1
|
Pompei CME, Ruas G, Belasco GC, Mondin GA, Silva GHR. Total coliforms, E. coli, Enterococcus spp., and Staphylococcus spp. removal in vertical tubular photobioreactor with and without support medium. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2025; 367:125605. [PMID: 39734041 DOI: 10.1016/j.envpol.2024.125605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 12/18/2024] [Accepted: 12/26/2024] [Indexed: 12/31/2024]
Abstract
Unsafe water has severe implications for human health. Among sanitary wastewater treatment technologies, those that treat effluent in the most natural way possible (avoiding chemicals) need to be employed to minimize environmental damage upon release. Microalgae-based systems are one of the more economical and sustainable methods. Some studies have suggested that the use of photobioreactors incorporating a supporting medium for biofilm formation surpasses suspension reactors in both biomass productivity and effluent treatment efficiency. Therefore, the aim of this study was investigated whether the use of a supporting medium in vertical tubular photobioreactors (T-PBRs) could improve the pathogens removal (total coliforms, E. coli, Enterococcus spp., and Staphylococcus spp.) and analyzed the efficiency under light and dark photoperiods to optimize removal and wastewater treatment in microalgae systems. The novelty of this study is that it is the first time a support medium addition in a T-PBRs has been evaluated for pathogen and microorganism removal from sanitary wastewater. All four pathogens showed better removal in T2-PBR (with support medium) - >90%, and especially during light sampling periods. E. coli was the microorganisms with highest removal efficiency (4.43 log-Re - 99.99%).
Collapse
Affiliation(s)
- Caroline Moço Erba Pompei
- São Paulo State University (UNESP), School of Engineering Bauru, Department of Civil and Environmental Engineering, Bauru, SP, Brazil.
| | - Graziele Ruas
- São Paulo State University (UNESP), School of Engineering Bauru, Department of Civil and Environmental Engineering, Bauru, SP, Brazil.
| | - Gabriela Costa Belasco
- São Paulo State University (UNESP), School of Engineering Bauru, Department of Civil and Environmental Engineering, Bauru, SP, Brazil.
| | - Giovanni Andrade Mondin
- São Paulo State University (UNESP), School of Sciences, Department of Biological Sciences, Brazil.
| | - Gustavo Henrique Ribeiro Silva
- São Paulo State University (UNESP), School of Engineering Bauru, Department of Civil and Environmental Engineering, Bauru, SP, Brazil.
| |
Collapse
|
2
|
Padhi D, Kashyap S, Mohapatra RK, Dineshkumar R, Nayak M. Microalgae-based flue gas CO 2 sequestration for cleaner environment and biofuel feedstock production: a review. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2025:10.1007/s11356-025-35958-8. [PMID: 39888525 DOI: 10.1007/s11356-025-35958-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Accepted: 01/14/2025] [Indexed: 02/01/2025]
Abstract
Anthropogenic CO2 emissions are the prime cause of global warming and climate change, promoting researchers to develop suitable technologies to reduce carbon footprints. Among various CO2 sequestration technologies, microalgal-based methods are found to be promising due to their easier operation, environmental benefits, and simpler equipment requirements. Microalgae-based carbon capture and storage (CCS) technology is essential for addressing challenges related to the use of industrial-emitted flue gases. This review focuses on the literature concerning the microalgal application for CO2 sequestration. It highlights the primary physiochemical parameters that affect microalgal-based CO2 biofixation, including light exposure, microalgal strain, temperature, inoculum size, pH levels, mass transfer, CO2 concentration, flow rate, cultivation system, and mixing mechanisms. Moreover, the inhibition effect of different flue gas components including NOx, SOx, and Hg on growth kinetics is discussed to enhance the capacity of microalgal-based CO2 biofixation, along with deliberated challenges and prospects for future development. Overall, the review indicated microalgal-based flue gas CO2 fixation rates range from 80 mg L-1 day-1 to over 578 mg L-1 day-1, primarily influenced by physiochemical parameters and flue gas composition. This article summarizes the mechanisms and stages of microalgal-based CO2 sequestration and provides a comprehensive review based on international interest in this green technology.
Collapse
Affiliation(s)
- Diptymayee Padhi
- Biorefinery and Bioenergy Research Laboratory, Centre for Plant and Environmental Biotechnology, Amity Institute of Biotechnology, Amity University Uttar Pradesh, Noida, 201313, India
| | - Shatakshi Kashyap
- Biorefinery and Bioenergy Research Laboratory, Centre for Plant and Environmental Biotechnology, Amity Institute of Biotechnology, Amity University Uttar Pradesh, Noida, 201313, India
| | - Ranjan Kumar Mohapatra
- Department of Environmental and IT Convergence Engineering, Chungnam National University, Daejeon, 34134, Republic of Korea
| | - Ramalingam Dineshkumar
- CSIR-Central Salt and Marine Chemicals Research Institute, Bhavnagar, 364002, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, Uttar Pradesh, India
| | - Manoranjan Nayak
- Biorefinery and Bioenergy Research Laboratory, Centre for Plant and Environmental Biotechnology, Amity Institute of Biotechnology, Amity University Uttar Pradesh, Noida, 201313, India.
| |
Collapse
|
3
|
Ojaniemi U, Tamminen A, Syrjänen J, Barth D. CFD modeling of CO 2 fixation by microalgae cultivated in a lab scale photobioreactor. BIORESOURCE TECHNOLOGY 2025; 415:131715. [PMID: 39490541 DOI: 10.1016/j.biortech.2024.131715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 10/17/2024] [Accepted: 10/25/2024] [Indexed: 11/05/2024]
Abstract
The green microalga Chlorella vulgaris has been studied for efficient fixation of carbon dioxide, CO2, from elevated concentrations of in-feed gas flows. In this work, a Computational Fluid Dynamics (CFD) model for algae cultivation including the dependence on CO2 concentration in liquid has been derived based on cultivation experiments of Chlorella vulgaris. The experiments were performed in a laboratory scale cylindrical stirred tank reactor with a range of enriched CO2 concentrations in-feed (0.04-50 %). The model provided by Béchet et al. (2015) for algae cultivation considering dependence on local light, algae concentration and temperature has been implemented for CFD and modified for comprising CO2 dependence. The model has been verified with experimental results for the algae productivity showing the proper trends for dissolved CO2 concentrations and algae concentrations. Thus, the developed CFD model can serve as a tool for evaluating photobioreactor performance for CO2 capture.
Collapse
Affiliation(s)
- Ulla Ojaniemi
- VTT Technical Research Centre of Finland Ltd, P.O.Box 1000, FI-02044, VTT, Finland.
| | - Anu Tamminen
- VTT Technical Research Centre of Finland Ltd, P.O.Box 1000, FI-02044, VTT, Finland
| | - Jouni Syrjänen
- VTT Technical Research Centre of Finland Ltd, P.O.Box 1000, FI-02044, VTT, Finland
| | - Dorothee Barth
- VTT Technical Research Centre of Finland Ltd, P.O.Box 1000, FI-02044, VTT, Finland
| |
Collapse
|
4
|
Jodlbauer J, Schmal M, Waltl C, Rohr T, Mach-Aigner AR, Mihovilovic MD, Rudroff F. Unlocking the potential of cyanobacteria: a high-throughput strategy for enhancing biocatalytic performance through genetic optimization. Trends Biotechnol 2024; 42:1795-1818. [PMID: 39214789 DOI: 10.1016/j.tibtech.2024.07.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 07/15/2024] [Accepted: 07/19/2024] [Indexed: 09/04/2024]
Abstract
Cyanobacteria show promise as hosts for whole-cell biocatalysis. Their photoautotrophic metabolism can be leveraged for a sustainable production process. Despite advancements, performance still lags behind heterotrophic hosts. A key challenge is the limited ability to overexpress recombinant enzymes, which also hinders their biocatalytic efficiency. To address this, we generated large-scale expression libraries and developed a high-throughput method combining fluorescence-activated cell sorting (FACS) and deep sequencing in Synechocystis sp. PCC 6803 (Syn. 6803) to screen and optimize its genetic background. We apply this approach to enhance expression and biocatalyst performance for three enzymes: the ketoreductase LfSDR1M50, enoate reductase YqjM, and Baeyer-Villiger monooxygenase (BVMO) CHMOmut. Diverse genetic combinations yielded significant improvements: optimizing LfSDR1M50 expression showed a 17-fold increase to 39.2 U gcell dry weight (CDW)-1. In vivo activity of Syn. YqjM was improved 16-fold to 58.7 U gCDW-1 and, for Syn. CHMOmut, a 1.5-fold increase to 7.3 U gCDW-1 was achieved by tailored genetic design. Thus, this strategy offers a pathway to optimize cyanobacteria as expression hosts, paving the way for broader applications in other cyanobacteria strains and larger libraries.
Collapse
Affiliation(s)
- Julia Jodlbauer
- Institute of Applied Synthetic Chemistry, TU Wien, Getreidemarkt 9, 1060, Vienna, Austria
| | - Matthias Schmal
- Institute of Chemical, Environmental, and Bioscience Engineering, TU Wien, Gumpendorfer Str. 1a, 1060, Vienna, Austria
| | - Christian Waltl
- Institute of Applied Synthetic Chemistry, TU Wien, Getreidemarkt 9, 1060, Vienna, Austria
| | - Thomas Rohr
- Institute of Applied Synthetic Chemistry, TU Wien, Getreidemarkt 9, 1060, Vienna, Austria
| | - Astrid R Mach-Aigner
- Institute of Chemical, Environmental, and Bioscience Engineering, TU Wien, Gumpendorfer Str. 1a, 1060, Vienna, Austria
| | - Marko D Mihovilovic
- Institute of Applied Synthetic Chemistry, TU Wien, Getreidemarkt 9, 1060, Vienna, Austria
| | - Florian Rudroff
- Institute of Applied Synthetic Chemistry, TU Wien, Getreidemarkt 9, 1060, Vienna, Austria.
| |
Collapse
|
5
|
Nguyen DT, Johir MAH, Mahlia TMI, Silitonga AS, Zhang X, Liu Q, Nghiem LD. Microalgae-derived biolubricants: Challenges and opportunities. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 954:176759. [PMID: 39393688 DOI: 10.1016/j.scitotenv.2024.176759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 09/24/2024] [Accepted: 10/04/2024] [Indexed: 10/13/2024]
Abstract
Lubricants are indispensable in the modern economy for controlling friction and wear across many industries. Traditional lubricants are derived from petroleum crude and can cause significant ecological impact if released into the environment. Microalgae have emerged as a potential alternative to petroleum crude for producing renewable and environmentally friendly biolubricants. This review systematically assesses recent developments in microalgal-based biolubricant production, including tribological performance, microalgae selection, cultivation, harvesting, lipid and polysaccharide extraction and conversion to biolubricants, and market development. Compared to petroleum-based lubricants in terms of tribological properties, biolubricants are compatible with most emerging applications, such as electric vehicles and wind turbines. Nevertheless, they are less thermally and chemically stable, thus, may not be suitable for some traditional applications such as internal combustion engines. Literature data corroborated in this study reveals an urgent need for further research to scale up microalgae production and lower the cost of biomass harvesting. While technologies for converting microalgae-derived lipids to biolubricants appear to be well established, additional work is necessary to also utilize polysaccharides as another key ingredient for producing biolubricants, especially for low-temperature applications. Extraction methods are well established but further research is also needed to reduce the ecological impact, especially to utilize green solvents and reduce solvent consumption. Additionally, future research should delve into the use of nanoparticles as effective additives to obtain microalgae-based biolubricants with superior properties. Finally, it is essential to standardize the labeling system of biolubricants to establish a global market.
Collapse
Affiliation(s)
- Duong T Nguyen
- Center for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, NSW 2007, Australia
| | - Md Abu Hasan Johir
- Center for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, NSW 2007, Australia
| | - T M Indra Mahlia
- Center for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, NSW 2007, Australia
| | - A S Silitonga
- Center for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, NSW 2007, Australia
| | - Xiaolei Zhang
- Center for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, NSW 2007, Australia; School of Environmental & Chemical Engineering, Shanghai University, No. 99 Shangda Road, Shanghai 200444, China
| | - Qiang Liu
- School of Environmental & Chemical Engineering, Shanghai University, No. 99 Shangda Road, Shanghai 200444, China
| | - Long D Nghiem
- Center for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, NSW 2007, Australia.
| |
Collapse
|
6
|
Yu BS, Pyo S, Lee J, Han K. Microalgae: a multifaceted catalyst for sustainable solutions in renewable energy, food security, and environmental management. Microb Cell Fact 2024; 23:308. [PMID: 39543605 PMCID: PMC11566087 DOI: 10.1186/s12934-024-02588-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 11/09/2024] [Indexed: 11/17/2024] Open
Abstract
This review comprehensively examines the various applications of microalgae, focusing on their significant potential in producing biodiesel and hydrogen, serving as sustainable food sources, and their efficacy in treating both municipal and food-related wastewater. While previous studies have mainly focused on specific applications of microalgae, such as biofuel production or wastewater treatment, this review covers these applications comprehensively. It examines the potential for microalgae to be applied in various industrial sectors such as energy, food security, and environmental management. By bridging these different application areas, this review differs from previous studies in providing an integrated and multifaceted view of the industrial applications of microalgae. Since it is essential to increase the productivity of the process to utilize microalgae for various industrial applications, research trends in different microalgae cultivation processes, including the culture system (e.g., open ponds, closed ponds) or environmental conditions (e.g., pH, temperature, light intensity) to improve the productivity of biomass and valuable substances was firstly analyzed. In addition, microalgae cultivation technologies that can maximize the biomass and valuable substances productivity while limiting the potential for contamination that can occur when utilizing these systems have been described to maximize CO2 reduction. In conclusion, this review has provided a detailed analysis of current research findings and technological innovations, highlighting the important role of microalgae in addressing global challenges related to energy, food supply, and waste management. It has also provided valuable insights into future research directions and potential commercial applications in several bio-related industries, and illustrated how important continued exploration and development in this area is to realize the full potential of microalgae.
Collapse
Affiliation(s)
- Byung Sun Yu
- Department of biomedical Sciences, College of Bio-convergence, Dankook University, 31116, Dandae-ro 119, Dongnam-gu, Cheonan, 31116, Republic of Korea
- Smart Animal Bio Institute, Dankook University, Cheonan, 31116, Republic of Korea
- Center for Bio Medical Engineering Core Facility, Dankook University, Cheonan, 31116, Republic of Korea
| | - Seonju Pyo
- Smart Animal Bio Institute, Dankook University, Cheonan, 31116, Republic of Korea
- Department of Bioconvergence Engineering, Dankook University, Yongin, 16890, Republic of Korea
| | - Jungnam Lee
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University of Florida, Gainesville, FL, 32610, USA
| | - Kyudong Han
- Department of biomedical Sciences, College of Bio-convergence, Dankook University, 31116, Dandae-ro 119, Dongnam-gu, Cheonan, 31116, Republic of Korea.
- Smart Animal Bio Institute, Dankook University, Cheonan, 31116, Republic of Korea.
- Center for Bio Medical Engineering Core Facility, Dankook University, Cheonan, 31116, Republic of Korea.
- Department of Bioconvergence Engineering, Dankook University, Yongin, 16890, Republic of Korea.
| |
Collapse
|
7
|
Klepacz-Smolka A, Shah MR, Jiang Y, Zhong Y, Chen P, Pietrzyk D, Szelag R, Ledakowicz S, Daroch M. Microalgae are not an umbrella solution for power industry waste abatement but could play a role in their valorization. Crit Rev Biotechnol 2024; 44:1296-1324. [PMID: 38105487 DOI: 10.1080/07388551.2023.2284644] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Revised: 09/12/2023] [Accepted: 10/03/2023] [Indexed: 12/19/2023]
Abstract
Microalgae have long been regarded as a promising solution for biological carbon abatement from the power industry, offering renewable biomass without competing for land or water resources used for food crops. In this study, we extensively examined the application of photosynthetic microorganisms for closing carbon, nitrogen, and micronutrient loops in the power industry. Subsequently, we explored the bottom-up integration of algal biorefineries into power industry waste streams for increased economic benefits and reduced environmental impacts. Analysis of the available data indicated that microalgae integration with the power industry is primarily performed using flue-gas-assisted cultivation. This approach allows for carbon sequestration typically below one gram per liter per day, too low to significantly impact carbon abatement at achievable scales of microalgae cultivation. Alternative approaches are also being explored. For example, soluble bicarbonate platforms allow for higher biomass productivity and temporary carbon storage. Meanwhile, the use of ashes and waste heat and thermophilic strains can result in lower cultivation costs and better control of cultivation conditions. These approaches offer further incremental improvement to microalgae-based carbon abatement systems in the power industry but are unlikely to be an umbrella solution for carbon reduction. Consequently, in the near term, microalgae-based carbon valorization systems are likely to be limited to niche applications involving the synthesis of high-value products. For microalgae to truly transform carbon abatement processes radical improvements in both biology and engineering approaches are urgently needed.
Collapse
Affiliation(s)
- Anna Klepacz-Smolka
- Faculty of Process Engineering and Environmental Protection, Technical University of Lodz, Lodz, Poland
| | - Mahfuzur R Shah
- School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen, China
| | - Ying Jiang
- School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen, China
| | - Yuqing Zhong
- School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen, China
| | - Pengyu Chen
- School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen, China
| | - Damian Pietrzyk
- Faculty of Process Engineering and Environmental Protection, Technical University of Lodz, Lodz, Poland
| | - Rafal Szelag
- Faculty of Process Engineering and Environmental Protection, Technical University of Lodz, Lodz, Poland
| | - Stanislaw Ledakowicz
- Faculty of Process Engineering and Environmental Protection, Technical University of Lodz, Lodz, Poland
| | - Maurycy Daroch
- School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen, China
| |
Collapse
|
8
|
Xie X, Zhong M, Huang X, Yuan X, Mahna N, Mussagy CU, Ren M. Astaxanthin biosynthesis for functional food development and space missions. Crit Rev Biotechnol 2024:1-15. [PMID: 39428346 DOI: 10.1080/07388551.2024.2410364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 07/21/2024] [Accepted: 09/11/2024] [Indexed: 10/22/2024]
Abstract
Astaxanthin (AXT), a natural carotenoid, has strong antioxidant and anti-ageing effects and can reduce ultraviolet light-induced damage to cells and DNA, stimulate the immune system, and improve cardiovascular disease prognosis. Despite its wide applications in the: nutraceutical, cosmetic, aquaculture, and pharmaceutical industries, AXT industrial production and application are hindered by natural source scarcity, low production efficiency, and high requirements. This review compares the qualitative differences of AXT derived from different natural sources, evaluates the upstream procedures for AXT expression in different chassis organisms, and investigates synthetic biology- and cell factory-based strategies for the industrial production of natural AXT. Synthetic biology is a promising novel strategy for reprogramming plants or microorganisms to produce AXT. Additionally, genetic engineering using cell factories extends beyond terrestrial applications, as it may contribute to the long-term sustainability of human health during space exploration and migration endeavors. This review provides a theoretical basis for the efficient and accurate genetic engineering of AXT from the microalga Haematococcuspluvialis, providing a valuable reference for future research on the biomanufacturing of AXT and other biological metabolites.
Collapse
Affiliation(s)
- Xiulan Xie
- Laboratory of Space Biology, Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu, China
| | - Moyu Zhong
- Laboratory of Space Biology, Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu, China
| | - Xinxin Huang
- Laboratory of Space Biology, Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu, China
- State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, China
| | - Xinrui Yuan
- Laboratory of Space Biology, Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu, China
| | - Nasser Mahna
- Department of Horticultural Sciences, Faculty of Agriculture, University of Tabriz, Tabriz, Iran
| | - Cassamo Ussemane Mussagy
- Escuela de Agronomía, Facultad de Ciencias Agronómicas y de los Alimentos, Pontificia Universidad Católica de Valparaíso, Quillota, Chile
| | - Maozhi Ren
- Laboratory of Space Biology, Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu, China
- State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, China
| |
Collapse
|
9
|
Bora A, Thondi Rajan AS, Ponnuchamy K, Muthusamy G, Alagarsamy A. Microalgae to bioenergy production: Recent advances, influencing parameters, utilization of wastewater - A critical review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 946:174230. [PMID: 38942321 DOI: 10.1016/j.scitotenv.2024.174230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 06/12/2024] [Accepted: 06/21/2024] [Indexed: 06/30/2024]
Abstract
Fossil fuel limitations and their influence on climate change through atmospheric greenhouse gas emissions have made the excessive use of fossil fuels widely recognized as unsustainable. The high lipid content, carbon-neutral nature and potential as a biofuel source have made microalgae a subject of global study. Microalgae are a promising supply of biomass for third-generation biofuels production since they are renewable. They have the potential to produce significant amounts of biofuel and are considered a sustainable alternative to non-renewable energy sources. Microalgae are currently incapable to synthesize algal biofuel on an extensive basis in a sustainable manner, despite their significance in the global production of biofuels. Wastewater contains nutrients (both organic and inorganic) which is essential for the development of microalgae. Microalgae and wastewater can be combined to remediate waste effectively. Wastewater of various kinds such as industrial, agricultural, domestic, and municipal can be used as a substrate for microalgal growth. This process helps reduce carbon dioxide emissions and makes the production of biofuels more cost-effective. This critical review provides a detailed analysis of the utilization of wastewater as a growth medium for microalgal - biofuel production. The review also highlights potential future strategies to improve the commercial production of biofuels from microalgae.
Collapse
Affiliation(s)
- Abhispa Bora
- Bioenergy and Bioremediation Laboratory, Department of Microbiology, Alagappa University, Karaikudi 630003, Tamil Nadu, India
| | - Angelin Swetha Thondi Rajan
- Bioenergy and Bioremediation Laboratory, Department of Microbiology, Alagappa University, Karaikudi 630003, Tamil Nadu, India
| | - Kumar Ponnuchamy
- Department of Animal Health and Management, Alagappa University, Karaikudi 630003, Tamil Nadu, India
| | - Govarthanan Muthusamy
- Department of Environmental Engineering, Kyungpook National University, 41566 Daegu, Republic of Korea
| | - Arun Alagarsamy
- Bioenergy and Bioremediation Laboratory, Department of Microbiology, Alagappa University, Karaikudi 630003, Tamil Nadu, India.
| |
Collapse
|
10
|
Arora R, Sudhakar K, Rana R. Photobioreactors for building integration: A overview of designs and architectural potential. Heliyon 2024; 10:e35168. [PMID: 39165930 PMCID: PMC11334802 DOI: 10.1016/j.heliyon.2024.e35168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 07/18/2024] [Accepted: 07/24/2024] [Indexed: 08/22/2024] Open
Abstract
The global community faces critical energy and environmental challenges, necessitating innovative solutions to ensure a sustainable future.In response to these challenges, this paper explores the potential of integrating microalgal biotechnology with renewable energy systems within buildings. This innovative approach could transform architecture into a "bio-factory" capable of producing food, energy, and other valuable products.The success of this concept hinges on developing highly efficient photobioreactors specifically designed for building integration. Optimizing these systems requires careful consideration of design parameters, growth rate models, and factors influencing performance within diverse urban environments.Furthermore, integrating these systems must prioritize productivity and aesthetics to promote urban self-sufficiency and a sustainable built environment. By utilizing microalgae and renewable energy sources, building-integrated photobioreactors offer a promising solution for reducing energy consumption and carbon footprints in modern buildings.
Collapse
Affiliation(s)
- Ruma Arora
- Engineering Science and Humanities, Chameli Devi Group of Institutions Indore, M.P, India
| | - K. Sudhakar
- Faculty of Mechanical and Automotive Engineering Technology, Universiti Malaysia Pahang Al Sultan Abdullah, 26600, Pekan, Pahang, Malaysia
- Centre for Automotive Engineering, Universiti Malaysia Pahang Al Sultan Abdullah, 26600, Pekan, Pahang, Malaysia
- Energy Centre, Maulana Azad National Institute of Technology, Bhopal, 462003, India
| | - R.S. Rana
- Mechanical Engineering Department, Maulana Azad National Institute of Technology, Bhopal (M.P), 462051, India
| |
Collapse
|
11
|
Elsayad RM, Sharshir SW, Khalil A, Basha AM. Recent advancements in wastewater treatment via anaerobic fermentation process: A systematic review. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 366:121724. [PMID: 38971071 DOI: 10.1016/j.jenvman.2024.121724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 06/20/2024] [Accepted: 07/02/2024] [Indexed: 07/08/2024]
Abstract
This manuscript delves into the realm of wastewater treatment, with a particular emphasis on anaerobic fermentation processes, especially dark, photo, and dark-photo fermentation processes, which have not been covered and overviewed previously in the literature regarding the treatment of wastewater. Moreover, the study conducts a bibliometric analysis for the first time to elucidate the research landscape of anaerobic fermentation utilization in wastewater purification. Furthermore, microorganisms, ranging from microalgae to bacteria and fungi, emphasizing the integration of these agents for enhanced efficiency, are all discussed and compared. Various bioreactors, such as dark and photo fermentation bioreactors, including tubular photo bioreactors, are scrutinized for their design and operational intricacies. The results illustrated that using clostridium pasteurianum CH4 and Rhodopseudomonas palustris WP3-5 in a combined dark-photo fermentation process can treat wastewater to a pH of nearly 7 with over 90% COD removal. Also, integrating Chlorella sp and Activated sludge can potentially treat synthetic wastewater to COD, P, and N percentage removal rates of 99%,86%, and 79%, respectively. Finally, the paper extends to discuss the limitations and future prospects of dark-photo fermentation processes, offering insights into the road ahead for researchers and scientists.
Collapse
Affiliation(s)
- Rahma M Elsayad
- Civil Engineering Department, Faculty of Engineering, Kafrelsheikh University, Kafrelsheikh, 33516, Egypt; Higher Institute of Engineering and Technology, Kafrelsheikh, KFS-HIET, Kafrelsheikh, 33516, Egypt
| | - Swellam W Sharshir
- Mechanical Engineering Department, Faculty of Engineering, Kafrelsheikh University, Kafrelsheikh, 33516, Egypt.
| | - Ahmed Khalil
- Civil Engineering Department, Faculty of Engineering, Kafrelsheikh University, Kafrelsheikh, 33516, Egypt.
| | - Ali M Basha
- Civil Engineering Department, Faculty of Engineering, Kafrelsheikh University, Kafrelsheikh, 33516, Egypt.
| |
Collapse
|
12
|
Hippler M, Khosravitabar F. Light-Driven H 2 Production in Chlamydomonas reinhardtii: Lessons from Engineering of Photosynthesis. PLANTS (BASEL, SWITZERLAND) 2024; 13:2114. [PMID: 39124233 PMCID: PMC11314271 DOI: 10.3390/plants13152114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 07/22/2024] [Accepted: 07/25/2024] [Indexed: 08/12/2024]
Abstract
In the green alga Chlamydomonas reinhardtii, hydrogen production is catalyzed via the [FeFe]-hydrogenases HydA1 and HydA2. The electrons required for the catalysis are transferred from ferredoxin (FDX) towards the hydrogenases. In the light, ferredoxin receives its electrons from photosystem I (PSI) so that H2 production becomes a fully light-driven process. HydA1 and HydA2 are highly O2 sensitive; consequently, the formation of H2 occurs mainly under anoxic conditions. Yet, photo-H2 production is tightly coupled to the efficiency of photosynthetic electron transport and linked to the photosynthetic control via the Cyt b6f complex, the control of electron transfer at the level of photosystem II (PSII) and the structural remodeling of photosystem I (PSI). These processes also determine the efficiency of linear (LEF) and cyclic electron flow (CEF). The latter is competitive with H2 photoproduction. Additionally, the CBB cycle competes with H2 photoproduction. Consequently, an in-depth understanding of light-driven H2 production via photosynthetic electron transfer and its competition with CO2 fixation is essential for improving photo-H2 production. At the same time, the smart design of photo-H2 production schemes and photo-H2 bioreactors are challenges for efficient up-scaling of light-driven photo-H2 production.
Collapse
Affiliation(s)
- Michael Hippler
- Institute of Plant Biology and Biotechnology, University of Münster, Schlossplatz 8, 48143 Münster, Germany
- Institute of Plant Science and Resources, Okayama University, Kurashiki 710-0046, Japan
| | - Fatemeh Khosravitabar
- Department of Biological and Environmental Sciences, University of Gothenburg, 40530 Gothenburg, Sweden
| |
Collapse
|
13
|
Ali SS, Hassan LHS, El-Sheekh M. Microalgae-mediated bioremediation: current trends and opportunities-a review. Arch Microbiol 2024; 206:343. [PMID: 38967670 DOI: 10.1007/s00203-024-04052-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 06/05/2024] [Accepted: 06/14/2024] [Indexed: 07/06/2024]
Abstract
Environmental pollution poses a critical global challenge, and traditional wastewater treatment methods often prove inadequate in addressing the complexity and scale of this issue. On the other hand, microalgae exhibit diverse metabolic capabilities that enable them to remediate a wide range of pollutants, including heavy metals, organic contaminants, and excess nutrients. By leveraging the unique metabolic pathways of microalgae, innovative strategies can be developed to effectively remediate polluted environments. Therefore, this review paper highlights the potential of microalgae-mediated bioremediation as a sustainable and cost-effective alternative to conventional methods. It also highlights the advantages of utilizing microalgae and algae-bacteria co-cultures for large-scale bioremediation applications, demonstrating impressive biomass production rates and enhanced pollutant removal efficiency. The promising potential of microalgae-mediated bioremediation is emphasized, presenting a viable and innovative alternative to traditional treatment methods in addressing the global challenge of environmental pollution. This review identifies the opportunities and challenges for microalgae-based technology and proposed suggestions for future studies to tackle challenges. The findings of this review advance our understanding of the potential of microalgae-based technology wastewater treatment.
Collapse
Affiliation(s)
- Sameh S Ali
- Botany Department, Faculty of Science, Tanta University, Tanta, 31527, Egypt.
| | - Lamiaa H S Hassan
- Faculty of Science, Menoufia University, Shebin El-kom, 32511, Egypt
| | - Mostafa El-Sheekh
- Botany Department, Faculty of Science, Tanta University, Tanta, 31527, Egypt.
| |
Collapse
|
14
|
Bishara Robertson IL, Zhang H, Reisner E, Butt JN, Jeuken LJC. Engineering of bespoke photosensitiser-microbe interfaces for enhanced semi-artificial photosynthesis. Chem Sci 2024; 15:9893-9914. [PMID: 38966358 PMCID: PMC11220614 DOI: 10.1039/d4sc00864b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Accepted: 05/20/2024] [Indexed: 07/06/2024] Open
Abstract
Biohybrid systems for solar fuel production integrate artificial light-harvesting materials with biological catalysts such as microbes. In this perspective, we discuss the rational design of the abiotic-biotic interface in biohybrid systems by reviewing microbes and synthetic light-harvesting materials, as well as presenting various approaches to coupling these two components together. To maximise performance and scalability of such semi-artificial systems, we emphasise that the interfacial design requires consideration of two important aspects: attachment and electron transfer. It is our perspective that rational design of this photosensitiser-microbe interface is required for scalable solar fuel production. The design and assembly of a biohybrid with a well-defined electron transfer pathway allows mechanistic characterisation and optimisation for maximum efficiency. Introduction of additional catalysts to the system can close the redox cycle, omitting the need for sacrificial electron donors. Studies that electronically couple light-harvesters to well-defined biological entities, such as emerging photosensitiser-enzyme hybrids, provide valuable knowledge for the strategic design of whole-cell biohybrids. Exploring the interactions between light-harvesters and redox proteins can guide coupling strategies when translated into larger, more complex microbial systems.
Collapse
Affiliation(s)
| | - Huijie Zhang
- Leiden Institute of Chemistry, Leiden University PO Box 9502 Leiden 2300 RA the Netherlands
| | - Erwin Reisner
- Yusuf Hamied Department of Chemistry, University of Cambridge Cambridge CB2 1EW UK
| | - Julea N Butt
- School of Chemistry and School of Biological Sciences, University of East Anglia Norwich Research Park Norwich NR4 7TJ UK
| | - Lars J C Jeuken
- Leiden Institute of Chemistry, Leiden University PO Box 9502 Leiden 2300 RA the Netherlands
| |
Collapse
|
15
|
Usman HM, Kamaroddin MF, Sani MH, Malek NANN, Omoregie AI, Zainal A. A Comparative Analysis Assessing Growth Dynamics of Locally Isolated Chlorella sorokiniana and Chlorella vulgaris for Biomass and Lipid Production with Biodiesel Potential. BIORESOURCE TECHNOLOGY 2024; 403:130868. [PMID: 38782193 DOI: 10.1016/j.biortech.2024.130868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 04/27/2024] [Accepted: 05/19/2024] [Indexed: 05/25/2024]
Abstract
Prior research has emphasized the potential of microalgae in biodiesel production, driven by their ability to replace fossil fuels. However, the significant costs associated with microalgae cultivation present a major obstacle to scaling up production. This study aims to develop an eco-friendly microalgae cultivation system by integrating carbon dioxide from flue gas emissions with an affordable photobioreactor, providing a sustainable biomass production. The research evaluates the growth performance of Chlorella sorokiniana and Chlorella vulgaris across this integrated system for biomass and lipid production. Results indicate substantial biomass yields of 1.97 and 1.84 g/L, with lipid contents of 35 % and 41 % for C. sorokiniana and C. vulgaris, respectively. The macrobubble photobioreactor demonstrates high potential for microalgae biomass and lipid production, yielding quality fatty acid methyl esters such as palmitic, linoleic and stearic. This study presents an environmentally friendly system for efficient microalgae cultivation, generating lipid-rich biomass suitable for biodiesel production.
Collapse
Affiliation(s)
- Hizbullahi Muhammad Usman
- Department of Biosciences, Faculty of Science, Universiti Teknologi Malaysia, 81310 Johor Bahru, Johor, Malaysia; Department of Microbiology, Faculty of Science, Sokoto State University, Birnin Kebbi Rd 852101, Sokoto, Nigeria
| | - Mohd Farizal Kamaroddin
- Department of Biosciences, Faculty of Science, Universiti Teknologi Malaysia, 81310 Johor Bahru, Johor, Malaysia.
| | - Mohd Helmi Sani
- Department of Biosciences, Faculty of Science, Universiti Teknologi Malaysia, 81310 Johor Bahru, Johor, Malaysia
| | - Nik A N N Malek
- Department of Biosciences, Faculty of Science, Universiti Teknologi Malaysia, 81310 Johor Bahru, Johor, Malaysia; Centre for Sustainable Nanomaterials (CSNano), Universiti Teknologi Malaysia, 81310 Skudai, Johor, Malaysia
| | - Armstrong Ighodalo Omoregie
- Centre for Borneo Regionalism and Conservation, University of Technology Sarawak, No. 1 Jalan University, 96000 Sibu, Sarawak, Malaysia
| | - Afifi Zainal
- Emission and Waste Management Technology Group, TNB Research Sdn Bhd, No 1, Lorong Air Hitam, Kawasan Institusi Penyelidikan, 43000 Kajang, Selangor, Malaysia
| |
Collapse
|
16
|
Ren C, Zhang S, Li Q, Jiang Q, Li Y, Gao Z, Cao W, Guo L. Pilot composite tubular bioreactor for outdoor photo-fermentation hydrogen production: From batch to continuous operation. BIORESOURCE TECHNOLOGY 2024; 401:130705. [PMID: 38631655 DOI: 10.1016/j.biortech.2024.130705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 04/13/2024] [Accepted: 04/14/2024] [Indexed: 04/19/2024]
Abstract
A novel 70 L composite tubular photo-bioreactor was constructed, and its photo-fermentation hydrogen production characteristics of batch and continuous modes were investigated with glucose as the substrate in an outdoor environment. In the batch fermentation stage, the hydrogen production rate peaked at 37.6 mL H2/(L·h) accompanied by a high hydrogen yield of 7 mol H2/mol glucose. The daytime light conversion efficiency is 4 %, with 37 % of light energy from the sun. An optimal hydraulic retention time of 5 d was identified during continuous photo-fermentation. Under this condition, the stability of the cell concentration is maintained and more electrons can be driven to the hydrogen generation pathway while attaining a hydrogen production rate of 20.7 ± 0.9 mL H2/(L·h). The changes of biomass, volatile fatty acids concentration and ion concentration during fermentation were analyzed. Continuous hydrogen production by composite tubular photo-bioreactor offers new ideas for the large-scale deployment of photobiological hydrogen production.
Collapse
Affiliation(s)
- Changpeng Ren
- State Key Laboratory of Multiphase Flow in Power Engineering, Xi'an Jiaotong University, Xianning West Road, Xi'an 710049, China
| | - Sihu Zhang
- State Key Laboratory of Multiphase Flow in Power Engineering, Xi'an Jiaotong University, Xianning West Road, Xi'an 710049, China
| | - Qing Li
- State Key Laboratory of Multiphase Flow in Power Engineering, Xi'an Jiaotong University, Xianning West Road, Xi'an 710049, China
| | - Qiushi Jiang
- State Key Laboratory of Multiphase Flow in Power Engineering, Xi'an Jiaotong University, Xianning West Road, Xi'an 710049, China
| | - Yongbing Li
- State Key Laboratory of Multiphase Flow in Power Engineering, Xi'an Jiaotong University, Xianning West Road, Xi'an 710049, China
| | - Zixuan Gao
- State Key Laboratory of Multiphase Flow in Power Engineering, Xi'an Jiaotong University, Xianning West Road, Xi'an 710049, China
| | - Wen Cao
- State Key Laboratory of Multiphase Flow in Power Engineering, Xi'an Jiaotong University, Xianning West Road, Xi'an 710049, China.
| | - Liejin Guo
- State Key Laboratory of Multiphase Flow in Power Engineering, Xi'an Jiaotong University, Xianning West Road, Xi'an 710049, China
| |
Collapse
|
17
|
Ayub HMU, Nizami M, Qyyum MA, Iqbal N, Al-Muhtaseb AH, Hasan M. Sustainable hydrogen production via microalgae: Technological advancements, economic indicators, environmental aspects, challenges, and policy implications. ENVIRONMENTAL RESEARCH 2024; 244:117815. [PMID: 38048865 DOI: 10.1016/j.envres.2023.117815] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 11/21/2023] [Accepted: 11/27/2023] [Indexed: 12/06/2023]
Abstract
Hydrogen has emerged as an alternative energy source to meet the increasing global energy demand, depleting fossil fuels and environmental issues resulting from fossil fuel consumption. Microalgae-based biomass is gaining attention as a potential source of hydrogen production due to its green energy carrier properties, high energy content, and carbon-free combustion. This review examines the hydrogen production process from microalgae, including the microalgae cultivation technological process for biomass production, and the three main routes of biomass-to-hydrogen production: thermochemical conversion, photo biological conversion, and electrochemical conversion. The current progress of technological options in the three main routes is presented, with the various strains of microalgae and operating conditions of the processes. Furthermore, the economic and environmental perspectives of biomass-to-hydrogen from microalgae are evaluated, and critical operational parameters are used to assess the feasibility of scaling up biohydrogen production for commercial industrial-scale applications. The key finding is the thermochemical conversion process is the most feasible process for biohydrogen production, compared to the pyrolysis process. In the photobiological and electrochemical process, pure hydrogen can be achieved, but further process development is required to enhance the production yield. In addition, the high production cost is the main challenge in biohydrogen production. The cost of biohydrogen production for direct bio photolysis it cost around $7.24 kg-1; for indirect bio photolysis it costs around $7.54 kg-1 and for fermentation, it costs around $7.61 kg-1. Therefore, comprehensive studies and efforts are required to make biohydrogen production from microalgae applications more economical in the future.
Collapse
Affiliation(s)
| | - Muhammad Nizami
- Department of Chemical Engineering, Faculty of Engineering, Universitas Indonesia, Depok, 16424, Indonesia
| | - Muhammad Abdul Qyyum
- Department of Petroleum and Chemical Engineering, College of Engineering, Sultan Qaboos University, Muscat, Oman.
| | - Noman Iqbal
- Department of Mechanical, Robotics, and Energy Engineering, Dongguk University, Seoul, 04620, Republic of Korea
| | - Ala'a H Al-Muhtaseb
- Department of Petroleum and Chemical Engineering, College of Engineering, Sultan Qaboos University, Muscat, Oman
| | - Mudassir Hasan
- Department of Chemical Engineering, King Khalid University, Abha, Kingdom of Saudi Arabia
| |
Collapse
|
18
|
Barboza-Rodríguez R, Rodríguez-Jasso RM, Rosero-Chasoy G, Rosales Aguado ML, Ruiz HA. Photobioreactor configurations in cultivating microalgae biomass for biorefinery. BIORESOURCE TECHNOLOGY 2024; 394:130208. [PMID: 38113947 DOI: 10.1016/j.biortech.2023.130208] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 12/12/2023] [Accepted: 12/13/2023] [Indexed: 12/21/2023]
Abstract
Microalgae, highly prized for their protein, lipid, carbohydrate, phycocyanin, and carotenoid-rich biomass, have garnered significant industrial attention in the context of third-generation (3G) biorefineries, seeking sustainable alternatives to non-renewable resources. Two primarily cultivation methods, open ponds and closed photobioreactors systems, have emerged. Open ponds, favored for their cost-effectiveness in large-scale industrial production, although lacking precise environmental control, contrast with closed photobioreactors, offering controlled conditions and enhanced biomass production at the laboratory scale. However, their high operational costs challenge large-scale deployment. This review comprehensively examines the strength, weakness, and typical designs of both outdoor and indoor microalgae cultivation systems, with an emphasis on their application in terms of biorefinery concept. Additionally, it incorporates techno-economic analyses, providing insights into the financial aspects of microalgae biomass production. These multifaceted insights, encompassing both technological and economic dimensions, are important as the global interest in harnessing microalgae's valuable resources continue to grow.
Collapse
Affiliation(s)
- Regina Barboza-Rodríguez
- Biorefinery Group, Food Research Department, School of Chemistry, Autonomous University of Coahuila, 25280 Saltillo, Coahuila, Mexico
| | - Rosa M Rodríguez-Jasso
- Biorefinery Group, Food Research Department, School of Chemistry, Autonomous University of Coahuila, 25280 Saltillo, Coahuila, Mexico.
| | - Gilver Rosero-Chasoy
- Biorefinery Group, Food Research Department, School of Chemistry, Autonomous University of Coahuila, 25280 Saltillo, Coahuila, Mexico
| | - Miriam L Rosales Aguado
- Biorefinery Group, Food Research Department, School of Chemistry, Autonomous University of Coahuila, 25280 Saltillo, Coahuila, Mexico
| | - Héctor A Ruiz
- Biorefinery Group, Food Research Department, School of Chemistry, Autonomous University of Coahuila, 25280 Saltillo, Coahuila, Mexico.
| |
Collapse
|
19
|
Sartori RB, Deprá MC, Dias RR, Fagundes MB, Zepka LQ, Jacob-Lopes E. The Role of Light on the Microalgae Biotechnology: Fundamentals, Technological Approaches, and Sustainability Issues. Recent Pat Biotechnol 2024; 18:22-51. [PMID: 38205773 DOI: 10.2174/1872208317666230504104051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 02/03/2023] [Accepted: 02/14/2023] [Indexed: 01/12/2024]
Abstract
Light energy directly affects microalgae growth and productivity. Microalgae in natural environments receive light through solar fluxes, and their duration and distribution are highly variable over time. Consequently, microalgae must adjust their photosynthetic processes to avoid photo limitation and photoinhibition and maximize yield. Considering these circumstances, adjusting light capture through artificial lighting in the main culture systems benefits microalgae growth and induces the production of commercially important compounds. In this sense, this review provides a comprehensive study of the role of light in microalgae biotechnology. For this, we present the main fundamentals and reactions of metabolism and metabolic alternatives to regulate photosynthetic conversion in microalgae cells. Light conversions based on natural and artificial systems are compared, mainly demonstrating the impact of solar radiation on natural systems and lighting devices, spectral compositions, periodic modulations, and light fluxes when using artificial lighting systems. The most commonly used photobioreactor design and performance are shown herein, in addition to a more detailed discussion of light-dependent approaches in these photobioreactors. In addition, we present the principal advances in photobioreactor projects, focusing on lighting, through a patent-based analysis to map technological trends. Lastly, sustainability and economic issues in commercializing microalgae products were presented.
Collapse
Affiliation(s)
- Rafaela Basso Sartori
- Bioprocess Intensification Group, Federal University of Santa Maria, Roraima Avenue, 1000, 97105-900, Santa Maria, RS, Brazil
| | - Mariany Costa Deprá
- Bioprocess Intensification Group, Federal University of Santa Maria, Roraima Avenue, 1000, 97105-900, Santa Maria, RS, Brazil
| | - Rosangela Rodrigues Dias
- Bioprocess Intensification Group, Federal University of Santa Maria, Roraima Avenue, 1000, 97105-900, Santa Maria, RS, Brazil
| | - Mariane Bittencourt Fagundes
- Bioprocess Intensification Group, Federal University of Santa Maria, Roraima Avenue, 1000, 97105-900, Santa Maria, RS, Brazil
| | - Leila Queiroz Zepka
- Bioprocess Intensification Group, Federal University of Santa Maria, Roraima Avenue, 1000, 97105-900, Santa Maria, RS, Brazil
| | - Eduardo Jacob-Lopes
- Bioprocess Intensification Group, Federal University of Santa Maria, Roraima Avenue, 1000, 97105-900, Santa Maria, RS, Brazil
| |
Collapse
|
20
|
Mugnai S, Derossi N, Hendlin Y. Algae communication, conspecific and interspecific: the concepts of phycosphere and algal-bacteria consortia in a photobioreactor (PBR). PLANT SIGNALING & BEHAVIOR 2023; 18:2148371. [PMID: 36934349 PMCID: PMC10026891 DOI: 10.1080/15592324.2022.2148371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 11/12/2022] [Accepted: 11/12/2022] [Indexed: 06/18/2023]
Abstract
Microalgae in the wild often form consortia with other species promoting their own health and resource foraging opportunities. The recent application of microalgae cultivation and deployment in commercial photobioreactors (PBR) so far has focussed on single species of algae, resulting in multi-species consortia being largely unexplored. Reviewing the current status of PBR ecological habitat, this article argues in favor of further investigation into algal communication with conspecifics and interspecifics, including other strains of microalgae and bacteria. These mutualistic species form the 'phycosphere': the microenvironment surrounding microalgal cells, potentiating the production of certain metabolites through biochemical interaction with cohabitating microorganisms. A better understanding of the phycosphere could lead to novel PBR configurations, capable of incorporating algal-microbial consortia, potentially proving more effective than single-species algal systems.
Collapse
Affiliation(s)
| | | | - Yogi Hendlin
- Erasmus School of Philosophy, Erasmus University, Rotterdam, Netherlands
| |
Collapse
|
21
|
Teke GM, Anye Cho B, Bosman CE, Mapholi Z, Zhang D, Pott RWM. Towards industrial biological hydrogen production: a review. World J Microbiol Biotechnol 2023; 40:37. [PMID: 38057658 PMCID: PMC10700294 DOI: 10.1007/s11274-023-03845-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 11/16/2023] [Indexed: 12/08/2023]
Abstract
Increased production of renewable energy sources is becoming increasingly needed. Amidst other strategies, one promising technology that could help achieve this goal is biological hydrogen production. This technology uses micro-organisms to convert organic matter into hydrogen gas, a clean and versatile fuel that can be used in a wide range of applications. While biohydrogen production is in its early stages, several challenges must be addressed for biological hydrogen production to become a viable commercial solution. From an experimental perspective, the need to improve the efficiency of hydrogen production, the optimization strategy of the microbial consortia, and the reduction in costs associated with the process is still required. From a scale-up perspective, novel strategies (such as modelling and experimental validation) need to be discussed to facilitate this hydrogen production process. Hence, this review considers hydrogen production, not within the framework of a particular production method or technique, but rather outlines the work (bioreactor modes and configurations, modelling, and techno-economic and life cycle assessment) that has been done in the field as a whole. This type of analysis allows for the abstraction of the biohydrogen production technology industrially, giving insights into novel applications, cross-pollination of separate lines of inquiry, and giving a reference point for researchers and industrial developers in the field of biohydrogen production.
Collapse
Affiliation(s)
- G M Teke
- Department of Chemical Engineering, Stellenbosch University, Stellenbosch, South Africa
| | - B Anye Cho
- Department of Chemical Engineering, University of Manchester, Manchester, UK
| | - C E Bosman
- Department of Chemical Engineering, Stellenbosch University, Stellenbosch, South Africa
| | - Z Mapholi
- Department of Chemical Engineering, Stellenbosch University, Stellenbosch, South Africa
| | - D Zhang
- Department of Chemical Engineering, University of Manchester, Manchester, UK
| | - R W M Pott
- Department of Chemical Engineering, Stellenbosch University, Stellenbosch, South Africa.
| |
Collapse
|
22
|
Macías-de la Rosa A, López-Rosales L, Cerón-García MC, Molina-Miras A, Soriano-Jerez Y, Sánchez-Mirón A, Seoane S, García-Camacho F. Assessment of the marine microalga Chrysochromulina rotalis as bioactive feedstock cultured in an easy-to-deploy light-emitting-diode-based tubular photobioreactor. BIORESOURCE TECHNOLOGY 2023; 389:129818. [PMID: 37793555 DOI: 10.1016/j.biortech.2023.129818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 09/30/2023] [Accepted: 10/01/2023] [Indexed: 10/06/2023]
Abstract
Marine microalgae have potential to be low-cost raw materials. This depends on the exploitation of different biomass fractions for high-value products, including unique compounds. Chrysochromulina rotalis, an under-explored haptophyte with promising properties, was the focus of this study. For the first time, C. rotalis was successfully cultivated in an 80 L tubular photobioreactor, illuminated by an easy-to-use light-emitting-diode-based system. C. rotalis grew without certain trace elements and showed adaptability to different phosphorus sources, allowing a significant reduction in the N:P ratio without compromising biomass yield and productivity. The design features of the photobioreactor provided a protective environment that ensured consistent biomass production from this shear-sensitive microalgae. Carotenoid analysis showed fucoxanthin and its derivatives as major components, with essential fatty acids making up a significant proportion of the total. The study emphasizes the tubular photobioreactor's role in sustainable biomass production for biorefineries, with C. rotalis as a valuable bioactive feedstock.
Collapse
Affiliation(s)
- A Macías-de la Rosa
- Department of Chemical Engineering, Research Centre CIAIMBITAL, University of Almería, 04120 Almería, Spain
| | - L López-Rosales
- Department of Chemical Engineering, Research Centre CIAIMBITAL, University of Almería, 04120 Almería, Spain; Research Centre CIAIMBITAL, University of Almería, 04120 Almería, Spain
| | - M C Cerón-García
- Department of Chemical Engineering, Research Centre CIAIMBITAL, University of Almería, 04120 Almería, Spain; Research Centre CIAIMBITAL, University of Almería, 04120 Almería, Spain
| | - A Molina-Miras
- Department of Chemical Engineering, Research Centre CIAIMBITAL, University of Almería, 04120 Almería, Spain; Research Centre CIAIMBITAL, University of Almería, 04120 Almería, Spain
| | - Y Soriano-Jerez
- Department of Chemical Engineering, Research Centre CIAIMBITAL, University of Almería, 04120 Almería, Spain
| | - A Sánchez-Mirón
- Department of Chemical Engineering, Research Centre CIAIMBITAL, University of Almería, 04120 Almería, Spain; Research Centre CIAIMBITAL, University of Almería, 04120 Almería, Spain
| | - S Seoane
- Department of Plant Biology and Ecology, 48940 Leioa, Spain; Technology and Research Centre for Experimental Marine Biology and Biotechnology, University of the Basque Country (UPV/EHU), 48620 Plentzia, Spain
| | - F García-Camacho
- Department of Chemical Engineering, Research Centre CIAIMBITAL, University of Almería, 04120 Almería, Spain; Research Centre CIAIMBITAL, University of Almería, 04120 Almería, Spain.
| |
Collapse
|
23
|
Yeh YC, Syed T, Brinitzer G, Frick K, Schmid-Staiger U, Haasdonk B, Tovar GEM, Krujatz F, Mädler J, Urbas L. Improving microalgae growth modeling of outdoor cultivation with light history data using machine learning models: A comparative study. BIORESOURCE TECHNOLOGY 2023; 390:129882. [PMID: 37884098 DOI: 10.1016/j.biortech.2023.129882] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Revised: 10/14/2023] [Accepted: 10/15/2023] [Indexed: 10/28/2023]
Abstract
Accurate prediction of microalgae growth is crucial for understanding the impacts of light dynamics and optimizing production. Although various mathematical models have been proposed, only a few of them have been validated in outdoor cultivation. This study aims to investigate the use of machine learning algorithms in microalgae growth modeling. Outdoor cultivation data of Phaeodactylum tricornutum in flat-panel airlift photobioreactors for 50 days were used to compare the performance of Long Short-Term Memory (LSTM) and Support Vector Regression (SVR) with traditional models, namely Monod and Haldane. The results indicate that the machine learning models outperform the traditional models due to their ability to utilize light history as input. Moreover, the LSTM model shows an excellent ability to describe the light acclimation effect. Last, two potential applications of these models are demonstrated: 1) use as a biomass soft sensor and 2) development of an optimal harvest strategy for outdoor cultivation.
Collapse
Affiliation(s)
- Yen-Cheng Yeh
- Fraunhofer Institute for Interfacial Engineering and Biotechnology IGB, Nobelstraße 12, 70569 Stuttgart, Germany; Institute of Interfacial Process Engineering and Plasma Technology, University of Stuttgart, Nobelstraße 12, 70569 Stuttgart, Germany.
| | - Tehreem Syed
- Institute of Automation, Dresden University of Technology, Georg-Schumann-Straße 18, 01069 Dresden, Germany
| | - Gordon Brinitzer
- Fraunhofer Institute for Interfacial Engineering and Biotechnology IGB, Nobelstraße 12, 70569 Stuttgart, Germany
| | - Konstantin Frick
- Fraunhofer Institute for Interfacial Engineering and Biotechnology IGB, Nobelstraße 12, 70569 Stuttgart, Germany; Institute of Interfacial Process Engineering and Plasma Technology, University of Stuttgart, Nobelstraße 12, 70569 Stuttgart, Germany
| | - Ulrike Schmid-Staiger
- Fraunhofer Institute for Interfacial Engineering and Biotechnology IGB, Nobelstraße 12, 70569 Stuttgart, Germany
| | - Bernard Haasdonk
- Institute of Applied Analysis and Numerical Simulation, University of Stuttgart, Pfaffenwaldring 57, 70569 Stuttgart, Germany
| | - Günter E M Tovar
- Fraunhofer Institute for Interfacial Engineering and Biotechnology IGB, Nobelstraße 12, 70569 Stuttgart, Germany; Institute of Interfacial Process Engineering and Plasma Technology, University of Stuttgart, Nobelstraße 12, 70569 Stuttgart, Germany
| | - Felix Krujatz
- Institute of Natural Materials Technology, Dresden University of Technology, Bergstraße 120, 01069 Dresden, Germany
| | - Jonathan Mädler
- Institute of Process Engineering and Environmental Technology, Dresden University of Technology, Georg-Schumann-Straße 18, 01069 Dresden, Germany
| | - Leon Urbas
- Institute of Automation, Dresden University of Technology, Georg-Schumann-Straße 18, 01069 Dresden, Germany; Institute of Process Engineering and Environmental Technology, Dresden University of Technology, Georg-Schumann-Straße 18, 01069 Dresden, Germany
| |
Collapse
|
24
|
Zhu C, Hu C, Wang J, Chen Y, Zhao Y, Chi Z. A precise microalgae farming for CO 2 sequestration: A critical review and perspectives. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 901:166013. [PMID: 37541491 DOI: 10.1016/j.scitotenv.2023.166013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 06/27/2023] [Accepted: 08/01/2023] [Indexed: 08/06/2023]
Abstract
Microalgae are great candidates for CO2 sequestration and sustainable production of food, feed, fuels and biochemicals. Light intensity, temperature, carbon supply, and cell physiological state are key factors of photosynthesis, and efficient phototrophic production of microalgal biomass occurs only when all these factors are in their optimal range simultaneously. However, this synergistic state is often not achievable due to the ever-changing environmental factors such as sunlight and temperature, which results in serious waste of sunlight energy and other resources, ultimately leading to high production costs. Most control strategies developed thus far in the bioengineering field actually aim to improve heterotrophic processes, but phototrophic processes face a completely different problem. Hence, an alternative control strategy needs to be developed, and precise microalgal cultivation is a promising strategy in which the production resources are precisely supplied according to the dynamic changes in key factors such as sunlight and temperature. In this work, the development and recent progress of precise microalgal phototrophic cultivation are reviewed. The key environmental and cultivation factors and their dynamic effects on microalgal cultivation are analyzed, including microalgal growth, cultivation costs and energy inputs. Future research for the development of more precise microalgae farming is discussed. This study provides new insight into developing cost-effective and efficient microalgae farming for CO2 sequestration.
Collapse
Affiliation(s)
- Chenba Zhu
- Carbon Neutral Innovation Research Center, Xiamen University, Xiamen 361005, China; Fujian Key Laboratory of Marine Carbon Sequestration, Xiamen University, Xiamen 361005, China.
| | - Chen Hu
- College of the Environment and Ecology, Xiamen University, Xiamen 361102, China; State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen 361005, China
| | - Jialin Wang
- Carbon Neutral Innovation Research Center, Xiamen University, Xiamen 361005, China; State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen 361005, China
| | - Yimin Chen
- Environmental and Ecological Engineering Technology Center, Industrial Technology Research Institute, Xiamen University, Xiamen 361005, China
| | - Yunpeng Zhao
- State Key Laboratory of Coastal and Offshore Engineering, Dalian University of Technology, Dalian 116024, China; Ningbo Institute of Dalian University of Technology, No.26 Yucai Road, Jiangbei District, Ningbo 315016, China.
| | - Zhanyou Chi
- School of Bioengineering, Dalian University of Technology, Dalian 116024, China; Ningbo Institute of Dalian University of Technology, No.26 Yucai Road, Jiangbei District, Ningbo 315016, China.
| |
Collapse
|
25
|
Hasnain M, Zainab R, Ali F, Abideen Z, Yong JWH, El-Keblawy A, Hashmi S, Radicetti E. Utilization of microalgal-bacterial energy nexus improves CO 2 sequestration and remediation of wastewater pollutants for beneficial environmental services. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 267:115646. [PMID: 37939556 DOI: 10.1016/j.ecoenv.2023.115646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 10/24/2023] [Accepted: 10/27/2023] [Indexed: 11/10/2023]
Abstract
Carbon dioxide (CO2) emissions from the combustion of fossil fuels and coal are primary contributors of greenhouse gases leading to global climate change and warming. The toxicity of heavy metals and metalloids in the environment threatens ecological functionality, diversity and global human life. The ability of microalgae to thrive in harsh environments such as industrial wastewater, polluted lakes, and contaminated seawaters presents new, environmentally friendly, and less expensive CO2 remediation solutions. Numerous microalgal species grown in wastewater for industrial purposes may absorb and convert nitrogen, phosphorus, and organic matter into proteins, oil, and carbohydrates. In any multi-faceted micro-ecological system, the role of bacteria and their interactions with microalgae can be harnessed appropriately to enhance microalgae performance in either wastewater treatment or algal production systems. This algal-bacterial energy nexus review focuses on examining the processes used in the capture, storage, and biological fixation of CO2 by various microalgal species, as well as the optimized production of microalgae in open and closed cultivation systems. Microalgal production depends on different biotic and abiotic variables to ultimately deliver a high yield of microalgal biomass.
Collapse
Affiliation(s)
- Maria Hasnain
- Department of Biotechnology, Lahore College for Women University, Lahore, Pakistan
| | - Rida Zainab
- Department of Biotechnology, Lahore College for Women University, Lahore, Pakistan
| | - Faraz Ali
- School of Engineering and Technology, Central Queensland University, Sydney, Australia
| | - Zainul Abideen
- Dr. Muhammad Ajmal Khan Institute of Sustainable Halophyte Utilization, University of Karachi, 75270, Pakistan; Department of Applied Biology, University of Sharjah, P.O. Box 2727, Sharjah, UAE.
| | - Jean Wan Hong Yong
- Department of Biosystems and Technology, Swedish University of Agricultural Sciences, Alnarp, 23456, Sweden.
| | - Ali El-Keblawy
- Department of Applied Biology, University of Sharjah, P.O. Box 2727, Sharjah, UAE
| | - Saud Hashmi
- Department of Polymer and Petrochemical Engineering, NED University of Engineering and Technology, Karachi, Pakistan
| | - Emanuele Radicetti
- Department of Agricultural and Forestry Sciences, University of Tuscia, Viterbo, Italy
| |
Collapse
|
26
|
Segredo-Morales E, González E, Figueira A, Díaz O. A bibliometric analysis of published literature on membrane photobioreactors for wastewater treatment from 2000 to 2022. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2023; 88:1724-1749. [PMID: 37830994 PMCID: wst_2023_295 DOI: 10.2166/wst.2023.295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/14/2023]
Abstract
With the focus on limiting greenhouse gas emissions, microalgae-based technology is a promising approach for wastewater treatment, combining cost-effective operation, nutrient recovery, and assimilation of CO2. In addition, membrane technology supports process intensification and wastewater reclamation. Based on a bibliometric analysis, this paper evaluated the literature on membrane photobioreactors to highlight promising areas for future research. Specifically, efforts should be made on advancing knowledge of interactions between algae and bacteria, analysing different strategies for membrane fouling control and determining the conditions for the most cost-effective operation. The Scopus® database was used to select documents from 2000 to 2022. A set of 126 documents were found. China is the country with the highest number of publications, whereas the most productive researchers belong to the Universitat Politècnica de València (Spain). The analysis of 50 selected articles provides a summary of the main parameters investigated, that focus in increasing the biomass productivity and nutrient removal. In addition, microalgal-bacterial membrane photobioreactor seems to have the greatest commercialisation potential. S-curve fitting confirms that this technology is still in its growth stage.
Collapse
Affiliation(s)
- Elisabet Segredo-Morales
- Departamento de Ingeniería Química y Tecnología Farmacéutica, Universidad de La Laguna. Avda. Astrofísico Francisco Sánchez s/n. Facultad de Ciencias, Sección Química, 38206, San Cristóbal de La Laguna, Santa Cruz de Tenerife, Islas Canarias, España E-mail:
| | - Enrique González
- Departamento de Ingeniería Química y Tecnología Farmacéutica, Universidad de La Laguna. Avda. Astrofísico Francisco Sánchez s/n. Facultad de Ciencias, Sección Química, 38206, San Cristóbal de La Laguna, Santa Cruz de Tenerife, Islas Canarias, España
| | - Andrés Figueira
- Departamento de Ingeniería Química y Tecnología Farmacéutica, Universidad de La Laguna. Avda. Astrofísico Francisco Sánchez s/n. Facultad de Ciencias, Sección Química, 38206, San Cristóbal de La Laguna, Santa Cruz de Tenerife, Islas Canarias, España
| | - Oliver Díaz
- Departamento de Ingeniería Química y Tecnología Farmacéutica, Universidad de La Laguna. Avda. Astrofísico Francisco Sánchez s/n. Facultad de Ciencias, Sección Química, 38206, San Cristóbal de La Laguna, Santa Cruz de Tenerife, Islas Canarias, España
| |
Collapse
|
27
|
Leong WH, Rawindran H, Ameen F, Alam MM, Chai YH, Ho YC, Lam MK, Lim JW, Tong WY, Bashir MJK, Ravindran B, Alsufi NA. Advancements of microalgal upstream technologies: Bioengineering and application aspects in the paradigm of circular bioeconomy. CHEMOSPHERE 2023; 339:139699. [PMID: 37532206 DOI: 10.1016/j.chemosphere.2023.139699] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 07/24/2023] [Accepted: 07/30/2023] [Indexed: 08/04/2023]
Abstract
Sustainable energy transition has brought the attention towards microalgae utilization as potential feedstock due to its tremendous capabilities over its predecessors for generating more energy with reduced carbon footprint. However, the commercialization of microalgae feedstock remains debatable due to the various factors and considerations taken into scaling-up the conventional microalgal upstream processes. This review provides a state-of-the-art assessment over the recent developments of available and existing microalgal upstream cultivation systems catered for maximum biomass production. The key growth parameters and main cultivation modes necessary for optimized microalgal growth conditions along with the fundamental aspects were also reviewed and evaluated comprehensively. In addition, the advancements and strategies towards potential scale-up of the microalgal cultivation technologies were highlighted to provide insights for further development into the upstream processes aimed at sustainable circular bioeconomy.
Collapse
Affiliation(s)
- Wai Hong Leong
- HICoE-Centre for Biofuel and Biochemical Research, Institute of Self-Sustainable Building, Department of Fundamental and Applied Sciences, Universiti Teknologi PETRONAS, 32610, Seri Iskandar, Perak Darul Ridzuan, Malaysia; Algal Bio Co. Ltd, Todai-Kashiwa Venture Plaza, 5-4-19 Kashiwanoha, Kashiwa, Chiba, 277-0082, Japan.
| | - Hemamalini Rawindran
- HICoE-Centre for Biofuel and Biochemical Research, Institute of Self-Sustainable Building, Department of Fundamental and Applied Sciences, Universiti Teknologi PETRONAS, 32610, Seri Iskandar, Perak Darul Ridzuan, Malaysia
| | - Fuad Ameen
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Mohammad Mahtab Alam
- Department of Basic Medical Sciences, College of Applied Medical Science, King Khalid University, Abha, 61421, Saudi Arabia
| | - Yee Ho Chai
- HICoE-Centre for Biofuel and Biochemical Research, Institute of Self-Sustainable Building, Department of Chemical Engineering, Universiti Teknologi PETRONAS, 32610, Seri Iskandar, Perak Darul Ridzuan, Malaysia
| | - Yeek Chia Ho
- Centre for Urban Resource Sustainability, Institute of Self-Sustainable Building, Department of Civil and Environmental Engineering, Universiti Teknologi PETRONAS, 32610, Seri Iskandar, Perak Darul Ridzuan, Malaysia
| | - Man Kee Lam
- HICoE-Centre for Biofuel and Biochemical Research, Institute of Self-Sustainable Building, Department of Chemical Engineering, Universiti Teknologi PETRONAS, 32610, Seri Iskandar, Perak Darul Ridzuan, Malaysia
| | - Jun Wei Lim
- HICoE-Centre for Biofuel and Biochemical Research, Institute of Self-Sustainable Building, Department of Fundamental and Applied Sciences, Universiti Teknologi PETRONAS, 32610, Seri Iskandar, Perak Darul Ridzuan, Malaysia; Department of Biotechnology, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Chennai, 602105, India.
| | - Woei-Yenn Tong
- Universiti Kuala Lumpur, Institute of Medical Science Technology, A1-1, Jalan TKS 1, Taman Kajang Sentral, 43000, Kajang, Selangor, Malaysia
| | - Mohammed J K Bashir
- Department of Environmental Engineering, Faculty of Engineering and Green Technology, Universiti Tunku Abdul Rahman, Jalan Universiti, Bandar Barat, 31900, Kampar, Perak, Malaysia
| | - Balasubramani Ravindran
- Department of Environmental Energy & Engineering, Kyonggi University, Suwon-si, Gyeonggi-do, 16227, South Korea
| | - Nizar Abdallah Alsufi
- Department of Management Information System and Production Management, College of Business & Economics, Qassim University, P.O. BOX 6666, Buraydah, 51452, Saudi Arabia
| |
Collapse
|
28
|
Bulynina SS, Ziganshina EE, Ziganshin AM. Growth Efficiency of Chlorella sorokiniana in Synthetic Media and Unsterilized Domestic Wastewater. BIOTECH 2023; 12:53. [PMID: 37606440 PMCID: PMC10443301 DOI: 10.3390/biotech12030053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 07/18/2023] [Accepted: 07/26/2023] [Indexed: 08/23/2023] Open
Abstract
Incorporating a variety of microalgae into wastewater treatment is considered an economically viable and environmentally sound strategy. The present work assessed the growth characteristics of Chlorella sorokiniana during cultivation in balanced synthetic media and domestic wastewater. Increasing the NH4+-N concentration to 360 mg L-1 and adding extra PO43--P and SO42--S (up to 80 and 36 mg L-1, respectively) contributed to an increase in the total biomass levels (5.7-5.9 g L-1) during the cultivation of C. sorokiniana in synthetic media. Under these conditions, the maximum concentrations of chlorophylls and carotenoids were 180 ± 7.5 and 26 ± 1.4 mg L-1, respectively. Furthermore, when studying three types of domestic wastewaters, it was noted that only one wastewater contributed to the productive growth of C. sorokiniana, but all wastewaters stimulated an increased accumulation of protein. Finally, the alga, when growing in optimal unsterilized wastewater, showed a maximum specific growth rate of 0.73 day-1, a biomass productivity of 0.21 g L-1 day-1, and 100% NH4+-N removal. These results demonstrate that the tested alga actively adapts to changes in the composition of the growth medium and accumulates high levels of protein in systems with poor-quality water.
Collapse
Affiliation(s)
| | | | - Ayrat M. Ziganshin
- Department of Microbiology, Institute of Fundamental Medicine and Biology, Kazan (Volga Region) Federal University, 420008 Kazan, Republic of Tatarstan, Russia; (S.S.B.); (E.E.Z.)
| |
Collapse
|
29
|
Wei S, Li F, Zhu N, Wei X, Wu P, Dang Z. Biomass production of Chlorella pyrenoidosa by filled sphere carrier reactor: Performance and mechanism. BIORESOURCE TECHNOLOGY 2023:129195. [PMID: 37207699 DOI: 10.1016/j.biortech.2023.129195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 05/14/2023] [Accepted: 05/15/2023] [Indexed: 05/21/2023]
Abstract
Microalgae-based Carbon Capture, Utilization and Storage is vital for mitigating global climate change. A filled sphere carrier reactor was developed to achieve high biomass production and carbon sequestration rate of Chlorella pyrenoidosa. By introducing air (0.04% CO2) into the reactor, the dry biomass production achieved 8.26 g/L with the optimized parameters of polyester carrier, 80% packing density, 5-fold concentrated nutrient combining 0.2 mol/L phosphate buffer. At simulated flue gas CO2 concentration of 7%, the dry biomass yield and carbon sequestration rate reached up to 9.98 g/L and 18.32 g/L/d in one day, which were as high as 249.5 and 79.65 times comparing with those of suspension culture at day 1, respectively. The mechanism was mainly attributed to the obvious intensification of electron transfer rate and remarkable increase of RuBisCO enzyme activity in the photosynthetic chloroplast matrix. This work provided a novel approach for potential microalgae-based carbon capture and storage.
Collapse
Affiliation(s)
- Sijing Wei
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, PR China
| | - Fei Li
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, PR China
| | - Nengwu Zhu
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, PR China; The Key Laboratory of Pollution Control and Ecosystem Restoration in Industry Clusters of Ministry of Education, Guangzhou 510006, PR China; Guangdong Environmental Protection Key Laboratory of Solid Waste Treatment and Recycling, Guangzhou 510006, PR China; Guangdong Provincial Key Laboratory of Solid Wastes Pollution Control and Recycling, Guangzhou 510006, PR China.
| | - Xiaorong Wei
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, PR China
| | - Pingxiao Wu
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, PR China; The Key Laboratory of Pollution Control and Ecosystem Restoration in Industry Clusters of Ministry of Education, Guangzhou 510006, PR China; Guangdong Environmental Protection Key Laboratory of Solid Waste Treatment and Recycling, Guangzhou 510006, PR China
| | - Zhi Dang
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, PR China; The Key Laboratory of Pollution Control and Ecosystem Restoration in Industry Clusters of Ministry of Education, Guangzhou 510006, PR China; Guangdong Environmental Protection Key Laboratory of Solid Waste Treatment and Recycling, Guangzhou 510006, PR China
| |
Collapse
|
30
|
Huang KX, Vadiveloo A, Zhou JL, Yang L, Chen DZ, Gao F. Integrated culture and harvest systems for improved microalgal biomass production and wastewater treatment. BIORESOURCE TECHNOLOGY 2023; 376:128941. [PMID: 36948428 DOI: 10.1016/j.biortech.2023.128941] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Revised: 03/16/2023] [Accepted: 03/18/2023] [Indexed: 06/18/2023]
Abstract
Microalgae cultivation in wastewater has received much attention as an environmentally sustainable approach. However, commercial application of this technique is challenging due to the low biomass output and high harvesting costs. Recently, integrated culture and harvest systems including microalgae biofilm, membrane photobioreactor, microalgae-fungi co-culture, microalgae-activated sludge co-culture, and microalgae auto-flocculation have been explored for efficiently coupling microalgal biomass production with wastewater purification. In such systems, the cultivation of microalgae and the separation of algal cells from wastewater are performed in the same reactor, enabling microalgae grown in the cultivation system to reach higher concentration, thus greatly improving the efficiency of biomass production and wastewater purification. Additionally, the design of such innovative systems also allows for microalgae cells to be harvested more efficiently. This review summarizes the mechanisms, characteristics, applications, and development trends of the various integrated systems and discusses their potential for broad applications, which worth further research.
Collapse
Affiliation(s)
- Kai-Xuan Huang
- School of Petrochemical Engineering & Environment, Zhejiang Ocean University, Zhoushan 316000, China; National Engineering Research Center for Marine Aquaculture, Zhoushan 316000, China
| | - Ashiwin Vadiveloo
- Centre for Sustainable Aquatic Ecosystems, Harry Butler Institute, Murdoch University, Perth 6150, Australia
| | - Jin-Long Zhou
- School of Petrochemical Engineering & Environment, Zhejiang Ocean University, Zhoushan 316000, China; Zhejiang Key Laboratory of Petrochemical Environmental Pollution Control, Zhoushan 316000, China
| | - Lei Yang
- School of Petrochemical Engineering & Environment, Zhejiang Ocean University, Zhoushan 316000, China; Zhejiang Key Laboratory of Petrochemical Environmental Pollution Control, Zhoushan 316000, China
| | - Dong-Zhi Chen
- School of Petrochemical Engineering & Environment, Zhejiang Ocean University, Zhoushan 316000, China; Zhejiang Key Laboratory of Petrochemical Environmental Pollution Control, Zhoushan 316000, China
| | - Feng Gao
- School of Petrochemical Engineering & Environment, Zhejiang Ocean University, Zhoushan 316000, China; Zhejiang Key Laboratory of Petrochemical Environmental Pollution Control, Zhoushan 316000, China.
| |
Collapse
|
31
|
Suresh G, Kumari P, Venkata Mohan S. Light-dependent biohydrogen production: Progress and perspectives. BIORESOURCE TECHNOLOGY 2023; 380:129007. [PMID: 37061171 DOI: 10.1016/j.biortech.2023.129007] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 03/29/2023] [Accepted: 03/30/2023] [Indexed: 05/08/2023]
Abstract
The fourth industrial revolution anticipates energy to be sustainable, renewable and green. Hydrogen (H2) is one of the green forms of energy and is deemed a possible solution to climate change. Light-dependent H2 production is a promising method derived from nature's most copious resources: solar energy, water and biomass. Reduced environmental impacts, absorption of carbon dioxide, relative efficiency, and cost economics made it an eye-catching approach. However, low light conversion efficiency, limited ability to utilize complex carbohydrates, and the O2 sensitivity of enzymes result in low yield. Isolation of efficient H2 producers, development of microbial consortia having a synergistic impact, genetically improved strains, regulating bidirectional hydrogenase activity, physiological parameters, immobilization, novel photobioreactors, and additive strategies are summarized for their possibilities to augment the processes of bio-photolysis and photo-fermentation. The challenges and future perspectives have been addressed to explore a sustainable way forward in a bio-refinery approach.
Collapse
Affiliation(s)
- G Suresh
- Bioengineering and Environmental Sciences Lab, Department of Energy and Environmental Engineering, CSIR-Indian Institute of Chemical Technology (CSIR-IICT), Hyderabad 500 007, India
| | - Poonam Kumari
- Bioengineering and Environmental Sciences Lab, Department of Energy and Environmental Engineering, CSIR-Indian Institute of Chemical Technology (CSIR-IICT), Hyderabad 500 007, India; Academy of Scientific & Innovative Research (AcSIR), Ghaziabad 201002, India
| | - S Venkata Mohan
- Bioengineering and Environmental Sciences Lab, Department of Energy and Environmental Engineering, CSIR-Indian Institute of Chemical Technology (CSIR-IICT), Hyderabad 500 007, India; Academy of Scientific & Innovative Research (AcSIR), Ghaziabad 201002, India.
| |
Collapse
|
32
|
Hussin AA, Hidayah Ahmad NA, Mohd Asri NF, Nik Malek NAN, Mohd Amin MF, Kamaroddin MF. Cultivation of Arthrospira platensis and harvesting using edible fungi isolated from mould soybean cake. BIORESOURCE TECHNOLOGY 2023; 373:128743. [PMID: 36791974 DOI: 10.1016/j.biortech.2023.128743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 02/09/2023] [Accepted: 02/10/2023] [Indexed: 06/18/2023]
Abstract
In this study, the cultivation and harvesting of Arthrospira platensis biomass were proposed via simple, safe, and efficient techniques for direct consumption. Cultivation of microalgae in a covered macrobubble column under outdoor conditions resulted in significant differences (p < 0.05) with a maximum dry cell weight (Xm) of 0.959 ± 0.046 g/L. Notably, outdoor cultures resulted in approximately twofold biomass compared to indoor cultures. This outcome shows that the developed outdoor setup integrated with solar panels while utilising Malaysia's weather and atmospheric air as carbon sources is viable. Meanwhile, for harvesting, the screening showed that the fungus isolated from mould soybean cake (tempeh) starter indicated the highest harvesting efficiency, which was then further identified as Rhizopus microsporus, microscopically and molecularly. Overall, the economical and portable setup of outdoor cultivation coupled with safe harvesting via locally isolated fungus from tempeh as a bioflocculant would provide sustainability to produce A. platensis biomass.
Collapse
Affiliation(s)
- Aimi Alina Hussin
- Department of Biosciences, Faculty of Science, Universiti Teknologi Malaysia, 81310 Johor Bahru, Johor, Malaysia.
| | - Nur Amira Hidayah Ahmad
- Department of Biosciences, Faculty of Science, Universiti Teknologi Malaysia, 81310 Johor Bahru, Johor, Malaysia.
| | - Nur Fakhira Mohd Asri
- Department of Biosciences, Faculty of Science, Universiti Teknologi Malaysia, 81310 Johor Bahru, Johor, Malaysia.
| | - Nik Ahmad Nizam Nik Malek
- Department of Biosciences, Faculty of Science, Universiti Teknologi Malaysia, 81310 Johor Bahru, Johor, Malaysia.
| | | | - M Farizal Kamaroddin
- Department of Biosciences, Faculty of Science, Universiti Teknologi Malaysia, 81310 Johor Bahru, Johor, Malaysia.
| |
Collapse
|
33
|
Parmar P, Kumar R, Neha Y, Srivatsan V. Microalgae as next generation plant growth additives: Functions, applications, challenges and circular bioeconomy based solutions. FRONTIERS IN PLANT SCIENCE 2023; 14:1073546. [PMID: 37063190 PMCID: PMC10101342 DOI: 10.3389/fpls.2023.1073546] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Accepted: 01/05/2023] [Indexed: 06/19/2023]
Abstract
Sustainable agriculture practices involve the application of environment-friendly plant growth promoters and additives that do not negatively impact the health of the ecosystem. Stringent regulatory frameworks restricting the use of synthetic agrochemicals and the increase in demand for organically grown crops have paved the way for the development of novel bio-based plant growth promoters. In this context, microalgae biomass and derived agrochemicals offer novel sources of plant growth promotors that enhance crop productivity and impart disease resistance. These beneficial effects could be attributed to the presence of wide range of biomolecules such as soluble amino acid (AA), micronutrients, polysaccharides, phytohormones and other signaling molecules in microalgae biomass. In addition, their phototrophic nature, high photosynthetic efficiency, and wide environmental adaptability make them an attractive source of biostimulants, biofertilizers and biopesticides. The present review aims to describe the various plant growth promoting metabolites produced by microalgae and their effects on plant growth and productivity. Further, the effects elicited by microalgae biostimulants with respect to different modes of applications such as seed treatments, foliar spray and soil/root drenching is reviewed in detail. In addition, the ability of microalgae metabolites to impart tolerance against various abiotic and biotic stressors along with the mechanism of action is discussed in this paper. Although the use of microalgae based biofertilizers and biostimulants is gaining popularity, the high nutrient and water requirements and energy intensive downstream processes makes microalgae based technology commercially unsustainable. Addressing this challenge, we propose a circular economy model of microalgae mediated bioremediation coupled with biorefinery approaches of generating high value metabolites along with biofertilizer applications. We discuss and review new trends in enhancing the sustainability of microalgae biomass production by co-cultivation of algae with hydroponics and utilization of agriculture effluents.
Collapse
Affiliation(s)
- Priyanka Parmar
- Applied Phycology and Food Technology Laboratory, Council of Scientific and Industrial Research (CSIR)- Institute of Himalayan Bioresource Technology, Palampur, Himachal Pradesh, India
- Academy of Scientific and Innovative Research (AcSIR), Council of Scientific and Industrial Research -Human Resource Development Centre (CSIR-HRDC), Ghaziabad, Uttar Pradesh, India
| | - Raman Kumar
- Applied Phycology and Food Technology Laboratory, Council of Scientific and Industrial Research (CSIR)- Institute of Himalayan Bioresource Technology, Palampur, Himachal Pradesh, India
- Academy of Scientific and Innovative Research (AcSIR), Council of Scientific and Industrial Research -Human Resource Development Centre (CSIR-HRDC), Ghaziabad, Uttar Pradesh, India
| | - Yograj Neha
- Applied Phycology and Food Technology Laboratory, Council of Scientific and Industrial Research (CSIR)- Institute of Himalayan Bioresource Technology, Palampur, Himachal Pradesh, India
| | - Vidyashankar Srivatsan
- Applied Phycology and Food Technology Laboratory, Council of Scientific and Industrial Research (CSIR)- Institute of Himalayan Bioresource Technology, Palampur, Himachal Pradesh, India
- Academy of Scientific and Innovative Research (AcSIR), Council of Scientific and Industrial Research -Human Resource Development Centre (CSIR-HRDC), Ghaziabad, Uttar Pradesh, India
| |
Collapse
|
34
|
Satya ADM, Cheah WY, Yazdi SK, Cheng YS, Khoo KS, Vo DVN, Bui XD, Vithanage M, Show PL. Progress on microalgae cultivation in wastewater for bioremediation and circular bioeconomy. ENVIRONMENTAL RESEARCH 2023; 218:114948. [PMID: 36455634 DOI: 10.1016/j.envres.2022.114948] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 11/10/2022] [Accepted: 11/24/2022] [Indexed: 06/17/2023]
Abstract
Water usage increased alongside its competitiveness due to its finite amount. Yet, many industries still rely on this finite resource thus recalling the need to recirculate their water for production. Circular bioeconomy is presently the new approach emphasizing on the 'end-of-life' concept with reusing, recycling, and recovering materials. Microalgae are the ideal source contributing to circular bioeconomy as it exhibits fast growth and adaptability supported by biological rigidity which in turn consumes nutrients, making it an ideal and capable bioremediating agent, therefore allowing water re-use as well as its biomass potential in biorefineries. Nevertheless, there are challenges that still need to be addressed with consideration of recent advances in cultivating microalgae in wastewater. This review aimed to investigate the potential of microalgae biomass cultivated in wastewater. More importantly, how it'll play a role in the circular bioeconomy. This includes an in-depth look at the production of goods coming from wastes tattered by emerging pollutants. These emerging pollutants include microplastics, antibiotics, ever-increasingly sewage water, and heavy metals which have not been comprehensively compared and explored. Therefore, this review is aiming to bring new insights to researchers and industrial stakeholders with interest in green alternatives to eventually contribute towards environmental sustainability.
Collapse
Affiliation(s)
- Azalea Dyah Maysarah Satya
- Department of Chemical and Environmental Engineering, Faculty of Science and Engineering, University of Nottingham Malaysia, Jalan Broga, 43500, Semenyih, Selangor Darul Ehsan, Malaysia
| | - Wai Yan Cheah
- Centre of Research in Development, Social and Environment (SEEDS), Faculty of Social Sciences and Humanities, Universiti Kebangsaan Malaysia, 43600, UKM, Bangi, Selangor Darul Ehsan, Malaysia.
| | - Sara Kazemi Yazdi
- Department of Chemical and Environmental Engineering, Faculty of Science and Engineering, University of Nottingham Malaysia, Jalan Broga, 43500, Semenyih, Selangor Darul Ehsan, Malaysia
| | - Yu-Shen Cheng
- College of Future, National Yunlin University of Science and Technology, 123 University Road Section 3, Douliou, 64002, Yunlin, Taiwan; Department of Chemical and Materials Engineering, National Yunlin University of Science and Technology, 123 University Road Section 3, Douliou, 64002, Yunlin, Taiwan
| | - Kuan Shiong Khoo
- Department of Chemical Engineering and Materials Science, Yuan Ze University, Taoyuan, Taiwan
| | - Dai-Viet N Vo
- Institute of Applied Technology and Sustainable Development, Nguyen Tat Thanh University, Ho Chi Minh City, 755414, Viet Nam
| | - Xuan Dong Bui
- The University of Danang, University of Science and Technology, 54 Nguyen Luong Bang st., 550 000, Danang, Viet Nam
| | - Meththika Vithanage
- Ecosphere Resilience Research Center, Faculty of Applied Sciences, University of Sri Jayewardenepura, Nugegoda, 10250, Sri Lanka
| | - Pau Loke Show
- Department of Chemical and Environmental Engineering, Faculty of Science and Engineering, University of Nottingham Malaysia, Jalan Broga, 43500, Semenyih, Selangor Darul Ehsan, Malaysia; Department of Sustainable Engineering, Saveetha School of Engineering, SIMATS, Chennai, 602105, India; Zhejiang Provincial Key Laboratory for Subtropical Water Environment and Marine Biological Resources Protection, Wenzhou University, Wenzhou, 325035, China.
| |
Collapse
|
35
|
Raj T, Morya R, Chandrasekhar K, Kumar D, Soam S, Kumar R, Patel AK, Kim SH. Microalgae biomass deconstruction using green solvents: Challenges and future opportunities. BIORESOURCE TECHNOLOGY 2023; 369:128429. [PMID: 36473586 DOI: 10.1016/j.biortech.2022.128429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 11/28/2022] [Accepted: 11/29/2022] [Indexed: 06/17/2023]
Abstract
Microalgae enablefixation of CO2into carbohydrates, lipids, and proteins through inter and intracellularly biochemical pathways. These cellular components can be extracted and transformed into renewable energy, chemicals, and materials through biochemical and thermochemical transformation processes.However, recalcitrant cell wall andlack of environmentally benign efficient pretreatment processes are key obstacles in the commercialization of microalgal biorefineries.Thus,current article describes the microalgal chemical structure, type, and structural rigidity and summarizes the traditional pretreatment methods to extract cell wall constituents. Green solvents such as ionic liquid (ILs), deep eutectic solvents (DES), and natural deep eutectic solvents (NDESs) have shown interesting solvent characteristics to pretreat biomass with selective biocomponent extraction from microalgae. Further research is needed in task-specific IL/DES design, cation-anion organization, structural activity understanding of ILs-biocomponents, environmental toxicity, biodegradability, and recyclability for deployment of carbon-neutral technologies. Additionally, coupling the microalgal industry with biorefineries may facilitate waste management, sustainability, and gross revenue.
Collapse
Affiliation(s)
- Tirath Raj
- Department of Civil and Environmental Engineering, Yonsei University, Seoul 03722, Republic of Korea
| | - Raj Morya
- Department of Civil and Environmental Engineering, Yonsei University, Seoul 03722, Republic of Korea
| | - K Chandrasekhar
- Department of Biotechnology, Vignan's Foundation for Science, Technology and Research, Vadlamudi, 522213 Guntur, Andhra Pradesh, India
| | - Deepak Kumar
- Department of Chemical Engineering, SUNY College of Environmental Science and Forestry, Syracuse, NY 13210, USA
| | - Shveta Soam
- Department of Building Energy and Environmental Engineering, University of Gävle, Sweden
| | - Ravindra Kumar
- Faculty of Bioscience and Aquaculture, Nord University, 7713 Steinkjer, Norway
| | - Anil Kumar Patel
- Institute of Aquatic Science and Technology, National Kaohsiung University of Science and Technology, 81157 Kaohsiung City, Taiwan
| | - Sang-Hyoun Kim
- Department of Civil and Environmental Engineering, Yonsei University, Seoul 03722, Republic of Korea.
| |
Collapse
|
36
|
Guo X, Xia A, Zhang W, Huang Y, Zhu X, Zhu X, Liao Q. Photoenzymatic decarboxylation: A promising way to produce sustainable aviation fuels and fine chemicals. BIORESOURCE TECHNOLOGY 2023; 367:128232. [PMID: 36332862 DOI: 10.1016/j.biortech.2022.128232] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 10/25/2022] [Accepted: 10/26/2022] [Indexed: 06/16/2023]
Abstract
As one of the fastest-growing carbon emission sources, the aviation sector is severely restricted by carbon emission reduction targets. Sustainable aviation fuel (SAF) has emerged as the most potential alternative to traditional aviation fuel, but harsh production technologies limit its commercialization. Fatty acids photodecarboxylase from Chlorella variabilis NC64A (CvFAP), the latest discovered photoenzyme, provides promising approaches to produce various carbon-neutral biofuels and fine chemicals. This review highlights the state-of-the-art strategies to enhance the application of CvFAP in carbon-neutral biofuel and fine chemicals production, including supplementing alkane as decoy molecular, screening efficient CvFAP variants with directed evolution, constructing genetic strains, employing biphasic catalytic system, and immobilizing CvFAP in an efficient photobioreactor. Furthermore, future opportunities are suggested to enhance photoenzymatic decarboxylation and explore the catalytic mechanism of CvFAP. This review provides a broad context to improve CvFAP catalysis and advance its potential applications.
Collapse
Affiliation(s)
- Xiaobo Guo
- Key Laboratory of Low-grade Energy Utilization Technologies and Systems, Chongqing University, Ministry of Education, Chongqing 400044, PR China; Institute of Engineering Thermophysics, College of Energy and Power Engineering, Chongqing University, Chongqing 400044, PR China
| | - Ao Xia
- Key Laboratory of Low-grade Energy Utilization Technologies and Systems, Chongqing University, Ministry of Education, Chongqing 400044, PR China; Institute of Engineering Thermophysics, College of Energy and Power Engineering, Chongqing University, Chongqing 400044, PR China.
| | - Wuyuan Zhang
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, PR China; National Center of Technology Innovation for Synthetic Biology, Tianjin 300308, PR China
| | - Yun Huang
- Key Laboratory of Low-grade Energy Utilization Technologies and Systems, Chongqing University, Ministry of Education, Chongqing 400044, PR China; Institute of Engineering Thermophysics, College of Energy and Power Engineering, Chongqing University, Chongqing 400044, PR China
| | - Xianqing Zhu
- Key Laboratory of Low-grade Energy Utilization Technologies and Systems, Chongqing University, Ministry of Education, Chongqing 400044, PR China; Institute of Engineering Thermophysics, College of Energy and Power Engineering, Chongqing University, Chongqing 400044, PR China
| | - Xun Zhu
- Key Laboratory of Low-grade Energy Utilization Technologies and Systems, Chongqing University, Ministry of Education, Chongqing 400044, PR China; Institute of Engineering Thermophysics, College of Energy and Power Engineering, Chongqing University, Chongqing 400044, PR China
| | - Qiang Liao
- Key Laboratory of Low-grade Energy Utilization Technologies and Systems, Chongqing University, Ministry of Education, Chongqing 400044, PR China; Institute of Engineering Thermophysics, College of Energy and Power Engineering, Chongqing University, Chongqing 400044, PR China
| |
Collapse
|
37
|
Mohanapriya V, Sakthivel R, Pham NDK, Cheng CK, Le HS, Dong TMH. Nanotechnology- A ray of hope for heavy metals removal. CHEMOSPHERE 2023; 311:136989. [PMID: 36309058 DOI: 10.1016/j.chemosphere.2022.136989] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Revised: 10/08/2022] [Accepted: 10/20/2022] [Indexed: 06/16/2023]
Abstract
Environmental effects of heavy metal pollution are considered as a widespread problem throughout the world, as it jeopardizes human health and also reduces the sustainability of a cleaner environment. Removal of such noxious pollutants from wastewater is pivotal because it provides a propitious solution for a cleaner environment and water scarcity. Adsorption treatment plays a significant role in water remediation due to its potent treatment and low cost of adsorbents. In the last two decades, researchers have been highly focused on the modification of adsorption treatment by functionalized and surface-modified nanomaterials which has spurred intense research. The characteristics of nano adsorbents attract global scientists as it is also economically viable. This review shines its light on the functionalized nanomaterials application for heavy metals removal from wastewater and also highlights the importance of regeneration of nanomaterials in the view of visualizing the economic aspects along with a cleaner environment. The review also focused on the proper disposal of nanomaterials with crucial issues that persist in the adsorption process and also emphasize future research modification at a large-scale application in industries.
Collapse
Affiliation(s)
- V Mohanapriya
- Research scholar, Department of Civil Engineering, Government College of Technology, Coimbatore, 641013, India.
| | - R Sakthivel
- Department of Mechanical Engineering, Amrita School of Engineering, Coimbatore, Amrita Vishwa Vidyapeetham, India
| | - Nguyen Dang Khoa Pham
- PATET Research Group, Ho Chi Minh City University of Transport, Ho Chi Minh City, Viet Nam
| | - Chin Kui Cheng
- Department of Chemical Engineering, College of Engineering, Khalifa University, P.O. Box 127788, Abu Dhabi, United Arab Emirates; Center for Catalysis and Separation (CeCaS), Khalifa University, P.O. Box 127788, Abu Dhabi, United Arab Emirates
| | - Huu Son Le
- Faculty of Automotive Engineering, School of Engineering and Technology, Van Lang University, Ho Chi Minh City, Viet Nam
| | - Thi Minh Hao Dong
- Institute of Engineering, HUTECH University, Ho Chi Minh City, Viet Nam.
| |
Collapse
|
38
|
Goveas LC, Nayak S, Vinayagam R, Loke Show P, Selvaraj R. Microalgal remediation and valorisation of polluted wastewaters for zero-carbon circular bioeconomy. BIORESOURCE TECHNOLOGY 2022; 365:128169. [PMID: 36283661 DOI: 10.1016/j.biortech.2022.128169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 10/15/2022] [Accepted: 10/17/2022] [Indexed: 06/16/2023]
Abstract
Overexploitation of natural resources to meet human needs has considerably impacted CO2 emissions, contributing to global warming and severe climatic change. This review furnishes an understanding of the sources, brutality, and effects of CO2 emissions and compelling requirements for metamorphosis from a linear to a circular bioeconomy. A detailed emphasis on microalgae, its types, properties, and cultivation are explained with significance in attaining a zero-carbon circular bioeconomy. Microalgal treatment of a variety of wastewaters with the conversion of generated biomass into value-added products such as bio-energy and pharmaceuticals, along with agricultural products is elaborated. Challenges encountered in large-scale implementation of microalgal technologies for low-carbon circular bioeconomy are discussed along with solutions and future perceptions. Emphasis on the suitability of microalgae in wastewater treatment and its conversion into alternate low-carbon footprint bio-energies and value-added products enforcing a zero-carbon circular bioeconomy is the major focus of this review.
Collapse
Affiliation(s)
- Louella Concepta Goveas
- Nitte (Deemed to be University), NMAM Institute of Technology (NMAMIT), Department of Biotechnology Engineering, Nitte, Karnataka 574110, India
| | - Sneha Nayak
- Nitte (Deemed to be University), NMAM Institute of Technology (NMAMIT), Department of Biotechnology Engineering, Nitte, Karnataka 574110, India
| | - Ramesh Vinayagam
- Department of Chemical Engineering, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal, Karnataka 576104, India
| | - Pau Loke Show
- Department of Chemical and Environmental Engineering, Faculty of Science and Engineering, University of Nottingham Malaysia, Jalan Broga, 43500, Semenyih, Selangor Darul Ehsan, Malaysia; Zhejiang Provincial Key Laboratory for Subtropical Water Environment and Marine Biological Resources Protection, Wenzhou University, Wenzhou 325035, China; Department of Sustainable Engineering, Saveetha School of Engineering, SIMATS, Chennai 602105, India
| | - Raja Selvaraj
- Department of Chemical Engineering, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal, Karnataka 576104, India.
| |
Collapse
|
39
|
Outdoor Inclined Plastic Column Photobioreactor: Growth, and Biochemicals Response of Arthrospira platensis Culture on Daily Solar Irradiance in a Tropical Place. Metabolites 2022; 12:metabo12121199. [PMID: 36557237 PMCID: PMC9785283 DOI: 10.3390/metabo12121199] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 11/24/2022] [Accepted: 11/25/2022] [Indexed: 12/02/2022] Open
Abstract
Implementation of outdoor photobioreactors has been challenged by an extremely oversaturated daily peak of solar irradiance. This study aims to understand the role of column size and paranet shading as well as to investigate the most convenient light control in outdoor cyanobacterial culture. The photobioreactor (PBR) consisted of plastic columns with a diameter of 12.74 cm (PBRd-20) and 31.85 cm (PBRd-50) laid outdoors and inclined at 158.22° upwards against solar radiation, while paranet shading was provided at 0%, 50%, 70%, and 90% shading capacity. A semi-continuous culture of cyanobacterium Arthrospira (Spirulina) platensis was conducted for 6 weeks with weekly monitoring of the growth parameter as well as the proximate and pigments content, while the daily irradiance and culture maximum temperature were recorded. The result shows that the column diameter of 12.74 cm had a lethal risk of 44.7% and this decreased to 10.5% by widening the column diameter to 31.85 cm. This lethal risk can be eliminated by the application of a paranet at a 50% reduction level for the column diameter of 31.85 cm and a 70% reduction level for the column diameter of 12.74 cm. The highest culture productivity of 149.03 mg/(L·day) was achieved with a PBRd-20 with 50% shading treatment, but a PBRd-50 with 90% shading treatment led to an increase in the protein and phycocyanin content by 66.7% and 14.91%, respectively.
Collapse
|
40
|
Lee JS, Sung YJ, Kim DH, Lee JY, Sim SJ. Development of a limitless scale-up photobioreactor for highly efficient photosynthesis-based polyhydroxybutyrate (PHB)-producing cyanobacteria. BIORESOURCE TECHNOLOGY 2022; 364:128121. [PMID: 36252756 DOI: 10.1016/j.biortech.2022.128121] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 10/07/2022] [Accepted: 10/09/2022] [Indexed: 06/16/2023]
Abstract
Photosynthetic polyhydroxybutyrate (PHB) production is an attractive technology for realizing a sustainable society by simultaneously producing useful biodegradable plastics and mitigating CO2. It is necessary to establish an economical large-scale photobioreactor (PBR) capable of effectively cultivating photosynthetic microorganisms such as cyanobacteria. A roll-to-roll winding machine/heat-sealer hybrid system for fabricating an easy-to-scale-up PBR was developed in the present study. The baffle design was optimized to facilitate mass transfer within the PBR, and the operating conditions of the gas sparger were investigated to maximize the CO2 transfer efficiency. The newly developed PBR was able to produce biomass of PHB content 10.7 w/w% at a rate of 6.861 g m-2 d-1, 21 % improved biomass productivity compared with the existing PBR. It was confirmed that biomass productivity was maintained even when PBR was scaled up to 2 tons. Consequently, the newly developed PBR is expected to improve the feasibility of photosynthetic PHB production.
Collapse
Affiliation(s)
- Jeong Seop Lee
- Department of Chemical and Biological Engineering, Korea University, 145, Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
| | - Young Joon Sung
- Department of Chemical and Biological Engineering, Korea University, 145, Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea; Department of Chemical and Biological Engineering, Sookmyung Women's University, 100 Cheongpa-ro 47-gil, Yongsan-gu, Seoul, Republic of Korea
| | - Dong Hun Kim
- Department of Chemical and Biological Engineering, Korea University, 145, Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
| | - Ju Yeon Lee
- Department of Chemical and Biological Engineering, Korea University, 145, Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
| | - Sang Jun Sim
- Department of Chemical and Biological Engineering, Korea University, 145, Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea.
| |
Collapse
|
41
|
Wang S, Teng Z, Li Y, Chen F, Liu X, Liu S, He J, Wang W. A novel vertical dual-loop reactor for rapid start-up of simultaneous partial nitrification and anammox process in treating landfill leachate: Performances and mechanisms. BIORESOURCE TECHNOLOGY 2022; 364:127947. [PMID: 36100189 DOI: 10.1016/j.biortech.2022.127947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 09/06/2022] [Accepted: 09/07/2022] [Indexed: 06/15/2023]
Abstract
A novel vertical dual-loop reactor (VDLR) was developed to start and conduct a single-stage partial nitritation (PN) and anammox (PN/A) process for treating landfill leachate. Results showed that the total nitrogen (TN) removal reached 1.54 kg N/m3·d in the VDLR. It exhibited excellent mixing uniformity and buffer performance, which can increase the nitrogen removal performance up to 42.1 % via the improvement of anammox granular sludge activity (a particle size of 0.5-1 mm). Mass balance and microbial analysis indicated that the VDLR achieved efficient TN removal via anammox (99.24 %) and AOB (Nitrosomonas and Ellin6067) and anAOB (Candidatus kuenenia) played a vital role in this process.
Collapse
Affiliation(s)
- Siqi Wang
- Qingyan Environmental Technology Co. Ltd, Shenzhen 518057, China; Research Institute of Tsinghua University in Shenzhen, Shenzhen 518057, China; School of Environment, Tsinghua University, Beijing 100084, China
| | - Zedong Teng
- Innovation Academy for Green Manufacture, Key Laboratory of Green Process and Engineering, Beijing Engineering Research Centre of Process Pollution Control, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
| | - Yun Li
- Qingyan Environmental Technology Co. Ltd, Shenzhen 518057, China.
| | - Fuming Chen
- Qingyan Environmental Technology Co. Ltd, Shenzhen 518057, China
| | - Xu Liu
- Qingyan Environmental Technology Co. Ltd, Shenzhen 518057, China
| | - Shujie Liu
- Qingyan Environmental Technology Co. Ltd, Shenzhen 518057, China
| | - Juyuan He
- Qingyan Environmental Technology Co. Ltd, Shenzhen 518057, China
| | - Wei Wang
- School of Environment, Tsinghua University, Beijing 100084, China
| |
Collapse
|
42
|
Sun Y, Hu D, Chang H, Li S, Ho SH. Recent progress on converting CO 2 into microalgal biomass using suspended photobioreactors. BIORESOURCE TECHNOLOGY 2022; 363:127991. [PMID: 36262000 DOI: 10.1016/j.biortech.2022.127991] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 09/13/2022] [Accepted: 09/15/2022] [Indexed: 06/16/2023]
Abstract
Inhomogeneous light distribution and poor CO2 transfer capacity are two critical concerns impeding microalgal photosynthesis in practical suspended photobioreactors (PBRs). To provide valuable guidance on designing high-performance PBRs, recent progress on enhancing light and CO2 availabilities is systematically summarized in this review. Particularly, for the first time, the strategies on elevating light availability are classified and discussed from the perspectives of increasing incident light intensity, introducing internal illumination, optimizing flow field, regulating biomass concentrations, and enlarging illumination surface areas. Meanwhile, the strategies on enhancing CO2 light availability are outlined from the aspects of generating smaller bubbles, extending bubbles residence time, and facilitating CO2 dissolution using extra additives. Given the microalgal biomass production using current PBRs are still suffering from low productivity and economic feasibility, the possible future directions for PBRs implementation and development are presented. Altogether, this review is beneficial to furthering development of PBRs as a practical technology.
Collapse
Affiliation(s)
- Yahui Sun
- School of Energy and Mechanical Engineering, Nanjing Normal University, Nanjing 210023, China; Hebei Provincial Lab of Water Environmental Sciences, Hebei Provincial Academy of Ecological and Environmental Sciences, Shijiazhuang 050037, China
| | - Deshen Hu
- School of Energy and Mechanical Engineering, Nanjing Normal University, Nanjing 210023, China
| | - Haixing Chang
- School of Chemistry and Chemical Engineering, Chongqing University of Technology, Chongqing 400054, China
| | - Shengnan Li
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Shih-Hsin Ho
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China.
| |
Collapse
|
43
|
Sung YJ, Yu BS, Yang HE, Kim DH, Lee JY, Sim SJ. Microalgae-derived hydrogen production towards low carbon emissions via large-scale outdoor systems. BIORESOURCE TECHNOLOGY 2022; 364:128134. [PMID: 36252755 DOI: 10.1016/j.biortech.2022.128134] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 10/08/2022] [Accepted: 10/11/2022] [Indexed: 06/16/2023]
Abstract
Hydrogen as a clean fuel is receiving attention because it generates only water and a small amount of nitrogen oxide upon combustion. Biohydrogen production using microalgae is considered to be a highly promising carbon-neutral technology because it can secure renewable energy while efficiently reducing CO2 emissions. However, previous studies have mainly focused on improving the biological performance of microalgae; these approaches have struggled to achieve breakthroughs in commercialization because they do not heavily consider the complexity of the entire production process with microalgae, including large-scale cultivation, biomass harvest, and biomass storage. This work presents an in-depth analysis of the state-of-the-art technologies focused on large-scale cultivation systems with efficient downstream processes. Considering the individual processes of biohydrogen production, strategies are discussed to minimize carbon emissions and improve productivity simultaneously. A comprehensive understanding of microalgae-derived biohydrogen production suggests future directions for realizing environmental and economic sustainability.
Collapse
Affiliation(s)
- Young Joon Sung
- Department of Chemical and Biological Engineering, Korea University, 145, Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea; Department of Chemical and Biological Engineering, Sookmyung Women's University, 100 Cheongpa-ro 47-gil, Yongsan-gu, Seoul, Republic of Korea
| | - Byung Sun Yu
- Department of Chemical and Biological Engineering, Korea University, 145, Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
| | - Ha Eun Yang
- Department of Chemical and Biological Engineering, Korea University, 145, Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
| | - Dong Hoon Kim
- Department of Chemical and Biological Engineering, Korea University, 145, Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
| | - Ju Yeon Lee
- Department of Chemical and Biological Engineering, Korea University, 145, Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
| | - Sang Jun Sim
- Department of Chemical and Biological Engineering, Korea University, 145, Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea.
| |
Collapse
|
44
|
Glycerol Waste to Bio-Ethanol: Optimization of Fermentation Parameters by the Taguchi Method. J CHEM-NY 2022. [DOI: 10.1155/2022/4892992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Global attention caused by pollutants and greenhouse gas emissions leads to alternative fuels that decrease the dependence on fossil fuels and reduce the carbon footprint that preceded the development of biodiesel production. Glycerol residue is generated more significantly from the biodiesel industry as a byproduct and is left as waste. In this study, we utilized glycerol residue from the biodiesel industry as an excellent opportunity to convert ethanol by bioconversion. The waste glycerol was used as a good and cheap carbon source as a substrate to synthesize ethanol by immobilizing E. coli cells. The screening of parameters such as mass substrate, temperature, inoculum size, and fermentation time was carried out using the one-factor-at-a-time (OFAT) technique. The Taguchi model employed optimization of fermentation parameters. The process parameters showed the mass substrate glycerol of 20 g with an inoculum size of 20%, and 12 hours yielded the ethanol concentration of 10.0 g/L.
Collapse
|
45
|
Optimization of CO2 Supply for the Intensive Cultivation of Chlorella sorokiniana IPPAS C-1 in the Laboratory and Pilot-Scale Flat-Panel Photobioreactors. Life (Basel) 2022; 12:life12101469. [PMID: 36294904 PMCID: PMC9605657 DOI: 10.3390/life12101469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 09/14/2022] [Accepted: 09/19/2022] [Indexed: 11/29/2022] Open
Abstract
Microalgae are increasingly being used for capturing carbon dioxide and converting it into valuable metabolites and biologically active compounds on an industrial scale. The efficient production of microalgae biomass requires the optimization of resources, including CO2. Here, we estimated the productivity of Chlorella sorokiniana IPPAS C-1 depending on CO2 concentrations and the ventilation coefficient of the gas-air mixture (GAM) in flat-panel photobioreactors (FP-PBRs) at laboratory (5 L) and pilot (18 L) scales. For the laboratory scale, the PBRs operated at 900 µmol quanta m−2 s−1 and 35.5 ± 0.5 °C; the optimal CO2 flow rate was estimated at 3 mL CO2 per 1 L of suspension per minute, which corresponds to 1.5% CO2 in the GAM and an aeration rate of 0.2 vvm. These parameters, being scaled up within the pilot PBRs, resulted in a high specific growth rate (µ ≈ 0.1 h−1) and high specific productivity (Psp ≈ 1 g dw L−1 d−1). The principles of increasing the efficiency of the intensive cultivation of C. sorokiniana IPPAS C-1 are discussed. These principles are relevant for the development of technological regimes for the industrial production of Chlorella in flat-panel PBRs of various sizes.
Collapse
|
46
|
Li L, Xu X, Wang W, Lau R, Wang CH. Hydrodynamics and mass transfer of concentric-tube internal loop airlift reactors: A review. BIORESOURCE TECHNOLOGY 2022; 359:127451. [PMID: 35716864 DOI: 10.1016/j.biortech.2022.127451] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 06/06/2022] [Accepted: 06/07/2022] [Indexed: 06/15/2023]
Abstract
The concentric-tube internal loop airlift reactor is a typical reactor configuration which has been adopted for a myriad of chemical and biological processes. The reactor hydrodynamics (including mixing) and the mass transfer between the gas and liquid phases remarkably affect the operational conditions and thus are crucial to the overall reactor performance. Hence, this study aims at providing a thorough description of the basic concepts and a comprehensive review of the relevant reported studies on the hydrodynamics and mass transfer of the concentric-tube internal loop airlift reactors, taking microalgae cultivation as an exemplary application. In particular, the reactor characteristics, geometry, CFD modeling, experimental characterization, and scale up considerations are elucidated. The research gaps for future research and development are also identified.
Collapse
Affiliation(s)
- Lifeng Li
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering drive 4, 117585, Singapore
| | - Xiaoyun Xu
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering drive 4, 117585, Singapore
| | - Wujun Wang
- Department of Energy Technology, KTH Royal Institute of Technology, Brinellvägen 68, 100 44 Stockholm, Sweden
| | - Raymond Lau
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 62 Nanyang Drive, 637459, Singapore
| | - Chi-Hwa Wang
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering drive 4, 117585, Singapore; Energy and Environmental Sustainability Solutions for Megacities (E2S2), Campus for Research Excellence and Technological Enterprise (CREATE), 138602, Singapore.
| |
Collapse
|
47
|
Gabrielyan DA, Sinetova MA, Gabel BV, Gabrielian AK, Markelova AG, Rodionova MV, Bedbenov VS, Shcherbakova NV, Los DA. Cultivation of Chlorella sorokiniana IPPAS C-1 in Flat-Panel Photobioreactors: From a Laboratory to a Pilot Scale. Life (Basel) 2022; 12:life12091309. [PMID: 36143346 PMCID: PMC9506280 DOI: 10.3390/life12091309] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 08/22/2022] [Accepted: 08/23/2022] [Indexed: 12/23/2022] Open
Abstract
Flat-panel photobioreactors are effective systems for microalgae cultivation. This paper presents the growth characteristics of the microalgae Chlorella sorokiniana IPPAS C-1 as a result of three-stage scale-up cultivation in a specially designed cultivation system. First, C. sorokiniana was grown aseptically in 250 mL glass vessels; then, it was diluted and inoculated into a 5-liter flat-panel horizontal photobioreactor; and, at the last stage, the culture was diluted and inoculated into a 70-liter flat-panel vertical photobioreactor. In the presented cycle, the cultured biomass increased by 326 times in 13 days (from 0.6 to 195.6 g dw), with a final biomass concentration of 2.8 g dw L−1. The modes of semi-continuous cultivation were considered. The biomass harvest and dilution of the suspension were carried out either every day or every 3–4 days. For C. sorokiniana IPPAS C-1, a conversion coefficient of optical density values to dry biomass (g L−1) was refined through a factor of 0.33. The key parameters of the photobioreactors tested in this work are discussed.
Collapse
|
48
|
Kumar M, Ngasepam J, Dhangar K, Mahlknecht J, Manna S. Critical review on negative emerging contaminant removal efficiency of wastewater treatment systems: Concept, consistency and consequences. BIORESOURCE TECHNOLOGY 2022; 352:127054. [PMID: 35351567 DOI: 10.1016/j.biortech.2022.127054] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 03/17/2022] [Accepted: 03/20/2022] [Indexed: 06/14/2023]
Abstract
Emerging contaminants (ECs) are not completely removed by wastewater treatment owing to their capabilities of making complexes, toxic derivatives, byproduct formation, and dynamic partitioning. Negative contaminant removal i.e., higher concentrations (up to 5731%) of these ECs in the effluent with respect to the influent sampled on the same occasions, is globally prevalent in almost all types of treatment systems. Conventional WWTPs showed the highest negative removal (NR) for Carbamazepine, and Carbadox. Conjugation-deconjugation, types of WWTPs, transformations, leaching, operational parameters, sampling schemes, and nature of substance governs the NR efficiencies. Among the various categories of micropollutants, pesticides and beta-blockers are reported to exhibit the maximum percentage of NR, posing threat to human and the environment. With > 200% of NR for beta-blockers, low blood-pressure related symptoms may likely to get more prevalent in the near future. Study red-flags this phenomenon of negative removal that needs urgent attention.
Collapse
Affiliation(s)
- Manish Kumar
- Sustainability Cluster, School of Engineering, University of Petroleum and Energy Studies, Dehradun, Uttarakhand 248007, India.
| | | | - Kiran Dhangar
- Discipline of Civil Engineering, IIT Gandhinagar, Gujarat 382355, India
| | - Jurgen Mahlknecht
- Escuela de Ingeniería y Ciencias, Tecnologico de Monterrey, Campus Monterrey, Eugenio Garza Sada 2501, Sur Monterrey 64849, Mexico
| | - Suvendu Manna
- Sustainability Cluster, School of Engineering, University of Petroleum and Energy Studies, Dehradun, Uttarakhand 248007, India
| |
Collapse
|
49
|
Ranganathan P, Pandey AK, Sirohi R, Tuan Hoang A, Kim SH. Recent advances in computational fluid dynamics (CFD) modelling of photobioreactors: Design and applications. BIORESOURCE TECHNOLOGY 2022; 350:126920. [PMID: 35240273 DOI: 10.1016/j.biortech.2022.126920] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 02/24/2022] [Accepted: 02/25/2022] [Indexed: 06/14/2023]
Abstract
The development of photobioreactor is important for sustainable production of renewable fuels, wastewater treatment and CO2 fixation. For the design and scale-up of a photobioreactor, CFD can be used as an indispensable tool. The present study reviews the recent status of computational flow modelling of various types of photobioreactors, involving fluid dynamics, light transport, and algal growth kinetics. An integrated modelling approach of hydrodynamics, light intensity, mass transfer, and biokinetics in photobioreactor is discussed further. Also, this reviews intensified system to improve the mixing, and light intensity of photobioreactors. Finally, the prospects and challenges of CFD modelling in photobioreactors are discussed. Multi-scale modelling approach and development of low-cost efficient computational framework are the areas to be considered for modelling of photobioreactor in near future. In addition, it is necessary to use process intensification techniques for photobioreactors for improving their hydrodynamics, mixing and mass transfer performances, and algal growth productivity.
Collapse
Affiliation(s)
| | - Ashutosh Kumar Pandey
- School of Civil and Environmental Engineering, Yonsei University, Seoul 03722, Republic of Korea; Centre for Energy and Environmental Sustainability, Lucknow-226 029, Uttar Pradesh, India
| | - Ranjna Sirohi
- Centre for Energy and Environmental Sustainability, Lucknow-226 029, Uttar Pradesh, India; Department of Chemical & Biological Engineering, Korea University, Seoul 136713, Republic of Korea
| | - Anh Tuan Hoang
- Institute of Engineering, HUTECH University, Ho Chi Minh city, Vietnam
| | - Sang-Hyoun Kim
- School of Civil and Environmental Engineering, Yonsei University, Seoul 03722, Republic of Korea.
| |
Collapse
|