1
|
Yang Q, Li J, Ma L, Du X. Impact and mechanism of polyethylene terephthalate microplastics with different particle sizes on sludge anaerobic digestion. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2025; 366:125494. [PMID: 39653267 DOI: 10.1016/j.envpol.2024.125494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Revised: 11/17/2024] [Accepted: 12/06/2024] [Indexed: 12/13/2024]
Abstract
Municipal wastewater treatment plants (WWTPs) are important sinks for microplastics, and the vast majority of microplastics entering WWTPs are trapped in residual sludge. In order to investigate the effect of microplastics on anaerobic digestion of sludge, polyethylene terephthalate (PET) microplastics with common particle size and physical aging were selected to conduct a comparative study. Regardless of aging, the addition of 300 and 500 μm PET microplastics inhibited methane production, with their cumulative methane production reduced by 11.3-24.9% compared to the control group. In contrast, when 100 μm microplastics were added, the raw PET promoted methane production, yielding 337 L CH4/kg VS, while the aged experimental group showed similar yields to the control group. For the 800 μm microplastics treatment group, aged microplastics facilitated methane production while raw microplastics inhibited it, with methane production of 91.0% and 111% of the control group, respectively. The effects were also investigated by model fitting, stage discussion, and microbial community structure analysis. The results discovered that the main rate-limiting steps of adding microplastics with smaller or larger particle sizes (100, 800 μm) to methane production were solubilization and hydrolysis, while the main rate-limiting step of microplastics with medium particle sizes (300, 500 μm) was methanogenesis. Physically aged PET microplastics with smaller or larger sizes showed a more significant effect on methane production. Furthermore, PET microplastics altered the microbial community structure, shifting methanogens from acetotrophic pathways to hydrotrophic pathways. This study offers new insights into the performance analysis of sludge anaerobic digestion in practical WWTPs.
Collapse
Affiliation(s)
- Qing Yang
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Beijing University of Technology, Beijing, 100124, China
| | - Jiaxin Li
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Beijing University of Technology, Beijing, 100124, China
| | - Linlin Ma
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Beijing University of Technology, Beijing, 100124, China.
| | - Xue Du
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Beijing University of Technology, Beijing, 100124, China
| |
Collapse
|
2
|
Luca AV, Simon-Várhelyi M, Mihály NB, Cristea VM. Fault detection and diagnosis of the wastewater nitrate and nitrite sensors using PCA and FDA combined with assessment of the economic and environmental impact of the faults. ENVIRONMENTAL MONITORING AND ASSESSMENT 2025; 197:121. [PMID: 39747749 PMCID: PMC11695568 DOI: 10.1007/s10661-024-13593-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Accepted: 12/21/2024] [Indexed: 01/04/2025]
Abstract
One of the leading challenges in Water Resource Recovery Facility monitoring and control is the poor data quality and sensor consistency due to the tough and complex circumstances of the process operation. This paper presents a new principal component analysis fault detection approach for the nitrate and nitrite concentration sensor based on Water Resource Recovery Facility measurements, together with the Fisher Discriminant Analysis identification of fault types. Five malfunction cases were considered: constant additive error, ramp changing error in time, incorrect amplification error, random additive error, and unchanging sensor value error. The faults' implementation, fault detection, and identification methods are presented and evaluated in terms of accuracy and promptitude. The models are originating from a municipal plant. The amount of required electrical energy and greenhouse gas released during the Water Resource Recovery Facility operation were assessed for the cases of nitrates and nitrites NO sensor normal and malfunctioning regimes. The environmental and economic evaluations show the benefits of detecting and identifying nitrates and nitrites NO sensor defects aimed at providing efficient and environmentally friendly operation of the Water Resource Recovery Facility. The fault-affected operation cases showed increased values, up to 10% for the total energy demand and 4% for the total greenhouse gas emissions, when they are compared to the normal operation case.
Collapse
Affiliation(s)
- Alexandra-Veronica Luca
- Department of Chemical Engineering, Faculty of Chemistry and Chemical Engineering, Babes-Bolyai University of Cluj-Napoca, 11 Arany János Street, 400028, Cluj-Napoca, Romania
| | - Melinda Simon-Várhelyi
- Department of Chemical Engineering, Faculty of Chemistry and Chemical Engineering, Babes-Bolyai University of Cluj-Napoca, 11 Arany János Street, 400028, Cluj-Napoca, Romania
| | - Norbert-Botond Mihály
- Department of Chemical Engineering, Faculty of Chemistry and Chemical Engineering, Babes-Bolyai University of Cluj-Napoca, 11 Arany János Street, 400028, Cluj-Napoca, Romania
| | - Vasile-Mircea Cristea
- Department of Chemical Engineering, Faculty of Chemistry and Chemical Engineering, Babes-Bolyai University of Cluj-Napoca, 11 Arany János Street, 400028, Cluj-Napoca, Romania.
| |
Collapse
|
3
|
Saila R, Dhar BR. Effects of aging of polyethylene microplastics and polystyrene nanoplastics on antibiotic resistance gene transfer during primary sludge fermentation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 957:177589. [PMID: 39571815 DOI: 10.1016/j.scitotenv.2024.177589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 10/16/2024] [Accepted: 11/14/2024] [Indexed: 12/21/2024]
Abstract
The increasing presence of nano and microplastics (NPs/MPs) in wastewater treatment plants and their inevitable accumulation in the sludge has raised serious concerns in recent years. This study investigated the effects of pristine and aged polyethylene microplastics (PEMPs), polystyrene nanoplastics (PsNPs), and their mixtures on the primary sludge fermentation process. Pristine MPs/NPs (150 μg/L and 2 g/L for PsNPs and PEMPs, respectively) underwent two weeks of weathering in the presence of humic and alginic acids. The results from a batch fermentation experiment (15 days, pH 10) revealed that the exposure to aged PEMPs/PsNPs experienced greater VFA production than pristine samples. Notably, the aged PEMPs/PsNPs mixture showed a 23.12% increase in VFA production over the pristine mixture. The relative abundance and total concentration of antibiotic resistance genes (ARGs) increased in all PEMPs/PsNPs batches compared to the control, with the most significant rise in total ARGs observed in the aged PEMPs sample. Aged PEMPs exhibited a 26.22-fold increase in tetA genes, while aged mix samples showed a 19.68-fold increase in tetM genes compared to their pristine counterparts. Both pristine and aged PEMPs/PsNPs, particularly the aged PEMPs adversely affected the microbial communities at the genus level and altered the microbial structure. Microbial richness and diversity were enhanced in samples exposed to pristine PEMPs/PsNPs and aged PsNPs but decreased in aged PEMPs and in the aged mixture group, suggesting a negative impact of aged polyethylene microplastics on microbial communities. Correlation analysis suggested that phyla Planctomycetes, Proteobacteria, and TM7 are potential hosts of ARGs. These findings manifest the substantial effects of aged nano/microplastics compared to their pristine forms, emphasizing the complex interplay between various forms of PEMPs/PsNPs and microbial dynamics in sludge fermentation processes.
Collapse
Affiliation(s)
- Romana Saila
- Civil and Environmental Engineering, University of Alberta, 116 Street NW, Edmonton, AB T6G 1H9, Canada
| | - Bipro Ranjan Dhar
- Civil and Environmental Engineering, University of Alberta, 116 Street NW, Edmonton, AB T6G 1H9, Canada.
| |
Collapse
|
4
|
Carranza Muñoz A, Olsson J, Malovanyy A, Baresel C, Machamada-Devaiah N, Schnürer A. Impact of thermal hydrolysis on VFA-based carbon source production from fermentation of sludge and digestate for denitrification: experimentation and upscaling implications. WATER RESEARCH 2024; 266:122426. [PMID: 39276471 DOI: 10.1016/j.watres.2024.122426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 08/28/2024] [Accepted: 09/09/2024] [Indexed: 09/17/2024]
Abstract
Stricter nutrient discharge limits at wastewater treatment plants (WWTPs) are increasing the demand for external carbon sources for denitrification, especially at cold temperatures. Production of carbon sources at WWTP by fermentation of sewage sludge often results in low yields of soluble carbon and volatile fatty acids (VFA) and high biogas losses, limiting its feasibility for full-scale application. This study investigated the overall impact of thermal hydrolysis pre-treatment (THP) on the production of VFA for denitrification through the fermentation of municipal sludge and digestate. Fermentation products and yields, denitrification efficiency and potential impacts on methane yield in the downstream process after carbon source separation were evaluated. Fermentation of THP substrates resulted in 37-70 % higher soluble chemical oxygen demand (sCOD) concentrations than fermentation of untreated substrates but did not significantly affect VFA yield after fermentation. Nevertheless, THP had a positive impact on the denitrification rates and on the methane yields of the residual solid fraction in all experiments. Among the different carbon sources tested, the one produced from the fermentation of THP-digestate showed an overall better potential as a carbon source than other substrates (e.g. sludge). It obtained a relatively high carbon solubilisation degree (39 %) and higher concentrations of sCOD (19 g sCOD/L) and VFA (9.8 g VFACOD/L), which resulted in a higher denitrification rate (8.77 mg NOx-N/g VSS∙h). After the separation of the carbon source, the solid phase from this sample produced a methane yield of 101 mL CH4/g VS. Furthermore, fermentation of a 50:50 mixture of THP-substrate and raw sludge produced also resulted in a high VFA yield (283 g VFACOD/kg VSin) and denitrification rate of 8.74 mg NOx-N/g VSS∙h, indicating a potential for reduced treatment volumes. Calculations based on a full-scale WWTP (Käppala, Stockholm) demonstrated that the carbon sources produced could replace fossil-based methanol and meet the nitrogen effluent limit (6 mg/L) despite their ammonium content. Fermentation of 50-63 % of the available sludge at Käppala WWTP in 2028 could produce enough carbon source to replace methanol, with only an 8-20 % reduction in methane production, depending on the production process. Additionally, digestate production would be sufficient to generate 81 % of the required carbon source while also increasing methane production by 5 % if a portion of the solid residues were recirculated to the digester.
Collapse
Affiliation(s)
- Andrea Carranza Muñoz
- IVL Swedish Environmental Research Institute, Valhallavägen 81, 114 28 Stockholm, Sweden; Department of Molecular Sciences, Biocenter, Swedish University of Agricultural Sciences (SLU), 756 51 Ultuna-Uppsala, Sweden.
| | - Jesper Olsson
- The Käppala Association, Södra Kungsvägen 315, 181 66 Lidingö, Sweden
| | - Andriy Malovanyy
- IVL Swedish Environmental Research Institute, Valhallavägen 81, 114 28 Stockholm, Sweden
| | - Christian Baresel
- IVL Swedish Environmental Research Institute, Valhallavägen 81, 114 28 Stockholm, Sweden
| | - Nethra Machamada-Devaiah
- Department of Industrial Biotechnology, KTH Royal Institute of Technology, Roslagstullsbacken 21, 114 21 Stockholm, Sweden
| | - Anna Schnürer
- Department of Molecular Sciences, Biocenter, Swedish University of Agricultural Sciences (SLU), 756 51 Ultuna-Uppsala, Sweden
| |
Collapse
|
5
|
Yan Y, Chen J, Cui L, Fei Q, Wang N, Ma Y. Development of oriented multi-enzyme strengthens waste activated sludge disintegration and anaerobic digestion: Performance, components transformation and microbial communities. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 365:121614. [PMID: 38943750 DOI: 10.1016/j.jenvman.2024.121614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 05/25/2024] [Accepted: 06/23/2024] [Indexed: 07/01/2024]
Abstract
Low methane production and long retention time are the main dilemmas in current anaerobic digestion (AD) of waste activated sludge (WAS). This work used WAS as only substrate to prepare oriented multi-enzyme (ME) that directly used for WAS pretreatment. Under the optimal parameters, the highest activities of protease and amylase in ME could respectively reach 16.5 U/g and 580 U/g, and the corresponding methane production attained 197 mLCH4/g VS, which was increased by 70.4% compared to blank group. It was found that ME pretreatment could strengthen WAS disintegration and organic matters dissolution, lead to the soluble chemical oxygen demand (SCOD) was increased from the initial 486 mg/L to 2583 mg/L, and the corresponding volatile suspended solid (VSS) and extracellular polymeric substances (EPS) were reduced by 27% and 73.8%, respectively. The results of three-dimensional excitation-emission matrix (3D-EEM) and Fourier transform infrared spectroscopy (FTIR) indicated that protein disintegration may be the critical step during the process of WAS hydrolysis with ME, of which the release of tyrosine-like proteins achieved the better biodegradability of WAS, while the results of X-ray photoelectron spectroscopy (XPS) showed that the formation of protein derivatives was the main harmful factor that could extend the lag phase of AD process. Microbial communities analysis further suggested that ME pretreatment facilitated the enrichment of acetogenic bacteria and acetotrophic methanogens, which caused the transition of the methanogenesis pathway from hydrogenotrophic to acetotrophic. This study is expected to furnish valuable insight for ME pretreatment on enhancing WAS disintegration and methane production.
Collapse
Affiliation(s)
- Yiming Yan
- School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Jiaxin Chen
- School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Lihui Cui
- School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Qiang Fei
- School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an, 710049, China; Shaanxi Key Laboratory of Energy Chemical Process Intensification, Xi'an Jiaotong University, Xi'an, 710049, China; Xi'an Key Laboratory of C1 Compound Bioconversion Technology, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Nan Wang
- Xi'an Key Laboratory of C1 Compound Bioconversion Technology, Xi'an Jiaotong University, Xi'an, 710049, China; School of Chemical Engineering, University of Science and Technology Liaoning, Anshan, 114051, China
| | - Yingqun Ma
- School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an, 710049, China; Shaanxi Key Laboratory of Energy Chemical Process Intensification, Xi'an Jiaotong University, Xi'an, 710049, China; Xi'an Key Laboratory of C1 Compound Bioconversion Technology, Xi'an Jiaotong University, Xi'an, 710049, China.
| |
Collapse
|
6
|
Chamorro MV, Echeverría AAH, Rodado KJV, Morris FR, Bautista MMC, Gutiérrez RS, Quintero MC. Thermal pretreatment of swine waste to improve biodegradability in the anaerobic digestion process. Effect on the physicochemical characteristics of the substrate. EUREKA: PHYSICS AND ENGINEERING 2024:13-27. [DOI: 10.21303/2461-4262.2024.003234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
Abstract
In anaerobic digestion (AD) processes, hydrolysis is considered the limiting stage in the degradation of solid wastes. Such is the case of swine manure digestion, which due to the complex physical and chemical structure of the lignocellulosic material that composes it, an energy wastage has been observed in terms of methane production. Among the strategies used to improve the hydrolysis stage, it is possible to mention the thermal pretreatment of the substrate, which can significantly improve the biodegradability of the material used as raw material in AD. In this study, the effect of temperature (60–177 °C) and exposure time (30–60 min) on the physicochemical properties of the substrate such as pH, volatile organic acids (VOAs), total inorganic carbonates (TIC), volatile solids (SV), total solids (ST), soluble chemical oxygen demand (CODs) and biochemical methane potential (BMP) were determined. The temperature factor had a higher level of significance compared to the exposure time on the parameters of pH, VOAs, and TIC before and after the biogas generation process. However, the effect was different for CODs, where time was more significant than treatment temperature. As for the parameters of total and volatile solids content (ST and SV), the factors evaluated (temperature and exposure time) did not show significant effect. Also, the pretreatments showed an increase in biochemical methane potential, outperforming the untreated substrate by up to 70.4 % (121.74vs.71.44 mLCH4 gVS-1). The best combination of heating temperature and operating time was 120 °C and 45 min, which promoted the hydrolysis step that was reflected in an increase in CODs and improvement in methane production by 42 % over the untreated substrate
Collapse
|
7
|
Hamze A, Zakaria BS, Zaghloul MS, Dhar BR, Elbeshbishy E. Comprehensive hydrothermal pretreatment of municipal sewage sludge: A systematic approach. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 361:121194. [PMID: 38820794 DOI: 10.1016/j.jenvman.2024.121194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Revised: 04/23/2024] [Accepted: 05/15/2024] [Indexed: 06/02/2024]
Abstract
This study provides a comprehensive analysis of the potential impact of hydrothermal pretreatment (HTP) on municipal thickened waste-activated sludge (TWAS) and its integration with anaerobic digestion (AD). The research demonstrates that HTP conditions (170 °C, 3 bars for 30 min) can increase the solubilization of macromolecular organic compounds by 41%, which enhances biodegradability in semicontinuous bioreactors. This treatment also results in a 50% reduction in chemical oxygen demand (COD) and a 63% increase in the destruction of volatile solids (VS). The combination of HTP with AD significantly boosts methane yields by 51%, reaching 176 ml/g COD, and improves the digestate dewaterability, doubling the solid content in the dewatered cake. However, a higher polymer dose is required compared to conventional AD. Microbial community analysis correlates the observed performance and alterations; it indicates that HTP enhances resilience to stress conditions such as ammonia toxicity. This comprehensive study provides valuable insights into the transition from wastewater treatment plants (WWTPs) to resource recovery facilities (RRF) in line with circular economy principles.
Collapse
Affiliation(s)
- Abir Hamze
- Department of Civil Engineering, Toronto Metropolitan University, Toronto, Ontario, M5B 2K3, Canada
| | - Basem S Zakaria
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94608, United States; Advanced Biofuels and Bioproducts Process Development Unit, Emeryville, CA, 94608, United States; Department of Civil and Environmental Engineering, University of Alberta, Edmonton, Alberta, T6G 2R3, Canada
| | - Mohamed Sherif Zaghloul
- Department of Civil Engineering, Toronto Metropolitan University, Toronto, Ontario, M5B 2K3, Canada; Department of Civil and Environmental Engineering, United Arab Emirates University, Sheik Khalifa Bin Zayed St - 'Asharij, Abu Dhabi, United Arab Emirates
| | - Bipro Ranjan Dhar
- Department of Civil and Environmental Engineering, University of Alberta, Edmonton, Alberta, T6G 2R3, Canada
| | - Elsayed Elbeshbishy
- Department of Civil Engineering, Toronto Metropolitan University, Toronto, Ontario, M5B 2K3, Canada.
| |
Collapse
|
8
|
Mirsoleimani Azizi SM, Zakaria BS, Dhar BR. Low-temperature thermal hydrolysis for enhancing sludge anaerobic digestion and antibiotic resistance management: Significance of digester solids retention time. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 917:170392. [PMID: 38281633 DOI: 10.1016/j.scitotenv.2024.170392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Revised: 01/03/2024] [Accepted: 01/21/2024] [Indexed: 01/30/2024]
Abstract
Recently, there has been a growing inclination towards utilizing primary sludge (PS) fermentation prior to anaerobic digestion (AD) in water resource recovery facilities (WRRFs), where sludge liquor containing volatile fatty acids is used for biological nutrient removal. Nevertheless, using a low-temperature thermal hydrolysis process (THP) to improve AD in WRRFs adopting PS fermentation remains an area that has received limited research attention. Here, we studied the impact of THP (90 °C, 90 min) on anaerobic co-digestion of thickened waste activated sludge (TWAS) and fermented primary sludge (FPS) under varying solids retention times (SRTs) in semi-continuous mode. The study involved two THP schemes: scheme 1, where THP was done for both TWAS and FPS, and scheme 2, where THP was applied to TWAS only. The results demonstrated that reducing SRT from 20 to 15 and 10 d leads to decreased methane yield in both schemes. However, THP significantly enhances methane production, showing improvements of up to 37.9 % (scheme 1) and 31.2 % (scheme 2) under a 15-d SRT. Furthermore, while decreasing SRT increased the proliferation of antibiotic resistance genes (ARGs), thermal hydrolysis could effectively reduce most ARGs, indicating its potential to mitigate antibiotic resistance in the AD process. Overall, these results provide useful perceptions regarding the potential adoption of low-temperature THP in WRRFs with PS fermentation.
Collapse
Affiliation(s)
| | - Basem S Zakaria
- Civil and Environmental Engineering, University of Alberta, 116 Street NW, Edmonton, AB T6G 1H9, Canada; Lawrence Berkeley National Laboratory, 1 Cyclotron Rd, Berkeley, CA 94720, United States
| | - Bipro Ranjan Dhar
- Civil and Environmental Engineering, University of Alberta, 116 Street NW, Edmonton, AB T6G 1H9, Canada.
| |
Collapse
|
9
|
Chen P, Zheng Y, Wang E, Ran X, Huang G, Li W, Dong R, Guo J. Optimal deployment of thermal hydrolysis and anaerobic digestion to maximize net energy output based on sewage sludge characteristics. WATER RESEARCH 2023; 247:120767. [PMID: 37897995 DOI: 10.1016/j.watres.2023.120767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 09/09/2023] [Accepted: 10/20/2023] [Indexed: 10/30/2023]
Abstract
Thermal hydrolysis (TH) is widely employed in combination with anaerobic digestion (AD) to efficiently treat primary sludge and waste-activated sludge in municipal wastewater treatment plants. In this study, four different scenarios-conventional AD (S1), TH-AD (S2), AD-TH-AD (S3), and characteristics-based AD-TH-AD (S4, primary AD only for primary sludge)-were evaluated to determine the optimal deployment of TH and AD for treating primary sludge and waste-activated sludge to maximize net energy output. The maximum net energy output of 4899 MJ/t-TSfed (per ton total solids of sludge fed) was achieved in S4 when assuming the recovered heat was only used for AD heating and surplus heat was wasted, and the net energy output of S4 was 70.8 % higher than that of S1 and 48.6 % higher than that of S2. This remarkable improvement was attributed to a reduction of > 15.2 % in refractory compounds, resulting in a 17 % increase in methane yield. Importantly, this study provides the first comparison of refractory compounds between inter-thermal hydrolysis (inter-TH) and pre-thermal hydrolysis (pre-TH) using a simulated A2O process. Overall, this study provides innovative insights and strategies for enhancing the TH and AD process performance based on the specific characteristics of sewage sludge derived from wastewater treatment plants.
Collapse
Affiliation(s)
- Penghui Chen
- College of Engineering (Key Laboratory for Clean Renewable Energy Utilization Technology, Ministry of Agriculture), China Agricultural University, Beijing 100083, China
| | - Yonghui Zheng
- College of Engineering (Key Laboratory for Clean Renewable Energy Utilization Technology, Ministry of Agriculture), China Agricultural University, Beijing 100083, China
| | - Enzhen Wang
- College of Engineering (Key Laboratory for Clean Renewable Energy Utilization Technology, Ministry of Agriculture), China Agricultural University, Beijing 100083, China
| | - Xueling Ran
- College of Engineering (Key Laboratory for Clean Renewable Energy Utilization Technology, Ministry of Agriculture), China Agricultural University, Beijing 100083, China
| | - Guangqun Huang
- College of Engineering (Key Laboratory for Clean Renewable Energy Utilization Technology, Ministry of Agriculture), China Agricultural University, Beijing 100083, China
| | - Wei Li
- Beijing Drainage Group Co. Ltd, Beijing 100022, China
| | - Renjie Dong
- College of Engineering (Key Laboratory for Clean Renewable Energy Utilization Technology, Ministry of Agriculture), China Agricultural University, Beijing 100083, China; Yantai Institute, China Agricultural University, Yantai, Shandong 264032, China
| | - Jianbin Guo
- College of Engineering (Key Laboratory for Clean Renewable Energy Utilization Technology, Ministry of Agriculture), China Agricultural University, Beijing 100083, China.
| |
Collapse
|
10
|
Goycoechea N, López I, Borzacconi L. Optimization of anaerobic digestion and solubilization of biosludges from the kraft cellulose industry using thermal hydrolysis as pretreatment. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 344:118504. [PMID: 37406493 DOI: 10.1016/j.jenvman.2023.118504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 06/15/2023] [Accepted: 06/23/2023] [Indexed: 07/07/2023]
Abstract
The management of secondary sludge from aerobic treatment of effluents from the cellulose industry is a current problem. The usual ways of disposal do not provide added value to the waste as they assume an economy based on "take-make-waste" (linear economy). In this work, thermal hydrolysis (TH) and anaerobic digestion (AD) are proposed to valorize this biosludge. Based on a Doehlert experimental plan, a response surface methodology (RSM) defined by seven different TH conditions is proposed. After TH, biomethanation potential (BMP) tests were performed to evaluate the AD possibilities. The TH conditions cover a temperature range between 125 °C and 205 °C and a reaction time from 15 min to 45 min. The TH process was successful in enhancing the bioavailability of the waste, increasing the concentration of soluble organic matter quantified by chemical oxygen demand of the soluble fraction (CODs), and decreasing the concentration of volatile suspended solids (VSS). However, response surfaces performed for CODs and VSS revealed the existence of optimums, which demonstrated the adverse effects of the more severe TH conditions. Organic matter solubilization was confirmed by microscopic observations. The amount of suspended organic matter after TH is reduced by two to three times compared to the untreated value. The subsequent BMP of the hydrolyzed waste increases between 100% and 220% compared to the untreated condition, wich had a BMP value of 84 NmL CH4 gVS-1. The response surface determined for the BMP reveals the presence of a maximum point of methane production at 202 °C for 31 min, which differs from the maximum CODs value observed at 196 °C for 40 min.
Collapse
Affiliation(s)
- Nicolás Goycoechea
- Biotechnological Processes for the Environment Group, Faculty of Engineering, Universidad de la República, Montevideo, 11300, Uruguay.
| | - Iván López
- Biotechnological Processes for the Environment Group, Faculty of Engineering, Universidad de la República, Montevideo, 11300, Uruguay
| | - Liliana Borzacconi
- Biotechnological Processes for the Environment Group, Faculty of Engineering, Universidad de la República, Montevideo, 11300, Uruguay
| |
Collapse
|
11
|
Liu Y, Yuan H, Zhu N, Yuan Z. Effect of thermal hydrolysis pretreatment on the stabilization of sludge with different solid contents during autothermal thermophilic aerobic digestion. ENVIRONMENTAL RESEARCH 2023:116347. [PMID: 37290618 DOI: 10.1016/j.envres.2023.116347] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 06/04/2023] [Accepted: 06/06/2023] [Indexed: 06/10/2023]
Abstract
Sludge stabilization was affected by solid content during autothermal thermophilic aerobic digestion (ATAD). Thermal hydrolysis pretreatment (THP) could alleviate the issues of high viscosity, slow solubilization and low ATAD efficiency caused by increased solid content. The influence of THP on the stabilization of sludge with different solid contents (5.24%-17.14%) during ATAD was investigated in this study. The results demonstrated that stabilization was achieved with volatile solid (VS) removal of 39.0%-40.4% after 7-9 days of ATAD for sludge with solid content of 5.24%-17.14%. The solubilization of sludge with different solid contents reached 40.1%-45.0% after THP. The rheological analysis indicated that the apparent viscosity of sludge was obviously reduced after THP at different solid contents. The increase in fluorescence intensity of fulvic acid-like organics, soluble microbial by-products and humic acid-like organics in the supernatant after THP and the decrease in fluorescence intensity of soluble microbial by-products after ATAD were detected by excitation emission matrix (EEM). The molecular weight (MW) distribution in the supernatant elucidated that the proportion of 50 kDa < MW < 100 kDa increased to 16%-34% after THP and the proportion of 10 kDa < MW < 50 kDa decreased to 8%-24% after ATAD. High throughput sequencing showed that the dominant bacterial genera shifted from Acinetobacter, Defluviicoccus and Norank_f__norank_o__PeM15 to Sphaerobacter and Bacillus during ATAD. This work revealed that solid content of 13%-17% was appropriate for efficient ATAD and rapid stabilization under THP.
Collapse
Affiliation(s)
- Yangyang Liu
- Shanghai Engineering Research Center of Solid Waste Treatment and Recovery, School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Haiping Yuan
- Shanghai Engineering Research Center of Solid Waste Treatment and Recovery, School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China.
| | - Nanwen Zhu
- Shanghai Engineering Research Center of Solid Waste Treatment and Recovery, School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China.
| | - Zhihang Yuan
- Shanghai Engineering Research Center of Solid Waste Treatment and Recovery, School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| |
Collapse
|
12
|
Zhou Y, Huang X, Ma S, He J. Thermo-alkaline pretreatment of excess sludge: Effects of temperature on volatile fatty acids accumulation and microbial community. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 342:118244. [PMID: 37269730 DOI: 10.1016/j.jenvman.2023.118244] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 05/16/2023] [Accepted: 05/22/2023] [Indexed: 06/05/2023]
Abstract
In order to explore the role of thermal-alkaline pretreatment temperatures (TAPT) in sludge fermentation and the microbial characteristics, five groups (100, 120, 140, 160 °C and control group) were set up and the results showed that the increasing TAPT promoted the dissolution of soluble chemical oxygen demand (SCOD) and VFAs, but had slight influence on the release of NH4+-N and PO43--P. What's more, when it was 120 °C, the SCOD dissolution was comparable to that at 160 °C. Overall, 120 °C was the optimal condition, corresponding to the fact that the maximum release of SCOD was 8788.74 mg/L (2.63 times of the control group), the maximum dissolution of VFAs was 4596 mg/L (about 1.28 times of the control group). The trend of C/N was not significant. High-throughput sequencing showed that Firmicutes and Actinobacteriota were enriched with the temperature increasing, while Proteobacteria and Chloroflexi did not change significantly. Firmicutes was in a stable dominant position. Temperature conditions brought about significant changes in microbial interspecific interaction. Carbohydrate and amino acids had the highest metabolic abundance, especially at 120 °C group. The change rule of amino acid metabolism was similar to that of lipid metabolism, and the abundance of energy metabolism gradually increased with temperature. The protein metabolism was greatly affected by temperature. This study revealed the effect of microbial mechanism of TAPT on the sludge acid production efficiency.
Collapse
Affiliation(s)
- Yuqi Zhou
- Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, School of Environmental Science and Engineering, Nanjing University of Information Science & Technology, Nanjing, 210044, China
| | - Xiao Huang
- Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, School of Environmental Science and Engineering, Nanjing University of Information Science & Technology, Nanjing, 210044, China.
| | - Silan Ma
- Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, School of Environmental Science and Engineering, Nanjing University of Information Science & Technology, Nanjing, 210044, China
| | - Jianghao He
- Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, School of Environmental Science and Engineering, Nanjing University of Information Science & Technology, Nanjing, 210044, China
| |
Collapse
|
13
|
Shang Z, Wang R, Zhang X, Tu Y, Sheng C, Yuan H, Wen L, Li Y, Zhang J, Wang X, Yang G, Feng Y, Ren G. Differential effects of petroleum-based and bio-based microplastics on anaerobic digestion: A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 875:162674. [PMID: 36894074 DOI: 10.1016/j.scitotenv.2023.162674] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 02/22/2023] [Accepted: 03/02/2023] [Indexed: 06/18/2023]
Abstract
The number of plastics is increasing owing to the rapid development of the plastics industry. Microplastics (MPs) are formed during the use of both petroleum-based plastics and newly developed bio-based plastics. These MPs are inevitably released into the environment and are enriched in wastewater treatment plant sludge. Anaerobic digestion is a popular sludge stabilization method for wastewater treatment plants. Understanding the potential impacts of different MPs on anaerobic digestion is critical. This paper provides a comprehensive review of the mechanisms of petroleum-based MPs and bio-based MPs in anaerobic digestion methane production and compares their potential effects on biochemical pathways, key enzyme activities, and microbial communities. Finally, it identifies problems that must be solved in the future, proposes the focus of future research, and predicts the future development direction of the plastics industry.
Collapse
Affiliation(s)
- Zezhou Shang
- College of Agronomy, Northwest A & F University, Yangling 712100, Shaanxi, China; Shaanxi Engineering Research Center of Circular Agriculture, Yangling 712100, Shaanxi, China
| | - Rui Wang
- College of Agronomy, Northwest A & F University, Yangling 712100, Shaanxi, China; Shaanxi Engineering Research Center of Circular Agriculture, Yangling 712100, Shaanxi, China
| | - Xiyi Zhang
- College of Agronomy, Northwest A & F University, Yangling 712100, Shaanxi, China; Shaanxi Engineering Research Center of Circular Agriculture, Yangling 712100, Shaanxi, China
| | - Yongle Tu
- College of Agronomy, Northwest A & F University, Yangling 712100, Shaanxi, China
| | - Chenjing Sheng
- College of Agronomy, Northwest A & F University, Yangling 712100, Shaanxi, China; Shaanxi Engineering Research Center of Circular Agriculture, Yangling 712100, Shaanxi, China
| | - Huan Yuan
- College of Agronomy, Northwest A & F University, Yangling 712100, Shaanxi, China; Shaanxi Engineering Research Center of Circular Agriculture, Yangling 712100, Shaanxi, China
| | - Lei Wen
- College of Agronomy, Northwest A & F University, Yangling 712100, Shaanxi, China; Shaanxi Engineering Research Center of Circular Agriculture, Yangling 712100, Shaanxi, China
| | - Yulu Li
- College of Agronomy, Northwest A & F University, Yangling 712100, Shaanxi, China; Shaanxi Engineering Research Center of Circular Agriculture, Yangling 712100, Shaanxi, China
| | - Jing Zhang
- College of Agronomy, Northwest A & F University, Yangling 712100, Shaanxi, China; Shaanxi Engineering Research Center of Circular Agriculture, Yangling 712100, Shaanxi, China
| | - Xiaojiao Wang
- College of Agronomy, Northwest A & F University, Yangling 712100, Shaanxi, China; Shaanxi Engineering Research Center of Circular Agriculture, Yangling 712100, Shaanxi, China.
| | - Gaihe Yang
- College of Agronomy, Northwest A & F University, Yangling 712100, Shaanxi, China; Shaanxi Engineering Research Center of Circular Agriculture, Yangling 712100, Shaanxi, China
| | - Yongzhong Feng
- College of Agronomy, Northwest A & F University, Yangling 712100, Shaanxi, China; Shaanxi Engineering Research Center of Circular Agriculture, Yangling 712100, Shaanxi, China
| | - Guangxin Ren
- College of Agronomy, Northwest A & F University, Yangling 712100, Shaanxi, China; Shaanxi Engineering Research Center of Circular Agriculture, Yangling 712100, Shaanxi, China
| |
Collapse
|
14
|
Han Z, Shao B, Lei L, Pang R, Wu D, Tai J, Xie B, Su Y. The role of pretreatments in handling antibiotic resistance genes in anaerobic sludge digestion - A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 869:161799. [PMID: 36709893 DOI: 10.1016/j.scitotenv.2023.161799] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 01/07/2023] [Accepted: 01/19/2023] [Indexed: 06/18/2023]
Abstract
Sludge is among the most important reservoirs of antibiotic resistance genes (ARGs), which would cause potential environmental risks with the sludge utilization. Currently, anaerobic digestion (AD) is effective to simultaneously realize the resource recovery and pollutants removal, including antibiotic resistance genes (ARGs), and various pretreatments are used to enhance the performance. Recently, plentiful publications have focused on the effects of pretreatment on ARGs removal, but the contradictory results are often obtained, and a comprehensive understanding of the research progress and mechanisms is essential. This study summarizes various pretreatment techniques for improving AD efficiency and ARGs reduction, investigates promising performance in ARGs removal when pretreatments combined with AD, and analyzes the potential mechanisms accounting for ARGs fates. The results showed that although thermal hydrolysis pretreatment showed the best performance in ARGs reduction during the pretreatment process, the significant rebound of ARGs would occur in the subsequent AD process. Conversely, ozone pretreatment and alkali pretreatment had no significant effect on ARGs abundance in the pretreatment stage, but could enhance ARGs removal by 15.6-24.3 % in the subsequent AD. Considering the efficiency and economic effectiveness, free nitrous acid pretreatment would be a promising and feasible option, which could enhance methane yield and ARGs removal by up to 27 % and 74.5 %, respectively. Currently, the factors determining ARGs fates during pretreatment and AD processes included the shift of microbial community, mobile genetic elements (MGEs), and environmental factors. A comprehensive understanding of the relationship between the fate of ARGs and pretreatment technologies could be helpful for systematically evaluating various pretreatments and facilitating the development of emerging and effective pretreatment techniques. Moreover, given the effectiveness, economic efficiency and environmental safety, we called for the applications of modern analysis approaches such as metagenomic and machine learning on the optimization of pretreatment conditions and revealing underlying mechanisms.
Collapse
Affiliation(s)
- Zhibang Han
- Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China
| | - Boqun Shao
- Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China
| | - Lang Lei
- Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China
| | - Ruirui Pang
- Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China
| | - Dong Wu
- Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China; Engineering Research Center for Nanophotonics & Advanced Instrument, Ministry of Education, East China Normal University, Shanghai 200241, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| | - Jun Tai
- Shanghai Environmental Sanitation Engineering Design Institute Co., Ltd., Shanghai 200232, China
| | - Bing Xie
- Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China; Engineering Research Center for Nanophotonics & Advanced Instrument, Ministry of Education, East China Normal University, Shanghai 200241, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| | - Yinglong Su
- Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China; Engineering Research Center for Nanophotonics & Advanced Instrument, Ministry of Education, East China Normal University, Shanghai 200241, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China; Chongqing Key Laboratory of Precision Optics, Chongqing Institute of East China Normal University, Chongqing 401120, China.
| |
Collapse
|
15
|
Haffiez N, Zakaria BS, Azizi SMM, Dhar BR. Fate of intracellular, extracellular polymeric substances-associated, and cell-free antibiotic resistance genes in anaerobic digestion of thermally hydrolyzed sludge. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 855:158847. [PMID: 36126703 DOI: 10.1016/j.scitotenv.2022.158847] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 09/11/2022] [Accepted: 09/14/2022] [Indexed: 06/15/2023]
Abstract
Thermal hydrolysis of sludge is a promising approach to mitigate antibiotic resistance genes (ARGs) propagation in anaerobic digestion (AD). Although ARGs in sludge may be fractioned into intracellular, extracellular polymeric substance (EPS)-associated, and cell-free ARGs, the fate of these different fractions in AD has never been investigated. This study presents a detailed characterization of intracellular and extracellular ARGs in AD of sludge thermally hydrolyzed at 90 °C and 140 °C. EPS-associated ARGs represented the major fraction of the total extracellular ARGs in all samples, while its lowest abundance was observed for thermal hydrolysis at 140 °C along with the lowest EPS levels. The results suggested a positive correlation between EPS-associated ARGs with intracellular and cell-free ARGs. Furthermore, various EPS components, such as proteins and e-DNA, were positively correlated with β-lactam resistance genes. sul1 dominated all samples as an EPS-associated resistance gene. These results provide new insights into the significance of different ARGs fractions in their overall dissemination in AD integrated with thermal hydrolysis.
Collapse
Affiliation(s)
- Nervana Haffiez
- Civil and Environmental Engineering, University of Alberta, 116 Street NW, Edmonton, AB T6G 1H9, Canada
| | - Basem S Zakaria
- Civil and Environmental Engineering, University of Alberta, 116 Street NW, Edmonton, AB T6G 1H9, Canada
| | | | - Bipro Ranjan Dhar
- Civil and Environmental Engineering, University of Alberta, 116 Street NW, Edmonton, AB T6G 1H9, Canada.
| |
Collapse
|
16
|
Kakar FL, Liss SN, Elbeshbishy E. Differential impact of acidic and alkaline conditions on hydrothermal pretreatment, fermentation and anaerobic digestion of sludge. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2022; 86:3077-3092. [PMID: 36579871 DOI: 10.2166/wst.2022.368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Anaerobic digestion and fermentation processes in wastewater sludge treatment are limited by several factors, including the slow breakdown of complex organic matter and solubilization of solids. In this study, thermochemical pretreatment of thickened waste activated sludge using high temperature (>170 °C) was investigated to understand the impact of the pretreatment on the volatile fatty acids (VFA) production and its fractions during the fermentation process. Furthermore, the influence the thermochemical pretreatment on sludge disintegration and methane recovery was investigated. A range of acidic and alkaline conditions over the pH range of 4.5-10 was examined. Sludge (pH adjusted) was exposed to hydrothermal pretreatment (HTP) at a temperature of 170 °C for 30 min. Pretreated samples were then subjected to batch fermentation and methane potential tests which revealed that acidic and alkaline conditions resulted in increased sludge solubilization during HTP. Acidic conditions were associated with a higher VFA production yield of up to 185 mg chemical oxygen demand/g total chemical oxygen demand. Alkaline conditions led to a higher methane production yield where the maximum yield (276 mL CH4/g total chemical oxygen demandadded) was found to occur at pH 10. Therefore, alkaline sludge used for fermentation has shown technical and economic feasibility for sludge carbon recovery.
Collapse
Affiliation(s)
- Farokh Laqa Kakar
- Environmental Research Group for Resource Recovery, Department of Civil Engineering, Faculty of Engineering, Architecture and Science, Toronto Metropolitan University (formerly Ryerson University), 350 Victoria Street, Toronto, Ontario, M5B 2K3, Canada E-mail:
| | - Steven N Liss
- Department of Chemistry and Biology, Faculty of Science, Toronto Metropolitan University (formerly Ryerson University), 350 Victoria Street, Toronto, Ontario M5B 2K3, Canada; Department of Microbiology, Stellenbosch University, Private Bag, XI, Matieland 7602, Stellenbosch, South Africa
| | - Elsayed Elbeshbishy
- Environmental Research Group for Resource Recovery, Department of Civil Engineering, Faculty of Engineering, Architecture and Science, Toronto Metropolitan University (formerly Ryerson University), 350 Victoria Street, Toronto, Ontario, M5B 2K3, Canada E-mail:
| |
Collapse
|
17
|
de Albuquerque FP, Dastyar W, Mirsoleimani Azizi SM, Zakaria BS, Kumar A, Dhar BR. Carbon cloth amendment for boosting high-solids anaerobic digestion with percolate recirculation: Spatial patterns of microbial communities. CHEMOSPHERE 2022; 307:135606. [PMID: 35810875 DOI: 10.1016/j.chemosphere.2022.135606] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 06/30/2022] [Accepted: 07/02/2022] [Indexed: 06/15/2023]
Abstract
The addition of conductive materials in anaerobic digestion (AD) is a promising method for boosting biomethane recovery from organic waste. However, conductive additives have rarely been investigated for the high-solids anaerobic digestion (HSAD). Here, the impact of adding carbon cloth in the solid phase of an HSAD system with percolate recirculation was investigated. Furthermore, spatial patterns of microbial communities in suspended biomass, percolate, and carbon cloth attached biofilm were assessed. Carbon cloth increased biomethane yield from source-separated organics (SSO) by 20% more than the unamended control by shortening the lag phase (by 15%) and marginally improving the methanogenesis rate constant (by ∼8%) under a batch operation for 50 days. Microbial community analysis demonstrated higher relative abundances of the archaeal population in the carbon cloth amended reactor than in unamended control (12%-21% vs. 5%-15%). Compared to percolate and suspension, carbon cloth attached microbial community showed higher enrichment of known electroactive Pseudomonas species along with Methanosarcina and Methanobacterium species, indicating the possibility of DIET-based syntrophy among these species.
Collapse
Affiliation(s)
| | - Wafa Dastyar
- Civil and Environmental Engineering, University of Alberta, Edmonton, AB, T6G 1H9, Canada
| | | | - Basem S Zakaria
- Civil and Environmental Engineering, University of Alberta, Edmonton, AB, T6G 1H9, Canada
| | - Amit Kumar
- Mechanical Engineering, University of Alberta, University of Alberta, Edmonton, AB, T6G 1H9, Canada
| | - Bipro Ranjan Dhar
- Civil and Environmental Engineering, University of Alberta, Edmonton, AB, T6G 1H9, Canada.
| |
Collapse
|
18
|
Liu Y, Yuan H, Zhu N. Accelerated stabilization of high solid sludge by thermal hydrolysis pretreatment in autothermal thermophilic aerobic digestion (ATAD) process. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 318:115615. [PMID: 35772274 DOI: 10.1016/j.jenvman.2022.115615] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 06/05/2022] [Accepted: 06/20/2022] [Indexed: 06/15/2023]
Abstract
Autothermal thermophilic aerobic digestion (ATAD) is a rapid biological treatment technology for sludge stabilization. To improve digestion efficiency and shorten stabilization time, thermal hydrolysis pretreatment was employed before ATAD of high solid sludge. The results showed that accelerated stabilization of high solid sludge (total solid = 10.1%) was achieved by thermal hydrolysis pretreatment with volatile solid removal efficiency of 40.3% after 8 days of ATAD, 11 days earlier than unpretreated sludge. The enhanced release and hydrolysis of intracellular organics resulted in a solubilization degree of 45.3%. The reduced sludge viscosity and improved fluidity after thermal hydrolysis facilitated mixing, aeration and organics degradation during ATAD. Excitation emission matrix analysis indicated that the fluorescence intensity of soluble microbial byproduct and tyrosine-like protein increased markedly after thermal hydrolysis and decreased after ATAD. The proportion of high molecular weight (MW > 10 kDa) substances in the supernatant increased significantly after thermal hydrolysis, while the low MW (MW < 1 kDa) substances decreased after ATAD. The significant difference in microbial composition between the pretreatment and control groups elucidated the accelerated sludge stabilization under thermal hydrolysis. This work provides an efficient and practical strategy to achieve rapid stabilization of high solid sludge.
Collapse
Affiliation(s)
- Yangyang Liu
- Shanghai Engineering Research Center of Solid Waste Treatment and Resource Recovery, School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Haiping Yuan
- Shanghai Engineering Research Center of Solid Waste Treatment and Resource Recovery, School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China.
| | - Nanwen Zhu
- Shanghai Engineering Research Center of Solid Waste Treatment and Resource Recovery, School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China.
| |
Collapse
|
19
|
The effects of sulfite pretreatment on the biodegradability and solubilization of primary sludge: Biochemical methane potential, kinetics, and potential implications. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.121439] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
20
|
Tsui TH, Zhang L, Zhang J, Dai Y, Tong YW. Methodological framework for wastewater treatment plants delivering expanded service: Economic tradeoffs and technological decisions. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 823:153616. [PMID: 35124054 DOI: 10.1016/j.scitotenv.2022.153616] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 01/07/2022] [Accepted: 01/28/2022] [Indexed: 06/14/2023]
Abstract
With emerging decarbonization to deploy more integrated waste management, there is a burgeoning need for re-managing waste-related infrastructures in urban environments. Wastewater treatment plants are key contributors to expanded environmental services, but relevant technological decisions and economic tradeoffs have to be assessed from a systems perspective. This study provides a methodological framework that consolidates the multiple technological and economic aspects of system retrofitting for such an evaluation purpose. Complex leachate from refuse transfer stations has been recently identified as the decarbonization roadblock of urban waste management, and it was chosen for investigations by this new methodological approach. The system impacts by complex leachate on the existing facilities were validated by experimental trials. To derive the financial outlooks for decision making, the evaluation matrix includes the quantitative impacts of bioenergy profiles, energy balance analysis of biogas utilization methods, needs of system retrofitting, economic factors, and their uncertainties. Due to the detected inefficiency of bioenergy recovery, bioinformatic analysis was proceeded for understanding the underlying mechanism to propose a mitigation solution. Overall, the methodological framework can provide a quantitative assessment of the centralized capability of wastewater treatment plants for systems planning in the new policy agenda of urban decarbonization, where the methodological potentials of expanded framework applications are also highlighted.
Collapse
Affiliation(s)
- To-Hung Tsui
- Environmental Research Institute, National University of Singapore, 1 Create Way, 138602, Singapore; Energy and Environmental Sustainability for Megacities (E2S2) Phase II, Campus for Research Excellence and Technological Enterprise (CREATE), 1 Create Way, Singapore 138602, Singapore
| | - Le Zhang
- Environmental Research Institute, National University of Singapore, 1 Create Way, 138602, Singapore; Energy and Environmental Sustainability for Megacities (E2S2) Phase II, Campus for Research Excellence and Technological Enterprise (CREATE), 1 Create Way, Singapore 138602, Singapore
| | - Jingxin Zhang
- China-UK Low Carbon College, Shanghai Jiaotong University, 3 Yinlian Road, Shanghai 201306, China
| | - Yanjun Dai
- School of Mechanical Engineering, Shanghai Jiaotong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Yen Wah Tong
- Environmental Research Institute, National University of Singapore, 1 Create Way, 138602, Singapore; Energy and Environmental Sustainability for Megacities (E2S2) Phase II, Campus for Research Excellence and Technological Enterprise (CREATE), 1 Create Way, Singapore 138602, Singapore; Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, 117585, Singapore.
| |
Collapse
|
21
|
Haffiez N, Azizi SMM, Zakaria BS, Dhar BR. Propagation of antibiotic resistance genes during anaerobic digestion of thermally hydrolyzed sludge and their correlation with extracellular polymeric substances. Sci Rep 2022; 12:6749. [PMID: 35468927 PMCID: PMC9038762 DOI: 10.1038/s41598-022-10764-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Accepted: 04/12/2022] [Indexed: 12/27/2022] Open
Abstract
The positive impact of the thermal hydrolysis process (THP) of sewage sludge on antibiotic resistance genes (ARGs) removal during anaerobic digestion (AD) has been reported in the literature. However, little information is available on how changes in different extracellular polymeric substances (EPS) due to THP can influence ARG propagation during AD. This study focused on systematically correlating EPS components and ARG abundance in AD of sewage sludge pretreated with THP (80 °C, 110 °C, 140 °C, 170 °C). THP under different conditions improved sludge solubilization followed by improved methane yields in the biochemical methane potential (BMP) test. The highest methane yield of 275 ± 11.5 ml CH4/g COD was observed for THP-140 °C, which was 40.5 ± 2.5% higher than the control. Increasing THP operating temperatures showed a non-linear response of ARG propagation in AD due to the rebound effect. The highest ARGs removal in AD was achieved with THP at 140 °C. The multivariate analysis showed that EPS polysaccharides positively correlated with most ARGs and integrons, except for macrolides resistance genes. In contrast, EPS protein was only strongly correlated with β-lactam resistance genes. These results suggest that manipulating THP operating conditions targeting specific EPS components will be critical to effectively mitigating the dissemination of particular ARG types in AD.
Collapse
|
22
|
Li X, Xiao X, Liu Y, Fang G, Wang P, Zou D. Analysis of organic matter conversion behavior and kinetics during thermal hydrolysis of sludge and its anaerobic digestion performance. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 305:114408. [PMID: 34974216 DOI: 10.1016/j.jenvman.2021.114408] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Revised: 12/22/2021] [Accepted: 12/27/2021] [Indexed: 06/14/2023]
Abstract
In thermal hydrolysis (TH) of waste activated sludge (WAS), the material transformation of a specific temperature heating for a set duration is generally examined. However, this study looked at the material changes of TH as the temperature rose (90-210 °C) and the kinetic derivation of soluble chemical oxygen demand (SCOD), protein, and carbohydrate using the Coats-Redfern model. It was found that the proportion of soluble protein and soluble carbohydrate in the organic components and their contents reached the maximum (17.39 and 8.10 g L-1 respectively) at 180 °C. Differently, volatile fatty acid (VFA), amino acids, and ammonia nitrogen increased with the TH temperature and reached a maximum at 210 °C. The fitting equations of non-isothermal dynamics at the medium- and low-temperature stages (90-180 °C) at n = 1, 0.5, and 2 were studied. When n = 1, the activation energies of COD, protein, and carbohydrate were 33.32, 23.34, and 36.15 kJ mol-1, respectively. And the kinetic analysis results were in good agreement with the experimental results (the maximum rate of increase in protein and carbohydrate was at 135-150 °C and 150-180 °C, respectively). Moreover, the pattern of anaerobic digestion performance of WAS was comparable to the trend of protein and carbohydrate in TH, the highest cumulative methane production was 159.68 mL·g-1VS for the TH sludge at 180 °C. This study provided a theoretical foundation for the use of thermal hydrolysis in engineering.
Collapse
Affiliation(s)
- Xinxin Li
- Department of Environmental Science & Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Xiong Xiao
- Department of Environmental Science & Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Yanping Liu
- Department of Environmental Science & Engineering, Beijing University of Chemical Technology, Beijing, 100029, China.
| | - Gang Fang
- Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Pingbo Wang
- Department of Environmental Science & Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Dexun Zou
- Department of Environmental Science & Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| |
Collapse
|
23
|
Yan W, Xu H, Lu D, Zhou Y. Effects of sludge thermal hydrolysis pretreatment on anaerobic digestion and downstream processes: mechanism, challenges and solutions. BIORESOURCE TECHNOLOGY 2022; 344:126248. [PMID: 34743996 DOI: 10.1016/j.biortech.2021.126248] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 10/25/2021] [Accepted: 10/26/2021] [Indexed: 06/13/2023]
Abstract
Thermal hydrolysis pretreatment (THP), as a step prior to sludge anaerobic digestion (AD), is widely applied due to its effectiveness in enhancing organic solids hydrolysis and subsequent biogas productivity. However, THP also induces a series of problems including formation of refractory compounds in THP cylinder, high residual ammonia and organic in the AD centrate, inhibition on downstream nitrogen removal process and reduction in UV-disinfection effectiveness during post-treatment. More attention should be paid on how to mitigate these negative effects. Despite intensive studies were carried out to reduce refractory compounds formation and enhance biological performance, there is limited effort to discuss the solutions to tackle the THP associated problems in a holistic manner. This paper summarizes the solutions developed to date and analyzes their technology readiness to assess application potential in full-scale settings. The content highlights the limitations of THP and proposes potential solutions to address the technological challenges.
Collapse
Affiliation(s)
- Wangwang Yan
- Advanced Environmental Biotechnology Centre, Nanyang Environment and Water Research Institute, Nanyang Technological University, 637141, Singapore
| | - Hui Xu
- Advanced Environmental Biotechnology Centre, Nanyang Environment and Water Research Institute, Nanyang Technological University, 637141, Singapore
| | - Dan Lu
- Advanced Environmental Biotechnology Centre, Nanyang Environment and Water Research Institute, Nanyang Technological University, 637141, Singapore
| | - Yan Zhou
- Advanced Environmental Biotechnology Centre, Nanyang Environment and Water Research Institute, Nanyang Technological University, 637141, Singapore; School of Civil and Environmental Engineering, Nanyang Technological University, 639798, Singapore.
| |
Collapse
|
24
|
Shekhar Bose R, Chowdhury B, Zakaria BS, Kumar Tiwari M, Ranjan Dhar B. Significance of different mixing conditions on performance and microbial communities in anaerobic digester amended with granular and powdered activated carbon. BIORESOURCE TECHNOLOGY 2021; 341:125768. [PMID: 34469818 DOI: 10.1016/j.biortech.2021.125768] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 08/06/2021] [Accepted: 08/10/2021] [Indexed: 06/13/2023]
Abstract
Conductive materials amendment in anaerobic digestion (AD) is a promising strategy for boosting the methanogenesis process. Despite mixing is a critical parameter, the behavior of digesters amended with conductive additives upon different mixing conditions has rarely been investigated. This study investigated continuous mixing, intermittent mixing (10 min in every 12 h), and non-mixing conditions for digesters amended with granular activated carbon (GAC) and powdered activated carbon (PAC). The non-mixed GAC digester provided the highest methane yield (318 ± 28 mL/g COD) from synthetic blackwater, while intermittently mixed GAC and control exhibited similar methane yields (290-294 mL/g COD). For non-mixed systems, microbial richness and diversity increased with GAC and PAC amendment. In contrast, continuous and intermittent mixing increased microbial diversity and richness in control reactors while reduced the same in GAC and PAC amended reactors. Overall, various mixing conditions distinctly changed the degree of enrichment/retention of microbes and consequently influenced methane recovery.
Collapse
Affiliation(s)
- Raj Shekhar Bose
- Civil and Environmental Engineering, University of Alberta, Edmonton AB, Canada; School of Water Resources, Indian Institute of Technology Kharagpur, WB, India
| | - Bappi Chowdhury
- Civil and Environmental Engineering, University of Alberta, Edmonton AB, Canada
| | - Basem S Zakaria
- Civil and Environmental Engineering, University of Alberta, Edmonton AB, Canada
| | - Manoj Kumar Tiwari
- School of Water Resources, Indian Institute of Technology Kharagpur, WB, India
| | - Bipro Ranjan Dhar
- Civil and Environmental Engineering, University of Alberta, Edmonton AB, Canada.
| |
Collapse
|
25
|
Bacterial Community Structure and Dynamic Changes in Different Functional Areas of a Piggery Wastewater Treatment System. Microorganisms 2021; 9:microorganisms9102134. [PMID: 34683455 PMCID: PMC8540373 DOI: 10.3390/microorganisms9102134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 10/02/2021] [Accepted: 10/06/2021] [Indexed: 12/04/2022] Open
Abstract
Chemicals of emerging concern (CEC) in pig farm breeding wastewater, such as antibiotics, will soon pose a serious threat to public health. It is therefore essential to consider improving the treatment efficiency of piggery wastewater in terms of microorganisms. In order to optimize the overall piggery wastewater treatment system from the perspective of the bacterial community structure and its response to environmental factors, five samples were randomly taken from each area of a piggery’s wastewater treatment system using a random sampling method. The bacterial communities’ composition and their correlation with wastewater quality were then analyzed using Illumina MiSeq high-throughput sequencing. The results showed that the bacterial community composition of each treatment unit was similar. However, differences in abundance were significant, and the bacterial community structure gradually changed with the process. Proteobacteria showed more adaptability to an anaerobic environment than Firmicutes, and the abundance of Tissierella in anaerobic zones was low. The abundance of Clostridial (39.02%) and Bacteroides (20.6%) in the inlet was significantly higher than it was in the aerobic zone and the anoxic zone (p < 0.05). Rhodocyclaceae is a key functional microbial group in a wastewater treatment system, and it is a dominant microbial group in activated sludge. Redundancy analysis (RDA) showed that chemical oxygen demand (COD) had the greatest impact on bacterial community structure. Total phosphorus (TP), total nitrogen (TN), PH and COD contents were significantly negatively correlated with Sphingobacteriia, Betaproteobacteria and Gammaproteobacteria, and significantly positively correlated with Bacteroidia and Clostridia. These results offer basic data and theoretical support for optimizing livestock wastewater treatment systems using bacterial community structures.
Collapse
|
26
|
Meshref MNA, Azizi SMM, Dastyar W, Maal-Bared R, Dhar BR. Low-temperature thermal hydrolysis of sludge prior to anaerobic digestion: Principal component analysis (PCA) of experimental data. Data Brief 2021; 38:107323. [PMID: 34522731 PMCID: PMC8426196 DOI: 10.1016/j.dib.2021.107323] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Accepted: 08/12/2021] [Indexed: 11/05/2022] Open
Abstract
Here, we report data of the principal component analysis (PCA) assessment and clustering analysis related to low-temperature thermal hydrolysis process (THP) for enhancing the anaerobic digestion (AD) of sludge in wastewater treatment plants (WWTPs) with primary sludge fermentation (Azizi et al., 2021). The PCA was examined to pinpoint the influence of different THP schemes on the variations of macromolecular compounds solubilization after low-temperature THP and the relative performances in enhancing methane potential in AD. We established 2 experimental setups with a total of 18 treatment conditions (3 exposure times, 30, 60, and 90 min at three temperature levels 50, 70 and 90 °C) in comparison to the untreated control samples. Scheme-1 comprises the THP of a mixture of (1:1 vol ratio) fermented primary sludge (FPS) and thickened waste activated sludge (TWAS); while scheme-2 comprised the THP of TWAS only. The factors employed in the assessment of the PCA encompassed the variations in the macromolecular compounds and other solubilization metrics. This included the variations in the levels of carbohydrates, lipids, proteins, and solubilization of chemical oxygen demand (COD) and volatile suspended solids (VSS). Furthermore, the evaluation considered the changes of volatile fatty acids (VFAs) and total ammonia nitrogen (TAN) with respect to time and temperature. The assessment of PCA classified the THP based on their differences and alterations that occurred after the treatment. The indices of the PCA assessments differed based on the factors of concern and the focus of each individual PCA assessment. In every individual PCA assessment, the respective contribution to the total variance in PCA analysis was calculated and manifested by the highest distribution of the principal components (PCs) axis PC1 and PC2. The differences in distributions of PCs after various PCA examinations can describe the relative influence of THP schemes and the most significant variables that can trigger major differences among THP conditions. The comparative differences demonstrated by PCA support the potential investigations of the efficiency of THPs conditions and their performance categories.
Collapse
Affiliation(s)
- Mohamed N A Meshref
- Civil and Environmental Engineering, University of Alberta, 116 Street NW, Edmonton, AB T6G 1H9, Canada.,Public Works Department, Faculty of Engineering, Ain Shams University, 1 El Sarayat St., Abbassia, Cairo, 11517, Egypt
| | | | - Wafa Dastyar
- Civil and Environmental Engineering, University of Alberta, 116 Street NW, Edmonton, AB T6G 1H9, Canada
| | - Rasha Maal-Bared
- EPCOR Water Utilities, 2000-10423 101 Street NW, Edmonton, Alberta T5H 0E8, Canada
| | - Bipro Ranjan Dhar
- Civil and Environmental Engineering, University of Alberta, 116 Street NW, Edmonton, AB T6G 1H9, Canada
| |
Collapse
|
27
|
Díaz I, Díaz-Curbelo A, Ignacio Matute K, Fdz-Polanco M, Pérez-Elvira SI. Influence of the operating conditions of the intermediate thermal hydrolysis on the energetic efficiency of the sludge treatment process. BIORESOURCE TECHNOLOGY 2021; 333:125114. [PMID: 33894446 DOI: 10.1016/j.biortech.2021.125114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Revised: 03/26/2021] [Accepted: 03/28/2021] [Indexed: 06/12/2023]
Abstract
The application of steam explosion between two stages of anaerobic digestion may improve energy recovery from sludge while increasing organic matter removal. The influence of the operating conditions of the thermal process: temperature (130-210 °C), retention time (5-45 min) and TS concentration (5.4-10.8%), on the efficiency of VS removal, the biochemical methane potential of hydrolysed sludge and the kinetic constant of the degradation were evaluated using a Taguchi design. Increasing temperature and time increased the removal of VS and the potential of methane production but the kinetic constant was higher at lower temperatures. An optimal operating scheme was found at 170 °C (6 barg), 25 min at the greatest TS concentration in the feeding. Under such conditions, the thermal energy obtained from biogas combustion in a CHP covered the requirements for vapour generation and a profit of 3.54 € m-3 of sludge was estimated.
Collapse
Affiliation(s)
- Israel Díaz
- Department of Chemical Engineering and Environmental Technology, University of Valladolid, Dr. Mergelina s/n, 47011 Valladolid, Spain; Institute of Sustainable Processes, University of Valladolid, Dr. Mergelina s/n, 47011 Valladolid, Spain
| | - Alina Díaz-Curbelo
- Department of Chemical Engineering and Environmental Technology, University of Valladolid, Dr. Mergelina s/n, 47011 Valladolid, Spain; Institute of Sustainable Processes, University of Valladolid, Dr. Mergelina s/n, 47011 Valladolid, Spain
| | - Kevin Ignacio Matute
- Department of Chemical Engineering and Environmental Technology, University of Valladolid, Dr. Mergelina s/n, 47011 Valladolid, Spain; Institute of Sustainable Processes, University of Valladolid, Dr. Mergelina s/n, 47011 Valladolid, Spain
| | - María Fdz-Polanco
- Department of Chemical Engineering and Environmental Technology, University of Valladolid, Dr. Mergelina s/n, 47011 Valladolid, Spain; Institute of Sustainable Processes, University of Valladolid, Dr. Mergelina s/n, 47011 Valladolid, Spain
| | - Sara Isabel Pérez-Elvira
- Department of Chemical Engineering and Environmental Technology, University of Valladolid, Dr. Mergelina s/n, 47011 Valladolid, Spain; Institute of Sustainable Processes, University of Valladolid, Dr. Mergelina s/n, 47011 Valladolid, Spain.
| |
Collapse
|
28
|
Pereira de Albuquerque F, Dhadwal M, Dastyar W, Mirsoleimani Azizi SM, Karidio I, Zaman H, Dhar BR. Fate of disposable face masks in high-solids anaerobic digestion: Experimental observations and review of potential environmental implications. CASE STUDIES IN CHEMICAL AND ENVIRONMENTAL ENGINEERING 2021; 3:100082. [PMID: 38620309 PMCID: PMC7816893 DOI: 10.1016/j.cscee.2021.100082] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 01/12/2021] [Accepted: 01/16/2021] [Indexed: 05/18/2023]
Abstract
Face masks became a part of our daily life amid the global COVID-19 (SARS-CoV-2) pandemic. Most of the face masks are made for single-use and primarily disposed of in garbage bins with other non-recyclable wastes. To date, little is known about how disposable face masks in municipal solid waste (MSW) would interfere with high-solids anaerobic digestion (HSAD) in waste management facilities. Here, we first report preliminary results from a lab experiment conducted with the organic fraction of municipal solid waste (OFMSW) amended with used disposable face masks. The lab-scale HSAD systems were operated with percolate recirculation comparable to commercial HSAD systems typically used for full-scale processing of OFMSW. The results suggested that the presence of face masks in OFMSW could negatively affect methane productivity and kinetics. In the digesters amended with face masks, total cumulative methane production decreased by up to 18%, along with a 12-29% decrease in maximum methane production rates than the control digester (without face masks). Moreover, lag phases increased by 7-14%. The results also suggested that the type of polymeric materials used in face masks would be more critical than their total number/loading in the digester, which warrants further investigation. The visual inspection of digestate showed that the face masks were mostly undegraded after 40 days of operation. Much remains unknown about how the undegraded face masks will affect the digestate management practices, such as composting, land application, and landfilling. However, the review of existing literature suggested that they can be a potential source of plastic and microplastic pollution and amplify transmission of antibiotic resistance genes to the ecosystem. In summary, this study underscores the importance of developing safe and reliable disposal guidelines and management plans for single-use face masks.
Collapse
Affiliation(s)
| | - Mayank Dhadwal
- Civil and Environmental Engineering, University of Alberta, Edmonton, AB, Canada
| | - Wafa Dastyar
- Civil and Environmental Engineering, University of Alberta, Edmonton, AB, Canada
| | | | - Ibrahim Karidio
- Edmonton Waste Management Centre, City of Edmonton, Edmonton, AB, Canada
| | - Hamid Zaman
- Civil and Environmental Engineering, University of Alberta, Edmonton, AB, Canada
- Edmonton Waste Management Centre, City of Edmonton, Edmonton, AB, Canada
| | - Bipro Ranjan Dhar
- Civil and Environmental Engineering, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
29
|
Mohammad Mirsoleimani Azizi S, Hai FI, Lu W, Al-Mamun A, Ranjan Dhar B. A review of mechanisms underlying the impacts of (nano)microplastics on anaerobic digestion. BIORESOURCE TECHNOLOGY 2021; 329:124894. [PMID: 33662851 DOI: 10.1016/j.biortech.2021.124894] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 02/18/2021] [Accepted: 02/19/2021] [Indexed: 06/12/2023]
Abstract
The presence of (nano)microplastics in domestic wastewater and their subsequent release to the aquatic environment via the discharge of treated sewage has raised significant concerns. Previous studies have also identified their excessive accumulation in sewage sludge. Anaerobic digestion is one of the most used sludge stabilization methods in wastewater treatment plants. Therefore, understanding the potential effects of (nano)microplastics on anaerobic digestion has been receiving increasing attention from researchers. This article provides a comprehensive review of mechanisms underlying the impacts of (nano)microplastics on anaerobic digestion. Notably, this review covers mechanisms of inhibition/enhancement of anaerobic digestion by (nano)microplastics and their potential impacts on biochemical pathways, key enzymes, functional genes, and microbial communities investigated to date. Moreover, potential environmental risks of biosolids contaminated with (nano)microplastics were highlighted. Finally, knowledge gaps and future research needs were outlined. This review will guide more standardized studies in the future, covering both fundamental and engineering aspects.
Collapse
Affiliation(s)
| | - Faisal I Hai
- Strategic Water Infrastructure Laboratory, School of Civil, Mining and Environmental Engineering, University of Wollongong, Wollongong, NSW 2522, Australia
| | - Wenjing Lu
- Environmental Science and Engineering, Tsinghua University, Beijing 100084, China
| | - Abdullah Al-Mamun
- Civil and Architectural Engineering, Sultan Qaboos University, P.O. Box 33, Al-Khoud 123, Muscat, Oman
| | - Bipro Ranjan Dhar
- Department of Civil and Environmental Engineering, University of Alberta, 9211-116 Street NW, Edmonton, AB, Canada.
| |
Collapse
|