a systematic evaluation of the environmental behavior, risks, or management techniques of BC-derived PFRs is urgent. PFRs generally consist of a mixture of carbon- and oxygen-centered radicals and of oxygenated carbon-centered radicals, depending on the pyrolytic conditions. Here, to promote the more productive and beneficial use of BC and the related PFRs and to stimulate further studies to make them environmentally safer and less hazardous to humans, we have first reviewed the most common methods used to produce BC, its main environmental applications, and the primary mechanisms by which BC remove xenobiotics, as well as the reported mechanisms for PFR formation in BC. Secondly, we have discussed the environmental migration and transformation of PFRs; we have reported the main PFR-mediated application of BC to degrade inorganic and organic pollutants, the potential correlated environmental risks, and the possible strategies to limit them.
Collapse
Affiliation(s)
- Silvana Alfei
- Department of Pharmacy (DIFAR), University of Genoa, Viale Cembrano 4, 16148 Genoa, Italy;
| | - Omar Ginoble Pandoli
- Department of Pharmacy (DIFAR), University of Genoa, Viale Cembrano 4, 16148 Genoa, Italy;
- Department of Chemistry, Pontifical Catholic University, Rua Marquês de São Vincente 225, Rio de Janeiro 22451-900, Brazil
| |
Collapse
|
3
|
Ao S, Rashid U, Shi D, Rokhum SL, Tg Thuy L, Awad Alahmadi T, Chinnathambi A, Mathimani T. Synthesis and utilization of biomass-derived sulfonated heterogeneous catalyst-BT-SO 3H for microalgal biodiesel production. ENVIRONMENTAL RESEARCH 2024; 245:118025. [PMID: 38151153 DOI: 10.1016/j.envres.2023.118025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 12/11/2023] [Accepted: 12/22/2023] [Indexed: 12/29/2023]
Abstract
The study investigates the potential of utilizing banana trunk-derived porous activated biochar enriched with SO3H- as a catalyst for eco-friendly biodiesel production from the microalga Chlorella vulgaris. An extensive analysis, employing advanced techniques such as XRD, FTIR, TGA, XPS, NH3-TPD, BET, SEM-EDX, and TEM, was conducted to elucidate the physicochemical properties of BT-SO3H catalysts. The synthesized catalyst demonstrated its efficiency in converting the total lipids of Chlorella vulgaris into biodiesel, with varying concentrations of 3%, 5%, and 7%. Notably, using a 5% BT-SO3H concentration resulted in remarkably higher biodiesel production about 58.29%. Additionally, the fatty acid profile of C. vulgaris biodiesel indicated that C16:0 was the predominant fatty acid at 24.31%, followed by C18:1 (19.68%), C18:3 (11.45%), and C16:1 (7.56%). Furthermore, the biodiesel produced via 5% BT-SO3H was estimated to have higher levels of saturated fatty acids (SFAs) at 34.28%, monounsaturated fatty acids (MUFAs) at 30.70%, and polyunsaturated fatty acids (PUFAs) at 24.24%. These findings highlight the promising potential of BT-SO3H catalysts for efficient and environmentally friendly biodiesel production from microalgal species.
Collapse
Affiliation(s)
- Supongsenla Ao
- Department of Chemistry, National Institute of Technology Silchar, Assam, 788010, India
| | - Umer Rashid
- Institute of Nanoscience and Nanotechnology, Universiti Putra Malaysia, Serdang, 43400, Malaysia
| | - Da Shi
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK
| | | | - Le Tg Thuy
- Institute of Research and Development, Duy Tan University, Da Nang, Viet Nam; School of Engineering and Technology, Duy Tan University, Da Nang, Viet Nam
| | - Tahani Awad Alahmadi
- Department of Pediatrics, College of Medicine and King Khalid University Hospital, King Saud University, Medical City, PO Box-2925, Riyadh, 11461, Saudi Arabia
| | - Arunachalam Chinnathambi
- Department of Botany and Microbiology, College of Science, King Saud University, PO Box -2455, Riyadh, 11451, Saudi Arabia
| | - Thangavel Mathimani
- Institute of Research and Development, Duy Tan University, Da Nang, Viet Nam; School of Engineering and Technology, Duy Tan University, Da Nang, Viet Nam.
| |
Collapse
|
4
|
Pravin R, Baskar G. Technoeconomic and carbon footprint analysis of simulated industrial scale biodiesel production process from mixed macroalgal and non-edible seed oil using sulphonated zinc doped recyclable biochar catalyst. BIORESOURCE TECHNOLOGY 2024; 395:130351. [PMID: 38266785 DOI: 10.1016/j.biortech.2024.130351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 01/12/2024] [Accepted: 01/18/2024] [Indexed: 01/26/2024]
Abstract
The present research explored the sustainable production of biodiesel from mixed oils of marine macroalgae and non-edible seeds using a sulphonated Zinc doped recyclable biochar catalyst derived from coconut husk. The maximum biodiesel conversion of 94.8 % was yielded with optimized conditions of 10:1 methanol to oil molar ratio, 4.8 % biochar catalyst concentration, 54.5 ℃ temperature and 87.4 min reaction time. A techno-economic assessment provided a favourable return on investment (ROI) of 21.59 % and 4.63 years of reimbursement period, with a calculated minimum selling price of 0.81 $/kg of produced biodiesel. The carbon footprint analysis results estimated an annual emission of 752.07 t CO2 which corresponds to 0.088 kg CO2 emission per kg of biodiesel produced from the simulated process. The study on economic viability and environmental consciousness of biodiesel production not only paves the way for a greener and sustainable future while also contributing to low carbon footprint.
Collapse
Affiliation(s)
- Ravichandran Pravin
- Department of Biotechnology, St. Joseph's College of Engineering, Chennai 600119, India
| | - Gurunathan Baskar
- Department of Biotechnology, St. Joseph's College of Engineering, Chennai 600119, India.
| |
Collapse
|
5
|
Sahu S, Sharma S, Kaur A, Singh G, Khatri M, Arya SK. Algal carbohydrate polymers: Catalytic innovations for sustainable development. Carbohydr Polym 2024; 327:121691. [PMID: 38171696 DOI: 10.1016/j.carbpol.2023.121691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 12/04/2023] [Accepted: 12/11/2023] [Indexed: 01/05/2024]
Abstract
Algal polysaccharides, harnessed for their catalytic potential, embody a compelling narrative in sustainable chemistry. This review explores the complex domains of algal carbohydrate-based catalysis, revealing its diverse trajectory. Starting with algal polysaccharide synthesis and characterization methods as catalysts, the investigation includes sophisticated techniques like NMR spectroscopy that provide deep insights into the structural variety of these materials. Algal polysaccharides undergo various preparation and modification techniques to enhance their catalytic activity such as immobilization. Homogeneous catalysis, revealing its significance in practical applications like crafting organic compounds and facilitating chemical transformations. Recent studies showcase how algal-derived catalysts prove to be remarkably versatile, showcasing their ability to customise reactions for specific substances. Heterogeneous catalysis, it highlights the significance of immobilization techniques, playing a central role in ensuring stability and the ability to reuse catalysts. The practical applications of heterogeneous algal catalysts in converting biomass and breaking down contaminants, supported by real-life case studies, emphasize their effectiveness. In sustainable chemistry, algal polysaccharides emerge as compelling catalysts, offering a unique intersection of eco-friendliness, structural diversity, and versatile catalytic properties. Tackling challenges such as dealing with complex structural variations, ensuring the stability of the catalyst, and addressing economic considerations calls for out-of-the-box and inventive solutions. Embracing the circular economy mindset not only assures sustainable catalyst design but also promotes efficient recycling practices. The use of algal carbohydrates in catalysis stands out as a source of optimism, paving the way for a future where chemistry aligns seamlessly with nature, guiding us toward a sustainable, eco-friendly, and thriving tomorrow. This review encapsulates-structural insights, catalytic applications, challenges, and future perspectives-invoking a call for collective commitment to catalyze a sustainable scientific revolution.
Collapse
Affiliation(s)
- Sudarshan Sahu
- Department of Biotechnology Engineering, University Institute of Engineering & Technology, Panjab University, Chandigarh, India
| | - Shalini Sharma
- Department of Biotechnology Engineering, University Institute of Engineering & Technology, Panjab University, Chandigarh, India
| | - Anupreet Kaur
- Department of Biotechnology Engineering, University Institute of Engineering & Technology, Panjab University, Chandigarh, India
| | - Gursharan Singh
- Department of Medical Laboratory Sciences, Lovely Professional University, Phagwara 144411, Punjab, India
| | - Madhu Khatri
- Department of Biotechnology Engineering, University Institute of Engineering & Technology, Panjab University, Chandigarh, India
| | - Shailendra Kumar Arya
- Department of Biotechnology Engineering, University Institute of Engineering & Technology, Panjab University, Chandigarh, India.
| |
Collapse
|
6
|
Chakravorty M, Jaiswal KK, Bhatnagar P, Parveen A, Upadhyay S, Vlaskin MS, Alajmi MF, Chauhan PK, Nanda M, Kumar V. Exogenous GABA supplementation to facilitate Cr (III) tolerance and lipid biosynthesis in Chlorella sorokiniana. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 355:120441. [PMID: 38430879 DOI: 10.1016/j.jenvman.2024.120441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 02/05/2024] [Accepted: 02/20/2024] [Indexed: 03/05/2024]
Abstract
Microalgae possess the prospective to be efficiently involved in bioremediation and biodiesel generation. However, conditions of stress often restrict their growth and diminish different metabolic processes. The current study evaluates the potential of GABA to improve the growth of the microalga Chlorella sorokiniana under Cr (III) stress through the exogenous administration of GABA. The research also investigates the concurrent impact of GABA and Cr (III) stress on various metabolic and biochemical pathways of the microalgae. In addition to the control, cultures treated with Cr (III), GABA, and both Cr (III) and GABA treated were assessed for accurately analysing the influence of GABA. The outcomes illustrated that GABA significantly promoted growth of the microalgae, resulting in higher biomass productivity (19.14 mg/L/day), lipid productivity (3.445 mg/L/day) and lipid content (18%) when compared with the cultures under Cr (III) treatment only. GABA also enhanced Chl a content (5.992 μg/ml) and percentage of protein (23.75%). FAMEs analysis by GC-MS and total lipid profile revealed that GABA treatment can boost the production of SFA and lower the level of PUFA, a distribution ideal for improving biodiesel quality. ICP-MS analysis revealed that GABA supplementation could extend Cr (III) mitigation level up to 97.7%, suggesting a potential strategy for bioremediation. This novel study demonstrates the merits of incorporating GABA in C. sorokiniana cultures under Cr (III) stress, in terms of its potential in bioremediation and biodiesel production without disrupting the pathways of photosynthesis and protein production.
Collapse
Affiliation(s)
- Manami Chakravorty
- School of Science, Faculty of Engineering and Science, University of Greenwich, Chatham Maritime, United Kingdom
| | - Krishna Kumar Jaiswal
- Bioprocess Engineering Laboratory, Department of Green Energy Technology, Pondicherry University, Puducherry, 605014, India
| | - Pooja Bhatnagar
- Algal Research and Bioenergy Lab, Department of Food Science and Technology, Graphic Era (Deemed to Be University), Dehradun, Uttarakhand, 248002, India
| | - Afreen Parveen
- Algal Research and Bioenergy Lab, Department of Food Science and Technology, Graphic Era (Deemed to Be University), Dehradun, Uttarakhand, 248002, India
| | - Shuchi Upadhyay
- Department of Allied Health Sciences, School of Health Sciences and Technology SoHST, University of Petroleum and Energy Studies UPES, Bidholi, Dehradun, 248007, India
| | - Mikhail S Vlaskin
- Joint Institute for High Temperatures of the Russian Academy of Sciences, Moscow, Russian Federation
| | - Mohamed Fahad Alajmi
- Department of Pharmacognosy College of Pharmacy King Saud University, Riyadh, Kingdom of Saudi Arabia
| | - P K Chauhan
- Faculty of Applied Sciences and Biotechnology, Shoolini University, Solan, 173229, HP, India
| | - Manisha Nanda
- Department of Microbiology, Graphic Era (Deemed to Be University), Dehradun, Uttarakhand, 248002, India.
| | - Vinod Kumar
- Algal Research and Bioenergy Lab, Department of Food Science and Technology, Graphic Era (Deemed to Be University), Dehradun, Uttarakhand, 248002, India; Peoples' Friendship, University of Russia (RUDN University), Moscow, 117198, Russian Federation; Graphic Era Hill University, Dehradun, Uttarakhand 248002, India.
| |
Collapse
|
7
|
Supraja KV, Kachroo H, Viswanathan G, Verma VK, Behera B, Doddapaneni TRKC, Kaushal P, Ahammad SZ, Singh V, Awasthi MK, Jain R. Biochar production and its environmental applications: Recent developments and machine learning insights. BIORESOURCE TECHNOLOGY 2023; 387:129634. [PMID: 37573981 DOI: 10.1016/j.biortech.2023.129634] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 08/01/2023] [Accepted: 08/03/2023] [Indexed: 08/15/2023]
Abstract
Biochar production through thermochemical processing is a sustainable biomass conversion and waste management approach. However, commercializing biochar faces challenges requiring further research and development to maximize its potential for addressing environmental concerns and promoting sustainable resource management. This comprehensive review presents the state-of-the-art in biochar production, emphasizing quantitative yield and qualitative properties with varying feedstocks. It discusses the technology readiness level and commercialization status of different production strategies, highlighting their environmental and economic impacts. The review focuses on integrating machine learning algorithms for process control and optimization in biochar production, improving efficiency. Additionally, it explores biochar's environmental applications, including soil amendment, carbon sequestration, and wastewater treatment, showcasing recent advancements and case studies. Advances in biochar technologies and their environmental benefits in various sectors are discussed herein.
Collapse
Affiliation(s)
- Kolli Venkata Supraja
- Waste Treatment Laboratory, Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| | - Himanshu Kachroo
- School of Interdisciplinary Research, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| | - Gayatri Viswanathan
- School of Interdisciplinary Research, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| | - Vishal Kumar Verma
- Waste Treatment Laboratory, Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| | - Bunushree Behera
- Bioprocess Laboratory, Department of Biotechnology, Thapar Institute of Engineering and Technology, Patiala, Punjab 147004, India
| | - Tharaka Rama Krishna C Doddapaneni
- Chair of Biosystems Engineering, Institute of Forestry and Engineering, Estonian University of Life Sciences, Kreutzwaldi 56, 51014 Tartu, Estonia
| | - Priyanka Kaushal
- Centre for Rural Development and Technology, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| | - Sk Ziauddin Ahammad
- Waste Treatment Laboratory, Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| | - Vijai Singh
- Department of Biosciences, School of Science, Indrashil University, Rajpur, Mehsana 382715, India
| | - Mukesh Kumar Awasthi
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China
| | - Rohan Jain
- Helmholtz-Zentrum Dresden-Rossendorf, Helmholtz Institute Freiberg for Resource Technology, Bautzner landstrasse 400, 01328 Dresden, Germany.
| |
Collapse
|
8
|
Yuan X, Cao Y, Li J, Patel AK, Dong CD, Jin X, Gu C, Yip ACK, Tsang DCW, Ok YS. Recent advancements and challenges in emerging applications of biochar-based catalysts. Biotechnol Adv 2023; 67:108181. [PMID: 37268152 DOI: 10.1016/j.biotechadv.2023.108181] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Revised: 05/21/2023] [Accepted: 05/24/2023] [Indexed: 06/04/2023]
Abstract
The sustainable utilization of biochar produced from biomass waste could substantially promote the development of carbon neutrality and a circular economy. Due to their cost-effectiveness, multiple functionalities, tailorable porous structure, and thermal stability, biochar-based catalysts play a vital role in sustainable biorefineries and environmental protection, contributing to a positive, planet-level impact. This review provides an overview of emerging synthesis routes for multifunctional biochar-based catalysts. It discusses recent advances in biorefinery and pollutant degradation in air, soil, and water, providing deeper and more comprehensive information of the catalysts, such as physicochemical properties and surface chemistry. The catalytic performance and deactivation mechanisms under different catalytic systems were critically reviewed, providing new insights into developing efficient and practical biochar-based catalysts for large-scale use in various applications. Machine learning (ML)-based predictions and inverse design have addressed the innovation of biochar-based catalysts with high-performance applications, as ML efficiently predicts the properties and performance of biochar, interprets the underlying mechanisms and complicated relationships, and guides biochar synthesis. Finally, environmental benefit and economic feasibility assessments are proposed for science-based guidelines for industries and policymakers. With concerted effort, upgrading biomass waste into high-performance catalysts for biorefinery and environmental protection could reduce environmental pollution, increase energy safety, and achieve sustainable biomass management, all of which are beneficial for attaining several of the United Nations Sustainable Development Goals (UN SDGs) and Environmental, Social and Governance (ESG).
Collapse
Affiliation(s)
- Xiangzhou Yuan
- Ministry of Education of Key Laboratory of Energy Thermal Conversion and Control, School of Energy and Environment, Southeast University, Nanjing 210096, China; Korea Biochar Research Center, APRU Sustainable Waste Management Program & Division of Environmental Science and Ecological Engineering, Korea University, Seoul 02841, Republic of Korea
| | - Yang Cao
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China
| | - Jie Li
- CAS Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Anil Kumar Patel
- Institute of Aquatic Science and Technology, College of Hydrosphere, National Kaohsiung University of Science and Technology, Kaohsiung 81157, Taiwan
| | - Cheng-Di Dong
- Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung 81157, Taiwan
| | - Xin Jin
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, China
| | - Cheng Gu
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, China
| | - Alex C K Yip
- Department of Chemical and Process Engineering, University of Canterbury, Christchurch, New Zealand
| | - Daniel C W Tsang
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China; Research Centre for Resources Engineering towards Carbon Neutrality, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China.
| | - Yong Sik Ok
- Korea Biochar Research Center, APRU Sustainable Waste Management Program & Division of Environmental Science and Ecological Engineering, Korea University, Seoul 02841, Republic of Korea.
| |
Collapse
|
9
|
Rozina, Ahmad M, Zafar M, Bokhari A, Akhtar MS, Alshgari RA, Karami AM, Asif S. Membrane reactor for production of biodiesel from nonedible seed oil of Trachyspermum ammi using heterogenous green nanocatalyst of manganese oxide. CHEMOSPHERE 2023; 322:138078. [PMID: 36754302 DOI: 10.1016/j.chemosphere.2023.138078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 01/21/2023] [Accepted: 02/05/2023] [Indexed: 06/18/2023]
Abstract
Conventional homogeneous-based catalyzed transesterification for the production of biodiesel can be replaced with a membrane reactor that has an immobilized heterogeneous catalyst. Combining reaction with separation while utilizing membranes with a certain pore size might boost conversion process. this investigation to study the effectiveness of membrane reactor in combination with heterogeneous green nano catalysis of MnO2. Techniques such as XRD, EDX, FTIR, SEM, and TGA were used to characterize the synthesized MnO2 nano catalyst. The highest conversion of around 94% Trachyspermum ammi oil was obtained by MnO2. The optimum process variables for maximum conversion were catalyst loading of 0.26 (wt.%), 8:1 M ratio, 90 °C reaction temperature, and time 120 min. The green nano catalyst of MnO2 was reusable up to five cycles with minimum loss in conversion rate of about 75% in the fifth cycle. Nuclear magnetic resonance validated the synthesis of methyl esters. It was concluded that membrane reactor a promising technique to efficiently transesterify triglycerides into methyl esters and enable process intensification uses MnO2 as a catalyst.
Collapse
Affiliation(s)
- Rozina
- Department of Plant Sciences, Quaid-i-Azam University, Islamabad, 45320, Pakistan
| | - Mushtaq Ahmad
- Department of Plant Sciences, Quaid-i-Azam University, Islamabad, 45320, Pakistan.
| | - Muhammad Zafar
- Department of Plant Sciences, Quaid-i-Azam University, Islamabad, 45320, Pakistan
| | - Awais Bokhari
- Department of Chemical Engineering, COMSATS University Islamabad (CUI), Lahore Campus, 54000, Lahore, Punjab, Pakistan; Sustainable Process Integration Laboratory, SPIL, NETME Centra, Faculty of Mechanical Engineering, Brno University of Technology, VUT Brno, Technická 2896/2, Brno, 616 00, Czech Republic.
| | - Muhammad Saeed Akhtar
- School of Chemical Engineering, Yeungnam University, Gyeongsan, 712-749, South Korea.
| | - Razan A Alshgari
- Chemistry Department, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| | | | - Saira Asif
- Faculty of Sciences, Department of Botany, PMAS Arid Agriculture University, Rawalpindi, Punjab, 46300, Pakistan.
| |
Collapse
|
10
|
Maroušek J, Maroušková A, Gavurová B, Tuček D, Strunecký O. Competitive algae biodiesel depends on advances in mass algae cultivation. BIORESOURCE TECHNOLOGY 2023; 374:128802. [PMID: 36858122 DOI: 10.1016/j.biortech.2023.128802] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 02/21/2023] [Accepted: 02/23/2023] [Indexed: 06/18/2023]
Abstract
The aim of this review was to study why, despite large investments in research and development, algae biodiesel is still not price competitive with fossil fuels. Microalgal production was confirmed to be a critical cost item (84 up to 93 %) for biodiesel regardless of the production technology. Techno-economic assessment revealed the main cost drivers during mass cultivation. It is argued that a breakthrough in the cultivation efficiency of microalgae is identified as a necessary condition for achieving price-competitive microalgal biodiesel. The key bottlenecks were identified as follows: (1) light and O2 concentration management; (2) overnight respiratory loss of oil. It is concluded that most of the research on microalgae biodiesel yields economically over-optimistic presumptions because it has been based on laboratory scale experiments with a low level of interdisciplinary overlap.
Collapse
Affiliation(s)
- Josef Maroušek
- Institute of Technology and Business in České Budějovice, Faculty of Technology, Okružní 517/10, České Budějovice 370 01, Czech Republic; University of South Bohemia in České Budějovice, Faculty of Agriculture, Studentská 1668, České Budějovice 370 05, Czech Republic.
| | - Anna Maroušková
- Institute of Technology and Business in České Budějovice, Faculty of Technology, Okružní 517/10, České Budějovice 370 01, Czech Republic
| | - Beata Gavurová
- Technical University of Kosice, Faculty of Mining, Ecology, Process Control and Geotechnologies, Letna 9, Košice 042 00, Slovakia
| | - David Tuček
- Tomas Bata University in Zlín, Faculty of Management and Economics, Mostní 5139, Zlín 760 01, Czech Republic
| | - Otakar Strunecký
- Institute of Technology and Business in České Budějovice, Faculty of Technology, Okružní 517/10, České Budějovice 370 01, Czech Republic; University of South Bohemia in České Budějovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Institute of Aquaculture and Protection of Waters, Na Sádkách 1780, 370 05 České Budějovice, Czech Republic
| |
Collapse
|
11
|
Li Y, Gupta R, Zhang Q, You S. Review of biochar production via crop residue pyrolysis: Development and perspectives. BIORESOURCE TECHNOLOGY 2023; 369:128423. [PMID: 36462767 DOI: 10.1016/j.biortech.2022.128423] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Revised: 11/27/2022] [Accepted: 11/28/2022] [Indexed: 06/17/2023]
Abstract
Worldwide surge in crop residue generation has necessitated developing strategies for their sustainable disposal. Pyrolysis has been widely adopted to convert crop residue into biochar with bio-oil and gas being two co-products. The review adopts a whole system philosophy and systematically summarises up-to-date knowledge of crop residue pyrolysis processes, influential factors, and biochar applications. Essential process design tools for biochar production e.g., cost-benefit analysis, life cycle assessment, and machine learning methods are also reviewed, which has often been overlooked in prior reviews. Important aspects include (a) correlating techno-economics of biochar production with crop residue compositions, (b) process operating conditions and management strategies, (c) biochar applications including soil amendment, fuel displacement, catalytic usage, etc., (d) data-driven modelling techniques, (e) properties of biochar, and (f) climate change mitigation. Overall, the review will support the development of application-oriented process pipelines for crop residue-based biochar.
Collapse
Affiliation(s)
- Yize Li
- James Watt School of Engineering, University of Glasgow, Glasgow G12 8QQ, UK
| | - Rohit Gupta
- James Watt School of Engineering, University of Glasgow, Glasgow G12 8QQ, UK; Nanoengineered Systems Laboratory, UCL Mechanical Engineering, University College London, London WC1E 7JE, UK; Wellcome/EPSRC Centre for Interventional and Surgical Sciences, University College London, London W1W 7TY, UK
| | - Qiaozhi Zhang
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China
| | - Siming You
- James Watt School of Engineering, University of Glasgow, Glasgow G12 8QQ, UK.
| |
Collapse
|
12
|
Huang J, Wang J, Huang Z, Liu T, Li H. Photothermal technique-enabled ambient production of microalgae biodiesel: Mechanism and life cycle assessment. BIORESOURCE TECHNOLOGY 2023; 369:128390. [PMID: 36435420 DOI: 10.1016/j.biortech.2022.128390] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 11/19/2022] [Accepted: 11/21/2022] [Indexed: 06/16/2023]
Abstract
Thermocatalytic (trans)esterification of oils/lipids to produce biodiesel is generally energy-consuming, reversible, and controlled by the equilibrium law. Herein, a light-induced photothermal process was illustrated to be highly efficient for biodiesel production (96.8 % yield) from microalgae lipids at room temperature enabled by a biomass-based SO3H-functionalized graphene-like heterogeneous catalyst (S-NGL-600), as optimized by response surface methodology. Infrared thermal imaging indicated that interfacial solar heating led to forming a local photothermal catalytic system, reaching 72.2 °C in 2 min. The local light heating was conducive to evaporation and removal of water from acid sites, resulting in local excess of microalgae lipids to facilitate the forward reaction. Notably, the photothermal catalyst was highly recyclable and exhibited a significantly higher conversion rate of microalgae lipids than industrially used catalyst H2SO4. Life cycle assessment suggested energy-saving advantage (0.87 MJ/MJ) and environmental protection (-89.42 CO2eq/MJ) of the photothermal-driven protocol for microalgae biodiesel production.
Collapse
Affiliation(s)
- Jinshu Huang
- State Key Laboratory Breeding Base of Green Pesticide & Agricultural Bioengineering, Key Laboratory of Green Pesticide & Agricultural Bioengineering, Ministry of Education, State-Local Joint Laboratory for Comprehensive Utilization of Biomass, Center for R&D of Fine Chemicals, Guizhou University, Guiyang, Guizhou 550025, China
| | - Junqi Wang
- Department of Earth and Environmental Science, School of Human Settlements and Civil Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, China
| | - Zhuochun Huang
- State Key Laboratory Breeding Base of Green Pesticide & Agricultural Bioengineering, Key Laboratory of Green Pesticide & Agricultural Bioengineering, Ministry of Education, State-Local Joint Laboratory for Comprehensive Utilization of Biomass, Center for R&D of Fine Chemicals, Guizhou University, Guiyang, Guizhou 550025, China
| | - Tengyu Liu
- State Key Laboratory Breeding Base of Green Pesticide & Agricultural Bioengineering, Key Laboratory of Green Pesticide & Agricultural Bioengineering, Ministry of Education, State-Local Joint Laboratory for Comprehensive Utilization of Biomass, Center for R&D of Fine Chemicals, Guizhou University, Guiyang, Guizhou 550025, China
| | - Hu Li
- State Key Laboratory Breeding Base of Green Pesticide & Agricultural Bioengineering, Key Laboratory of Green Pesticide & Agricultural Bioengineering, Ministry of Education, State-Local Joint Laboratory for Comprehensive Utilization of Biomass, Center for R&D of Fine Chemicals, Guizhou University, Guiyang, Guizhou 550025, China.
| |
Collapse
|
13
|
Alsaiari M, Ahmad M, Zafar M, Harraz FA, Algethami JS, Šljukić B, Santos DMF, Akhtar MS. Transformation of waste seed biomass of Cordia myxa into valuable bioenergy through membrane bioreactor using green nanoparticles of indium oxide. CHEMOSPHERE 2023; 314:137604. [PMID: 36574789 DOI: 10.1016/j.chemosphere.2022.137604] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Revised: 12/10/2022] [Accepted: 12/17/2022] [Indexed: 06/17/2023]
Abstract
Depletion of non-renewable fuel has obliged researchers to seek out sustainable and environmentally friendly alternatives. Membranes have proven to be an effective technique in biofuel production for reaction, purification, and separation, with the ability to use both porous and non-porous membranes. It is demonstrated that a membrane-based sustainable and green production can result in a high degree of process intensification, whereas the recovery and repurposing of catalysts and alcohol are anticipated to increase the process economics. Therefore, in this study sustainable biodiesel was synthesized from inedible seed oil (37 wt%) of Cordia myxa using a membrane reactor. Transesterification was catalyzed by heterogenous nano-catalyst of indium oxide prepared with leaf extract of Boerhavia diffusa. Highest biodiesel yield of 95 wt% was achieved at methanol to oil molar ratio of 7:1, catalyst load 0.8 wt%, temperature 82.5 °C and time 180 min In2O3 nanoparticles exhibited reusability up to five successive transesterification rounds. The production of methyl esters was confirmed using Fourier-transform infrared spectroscopy and Nuclear Magnetic Resonance. The predominant fatty acid methyl ester detected in the biodiesel was 5, 8-octadecenoic acid. Biodiesel fuel qualities were determined to be comparable to worldwide ASTM D-6571 and EN-14214 standards. Finally, it was concluded that membrane technology can result in a highly intensified reaction process while efficient recovery of both nano catalysts and methanol increases the economics of transesterification and lead to sustainable production.
Collapse
Affiliation(s)
- Mabkhoot Alsaiari
- Promising Centre for Sensors and Electronic Devices (PCSED), Advanced Materials and Nano Research Centre, Najran University, Najran, 11001, Saudi Arabia; Empty Quarter Research Unit, Department of Chemistry, College of Science and Art in Sharurah, Najran University, Sharurah, Saudi Arabia.
| | - Mushtaq Ahmad
- Department of Plant Sciences, Quaid- i- Azam University, Islamabad, 45320, Pakistan.
| | - Muhammad Zafar
- Department of Plant Sciences, Quaid- i- Azam University, Islamabad, 45320, Pakistan
| | - Farid A Harraz
- Promising Centre for Sensors and Electronic Devices (PCSED), Advanced Materials and Nano Research Centre, Najran University, Najran, 11001, Saudi Arabia; Nanomaterials and Nanotechnology Department, Central Metallurgical Research and Development Institute (CMRDI), P.O. Box: 87 Helwan, Cairo, 11421, Egypt
| | - Jari S Algethami
- Promising Centre for Sensors and Electronic Devices (PCSED), Advanced Materials and Nano Research Centre, Najran University, Najran, 11001, Saudi Arabia
| | - Biljana Šljukić
- Center of Physics and Engineering of Advanced Materials, Laboratory for Physics of Materials and Emerging Technologies, Chemical Engineering Department, Instituto Superior Técnico, Universidade de Lisboa, 1049-001, Lisbon, Portugal
| | - Diogo M F Santos
- Center of Physics and Engineering of Advanced Materials, Laboratory for Physics of Materials and Emerging Technologies, Chemical Engineering Department, Instituto Superior Técnico, Universidade de Lisboa, 1049-001, Lisbon, Portugal
| | - Muhammad Saeed Akhtar
- School of Chemical Engineering, Yeungnam University, Gyeongsan, 712-749, South Korea.
| |
Collapse
|
14
|
Biodiesel Production from Chlorella homosphaera by Two-Step Catalytic Conversion Using Waste Radish Leaves as a Source for Heterogeneous Catalyst. Appl Biochem Biotechnol 2023:10.1007/s12010-023-04312-4. [PMID: 36689157 DOI: 10.1007/s12010-023-04312-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/06/2023] [Indexed: 01/24/2023]
Abstract
The economic viability of algal biodiesel can be improved by enhancing the microalgal lipid accumulation and using agricultural waste as a cheap and sustainable source of catalysts. In the current study, the effect of various nitrogen concentrations on the growth and lipid of Chlorella homosphaera were investigated. Furthermore, two-step catalytic conversion was applied to convert the oil of C. homosphaera with high free fatty acids (FFA) to biodiesel using waste radish leaves as a source of a heterogeneous base catalyst. The result revealed that the maximum lipid productivity of 25.0 mg L-1 day-1 and lipid content of 30.83% were obtained under nitrogen-depleted and limited nitrogen conditions, respectively. The FFA was reduced from 18.79 to 0.76%, and the acid value was decreased from 37.4 to 1.52 mg KOH g-1 using a 15:1 methanol to oil molar ratio (MTOR), 1.5 wt.% H2SO4, at 60 °C for 150 min. Under the optimized conditions, i.e., MTOR of 10:1, 3 wt.% of catalyst ratio for 120 min at 60 °C, the highest oil conversion of 96.61% was obtained. The physicochemical properties of the produced biodiesel were in the range of the standard specification norms for biodiesel. Hence, the proposed two-step catalytic conversion using calcined radish leaves as a heterogeneous catalyst has thus exhibited good potential for biodiesel production using algal oil with high FFA.
Collapse
|
15
|
Alsaiari M, Ahmad M, Munir M, Zafar M, Sultana S, Dawood S, Almohana AI, Hassan M H AM, Alharbi AF, Ahmad Z. Efficient application of newly synthesized green Bi 2O 3 nanoparticles for sustainable biodiesel production via membrane reactor. CHEMOSPHERE 2023; 310:136838. [PMID: 36244423 DOI: 10.1016/j.chemosphere.2022.136838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 09/26/2022] [Accepted: 10/07/2022] [Indexed: 06/16/2023]
Abstract
Introduction of waste and non-edible oil seeds coupled with green nanotechnology offered a pushover to sustainable and economical biofuels and bio refinery production globally. The current study encompasses the synthesis and application of novel green, highly reactive and recyclable bismuth oxide nanocatalyst derived from Euphorbia royealeana (Falc.) Boiss. leaves extract via biological method for sustainable biofuel synthesis from highly potent Cannabis sativa seed oil (34% w/w) via membrane reactors. Advanced techniques such as X-Ray Diffraction (XRD), Scanning Electron Microscopy (SEM), Energy Diffraction X-Ray (EDX), and FT-IR were employed to illustrate the newly synthesized green bismuth oxide nanoparticles. 92% of FAMEs were produced under optimal reaction conditions such as a 1.5% w/w catalyst weight, 1:12 oil to methanol molar ratio, and a reaction temperature of 92 ⸰C for 3.5 h via membrane reactor. The synthesized Cannabis biodiesel was identified using the FT-IR and GC-MS techniques. The fuel properties of synthesized biofuels (acid number 0.203 mg KOH/g, density 0.8623 kg/L, kinematic viscosity 5.32 cSt, flash point 80 °C, pour point -11 °C, cloud point -11 °C, and Sulfur 0.00047 wt %, and carbon residues 0.2) were studied and established to be comparable with internationally set parameters. The experimental data (R2 = 0.997) shows that this reaction follow pseudo first-order kinetics. These findings affirm the application of green bismuth oxide nanoparticles as economical, highly reactive and eco-friendly candidate for industrial scale biodiesel production from non-edible oil seeds.
Collapse
Affiliation(s)
- Mabkhoot Alsaiari
- Promising Centre for Sensors and Electronic Devices (PCSED), Advanced Materials and Nano Research Centre, Najran University, Najran, 11001, Saudi Arabia; Empty Quarter Research Unit, Department of Chemistry, College of Science and Art in Sharurah, Najran University, Sharurah, Saudi Arabia
| | - Mushtaq Ahmad
- Department of Plant Sciences, Quaid- i- Azam University, Islamabad, 45320, Pakistan.
| | - Mamoona Munir
- Department of Plant Sciences, Quaid- i- Azam University, Islamabad, 45320, Pakistan; Department of Botany, Rawalpindi Women University, Rawalpindi, Pakistan
| | - Muhammad Zafar
- Department of Plant Sciences, Quaid- i- Azam University, Islamabad, 45320, Pakistan
| | - Shazia Sultana
- Department of Plant Sciences, Quaid- i- Azam University, Islamabad, 45320, Pakistan
| | - Sumreen Dawood
- Department of Botany, Rawalpindi Women University, Rawalpindi, Pakistan
| | - Abdulaziz Ibrahim Almohana
- Department of Civil Engineering, College of Engineering, King Saud University, P.O. Box 800, Riyadh, 11421, Saudi Arabia
| | | | | | - Zubair Ahmad
- School of Chemical Engineering, Yeungnam University, Gyeongsan, 712-749, South Korea.
| |
Collapse
|
16
|
Ajien A, Idris J, Md Sofwan N, Husen R, Seli H. Coconut shell and husk biochar: A review of production and activation technology, economic, financial aspect and application. WASTE MANAGEMENT & RESEARCH : THE JOURNAL OF THE INTERNATIONAL SOLID WASTES AND PUBLIC CLEANSING ASSOCIATION, ISWA 2023; 41:37-51. [PMID: 36346183 PMCID: PMC9925910 DOI: 10.1177/0734242x221127167] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Accepted: 05/10/2022] [Indexed: 06/16/2023]
Abstract
The coconut industry generates a relatively large amount of coconut shell and husk biomass, which can be utilized for industrial and environmental purposes. Immense potential for added value when coconut shell and husk biomass are turned into biochar and limited studies are available, making this review paper significant. This paper specifically presents the production and activation technology, economic and financial aspect and application of biochar from coconut shell and husk biomass. Pyrolysis, gasification and self-sustained carbonization are among the production technology discussed to convert this biomass into carbon-rich materials with distinctive characteristics. The surface characteristics of coconut-based biochar, that is, Brunauer-Emmett-Teller (BET) surface area (SBET), pore volume (Vp), pore diameter (dp) and surface functional group can be enhanced by physical and chemical activation and metal impregnation. Due to their favourable characteristics, coconut shell and husk-activated biochar exhibit their potential as valuable adsorption materials for industrial and environmental application including biodiesel production, capacitive deionization, soil amendment, water treatment and carbon sequestration. With the knowledge of the potential, the coconut industry can contribute to both the local and global biocircular economy by producing coconut shell and husk biochar for economic development and environmental remediation. The capital and operating cost for production and activation processes must be taken into account to ensure bioeconomy sustainability, hence coconut shell and husk biomass have a great potential for income generation.
Collapse
Affiliation(s)
- Azrine Ajien
- School of Chemical Engineering, College
of Engineering, Universiti Teknologi MARA (UiTM) Sarawak Branch, Kota Samarahan,
Sarawak, Malaysia
- School of Chemical Engineering, College
of Engineering, Universiti Teknologi MARA (UiTM) Selangor Branch, Shah Alam,
Selangor, Malaysia
| | - Juferi Idris
- School of Chemical Engineering, College
of Engineering, Universiti Teknologi MARA (UiTM) Sarawak Branch, Kota Samarahan,
Sarawak, Malaysia
- School of Chemical Engineering, College
of Engineering, Universiti Teknologi MARA (UiTM) Selangor Branch, Shah Alam,
Selangor, Malaysia
| | - Nurzawani Md Sofwan
- Faculty of Health Sciences, Universiti
Teknologi MARA (UiTM) Sarawak Branch, Samarahan Campus, Kota Samarahan, Sarawak,
Malaysia
| | - Rafidah Husen
- Faculty of Applied Sciences, Universiti
Teknologi MARA (UiTM) Sarawak Branch, Samarahan 2 Campus, Kota Samarahan, Sarawak,
Malaysia
| | - Hazman Seli
- School of Chemical Engineering, College
of Engineering, Universiti Teknologi MARA (UiTM) Sarawak Branch, Kota Samarahan,
Sarawak, Malaysia
- School of Chemical Engineering, College
of Engineering, Universiti Teknologi MARA (UiTM) Selangor Branch, Shah Alam,
Selangor, Malaysia
| |
Collapse
|
17
|
Oh YK, Kim S, Ilhamsyah DPA, Lee SG, Kim JR. Cell disruption and lipid extraction from Chlorella species for biorefinery applications: Recent advances. BIORESOURCE TECHNOLOGY 2022; 366:128183. [PMID: 36307027 DOI: 10.1016/j.biortech.2022.128183] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 10/18/2022] [Accepted: 10/18/2022] [Indexed: 06/16/2023]
Abstract
Chlorella is a promising microalga for CO2-neutral biorefinery that co-produces drop-in biofuels and multiple biochemicals. Cell disruption and selective lipid extraction steps are major technical bottlenecks in biorefinement because of the inherent robustness and complexity of algal cell walls. This review focuses on the state-of-the-art achievements in cell disruption and lipid extraction methods for Chlorella species within the last five years. Various chemical, physical, and biological approaches have been detailed theoretically, compared, and discussed in terms of the degree of cell wall disruption, lipid extractability, chemical toxicity, cost-effectiveness, energy use, scalability, customer preferences, environment friendliness, and synergistic combinations of different methods. Future challenges and prospects of environmental-friendly and efficient extraction technologies are also outlined for practical applications in sustainable Chlorella biorefineries. Given the diverse industrial applications of Chlorella, this review may provide useful information for downstream processing of the advanced biorefineries of other algae genera.
Collapse
Affiliation(s)
- You-Kwan Oh
- School of Chemical Engineering, Pusan National University (PNU), Busan 46241, Republic of Korea.
| | - Sangui Kim
- School of Chemical Engineering, Pusan National University (PNU), Busan 46241, Republic of Korea
| | | | - Sun-Gu Lee
- School of Chemical Engineering, Pusan National University (PNU), Busan 46241, Republic of Korea
| | - Jung Rae Kim
- School of Chemical Engineering, Pusan National University (PNU), Busan 46241, Republic of Korea
| |
Collapse
|
18
|
Emerging Technologies for Enhancing Microalgae Biofuel Production: Recent Progress, Barriers, and Limitations. FERMENTATION-BASEL 2022. [DOI: 10.3390/fermentation8110649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The world has heavily relied on fossil fuels for decades to supply energy demands. However, the usage of fossil fuels has been strongly correlated with impactful problems, which lead to global warming. Moreover, the excessive use of fossil fuels has led to their rapid depletion. Hence, exploring other renewable and sustainable alternatives to fossil fuels is imperative. One of the most sustainable fossil fuel alternatives is biofuel. Microalgae-based biofuels are receiving the attention of researchers due to their numerous advantages compared with those obtained from other types of feedstocks. Hence, it is essential to explore the recent technologies for biofuel produced from microalgae species and define the possible challenges that might be faced during this process. Therefore, this work presents the recent advancements in biofuel production from microalgae, focusing on emerging technologies such as those using nanomaterials and genetic engineering. This review focuses on the impact of nanoparticles on the harvesting efficiency of various microalgae species and the influence of nanoparticles on biofuel production. The genetic screening performed by genome-scale mutant libraries and their high-throughput screening may assist in developing effective strategies for enhancing microalgal strains and oil production through the modification of enzymes. Furthermore, the barriers that limit the production of biofuels from microalgae are introduced. Even though microalgae-based biofuels are perceived to engage with low negative impacts on the environment, this review paper touches on several environmental issues associated with the cultivation and harvesting of microalgae species. Moreover, the economic and technical feasibility limits the production of microalgae-based biofuels.
Collapse
|
19
|
Microwave-Assisted Biodiesel Production Using UiO-66 MOF Derived Nanocatalyst: Process Optimization Using Response Surface Methodology. Catalysts 2022. [DOI: 10.3390/catal12111312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The present work is on the transesterification of soybean oil to biodiesel under microwave irradiation using a biomass and MOF−derived CaO−ZrO2 heterogeneous catalyst. The optimisation of different parameters was processed by adopting a central composite design for a response−surface methodology (RSM). The experimental data were fitted to a quadratic equation employing multiple regressions and investigated by analysis of variance (ANOVA). The catalyst was exhaustively characterised by XRD, TGA, FTIR BET, SEM, TEM, CO2 TPD and XPS. In addition, the synthesized biodiesel was characterized by 1H and 13C NMR, GCMS. The physicochemical properties of the biodiesel were also reported and compared with the ASTM standards. The maximum yield that was obtained after optimization using RSM was 97.22 ± 0.4% with reaction time of 66.2 min, at reaction temperature of 73.2 °C, catalyst loading of 6.5 wt.%, and methanol−to−oil ratio of 9.7 wt.%.
Collapse
|
20
|
Alsaiari M, Ahmad M, Zafar M, Sultana S, Rizk MA, Almohana AI, Ahmad Z, Alsaiari RA, Akhtar MS. Treatment of Saussurea heteromalla for biofuel synthesis using catalytic membrane reactor. CHEMOSPHERE 2022; 305:135335. [PMID: 35724723 DOI: 10.1016/j.chemosphere.2022.135335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Revised: 06/06/2022] [Accepted: 06/10/2022] [Indexed: 06/15/2023]
Abstract
Membrane technology has been adopted as a prospective and promising alternative to the standard technology used for biodiesel production since the time when it had some limitations. During this research project, the inedible seed oil generating feedstock known as Saussurea heteromalla was put through a biodiesel production process that utilized membrane technology with an effort to increase the yield of methyl ester. The transesterification process was mediated by zirconium oxide nanoparticles that were generated using an aqueous extract of Portulaca oleracea leaf. With an oil to methanol ratio of 1:9, a catalyst concentration of 0.88 (wt. %), temperature of 87 °C, and reaction time of 180 min, the highest possible biodiesel yield of 93% was achieved. The findings of the catalyst characterization demonstrated the purity of the zirconium oxide nano particles and their nanoscale nature with average particle size of 31 nm. Using gas chromatography and mass spectrometry (GC/MS), an examination of biodiesel revealed the presence of four different peaks of methyl esters. Using Fourier-transform infrared spectroscopy (FTIR) and nuclear magnetic resonance, we were able to verify that the production of methyl esters in the biodiesel sample was successful (NMR). Zerconium oxide nanoparticles were found reusable up to five consecutive cycles of transesterification. The fuel-related properties of methyl ester have been determined and are in line with the requirements of the international standards ASTM D-6571 and EN 14214. In the course of our ongoing research, we made use of membrane technology, which led to the production of biodiesel from the seed oil of Saussurea heteromalla that was better for the environment, more cost effective, and produced in greater quantities.
Collapse
Affiliation(s)
- Mabkhoot Alsaiari
- Promising Centre for Sensors and Electronic Devices (PCSED), Advanced Materials and Nano Research Centre, Najran University, Najran, 11001, Saudi Arabia; Empty Quarter Research Unit, Department of Chemistry, College of Science and Art in Sharurah, Najran University, Sharurah, Saudi Arabia
| | - Mushtaq Ahmad
- Department of Plant Sciences, Quaid- i- Azam University Islamabad, 45320, Pakistan
| | - Muhammad Zafar
- Department of Plant Sciences, Quaid- i- Azam University Islamabad, 45320, Pakistan
| | - Shazia Sultana
- Department of Plant Sciences, Quaid- i- Azam University Islamabad, 45320, Pakistan
| | - Moustafa A Rizk
- Empty Quarter Research Unit, Department of Chemistry, College of Science and Art in Sharurah, Najran University, Sharurah, Saudi Arabia; Department of Chemistry of Science Faculty, Suez Canal University, Ismailia, 41522, Egypt
| | - Abdulaziz Ibrahim Almohana
- Department of Civil Engineering, College of Engineering, King Saud University, P.O. Box 800, Riyadh, 11421, Saudi Arabia
| | - Zubair Ahmad
- School of Chemical Engineering, Yeungnam University, Gyeongsan, 712-749, South Korea.
| | - Raiedhah A Alsaiari
- Empty Quarter Research Unit, Department of Chemistry, College of Science and Art in Sharurah, Najran University, Sharurah, Saudi Arabia
| | - Muhammad Saeed Akhtar
- School of Chemical Engineering, Yeungnam University, Gyeongsan, 712-749, South Korea.
| |
Collapse
|
21
|
Seo JY, Tokmurzin D, Lee D, Lee SH, Seo MW, Park YK. Production of biochar from crop residues and its application for biofuel production processes - An overview. BIORESOURCE TECHNOLOGY 2022; 361:127740. [PMID: 35934249 DOI: 10.1016/j.biortech.2022.127740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 07/31/2022] [Accepted: 08/02/2022] [Indexed: 06/15/2023]
Abstract
A sustainable carbon-neutral society is imperative for future generations, and biochars and biofuels are inevitable choice to achieve this goal. Crop residues (CR) such as sugarcane bagasse, corn stover, and rice husk are promising sustainable resources as a feedstock for biochars and biofuels. Extensive research has been conducted on CR-based biochar production not only in environmental remediation areas but also in application for biofuel production. Here, the distribution and resource potential of major crop residues are presented. The production of CR-biochar and its applications in biofuel production processes, focusing on the latest research are discussed. Finally, the challenges and areas of opportunity for future research in terms of CR supply, CR-biochar production, and CR-biochar utilization for biofuel production are proposed. Compared with other literature reviews, this study can serve as a guide for the establishment of sustainable, economical, commercial CR-based biorefineries.
Collapse
Affiliation(s)
- Jung Yoon Seo
- National Climate Technology Center, Korea Institute of Energy Research (KIER), 152 Gajeong-ro, Yuseong-gu, Daejeon, Republic of Korea
| | - Diyar Tokmurzin
- Clean Fuel Research Laboratory, Korea Institute of Energy Research (KIER), 152 Gajeong-ro, Yuseong-gu, Daejeon, Republic of Korea
| | - Doyeon Lee
- Department of Civil and Environmental Engineering, Hanbat National University, 125 Dongseo-daero, Yuseong-gu, Daejeon, Republic of Korea
| | - See Hoon Lee
- Department of Mineral Resources and Energy Engineering, Jeonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju, Republic of Korea; Department of Environment & Energy, Jeonbuk National University 567 Baekje-daero, Deokjin-gu, Jeonju, Republic of Korea
| | - Myung Won Seo
- School of Environmental Engineering, University of Seoul, 163 Seoulsiripdae-ro, Dongdaemun-gu, Seoul, Republic of Korea
| | - Young-Kwon Park
- School of Environmental Engineering, University of Seoul, 163 Seoulsiripdae-ro, Dongdaemun-gu, Seoul, Republic of Korea.
| |
Collapse
|
22
|
Gaur VK, Gautam K, Sharma P, Gupta S, Pandey A, You S, Varjani S. Carbon-based catalyst for environmental bioremediation and sustainability: Updates and perspectives on techno-economics and life cycle assessment. ENVIRONMENTAL RESEARCH 2022; 209:112793. [PMID: 35090873 DOI: 10.1016/j.envres.2022.112793] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 01/15/2022] [Accepted: 01/20/2022] [Indexed: 06/14/2023]
Abstract
Global rise in the generation of waste has caused an enormous environmental concern and waste management problem. The untreated carbon rich waste serves as a breeding ground for pathogens and thus strategies for production of carbon rich biochar from waste by employing different thermochemical routes namely hydrothermal carbonization, hydrothermal liquefaction and pyrolysis has been of interest by researchers globally. Biochar has been globally produced due to its diverse applications from environmental bioremediation to energy storage. Also, several factors affect the production of biochar including feedstock/biomass type, moisture content, heating rate, and temperature. Recently the application of biochar has increased tremendously owing to the cost effectiveness and eco-friendly nature. Thus this communication summarized and highlights the preferred feedstock for optimized biochar yield along with the factor influencing the production. This review provides a close view on biochar activation approaches and synthesis techniques. The application of biochar in environmental remediation, composting, as a catalyst, and in energy storage has been reviewed. These informative findings were supported with an overview of lifecycle and techno-economical assessments in the production of these carbon based catalysts. Integrated closed loop approaches towards biochar generation with lesser/zero landfill waste for safeguarding the environment has also been discussed. Lastly the research gaps were identified and the future perspectives have been elucidated.
Collapse
Affiliation(s)
- Vivek Kumar Gaur
- School of Energy and Chemical Engineering, UNIST, Ulsan, 44919, Republic of Korea; Centre for Energy and Environmental Sustainability, Lucknow, 226 001, Uttar Pradesh, India
| | - Krishna Gautam
- Centre for Energy and Environmental Sustainability, Lucknow, 226 001, Uttar Pradesh, India
| | - Poonam Sharma
- Department of Bioengineering, Integral University, Lucknow, India
| | | | - Ashok Pandey
- Centre for Energy and Environmental Sustainability, Lucknow, 226 001, Uttar Pradesh, India; Centre for Innovation and Translational Research, CSIR-Indian Institute of Toxicology Research, Lucknow, 226 001, India; India Sustainability Cluster, School of Engineering, University of Petroleum and Energy Studies, Dehradun, 248 007, Uttarakhand, India
| | - Siming You
- James Watt School of Engineering, University of Glasgow, Glasgow, G12 8QQ, UK
| | - Sunita Varjani
- Gujarat Pollution Control Board, Gandhinagar, Gujarat, 382 010, India.
| |
Collapse
|
23
|
Nano-Biochar as a Sustainable Catalyst for Anaerobic Digestion: A Synergetic Closed-Loop Approach. Catalysts 2022. [DOI: 10.3390/catal12020186] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Nowadays, the valorization of organic wastes using various carbon-capturing technologies is a prime research area. The anaerobic digestion (AD) technology is gaining much consideration in this regard that simultaneously deals with waste valorization and bioenergy production sustainably. Biochar, a well-recognized carbonaceous pyrogenic material and possessing a broad range of inherent physical and chemical properties, has diverse applications in the fields of agriculture, health-care, sensing, catalysis, carbon capture, the environment and energy. The nano-biochar-amended anaerobic digestion approach has intensively been explored for the past few years. However, an inclusive study of multi-functional roles of biochar and the mechanism involved for enhancing the biogas production via the AD process still need to be evaluated. The present review inspects the significant role of biochar addition and the kinetics involved, further focusing on the limitations, perspectives, and challenges of the technology. Additionally, the techno-economic analysis and life-cycle assessment of biochar-aided AD process for the closed-loop integration of biochar and AD and possible improvement practices are discussed.
Collapse
|
24
|
Selvam S M, Paramasivan B. Microwave assisted carbonization and activation of biochar for energy-environment nexus: A review. CHEMOSPHERE 2022; 286:131631. [PMID: 34315073 DOI: 10.1016/j.chemosphere.2021.131631] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Revised: 07/15/2021] [Accepted: 07/20/2021] [Indexed: 06/13/2023]
Abstract
Conventional thermochemical conversion techniques for biofuel production from lignocellulosic biomass is often non-selective and energy inefficient. Microwave assisted pyrolysis (MAP) is cost and energy-efficient technology aimed for value-added bioproducts recovery from biomass with less environmental impacts. The present review emphasizes the performance of MAP in terms of product yield, characteristics and energy consumption and further it compares it with conventional pyrolysis. The significant role of biochar as catalyst in microwave pyrolysis for enhancing the product selectivity and quality, and the influence of microwave activation on product composition identified through sophisticated techniques has been highlighted. Besides, the application of MAP based biochar as soil conditioner and heavy metal immobilization has been illustrated. MAP accomplished at low temperature creates uniform thermal gradient than conventional mode, thereby producing engineered char with hotspots that could be used as catalysts for gasification, energy storage, etc. The stability, nutrient content, surface properties and adsorption capacity of biochar was enhanced by microwave activation, thus facilitating its use as soil conditioner. Many reviews until now on MAP mostly dealt with operational conditions and product yield with limited focus on comparative energy consumption with conventional mode, analytical techniques for product characterization and end application especially concerning agriculture. Thus, the present review adds on to the current state of art on microwave assisted pyrolysis covering all-round aspects of production followed by characterization and applications as soil amendment for increasing crop productivity in addition to the production of value-added chemicals, thus promoting process sustainability in energy and environment nexus.
Collapse
Affiliation(s)
- Mari Selvam S
- Agricultural & Environmental Biotechnology Group, Department of Biotechnology and Medical Engineering, National Institute of Technology Rourkela, 769008, India
| | - Balasubramanian Paramasivan
- Agricultural & Environmental Biotechnology Group, Department of Biotechnology and Medical Engineering, National Institute of Technology Rourkela, 769008, India.
| |
Collapse
|
25
|
Kant Bhatia S, Palai AK, Kumar A, Kant Bhatia R, Kumar Patel A, Kumar Thakur V, Yang YH. Trends in renewable energy production employing biomass-based biochar. BIORESOURCE TECHNOLOGY 2021; 340:125644. [PMID: 34332449 DOI: 10.1016/j.biortech.2021.125644] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 07/17/2021] [Accepted: 07/19/2021] [Indexed: 06/13/2023]
Abstract
Tremendous population growth and industrialization have increased energy consumption unprecedentedly. The depletion of fossil-based energy supplies necessitates the exploration of solar, geothermal, wind, hydrogen, biodiesel, etc. as a clean and renewable energy source. Most of these energy sources are intermittent, while bioelectricity, biodiesel, and biohydrogen can be produced using abundantly available organic wastes regularly. The production of various energy resources requires materials that are costly and affect the applicability at a large scale. Biomass-derived materials (biochar) are getting attention in the field of bioenergy due to their simple method of synthesis, high surface area, porosity, and availability of functional groups for easy modification. Biochar synthesis using various techniques is discussed and their use as an electrode (anodic/cathodic) in a microbial fuel cell (MFC), catalysts in transesterification, and anaerobic digestion for energy production are reviewed. Renewable energy production using biochar would be a sustainable approach to create an energy secure world.
Collapse
Affiliation(s)
- Shashi Kant Bhatia
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul-05029, Republic of Korea; Institute for Ubiquitous Information Technology and Application, Konkuk University, Seoul-05029, Republic of Korea
| | - Akshaya K Palai
- School for Advanced Research in Polymers, Central Institute of Petrochemicals Engineering and Technology (CIPET), Bhubaneswar, Odisha, 751 024, India
| | - Amit Kumar
- School of Engineering and Technology, Central University of Haryana, Haryana, 123031, India
| | - Ravi Kant Bhatia
- Department of Biotechnology, Himachal Pradesh University, Shimla-171005, India
| | - Anil Kumar Patel
- Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung City, 81157, Taiwan
| | - Vijay Kumar Thakur
- Department of Mechanical Engineering, School of Engineering, Shiv Nadar University, Uttar Pradesh, 201314, India; Biorefining and Advanced Materials Research Center, Scotland's Rural College (SRUC), Kings Buildings, Edinburgh, EH9 3JG, UK
| | - Yung-Hun Yang
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul-05029, Republic of Korea; Institute for Ubiquitous Information Technology and Application, Konkuk University, Seoul-05029, Republic of Korea.
| |
Collapse
|
26
|
Jayakumar M, Karmegam N, Gundupalli MP, Bizuneh Gebeyehu K, Tessema Asfaw B, Chang SW, Ravindran B, Kumar Awasthi M. Heterogeneous base catalysts: Synthesis and application for biodiesel production - A review. BIORESOURCE TECHNOLOGY 2021; 331:125054. [PMID: 33832828 DOI: 10.1016/j.biortech.2021.125054] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 03/18/2021] [Accepted: 03/19/2021] [Indexed: 06/12/2023]
Abstract
Recently, much research has been carried out to find a suitable catalyst for the transesterification process during biodiesel production where heterogeneous catalysts play a crucial role. As homogenous catalysts present drawbacks such as slow reaction rate, high-cost due to the use of food grade oils, problems associated with separation process, and environmental pollution, heterogenous catalysts are more preferred. Animal shells and bones are the biowastes suitably calcined for the synthesis of heterogenous base catalyst. The catalysts synthesized using organic wastes are environmentally friendly, and cost-effective. The present review is dedicated to synthesis of heterogeneous basic catalysts from the natural resources or biowastes in biodiesel production through transesterification of oils. Use of calcined catalysts for converting potential feedstocks (vegetable oils and animal fat) into biodiesel/FAME is effective and safe, and the yield could be improved over 98%. There is a vast scope for biowaste-derived catalysts in green production of biofuel.
Collapse
Affiliation(s)
- Mani Jayakumar
- Department of Chemical Engineering, Haramaya Institute of Technology, Haramaya University, Haramaya, Dire Dawa, Ethiopia
| | - Natchimuthu Karmegam
- Department of Botany, Government Arts College (Autonomous), Salem-636007, Tamil Nadu, India
| | - Marttin Paulraj Gundupalli
- The Sirindhorn International Thai-German Graduate School of Engineering, King Mongkut's University of Technology North Bangkok, Bangsue, Bangkok 10800, Thailand
| | - Kaleab Bizuneh Gebeyehu
- Department of Chemical Engineering, Haramaya Institute of Technology, Haramaya University, Haramaya, Dire Dawa, Ethiopia
| | - Belete Tessema Asfaw
- Department of Chemical Engineering, Haramaya Institute of Technology, Haramaya University, Haramaya, Dire Dawa, Ethiopia
| | - Soon Woong Chang
- Department of Environmental Energy and Engineering, Kyonggi University, Youngtong - Gu, Suwon, 16227, South Korea
| | - Balasubramani Ravindran
- Department of Environmental Energy and Engineering, Kyonggi University, Youngtong - Gu, Suwon, 16227, South Korea; Center for Environmental Nuclear Research, Directorate of Research, SRM Institute of Science and Technology, SRM Nagar, Kattankulathur 603203, Kanchipuram, Chennai, Tamil Nadu, India
| | - Mukesh Kumar Awasthi
- College of Natural Resources and Environment, Northwest A&F University, Taicheng Road 3#, Yangling, Shaanxi 712100, PR China.
| |
Collapse
|
27
|
Mona S, Malyan SK, Saini N, Deepak B, Pugazhendhi A, Kumar SS. Towards sustainable agriculture with carbon sequestration, and greenhouse gas mitigation using algal biochar. CHEMOSPHERE 2021; 275:129856. [PMID: 33636519 DOI: 10.1016/j.chemosphere.2021.129856] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2020] [Revised: 12/31/2020] [Accepted: 02/02/2021] [Indexed: 05/18/2023]
Abstract
With the increase in the world's population, demand for food and other products is continuously rising. This has put a lot of pressure on the agricultural sector. To fulfill these demands, the utilization of chemical fertilizers and pesticides has also increased. Consequently, to overcome the adverse effects of agrochemicals on our environment and health, there has been a shift towards organic fertilizers or other substitutes, which are ecofriendly and help to maintain a sustainable environment. Microalgae have a very high potential of carbon dioxide (CO2) capturing and thus, help in mitigating the greenhouse effect. It is the most productive biological system for generating biomass. The high growth rate and higher photosynthetic efficiency of the algal species compared to the terrestrial plants make them a wonderful alternative towards a sustainable environment. Moreover, they could be cultivated in photobioreactors or open ponds, which in turn reduce the demand for arable land. Biochar derived from algae is high in nutrients and exhibits the property of ion exchange. Therefore, it can be utilized for sustainable agriculture by partial substituting the chemical fertilizers that degrade the fertility of the soil in the long run. This review provides a detailed insight on the properties of algal biochar as a potential fertilizer for sustainable agriculture. Application of algal biochar in bio-refinery and its economic aspects, challenges faced and future perspective are also discusses in this study.
Collapse
Affiliation(s)
- Sharma Mona
- Department of Environmental Science & Engineering, Guru Jambheshwar University of Science & Technology, Hisar, 125001, Haryana, India.
| | - Sandeep K Malyan
- Research Management and Outreach Division, National Institute of Hydrology, Jalvigyan Bhawan, Roorkee, Uttarakhand, 247667, India.
| | - Neha Saini
- Department of Environmental Science & Engineering, Guru Jambheshwar University of Science & Technology, Hisar, 125001, Haryana, India.
| | | | - Arivalagan Pugazhendhi
- Innovative Green Product Synthesis and Renewable Environment Development Research Group, Faculty of Environment and Labour Safety, Ton Duc Thang University, Ho Chi Minh City, Viet Nam.
| | - Smita S Kumar
- Department of Environmental Sciences, J.C. Bose University of Science and Technology YMCA, Faridabad, India.
| |
Collapse
|
28
|
Abstract
Biodiesel is a promising alternative to fossil fuels and mainly produced from oils/fat through the (trans)esterification process. To enhance the reaction efficiency and simplify the production process, various catalysts have been introduced for biodiesel synthesis. Recently, the use of bio-derived catalysts has attracted more interest due to their high catalytic activity and ecofriendly properties. These catalysts include alkali catalysts, acid catalysts, and enzymes (biocatalysts), which are (bio)synthesized from various natural sources. This review summarizes the latest findings on these bio-derived catalysts, as well as their source and catalytic activity. The advantages and disadvantages of these catalysts are also discussed. These bio-based catalysts show a promising future and can be further used as a renewable catalyst for sustainable biodiesel production.
Collapse
|
29
|
Biochar from waste biomass as a biocatalyst for biodiesel production: an overview. APPLIED NANOSCIENCE 2021. [DOI: 10.1007/s13204-021-01924-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
30
|
Vinoth Arul Raj J, Praveen Kumar R, Vijayakumar B, Gnansounou E, Bharathiraja B. Modelling and process optimization for biodiesel production from Nannochloropsis salina using artificial neural network. BIORESOURCE TECHNOLOGY 2021; 329:124872. [PMID: 33640695 DOI: 10.1016/j.biortech.2021.124872] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2021] [Revised: 02/11/2021] [Accepted: 02/12/2021] [Indexed: 06/12/2023]
Abstract
In the present investigation, calcium oxide solid nanocatalyst derived from the egg shell and Nannochloropsis salina were used for the production of biodiesel. The morphological characteristics and functional groups of synthesized nanocatalyst was characterized by SEM and FTIR analysis. Process variables optimization for biodiesel production was studied using RSM and ANN. The R2 values for RSM and ANN was found to be 0.8751 and 0.957 which showed that the model was significantly fit with the experimental data. The maximum FAME conversion for the synthesized nanocatalyst CaO was found to be 86.1% under optimum process conditions (nanocatalyst amount: 3% (w/v); oil to methanol ratio 1:6 (v/v); reaction temperature: 60 °C; reaction time 55 min). Concentration of FAME present in biodiesel was identified by GC-MS analysis.
Collapse
Affiliation(s)
- J Vinoth Arul Raj
- Department of Biotechnology, Arunai Engineering College, Thiruvannaamalai 606603, India
| | - R Praveen Kumar
- Department of Biotechnology, Arunai Engineering College, Thiruvannaamalai 606603, India
| | - B Vijayakumar
- Vel Tech High Tech Dr. Rangarajan Dr. Sakunthala Engineering College, Chennai 600062, India
| | - Edgard Gnansounou
- Bioenergy and Energy Planning Research Group, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
| | - B Bharathiraja
- Vel Tech High Tech Dr. Rangarajan Dr. Sakunthala Engineering College, Chennai 600062, India.
| |
Collapse
|
31
|
Cao M, Peng L, Xie Q, Xing K, Lu M, Ji J. Sulfonated Sargassum horneri carbon as solid acid catalyst to produce biodiesel via esterification. BIORESOURCE TECHNOLOGY 2021; 324:124614. [PMID: 33434876 DOI: 10.1016/j.biortech.2020.124614] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2020] [Revised: 12/20/2020] [Accepted: 12/21/2020] [Indexed: 06/12/2023]
Abstract
A solid acid catalyst prepared by sulfonated Sargassum horneri carbon was utilized for the esterification reaction of oleic acid and methanol. The formed amorphous carbon layers during carbonization and the access of sulfonic acid groups during sulfonation can catalyze the esterification reaction for biodiesel preparation efficiently. The catalyst was characterized by various methods to investigate its physical and chemical properties. With carbonization at 300 °C for 2 h followed by sulfonation at 90 °C for 5 h, the catalyst reached acid density of 1.40 mmol/g. The catalyst dosage, methanol/oleic acid (molar ratio), reaction temperature, and reaction time were optimized to 10 wt%, 15:1, 70 °C, and 3 h, respectively. Under the optimal condition, the conversion of oleic acid reached 96.4%. Additionally, the catalyst was regenerated after four cycles, with the conversion of oleic acid still reaching 95.4%.
Collapse
Affiliation(s)
- Minghe Cao
- Zhejiang Province Key Laboratory of Biofuel, Biodiesel Laboratory of China Petroleum and Chemical Industry Federation, College of Chemical Engineering, Zhejiang University of Technology, No.18 Chaowang Road, Hangzhou, Zhejiang 310014, China
| | - Libo Peng
- Zhejiang Province Key Laboratory of Biofuel, Biodiesel Laboratory of China Petroleum and Chemical Industry Federation, College of Chemical Engineering, Zhejiang University of Technology, No.18 Chaowang Road, Hangzhou, Zhejiang 310014, China
| | - Qinglong Xie
- Zhejiang Province Key Laboratory of Biofuel, Biodiesel Laboratory of China Petroleum and Chemical Industry Federation, College of Chemical Engineering, Zhejiang University of Technology, No.18 Chaowang Road, Hangzhou, Zhejiang 310014, China
| | - Kainan Xing
- Zhejiang Province Key Laboratory of Biofuel, Biodiesel Laboratory of China Petroleum and Chemical Industry Federation, College of Chemical Engineering, Zhejiang University of Technology, No.18 Chaowang Road, Hangzhou, Zhejiang 310014, China
| | - Meizhen Lu
- Zhejiang Province Key Laboratory of Biofuel, Biodiesel Laboratory of China Petroleum and Chemical Industry Federation, College of Chemical Engineering, Zhejiang University of Technology, No.18 Chaowang Road, Hangzhou, Zhejiang 310014, China.
| | - Jianbing Ji
- Zhejiang Province Key Laboratory of Biofuel, Biodiesel Laboratory of China Petroleum and Chemical Industry Federation, College of Chemical Engineering, Zhejiang University of Technology, No.18 Chaowang Road, Hangzhou, Zhejiang 310014, China.
| |
Collapse
|
32
|
Kumar A. Current and Future Perspective of Microalgae for Simultaneous Wastewater Treatment and Feedstock for Biofuels Production. CHEMISTRY AFRICA 2021. [DOI: 10.1007/s42250-020-00221-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
33
|
Zhu S, Sun Y, Jia Y, Zhang W, Wang Y, Li L, Zhang J, Wang J. Acid site-regulated solid acids for polysaccharide Se-functionalization: Structural explanations for high reactivity. Carbohydr Polym 2021; 251:117028. [PMID: 33142587 DOI: 10.1016/j.carbpol.2020.117028] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 08/19/2020] [Accepted: 08/28/2020] [Indexed: 11/18/2022]
Abstract
In this work, the application of acid site-regulated solid acids in Se-functionalization of polysaccharide is evaluated for the first time, which aimed to further improve reaction efficiency and realize environmentally friendly chemistry. A series prepared MxOy/HZSM-5 catalysts possesses standard crystal structure, large specific surface area, pore volume, aperture as well as strong acidity. An efficient substitution of seleno-group on polysaccharide backbone is promoted by regulating the acid site of solid acids (Se content up to 15,170.49 μg/g) compared with the conventional Se-functionalization method (1703 μg/g). Strong Lewis and Brønsted acid sites lead to the driving forces toward low molecular mass polysaccharide fragments, but the deletion of main monosaccharide components is not observed. In summary, it is proved that solid acid can be employed in acid-dependent polysaccharide Se-functionalization which will promote useful in expanding our understanding of how to further develop polysaccharide resources.
Collapse
Affiliation(s)
- Shengyong Zhu
- College of Life Science, Northwest Normal University, Lanzhou 730070, People's Republic of China
| | - Yaxu Sun
- College of Life Science, Northwest Normal University, Lanzhou 730070, People's Republic of China
| | - Yue Jia
- College of Life Science, Northwest Normal University, Lanzhou 730070, People's Republic of China
| | - Wenyu Zhang
- College of Life Science, Northwest Normal University, Lanzhou 730070, People's Republic of China
| | - Yuxin Wang
- College of Life Science, Northwest Normal University, Lanzhou 730070, People's Republic of China
| | - Li Li
- College of Life Science, Northwest Normal University, Lanzhou 730070, People's Republic of China
| | - Ji Zhang
- College of Life Science, Northwest Normal University, Lanzhou 730070, People's Republic of China; Bioactive Products Engineering Research Center for Gansu Distinctive Plants, Northwest Normal University, Lanzhou 730070, People's Republic of China; Institute of New Rural Development, Northwest Normal University, Lanzhou 730070, People's Republic of China
| | - Junlong Wang
- College of Life Science, Northwest Normal University, Lanzhou 730070, People's Republic of China; Bioactive Products Engineering Research Center for Gansu Distinctive Plants, Northwest Normal University, Lanzhou 730070, People's Republic of China; Institute of New Rural Development, Northwest Normal University, Lanzhou 730070, People's Republic of China.
| |
Collapse
|
34
|
Yu Z, Zhang Y, Duan J, Chen X, Piao M, Hu J, Shi F. One‐Pot Synthesis of Propyl‐Sulfonic Phosphotungstic Dual‐Acid Functionalized Mesoporous Silica in Non‐Hydrochloric Acid Solution: Reusable Catalyst for Efficient Biodiesel Production. ChemistrySelect 2020. [DOI: 10.1002/slct.202003954] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Zhengfei Yu
- School of Chemical Engineering & Advanced Institute of Materials Science Changchun University of Technology Changchun 130012 P.R. China
| | - Yibo Zhang
- School of Chemical Engineering & Advanced Institute of Materials Science Changchun University of Technology Changchun 130012 P.R. China
| | - Jinchen Duan
- School of Chemical Engineering & Advanced Institute of Materials Science Changchun University of Technology Changchun 130012 P.R. China
| | - Xifeng Chen
- School of Chemical Engineering & Advanced Institute of Materials Science Changchun University of Technology Changchun 130012 P.R. China
| | - Mingjun Piao
- School of Chemical Engineering & Advanced Institute of Materials Science Changchun University of Technology Changchun 130012 P.R. China
| | - Jianglei Hu
- School of Chemical Engineering & Advanced Institute of Materials Science Changchun University of Technology Changchun 130012 P.R. China
| | - Fengwei Shi
- School of Chemical Engineering & Advanced Institute of Materials Science Changchun University of Technology Changchun 130012 P.R. China
| |
Collapse
|