1
|
Udourioh GA, Solomon MM, Okolie JA. A Review of the Valorization of Dairy Industry Wastes through Thermochemical, Biological, and Integrated Processes for Value-Added Products. Food Sci Anim Resour 2025; 45:375-408. [PMID: 40093637 PMCID: PMC11907414 DOI: 10.5851/kosfa.2025.e2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Revised: 12/10/2024] [Accepted: 01/13/2025] [Indexed: 03/19/2025] Open
Abstract
The dairy industry is a significant player in the food industry, providing essential products such as milk, cheese, butter, yogurt, and milk powder to meet the global population's needs. However, the industry's activities have resulted in significant pollution, with heavy waste generation, disposal, and effluent emissions into the environment. Properly handling dairy waste residues is a major challenge, with up to 60% of the total treatment cost in the processing unit allocated to waste management. Therefore, valorizing dairy waste into useful products presents a significant advantage for the dairy industry. Numerous studies have proposed various approaches to convert dairy waste into useful products, including thermochemical, biological, and integrated conversion pathways. This review presents an overview of these approaches and identifies the best possible method for valorizing dairy waste and by-products. The research presents up-to-date information on the recovery of value-added products from dairy waste, such as biogas, biofertilizers, biopolymers, and biosurfactants, with a focus on integrating technology for environmental sustainability. Furthermore, the obstacles and prospects in dairy waste valorization have been presented. This review is a valuable resource for developing and deploying dairy waste valorization technologies, and it also presents research opportunities in this field.
Collapse
Affiliation(s)
- Godwin A Udourioh
- Department of Pure and Applied Chemistry, Veritas University Abuja, Abuja 6523, Nigeria
| | - Moses M Solomon
- Department of Chemical and Environmental Engineering, University of Nottingham Ningbo China, Ningbo 315100, China
| | - Jude A Okolie
- Gallogly College of Engineering, University of Oklahoma, Norman, OK 73019, USA
| |
Collapse
|
2
|
Straten JW, Alhnidi MJ, Alchoumari G, Sangam K, Kruse A. B,N-Doped Activated Carbon-Based Electrodes from Potato Peels for Energy Storage Applications. ChemistryOpen 2025; 14:e202400527. [PMID: 39972668 DOI: 10.1002/open.202400527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2024] [Revised: 02/05/2025] [Indexed: 02/21/2025] Open
Abstract
Potato peels (PPs) as waste biomass were selected as the biobased carbon source for this study, using urea as N precursor and boron trioxide as B precursor for the "in situ doping" via hydrothermal carbonization (HTC). During HTC, the feedstocks decompose over a wide range of complex chemical degradation mechanisms that finally form single B- and N- as well as B,N-co-doped hydrochars (HCs). Upon chemical ZnCl2 activation, the single B-doped activated carbon (AC) possessed a maximum B content of 0.2 wt%, whereas co-doped B,N-AC had the highest N content of 5.7 wt% with a B content of 0.1 wt%. The influence of single and B,N-co-doping on the physical-chemical material properties of the AC electrodes was analyzed and compared, in combination with its effect on the electrochemical performance for energy storage application. Compared to pristine AC derived from PPs, the B-doped and B,N-co-doped AC depicted increased electrical conductivity (EC) values of 50.3 S ⋅ m-1 and 34.0 S ⋅ m-1, respectively. In addition, the B,N-co-doped AC unveiled the highest average specific capacitances of 51.7 F ⋅ g-1 at 100 mV ⋅ s-1 and of 71.9 F ⋅ g-1 at 5 mV ⋅ s-1 outperforming the specific capacitance values of the reference material AC from peat.
Collapse
Affiliation(s)
- Jan Willem Straten
- University of Hohenheim, Institute of Agricultural Engineering, Department of Conversion Technologies of Biobased Resources, Garbenstr. 9, 70599, Stuttgart, Germany
| | - Muhammad-Jamal Alhnidi
- University of Hohenheim, Institute of Agricultural Engineering, Department of Conversion Technologies of Biobased Resources, Garbenstr. 9, 70599, Stuttgart, Germany
| | - Ghassan Alchoumari
- University of Hohenheim, Institute of Agricultural Engineering, Department of Conversion Technologies of Biobased Resources, Garbenstr. 9, 70599, Stuttgart, Germany
| | - Krishna Sangam
- University of Hohenheim, Institute of Agricultural Engineering, Department of Conversion Technologies of Biobased Resources, Garbenstr. 9, 70599, Stuttgart, Germany
| | - Andrea Kruse
- University of Hohenheim, Institute of Agricultural Engineering, Department of Conversion Technologies of Biobased Resources, Garbenstr. 9, 70599, Stuttgart, Germany
| |
Collapse
|
3
|
Patel SKS, Singh D, Pant D, Gupta RK, Busi S, Singh RV, Lee JK. Polyhydroxyalkanoate Production by Methanotrophs: Recent Updates and Perspectives. Polymers (Basel) 2024; 16:2570. [PMID: 39339034 PMCID: PMC11435153 DOI: 10.3390/polym16182570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 09/08/2024] [Accepted: 09/09/2024] [Indexed: 09/30/2024] Open
Abstract
Methanotrophs are bacteria that consume methane (CH4) as their sole carbon and energy source. These microorganisms play a crucial role in the carbon cycle by metabolizing CH4 (the greenhouse gas), into cellular biomass and carbon dioxide (CO2). Polyhydroxyalkanoates (PHAs) are biopolymers produced by various microorganisms, including methanotrophs. PHA production using methanotrophs is a promising strategy to address growing concerns regarding plastic pollution and the need for sustainable, biodegradable materials. Various factors, including nutrient availability, environmental conditions, and metabolic engineering strategies, influence methanotrophic production. Nutrient limitations, particularly those of nitrogen or phosphorus, enhance PHA production by methanotrophs. Metabolic engineering approaches, such as the overexpression of key enzymes involved in PHA biosynthesis or the disruption of competing pathways, can also enhance PHA yields by methanotrophs. Overall, PHA production by methanotrophs represents a sustainable and versatile approach for developing biomedical materials with numerous potential applications. Additionally, alternative feedstocks, such as industrial waste streams or byproducts can be explored to improve the economic feasibility of PHA production. This review briefly describes the potential of methanotrophs to produce PHAs, with recent updates and perspectives.
Collapse
Affiliation(s)
- Sanjay K S Patel
- Department of Chemical Engineering, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea
- Department of Biotechnology, Hemvati Nandan Bahuguna Garhwal University (A Central University), Srinagar 246174, Uttarakhand, India
| | - Deepshikha Singh
- Department of Biotechnology, Hemvati Nandan Bahuguna Garhwal University (A Central University), Srinagar 246174, Uttarakhand, India
| | - Diksha Pant
- Department of Biotechnology, Hemvati Nandan Bahuguna Garhwal University (A Central University), Srinagar 246174, Uttarakhand, India
| | - Rahul K Gupta
- Department of Chemical Engineering, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea
| | - Siddhardha Busi
- Department of Microbiology, Pondicherry University, Pondicherry 605014, Kalapet, India
| | - Rahul V Singh
- Department of Chemical Engineering, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea
| | - Jung-Kul Lee
- Department of Chemical Engineering, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea
| |
Collapse
|
4
|
Chen T, Zhang L, Guo W, Zhang W, Sajjad W, Ilahi N, Usman M, Faisal S, Bahadur A. Temperature drives microbial communities in anaerobic digestion during biogas production from food waste. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:53823-53838. [PMID: 38436844 DOI: 10.1007/s11356-024-32698-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 02/25/2024] [Indexed: 03/05/2024]
Abstract
Resource depletion and climate changes due to human activities and excessive burning of fossil fuels are the driving forces to explore alternatives clean energy resources. The objective of this study was to investigate the potential of potato peel waste (PPW) at various temperatures T15 (15 °C), T25 (25 °C), and T35 (35 °C) in anaerobic digestion (AD) for biogas generation. The highest biogas and CH4 production (117 mL VS-g and 74 mL VS-g) was observed by applying 35 °C (T35) as compared with T25 (65 mL VS-g and 22 mL VS-g) on day 6. Changes in microbial diversity associated with different temperatures were also explored. The Shannon index of bacterial community was not significantly affected, while there was a positive correlation of archaeal community with the applied temperatures. The bacterial phyla Firmicutes were strongly affected by T35 (39%), whereas Lactobacillus was the dominant genera at T15 (27%). Methanobacterium and Methanosarcina, as archaeal genera, dominated in T35 temperature reactors. In brief, at T35, Proteiniphilum and Methanosarcina were positively correlated with volatile fatty acids (VFAs) concentration. Spearman correlation revealed dynamic interspecies interactions among bacterial and archaeal genera; facilitating the AD system. This study revealed that temperature variations can enhance the microbial community of the AD system, leading to increased biogas production. It is recommended for optimizing the AD of food wastes.
Collapse
Affiliation(s)
- Tuo Chen
- State Key Laboratory of Cryospheric Science, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, 730000, China
| | - Lu Zhang
- Key Laboratory of Extreme Environmental Microbial Resources and Engineering, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, 730000, China
| | - Wei Guo
- Lanzhou Xinrong Environmental Energy Engineering Technology Co., Ltd, Lanzhou, China
| | - Wei Zhang
- Key Laboratory of Extreme Environmental Microbial Resources and Engineering, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, 730000, China
| | - Wasim Sajjad
- State Key Laboratory of Cryospheric Science, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, 730000, China
| | - Nikhat Ilahi
- State Key Laboratory of Herbage Improvement and Grassland Agro-Ecosystems, College of Ecology, Lanzhou University, Lanzhou, 730000, China
| | - Muhammad Usman
- State Key Laboratory of Grassland Agroecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, 730020, Gansu, China
| | - Shah Faisal
- Department of Environmental Engineering, School of Architecture and Civil Engineering, Chengdu University, Chengdu, 610106, People's Republic of China
| | - Ali Bahadur
- State Key Laboratory of Cryospheric Science, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, 730000, China.
- Key Laboratory of Extreme Environmental Microbial Resources and Engineering, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, 730000, China.
| |
Collapse
|
5
|
Bahadur A, Zhang L, Guo W, Sajjad W, Ilahi N, Banerjee A, Faisal S, Usman M, Chen T, Zhang W. Temperature-dependent transformation of microbial community: A systematic approach to analyzing functional microbes and biogas production. ENVIRONMENTAL RESEARCH 2024; 249:118351. [PMID: 38331158 DOI: 10.1016/j.envres.2024.118351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 12/24/2023] [Accepted: 01/28/2024] [Indexed: 02/10/2024]
Abstract
The stability and effectiveness of the anaerobic digestion (AD) system are significantly influenced by temperature. While majority research has focused on the composition of the microbial community in the AD process, the relationships between functional gene profile deduced from gene expression at different temperatures have received less attention. The current study investigates the AD process of potato peel waste and explores the association between biogas production and microbial gene expression at 15, 25, and 35 °C through metatranscriptomic analysis. The production of total biogas decreased with temperature at 15 °C (19.94 mL/g VS), however, it increased at 35 °C (269.50 mL/g VS). The relative abundance of Petrimonas, Clostridium, Aminobacterium, Methanobacterium, Methanothrix, and Methanosarcina were most dominant in the AD system at different temperatures. At the functional pathways level 3, α-diversity indices, including Evenness (Y = 5.85x + 8.85; R2 = 0.56), Simpson (Y = 2.20x + 2.09; R2 = 0.33), and Shannon index (Y = 1.11x + 4.64; R2 = 0.59), revealed a linear and negative correlation with biogas production. Based on KEGG level 3, several dominant functional pathways associated with Oxidative phosphorylation (ko00190) (25.09, 24.25, 24.04%), methane metabolism (ko00680) (30.58, 32.13, and 32.89%), and Carbon fixation pathways in prokaryotes (ko00720) (27.07, 26.47, and 26.29%), were identified at 15 °C, 25 °C and 35 °C. The regulation of biogas production by temperature possibly occurs through enhancement of central function pathways while decreasing the diversity of functional pathways. Therefore, the methanogenesis and associated processes received the majority of cellular resources and activities, thereby improving the effectiveness of substrate conversion to biogas. The findings of this study illustrated the crucial role of central function pathways in the effective functioning of these systems.
Collapse
Affiliation(s)
- Ali Bahadur
- State Key Laboratory of Cryospheric Science, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China; Key Laboratory of Extreme Environmental Microbial Resources and Engineering, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China; Cryosphere and Eco-Environment Research Station of Shule River Headwaters, State Key Laboratory of Cryospheric Science, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Lu Zhang
- Key Laboratory of Extreme Environmental Microbial Resources and Engineering, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Wei Guo
- Lanzhou Xinrong Environmental Energy Engineering Technology Co. Ltd. Lanzhou 730000, China
| | - Wasim Sajjad
- State Key Laboratory of Cryospheric Science, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Nikhat Ilahi
- State Key Laboratory of Herbage Improvement and Grassland Agro-Ecosystems, College of Ecology, Lanzhou University, Lanzhou 730000, China
| | - Abhishek Banerjee
- State Key Laboratory of Cryospheric Science, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Shah Faisal
- Department of Environmental Engineering, School of Architecture and Civil Engineering, Chengdu University, Chengdu 610106, China
| | - Muhammad Usman
- State Key Laboratory of Grassland Agroecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, 730020, China
| | - Tuo Chen
- State Key Laboratory of Cryospheric Science, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Wei Zhang
- Key Laboratory of Extreme Environmental Microbial Resources and Engineering, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China.
| |
Collapse
|
6
|
Chaikitkaew S, Wongfaed N, Mamimin C, O-Thong S, Reungsang A. Conversion of carbon dioxide in biogas into acetic acid by Clostridium thailandense immobilized on porous support materials. Heliyon 2024; 10:e26378. [PMID: 38390190 PMCID: PMC10881430 DOI: 10.1016/j.heliyon.2024.e26378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 11/12/2023] [Accepted: 02/12/2024] [Indexed: 02/24/2024] Open
Abstract
This study aimed to convert CO2 in biogas into acetic acid using immobilized Clostridium thailandense cells on various support materials, including activated carbon, expanded clay, and coir. Immobilized cells and free cells were evaluated for their CO2 conversion ability into acetic acid using H2 as an electron donor at an H2 to CO2 in biogas ratio of 2:1 (v/v), 30 °C, 150 rpm. Results showed that immobilized cells on activated carbon increased CH4 content to 96.9% (v/v), and acetic acid production to 15.65 mmol/L within 96 h. These values outperformed free cells. The activated carbon-immobilized cells could be reused two times without losing efficacy in the purification of biogas and acetic acid production. This work indicates that using the immobilized cells offers a sustainable approach to biogas upgrading, reducing the environmental footprint of biogas production by increasing its energy content and purity.
Collapse
Affiliation(s)
- Srisuda Chaikitkaew
- Department of Biotechnology, Faculty of Technology, Khon Kaen University, Khon Kaen, 40002, Thailand
- Research Group for Development of Microbial Hydrogen Production Process from Biomass, Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Nantharat Wongfaed
- Department of Biotechnology, Faculty of Technology, Khon Kaen University, Khon Kaen, 40002, Thailand
- Research Group for Development of Microbial Hydrogen Production Process from Biomass, Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Chonticha Mamimin
- Department of Biotechnology, Faculty of Technology, Khon Kaen University, Khon Kaen, 40002, Thailand
- Research Group for Development of Microbial Hydrogen Production Process from Biomass, Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Sompong O-Thong
- Biofuel and Biocatalysis Innovation Research Unit, Nakhonsawan Campus, Mahidol University, Nakhonsawan, 60130, Thailand
| | - Alissara Reungsang
- Department of Biotechnology, Faculty of Technology, Khon Kaen University, Khon Kaen, 40002, Thailand
- Research Group for Development of Microbial Hydrogen Production Process from Biomass, Khon Kaen University, Khon Kaen, 40002, Thailand
- Academy of Science, Royal Society of Thailand, Bangkok, 10300, Thailand
| |
Collapse
|
7
|
Sahoo KK, Katari JK, Das D. Recent advances in methanol production from methanotrophs. World J Microbiol Biotechnol 2023; 39:360. [PMID: 37891430 DOI: 10.1007/s11274-023-03813-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 10/19/2023] [Indexed: 10/29/2023]
Abstract
Methanol, the simplest aliphatic molecule of the alcohol family, finds diverse range of applications as an industrial solvent, a precursor for producing other chemicals (e.g., dimethyl ether, acetic acid and formaldehyde), and a potential fuel. There are conventional chemical routes for methanol production such as, steam reforming of natural gas to form syngas, followed by catalytic conversion into methanol; direct catalytic oxidation of methane, or hydrogenation of carbon dioxide. However, these chemical routes are limited by the requirement for expensive catalysts and extreme process conditions, and plausible environmental implications. Alternatively, methanotrophic microorganisms are being explored as biological alternative for methanol production, under milder process conditions, bypassing the requirement for chemical catalysts, and without imposing any adverse environmental impact. Methanotrophs possess inherent metabolic pathways for methanol production via biological methane oxidation or carbon dioxide reduction, thus offering a surplus advantage pertaining to the sequestration of two major greenhouse gases. This review sheds light on the recent advances in methanotrophic methanol production including metabolic pathways, feedstocks, metabolic engineering, and bioprocess engineering approaches. Furthermore, various reactor configurations are discussed in view of the challenges associated with solubility and mass transfer limitations in methanotrophic gas fermentation systems.
Collapse
Affiliation(s)
- Krishna Kalyani Sahoo
- Department of Biosciences & Bioengineering, Indian Institute of Technology, Guwahati, 781039, Assam, India
| | - John Kiran Katari
- School of Energy Science & Engineering, Indian Institute of Technology, Guwahati, 781039, Assam, India
| | - Debasish Das
- Department of Biosciences & Bioengineering, Indian Institute of Technology, Guwahati, 781039, Assam, India.
- School of Energy Science & Engineering, Indian Institute of Technology, Guwahati, 781039, Assam, India.
| |
Collapse
|
8
|
Thi Quynh Le H, Yeol Lee E. Methanotrophs: Metabolic versatility from utilization of methane to multi-carbon sources and perspectives on current and future applications. BIORESOURCE TECHNOLOGY 2023:129296. [PMID: 37302766 DOI: 10.1016/j.biortech.2023.129296] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 05/29/2023] [Accepted: 06/07/2023] [Indexed: 06/13/2023]
Abstract
The development of biorefineries for a sustainable bioeconomy has been driven by the concept of utilizing environmentally friendly and cost-effective renewable energy sources. Methanotrophic bacteria with a unique capacity to utilize methane as a carbon and energy source can serve as outstanding biocatalysts to develop C1 bioconversion technology. By establishing the utilization of diverse multi-carbon sources, integrated biorefinery platforms can be created for the concept of the circular bioeconomy. An understanding of physiology and metabolism could help to overcome challenges for biomanufacturing. This review summaries fundamental gaps for methane oxidation and the capability to utilize multi-carbon sources in methanotrophic bacteria. Subsequently, breakthroughs and challenges in harnessing methanotrophs as robust microbial chassis for industrial biotechnology were compiled and overviewed. Finally, capabilities to exploit the inherent advantages of methanotrophs to synthesize various target products in higher titers are proposed.
Collapse
Affiliation(s)
- Hoa Thi Quynh Le
- Department of Chemical Engineering (BK21 FOUR Integrated Engineering Program), Kyung Hee University, Yongin 17104, Republic of Korea
| | - Eun Yeol Lee
- Department of Chemical Engineering (BK21 FOUR Integrated Engineering Program), Kyung Hee University, Yongin 17104, Republic of Korea.
| |
Collapse
|
9
|
Wang J, Chen Z, Deng X, Yuan Q, Ma H. Engineering Escherichia coli for Poly-β-hydroxybutyrate Production from Methanol. Bioengineering (Basel) 2023; 10:bioengineering10040415. [PMID: 37106602 PMCID: PMC10135841 DOI: 10.3390/bioengineering10040415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 03/13/2023] [Accepted: 03/20/2023] [Indexed: 03/29/2023] Open
Abstract
The naturally occurring one-carbon assimilation pathways for the production of acetyl-CoA and its derivatives often have low product yields because of carbon loss as CO2. We constructed a methanol assimilation pathway to produce poly-3-hydroxybutyrate (P3HB) using the MCC pathway, which included the ribulose monophosphate (RuMP) pathway for methanol assimilation and non-oxidative glycolysis (NOG) for acetyl-CoA (precursor for PHB synthesis) production. The theoretical product carbon yield of the new pathway is 100%, hence no carbon loss. We constructed this pathway in E. coli JM109 by introducing methanol dehydrogenase (Mdh), a fused Hps–phi (hexulose-6-phosphate synthase and 3-phospho-6-hexuloisomerase), phosphoketolase, and the genes for PHB synthesis. We also knocked out the frmA gene (encoding formaldehyde dehydrogenase) to prevent the dehydrogenation of formaldehyde to formate. Mdh is the primary rate-limiting enzyme in methanol uptake; thus, we compared the activities of three Mdhs in vitro and in vivo and then selected the one from Bacillus methanolicus MGA3 for further study. Experimental results indicate that, in agreement with the computational analysis results, the introduction of the NOG pathway is essential for improving PHB production (65% increase in PHB concentration, up to 6.19% of dry cell weight). We demonstrated that PHB can be produced from methanol via metabolic engineering, which provides the foundation for the future large-scale use of one-carbon compounds for biopolymer production.
Collapse
Affiliation(s)
- Jiaying Wang
- Tianjin University of Science and Technology, Tianjin 300457, China
- Biodesign Center, Key Laboratory of Engineering Biology for Low-Carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
- College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Zhiqiang Chen
- Biodesign Center, Key Laboratory of Engineering Biology for Low-Carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
| | - Xiaogui Deng
- Tianjin University of Science and Technology, Tianjin 300457, China
- Biodesign Center, Key Laboratory of Engineering Biology for Low-Carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
- School of Biological Engineering, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Qianqian Yuan
- Biodesign Center, Key Laboratory of Engineering Biology for Low-Carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
- National Center of Technology Innovation for Synthetic Biology, Tianjin 300308, China
- Correspondence: (Q.Y.); (H.M.)
| | - Hongwu Ma
- Biodesign Center, Key Laboratory of Engineering Biology for Low-Carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
- National Center of Technology Innovation for Synthetic Biology, Tianjin 300308, China
- Correspondence: (Q.Y.); (H.M.)
| |
Collapse
|
10
|
Sahoo KK, Sinha A, Das D. Process engineering strategy for improved methanol production in Methylosinus trichosporium through enhanced mass transfer and solubility of methane and carbon dioxide. BIORESOURCE TECHNOLOGY 2023; 371:128603. [PMID: 36634876 DOI: 10.1016/j.biortech.2023.128603] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 01/06/2023] [Accepted: 01/07/2023] [Indexed: 06/17/2023]
Abstract
Methanol was produced in a two-stage integrated process using Methylosinus trichosporium NCIMB 11131. The first stage involved sequestration of methane to produce methanotrophic biomass, which was utilized as biocatalyst in the second stage to convert CO2 into methanol. A combinatorial process engineering approach of design of micro-sparger, engagement of draft tube, addition of mass transfer vector and elevation of reactor operating pressure was employed to enhance production of biomass and methanol. Maximum biomass titer of 7.68 g/L and productivity of 1.46 g/L d-1 were achieved in an airlift reactor equipped with a micro-sparger of 5 µm pore size, in the presence of draft tube and 10 % v/v silicone oil, as mass transfer vector. Maximum methane fixation rate was estimated to be 0.80 g/L d-1. Maximum methanol titer of 1.98 g/L was achieved under an elevated operating pressure of 4 bar in a high-pressure stirred tank reactor.
Collapse
Affiliation(s)
- Krishna Kalyani Sahoo
- Department of Biosciences & Bioengineering, Indian Institute of Technology, Guwahati, Assam 781039, India
| | - Ankan Sinha
- Department of Biosciences & Bioengineering, Indian Institute of Technology, Guwahati, Assam 781039, India
| | - Debasish Das
- Department of Biosciences & Bioengineering, Indian Institute of Technology, Guwahati, Assam 781039, India.
| |
Collapse
|
11
|
Microbial degradation of quinoline by immobilized bacillus subtilis. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2023. [DOI: 10.1016/j.bcab.2023.102604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
12
|
Patel SKS, Gupta RK, Kalia VC, Lee JK. Synthetic design of methanotroph co-cultures and their immobilization within polymers containing magnetic nanoparticles to enhance methanol production from wheat straw-based biogas. BIORESOURCE TECHNOLOGY 2022; 364:128032. [PMID: 36167174 DOI: 10.1016/j.biortech.2022.128032] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 09/20/2022] [Accepted: 09/22/2022] [Indexed: 06/16/2023]
Abstract
In this study, various methanotroph co-cultures were designed to enhance methanol production from biogas produced through the anaerobic digestion of wheat straw (WS). Furthermore, whole-cell immobilization was performed using magnetic nanoparticle (MNP)-loaded polymers to develop an efficient bioprocess. The anaerobic digestion of WS by cattle dung yielded 219 L/kg of total solids reduced. Methanol produced was 5.08 and 6.39 mmol/L by pure- and co-cultures from biogas, respectively. The optimization of process parameters enhanced methanol production to 6.82 mmol/L by co-culturing Mithylosinus sporium and Methylocella tundrae. The immobilized co-culture within the MNP-doped polymers exhibited much higher cumulative methanol of up to 70.74 mmol/L than the production of 22.34 mmol/L by free cells after ten cycles of reuse. This study suggests that MNP-doped polymer-based immobilization of methanotrophs is a unique approach for producing renewable fuels from biomass-derived biogas, a greenhouse gas.
Collapse
Affiliation(s)
- Sanjay K S Patel
- Department of Chemical Engineering, Konkuk University, Seoul 05029, Republic of Korea
| | - Rahul K Gupta
- Department of Chemical Engineering, Konkuk University, Seoul 05029, Republic of Korea
| | - Vipin C Kalia
- Department of Chemical Engineering, Konkuk University, Seoul 05029, Republic of Korea
| | - Jung-Kul Lee
- Department of Chemical Engineering, Konkuk University, Seoul 05029, Republic of Korea.
| |
Collapse
|
13
|
Contreras JA, Valenzuela EI, Quijano G. Nitrate/nitrite-dependent anaerobic oxidation of methane (N-AOM) as a technology platform for greenhouse gas abatement in wastewater treatment plants: State-of-the-art and challenges. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 319:115671. [PMID: 35816965 DOI: 10.1016/j.jenvman.2022.115671] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 06/21/2022] [Accepted: 07/01/2022] [Indexed: 06/15/2023]
Abstract
Nitrate/nitrite-dependent anaerobic oxidation of methane (N-AOM) is a metabolic process recently discovered and partially characterized in terms of the microorganisms and pathways involved. The N-AOM process can be a powerful tool for mitigating the impacts of greenhouse gas emissions from wastewater treatment plants by coupling the reduction of nitrate or nitrite with the oxidation of residual dissolved methane. Besides specific anaerobic methanotrophs such as bacteria members of the phylum NC10 and archaea belonging to the lineage ANME-2d, recent reports suggested that other methane-oxidizing bacteria in syntrophy with denitrifiers can also perform the N-AOM process, which facilitates the application of this metabolic process for the oxidation of residual methane under realistic scenarios. This work constitutes a state-of-art review that includes the fundamentals of the N-AOM process, new information on process microbiology, bioreactor configurations, and operating conditions for process implementation in WWTP. Potential advantages of the N-AOM process over aerobic methanotrophic biotechnologies are presented, including the potential interrelation of the N-AOM with other nitrogen removal processes within the WWTP, such as the anaerobic ammonium oxidation. This work also addressed the challenges of this biotechnology towards its application at full scale, identifying and discussing critical research niches.
Collapse
Affiliation(s)
- José A Contreras
- Laboratory for Research on Advanced Processes for Water Treatment, Instituto de Ingeniería, Unidad Académica Juriquilla, Universidad Nacional Autónoma de México, Blvd. Juriquilla 3001, Querétaro, 76230, Mexico
| | - Edgardo I Valenzuela
- Laboratory for Research on Advanced Processes for Water Treatment, Instituto de Ingeniería, Unidad Académica Juriquilla, Universidad Nacional Autónoma de México, Blvd. Juriquilla 3001, Querétaro, 76230, Mexico
| | - Guillermo Quijano
- Laboratory for Research on Advanced Processes for Water Treatment, Instituto de Ingeniería, Unidad Académica Juriquilla, Universidad Nacional Autónoma de México, Blvd. Juriquilla 3001, Querétaro, 76230, Mexico.
| |
Collapse
|
14
|
Ebrahimian F, Denayer JFM, Karimi K. Potato peel waste biorefinery for the sustainable production of biofuels, bioplastics, and biosorbents. BIORESOURCE TECHNOLOGY 2022; 360:127609. [PMID: 35840021 DOI: 10.1016/j.biortech.2022.127609] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Revised: 07/06/2022] [Accepted: 07/07/2022] [Indexed: 06/15/2023]
Abstract
Potato is the fourth most abundant crop harvested annually worldwide. Potato peel waste (PPW) is the main waste stream of potato-processing industries which is generated in large quantities and is a threat to the environment globally. However, owing to its compositional characteristics, availability, and zero cost, PPW is a renewable resource for the production of high-value bioproducts. Hence, this study provides a state-of-the-art overview of advancements in PPW valorization through biological and thermochemical conversions. PPW has a high potential for biofuel and biochemical generation through detoxification, pretreatment, hydrolysis, and fermentation. Moreover, many other valuable chemicals, including bio-oil, biochar, and biosorbents, can be produced via thermochemical conversions. However, several challenges are associated with the biological and thermochemical processing of PPW. The insights provided in this review pave the way toward a PPW-based biorefinery development, providing sustainable alternatives to fossil-based products and mitigating environmental concerns.
Collapse
Affiliation(s)
- Farinaz Ebrahimian
- Department of Chemical Engineering, Isfahan University of Technology, Isfahan 84156-83111, Iran
| | - Joeri F M Denayer
- Department of Chemical Engineering, Vrije Universiteit Brussel, 1050 Brussels, Belgium
| | - Keikhosro Karimi
- Department of Chemical Engineering, Isfahan University of Technology, Isfahan 84156-83111, Iran; Department of Chemical Engineering, Vrije Universiteit Brussel, 1050 Brussels, Belgium.
| |
Collapse
|
15
|
Kondaveeti S, Bisht A, Pagolu R, Lai C, Lestari R, Kumar A, Das D, Kalia VC, Lee JK. Mild Alkaline Pretreatment of Rice Straw as a Feedstock in Microbial Fuel Cells for Generation of Bioelectricity. Indian J Microbiol 2022; 62:447-455. [PMID: 35974908 PMCID: PMC9375807 DOI: 10.1007/s12088-022-01022-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Accepted: 04/15/2022] [Indexed: 11/24/2022] Open
Abstract
The dependency on non-renewable fossil fuels as an energy source has drastically increased global temperatures. Their continuous use poses a great threat to the existing energy reserves. Therefore, the energy sector has taken a turn toward developing eco-friendly, sustainable energy generation by using sustainable lignocellulosic wastes, such as rice straw (RS). For lignocellulosic waste to be utilized as an efficient energy source, it needs to be broken down into less complex forms by pretreatment processes, such as alkaline pretreatment using NaOH. Varied NaOH concentrations (0.5%,1.0%,1.5%,2%) for alkaline pretreatment of RS were used for the holocellulose generation. Amongst the four NaOH concentrations tested, RS-1.5% exhibited higher holocellulose generation of 80.1%, whereas 0.5%, 1 5 and 2% pointed 71.9%, 73.8%, and 78.5% holocellulose generation, respectively. Further, microbial fuel cells (MFCs) were tested for voltage generation by utilizing holocellulose generated from untreated (RS-0%) and mildly alkaline pretreated RS (RS-1.5%) as a feedstock. The MFC voltage and maximum power generation using RS-0% were 194 mV and 167 mW/m2, respectively. With RS-1.5%, the voltage and maximum power generation were 556 mV and 583 mW/m2, respectively. The power density of RS-1.5% was three-fold higher than that of RS-0%. The increase in MFC power generation suggests that alkaline pretreatment plays a crucial role in enhancing the overall performance.
Collapse
Affiliation(s)
- Sanath Kondaveeti
- Department of Chemical Engineering, Konkuk University, 1 Hwayang-Dong, Gwangjin-Gu, Seoul, 05029 South Korea
| | - Aarti Bisht
- Department of Chemical Engineering, Konkuk University, 1 Hwayang-Dong, Gwangjin-Gu, Seoul, 05029 South Korea
| | - Raviteja Pagolu
- Department of Chemical Engineering, Konkuk University, 1 Hwayang-Dong, Gwangjin-Gu, Seoul, 05029 South Korea
| | - Chunfen Lai
- Department of Chemical Engineering, Konkuk University, 1 Hwayang-Dong, Gwangjin-Gu, Seoul, 05029 South Korea
| | - Rowina Lestari
- Department of Chemical Engineering, Konkuk University, 1 Hwayang-Dong, Gwangjin-Gu, Seoul, 05029 South Korea
| | - Anurag Kumar
- Department of Chemical Engineering, Konkuk University, 1 Hwayang-Dong, Gwangjin-Gu, Seoul, 05029 South Korea
| | - Devashish Das
- Department of Chemical Engineering, Konkuk University, 1 Hwayang-Dong, Gwangjin-Gu, Seoul, 05029 South Korea
| | - Vipin C. Kalia
- Department of Chemical Engineering, Konkuk University, 1 Hwayang-Dong, Gwangjin-Gu, Seoul, 05029 South Korea
| | - Jung-Kul Lee
- Department of Chemical Engineering, Konkuk University, 1 Hwayang-Dong, Gwangjin-Gu, Seoul, 05029 South Korea
| |
Collapse
|
16
|
Bak SY, Kang SG, Choi KH, Park YR, Lee EY, Park BJ. Phase-transfer biocatalytic methane-to-methanol conversion using the spontaneous phase-separable membrane μCSTR. J IND ENG CHEM 2022. [DOI: 10.1016/j.jiec.2022.04.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
17
|
Li Y, Zhang Q, Liu Z, Jiang H, Jia Q. Genome mining discovery of hydrogen production pathway of Klebsiella sp. WL1316 fermenting cotton stalk hydrolysate. Int Microbiol 2022; 25:503-513. [PMID: 35147786 DOI: 10.1007/s10123-022-00241-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 01/18/2022] [Accepted: 02/07/2022] [Indexed: 11/26/2022]
Abstract
Genome sequencing was used to identify key genes for the generation of hydrogen gas through cotton stalk hydrolysate fermentation by Klebsiella sp. WL1316. Genome annotation indicated that the genome size was 5.2 Mb with GC content 57.6%. Xylose was metabolized in the pentose phosphate pathway via the conversion of xylose to xylulose in Klebsiella sp. WL1316. This strain contained diverse formate-hydrogen lyases and hydrogenases with gene numbers higher than closely related species. A metabolic network involving glucose, xylose utilisation, and fermentative hydrogen production was reconstructed. Metabolic analysis of key node metabolites showed that glucose and xylose metabolism influenced biomass synthesis and biohydrogen production. Formic acid accumulated during fermentation at 24-48 h but decreased sharply after 48 h, illustrating the splitting of formic acid to hydrogen gas during early-to-mid fermentation. The Kreb's cycle was the main competitive metabolic branch of biohydrogen synthesis at 24 h of fermentation. Lactic and acetic acid fermentation and late ethanol accumulation competed the carbon skeleton of biohydrogen synthesis after 72 h of fermentation, indicating that these competitive pathways are regulated in middle-to-late fermentation (48-96 h). This study is the first to elucidate the metabolic mechanisms of mixed sugar utilisation and biohydrogen synthesis based on genomic information.
Collapse
Affiliation(s)
- Yanbin Li
- College of Biological and Food Engineering, Anhui Polytechnic University, Wuhu, 241000, Anhui, China
| | - Qin Zhang
- College of Biological and Food Engineering, Anhui Polytechnic University, Wuhu, 241000, Anhui, China.
| | - Zhanwen Liu
- College of Life Science, Tarim University, Alaer, 843300, Xinjiang, China
| | - Hui Jiang
- College of Life Science, Tarim University, Alaer, 843300, Xinjiang, China
| | - Qinghua Jia
- College of Life Science, Tarim University, Alaer, 843300, Xinjiang, China
| |
Collapse
|
18
|
Elyamny S, Hamdy A, Ali R, Hamad H. Role of Combined Na 2HPO 4 and ZnCl 2 in the Unprecedented Catalysis of the Sequential Pretreatment of Sustainable Agricultural and Agro-Industrial Wastes in Boosting Bioethanol Production. Int J Mol Sci 2022; 23:ijms23031777. [PMID: 35163701 DOI: 10.3390/ijms23031777] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Revised: 01/26/2022] [Accepted: 01/28/2022] [Indexed: 02/04/2023] Open
Abstract
Improper lignocellulosic waste disposal causes severe environmental pollution and health damage. Corn Stover (CS), agricultural, and aseptic packaging, Tetra Pak (TP) cartons, agro-industrial, are two examples of sustainable wastes that are rich in carbohydrate materials and may be used to produce valuable by-products. In addition, attempts were made to enhance cellulose fractionation and improve enzymatic saccharification. In this regard, these two wastes were efficiently employed as substrates for bioethanol production. This research demonstrates the effect of disodium hydrogen phosphate (Na2HPO4) and zinc chloride (ZnCl2) (NZ) as a new catalyst on the development of the sequential pretreatment strategy in the noticeable enzymatic hydrolysis. Physico-chemical changes of the native and the pretreated sustainable wastes were evaluated by compositional analysis, scanning electron microscopy (SEM), X-ray diffractometry (XRD), Fourier transform infrared spectroscopy (FTIR), and thermogravimetric analysis (TGA). These investigations showed major structural changes after the optimized sequential pretreatment. This pretreatment not only influences the delignification process, but also affects the functionalization of cellulose chemical structure. NZ released a higher glucose concentration (328.8 and 996.8 mg/dl) than that of ZnCl2 (Z), which released 203.8 and 846.8 mg/dl from CS and TP, respectively. This work led to the production of about 500 mg/dl of ethanol, which is promising and a competitor to other studies. These findings contribute to increasing the versatility in the reuse of agricultural and agro-industrial wastes to promote interaction areas of pollution prevention, industrialization, and clean energy production, to attain the keys of sustainable development goals.
Collapse
Affiliation(s)
- Shaimaa Elyamny
- Electronic Materials Research Department, Advanced Technology and New Materials Research Institute (ATNMRI), City of Scientific Research and Technological Applications (SRTA-City), Alexandria 21934, Egypt
| | - Ali Hamdy
- Environmental Biotechnology Department, Genetic Engineering and Biotechnology Research Institute (GEBRI), City of Scientific Research and Technological Applications (SRTA-City), Alexandria 21934, Egypt
| | - Rehab Ali
- Fabrication Technology Research Department, Advanced Technology and New Materials Research Institute (ATNMRI), City of Scientific Research and Technological Applications (SRTA-City), Alexandria 21934, Egypt
| | - Hesham Hamad
- Fabrication Technology Research Department, Advanced Technology and New Materials Research Institute (ATNMRI), City of Scientific Research and Technological Applications (SRTA-City), Alexandria 21934, Egypt
| |
Collapse
|
19
|
Sagar I, Nimonkar Y, Dhotre D, Shouche Y, Ranade D, Dewala S, Prakash O. A Microcosm Model for the Study of Microbial Community Shift and Carbon Emission from Landfills. Indian J Microbiol 2022; 62:195-203. [DOI: 10.1007/s12088-021-00995-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Accepted: 12/07/2021] [Indexed: 12/22/2022] Open
|
20
|
Kumar Awasthi M, Paul A, Kumar V, Sar T, Kumar D, Sarsaiya S, Liu H, Zhang Z, Binod P, Sindhu R, Kumar V, Taherzadeh MJ. Recent trends and developments on integrated biochemical conversion process for valorization of dairy waste to value added bioproducts: A review. BIORESOURCE TECHNOLOGY 2022; 344:126193. [PMID: 34710613 DOI: 10.1016/j.biortech.2021.126193] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2021] [Revised: 10/18/2021] [Accepted: 10/19/2021] [Indexed: 06/13/2023]
Abstract
In this review article, discuss the many ways utilized by the dairy sector to treat pollutants, emphasizing their influence on the quality and efficiency with which contamination is removed. It focuses on biotechnology possibilities for valorizing dairy waste in particular. The findings revealed that dairy waste may be treated using physicochemical, biological, and biotechnological techniques. Notably, this article highlighted the possibility of dairy waste being used as a feedstock not only for the generation of biogas, bioethanol, biohydrogen, microbial fuel cells, lactic acid, and fumaric acid via microbial technology but also for the production of biooil and biochar by pyrolysis. In addition, this article critically evaluates the many treatment techniques available for recovering energy and materials from dairy waste, their combinations, and implementation prospects. Valorization of dairy waste streams presents an opportunity to extend the dairy industry's presence in the fermented functional beverage sector.
Collapse
Affiliation(s)
- Mukesh Kumar Awasthi
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, China.
| | - Anindita Paul
- Department of Chemical Engineering, SUNY College of Environmental Science and Forestry, Syracuse, NY 13210,USA
| | - Vinay Kumar
- Department of Biotechnology, Indian Institute of Technology (IIT) Roorkee, Roorkee 247667, Uttarakhand, India
| | - Taner Sar
- (f)Swedish Centre for Resource Recovery, University of Borås, 501 90 Borås, Sweden
| | - Deepak Kumar
- Department of Chemical Engineering, SUNY College of Environmental Science and Forestry, Syracuse, NY 13210,USA
| | - Surendra Sarsaiya
- Key Laboratory of Basic Pharmacology and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, Guizhou, China
| | - Hong Liu
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, China
| | - Zengqiang Zhang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, China
| | - Parameswaran Binod
- Microbial Processes and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (CSIR-NIIST), Thiruvananthapuram, Kerala 695019, India
| | - Raveendran Sindhu
- Microbial Processes and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (CSIR-NIIST), Thiruvananthapuram, Kerala 695019, India
| | - Vinod Kumar
- School of Water, Energy and Environment, Cranfield University, Cranfield MK43 0AL, UK
| | | |
Collapse
|
21
|
Zhao Y, Qamar SA, Qamar M, Bilal M, Iqbal HMN. Sustainable remediation of hazardous environmental pollutants using biochar-based nanohybrid materials. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2021; 300:113762. [PMID: 34543967 DOI: 10.1016/j.jenvman.2021.113762] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 09/10/2021] [Accepted: 09/13/2021] [Indexed: 02/08/2023]
Abstract
Biochar is a well-known carbon material with diversified functionalities and excellent physicochemical characteristics with high wastewater treatment potential. This review aims to summarize recent advancements in the development of biochar and biochar-based nanohybrid materials as a potential tool for the removal of harmful organic compounds such as synthetic dyes/effluents. The formation of biochar using pyrolysis of renewable feedstocks and their applications in various industries are explained hereafter. The characteristics and construction of biochar-based hybrid materials are explained in detail. Diversity of feedstocks, including municipal wastes, industrial byproducts, agricultural, and forestry residues, endows different biochar types with a wide structural variety. The production of cost-effective biochar drives the interest in manipulating biochars and induces desire functionality using nanoscale reinforcements. Various types of biochars, such as magnetic biochar, layered nanomaterial coated biochar, nanometallic oxide composites, chemically and physically functionalized biochar, have been produced. With the aid of nanomaterial, hybrid biochar exhibits a high potential to remove toxic contaminants. Depending upon biochar type, dyes/effluents can be removed via different mechanisms, including the Fenton process, photocatalytic degradation, π-π interaction, electrostatic interaction, and physical adsorption. In conclusion, desired physicochemical features, and tunable surface properties of biochar present high potential material in removing organic dyes and other effluents. The blended biochar with different materials/nanomaterials endows broader development and multi-functional opportunities for treating dyes/effluents.
Collapse
Affiliation(s)
- Yuping Zhao
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian, 223003, China.
| | - Sarmad Ahmad Qamar
- Department of Biochemistry, University of Agriculture, Faisalabad, Pakistan
| | - Mahpara Qamar
- Department of Biochemistry, University of Agriculture, Faisalabad, Pakistan
| | - Muhammad Bilal
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian, 223003, China.
| | - Hafiz M N Iqbal
- Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey, 64849, Mexico.
| |
Collapse
|
22
|
Patel SKS, Kalia VC. Advancements in the Nanobiotechnological Applications. Indian J Microbiol 2021; 61:401-403. [PMID: 34744195 PMCID: PMC8542030 DOI: 10.1007/s12088-021-00979-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Affiliation(s)
- Sanjay K S Patel
- Department of Chemical Engineering, Konkuk University, Seoul, 05029 Republic of Korea
| | - Vipin C Kalia
- Department of Chemical Engineering, Konkuk University, Seoul, 05029 Republic of Korea
| |
Collapse
|
23
|
Kumar N, Chauhan NS. Nano-Biocatalysts: Potential Biotechnological Applications. Indian J Microbiol 2021; 61:441-448. [PMID: 34744199 PMCID: PMC8542021 DOI: 10.1007/s12088-021-00975-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Accepted: 08/19/2021] [Indexed: 12/14/2022] Open
Abstract
Biocatalysts are a biomolecule of interest for various biotechnological applications. Non-reusability and poor stability of especially enzymes has always limited their applications in large-scale processing units. Nanotechnology paves a way by conjugating the biocatalysts on different matrices. It predominantly enables nanomaterials to overcome the limited efficacy of conventional biocatalysts. Nanomaterial conjugated nanobiocatalyst have enhanced catalytic properties, selectivity, and stability. Nanotechnology extended the flexibility to engineer biocatalysts for various innovative and predictive catalyses. So developed nanobiocatalyst harbors remarkable properties and has potential applications in diverse biotechnological sectors. This article summaries various developments made in the area of nanobiocatalyst towards their applications in biotechnological industries. Novel nanobiocatalyst engineering is an area of critical importance for harnessing the biotechnological potential.
Collapse
Affiliation(s)
- Naveen Kumar
- Department of Chemistry, Maharshi Dayanand University Rohtak, Rohtak, Haryana India
| | - Nar Singh Chauhan
- Department of Biochemistry, Maharshi Dayanand University Rohtak, Rohtak, Haryana India
| |
Collapse
|
24
|
Zhang Y, Zhou X, Yao Y, Xu Q, Shi H, Wang K, Feng W, Shen Y. Coexpression of VHb and MceG genes in Mycobacterium sp. Strain LZ2 enhances androstenone production via immobilized repeated batch fermentation. BIORESOURCE TECHNOLOGY 2021; 342:125965. [PMID: 34563820 DOI: 10.1016/j.biortech.2021.125965] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 09/12/2021] [Accepted: 09/14/2021] [Indexed: 06/13/2023]
Abstract
Androstenone production is limited by low-efficiency substrate transport and dissolved oxygen levels during fermentation. In this study, the coexpression of the optimized Vitreoscilla hemoglobin (VHb) and sterol transporter ATPase (MceG) genes in Mycobacterium sp. LZ2 (Msp) was investigated to alleviate dissolved oxygen and mass transfer limitations. Results revealed that Msp-vgb/mceG effectively improved the growth, production, and adaptation to dissolved oxygen compared with those of Msp. The increased catalase activity and reduced intracellular ROS levels enhanced cell viability and promoted transcription of genes critical for phytosterol metabolism. Bagasse as an immobilization carrier increased the productivity of Msp-vgb/mceG by 56%. Immobilized repeat batch fermentation reduced the biotransformation period from 60 days to 37 days and improved the productivity from 0.039 g/L/h to 0.069 g/L/h. To the best of our knowledge, this work is the first study on the immobilization of recombinant mycobacteria on bagasse for androstenone production.
Collapse
Affiliation(s)
- Yang Zhang
- School of Life Science, Liaocheng University, Liaocheng, Shandong 252059, PR China.
| | - Xiuling Zhou
- School of Life Science, Liaocheng University, Liaocheng, Shandong 252059, PR China
| | - Yingying Yao
- School of Life Science, Liaocheng University, Liaocheng, Shandong 252059, PR China
| | - Qianqian Xu
- School of Life Science, Liaocheng University, Liaocheng, Shandong 252059, PR China
| | - Haiying Shi
- School of Life Science, Liaocheng University, Liaocheng, Shandong 252059, PR China
| | - Kuiming Wang
- School of Life Science, Liaocheng University, Liaocheng, Shandong 252059, PR China
| | - Wei Feng
- School of Life Science, Liaocheng University, Liaocheng, Shandong 252059, PR China
| | - Yanbing Shen
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science & Technology, Tianjin 300457, PR China
| |
Collapse
|
25
|
Patel SKS, Shanmugam R, Lee JK, Kalia VC, Kim IW. Biomolecules Production from Greenhouse Gases by Methanotrophs. Indian J Microbiol 2021; 61:449-457. [PMID: 34744200 PMCID: PMC8542019 DOI: 10.1007/s12088-021-00986-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Accepted: 09/13/2021] [Indexed: 12/24/2022] Open
Abstract
Harmful effects on living organisms and the environment are on the rise due to a significant increase in greenhouse gas (GHG) emissions through human activities. Therefore, various research initiatives have been carried out in several directions in relation to the utilization of GHGs via physicochemical or biological routes. An environmentally friendly approach to reduce the burden of significant emissions and their harmful effects is the bioconversion of GHGs, including methane (CH4) and carbon dioxide (CO2), into value-added products. Methanotrophs have enormous potential for the efficient biotransformation of CH4 to various bioactive molecules, including biofuels, polyhydroxyalkanoates, and fatty acids. This review highlights the recent developments in methanotroph-based systems for methanol production from GHGs and proposes future perspectives to improve process sustainability via biorefinery approaches.
Collapse
Affiliation(s)
- Sanjay K. S. Patel
- Department of Chemical Engineering, Konkuk University, 1 Hwayang-Dong, Gwangjin-Gu, Seoul, 05029 Republic of Korea
| | - Ramsamy Shanmugam
- Department of Chemical Engineering, Konkuk University, 1 Hwayang-Dong, Gwangjin-Gu, Seoul, 05029 Republic of Korea
| | - Jung-Kul Lee
- Department of Chemical Engineering, Konkuk University, 1 Hwayang-Dong, Gwangjin-Gu, Seoul, 05029 Republic of Korea
| | - Vipin C. Kalia
- Department of Chemical Engineering, Konkuk University, 1 Hwayang-Dong, Gwangjin-Gu, Seoul, 05029 Republic of Korea
| | - In-Won Kim
- Department of Chemical Engineering, Konkuk University, 1 Hwayang-Dong, Gwangjin-Gu, Seoul, 05029 Republic of Korea
| |
Collapse
|
26
|
Anaerobic Digestion of Agri-Food Wastes for Generating Biofuels. Indian J Microbiol 2021; 61:427-440. [PMID: 34744198 DOI: 10.1007/s12088-021-00977-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2021] [Accepted: 08/25/2021] [Indexed: 12/24/2022] Open
Abstract
Presently, fossil fuels are extensively employed as major sources of energy, and their uses are considered unsustainable due to emissions of obnoxious gases on the burning of fossil fuels, which can lead to severe environmental complications, including human health. To tackle these issues, various processes are developing to waste as a feed to generate eco-friendly fuels. The biological production of fuels is considered to be more beneficial than physicochemical methods due to their environmentally friendly nature, high rate of conversion at ambient physiological conditions, and less energy-intensive. Among various biofuels, hydrogen (H2) is considered as a wonderful due to high calorific value and generate water molecule as end product on the burning. The H2 production from biowaste is demonstrated, and agri-food waste can be potentially used as a feedstock due to their high biodegradability over lignocellulosic-based biomass. Still, the H2 production is uneconomical from biowaste in fuel competing market because of low yields and increased capital and operational expenses. Anaerobic digestion is widely used for waste management and the generation of value-added products. This article is highlighting the valorization of agri-food waste to biofuels in single (H2) and two-stage bioprocesses of H2 and CH4 production.
Collapse
|
27
|
Kumar N, Mittal A, Yadav M, Sharma S, Kumar T, Chakraborty R, Sengupta S, Chauhan NS. Photocatalytic TiO 2/CdS/ZnS nanocomposite induces Bacillus subtilis cell death by disrupting its metabolism and membrane integrity. Indian J Microbiol 2021; 61:487-496. [PMID: 34744204 DOI: 10.1007/s12088-021-00973-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Accepted: 08/08/2021] [Indexed: 12/24/2022] Open
Abstract
Titanium dioxide (TiO2) is widely characterized for its application in clinical diagnostics, therapeutics, cosmetics, nutrition, and environment management. Despite enormous potential, its dependence on ultraviolet (UV) light for photocatalytic activity limits its commercialization. Accordingly in the present study, a photo catalytically superior ternary complex of TiO2 with Cadmium sulfide/Zinc sulfide (CdS/ZnS) has been synthesized, as well as, characterized for photo-induced antimicrobial activity. The band gap of crystalline TiO2/CdS/ZnS nanocomposite has been reduced (2.26 eV) and nanocomposite has shown the optimal photo-activation at 590 nm. TiO2 nanocomposite has significant bactericidal activity in visible light (P < 0.01). Exposure of the TiO2 nanocomposite affected the cellular metabolism by altering the 1681 metabolic features (P < 0.001) culminating in poor cellular survivability. Additionally, photo-induced reactive oxygen species generation through nanocomposite disrupts the microbial cellular structure. The present study synthesized photocatalytic nanocomposite as well as unveiled the holistic cellular effect of theTiO2/CdS/ZnS nanocomposite. Additionally, the present study also indicated the potential application of TiO2/CdS/ZnS nanocomposite for sustainable environment management, therapeutics, and various industries. Supplementary Information The online version contains supplementary material available at 10.1007/s12088-021-00973-z.
Collapse
Affiliation(s)
- Naveen Kumar
- Department of Chemistry, Maharshi Dayanand University, Rohtak, Haryana India
| | - Anuj Mittal
- Department of Chemistry, Maharshi Dayanand University, Rohtak, Haryana India
| | - Monika Yadav
- Department of Biochemistry, Maharshi Dayanand University, Rohtak, Haryana India
| | - Shankar Sharma
- Department of Chemistry, Maharshi Dayanand University, Rohtak, Haryana India
| | - Tarun Kumar
- Department of Biochemistry, Maharshi Dayanand University, Rohtak, Haryana India
| | - Rahul Chakraborty
- Council of Scientific and Industrial Research-Institute of Genomics and Integrative Biology, New Delhi, India
| | - Shantanu Sengupta
- Council of Scientific and Industrial Research-Institute of Genomics and Integrative Biology, New Delhi, India
| | - Nar Singh Chauhan
- Department of Biochemistry, Maharshi Dayanand University, Rohtak, Haryana India
| |
Collapse
|
28
|
Gęsicka A, Oleskowicz-Popiel P, Łężyk M. Recent trends in methane to bioproduct conversion by methanotrophs. Biotechnol Adv 2021; 53:107861. [PMID: 34710553 DOI: 10.1016/j.biotechadv.2021.107861] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 10/11/2021] [Accepted: 10/20/2021] [Indexed: 12/26/2022]
Abstract
Methane is an abundant and low-cost gas with high global warming potential and its use as a feedstock can help mitigate climate change. Variety of valuable products can be produced from methane by methanotrophs in gas fermentation processes. By using methane as a sole carbon source, methanotrophic bacteria can produce bioplastics, biofuels, feed additives, ectoine and variety of other high-value chemical compounds. A lot of studies have been conducted through the years for natural methanotrophs and engineered strains as well as methanotrophic consortia. These have focused on increasing yields of native products as well as proof of concept for the synthesis of new range of chemicals by metabolic engineering. This review shows trends in the research on key methanotrophic bioproducts since 2015. Despite certain limitations of the known production strategies that makes commercialization of methane-based products challenging, there is currently much attention placed on the promising further development.
Collapse
Affiliation(s)
- Aleksandra Gęsicka
- Water Supply and Bioeconomy Division, Faculty of Environmental Engineering and Energy, Poznan University of Technology, Berdychowo 4, 60-965 Poznan, Poland
| | - Piotr Oleskowicz-Popiel
- Water Supply and Bioeconomy Division, Faculty of Environmental Engineering and Energy, Poznan University of Technology, Berdychowo 4, 60-965 Poznan, Poland.
| | - Mateusz Łężyk
- Water Supply and Bioeconomy Division, Faculty of Environmental Engineering and Energy, Poznan University of Technology, Berdychowo 4, 60-965 Poznan, Poland.
| |
Collapse
|
29
|
Ansari I, Ejaz U, Abideen Z, Gulzar S, Syed MN, Liu J, Li W, Fu P, Sohail M. Wild Halophytic Phragmites karka Biomass Saccharification by Bacterial Enzyme Cocktail. Front Microbiol 2021; 12:714940. [PMID: 34616380 PMCID: PMC8488365 DOI: 10.3389/fmicb.2021.714940] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Accepted: 08/23/2021] [Indexed: 11/13/2022] Open
Abstract
Biofuel derived from halophytic biomass is getting attention owing to the concerns of energy versus food crisis. The disadvantages associated with edible bioenergy resources necessitate the need to explore new feedstocks for sustainable biofuel production. In this study, biomass from locally available abundant halophytes (Panicum antidotale, Phragmites karka, Halopyrum mucronatum, and Desmostachya bipinnata) was screened for saccharification by an enzyme cocktail composed of cellulase, xylanase, and pectinase from Brevibacillus borstelensis UE10 and UE27, Bacillus aestuarii UE25, Aneurinibacillus thermoaerophilus UE1, and Bacillus vallismortis MH 1. Two types of pretreatment, i.e., with dilute acid and freeze-thaw, were independently applied to the halophytic biomass. Saccharification of acid-pretreated P. karka biomass yielded maximum reducing sugars (9 mg g-1) as compared to other plants. Thus, the factors (temperature, pH, substrate concentration, and enzyme units) affecting its saccharification were optimized using central composite design. This statistical model predicted 49.8 mg g-1 of reducing sugars that was comparable to the experimental value (40 mg g-1). Scanning electron microscopy and Fourier-transform infrared spectroscopy showed significant structural changes after pretreatment and saccharification. Therefore, halophytes growing in saline, arid, and semi-arid regions can be promising alternative sources for bioenergy production.
Collapse
Affiliation(s)
- Immad Ansari
- Department of Microbiology, University of Karachi, Karachi, Pakistan
| | - Uroosa Ejaz
- Department of Microbiology, University of Karachi, Karachi, Pakistan.,Department of Biosciences, Shaheed Zulfikar Ali Bhutto Institute of Science and Technology, Karachi, Pakistan
| | - Zainul Abideen
- Dr. Muhammad Ajmal Khan Institute of Sustainable Halophyte Utilization, University of Karachi, Karachi, Pakistan
| | - Salman Gulzar
- Dr. Muhammad Ajmal Khan Institute of Sustainable Halophyte Utilization, University of Karachi, Karachi, Pakistan
| | | | - Jing Liu
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou, China
| | - Wang Li
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou, China
| | - Pengcheng Fu
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou, China.,Weihai UIC Biotechnology, Inc., Weihai, China
| | - Muhammad Sohail
- Department of Microbiology, University of Karachi, Karachi, Pakistan.,Weihai UIC Biotechnology, Inc., Weihai, China
| |
Collapse
|
30
|
Optimization of culture conditions for biomass and lipid production by oleaginous fungus Penicillium citrinum PKB20 using response surface methodology (RSM). BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2021. [DOI: 10.1016/j.bcab.2021.102169] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
31
|
Yan H, Cai F, Wang L, Chen C, Liu G. Compositional components and methane production potential of typical vegetable wastes. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:54177-54186. [PMID: 34402020 DOI: 10.1007/s11356-021-15798-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 07/30/2021] [Indexed: 06/13/2023]
Abstract
With the development of agriculture, a huge amount of vegetable waste (VW) is produced every year, posing a large considerable environmental problem that cannot be ignored. Anaerobic digestion (AD), as an eco-friendly, efficient, and sustainable biomass conversion technology, may be used to address the pollution caused by VW. The compositional components of various VWs are different, which will affect their biomethane potential and directly determine whether they are suitable substrates for AD. Thus, this study involved a systematic analysis of the composition and biomethane potential of 20 typical VWs. The results showed that the methane yields of the VWs were different (207.5-346.3 mL/g VS) owing to the differences in composition. More importantly, a correlation between the contents of organic components and methane production was established, and then used to predict methane production by VW rapidly. In addition, first-order model, modified Gompertz, and Cone models were used to describe the biochemical methanogenesis mechanism of these VWs. The results of this study can provide a reference for fundamental research on the AD of VW as well as serve a convenient and precise method to predict methane production by different VWs through analyzing compositional components, which will be beneficial for pollution prevention and the comprehensive utilization of VW in the future.
Collapse
Affiliation(s)
- Hu Yan
- Biomass Energy and Environmental Engineering Research Center, College of Chemical Engineering, Beijing University of Chemical Technology, 505 Zonghe Building, 15 North 3rd Ring East Road, Beijing, 100029, China
| | - Fanfan Cai
- Biomass Energy and Environmental Engineering Research Center, College of Chemical Engineering, Beijing University of Chemical Technology, 505 Zonghe Building, 15 North 3rd Ring East Road, Beijing, 100029, China
| | - Ligong Wang
- Biomass Energy and Environmental Engineering Research Center, College of Chemical Engineering, Beijing University of Chemical Technology, 505 Zonghe Building, 15 North 3rd Ring East Road, Beijing, 100029, China
| | - Chang Chen
- Biomass Energy and Environmental Engineering Research Center, College of Chemical Engineering, Beijing University of Chemical Technology, 505 Zonghe Building, 15 North 3rd Ring East Road, Beijing, 100029, China.
| | - Guangqing Liu
- Biomass Energy and Environmental Engineering Research Center, College of Chemical Engineering, Beijing University of Chemical Technology, 505 Zonghe Building, 15 North 3rd Ring East Road, Beijing, 100029, China.
| |
Collapse
|
32
|
Muneeswaran G, Patel SKS, Kondaveeti S, Shanmugam R, Gopinath K, Kumar V, Kim SY, Lee JK, Kalia VC, Kim IW. Biotin and Zn 2+ Increase Xylitol Production by Candida tropicalis. Indian J Microbiol 2021; 61:331-337. [PMID: 34294999 PMCID: PMC8263835 DOI: 10.1007/s12088-021-00960-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Accepted: 06/12/2021] [Indexed: 12/29/2022] Open
Abstract
In this study, the medium requirements to increase the production of xylitol by using Candida tropicalis (CT) have been investigated. The technique of single addition or omission of medium components was applied to determine the nutritional requirements. The addition of amino acids such as Asp, Glu, Gln, Asn, Thr, and Gly had no significant effect on CT growth. However, in the absence of other metal ions, there was a higher concentration of cell growth and xylitol production when only Zn2+ was present in the medium. The analysis of various vitamins unveiled that biotin and thiamine were the only vitamins required for the growth of CT. Surprisingly, when only biotin was present in the medium as a vitamin, there was less growth of CT than when the medium was complete, but the amount of xylitol released was significantly higher. Overall, this study will increase the xylitol production using the single omission or addtion technique.
Collapse
Affiliation(s)
- Gurusamy Muneeswaran
- Department of Chemical Engineering, Konkuk University, Seoul, 05029 Republic of Korea
| | - Sanjay K. S. Patel
- Department of Chemical Engineering, Konkuk University, Seoul, 05029 Republic of Korea
| | - Sanath Kondaveeti
- Department of Chemical Engineering, Konkuk University, Seoul, 05029 Republic of Korea
| | - Ramasamy Shanmugam
- Department of Chemical Engineering, Konkuk University, Seoul, 05029 Republic of Korea
| | - Krishnasamy Gopinath
- Department of Chemical Engineering, Konkuk University, Seoul, 05029 Republic of Korea
| | - Virendra Kumar
- Department of Chemical Engineering, Konkuk University, Seoul, 05029 Republic of Korea
| | - Sang-Yong Kim
- Department of Food Science and Biotechnology, Shin-Ansan University, Ansan, 15435 Republic of Korea
| | - Jung-Kul Lee
- Department of Chemical Engineering, Konkuk University, Seoul, 05029 Republic of Korea
| | - Vipin Chandra Kalia
- Department of Chemical Engineering, Konkuk University, Seoul, 05029 Republic of Korea
| | - In-Won Kim
- Department of Chemical Engineering, Konkuk University, Seoul, 05029 Republic of Korea
| |
Collapse
|
33
|
Varjani S, Bajaj A, Purohit HJ, Kalia VC. Bioremediation and Circular Biotechnology. Indian J Microbiol 2021; 61:235-236. [PMID: 34294988 PMCID: PMC8263819 DOI: 10.1007/s12088-021-00953-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Affiliation(s)
- Sunita Varjani
- Gujarat Pollution Control Board, Paryavaran Bhavan, CHH Road, Sector 10A, Gandhinagar, 382 010 Gujarat India
| | - Abhay Bajaj
- CSIR-National Environmental Engineering Research Institute (CSIR-NEERI), Nehru Marg, Nagpur, 440020 India
| | - Hemant J. Purohit
- CSIR-National Environmental Engineering Research Institute (CSIR-NEERI), Nehru Marg, Nagpur, 440020 India
| | - V. C. Kalia
- Department of Chemical Engineering, Konkuk University, 1 Hwayang-Dong, Gwangjin-Gu, Seoul, 05029 Republic of Korea
| |
Collapse
|
34
|
Selection of methanotrophic platform for methanol production using methane and biogas. J Biosci Bioeng 2021; 132:460-468. [PMID: 34462232 DOI: 10.1016/j.jbiosc.2021.07.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 07/11/2021] [Accepted: 07/14/2021] [Indexed: 11/23/2022]
Abstract
To develop biotechnological process for methane to methanol conversion, selection of a suitable methanotrophic platform is an important aspect. Systematic approach based on literature and public databases was developed to select representative methanotrophs Methylotuvimicrobium alcaliphilum, Methylomonas methanica, Methylosinus trichosporium and Methylocella silvestris. Selected methanotrophs were further investigated for methanol tolerance and methanol production on pure methane as well as biogas along with key enzyme activities involved in methane utilization. Among selected methanotrophs M. alcaliphilum showed maximum methanol tolerance of 6% v/v along with maximum methanol production of 307.90 mg/L and 247.37 mg/L on pure methane and biogas respectively. Activity of methane monooxygenase and formate dehydrogenase enzymes in M.alcaliphilum was significantly higher up to 98.40 nmol/min/mg cells and 0.87 U/mg protein, respectively. Biotransformation trials in 14 L fermentor resulted in increased methanol production up to 418 and 331.20 mg/L, with yield coefficient 0.83 and 0.71 mg methanol/mg of pure methane and biogas respectively. The systematic selection resulted in haloalkaliphilic strain M. alcaliphilum as one of the potential methanotroph for bio-methanol production.
Collapse
|
35
|
Removal of Petroleum Contaminants Through Bioremediation with Integrated Concepts of Resource Recovery: A Review. Indian J Microbiol 2021; 61:250-261. [PMID: 34294990 PMCID: PMC8263831 DOI: 10.1007/s12088-021-00928-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Accepted: 02/24/2021] [Indexed: 02/08/2023] Open
Abstract
There is an upsurge in industrial production to meet the rising demands of the rapidly growing population globally. The enormous energy demand of the growing economies still depends upon petroleum. It has also resulted in environmental pollution due to the release of petroleum origin pollutants. Soil and aquifers, especially in the direct impact zones of petroleum refineries, are the worst hit. The integrated concept of bioremediation and resource recovery offers a sustainable solution to mitigate environmental pollution. It involves biodegradation, a benign utilization of toxic wastes, and the recycling of natural resources. Bioremediation is considered an integral contributor to the emerging concepts of bio-economy and sustainable development goals. This review article aims to provide an updated overview of bioremediation involving petroleum-based contaminants. Microbial degradation is discussed as a promising strategy for petroleum refinery effluent and sludge treatment. The review also provides an insight into resource reuse and recovery as a holistic approach towards sustainable refinery waste treatment. Furthermore, the integrated technologies that deserve in-depth exploration for future study in the refinery sector are highlighted in the present study.
Collapse
|
36
|
Adesra A, Srivastava VK, Varjani S. Valorization of Dairy Wastes: Integrative Approaches for Value Added Products. Indian J Microbiol 2021; 61:270-278. [PMID: 34294992 PMCID: PMC8263842 DOI: 10.1007/s12088-021-00943-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2020] [Accepted: 04/19/2021] [Indexed: 11/24/2022] Open
Abstract
The era of rapid industrialization succeeded by a shift in organizational focus on research and technology development which has fueled many industries along with the dairy industry to grow at an exponential rate. The dairy industry has achieved remarkable growth in the last decade in India. Waste produced by dairy industry consists of a high organic load thus cannot be discharged untreated. Even though treatment and management of waste are well documented, but the main problem is concerned with sludge produced after treatment. There is a gap in the application of various methods for effective treatment of the waste, hence there is a need for technology-oriented research in this area because of a paradigm shift in perspectives towards sustainable management of waste to recover value added products including energy as energy demand is also rising. Sludge which is generally land spread can also be used for energy generation. This paper discusses the environmental effects of waste generated due to dairy industrial activities; various methods used for the advanced treatment of dairy waste. This review article aims to present and discuss the state-of-art information for recovery of value-added products (single cell protein, biofertilizers, biopolymers and biosurfactants) from dairy waste with emphasis on integration of technologies for environmental sustainability. This paper also includes challenges and future perspectives in this field.
Collapse
Affiliation(s)
- Ankita Adesra
- Sankalchand Patel Vidyadham, Sankalchand Patel University, Visnagar, Gujarat 384 315 India
| | - Vijay Kumar Srivastava
- Sankalchand Patel Vidyadham, Sankalchand Patel University, Visnagar, Gujarat 384 315 India
| | - Sunita Varjani
- Sankalchand Patel Vidyadham, Sankalchand Patel University, Visnagar, Gujarat 384 315 India
- Gujarat Pollution Control Board, Gandhinagar, Gujarat 382 010 India
| |
Collapse
|
37
|
Usmani Z, Sharma M, Awasthi AK, Sharma GD, Cysneiros D, Nayak SC, Thakur VK, Naidu R, Pandey A, Gupta VK. Minimizing hazardous impact of food waste in a circular economy - Advances in resource recovery through green strategies. JOURNAL OF HAZARDOUS MATERIALS 2021; 416:126154. [PMID: 34492935 DOI: 10.1016/j.jhazmat.2021.126154] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 05/08/2021] [Accepted: 05/15/2021] [Indexed: 06/13/2023]
Abstract
Recent trends in food waste and its management have increasingly started to focus on treating it as a reusable resource. The hazardous impact of food waste such as the release of greenhouse gases, deterioration of water quality and contamination of land areas are a major threat posed by food waste. Under the circular economy principles, food waste can be used as a sustainable supply of high-value energy, fuel, and nutrients through green techniques such as anaerobic digestion, co-digestion, composting, enzymatic treatment, ultrasonic, hydrothermal carbonization. Recent advances made in anaerobic co-digestion are helping in tackling dual or even multiple waste streams at once with better product yields. Integrated approaches that employ pre-processing the food waste to remove obstacles such as volatile fractions, oils and other inhibitory components from the feedstock to enhance their bioconversion to reduce sugars. Research efforts are also progressing in optimizing the operational parameters such as temperature, pressure, pH and residence time to enhance further the output of products such as methane, hydrogen and other platform chemicals such as lactic acid, succinic acid and formic acid. This review brings together some of the recent progress made in the green strategies towards food waste valorization.
Collapse
Affiliation(s)
- Zeba Usmani
- Department of Applied Biology, University of Science and Technology, Meghalaya 793101, India
| | - Minaxi Sharma
- Department of Applied Biology, University of Science and Technology, Meghalaya 793101, India; Food Technology, Akal College of Agriculture, Eternal University, Baru Sahib, Himachal Pradesh 173101, India
| | | | | | | | - S Chandra Nayak
- DOS in Biotechnology, University of Mysore Manasagangotri, Mysore, India
| | - Vijay Kumar Thakur
- Biorefining and Advanced Materials Research Center, Scotland's Rural College (SRUC), Kings Buildings, West Mains Road, Edinburgh EH9 3JG, UK
| | - Ravi Naidu
- Global Centre for Environmental Remediation (GCER), The University of Newcastle, Faculty of Science, Callaghan, NSW 2308, Australia; Cooperative Research Centre for Contamination Assessment and Remediation of the Environment (CRC CARE), The University of Newcastle, Callaghan, NSW 2308, Australia
| | - Ashok Pandey
- Centre for Innovation and Translational Research, CSIR-Indian Institute of Toxicology Research, Lucknow 226 001, India; Centre for Energy and Environmental Sustainability, Lucknow-226 029, India
| | - Vijai Kumar Gupta
- Biorefining and Advanced Materials Research Center, Scotland's Rural College (SRUC), Kings Buildings, West Mains Road, Edinburgh EH9 3JG, UK; Center for Safe and Improved Food, Scotland's Rural College (SRUC), Kings Buildings, West Mains Road, Edinburgh EH9 3JG, UK.
| |
Collapse
|
38
|
Tsai YC, Du YQ, Yang CF. Anaerobic biohydrogen production from biodetoxified rice straw hydrolysate. J Taiwan Inst Chem Eng 2021. [DOI: 10.1016/j.jtice.2021.05.034] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
39
|
Biosynthesis of Lactobionic Acid in Whey-Containing Medium by Microencapsulated and Free Bacteria of Pseudomonas taetrolens. Indian J Microbiol 2021; 61:315-323. [PMID: 34290461 PMCID: PMC8263841 DOI: 10.1007/s12088-021-00944-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Accepted: 05/03/2021] [Indexed: 12/02/2022] Open
Abstract
The aim of this research was to develop a method of its production from whey using bacteria of the species Pseudomonas taetrolens. Analyses of the lactobionic acid production method from whey showed that the following factors have a significant effect on its efficiency: the frequency of whey batch feeding, pH and the type of bacteria application, i.e. microencapsulated vs. free. Lactose and lactobionic acid were assayed using high performance liquid chromatography (HPLC) and liquid chromatography-electrospray ionization-tandem mass spectrometry (LC–ESI–MS). The highest concentration of lactobionic acid of 22.03 mg/cm3 was obtained when whey was batch fed at 72-h intervals, pH was maintained at 6.25 and bacteria were enclosed in alginate microcapsules.
Collapse
|
40
|
Fan XM, Shen JJ, Xu YY, Gao J, Zhang YW. Metabolic integration of azide functionalized glycan on Escherichia coli cell surface for specific covalent immobilization onto magnetic nanoparticles with click chemistry. BIORESOURCE TECHNOLOGY 2021; 324:124689. [PMID: 33450627 DOI: 10.1016/j.biortech.2021.124689] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Revised: 01/04/2021] [Accepted: 01/05/2021] [Indexed: 06/12/2023]
Abstract
A method for specific immobilization of whole-cell with covalent bonds was developed through a click reaction between alkyne and azide groups. In this approach, magnetic nanoparticle Fe3O4@SiO2-NH2-alkyne was synthesized with Fe3O4 core preparation, SiO2 coating, and alkyne functionalization on the surface. The azides were successfully integrated onto the cell surface of the recombinant E. coli harboring glycerol dehydrogenase, which was employed as the model cell. The highest immobilization yield of 83% and activity recovery of 94% were obtained under the conditions of 0.67 mg mg-1 cell-support ratio, pH 6.0, temperature 45 °C, and 20 mM Cu2+ concentration. The immobilized cell showed good reusability, which remained over 50% of initial activity after 10 cycles of utilization. Its activity was 9.7-fold higher than that of the free cell at the condition of pH 8.0 and each optimal temperature. Furthermore, the immobilized cell showed significantly higher activity, operational stability, and reusability.
Collapse
Affiliation(s)
- Xiao-Man Fan
- School of Pharmacy, Jiangsu University, Zhenjiang 212013, People's Republic of China
| | - Jia-Jia Shen
- School of Pharmacy, Jiangsu University, Zhenjiang 212013, People's Republic of China
| | - Yuan-Yuan Xu
- School of Pharmacy, Jiangsu University, Zhenjiang 212013, People's Republic of China
| | - Jian Gao
- College of Petroleum and Chemical Engineering, Beibu Gulf University, 535100 Qinzhou, People's Republic of China
| | - Ye-Wang Zhang
- School of Pharmacy, Jiangsu University, Zhenjiang 212013, People's Republic of China; College of Petroleum and Chemical Engineering, Beibu Gulf University, 535100 Qinzhou, People's Republic of China.
| |
Collapse
|
41
|
Abstract
Biofuels are receiving increased scientific attention, and recently different biofuels have been proposed for spark ignition engines. This paper presents the state of art of using biofuels in spark ignition engines (SIE). Different biofuels, mainly ethanol, methanol, i-butanol-n-butanol, and acetone, are blended together in single dual issues and evaluated as renewables for SIE. The biofuels were compared with each other as well as with the fossil fuel in SIE. Future biofuels for SIE are highlighted. A proposed method to reduce automobile emissions and reformulate the emissions into new fuels is presented and discussed. The benefits and weaknesses of using biofuels in SIE are summarized. The study established that ethanol has several benefits as a biofuel for SIE; it enhanced engine performance and decreased pollutant emissions significantly; however, ethanol showed some drawbacks, which cause problems in cold starting conditions and, additionally, the engine may suffer from a vapor lock situation. Methanol also showed improvements in engine emissions/performance similarly to ethanol, but it is poisonous biofuel and it has some sort of incompatibility with engine materials/systems; its being miscible with water is another disadvantage. The lowest engine performance was displayed by n-butanol and i-butanol biofuels, and they also showed the greatest amount of unburned hydrocarbons (UHC) and CO emissions, but the lowest greenhouse effect. Ethanol and methanol introduced the highest engine performance, but they also showed the greatest CO2 emissions. Acetone introduced a moderate engine performance and the best/lowest CO and UHC emissions. Single biofuel blends are also compared with dual ones, and the results showed the benefits of the dual ones. The study concluded that the next generation of biofuels is expected to be dual blended biofuels. Different dual biofuel blends are also compared with each other, and the results showed that the ethanol–methanol (EM) biofuel is superior in comparison with n-butanol–i-butanol (niB) and i-butanol–ethanol (iBE).
Collapse
|