1
|
Zhang H, Ni T, Liu X, Ma B, Huang T, Zhao D, Li H, Chen K, Liu T. Ignored microbial-induced taste and odor in drinking water reservoirs: Novel insight into actinobacterial community structure, assembly, and odor-producing potential. WATER RESEARCH 2024; 264:122219. [PMID: 39121820 DOI: 10.1016/j.watres.2024.122219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 06/13/2024] [Accepted: 08/03/2024] [Indexed: 08/12/2024]
Abstract
The presence of actinobacteria in reservoirs can lead to taste and odor issues, posing potential risks to the safety of drinking water supply. However, the response of actinobacterial communities to environmental factors in drinking water reservoirs remains largely unexplored. To address this gap, this study investigated the community structure and metabolic characteristics of odor-producing actinobacteria in water reservoirs across northern and southern China. The findings revealed differences in the actinobacterial composition across the reservoirs, with Mycobacterium sp. and Candidatus Nanopelagicus being the most prevalent genera. Notably, water temperature, nutrient levels, and metal concentrations were associated with differences in actinobacterial communities, with stochastic processes playing a major role in shaping the community assembly. In addition, three strains of odor-producing actinobacteria were cultured in raw reservoir water, namely Streptomyces antibioticus LJH21, Streptomyces sp. ZEU13, and Streptomyces sp. PQK19, with peak ATP concentrations of 51 nmol/L, 66 nmol/L, and 70 nmol/L, respectively, indicating that odor-producing actinobacteria could remain metabolically active under poor nutrient pressure. Additionally, Streptomyces antibioticus LJH21 produced the highest concentration of geosmin at 24.4 ng/L. These findings enhance our understanding of regional variances and reproductive metabolic mechanisms of actinobacteria in drinking water reservoirs, providing a solid foundation for improving drinking water quality control, especially for taste and odor.
Collapse
Affiliation(s)
- Haihan Zhang
- Collaborative Innovation Center of Water Pollution Control and Water Quality Security Assurance of Shaanxi Province, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Provincial Field Scientific Observation and Research Station of Water Quality in Qinling Mountains, Xi'an University of Architecture and Technology, Xi'an 710055, China; School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China.
| | - Tongchao Ni
- Collaborative Innovation Center of Water Pollution Control and Water Quality Security Assurance of Shaanxi Province, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Provincial Field Scientific Observation and Research Station of Water Quality in Qinling Mountains, Xi'an University of Architecture and Technology, Xi'an 710055, China; School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Xiang Liu
- Collaborative Innovation Center of Water Pollution Control and Water Quality Security Assurance of Shaanxi Province, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Provincial Field Scientific Observation and Research Station of Water Quality in Qinling Mountains, Xi'an University of Architecture and Technology, Xi'an 710055, China; School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Ben Ma
- Collaborative Innovation Center of Water Pollution Control and Water Quality Security Assurance of Shaanxi Province, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Provincial Field Scientific Observation and Research Station of Water Quality in Qinling Mountains, Xi'an University of Architecture and Technology, Xi'an 710055, China; School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Tinglin Huang
- Collaborative Innovation Center of Water Pollution Control and Water Quality Security Assurance of Shaanxi Province, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Provincial Field Scientific Observation and Research Station of Water Quality in Qinling Mountains, Xi'an University of Architecture and Technology, Xi'an 710055, China; School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Daijuan Zhao
- Collaborative Innovation Center of Water Pollution Control and Water Quality Security Assurance of Shaanxi Province, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Provincial Field Scientific Observation and Research Station of Water Quality in Qinling Mountains, Xi'an University of Architecture and Technology, Xi'an 710055, China; School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Haiyun Li
- Collaborative Innovation Center of Water Pollution Control and Water Quality Security Assurance of Shaanxi Province, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Provincial Field Scientific Observation and Research Station of Water Quality in Qinling Mountains, Xi'an University of Architecture and Technology, Xi'an 710055, China; School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Kaige Chen
- Collaborative Innovation Center of Water Pollution Control and Water Quality Security Assurance of Shaanxi Province, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Provincial Field Scientific Observation and Research Station of Water Quality in Qinling Mountains, Xi'an University of Architecture and Technology, Xi'an 710055, China; School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Tao Liu
- Collaborative Innovation Center of Water Pollution Control and Water Quality Security Assurance of Shaanxi Province, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Provincial Field Scientific Observation and Research Station of Water Quality in Qinling Mountains, Xi'an University of Architecture and Technology, Xi'an 710055, China; School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| |
Collapse
|
2
|
Ko YG. Hybrid method integrating adsorption and chemical precipitation of heavy metal ions on polymeric fiber surfaces for highly efficient water purification. CHEMOSPHERE 2024; 363:142909. [PMID: 39033862 DOI: 10.1016/j.chemosphere.2024.142909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 07/15/2024] [Accepted: 07/18/2024] [Indexed: 07/23/2024]
Abstract
A lot of research has been focused on increasing the specific surface area of adsorbents over a long period of time to remove heavy metal ions from wastewater using the adsorbent. However, porous adsorbents with high specific surface area have demonstrated drawbacks in water purification processes, such as high pressure drop and limitations in the adsorption capacity of heavy metal ions. In recent years, a mechanism-based convergence method involving adsorption/chemical precipitation has emerged as a promising strategy to surmount the constraints associated with porous adsorbents. The mechanism involves amine groups on chelating fibers dissociating OH- ions from water molecules, thereby raising the pH near the fibers. This elevated pH promotes the crystallization of heavy metal ions on the fiber surfaces. The removal of heavy metal ions proceeds through a sequence of adsorption and chemical precipitation processes. An adsorbent based on chelating fibers, integrating adsorption technology with chemical precipitation, demonstrates superior performance in removing significant quantities of heavy metal ions (ca. 1000-2000 mg/g for Cd2+, Cu2+ and Pb2+) when compared to developed porous adsorbents (ca. 50-760 mg/g for same ions). This review paper introduces advanced polymer fibers endowed with the capability to integrate hybrid technology, delves into the mechanism of hybrid technology, and examines its application in process technology for the effective removal of heavy metal ions. The versatility of these advanced fibers extends far beyond the removal of heavy metal ions in water treatment, making them poised to garner significant attention from researchers across diverse fields due to their broad range of potential applications. After further processes involving the removal of templates from chelating polymeric fibers used as supports and the reduction of precipitated heavy metal oxide crystals, the resulting heavy metal crystals can exhibit thin walls and well-interconnected porous structures, suitable for catalytic applications.
Collapse
Affiliation(s)
- Young Gun Ko
- Department of Chemical Engineering and Materials Science, Sangmyung University, Hongjimun 2-gil 20, Jongno-gu, Seoul, 03016, Republic of Korea.
| |
Collapse
|
3
|
Ma B, Li A, Chen S, Guo H, Li N, Pan S, Chen K, Liu H, Kosolapov DB, Liu X, Zhi W, Chen Z, Mo Y, Sekar R, Huang T, Zhang H. Algicidal activity synchronized with nitrogen removal by actinomycetes: Algicidal mechanism, stress response of algal cells, denitrification performance, and indigenous bacterial community co-occurrence. JOURNAL OF HAZARDOUS MATERIALS 2024; 470:134117. [PMID: 38554519 DOI: 10.1016/j.jhazmat.2024.134117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 03/14/2024] [Accepted: 03/22/2024] [Indexed: 04/01/2024]
Abstract
The harmful algal blooms (HABs) can damage the ecological equilibrium of aquatic ecosystems and threaten human health. The bio-degradation of algal by algicidal bacteria is an environmentally friendly and economical approach to control HABs. This study applied an aerobic denitrification synchronization algicidal strain Streptomyces sp. LJH-12-1 (L1) to control HABs. The cell-free filtrate of the strain L1 showed a great algolytic effect on bloom-forming cyanobacterium, Microcystis aeruginosa (M. aeruginosa). The optimal algicidal property of strain L1 was indirect light-dependent algicidal with an algicidal rate of 85.0%. The functional metabolism, light-trapping, light-transfer efficiency, the content of pigments, and inhibition of photosynthesis of M. aeruginosa decreased after the addition of the supernatant of the strain L1 due to oxidative stress. Moreover, 96.05% nitrate removal rate synchronized with algicidal activity was achieved with the strain L1. The relative abundance of N cycling functional genes significantly increased during the strain L1 effect on M. aeruginosa. The algicidal efficiency of the strain L1 in the raw water was 76.70% with nitrate removal efficiency of 81.4%. Overall, this study provides a novel route to apply bacterial strain with the property of denitrification coupled with algicidal activity in treating micro-polluted water bodies.
Collapse
Affiliation(s)
- Ben Ma
- Collaborative Innovation Center of Water Pollution Control and Water Quality Security Assurance of Shaanxi Province, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Provincial Field Scientific Observation and Research Station of Water Quality in Qinling Mountains, Xi'an University of Architecture and Technology, Xi'an 710055, China; School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Anyi Li
- Collaborative Innovation Center of Water Pollution Control and Water Quality Security Assurance of Shaanxi Province, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Provincial Field Scientific Observation and Research Station of Water Quality in Qinling Mountains, Xi'an University of Architecture and Technology, Xi'an 710055, China; School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Shengnan Chen
- Collaborative Innovation Center of Water Pollution Control and Water Quality Security Assurance of Shaanxi Province, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Provincial Field Scientific Observation and Research Station of Water Quality in Qinling Mountains, Xi'an University of Architecture and Technology, Xi'an 710055, China; School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Honghong Guo
- Collaborative Innovation Center of Water Pollution Control and Water Quality Security Assurance of Shaanxi Province, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Provincial Field Scientific Observation and Research Station of Water Quality in Qinling Mountains, Xi'an University of Architecture and Technology, Xi'an 710055, China; School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China.
| | - Nan Li
- Collaborative Innovation Center of Water Pollution Control and Water Quality Security Assurance of Shaanxi Province, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Provincial Field Scientific Observation and Research Station of Water Quality in Qinling Mountains, Xi'an University of Architecture and Technology, Xi'an 710055, China; School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Sixuan Pan
- Collaborative Innovation Center of Water Pollution Control and Water Quality Security Assurance of Shaanxi Province, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Provincial Field Scientific Observation and Research Station of Water Quality in Qinling Mountains, Xi'an University of Architecture and Technology, Xi'an 710055, China; School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Kaige Chen
- Collaborative Innovation Center of Water Pollution Control and Water Quality Security Assurance of Shaanxi Province, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Provincial Field Scientific Observation and Research Station of Water Quality in Qinling Mountains, Xi'an University of Architecture and Technology, Xi'an 710055, China; School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Hanyan Liu
- Collaborative Innovation Center of Water Pollution Control and Water Quality Security Assurance of Shaanxi Province, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Provincial Field Scientific Observation and Research Station of Water Quality in Qinling Mountains, Xi'an University of Architecture and Technology, Xi'an 710055, China; School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Dmitry B Kosolapov
- Papanin Institute for Biology of Inland Waters of Russian Academy of Sciences (IBIW RAS) 109, Borok, Nekouz, Yaroslavl 152742, Russia
| | - Xiang Liu
- Collaborative Innovation Center of Water Pollution Control and Water Quality Security Assurance of Shaanxi Province, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Provincial Field Scientific Observation and Research Station of Water Quality in Qinling Mountains, Xi'an University of Architecture and Technology, Xi'an 710055, China; School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Wei Zhi
- Department of Civil and Environmental Engineering, the Pennsylvania State University, USA
| | - Zhongbing Chen
- Department of Applied Ecology, Faculty of Environmental Sciences, Czech University of Life Sciences Prague, Kamýcká 129, Praha-Suchdol, 16500, Czech Republic
| | - Yuanyuan Mo
- Aquatic EcoHealth Group, Key Laboratory of Urban Environment and Health, Fujian Key Laboratory of Watershed Ecology, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Raju Sekar
- Department of Biological Sciences, Xi'an Jiaotong-Liverpool University, Suzhou 215123, China
| | - Tinglin Huang
- Collaborative Innovation Center of Water Pollution Control and Water Quality Security Assurance of Shaanxi Province, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Provincial Field Scientific Observation and Research Station of Water Quality in Qinling Mountains, Xi'an University of Architecture and Technology, Xi'an 710055, China; School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Haihan Zhang
- Collaborative Innovation Center of Water Pollution Control and Water Quality Security Assurance of Shaanxi Province, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Provincial Field Scientific Observation and Research Station of Water Quality in Qinling Mountains, Xi'an University of Architecture and Technology, Xi'an 710055, China; School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China.
| |
Collapse
|
4
|
Wang C, He T, Zhang M, Zheng C, Yang L, Yang L. Review of the mechanisms involved in dissimilatory nitrate reduction to ammonium and the efficacies of these mechanisms in the environment. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 345:123480. [PMID: 38325507 DOI: 10.1016/j.envpol.2024.123480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 01/30/2024] [Accepted: 01/31/2024] [Indexed: 02/09/2024]
Abstract
Dissimilatory nitrate reduction to ammonium (DNRA) is currently of great interest because it is an important method for recovering nitrogen from wastewater and offers many advantages, over other methods. A full understanding of DNRA requires the mechanisms, pathways, and functional microorganisms involved to be identified. The roles these pathways play and the effectiveness of DNRA in the environment are not well understood. The objectives of this review are to describe our current understanding of the molecular mechanisms and pathways involved in DNRA from the substrate transfer perspective and to summarize the effects of DNRA in the environment. First, the mechanisms and pathways involved in DNRA are described in detail. Second, our understanding of DNRA by actinomycetes is reviewed and gaps in our understanding are identified. Finally, the effects of DNRA in the environment are assessed. This review will help in the development of future research into DNRA to promote the use of DNRA to treat wastewater and recover nitrogen.
Collapse
Affiliation(s)
- Cerong Wang
- Key laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Science, Guizhou University, Guiyang, 550025, Guizhou Province, China.
| | - Tengxia He
- Key laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Science, Guizhou University, Guiyang, 550025, Guizhou Province, China.
| | - Manman Zhang
- Key laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Science, Guizhou University, Guiyang, 550025, Guizhou Province, China.
| | - Chunxia Zheng
- Key laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Science, Guizhou University, Guiyang, 550025, Guizhou Province, China.
| | - Li Yang
- Key laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Science, Guizhou University, Guiyang, 550025, Guizhou Province, China.
| | - Lu Yang
- Key laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Science, Guizhou University, Guiyang, 550025, Guizhou Province, China.
| |
Collapse
|
5
|
Zhang H, Pan S, Ma B, Huang T, Kosolapov DB, Ma M, Liu X, Liu H, Liu X. Multivariate statistical and bioinformatic analyses for the seasonal variations of actinobacterial community structures in a drinking water reservoir. J Environ Sci (China) 2024; 137:1-17. [PMID: 37979999 DOI: 10.1016/j.jes.2023.02.037] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 02/19/2023] [Accepted: 02/20/2023] [Indexed: 11/20/2023]
Abstract
Actinobacterial community is a conspicuous part of aquatic ecosystems and displays an important role in the case of biogeochemical cycle, but little is known about the seasonal variation of actinobacterial community in reservoir ecological environment. In this study, the high-throughput techniques were used to investigate the structure of the aquatic actinobacterial community and its inducing water quality parameters in different seasons. The results showed that the highest diversity and abundance of actinobacterial community occurred in winter, with Sporichthya (45.42%) being the most abundant genus and Rhodococcus sp. (29.32%) being the most abundant species. Network analysis and correlation analysis suggested that in autumn the dynamics of actinobacterial community were influenced by more factors and Nocardioides sp. SX2R5S2 was the potential keystone species which was negatively correlated with temperature (R = -0.72, P < 0.05). Changes in environmental factors could significantly affect the changes in actinobacterial community, and the dynamics of temperature, dissolved oxygen (DO), and turbidity are potential conspicuous factors influencing seasonal actinobacterial community trends. The partial least squares path modeling further elucidated that the combined effects of DO and temperature not only in the diversity of actinobacterial community but also in other water qualities, while the physiochemical parameters (path coefficient = 1.571, P < 0.05) was strong environmental factors in natural mixture period. These results strengthen our understanding of the dynamics and structures of actinobacterial community in the drinking water reservoirs and provide scientific guidance for further water quality management and protection in water sources.
Collapse
Affiliation(s)
- Haihan Zhang
- Shaanxi Key Laboratory of Environmental Engineering, Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China; School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China.
| | - Sixuan Pan
- Shaanxi Key Laboratory of Environmental Engineering, Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China; School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Ben Ma
- Shaanxi Key Laboratory of Environmental Engineering, Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China; School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Tinglin Huang
- Shaanxi Key Laboratory of Environmental Engineering, Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China; School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Dmitry B Kosolapov
- Papanin Institute for Biology of Inland Waters of Russian Academy of Sciences (IBIW RAS), 109, Borok, Nekouz, Yaroslavl, 152742, Russia
| | - Manli Ma
- Shaanxi Key Laboratory of Environmental Engineering, Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China; School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Xiang Liu
- Shaanxi Key Laboratory of Environmental Engineering, Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China; School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Huan Liu
- Shaanxi Key Laboratory of Environmental Engineering, Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China; School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Xiaoyan Liu
- Shaanxi Key Laboratory of Environmental Engineering, Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China; School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| |
Collapse
|
6
|
Cheng M, Fu HM, Mao Z, Yan P, Weng X, Ma TF, Xu XW, Guo JS, Fang F, Chen YP. Motility behavior and physiological response mechanisms of aerobic denitrifier, Enterobacter cloacae strain HNR under high salt stress: Insights from individual cells to populations. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 914:170002. [PMID: 38220024 DOI: 10.1016/j.scitotenv.2024.170002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 12/20/2023] [Accepted: 01/06/2024] [Indexed: 01/16/2024]
Abstract
The motility behaviors at the individual-cell level and the collective physiological responsive behaviors of aerobic denitrifier, Enterobacter cloacae strain HNR under high salt stress were investigated. The results revealed that as salinity increased, electron transport activity and adenosine triphosphate content decreased from 15.75 μg O2/g/min and 593.51 mM/L to 3.27 μg O2/g/min and 5.34 mM/L, respectively, at 40 g/L, leading to a reduction in the rotation velocity and vibration amplitude of strain HNR. High salinity stress (40 g/L) down-regulated genes involved in ABC transporters (amino acids, sugars, metal ions, and inorganic ions) and activated the biofilm-related motility regulation mechanism in strain HNR, resulting in a further decrease in flagellar motility capacity and an increase in extracellular polymeric substances secretion (4.08 mg/g cell of PS and 40.03 mg/g cell of PN at 40 g/L). These responses facilitated biofilm formation and proved effective in countering elevated salt stress in strain HNR. Moreover, the genetic diversity associated with biofilm-related motility regulation in strain HNR enhanced the adaptability and stability of the strain HNR populations to salinity stress. This study enables a deeper understanding of the response mechanism of aerobic denitrifiers to high salt stress.
Collapse
Affiliation(s)
- Meng Cheng
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, China
| | - Hui-Min Fu
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, China; National Research Base of Intelligent Manufacturing Service, Chongqing Technology and Business University, Chongqing 400067, China
| | - Zheng Mao
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, China; Chongqing Institute of Geology and Mineral Resources, Chongqing 400042, China
| | - Peng Yan
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, China
| | - Xun Weng
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, China
| | - Teng-Fei Ma
- National Research Base of Intelligent Manufacturing Service, Chongqing Technology and Business University, Chongqing 400067, China
| | - Xiao-Wei Xu
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, China
| | - Jin-Song Guo
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, China
| | - Fang Fang
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, China
| | - You-Peng Chen
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, China.
| |
Collapse
|
7
|
Liu T, Zhao Z, Li H, Awasthi MK, Kosolapov DB, Ni T, Ma B, Liu X, Liu X, Zhi W, Zhang H. Performance of aerobic denitrifying fungal community for promoting nitrogen reduction and its application in drinking water reservoirs. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 351:119842. [PMID: 38109827 DOI: 10.1016/j.jenvman.2023.119842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 11/30/2023] [Accepted: 12/08/2023] [Indexed: 12/20/2023]
Abstract
The effect of mix-cultured aerobic denitrifying microorganisms on the water remediation has been extensively explored, but little is known about the performance of mix-cultured low efficiency fungi on denitrification. In this study, two kinds of aerobic denitrifying fungi (Trichoderma afroharzianum H1 and Aspergillus niger C1) were isolated from reservoirs, improved the capacity by mix-cultured. The results showed a difference between northern and southern reservoirs, the dominants of genera were Cystobasidium and Acremonium. The removals of total nitrogen (TN) was 12.00%, 7.53% and 69.33% in Trichoderma afroharzianum H1, Aspergillus niger C1 and mix-cultured (C1 and H1) under the denitrification medium. The contents of ATP and electron transport system activity in mix-cultured amendment were increased by 42.54% and 67.52%, 1.72 and 2.91 times, respectively. Besides, the raw water experiment indicated that TN removals were 24.05%, 12.66% and 73.42% in Trichoderma afroharzianum H1, Aspergillus niger C1 and mix-cultured. The removals of dissolved organic carbon in mix-cultured were increased 35.02% and 50.46% compared to Trichoderma afroharzianum H1 and Aspergillus niger C1. Therefore, mix-cultured of two low efficiency aerobic denitrifying fungi has been considered as a novelty perspective for mitigation of drinking water source.
Collapse
Affiliation(s)
- Tao Liu
- Shaanxi Key Laboratory of Environmental Engineering, Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an, 710055, China; School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| | - Ziying Zhao
- Shaanxi Key Laboratory of Environmental Engineering, Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an, 710055, China; School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| | - Haiyun Li
- Shaanxi Key Laboratory of Environmental Engineering, Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an, 710055, China; School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| | - Mukesh Kumar Awasthi
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province, 712100, China
| | - Dmitry B Kosolapov
- Papanin Institute for Biology of Inland Waters of Russian Academy of Sciences (IBIW RAS), 109, Borok, Nekouz, Yaroslavl, 152742, Russia
| | - Tongchao Ni
- Shaanxi Key Laboratory of Environmental Engineering, Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an, 710055, China; School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| | - Ben Ma
- Shaanxi Key Laboratory of Environmental Engineering, Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an, 710055, China; School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| | - Xiaoyan Liu
- Shaanxi Key Laboratory of Environmental Engineering, Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an, 710055, China; School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| | - Xiang Liu
- Shaanxi Key Laboratory of Environmental Engineering, Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an, 710055, China; School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| | - Wei Zhi
- Department of Civil and Environmental Engineering, The Pennsylvania State University, USA
| | - Haihan Zhang
- Shaanxi Key Laboratory of Environmental Engineering, Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an, 710055, China; School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China.
| |
Collapse
|
8
|
Ma B, Yang W, Li N, Kosolapov DB, Liu X, Pan S, Liu H, Li A, Chu M, Hou L, Zhang Y, Li X, Chen Z, Chen S, Huang T, Cao S, Zhang H. Aerobic Denitrification Promoting by Actinomycetes Coculture: Investigating Performance, Carbon Source Metabolic Characteristic, and Raw Water Restoration. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:683-694. [PMID: 38102081 DOI: 10.1021/acs.est.3c05062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2023]
Abstract
The coculture theory that promotes denitrification relies on effectively utilizing the resources of low-efficiency denitrification microbes. Here, the strains Streptomyces sp. PYX97 and Streptomyces sp. TSJ96 were isolated and showed lower denitrification capacity when cultured individually. However, the coculture of strains PYX97 and TSJ96 enhanced nitrogen removal (removed 96.40% of total nitrogen) and organic carbon reduction (removed 92.13% of dissolved organic carbon) under aerobic conditions. Nitrogen balance analysis indicated that coculturing enhanced the efficiency of nitrate converted into gaseous nitrogen reaching 70.42%. Meanwhile, the coculturing promoted the cell metabolism capacity and carbon source metabolic activity. The coculture strains PYX97 and TSJ96 thrived in conditions of C/N = 10, alkalescence, and 150 rpm shaking speed. The coculturing reduced total nitrogen and CODMn in the raw water treatment by 83.32 and 84.21%, respectively. During this treatment, the cell metabolic activity and cell density increased in the coculture strains PYX97 and TSJ96 reactor. Moreover, the coculture strains could utilize aromatic protein and soluble microbial products during aerobic denitrification processes in raw water treatment. This study suggests that coculturing inefficient actinomycete strains could be a promising approach for treating polluted water bodies.
Collapse
Affiliation(s)
- Ben Ma
- Shaanxi Key Laboratory of Environmental Engineering, Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Wanqiu Yang
- Shaanxi Key Laboratory of Environmental Engineering, Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
- Huaqing College, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Nan Li
- Shaanxi Key Laboratory of Environmental Engineering, Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Dmitry B Kosolapov
- Papanin Institute for Biology of Inland Waters of Russian Academy of Sciences (IBIW RAS), 109 Borok, Nekouz, Yaroslavl 152742, Russia
| | - Xiang Liu
- Shaanxi Key Laboratory of Environmental Engineering, Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Sixuan Pan
- Shaanxi Key Laboratory of Environmental Engineering, Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Huan Liu
- Shaanxi Key Laboratory of Environmental Engineering, Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Anyi Li
- Shaanxi Key Laboratory of Environmental Engineering, Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Mengting Chu
- Shaanxi Key Laboratory of Environmental Engineering, Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Liyuan Hou
- Civil and Environmental Engineering Department, Utah State University, Logan, Utah 84322, United States
| | - Yinbin Zhang
- Department of Oncology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710004, China
| | - Xuan Li
- College of Environmental Science & Engineering, Yancheng Institute of Technology, Yancheng 224051, China
| | - Zhongbing Chen
- Department of Applied Ecology, Faculty of Environmental Sciences, Czech University of Life Sciences Prague, Kamýcká 129, 16500Praha-Suchdol ,Czech Republic
| | - Shengnan Chen
- Shaanxi Key Laboratory of Environmental Engineering, Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Tinglin Huang
- Shaanxi Key Laboratory of Environmental Engineering, Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Shumiao Cao
- Shaanxi Key Laboratory of Environmental Engineering, Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Haihan Zhang
- Shaanxi Key Laboratory of Environmental Engineering, Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| |
Collapse
|
9
|
Wang S, Zhang B, Fei Y, Liu H, Zhao Y, Guo H. Elucidating Multiple Electron-Transfer Pathways for Metavanadate Bioreduction by Actinomycetic Streptomyces microflavus. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:19921-19931. [PMID: 37934564 DOI: 10.1021/acs.est.3c07288] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2023]
Abstract
While microbial reduction has gained widespread recognition for efficiently remediating environments polluted by toxic metavanadate [V(V)], the pool of identified V(V)-reducing strains remains rather limited, with the vast majority belonging to bacteria and fungi. This study is among the first to confirm the V(V) reduction capability of Streptomyces microflavus, a representative member of ubiquitous actinomycetes in environment. A V(V) removal efficiency of 91.0 ± 4.35% was achieved during 12 days of operation, with a maximum specific growth rate of 0.073 d-1. V(V) was bioreduced to insoluble V(IV) precipitates. V(V) reduction took place both intracellularly and extracellularly. Electron transfer was enhanced during V(V) bioreduction with increased electron transporters. The electron-transfer pathways were revealed through transcriptomic, proteomic, and metabolomic analyses. Electrons might flow either through the respiratory chain to reduce intracellular V(V) or to cytochrome c on the outer membrane for extracellular V(V) reduction. Soluble riboflavin and quinone also possibly mediated extracellular V(V) reduction. Glutathione might deliver electrons for intracellular V(V) reduction. Bioaugmentation of the aquifer sediment with S. microflavus accelerated V(V) reduction. The strain could successfully colonize the sediment and foster positive correlations with indigenous microorganisms. This study offers new microbial resources for V(V) bioremediation and improve the understanding of the involved molecular mechanisms.
Collapse
Affiliation(s)
- Shixiang Wang
- MOE Key Laboratory of Groundwater Circulation and Environmental Evolution, School of Water Resources and Environment, China University of Geosciences Beijing, Beijing 100083, P. R. China
| | - Baogang Zhang
- MOE Key Laboratory of Groundwater Circulation and Environmental Evolution, School of Water Resources and Environment, China University of Geosciences Beijing, Beijing 100083, P. R. China
| | - Yangmei Fei
- MOE Key Laboratory of Groundwater Circulation and Environmental Evolution, School of Water Resources and Environment, China University of Geosciences Beijing, Beijing 100083, P. R. China
| | - Huan Liu
- MOE Key Laboratory of Groundwater Circulation and Environmental Evolution, School of Water Resources and Environment, China University of Geosciences Beijing, Beijing 100083, P. R. China
| | - Yi Zhao
- MOE Key Laboratory of Groundwater Circulation and Environmental Evolution, School of Water Resources and Environment, China University of Geosciences Beijing, Beijing 100083, P. R. China
| | - Huaming Guo
- MOE Key Laboratory of Groundwater Circulation and Environmental Evolution, School of Water Resources and Environment, China University of Geosciences Beijing, Beijing 100083, P. R. China
| |
Collapse
|
10
|
Chen S, Liu H, Zhang H, Li K, Wang N, Sun W, Liu X, Niu L, Ma B, Yang F, Li H, Zhao D, Xing Y. Temporal patterns of algae in different urban lakes and their correlations with environmental variables in Xi'an, China. J Environ Sci (China) 2023; 133:138-151. [PMID: 37451783 DOI: 10.1016/j.jes.2022.07.036] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 07/20/2022] [Accepted: 07/22/2022] [Indexed: 07/18/2023]
Abstract
Urban lakes were critical in aquatic ecology environments, but how environmental factors affected the distribution and change characteristics of algal communities in urban lakes of Xi'an city was not clearly. Here, we investigated the algal community structure of six urban lakes in Xi'an and evaluated the effects of water quality parameters on algae. The results indicated that the significant differences on physicochemical parameters existed in different urban lakes. The maximum concentration of total phosphorus in urban lakes was (0.18 ± 0.01) mg/L and there was a phenomenon of phosphorus limitation. In addition, 51 genera of algae were identified and Chlorella sp. was the dominant algal species, which was affiliated with Chlorophyta. Network analysis elucidated that each lake had a unique algal community network and the positive correlation was dominant in the interaction between algae species, illustrating that mature microbial communities existed or occupied similar niches. Redundancy analysis illustrated that environmental factors explained 47.35% variance of algal species-water quality correlation collectively, indicating that water quality conditions had a significant influence on the temporal variations of algae. Structural equation model further verified that algal community structure was directly or indirectly regulated by different water quality conditions. Our study shows that temporal patterns of algal communities can reveal the dynamics and interactions of different urban ecosystem types, providing a theoretical basis for assessing eutrophication levels and for water quality management.
Collapse
Affiliation(s)
- Shengnan Chen
- Shaanxi Key Laboratory of Environmental Engineering, Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China; School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China.
| | - Hanyan Liu
- Shaanxi Key Laboratory of Environmental Engineering, Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China; School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Haihan Zhang
- Shaanxi Key Laboratory of Environmental Engineering, Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China; School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Kai Li
- Shaanxi Key Laboratory of Environmental Engineering, Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China; School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Na Wang
- Shaanxi Key Laboratory of Environmental Engineering, Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China; School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Weimin Sun
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China; Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
| | - Xiang Liu
- Shaanxi Key Laboratory of Environmental Engineering, Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China; School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Limin Niu
- Shaanxi Key Laboratory of Environmental Engineering, Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China; School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Ben Ma
- Shaanxi Key Laboratory of Environmental Engineering, Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China; School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Fan Yang
- Shaanxi Key Laboratory of Environmental Engineering, Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China; School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Haiyun Li
- Shaanxi Key Laboratory of Environmental Engineering, Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China; School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Daijuan Zhao
- Shaanxi Key Laboratory of Environmental Engineering, Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China; School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Yan Xing
- Shaanxi Environmental Monitoring Center, Xi'an 710054, China
| |
Collapse
|
11
|
Jiang H, Zhang Y, Cui R, Ren L, Zhang M, Wang Y. Effects of Two Different Proportions of Microbial Formulations on Microbial Communities in Kitchen Waste Composting. Microorganisms 2023; 11:2605. [PMID: 37894263 PMCID: PMC10609192 DOI: 10.3390/microorganisms11102605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 10/15/2023] [Accepted: 10/17/2023] [Indexed: 10/29/2023] Open
Abstract
The objective of this research was to investigate the effect of bulking agents on the maturity and gaseous emissions of composting kitchen waste. The composing experiments were carried out by selected core bacterial agents and universal bacterial agents for 20 days. The results demonstrated that the addition of core microbial agents effectively controlled the emission of typical odor-producing compounds. The addition of core and universal bacterial agents drastically reduced NH3 emissions by 94% and 74%, and decreased H2S emissions by 78% and 27%. The application of core microbial agents during composting elevated the peak temperature to 65 °C and in terms of efficient temperature evolution (>55 °C for 8 consecutive days). The organic matter degradation decreased by 65% from the initial values for core microbial agents were added, while for the other treatments the reduction was slight. Adding core microbial agents to kitchen waste produced mature compost with a higher germination index (GI) 112%, while other treatments did not fully mature and had a GI of <70%. Microbial analysis demonstrated that the core microbial agents in composting increased the relative abundances of Weissella, Ignatzschineria, and Bacteroides. Network and redundancy analysis (RDA) revealed that the core microbial agents enhanced the relationship between bacteria and the eight indicators (p < 0.01), thereby improving the bio transformation of compounds during composting. Overall, these results suggest that the careful selection of appropriate inoculation microorganisms is crucial for improved biological transformation and nutrient content composting efficacy of kitchen waste.
Collapse
Affiliation(s)
| | | | | | | | - Minglu Zhang
- State Environmental Protection Key Laboratory of Food Chain Pollution Control, Beijing Technology and Business University, Beijing 100048, China; (H.J.); (Y.Z.); (R.C.); (L.R.)
| | - Yongjing Wang
- State Environmental Protection Key Laboratory of Food Chain Pollution Control, Beijing Technology and Business University, Beijing 100048, China; (H.J.); (Y.Z.); (R.C.); (L.R.)
| |
Collapse
|
12
|
Lu X, Lv B, Han Y, Tian W, Jiang T, Zhu G, An T. Responses of compositions, functions, and assembly processes of bacterial and microeukaryotic communities to long-range voyages in simulated ballast water. MARINE ENVIRONMENTAL RESEARCH 2023; 190:106115. [PMID: 37540963 DOI: 10.1016/j.marenvres.2023.106115] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 07/20/2023] [Accepted: 07/24/2023] [Indexed: 08/06/2023]
Abstract
Ballast water is one of the main vectors for the spread of harmful organisms among geologically isolated waters. However, the successional processes of microbial functions and assembly processes in ballast water during the long-term shipping voyage remain unclear. In this study, the compositions, ecological functions, community assembly, and potential environmental drivers of bacteria and microeukaryotes were investigated in simulated ballast water microcosms for 120 days. The results showed that the diversity and compositions of the bacterial and microeukaryotic communities varied significantly in the initial 40 days (T0∼T40 samples) and then gradually converged. The relative abundance of Proteobacteria showed a distinct tendency to decrease (87.90%-41.44%), while that of Ascomycota exhibited an increasing trend (6.35%-62.12%). The functional groups also varied significantly over time and could be related to the variations of the microbial community. The chemoheterotrophy and aerobic chemoheterotrophy functional groups for bacteria decreased from 44.80% to 28.02% and from 43.77% to 25.39%, respectively. Additionally, co-occurrence network analysis showed that the structures of the bacterial community in T60∼T120 samples were more stable than those in T0∼T40 samples. Stochastic processes also significantly affected the community assembly of bacteria and microeukaryotes. pH played the most significant role in driving the structures and assembly processes of the bacterial and microeukaryotic communities. The results of this study could aid in the understanding of variations in the functions and ecological processes of bacterial and microeukaryotic communities in ballast water over time and provide a theoretical basis for its management.
Collapse
Affiliation(s)
- Xiaolan Lu
- College of Ocean Science and Engineering, Shanghai Maritime University, Shanghai, 201306, China
| | - Baoyi Lv
- College of Ocean Science and Engineering, Shanghai Maritime University, Shanghai, 201306, China; International Joint Research Center for Persistent Toxic Substances (IJRC-PTS), Shanghai Maritime University, Shanghai, 201306, China.
| | | | - Wen Tian
- Jiangyin Customs, Jiangyin, 214400, China
| | - Ting Jiang
- College of Ocean Science and Engineering, Shanghai Maritime University, Shanghai, 201306, China
| | - Guorong Zhu
- College of Ocean Science and Engineering, Shanghai Maritime University, Shanghai, 201306, China
| | - Tingxuan An
- College of Ocean Science and Engineering, Shanghai Maritime University, Shanghai, 201306, China
| |
Collapse
|
13
|
Kou L, Huang T, Zhang H, Li K, Hua F, Huang C, Liu X, Si F. Water-lifting and aeration system improves water quality of drinking water reservoirs: Biological mechanism and field application. J Environ Sci (China) 2023; 129:174-188. [PMID: 36804234 DOI: 10.1016/j.jes.2022.09.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 09/02/2022] [Accepted: 09/03/2022] [Indexed: 06/18/2023]
Abstract
Reservoirs have been served as the major source of drinking water for dozens of years. The water quality safety of large and medium reservoirs increasingly becomes the focus of public concern. Field test has proved that water-lifting and aeration system (WLAS) is a piece of effective equipment for in situ control and improvement of water quality. However, its intrinsic bioremediation mechanism, especially for nitrogen removal, still lacks in-depth investigation. Hence, the dynamic changes in water quality parameters, carbon source metabolism, species compositions and co-occurrence patterns of microbial communities were systematically studied in Jinpen Reservoir within a whole WLAS running cycle. The WLAS operation could efficiently reduce organic carbon (19.77%), nitrogen (21.55%) and phosphorus (65.60%), respectively. Biolog analysis revealed that the microbial metabolic capacities were enhanced via WLAS operation, especially in bottom water. High-throughput sequencing demonstrated that WLAS operation altered the diversity and distributions of microbial communities in the source water. The most dominant genus accountable for aerobic denitrification was identified as Dechloromonas. Furthermore, network analysis revealed that microorganisms interacted more closely through WLAS operation. Oxidation-reduction potential (ORP) and total nitrogen (TN) were regarded as the two main physicochemical parameters influencing microbial community structures, as confirmed by redundancy analysis (RDA) and Mantel test. Overall, the results will provide a scientific basis and an effective way for strengthening the in-situ bioremediation of micro-polluted source water.
Collapse
Affiliation(s)
- Liqing Kou
- Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China; Collaborative Innovation Center of Water Pollution Control and Water Quality Security Assurance of Shaanxi Province, Xi'an 710055, China
| | - Tinglin Huang
- Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China; Collaborative Innovation Center of Water Pollution Control and Water Quality Security Assurance of Shaanxi Province, Xi'an 710055, China.
| | - Haihan Zhang
- Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China; Collaborative Innovation Center of Water Pollution Control and Water Quality Security Assurance of Shaanxi Province, Xi'an 710055, China
| | - Kai Li
- Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China; Collaborative Innovation Center of Water Pollution Control and Water Quality Security Assurance of Shaanxi Province, Xi'an 710055, China
| | - Fengyao Hua
- Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China; Collaborative Innovation Center of Water Pollution Control and Water Quality Security Assurance of Shaanxi Province, Xi'an 710055, China
| | - Cheng Huang
- Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China; Collaborative Innovation Center of Water Pollution Control and Water Quality Security Assurance of Shaanxi Province, Xi'an 710055, China
| | - Xiang Liu
- Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China; Collaborative Innovation Center of Water Pollution Control and Water Quality Security Assurance of Shaanxi Province, Xi'an 710055, China
| | - Fan Si
- Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China; Collaborative Innovation Center of Water Pollution Control and Water Quality Security Assurance of Shaanxi Province, Xi'an 710055, China
| |
Collapse
|
14
|
Chao Z, Jingru X, Ahmad M, Khan BZ, Yongyong H, Hongrui M, Mahmood Z. Facile approach for nanoconfinement of multilayer graphene oxide with polyether polyurethane sponge as biological carrier for the establishment of microalgal-bacterial bioreactor. BIORESOURCE TECHNOLOGY 2023; 378:128997. [PMID: 37011849 DOI: 10.1016/j.biortech.2023.128997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 03/28/2023] [Accepted: 03/30/2023] [Indexed: 06/19/2023]
Abstract
Physically precise and mechanically robust biocarrier is basic and urgent requirement of algal-bacterial wastewater treatment plants for homogenously biofilm growth. Herein, a highly efficient graphene oxide (GO) coordinated polyether polyurethane (PP) sponge was synthesized through GO incorporation into PP sponge to improve the GO coating, followed by UV-light treatment for industrial application. The resulted sponge showed remarkable physiochemical characteristics, excellent thermal (>0.02 Wm-1 K-1) and mechanical (>363.3 KPa) stability. To test the potential of sponge in real world scenarios, the activated sludge from real wastewater treatment plant was utilized. Interestingly, the GO-PP sponge enhanced the electron transfer between microorganisms and promoted the standardized microorganism's growth and biofilm formation (22.7 mg/d per gram sponge, 172.1 mg/g), providing the feasibility to accomplish a symbiotic system within specifically design upgraded algal-bacterial reactor. Furthermore, the continuous flow process by utilizing GO-PP sponge in algal-bacterial reactor demonstrated the effectiveness in treating low concentration antibiotic wastewater, presenting 86.7 % removal rate and >85 % after 20 cycles. Overall, this work illustrates an applicable strategy to develop a sophisticated modified pathway for the next-generation biological-based applications.
Collapse
Affiliation(s)
- Zhu Chao
- School of Environmental Science & Engineering. Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Xu Jingru
- School of Environmental Science & Engineering. Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Momina Ahmad
- College of Earth and Environmental Sciences, University of the Punjab, Lahore 54590, Pakistan
| | - Bushra Zia Khan
- College of Earth and Environmental Sciences, University of the Punjab, Lahore 54590, Pakistan
| | - Hao Yongyong
- School of Environmental Science & Engineering. Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Ma Hongrui
- School of Environmental Science & Engineering. Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Zarak Mahmood
- School of Environmental Science & Engineering. Shaanxi University of Science and Technology, Xi'an 710021, China.
| |
Collapse
|
15
|
Ma B, Zhang H, Huang T, Chen S, Sun W, Yang W, Niu L, Liu X, Liu H, Pan S, Liu H, Zhang X. Aerobic Denitrification Enhanced by Immobilized Slow-Released Iron/Activated Carbon Aquagel Treatment of Low C/N Micropolluted Water: Denitrification Performance, Denitrifying Bacterial Community Co-occurrence, and Implications. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:5252-5263. [PMID: 36944030 DOI: 10.1021/acs.est.2c08770] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
The key limiting factors in the treatment of low C/N micropolluted water bodies are deficient essential electron donors for nitrogen removal processes. An iron/activated carbon aquagel (IACA) was synthesized as a slowly released inorganic electron donor to enhance aerobic denitrification performance in low C/N micropolluted water treatment. The denitrification efficiency in IACA reactors was enhanced by more than 56.72% and the highest of 94.12% was accomplished compared with those of the control reactors. Moreover, the CODMn removal efficiency improved by more than 34.32% in IACA reactors. The Illumina MiSeq sequencing consequence explained that the denitrifying bacteria with facultative denitrification, iron oxidation, and iron reduction function were located in the dominant species niches in the IACA reactors (e.g., Pseudomonas, Leptothrix, and Comamonas). The diversity and richness of the denitrifying bacterial communities were enhanced in the IACA reactors. Network analysis indicated that aerobic denitrifying bacterial consortia in IACA reactors presented a more complicated co-occurrence structure. The IACA reactors presented the potential for long-term denitrification operation. This study affords a pathway to utilize IACA, promoting aerobic denitrification during low C/N micropolluted water body treatment.
Collapse
Affiliation(s)
- Ben Ma
- Shaanxi Key Laboratory of Environmental Engineering, Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Haihan Zhang
- Shaanxi Key Laboratory of Environmental Engineering, Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Tinglin Huang
- Shaanxi Key Laboratory of Environmental Engineering, Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Shengnan Chen
- Shaanxi Key Laboratory of Environmental Engineering, Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Weimin Sun
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China
- Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510650, China
| | - Wanqiu Yang
- Shaanxi Key Laboratory of Environmental Engineering, Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Limin Niu
- Shaanxi Key Laboratory of Environmental Engineering, Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Xiang Liu
- Shaanxi Key Laboratory of Environmental Engineering, Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Hanyan Liu
- Shaanxi Key Laboratory of Environmental Engineering, Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Sixuan Pan
- Shaanxi Key Laboratory of Environmental Engineering, Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Huan Liu
- Shaanxi Key Laboratory of Environmental Engineering, Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Xiaoli Zhang
- Shaanxi Key Laboratory of Environmental Engineering, Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| |
Collapse
|
16
|
Zhang H, Li H, Ma M, Ma B, Liu H, Niu L, Zhao D, Ni T, Yang W, Yang Y. Nitrogen reduction by aerobic denitrifying fungi isolated from reservoirs using biodegradation materials for electron donor: Capability and adaptability in the lower C/N raw water treatment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 864:161064. [PMID: 36565869 DOI: 10.1016/j.scitotenv.2022.161064] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 12/13/2022] [Accepted: 12/16/2022] [Indexed: 06/17/2023]
Abstract
Biological denitrification was considered an efficient and environmentally friendly way to remove the nitrogen in the water body. However, biological denitrification showed poor nitrogen removal performance due to the lack of electron donors in the low C/N water. In this study, three novel aerobic denitrifying fungi (Trichoderma sp., Penicillium sp., and Fusarium sp.) were isolated and enhanced the performance of aerobic denitrification of fungi in low C/N water bodies combined with polylactic acid/polybutylene adipate-co-terephthalate (PLA/PBAT). In this work, the aerobic denitrifying fungi seed were added to denitrifying liquid medium and mixed with PLA/PBAT. The result showed that Trichoderma sp., Penicillium sp., and Fusarium sp. could reduce 89.93 %, 89.20 %, and 87.76 % nitrate. Meanwhile, the nitrate removal efficiency adding PLA/PBAT exceeded 1.40, 1.68, and 1.46 times that of none. The results of material characterization suggested that aerobic denitrifying fungi have different abilities to secrete proteases or lipases to catalyze ester bonds in PLA/PBAT and utilize it as nutrients in denitrification, especially in Penicillium brasiliensis D6. Besides, the electron transport system activity and the intracellular ATP concentration were increased significantly after adding PLA/PBAT, especially in Penicillium brasiliensis D6. Finally, the highest removal efficiency of total nitrogen in landscape water by fungi combined with PLA/PBAT was >80 %. The findings of this work provide new insight into the possibility of nitrogen removal by fungi in low C/N and the recycling of degradable resources.
Collapse
Affiliation(s)
- Haihan Zhang
- Shaanxi Key Laboratory of Environmental Engineering, Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China; School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China.
| | - Haiyun Li
- Shaanxi Key Laboratory of Environmental Engineering, Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China; School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; An De College, Xi'an University of Architecture and Technology, Xi'an 710311, China
| | - Manli Ma
- Shaanxi Key Laboratory of Environmental Engineering, Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China; School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Ben Ma
- Shaanxi Key Laboratory of Environmental Engineering, Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China; School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Hanyan Liu
- Shaanxi Key Laboratory of Environmental Engineering, Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China; School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Limin Niu
- Shaanxi Key Laboratory of Environmental Engineering, Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China; School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Daijuan Zhao
- Shaanxi Key Laboratory of Environmental Engineering, Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China; School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Tongchao Ni
- Shaanxi Key Laboratory of Environmental Engineering, Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China; School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Wanqiu Yang
- Shaanxi Key Laboratory of Environmental Engineering, Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China; School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Yansong Yang
- Shaanxi Key Laboratory of Environmental Engineering, Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China; School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| |
Collapse
|
17
|
Xue R, Huang T, Zhang H, Yang S, Li N, Huang D. Aerobic denitrification of oligotrophic source water driven by reduced metal manganese. CHEMOSPHERE 2023; 317:137764. [PMID: 36623599 DOI: 10.1016/j.chemosphere.2023.137764] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 12/29/2022] [Accepted: 01/04/2023] [Indexed: 06/17/2023]
Abstract
The lack of organic electron donors limits the potential utility of aerobic denitrification in treatment of oligotrophic source water. Here, reduced manganese (Mn) was used as an inorganic electron donor to improve the denitrification of oligotrophic source water under the high dissolved oxygen condition (7-9 mg L-1). Over 30 days, the total nitrogen removed by the treatment with reduced Mn was 76.21 ± 2.11% (maximum), substantially higher than that of the control treatment, which was 41.48 ± 2.33%. Furthermore, the addition of Mn resulted in the directional evolution of the microbial community. Water samples with Mn added showed a higher abundance of Limnohabitans, the dominant denitrifying genus, reaching 51.02%, 36.79%, and 20.19% (with 30, 50, and 70 g Mn, respectively), versus only 5.54% in the control. In biofilm, Mn promoted Hydrogenophaga and Brevundimonas growth while Pseudarthrobacter growth was promoted by 30 and 50 g Mn, but inhibited by 70 g Mn. This study demonstrates an improved performance in aerobic denitrification of water sources through the use of inorganic electron donors.
Collapse
Affiliation(s)
- Ruikang Xue
- Shaanxi Key Laboratory of Environmental Engineering, Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China; School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Tinglin Huang
- Shaanxi Key Laboratory of Environmental Engineering, Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China; School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China.
| | - Haihan Zhang
- Shaanxi Key Laboratory of Environmental Engineering, Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China; School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Shangye Yang
- Shaanxi Key Laboratory of Environmental Engineering, Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China; School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Nan Li
- Shaanxi Key Laboratory of Environmental Engineering, Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China; School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Daojun Huang
- Shaanxi Xi Xian New Area Water Affairs Group Co. LTD, Xianyang 712000, China
| |
Collapse
|
18
|
Zhang H, Yang W, Ma B, Liu X, Huang T, Niu L, Zhao K, Yang Y, Li H. Aerobic denitrifying using actinobacterial consortium: Novel denitrifying microbe and its application. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 859:160236. [PMID: 36427714 DOI: 10.1016/j.scitotenv.2022.160236] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 11/01/2022] [Accepted: 11/13/2022] [Indexed: 06/16/2023]
Abstract
The aerobic denitrifying capacity of actinomycete strain has been investigated recently, while little is known about nitrogen and carbon substrate removal by mix-cultured aerobic denitrifying actinobacteria (Mix-CADA) community. Hence, three Mix-CADA consortiums, named Y23, X21, and Y27, were isolated from urban lakes to investigate their aerobic denitrification capacity, and their removal efficiency for nitrate and dissolved organic carbon were >97 % and 90 %, respectively. Illumina Miseq sequencing revealed that Streptomyces was the most dominant genus in the Mix-CADA consortium. Network analysis indicated that Streptomyces exfoliates, as the core species in the Mix-CADA consortium, majorly contributed to dissolved organic carbon and total nitrogen reduction. Moreover, the three Mix-CADA consortiums could remove 78 % of the total nitrogen and 61 % of the permanganate index from the micro-polluted l water. Meanwhile, humic-like was significantly utilized by three Mix-CADA consortiums, whereas Mix-CADA Y27 could also utilize aromatic protein and soluble microbial by-product-like in the micro-polluted raw water purification. In summary, this study will offer a novel perspective for the purification of micro-polluted raw water using the Mix-CADA consortium.
Collapse
Affiliation(s)
- Haihan Zhang
- Shaanxi Key Laboratory of Environmental Engineering, Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China; School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China.
| | - Wanqiu Yang
- Shaanxi Key Laboratory of Environmental Engineering, Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China; School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Ben Ma
- Shaanxi Key Laboratory of Environmental Engineering, Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China; School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Xiang Liu
- Shaanxi Key Laboratory of Environmental Engineering, Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China; School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Tinglin Huang
- Shaanxi Key Laboratory of Environmental Engineering, Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China; School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Limin Niu
- Shaanxi Key Laboratory of Environmental Engineering, Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China; School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Kexin Zhao
- Shaanxi Key Laboratory of Environmental Engineering, Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China; School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Yansong Yang
- Shaanxi Key Laboratory of Environmental Engineering, Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China; School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Haiyun Li
- Shaanxi Key Laboratory of Environmental Engineering, Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China; School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| |
Collapse
|
19
|
You X, Wang X, Sun R, Liu Q, Fang S, Kong Q, Zhang X, Xie C, Zheng H, Li H, Li Y. Hydrochar more effectively mitigated nitrous oxide emissions than pyrochar from a coastal soil of the Yellow River Delta, China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 858:159628. [PMID: 36283526 DOI: 10.1016/j.scitotenv.2022.159628] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 10/08/2022] [Accepted: 10/18/2022] [Indexed: 06/16/2023]
Abstract
Application of char amendments (e.g., pyrochar or biochar, hydrochar) in degraded soils is proposed as a promising solution for mitigating climate change via carbon sequestration and greenhouse gases (GHGs) emission reduction. However, the hydrochar-mediated microbial modulation mechanisms underlying N2O emissions from coastal salt-affected soils, one of essential blue C ecosystems, were poorly understood. Therefore, a wheat straw derived hydrochar (SHC) produced at 220 °C was prepared to investigate its effects on N2O emissions from a coastal salt-affected soil in the Yellow River Delta and to distinguish the microbial regulation mechanisms in comparison with corresponding pyrochar pyrolyzed at 500 °C (SPC) using a 28-day soil microcosm experiment. Compared with SPC, the acidic SHC (pH 4.15) enriched in oxygenated functional groups, labile C and N constituents. SHC application more efficiently depressed cumulative soil N2O emissions (48.4-61.1 % vs 5.57-45.2 %) than those of SPC. SHC-induced inhibition of ammonia-oxidizing gene (amoA)-mediated nitrification and promotion of full reduction of N2O to N2 by nitrous oxide reductase gene (nosZ) were the underlying microbial mechanisms. Structural equation models further revealed that SHC-modulated bacterial N-transformation responses, i.e., inhibited nitrification and promoted heterotrophic denitrification, mainly contributed to reduced N2O emissions, whereas modification of soil properties (e.g., decreased pH, increased total C content) by SPC dominantly accounted for decreased N2O emissions. These results address new insights into microbial regulation of N2O emission reduction from the coastal salt-affected soils amended with hydrochar, and provide the promising strategies to enhance C sequestration and mitigate GHG emissions in the blue C ecosystems.
Collapse
Affiliation(s)
- Xiangwei You
- Marine Agriculture Research Center, Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao 266101, China
| | - Xiao Wang
- Marine Agriculture Research Center, Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao 266101, China
| | - Ruixue Sun
- Marine Agriculture Research Center, Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao 266101, China
| | - Qiang Liu
- Institute of Coastal Environmental Pollution Control, College of Environmental Science and Engineering, Ministry of Education Key Laboratory of Marine Environment and Ecology, Frontiers Science Center for Deep Ocean Multispheres and Earth System, Ocean University of China, Qingdao 266100, China
| | - Song Fang
- Marine Agriculture Research Center, Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao 266101, China
| | - Qingxian Kong
- Marine Agriculture Research Center, Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao 266101, China
| | - Xin Zhang
- Marine Agriculture Research Center, Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao 266101, China
| | - Chenghao Xie
- Marine Agriculture Research Center, Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao 266101, China
| | - Hao Zheng
- Institute of Coastal Environmental Pollution Control, College of Environmental Science and Engineering, Ministry of Education Key Laboratory of Marine Environment and Ecology, Frontiers Science Center for Deep Ocean Multispheres and Earth System, Ocean University of China, Qingdao 266100, China; Marine Ecology and Environmental Science Laboratory, Pilot National Laboratory for Marine Science and Technology, Qingdao 266071, China; Sanya Oceanographic Institution, Ocean University of China, Sanya 572000, China.
| | - Hui Li
- Department of Crop and Soil Sciences, North Carolina State University, Raleigh, NC 27695, USA
| | - Yiqiang Li
- Marine Agriculture Research Center, Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao 266101, China.
| |
Collapse
|
20
|
Zhang H, Yang Y, Liu X, Huang T, Ma B, Li N, Yang W, Li H, Zhao K. Novel insights in seasonal dynamics and co-existence patterns of phytoplankton and micro-eukaryotes in drinking water reservoir, Northwest China: DNA data and ecological model. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 857:159160. [PMID: 36195142 DOI: 10.1016/j.scitotenv.2022.159160] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 08/31/2022] [Accepted: 09/28/2022] [Indexed: 06/16/2023]
Abstract
Although associations between phytoplankton and micro-eukaryotes have been studied in aquatic ecosystems, there are still knowledge gaps in comprehending their dynamics and interactions in drinking water reservoirs. Here, the seasonal dynamics of phytoplankton and micro-eukaryotic diversities and their co-existence patterns were studied in a drinking water reservoir, Northwest China. The highest phytoplankton diversity was observed in summer, and Chlorella sp. that belongs to Chlorophyta was the most abundant genus. The highest eukaryotic diversity was also detected in summer, and Rimostrombidium sp. that belongs to Ciliophora was the most dominant genus. Mantel test showed that the phytoplankton diversity was significantly correlated with ammonia nitrogen (r = 0.561, p = 0.001) and dissolved organic carbon (r = 0.267, p = 0.017), while the eukaryotic diversity was significantly associated with ammonia nitrogen (r = 0.265, p = 0.034) and temperature (r = 0.208, p = 0.046). PLS-PM (Partial Least Squares Path Modeling) further revealed that nutrients (P < 0.01) significantly affected the phytoplankton diversity, while nutrients (P < 0.01) and temperature (P < 0.01) significantly influenced the eukaryotic diversity. Co-occurrence network displayed the primarily positive interactions (77.66% positive and 22.34% negative) between phytoplankton and micro-eukaryotes. These findings could deepen our understanding of interactions between phytoplankton and micro-eukaryotes and their driving factors under changing aquatic environments of drinking water reservoirs.
Collapse
Affiliation(s)
- Haihan Zhang
- Shaanxi Key Laboratory of Environmental Engineering, Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China; School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China.
| | - Yansong Yang
- Shaanxi Key Laboratory of Environmental Engineering, Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China; School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Xiang Liu
- Shaanxi Key Laboratory of Environmental Engineering, Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China; School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Tinglin Huang
- Shaanxi Key Laboratory of Environmental Engineering, Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China; School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Ben Ma
- Shaanxi Key Laboratory of Environmental Engineering, Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China; School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Nan Li
- Shaanxi Key Laboratory of Environmental Engineering, Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China; School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Wanqiu Yang
- Shaanxi Key Laboratory of Environmental Engineering, Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China; School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Haiyun Li
- Shaanxi Key Laboratory of Environmental Engineering, Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China; School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Kexin Zhao
- Shaanxi Key Laboratory of Environmental Engineering, Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China; School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| |
Collapse
|
21
|
Ma B, Zhang H, Zhao D, Sun W, Liu X, Yang W, Zhao K, Liu H, Niu L, Li H. Characterization of non-taste & odor produced aerobic denitrification actinomycetes strains Streptomyces spp. isolated from reservoir ecosystem: Denitrification performance and carbon source metabolism. BIORESOURCE TECHNOLOGY 2023; 367:128265. [PMID: 36347481 DOI: 10.1016/j.biortech.2022.128265] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 10/27/2022] [Accepted: 10/31/2022] [Indexed: 06/16/2023]
Abstract
The aerobic denitrification performance of actinomycetes was investigated. Two strains of actinomycetes were isolated and identified as Streptomyces sp. LJH-12-1 and Streptomyces diastatochromogenes LJH-12-2. Strain LJH-12-1 could remove 94% of organic carbon and 91% of total nitrogen. Meanwhile, strain LJH-12-2 could reduce 96% of organic carbon and 93% of total nitrogen. Two strains of actinomycetes revealed excellent carbon source metabolism activity. Moreover, the total nitrogen removal efficiencies were 69%, and 54%, respectively for strains LJH-12-1, and LJH-12-2 during the micro-polluted landscape raw water treatment. Futhermore, strains LJH-12-1 and LJH-12-2 could utilize aromatic proteins, soluble microbial products, and humic acid to drive aerobic denitrification processes in the landscape water bodies. These results will provide a new insight into applying aerobic denitrification actinomycetes to treat micro-polluted water bodies.
Collapse
Affiliation(s)
- Ben Ma
- Shaanxi Key Laboratory of Environmental Engineering, Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China; School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Haihan Zhang
- Shaanxi Key Laboratory of Environmental Engineering, Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China; School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China.
| | - Daijuan Zhao
- Shaanxi Key Laboratory of Environmental Engineering, Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China; School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Weimin Sun
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou, China; Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, China
| | - Xiang Liu
- Shaanxi Key Laboratory of Environmental Engineering, Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China; School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Wanqiu Yang
- Shaanxi Key Laboratory of Environmental Engineering, Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China; School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Kexin Zhao
- Shaanxi Key Laboratory of Environmental Engineering, Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China; School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Hanyan Liu
- Shaanxi Key Laboratory of Environmental Engineering, Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China; School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Limin Niu
- Shaanxi Key Laboratory of Environmental Engineering, Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China; School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Haiyun Li
- Shaanxi Key Laboratory of Environmental Engineering, Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China; School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| |
Collapse
|
22
|
Huang R, Meng T, Liu G, Gao S, Tian J. Simultaneous nitrification and denitrification in membrane bioreactor: Effect of dissolved oxygen. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 323:116183. [PMID: 36088763 DOI: 10.1016/j.jenvman.2022.116183] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 09/01/2022] [Accepted: 09/02/2022] [Indexed: 06/15/2023]
Abstract
Membrane bioreactor with the floc activated sludge (mixed liquor suspended solids (MLSS) = 7500 mg/L) was constructed in this work for simultaneously nitrification and denitrification (SND). The effect of dissolved oxygen (DO) on SND process and the nitrogen pathways were investigated. The average TN removal efficiencies were 63.05%, 91.17%, 87.04% and 70.02% for DO 0.5, 1, 2 and 3 mg/L systems, respectively. The effluent ammonia concentration was continuously lower than 5.0 mg/L when the DO was higher than 1 mg/L. Nitrogen in DO 1 and DO 2 mg/L systems was mainly removed via the SND process. The rise of DO concentration increased the abundance of nitrite oxidizing bacteria (NOB) and Nitrospira was the predominant NOB in all the four MBRs. Dechloromonas and Azoarcus were the dominant denitrifying bacteria (DNB) in DO 1 systems responsible for nitrite denitrification. The dominant aerobic DNB Pseudomonas also contributed SND via nitrate denitrification and was little affected by DO changes. Nitrate reductase was the main enzyme for the reduction of NO3--N to NO2--N, and narG was the main responsible gene. Nitrite oxidoreductase was the main enzyme for the oxidation of NO2--N to NO3--N, and nxrA was the main responsible gene in all the four MBR systems.
Collapse
Affiliation(s)
- Rui Huang
- School of Civil and Transportation Engineering, Hebei University of Technology, Tianjin, 300401, China; Guangdong GDH Water Co. Ltd, Shenzhen, 518021, China; School of Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Tongyang Meng
- School of Civil and Transportation Engineering, Hebei University of Technology, Tianjin, 300401, China
| | - Gaige Liu
- School of Civil and Transportation Engineering, Hebei University of Technology, Tianjin, 300401, China; School of Environment, Harbin Institute of Technology, Harbin, 150090, China.
| | - Shanshan Gao
- School of Civil and Transportation Engineering, Hebei University of Technology, Tianjin, 300401, China
| | - Jiayu Tian
- School of Civil and Transportation Engineering, Hebei University of Technology, Tianjin, 300401, China
| |
Collapse
|
23
|
Lv K, Guo X, Wang C, Su Q, Liu D, Xiao S, Yang Z. Sediment nitrogen contents controlled by microbial community in a eutrophic tributary in Three Gorges Reservoir, China. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 314:120312. [PMID: 36183874 DOI: 10.1016/j.envpol.2022.120312] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Revised: 06/16/2022] [Accepted: 09/26/2022] [Indexed: 06/16/2023]
Abstract
Nitrogen pollution caused serious environmental problems in reservoir ecosystems. Reducing nitrogen pollution by enhancing nitrogen removal in river sediments deserved intensive research. Distributions of nitrogen contents in sediment-water interface were characterized along the Xiangxi bay (XXB), a eutrophic tributary in Three Gorges Reservoir, China. More than 47% of total Kjeldahl nitrogen (TKN) and 67% of total organic nitrogen (TON) were degraded during burial. Higher TN, TON and NH4+ consuming at downstream sites indicated stronger nitrogen mineralization and release due to higher turbulence of the overlying density currents. Nitrifying bacteria, denitrifying bacteria, anaerobic ammonium oxidizing (anammox) bacteria and nitrite/nitrate-dependent anaerobic methane oxidation (N-DAMO) bacteria were detected in nitrate-ammonium transition zone. Nitrogen contents transitions were responded to microbial stakeholders indicated microbially mediated nitrogen cycling in sediments. The dissolved oxygen and nitrate availabilities were the key limits of denitrification and associated reactions. These results suggested microbial mediated nitrogen cycling processes in sediments were critical for nitrogen removal in aquatic ecosystems, and replenishing dissolved oxygen and nitrate was expected to enhance sediment denitrification and strengthen potential environmental self-purification.
Collapse
Affiliation(s)
- Kun Lv
- Engineering Research Center of Eco-Environment in the Three Gorges Reservoir Region, Ministry of Education, Yichang, China
| | - Xiaojuan Guo
- Hubei Field Observation and Scientific Research Stations for Water Ecosystem in Three Gorges Reservoir, China Three Gorges University, Yichang, China
| | - Congfeng Wang
- Engineering Research Center of Eco-Environment in the Three Gorges Reservoir Region, Ministry of Education, Yichang, China; Hubei Field Observation and Scientific Research Stations for Water Ecosystem in Three Gorges Reservoir, China Three Gorges University, Yichang, China
| | - Qingqing Su
- Engineering Research Center of Eco-Environment in the Three Gorges Reservoir Region, Ministry of Education, Yichang, China; Hubei Field Observation and Scientific Research Stations for Water Ecosystem in Three Gorges Reservoir, China Three Gorges University, Yichang, China
| | - Defu Liu
- Hubei Field Observation and Scientific Research Stations for Water Ecosystem in Three Gorges Reservoir, China Three Gorges University, Yichang, China
| | - Shangbin Xiao
- Engineering Research Center of Eco-Environment in the Three Gorges Reservoir Region, Ministry of Education, Yichang, China
| | - Zhengjian Yang
- Engineering Research Center of Eco-Environment in the Three Gorges Reservoir Region, Ministry of Education, Yichang, China.
| |
Collapse
|
24
|
Zhang H, Liu X, Huang T, Ma B, Sun W, Zhao K, Sekar R, Xing Y. Stagnation trigger changes to tap water quality in winter season: Novel insights into bacterial community activity and composition. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 844:157240. [PMID: 35817116 DOI: 10.1016/j.scitotenv.2022.157240] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 07/02/2022] [Accepted: 07/04/2022] [Indexed: 06/15/2023]
Abstract
The drinking water distribution system is important for water supply and it affects the quality of the drinking water. Indoor pipeline water quality is regulated by physical, hydraulic and biological elements, such as indoor temperature and stagnation. In this work, the effects of indoor heating and overnight stagnation on the variation in bacterial community structure and the total cell count were assessed by full-length 16S rRNA gene sequencing and flow cytometry, respectively. The results exhibited that the average intact cell count was 6.99 × 104 cells/mL and the low nucleic acid (LNA) bacteria was 4.48 × 104 cells/mL after stagnation. The average concentration of total and intracellular adenosine triphosphate (ATP) was 3.64 × 10-12 gATP/mL and 3.13 × 10-17 gATP/cell in stagnant water, respectively. The growth of LNA cells played a crucial role in increasing ATP. The dominant phylum observed was Proteobacteria (87.21 %), followed by Actinobacteria (8.25 %). Opportunistic pathogens increased the risk of disease in stagnant water (up to 1.2-fold for Pseudomonas sp. and 5.8-fold for Mycobacterium sp.). Meanwhile, structural equation model (SEM) and redundancy analysis (RDA) also illustrated that water temperature, residual chlorine and Fe significantly affected the abundance and composition of bacterial community. Taking together, these results show response of tap water quality to overnight stagnation and indoor heating, and provide scientific basis for drinking water security management in winter season.
Collapse
Affiliation(s)
- Haihan Zhang
- Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, China.
| | - Xiang Liu
- Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, China
| | - Tinglin Huang
- Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, China
| | - Ben Ma
- Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, China
| | - Weimin Sun
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou, China; Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, China
| | - Kexin Zhao
- Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, China
| | - Raju Sekar
- Department of Biological Sciences, Xi'an Jiaotong-Liverpool University, Suzhou, China
| | - Yan Xing
- Shaanxi Environmental Monitoring Center, Xi'an, China
| |
Collapse
|
25
|
Lv S, Li X, Wang R, Wang Y, Dong Z, Zhou T, Liu Y, Lin K, Liu L. Autochthonous sources and drought conditions drive anomalous oxygen-consuming pollution increase in a sluice-controlled reservoir in eastern China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 841:156739. [PMID: 35716740 DOI: 10.1016/j.scitotenv.2022.156739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 06/10/2022] [Accepted: 06/12/2022] [Indexed: 06/15/2023]
Abstract
Freshwater reservoirs are an important type of inland waterbody. However, they can suffer from oxygen-consuming pollution, which can seriously threaten drinking water safety and negatively impact the health of aquatic ecosystems. Oxygen-consuming pollutants originate from both allochthonous and autochthonous sources, and have temporally and spatially heterogeneous drivers. Datanggang Reservoir, China, is located in a small agricultural watershed; it is controlled by multiple sluice gates. Anomalously high oxygen consumption indicators were observed in this reservoir in March 2021. Here, it was hypothesized that autochthonous sources were the primary drivers of oxygen-consuming pollution in the reservoir under drought conditions. Datasets of water quality, precipitation, primary productivity, and sediment were used to analyze water quality trends in the reservoir and inflow rivers, demonstrating the effects of allochthonous inputs and autochthonous pollution. No correlation was found between reservoir oxygen consumption indicators and allochthonous inputs; reservoir oxygen consumption indicators and chlorophyll-a concentration were significantly positively correlated (p < 0.05). Substantially lower precipitation and higher water temperature and pH (compared to historical levels) were also observed before the pollution event. Therefore, during this period the hydrological conditions, water temperature, pH, and other variables caused by short-term drought conditions may have facilitated phytoplankton growth in the reservoir. This contributed to a large increase in autochthonous oxygen-consuming pollutants, as reflected by the abnormally high indicators. Sediments contaminated with organic matter may also have been an important contributor. As the effects of environmental management and pollution control continue to emerge, exogenous pollutants imported from the land to reservoirs are currently effectively controlled. However, endogenous pollutants driven by a variety of factors, such as meteorology and hydrology, will likely become the main drivers of short-term changes in oxygen-consuming pollution in freshwater reservoirs in the foreseeable future.
Collapse
Affiliation(s)
- Shucong Lv
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Xinghua Li
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Rui Wang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Yu Wang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Zhaojun Dong
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Tianpeng Zhou
- Xiangshan Water Group Co., Ltd, Ningbo 315700, China
| | - Yunlong Liu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Kuixuan Lin
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Lusan Liu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China.
| |
Collapse
|
26
|
Wei B, Luo X, Ma W, Lv P. Biological nitrogen removal and metabolic characteristics of a novel cold-resistant heterotrophic nitrification and aerobic denitrification Rhizobium sp. WS7. BIORESOURCE TECHNOLOGY 2022; 362:127756. [PMID: 35952861 DOI: 10.1016/j.biortech.2022.127756] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 08/02/2022] [Accepted: 08/05/2022] [Indexed: 06/15/2023]
Abstract
For improving the poor de-nitrogen efficiency and effluent quality faced by wastewater treatment plants in winter, a novel cold-resistant strain, Rhizobium sp. WS7 was isolated. Strain WS7 presented dramatic de-nitrogen efficiencies including 98.73 % of NH4+-N, 99.98 % of NO3--N, 100 % of NO2--N and approximately 100 % of mixed nitrogen (NH4+-N and NO3--N) at 15 °C. Optimum parameters of WS7 for aerobic denitrification were determined. Additionally, functional genes (amoA, napA, nirK, norB, and nosZ) and key enzymes (nitrate reductase and nitrite reductase) activities were determined. Nitrogen balance analysis suggested that assimilation played a dominant role in de-nitrogen by WS7, the NH4+-N metabolic pathway was deduced as NH4+-N → NH2OH → NO → N2O → N2, and the NO3--N/NO2--N metabolic pathway was deduced as NO3--N → NO2--N → NO → N2O → N2. The cold-resistant Rhizobium sp. WS7 has great application feasibility in cold sewage treatment.
Collapse
Affiliation(s)
- Bohui Wei
- School of Civil Engineering, Hebei University of Science and Technology, Shijiazhuang 050018, China
| | - Xiao Luo
- Pollution Prevention Biotechnology Laboratory of Hebei Province, School of Environmental Science and Engineering, Hebei University of Science and Technology, Shijiazhuang 050018, China
| | - Wenkai Ma
- School of Civil Engineering, Hebei University of Science and Technology, Shijiazhuang 050018, China
| | - Pengyi Lv
- Pollution Prevention Biotechnology Laboratory of Hebei Province, School of Environmental Science and Engineering, Hebei University of Science and Technology, Shijiazhuang 050018, China.
| |
Collapse
|
27
|
Wang J, Huang JJ, Zhou Y, Liao Y, Li S, Zhang B, Feng S. Synchronous N and P Removal in Carbon-Coated Nanoscale Zerovalent Iron Autotrophic Denitrification─The Synergy of the Carbon Shell and P Removal. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:13314-13326. [PMID: 36041071 DOI: 10.1021/acs.est.2c02376] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Fe0 is a promising electron donor for autotrophic denitrification in the simultaneous removal of nitrate and phosphorus in low C/N wastewater. However, P removal may inevitably inhibit bio-denitrification. It has not been well recognized and led to an overdose of iron materials. This study employed carbon-coated zerovalent iron (Fe0@C) to support autotrophic denitrification to mitigate the inhibition effects of P removal and enhance both N and P removal. The critical role of the carbon shell in Fe0@C was to block the direct contact between Fe0 and P and NO3--N, to maintain the Fe0 activity. Besides, P inhibited the chemical reduction of NO3--N by competing for Fe0 active sites. This indirectly boosted H2 generation and promoted bio-denitrification. P removal displayed negligible effects on microbial species but indirectly enhanced the nitrogen metabolic activities because of promoted H2 in Fe0@C-based autotrophic denitrification. Bio-denitrification, in turn, strengthened Fe-P co-precipitation by promoting the formation of ferric hydroxide as a secondary adsorbent for P removal. This study demonstrated an efficient method for simultaneous N and P removal in autotrophic denitrification and revealed the synergistic interactions among N and P removal processes.
Collapse
Affiliation(s)
- Jingshu Wang
- Sino-Canadian Joint R&D Center on Water and Environmental Safety/College of Environmental Science and Engineering, Nankai University, No. 38 Tongyan Road, Jinnan District, Tianjin 300350, P.R. China
| | - Jinhui Jeanne Huang
- Sino-Canadian Joint R&D Center on Water and Environmental Safety/College of Environmental Science and Engineering, Nankai University, No. 38 Tongyan Road, Jinnan District, Tianjin 300350, P.R. China
| | - Yan Zhou
- Advanced Environmental Biotechnology Centre, Nanyang Environment and Water Research Institute, Nanyang Technological University, Singapore 637141, Singapore
- School of Civil and Environmental Engineering, Nanyang Technological University, Singapore 639798, Singapore
| | - Yuan Liao
- Sino-Canadian Joint R&D Center on Water and Environmental Safety/College of Environmental Science and Engineering, Nankai University, No. 38 Tongyan Road, Jinnan District, Tianjin 300350, P.R. China
| | - Song Li
- Sino-Canadian Joint R&D Center on Water and Environmental Safety/College of Environmental Science and Engineering, Nankai University, No. 38 Tongyan Road, Jinnan District, Tianjin 300350, P.R. China
| | - Beichen Zhang
- Sino-Canadian Joint R&D Center on Water and Environmental Safety/College of Environmental Science and Engineering, Nankai University, No. 38 Tongyan Road, Jinnan District, Tianjin 300350, P.R. China
| | - Shiteng Feng
- Sino-Canadian Joint R&D Center on Water and Environmental Safety/College of Environmental Science and Engineering, Nankai University, No. 38 Tongyan Road, Jinnan District, Tianjin 300350, P.R. China
| |
Collapse
|
28
|
Zhang H, Shi Y, Ma B, Huang T, Zhang H, Niu L, Liu X, Liu H. Mix-cultured aerobic denitrifying bacteria augmented carbon and nitrogen removal for micro-polluted water: Metabolic activity, coexistence and interactions, and immobilized bacteria for reservoir raw water treatment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 838:156475. [PMID: 35660604 DOI: 10.1016/j.scitotenv.2022.156475] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Revised: 05/29/2022] [Accepted: 05/31/2022] [Indexed: 06/15/2023]
Abstract
Less attention has been paid on the oligotrophic water body nitrogen treatment with mix-cultured aerobic denitrifying bacteria (Mix-CADB). In this study, three Mix-CADB communities were screened from the sediments of reservoirs. The nitrate and dissolved organic carbon (DOC) removal efficiencies of Mix-CADB communities were higher than 92 % and 91 %, respectively. Biolog results suggested that Mix-CADB communities displayed excellent carbon source metabolic activity. The nirS gene sequencing indicated that Pseudomonas sp. and Pseudomonas stutzeri accounted for more proportions in the core species of three Mix-CADB communities. The network model revealed that Pseudomonas sp. and Pseudomonas stutzeri mainly drove the total nitrogen and DOC removal of Mix-CADB communities. More importantly, the immobilized Mix-CADB communities could reduce >91 % nitrate in the adjusted reservoir raw water. Overall, this study showed that the three Mix-CADB communities could be regarded as potential candidates for the nitrogen treatment in oligotrophic water body ecosystems.
Collapse
Affiliation(s)
- Haihan Zhang
- Shaanxi Key Laboratory of Environmental Engineering, Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China; School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China.
| | - Yinjie Shi
- Shaanxi Key Laboratory of Environmental Engineering, Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China; School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Ben Ma
- Shaanxi Key Laboratory of Environmental Engineering, Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China; School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Tinglin Huang
- Shaanxi Key Laboratory of Environmental Engineering, Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China; School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Hui Zhang
- Shaanxi Key Laboratory of Environmental Engineering, Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China; School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Limin Niu
- Shaanxi Key Laboratory of Environmental Engineering, Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China; School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Xiang Liu
- Shaanxi Key Laboratory of Environmental Engineering, Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China; School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Hanyan Liu
- Shaanxi Key Laboratory of Environmental Engineering, Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China; School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| |
Collapse
|
29
|
Li T, Gao Y, Tang Y, Xu Y, Ren H, Huang H. A new LDH based sustained-release carbon source filter media to achieve advanced denitrogenation of low C/N wastewater at low temperature. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 838:156488. [PMID: 35671857 DOI: 10.1016/j.scitotenv.2022.156488] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Revised: 05/23/2022] [Accepted: 06/01/2022] [Indexed: 06/15/2023]
Abstract
Advanced denitrogenation of wastewater is now facing major challenges brought by low C/N ratio and low temperature. The development of sustained-release materials with good and stable carbon release properties was an effective countermeasure. FeNi-Layered double-metal hydroxides (LDH)- sodium carboxymethyl cellulose (CMC) filter media and its potential use in heterotrophic and sulfur-based mixotrophic denitrification biological filter (DNBF), was firstly reported. It demonstrated stable structure and good carbon release performance with a mass transfer coefficient (K) of 4.40 mg·L-1·s-1. When the influent NO3--N of 50 mg/L with the C/N ratio of 3 at 10 °C, the maximum nitrogen loading rate of 0.22 kg·N/(m3·d) and effluent TN close to 5 mg/L (nitrogen removal of almost 90 %) could be achieved. The slowly released carbon source and the leached iron increased the abundance of denitrifying bacteria and functional genes, and the augmentation of Sulfuritalea and the secretion of biofilm protein stimulated by sulfur also played a synergistic role. This study provided a new potentially effective strategy to enhance advanced denitrification of wastewater of low C/N wastewater at low temperature.
Collapse
Affiliation(s)
- Tong Li
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, Jiangsu, PR China
| | - Yilin Gao
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, Jiangsu, PR China
| | - Yingying Tang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, Jiangsu, PR China
| | - Yujin Xu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, Jiangsu, PR China
| | - Hongqiang Ren
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, Jiangsu, PR China
| | - Hui Huang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, Jiangsu, PR China.
| |
Collapse
|
30
|
Liang W, Jiao M, Hu E, Liu T, Ren X, Wang P, Kumar Awasthi M, Li R, Zhang Z. Magnesite driven the complementary effects of core fungi by optimizing the physicochemical parameters in pig manure composting. BIORESOURCE TECHNOLOGY 2022; 360:127541. [PMID: 35777646 DOI: 10.1016/j.biortech.2022.127541] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 06/24/2022] [Accepted: 06/26/2022] [Indexed: 06/15/2023]
Abstract
The effects of magnesite (MS) on fungi communities and the core fungi complementarity during pig manure (PM) composting were explored. Different dosage of MS [0% (T1), 2.5% (T2), 5% (T3), 7.5% (T4) and 10% (T5)] as amendments mixed with PM for 42 days composting. The results showed the dominant of phyla were Ascomycota (78.87%), Neocallimastigomycota (41.40%), Basidiomycota (30.81%) and Aphelidiomycota (29.44%). From day 7 to 42, the abundance of Ascomycota and Aphelidiomycota were increased from 7.75% to 42.41% to 57.27%-78.87% and 0-0.70% to 11.73%-29.44% among all treatments. Nevertheless, the phyla abundance of Neocallimastigomycota and Basidiomycota decreased from day 7 to 42. The co-occurrence network indicated that the high additive amendment could enhance the core fungi complementarity effects capacity. The 10% MS addition was a promisable candidate to optimum fungal communities, and causing a better compost quality. This study illustrated the potential and fungi communities changing of MS as additives in composting.
Collapse
Affiliation(s)
- Wen Liang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, PR China
| | - Minna Jiao
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, PR China
| | - Endian Hu
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, PR China
| | - Tao Liu
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, PR China
| | - Xiuna Ren
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, PR China
| | - Ping Wang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, PR China
| | - Mukesh Kumar Awasthi
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, PR China
| | - Ronghua Li
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, PR China
| | - Zengqiang Zhang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, PR China.
| |
Collapse
|
31
|
Lu M, Wang X, Li H, Jiao JJ, Luo X, Luo M, Yu S, Xiao K, Li X, Qiu W, Zheng C. Microbial community assembly and co-occurrence relationship in sediments of the river-dominated estuary and the adjacent shelf in the wet season. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 308:119572. [PMID: 35661808 DOI: 10.1016/j.envpol.2022.119572] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 05/09/2022] [Accepted: 06/01/2022] [Indexed: 06/15/2023]
Abstract
In the estuarine ecosystem, microbial community plays a vital role in controlling biogeochemical processes. However, there is currently limited comprehensive study on the deterministic and stochastic processes that drive the microbial community assembly in the estuaries and adjacent shelves. In this study, we systematically investigated the co-occurrence relationship and microbial community assembly in the sediments along a large river-dominated estuary to shelf in the northern South China Sea during the wet season. The sampling sites were divided into estuary, transection, and shelf sections based on their salinity values. The microbial co-occurrence networks, hierarchical partitioning-based canonical analysis, null model, neutral community model, and the Mantel test were used to investigate the community assembly. Results suggested that microbial community in the estuary section exhibited more interactions and a higher positive interaction ratio than those in the transition and shelf sections. Stochastic processes dominated community assembly in the study, with homogenizing dispersal contributing the most. The estuary exhibited a higher degree of heterogeneous selection than the transition and shelf sections, whereas homogeneous selection showed an opposite trend. Only the estuary section showed dispersal limitation and undominated processes. The river inflow and the resulting environmental heterogeneity were believed to be the key regulators of the community assembly in the studied area. Our study improved the understanding of how microbial community assembly in estuaries and adjacent shelves.
Collapse
Affiliation(s)
- Meiqing Lu
- State Environmental Protection Key Laboratory of Integrated Surface Water-Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen, 518055, China; Department of Earth Sciences, The University of Hong Kong, Hong Kong, China
| | - Xuejing Wang
- State Environmental Protection Key Laboratory of Integrated Surface Water-Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen, 518055, China.
| | - Hailong Li
- State Environmental Protection Key Laboratory of Integrated Surface Water-Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Jiu Jimmy Jiao
- Department of Earth Sciences, The University of Hong Kong, Hong Kong, China
| | - Xin Luo
- Department of Earth Sciences, The University of Hong Kong, Hong Kong, China
| | - Manhua Luo
- School of Water Resources and Environment, China University of Geosciences (Beijing), Beijing, 100083, China
| | - Shengchao Yu
- State Environmental Protection Key Laboratory of Integrated Surface Water-Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen, 518055, China; Department of Earth Sciences, The University of Hong Kong, Hong Kong, China
| | - Kai Xiao
- State Environmental Protection Key Laboratory of Integrated Surface Water-Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Xiang Li
- State Environmental Protection Key Laboratory of Integrated Surface Water-Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Wenhui Qiu
- State Environmental Protection Key Laboratory of Integrated Surface Water-Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Chunmiao Zheng
- State Environmental Protection Key Laboratory of Integrated Surface Water-Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
| |
Collapse
|
32
|
Zhang Y, Xu Q, Wang G, Shi K. Indole-Acetic Acid Promotes Ammonia Removal Through Heterotrophic Nitrification, Aerobic Denitrification With Mixed Enterobacter sp. Z1 and Klebsiella sp. Z2. Front Microbiol 2022; 13:929036. [PMID: 35875564 PMCID: PMC9304994 DOI: 10.3389/fmicb.2022.929036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 06/20/2022] [Indexed: 11/30/2022] Open
Abstract
Mixed Enterobacter sp. Z1 and Klebsiella sp. Z2 displayed an outstanding ammonia removal capacity than using a single strain. Metabolomics, proteomics, and RNA interference analysis demonstrated that the HNAD process was closely related to indole-acetic acid (IAA). Under the cocultured conditions, the excess IAA produced by Z2 could be absorbed by Z1 to compensate for the deficiency of IAA in the cells. IAA directly induced the expression of denitrifying enzymes and further activated the IAA metabolism level, thus greatly improving the nitrogen removal ability of Z1. In turn, nitrate and nitrite induced the expression of key enzymes in the IAA pathways. Moreover, Z1 and Z2 enhanced two IAA metabolic pathways in the process of mixed removal process. The activated hydrolysis-redox pathway in Z1 reduced the oxidative stress level, and the activated decarboxylation pathway in Z2 promoted intracellular energy metabolism, which indirectly promoted the process of HNAD in the system.
Collapse
|
33
|
Ma B, Zhang H, Huang T, Chen S, Sun W, Yang W, Liu H, Liu X, Niu L, Yang F, Yu J. Cooperation triggers nitrogen removal and algal inhibition by actinomycetes during landscape water treatment: Performance and metabolic activity. BIORESOURCE TECHNOLOGY 2022; 356:127313. [PMID: 35577220 DOI: 10.1016/j.biortech.2022.127313] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 05/09/2022] [Accepted: 05/11/2022] [Indexed: 06/15/2023]
Abstract
The actinomycetes strain Streptomyces sp. XD-11-9-3 and Streptomyces sp. 5 were isolated and presented poor denitrification performance. Co-culture of actinomycetes triggers nitrogen removal capacity under aerobic conditions (reduced 96% of total nitrogen). Nitrogen balance analysis presented that 71% of initial nitrogen converted as gaseous nitrogen. Moreover, co-culture increased the concentrations of adenosine triphosphate (>2.1 folds) and electron-transmission system activity (>1.5 folds) significantly. The co-culture presented excellent carbon source metabolism activity (especially amines and carboxylic acids) compared with monoculture. The removal efficiency of total nitrogen in the micro-polluted landscape water water reached 61% in the co-culture system, and the algal survival could be inhibited significantly. However, the dominant niche of the co-culture system restrained the diversity of the indigenous nirS-type denitrifying bacterial community. This study provided a novel pathway to the research of co-culture inefficiency aerobic denitrifier and further application in the restoration of polluted water.
Collapse
Affiliation(s)
- Ben Ma
- Shaanxi Key Laboratory of Environmental Engineering, Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China; School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Haihan Zhang
- Shaanxi Key Laboratory of Environmental Engineering, Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China; School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China.
| | - Tinglin Huang
- Shaanxi Key Laboratory of Environmental Engineering, Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China; School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Shengnan Chen
- Shaanxi Key Laboratory of Environmental Engineering, Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China; School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Weimin Sun
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou, China; Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, China
| | - Wanqiu Yang
- Shaanxi Key Laboratory of Environmental Engineering, Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China; School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Hanyan Liu
- Shaanxi Key Laboratory of Environmental Engineering, Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China; School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Xiang Liu
- Shaanxi Key Laboratory of Environmental Engineering, Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China; School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Limin Niu
- Shaanxi Key Laboratory of Environmental Engineering, Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China; School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Fan Yang
- Shaanxi Key Laboratory of Environmental Engineering, Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China; School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Jimeng Yu
- Shaanxi Key Laboratory of Environmental Engineering, Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China; School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| |
Collapse
|
34
|
Obieze CC, Wani GA, Shah MA, Reshi ZA, Comeau AM, Khasa DP. Anthropogenic activities and geographic locations regulate microbial diversity, community assembly and species sorting in Canadian and Indian freshwater lakes. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 826:154292. [PMID: 35248630 DOI: 10.1016/j.scitotenv.2022.154292] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 02/13/2022] [Accepted: 02/28/2022] [Indexed: 06/14/2023]
Abstract
Freshwater lakes are important reservoirs and sources of drinking water globally. However, the microbiota, which supports the functionality of these ecosystems is threatened by the influx of nutrients, heavy metals and other toxic chemical substances from anthropogenic activities. The influence of these factors on the diversity, assembly mechanisms and co-occurrence patterns of bacterial communities in freshwater lakes is not clearly understood. Hence, samples were collected from six different impacted lakes in Canada and India and examined by 454-pyrosequencing technology. The trophic status of these lakes was determined using specific chemical parameters. Our results revealed that bacterial diversity and community composition was altered by both the lake water chemistry and geographic distance. Anthropogenic activities pervasively influenced species distribution. Dispersal limitation (32.3%), homogenous selection (31.8%) and drift (20%) accounted for the largest proportions of the bacterial community assembly mechanisms. Homogenous selection increased in lakes with higher nutrient concentration, while stochasticity reduced. Community functional profiles revealed that deterministic processes dominated the assembly mechanisms of phylotypes with higher potential for biodegradation, while stochasticity dominated the assembly of phylotypes with potential for antimicrobial resistance. Bacteroidota (44%) and Proteobacteria (34%) were the most abundant phyla. Co-occurrence network analysis revealed that complexity increased in more impacted lakes, while competition and the nature of anthropogenic activity contributed to species sorting. Overall, this study demonstrates that bacterial community changes in freshwater lakes are linked to anthropogenic activities, with corresponding consequences on the distribution of phylotypes of environmental and human health interest.
Collapse
Affiliation(s)
- Chinedu C Obieze
- Centre for Forest Research, Institute of Integrative Biology and Systems, Université Laval, Quebec, QC G1V0A6, Canada.
| | - Gowher A Wani
- Centre for Forest Research, Institute of Integrative Biology and Systems, Université Laval, Quebec, QC G1V0A6, Canada; Department of Botany, University of Kashmir, Srinagar 190006, Jammu and Kashmir, India
| | - Manzoor A Shah
- Department of Botany, University of Kashmir, Srinagar 190006, Jammu and Kashmir, India
| | - Zafar A Reshi
- Department of Botany, University of Kashmir, Srinagar 190006, Jammu and Kashmir, India
| | - André M Comeau
- Integrated Microbiome Resource, Dalhousie University, Halifax, NS, Canada
| | - Damase P Khasa
- Centre for Forest Research, Institute of Integrative Biology and Systems and Canada Research Chair in Forest Genomics, Université Laval, Quebec, QC G1V0A6, Canada
| |
Collapse
|
35
|
Hu T, Zhen L, Gu J, Wang X, Sun W, Song Z, Xie J, An L, Luo B, Qian X. Clarifying the beneficial effects of plant growth-promoting rhizobacteria for reducing abundances of antibiotic resistance genes during swine manure composting. BIORESOURCE TECHNOLOGY 2022; 353:127117. [PMID: 35395365 DOI: 10.1016/j.biortech.2022.127117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Revised: 03/31/2022] [Accepted: 04/01/2022] [Indexed: 06/14/2023]
Abstract
This study investigated the effects on antibiotic resistance genes (ARGs) and the related mechanisms of different plant growth-promoting rhizobacteria (PGPR) inoculation strategies during composting: no inoculation (CK), inoculation in initial phase (T1), inoculation in cooling phase (T2), and inoculation in both initial and cooling phases (T3). After composting, the total relative abundances (RAs) of ARGs decreased by 0.26 and 0.03 logs under T3 and T2, respectively, but increased by 0.05 and 0.22 logs under T1 and CK. The abundances of eight ARGs were lowest under T3, including some high risk ARGs with clinical importance. Bioavailable Cu significantly affected the readily removed ARGs, and PGPR inoculation decreased the bioavailability of Cu. T3 reduced the abundances of potential pathogen hosts, inhibited horizontal gene transfer by reducing the RAs of mobile gene elements (0.48 logs), and downregulated the expression of genes related to ARG propagation, thereby decreasing the ecological risk of ARGs.
Collapse
Affiliation(s)
- Ting Hu
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Lisha Zhen
- Shaanxi Province Microbiology Institute, Xian, Shaanxi 710043, China
| | - Jie Gu
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China; Research Center of Recycle Agricultural Engineering and Technology of Shaanxi Province, Northwest A&F University, Yangling, Shaanxi 712100, China.
| | - Xiaojuan Wang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Wei Sun
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Zilin Song
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Jun Xie
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Lu An
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Bin Luo
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Xun Qian
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China
| |
Collapse
|
36
|
Yang W, Ali A, Su J, Liu J, Wang Z, Zhang L. Microbial induced calcium precipitation based anaerobic immobilized biofilm reactor for fluoride, calcium, and nitrate removal from groundwater. CHEMOSPHERE 2022; 295:133955. [PMID: 35157876 DOI: 10.1016/j.chemosphere.2022.133955] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 01/21/2022] [Accepted: 02/09/2022] [Indexed: 06/14/2023]
Abstract
In this study, the anaerobic quartz sand fixed biofilm reactor containing Cupriavidus sp. W12 was established to simultaneously remove calcium (Ca2+), fluoride (F-) and nitrate (NO3-N) from groundwater. After 84 days of continuous operation, the optimum operating parameters and defluoridation mechanism were explored, and the microbial community structure under different pH environments were compared and analyzed. Under the optimal operation conditions (HRT of 6 h, initial Ca2+ concentration of 180 mg L-1, and pH of 7.0), the removal efficiencies of Ca2+, F-, and NO3-N were 58.97%, 91.93%, and 100%, respectively. Gas chromatography (GC) results indicate that N2 is the main gas produced by the bioreactor. Three-dimension excitation emission matrix fluorescence spectroscopy (3D-EEM) showed that extracellular polymers (EPS) are produced during bacterial growth and metabolism. The results of Scanning electron microscopy-energy dispersive spectrometer (SEM-EDS), X-ray diffraction (XRD), and Fourier transform infrared spectrometer (FTIR) demonstrated that the defluoridation mechanism is attributed to the synergetic effects of ion exchange, co-precipitation, and chemisorption. The comparative analysis of the microbial community structure under different pH conditions show that Cupriavidus is the dominant bacteria in the bioreactor throughout the experiment, and it shows a prominent advantage at pH of 7.0. This research provides an application foundation for anaerobic microbial induced calcium precipitation (MICP) bioremediation of Ca2+, F-, and NO3-N from groundwater.
Collapse
Affiliation(s)
- Wenshuo Yang
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| | - Amjad Ali
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| | - Junfeng Su
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China.
| | - Jiaran Liu
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| | - Zhao Wang
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| | - Lingfei Zhang
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| |
Collapse
|
37
|
Zhang H, Ma B, Huang T, Yang W, Liu X, Niu L. Nitrogen removal from low carbon/nitrogen polluted water is enhanced by a novel synthetic micro-ecosystem under aerobic conditions: Novel insight into abundance of denitrification genes and community interactions. BIORESOURCE TECHNOLOGY 2022; 351:127013. [PMID: 35306134 DOI: 10.1016/j.biortech.2022.127013] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Revised: 03/11/2022] [Accepted: 03/12/2022] [Indexed: 06/14/2023]
Abstract
The main limiting factor in treatment of wastewater with a low carbon/nitrogen ratio is insufficient electron donors for aerobic denitrification. A novel synthetic micro-ecosystem (SM) with functional materials as the core structure was prepared to enhance nitrate removal during wastewater treatment. Nitrate removal in the reactors with SM increased by more than 40 % and reached 97.43 % under aerobic conditions. The abundance of denitrification functional genes in activated sludge increased by 2.7 folds after adding SM. Network analysis showed that the denitrifying bacterial community in the reactors with SM displayed a more abundant symbiotic structure. In the reactors with SM, bacteria with both denitrification and inorganic electron transfer capabilities (such as Paracoccus sp., Thaurea sp., and Achromobacter sp.) occupied dominant niche. A species abundance distribution model indicated more intense competition for the dominant niche for the denitrification community in the reactor with SM. Thus, SM promotes denitrification in polluted water bodies under aerobic conditions.
Collapse
Affiliation(s)
- Haihan Zhang
- Shaanxi Key Laboratory of Environmental Engineering, Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China; School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China.
| | - Ben Ma
- Shaanxi Key Laboratory of Environmental Engineering, Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China; School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Tinglin Huang
- Shaanxi Key Laboratory of Environmental Engineering, Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China; School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Wanqiu Yang
- Shaanxi Key Laboratory of Environmental Engineering, Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China; School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Xiang Liu
- Shaanxi Key Laboratory of Environmental Engineering, Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China; School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Limin Niu
- Shaanxi Key Laboratory of Environmental Engineering, Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China; School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| |
Collapse
|
38
|
Huang Y, Zhang H, Liu X, Ma B, Huang T. Iron-Activated Carbon Systems to Enhance Aboriginal Aerobic Denitrifying Bacterial Consortium for Improved Treatment of Micro-Polluted Reservoir Water: Performances, Mechanisms, and Implications. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:3407-3418. [PMID: 35239323 DOI: 10.1021/acs.est.1c05254] [Citation(s) in RCA: 50] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Although many source waterbodies face nitrogen pollution problems, the lack of organic electron donors causes difficulties when aerobic denitrifying bacteria are used to treat micro-polluted water. Different forms of iron with granular activated carbon (AC) as carriers were used to stimulate aboriginal microorganisms for the purification of micro-polluted source water. Compared with the iron-absent AC system, targeted pollutants were significantly removed (75.76% for nitrate nitrogen, 95.90% for total phosphorus, and 80.59% for chemical oxygen demand) in the sponge-iron-modified AC system, which indicated that iron promoted the physical and chemical removal of pollutants. In addition, high-throughput sequencing showed that bacterial distribution and interaction were changed by ion dosage, which was beneficial for pollutant transformation and reduction. Microbial functions, such as pollutant removal and expression of functional enzymes that were responsible for the transformation of nitrate nitrogen to ammonia, were highly efficient in iron-applied systems. This study provides an innovative strategy to strengthen in situ remediation of micro-pollution in waterbodies.
Collapse
Affiliation(s)
- Yuwei Huang
- Xi'an Weiyuan Environmental Protection and Technology Co., Ltd., Xi'an 710054, China
- Faculty of Civil Engineering and Geosciences, Delft University of Technology, Stevinweg 1, 2628 CN Delft, The Netherlands
| | - Haihan Zhang
- Shaanxi Key Laboratory of Environmental Engineering, Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Xiang Liu
- Shaanxi Key Laboratory of Environmental Engineering, Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Ben Ma
- Shaanxi Key Laboratory of Environmental Engineering, Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Tinglin Huang
- Shaanxi Key Laboratory of Environmental Engineering, Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| |
Collapse
|
39
|
Shi J, Su J, Ali A, Chen C, Xu L, Yan H, Su L, Qi Z. Nitrate removal under low carbon to nitrogen ratio by modified corn straw bioreactor: Optimization and possible mechanism. ENVIRONMENTAL TECHNOLOGY 2022:1-11. [PMID: 35200110 DOI: 10.1080/09593330.2022.2046649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 02/11/2022] [Indexed: 06/14/2023]
Abstract
ABSTRACTThe removal of nitrate (NO3--N) from water bodies under the conditions of poor nutrition and low carbon to nitrogen (C/N) ratio is a widespread problem. In this study, modified corn stalk (CS) was used to immobilize Burkholderia sp. CF6 with cellulose-degrading and denitrifying abilities. The optimal operating parameters of the bioreactor were explored. The results showed that under the hydraulic retention time (HRT) of 3 h and the C/N ratio of 2.0, the maximum nitrate removal efficiency was 96.75%. In addition, the organic substances in the bioreactor under different C/N ratios and HRT were analyzed by three-dimensional fluorescence excitation-emission mass spectrometry (3D-EEM), and it was found that the microorganisms have high metabolic activity. Scanning electron microscope (SEM) showed that the new material has excellent immobilization effects. Fourier transform infrared spectrometer (FTIR) showed that it has potential as a solid carbon source. Through high-throughput sequencing analysis, Burkholderia sp. CF6 was observed as the main bacteria present in the bioreactor. These research results showed that the use of waste corn stalks waste provides a theoretical basis for the advanced treatment of low C/N ratio wastewater.
Collapse
Affiliation(s)
- Jun Shi
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, People's Republic of China
- Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, People's Republic of China
| | - Junfeng Su
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, People's Republic of China
- Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, People's Republic of China
| | - Amjad Ali
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, People's Republic of China
- Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, People's Republic of China
| | - Changlun Chen
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, People's Republic of China
- Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, People's Republic of China
| | - Liang Xu
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, People's Republic of China
- Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, People's Republic of China
| | - Huan Yan
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, People's Republic of China
- Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, People's Republic of China
| | - Lindong Su
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, People's Republic of China
- Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, People's Republic of China
- Xi'an Yiwei Putai Environmental Protection Company Limited, Xi'an, People's Republic of China
| | - Zening Qi
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, People's Republic of China
- Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, People's Republic of China
- Xi'an Yiwei Putai Environmental Protection Company Limited, Xi'an, People's Republic of China
| |
Collapse
|
40
|
Xu L, Su J, Ali A, Huang T, Yang Y, Shi J, Liang E. Magnetite-loaded rice husk biochar promoted the denitrification performance of Aquabacterium sp. XL4 under low carbon to nitrogen ratio: Optimization and mechanism. BIORESOURCE TECHNOLOGY 2022; 348:126802. [PMID: 35131457 DOI: 10.1016/j.biortech.2022.126802] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 01/27/2022] [Accepted: 01/28/2022] [Indexed: 06/14/2023]
Abstract
The removal of nitrate (NO3--N) under the low carbon to nitrogen (C/N) ratio is a widespread issue. Here in, a modified biochar (MRHB) was prepared by combining rice husk and magnetite to promote the denitrification performance of Aquabacterium sp. XL4 under low C/N ratio. In addition, when the modified H2O2 concentration was 0.6 mM, the dosage was 5.0 g L-1, the C/N ratio was 1.5, and the pH was neutral, the nitrate removal efficiency is 97.9%. Fluorescence excitation-emission matrix spectra (3D-EEM) showed that the metabolism of strain XL4 was stable under optimal conditions. Furthermore, the results of flow cytometry (FC) showed that the amounts of intact cells with MRHB was excellent. The measurement of cytochrome c concentration, total membrane permeability (Tmp), electron transport system activity (ETSA), and cyclic voltammetry curve (CV) confirmed that the MRHB improved the electron transfer and membrane activity of strain XL4.
Collapse
Affiliation(s)
- Liang Xu
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Junfeng Su
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China.
| | - Amjad Ali
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Tinglin Huang
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Yuzhu Yang
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Jun Shi
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Enlei Liang
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| |
Collapse
|