1
|
Lee S, Leclercq LD, Guerardel Y, Szymanski CM, Hurtaux T, Doering TL, Katayama T, Fujita K, Aoki K, Aoki-Kinoshita KF. MicroGlycoDB: A database of microbial glycans using Semantic Web technologies. BBA ADVANCES 2024; 6:100126. [PMID: 39720162 PMCID: PMC11667048 DOI: 10.1016/j.bbadva.2024.100126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 11/25/2024] [Accepted: 11/26/2024] [Indexed: 12/26/2024] Open
Abstract
Glycoconjugates are present on microbial surfaces and play critical roles in modulating interactions with the environment and the host. Extensive research on microbial glycans, including elucidating the structural diversity of the glycan moieties of glycoconjugates and polysaccharides, has been carried out to investigate the function of glycans in modulating the interactions between the host and microbes, to explore their potential applications in the therapeutic targeting of pathogenic species, and in the use as probiotics in gut microbiomes. However, glycan-related information is dispersed across numerous databases and a vast amount of literature, which makes it laborious and time-consuming to identify and gather the relevant information about microbial glycosylation. This challenge can be addressed by a comprehensive database, which could offer insight into the fundamental processes underlying glycosylation. We have developed a MicroGlycoDB database to provide integrated glycan information on important model microorganisms. The data is described using Semantic Web Technologies, which allow microbial glycan data to be represented in a structured format accessible by machines, thus facilitating data sharing and integration with other resources that catalog features such as pathways, diseases, or interactions. This semantic data based on ontologies will contribute to the discovery of new knowledge in the field of microbiology, along with the expansion of information on the glycosylation of other microorganisms.
Collapse
Affiliation(s)
- Sunmyoung Lee
- Glycan and Life Systems Integration Center (GaLSIC), Soka University, Hachioji, Tokyo, Japan
| | - Louis-David Leclercq
- French National Center for Scientific Research (CNRS), University of Lille, Lille, France
| | - Yann Guerardel
- French National Center for Scientific Research (CNRS), University of Lille, Lille, France
| | | | - Thomas Hurtaux
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO, USA
| | - Tamara L. Doering
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO, USA
| | - Takane Katayama
- Graduate School of Biostudies, Kyoto University, Kyoto, Japan
| | - Kiyotaka Fujita
- The United Graduate School of Agricultural Sciences, Kagoshima University, Kagoshima, Japan
| | - Kazuhiro Aoki
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Kiyoko F. Aoki-Kinoshita
- Glycan and Life Systems Integration Center (GaLSIC), Soka University, Hachioji, Tokyo, Japan
- Graduate School of Science and Engineering, Soka University, Hachioji, Tokyo, Japan
| |
Collapse
|
2
|
Chen X, Luo C, Liu Y, Li T, Zhang H, Feng X. Effects of soyhulls with different particle size on the growth performance, blood indices and gut microbiota of yellow feather broilers. Br Poult Sci 2024; 65:191-202. [PMID: 38416127 DOI: 10.1080/00071668.2024.2308276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 12/08/2023] [Indexed: 02/29/2024]
Abstract
1. The objective of this study was to determine the effects of soyhulls with different particle sizes on the growth performance, blood indices and gut microbiota of yellow feather broilers.2. Total of 240 healthy, one-day-old, yellow feather broilers were randomly divided into four groups, with six pen replicates within each group and ten birds per pen. The control group birds were fed the basal diet (Control). For the treatment groups, 5% soyhulls with different particle sizes were included in the basal diet. The particle size geometric mean diameters (dgw) of the soyhulls in the three treatment groups were 299.69 μm (LowPS), 489.85 μm (MediumPS) and 734.83 μm (HighPS) with geometric standard deviation (Sgw) 1.75 μm, 1.62 μm and 1.67 μm, respectively.3. Results showed that the growth performance variables and organ indices were not different among the four groups. The MediumPS group had increased TG, T-CHO, ALT, HDL-C, and GSH-PX levels and decreased T-AOC levels, whereas LowPS and HighPS groups had increased HDL-C and GSH-PX levels (p < 0.05). Microbial diversity analysis showed that the intestinal microbiota of yellow feather broilers mainly included Firmicutes and Bacteroidetes. Inclusion of 5% soyhulls with different particle size had no effect on alpha diversity indices of caecal microbiota. The HighPS group had significantly higher relative abundance of Firmicutes spp. and lower Bacteroidetes spp. compared with the LowPS and MediumPS group but this was not different from the Control group. The relative abundance of Cyanobacteria spp. was significantly higher in the HighPS group than the other three groups. LEfSe analysis showed that there were more enriched biomarker taxa in the groups with soyhulls than the control group.4. Overall, the inclusion of soyhulls with different particle sizes had limited effects on growth performance, blood indices and caecal microbiota composition of yellow feather broilers.
Collapse
Affiliation(s)
- X Chen
- School of Life Science and Engineering, Foshan University, Foshan, China
| | - C Luo
- School of Life Science and Engineering, Foshan University, Foshan, China
| | - Y Liu
- School of Life Science and Engineering, Foshan University, Foshan, China
| | - T Li
- School of Life Science and Engineering, Foshan University, Foshan, China
| | - H Zhang
- School of Life Science and Engineering, Foshan University, Foshan, China
| | - X Feng
- School of Life Science and Engineering, Foshan University, Foshan, China
| |
Collapse
|
3
|
Guo Y, Tang Y, Zhang L, Liu Y, Ma Q, Zhao L. Enzymatic characterization and application of soybean hull peroxidase as an efficient and renewable biocatalyst for degradation of zearalenone. Int J Biol Macromol 2024; 260:129664. [PMID: 38266837 DOI: 10.1016/j.ijbiomac.2024.129664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 12/15/2023] [Accepted: 01/19/2024] [Indexed: 01/26/2024]
Abstract
Zearalenone (ZEN) is a notorious mycotoxin commonly found in Fusarium-contaminated crops, which causes great loss in livestock farming and serious health problems to humans. In the present work, we found that crude peroxidase extraction from soybean hulls could use H2O2 as a co-substate to oxidize ZEN. Molecular docking and dynamic simulation also supported that ZEN could bind to the active site of soybean hull peroxidase (SHP). Subsequently, SHP extracted from soybean hulls was purified using a combined purification protocol involving ammonium sulfate precipitation, ion exchange chromatography and size exclusion chromatography. The purified SHP showed wide pH resistance and high thermal stability. This peroxidase could degrade 95 % of ZEN in buffer with stepwise addition of 100 μM H2O2 in 1 h. The two main ZEN degradation products were identified as 13-OH-ZEN and 13-OH-ZEN-quinone. Moreover, SHP-catalyzed ZEN degradation products displayed much less cytotoxicity to human liver cells than ZEN. The application of SHP in various food matrices obtained 54 % to 85 % ZEN degradation. The findings in this study will promote the utilization of SHP as a cheap and renewable biocatalyst for degrading ZEN in food.
Collapse
Affiliation(s)
- Yongpeng Guo
- State Key Laboratory of Animal Nutrition and Feeding, Poultry Nutrition and Feed Technology Innovation Team, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China
| | - Yu Tang
- State Key Laboratory of Animal Nutrition and Feeding, Poultry Nutrition and Feed Technology Innovation Team, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Liangyu Zhang
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China
| | - Yanrong Liu
- State Key Laboratory of Animal Nutrition and Feeding, Poultry Nutrition and Feed Technology Innovation Team, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Qiugang Ma
- State Key Laboratory of Animal Nutrition and Feeding, Poultry Nutrition and Feed Technology Innovation Team, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Lihong Zhao
- State Key Laboratory of Animal Nutrition and Feeding, Poultry Nutrition and Feed Technology Innovation Team, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
4
|
Mohd Zaini NA, Azizan NAZ, Abd Rahim MH, Jamaludin AA, Raposo A, Raseetha S, Zandonadi RP, BinMowyna MN, Raheem D, Lho LH, Han H, Wan-Mohtar WAAQI. A narrative action on the battle against hunger using mushroom, peanut, and soybean-based wastes. Front Public Health 2023; 11:1175509. [PMID: 37250070 PMCID: PMC10213758 DOI: 10.3389/fpubh.2023.1175509] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 04/13/2023] [Indexed: 05/31/2023] Open
Abstract
Numerous generations have been affected by hunger, which still affects hundreds of millions of people worldwide. The hunger crisis is worsening although many efforts have been made to minimize it. Besides that, food waste is one of the critical problems faced by most countries worldwide. It has disrupted the food chain system due to inefficient waste management, while negatively impacting the environment. The majority of the waste is from the food production process, resulting in a net zero production for food manufacturers while also harnessing its potential. Most food production wastes are high in nutritional and functional values, yet most of them end up as low-cost animal feed and plant fertilizers. This review identified key emerging wastes from the production line of mushroom, peanut, and soybean (MPS). These wastes (MPS) provide a new source for food conversion due to their high nutritional content, which contributes to a circular economy in the post-pandemic era and ensures food security. In order to achieve carbon neutrality and effective waste management for the production of alternative foods, biotechnological processes such as digestive, fermentative, and enzymatic conversions are essential. The article provides a narrative action on the critical potential application and challenges of MPS as future foods in the battle against hunger.
Collapse
Affiliation(s)
- Nurul Aqilah Mohd Zaini
- Department of Food Sciences, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, Bangi, Selangor, Malaysia
| | - Nur Asyiqin Zahia Azizan
- Functional Omics and Bioprocess Development Laboratory, Institute of Biological Sciences, Faculty of Science, Universiti Malaya, Kuala Lumpur, Malaysia
| | - Muhamad Hafiz Abd Rahim
- Faculty of Food Science and Technology, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - Adi Ainurzaman Jamaludin
- Environmental Management Programme, Institute of Biological Sciences, Faculty of Science, Universiti Malaya, Kuala Lumpur, Malaysia
| | - António Raposo
- CBIOS (Research Center for Biosciences and Health Technologies), Universidade Lusófona de Humanidades e Tecnologias, Lisboa, Portugal
| | - Siva Raseetha
- Faculty of Applied Sciences, Universiti Teknologi MARA, Shah Alam, Selangor, Malaysia
| | - Renata Puppin Zandonadi
- Department of Nutrition, Faculty of Health Sciences, University of Brasília, Brasília, Brazil
| | - Mona N. BinMowyna
- College of Applied Medical Sciences, Shaqra University, Shaqra, Saudi Arabia
| | - Dele Raheem
- Northern Institute for Environmental and Minority Law (NIEM), Arctic Centre, University of Lapland, Rovaniemi, Finland
| | - Linda Heejung Lho
- College of Business, Division of Tourism and Hotel Management, Cheongju University, Cheongju-si, Chungcheongbuk-do, Republic of Korea
| | - Heesup Han
- College of Hospitality and Tourism Management, Sejong University, Seoul, Republic of Korea
| | - Wan Abd Al Qadr Imad Wan-Mohtar
- Functional Omics and Bioprocess Development Laboratory, Institute of Biological Sciences, Faculty of Science, Universiti Malaya, Kuala Lumpur, Malaysia
| |
Collapse
|
5
|
Yang H, Liu Y, Wang S, Zhao L, Liu H, Liu J, Zhu D. Composition, morphology, interfacial rheology and emulsifying ability of soy hull polysaccharides extracted with ammonium oxalate and sodium citrate as extractants. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2023; 103:2325-2336. [PMID: 36628504 DOI: 10.1002/jsfa.12441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 09/24/2022] [Accepted: 01/11/2023] [Indexed: 06/17/2023]
Abstract
BACKGROUND Soy hull, a by-product of crop processing, is rich in pectin-like polysaccharides that have potential for thickening, gelling and emulsifying applications. The effect of ammonium oxalate (SHPA) and sodium citrate (SHPS) on the conformation, physicochemical properties and emulsifying ability of soy hull polysaccharide (SHP) were investigated. RESULTS The composition analysis showed that SHPS had more polysaccharide, protein, and higher molecular weight than SHPA. Images of atomic force microscopy (AFM) and scanning electron microscopy (SEM) showed that SHPS molecules appeared spherical bodies with smooth and firm surfaces, while SHPA molecules appeared chain-like bodies with rough and wrinkled surface. At the oil-water interface, SHPS adsorbed faster and formed a more elastic interfacial layer than SHPA. The characterization of the prepared emulsions showed that the SHPS emulsion was a smaller particle size and more stable system within 30 days than SHPA emulsion, especially at the SHPS concentration of 9 mg mL-1 . Images of cryo-scanning electron microscopy (cryo-SEM) also demonstrated SHPS formed clearer network structure on the surface of the oil droplets, compared to SHPA. CONCLUSION Overall, ammonium oxalate and sodium citrate significantly influenced the composition and properties of the SHP. SHPS exhibited a better emulsifying ability than SHPA, which was mainly due to the higher protein content of SHPS and the sodium ion (Na+ ) residue of sodium citrate. This study is useful for the extraction and application of SHP and other plant-based polysaccharides. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Hui Yang
- College of Food Science and Technology, Bohai University, Jinzhou, China
| | - Yexuan Liu
- College of Food Science and Technology, Bohai University, Jinzhou, China
| | - Shengnan Wang
- College of Food Science and Technology, Bohai University, Jinzhou, China
| | - Lingling Zhao
- College of Food Science and Technology, Bohai University, Jinzhou, China
| | - He Liu
- College of Food Science and Technology, Bohai University, Jinzhou, China
| | - Jun Liu
- Dezhou National Hi-Tech Industrial Development Zone, Shandong Yuwang Ecogical Food Industry Co. Ltd., Yucheng, China
| | - Danshi Zhu
- College of Food Science and Technology, Bohai University, Jinzhou, China
| |
Collapse
|
6
|
Martinez-Burgos WJ, Porto de Souza Vandenberghe L, Karp SG, Murawski de Mello AF, Thomaz Soccol V, Soccol CR. Microbial lipid production from soybean hulls using Lipomyces starkeyi LPB53 in a circular economy. BIORESOURCE TECHNOLOGY 2023; 372:128650. [PMID: 36682478 DOI: 10.1016/j.biortech.2023.128650] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 01/15/2023] [Accepted: 01/17/2023] [Indexed: 06/17/2023]
Abstract
Soybean hulls are lignocellulosic residuesgeneratedinthe industrial processing of soybean, representing about 5 % of the mass of the whole bean. This by-product isan importantsource of polymers suchas cellulose(34 %) and hemicellulose (11 %),which could bevalorizedvia biotechnology to improvethe economic returnof the oilseed chain. In the present work,soybean hulls were evaluated as a carbon sourcefor biolipid productionbyLipomycesstarkeyi LPB 53. Initially the hulls were treated physicochemically and enzymatically to obtain fermentable sugars. Subsequently, biomass growth was evaluated using different nitrogen sources andthe lipid production was optimized, reaching a maximum cell biomass concentration of 26.5 g/L with 42.5 % of lipids. Around 65 % of the xylose content was consumed.The obtained oil wasmajorlycomposed of oleic, palmitic, palmitoleic, linoleic and stearic fatty acids in a proportion of 54 %, 32 %, 4 %, 3 % and 2 %, respectively.
Collapse
Affiliation(s)
- Walter J Martinez-Burgos
- Department of Bioprocess Engineering and Biotechnology, Federal University of Paraná, Centro Politécnico, 81531-980 Curitiba, Paraná, Brazil
| | - Luciana Porto de Souza Vandenberghe
- Department of Bioprocess Engineering and Biotechnology, Federal University of Paraná, Centro Politécnico, 81531-980 Curitiba, Paraná, Brazil
| | - Susan Grace Karp
- Department of Bioprocess Engineering and Biotechnology, Federal University of Paraná, Centro Politécnico, 81531-980 Curitiba, Paraná, Brazil
| | - Ariane Fátima Murawski de Mello
- Department of Bioprocess Engineering and Biotechnology, Federal University of Paraná, Centro Politécnico, 81531-980 Curitiba, Paraná, Brazil
| | - Vanete Thomaz Soccol
- Department of Bioprocess Engineering and Biotechnology, Federal University of Paraná, Centro Politécnico, 81531-980 Curitiba, Paraná, Brazil
| | - Carlos Ricardo Soccol
- Department of Bioprocess Engineering and Biotechnology, Federal University of Paraná, Centro Politécnico, 81531-980 Curitiba, Paraná, Brazil.
| |
Collapse
|
7
|
Second Generation Bioethanol Production from Soybean Hulls Pretreated with Imidazole as a New Solvent. FERMENTATION-BASEL 2023. [DOI: 10.3390/fermentation9020093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Soybean hulls (SH) are the main industrial waste from soybean processing, representing 5–8% of the whole grain. Imidazole was employed for the hydrothermal pretreatment of SH and further bioethanol production. Different pretreatment temperatures (120 and 180 °C) and times (1 and 3 h) were tested. Lignin removal and glucose yield were significantly influenced by temperature. After 48 h of enzymatic hydrolysis of imidazole-treated SH (120 °C, 1 h), 32.7 g/L of glucose and 9.4 g/L of xylose were obtained. A maximum bioethanol yield of 78.9% was reached after 12 h of fermentation by Saccharomyces cerevisiae using SH enzymatic hydrolysate. Imidazole appears to be a potential alternative to pretreat lignocellulosic wastes such as SH for the production of second-generation biofuels and other biomolecules.
Collapse
|
8
|
Sintaha M, Man CK, Yung WS, Duan S, Li MW, Lam HM. Drought Stress Priming Improved the Drought Tolerance of Soybean. PLANTS (BASEL, SWITZERLAND) 2022; 11:2954. [PMID: 36365408 PMCID: PMC9653977 DOI: 10.3390/plants11212954] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 10/26/2022] [Accepted: 10/31/2022] [Indexed: 06/16/2023]
Abstract
The capability of a plant to protect itself from stress-related damages is termed "adaptability" and the phenomenon of showing better performance in subsequent stress is termed "stress memory". While drought is one of the most serious disasters to result from climate change, the current understanding of drought stress priming in soybean is still inadequate for effective crop improvement. To fill this gap, in this study, the drought memory response was evaluated in cultivated soybean (Glycine max). To determine if a priming stress prior to a drought stress would be beneficial to the survival of soybean, plants were divided into three treatment groups: the unprimed group receiving one cycle of stress (1S), the primed group receiving two cycles of stress (2S), and the unstressed control group not subjected to any stress (US). When compared with the unprimed plants, priming led to a reduction of drought stress index (DSI) by 3, resulting in more than 14% increase in surviving leaves, more than 13% increase in leaf water content, slight increase in shoot water content and a slower rate of loss of water from the detached leaves. Primed plants had less than 60% the transpiration rate and stomatal conductance compared to the unprimed plants, accompanied by a slight drop in photosynthesis rate, and about a 30% increase in water usage efficiency (WUE). Priming also increased the root-to-shoot ratio, potentially improving water uptake. Selected genes encoding late embryogenesis abundant (LEA) proteins and MYB, NAC and PP2C domain-containing transcription factors were shown to be highly induced in primed plants compared to the unprimed group. In conclusion, priming significantly improved the drought stress response in soybean during recurrent drought, partially through the maintenance of water status and stronger expression of stress related genes. In sum, we have identified key physiological parameters for soybean which may be used as indicators for future genetic study to identify the genetic element controlling the drought stress priming.
Collapse
Affiliation(s)
- Mariz Sintaha
- School of Life Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong, China
- Centre for Soybean Research of the State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, Hong Kong, China
| | - Chun-Kuen Man
- School of Life Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong, China
- Centre for Soybean Research of the State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, Hong Kong, China
| | - Wai-Shing Yung
- School of Life Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong, China
- Centre for Soybean Research of the State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, Hong Kong, China
| | - Shaowei Duan
- School of Life Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong, China
- Centre for Soybean Research of the State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, Hong Kong, China
| | - Man-Wah Li
- School of Life Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong, China
- Centre for Soybean Research of the State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, Hong Kong, China
| | - Hon-Ming Lam
- School of Life Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong, China
- Centre for Soybean Research of the State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, Hong Kong, China
| |
Collapse
|
9
|
Wang HN, Ke X, Jia R, Huang LG, Liu ZQ, Zheng YG. Multivariate modular metabolic engineering for enhanced gibberellic acid biosynthesis in Fusarium fujikuroi. BIORESOURCE TECHNOLOGY 2022; 364:128033. [PMID: 36174897 DOI: 10.1016/j.biortech.2022.128033] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 09/21/2022] [Accepted: 09/22/2022] [Indexed: 06/16/2023]
Abstract
Gibberellic acid (GA3) is one of natural phytohormones, widely used in agriculture and downstream fields. Qualified for the nature productivity, Fusarium fujikuroi was currently employed for the industrial biotransformation from agriculture residues into GA3. Herein, Multivariate modular metabolic engineering (MMME) was assigned to reconstitute the metabolic balance in F. fujikuroi for enhancing GA3 production. Three modules including precursor pool, cluster-specific channel and P450-mediated oxidation in GA3 biosynthetic pathway were defined and optimized separately. The enhancement of both precursor pool and cluster-specific channel pushed metabolic flux transfer into the GA3-specific pathway. Moreover, both introduction of Vitreoscilla hemoglobin and reinforcement of NADPH-dependent cytochrome P450 reductase facilitated oxidation cofactor transfer and subsequently boosted mycelium growth and GA3 biosynthesis. Integration of three modules in the engineered strain accumulated 2.89 g/L GA3 in shake flask via submerged fermentation, presenting a promising modular metabolic engineering model for efficient microbial transformation in agro-industrial application.
Collapse
Affiliation(s)
- Hao-Nan Wang
- National and Local Joint Engineering Research Center for Biomanufacturing of Choral Chemicals, Zhejiang University of Technology, Hangzhou 310014, PR China; Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, PR China
| | - Xia Ke
- National and Local Joint Engineering Research Center for Biomanufacturing of Choral Chemicals, Zhejiang University of Technology, Hangzhou 310014, PR China; Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, PR China
| | - Rui Jia
- National and Local Joint Engineering Research Center for Biomanufacturing of Choral Chemicals, Zhejiang University of Technology, Hangzhou 310014, PR China; Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, PR China
| | - Liang-Gang Huang
- National and Local Joint Engineering Research Center for Biomanufacturing of Choral Chemicals, Zhejiang University of Technology, Hangzhou 310014, PR China; Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, PR China
| | - Zhi-Qiang Liu
- National and Local Joint Engineering Research Center for Biomanufacturing of Choral Chemicals, Zhejiang University of Technology, Hangzhou 310014, PR China; Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, PR China.
| | - Yu-Guo Zheng
- National and Local Joint Engineering Research Center for Biomanufacturing of Choral Chemicals, Zhejiang University of Technology, Hangzhou 310014, PR China; Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, PR China
| |
Collapse
|
10
|
Production of Polyhydroxyalkanoates through Soybean Hull and Waste Glycerol Valorization: Subsequent Alkaline Pretreatment and Enzymatic Hydrolysis. FERMENTATION-BASEL 2022. [DOI: 10.3390/fermentation8090433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Alkaline pretreatment and sequential enzymatic hydrolysis of soybean hull were investigated to obtain fermentable sugars for polyhydroxyalkanoates production along with residual glycerol as low-cost carbon sources. Soybean hull is composed of approximately 32% cellulose, 12% hemicellulose, 6% lignin, and 11% protein. Alkaline pretreatment was carried out with 2% NaOH concentration, 10% (w/v) biomass loading, and 60 min incubation time in an autoclave at 120 °C. The response surface methodology (RSM) based on the central composite design (CCD) tool was employed to optimize the enzymatic hydrolysis process, where the variables of biomass loading, enzymes’ concentration, and time were considered. The maximum total reducing sugars concentration obtained was 115.9 g∙L−1 with an enzyme concentration of 11.5 mg protein/g dry substrate for enzyme preparation B1, 2.88 mg protein/g dry substrate for XylA, and 57.6 U/g dry substrate for β-glucosidase, after 42 h at 45 °C, and pH was 4.5. Subsequently, the saccharification step was conducted by increasing the processing scale, using a 1 L tank with stirring with a controlled temperature. Implementing the same enzyme concentrations at pH 4.5, temperature of 45 °C, 260 mL working volume, and incubation time of 42 h, under fed-batch operation with substrate feeding after 14 h and 22 h, a hydrolysate with a concentration of 185.7 g∙L−1 was obtained. Initially, to verify the influence of different carbon sources on Cupriavidus necator DSMz 545 in biomass production, batch fermentations were developed, testing laboratory-grade glucose, soybean hull hydrolysate, and waste glycerol (a by-product of biodiesel processing available in large quantities) as carbon sources in one-factor-at-a-time assays, and the mixture of soybean hull hydrolysate and waste glycerol. Then, the hydrolysate and waste glycerol were consumed by C. necator, producing 12.1 g∙L−1 of biomass and achieving 39% of polyhydroxyalkanoate (PHB) accumulation. To the best of our knowledge, this is the first time that soybean hull hydrolysate has been used as a carbon source to produce polyhydroxyalkanoates, and the results suggest that this agro-industrial by-product is a viable alternative feedstock to produce value-added components.
Collapse
|
11
|
Oliveira TC, Cabral JSR, Santana LR, Tavares GG, Santos LDS, Paim TP, Müller C, Silva FG, Costa AC, Souchie EL, Mendes GC. The arbuscular mycorrhizal fungus Rhizophagus clarus improves physiological tolerance to drought stress in soybean plants. Sci Rep 2022; 12:9044. [PMID: 35641544 PMCID: PMC9156723 DOI: 10.1038/s41598-022-13059-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 05/12/2022] [Indexed: 11/15/2022] Open
Abstract
Soybean (Glycine max L.) is an economically important crop, and is cultivated worldwide, although increasingly long periods of drought have reduced the productivity of this plant. Research has shown that inoculation with arbuscular mycorrhizal fungi (AMF) provides a potential alternative strategy for the mitigation of drought stress. In the present study, we measured the physiological and morphological performance of two soybean cultivars in symbiosis with Rhizophagus clarus that were subjected to drought stress (DS). The soybean cultivars Anta82 and Desafio were grown in pots inoculated with R. clarus. Drought stress was imposed at the V3 development stage and maintained for 7 days. A control group, with well-irrigated plants and no AMF, was established simultaneously in the greenhouse. The mycorrhizal colonization rate, and the physiological, morphological, and nutritional traits of the plants were recorded at days 3 and 7 after drought stress conditions were implemented. The Anta82 cultivar presented the highest percentage of AMF colonization, and N and K in the leaves, whereas the DS group of the Desafio cultivar had the highest water potential and water use efficiency, and the DS + AMF group had thermal dissipation that permitted higher values of Fv/Fm, A, and plant height. The results of the principal components analysis demonstrated that both cultivars inoculated with AMF performed similarly under DS to the well-watered plants. These findings indicate that AMF permitted the plant to reduce the impairment of growth and physiological traits caused by drought conditions.
Collapse
Affiliation(s)
- Thales Caetano Oliveira
- Laboratory of Plant Tissue and Culture, Instituto Federal Goiano-Campus Rio Verde, P.O. Box 66, Rio Verde, GO, 75901-970, Brazil
| | - Juliana Silva Rodrigues Cabral
- Faculty of Agronomy, Universidade de Rio Verde, Fazenda Fontes do Saber-Campus Universitário, P.O Box 104, Rio Verde, GO, 75901-970, Brazil
| | - Leticia Rezende Santana
- Laboratory of Plant Tissue and Culture, Instituto Federal Goiano-Campus Rio Verde, P.O. Box 66, Rio Verde, GO, 75901-970, Brazil
| | - Germanna Gouveia Tavares
- Laboratory of Plant Tissue and Culture, Instituto Federal Goiano-Campus Rio Verde, P.O. Box 66, Rio Verde, GO, 75901-970, Brazil
| | - Luan Dionísio Silva Santos
- Laboratory of Plant Tissue and Culture, Instituto Federal Goiano-Campus Rio Verde, P.O. Box 66, Rio Verde, GO, 75901-970, Brazil
| | - Tiago Prado Paim
- Laboratory of Education in Agriculture Production, Instituto Federal Goiano-Campus Rio Verde, P.O. Box 66, Rio Verde, GO, 75901-970, Brazil
| | - Caroline Müller
- Ecophysiology and Plant Productivity Laboratory, Instituto Federal Goiano-Campus Rio Verde, P.O. Box 66, Rio Verde, GO, 75901-970, Brazil
| | - Fabiano Guimarães Silva
- Laboratory of Plant Tissue and Culture, Instituto Federal Goiano-Campus Rio Verde, P.O. Box 66, Rio Verde, GO, 75901-970, Brazil
| | - Alan Carlos Costa
- Ecophysiology and Plant Productivity Laboratory, Instituto Federal Goiano-Campus Rio Verde, P.O. Box 66, Rio Verde, GO, 75901-970, Brazil
| | - Edson Luiz Souchie
- Agricultural Microbiology Laboratory, Instituto Federal Goiano-Campus Rio Verde, P.O. Box 66, Rio Verde, GO, 75901-970, Brazil
| | - Giselle Camargo Mendes
- Laboratory of Biotechnology, Instituto Federal de Santa Catarina-Campus Lages, Lages, SC, 88506-400, Brazil.
| |
Collapse
|
12
|
Cui C, Kong M, Xia T, Zhou C, Ming H. Design and construction of a semi-cycle system of oxygen supplied intensification using hydrogen peroxide for high-performance glucose oxidation. MOLECULAR CATALYSIS 2022. [DOI: 10.1016/j.mcat.2022.112119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|