1
|
Zhao J, Peng L, Ma X. Innovative microalgae technologies for mariculture wastewater treatment: Single and combined microalgae treatment mechanisms, challenges and future prospects. ENVIRONMENTAL RESEARCH 2025; 266:120560. [PMID: 39647683 DOI: 10.1016/j.envres.2024.120560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 11/18/2024] [Accepted: 12/05/2024] [Indexed: 12/10/2024]
Abstract
The discharge of aquaculture wastewater, comprising nitrogen, phosphorus, heavy metals, and antibiotics from large-scale aquaculture, poses a significant threat to marine ecosystems and human health. Consequently, addressing the treatment of marine aquaculture wastewater is imperative. Conventional physicochemical treatment methods have various limitations, whereas microalgae-based biological treatment technologies have gained increasing attention in the field of water purification due to their ability to efficiently absorb organic matter from mariculture wastewater and convert CO₂ into biomass products. Microalgae offer potential for highly efficient and cost-effective mariculture wastewater treatment, with particularly noteworthy advancements in the application of combined microalgae technologies. This paper explores the research hotspots in this field through bibliometric analysis and systematically discusses the following aspects: (1) summarizing the current pollution status of mariculture wastewater, including the types and sources of pollutants in various forms of mariculture wastewater, treatment methods, and associated treatment efficiencies; (2) analyzing the factors contributing to the gradual replacement of single microalgae technology with combined microalgae technology, highlighting its synergistic effects, enhanced pollutant removal efficiencies, resource recovery potential, and alignment with sustainable development goals; (3) exploring the mechanisms of pollutant removal by combined microalgae technologies, focusing on their technical advantages in bacterial-algal coupling, immobilized microalgae systems, and microalgal biofilm technologies; (4) discussing the challenges faced by the three main categories of combined microalgae technologies and proposing future improvement strategies to further enhance their application effectiveness. In conclusion, this paper offers a detailed analysis of these emerging technologies, providing a forward-looking perspective on the future development of microalgae-based mariculture wastewater treatment solutions.
Collapse
Affiliation(s)
- Jinjin Zhao
- School of Resources, Environment and Materials, Guangxi University, Nanning, Guangxi, 530004, China
| | - Licheng Peng
- Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province/School of Ecology and Environment, Hainan University, Haikou, 570228, China
| | - Xiangmeng Ma
- School of Resources, Environment and Materials, Guangxi University, Nanning, Guangxi, 530004, China; Key Laboratory of Environmental Protection (Guangxi University), Education Department of Guangxi Zhuang Autonomous Region, Guangxi Nanning, 530004, China; Guangxi Key Laboratory of Emerging Contaminants Monitoring, Early Warning and Environmental Health Risk Assessment, China.
| |
Collapse
|
2
|
Zhao H, Zhong X, Yao Z, Yang Z, Fan J. Overestimated role of inoculation bacteria-algae ratio in wastewater treatment. WATER ENVIRONMENT RESEARCH : A RESEARCH PUBLICATION OF THE WATER ENVIRONMENT FEDERATION 2025; 97:e70016. [PMID: 39853813 DOI: 10.1002/wer.70016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2024] [Revised: 11/14/2024] [Accepted: 01/10/2025] [Indexed: 01/26/2025]
Abstract
Microalgae-bacteria systems present a promising approach for CO2 reduction in wastewater treatment. The effect of inoculation bacteria-algae ratio on performance was investigated in this study. Different inoculation ratios (bacteria: algae 1:2, 1:1, 1:0.5, 1:0.25, 1:0.125, w/w) obtained comparable nutrients removal (p > 0.05). Over time, the bacteria-algae ratios converged into two groups (3:1 and 4:1), demonstrating self-adaption between bacteria and microalgae. Furthermore, principal component analysis (PCA) distinguished the performance of reactors into two groups, one group consisting of 1:2, 1:1, and 1:0.5 ratios and the other group consisting of 1:0.25 and 1:0.125 ratios, confirming their convergence in terms of nutrient removal and photosynthetic properties. The performance differed merely in sludge volume index (SVI) and nitrite accumulation, with 1:2 and 1:0.125 being the most prone to accumulate nitrite. This study implies that photobioreactor performance was not sensitive to inoculation ratio, whose role was overestimated, since microalgae and bacteria self-assemble to form niches. PRACTITIONER POINTS: Effect of inoculation bacteria-algae ratio on performance was overestimated Photosynthesis and nutrients removal were grouped at different inoculation ratios Different ratio showed similar nutrients removal efficiency Self-adaption made ratios of 1:2, 1:1, 1:0.5 converge into 3:1.
Collapse
Affiliation(s)
- Huangbo Zhao
- College of Urban Construction, Wuhan University of Science and Technology, Wuhan, China
| | - Xin Zhong
- College of Urban Construction, Wuhan University of Science and Technology, Wuhan, China
| | - Zexin Yao
- College of Urban Construction, Wuhan University of Science and Technology, Wuhan, China
| | - Zihua Yang
- College of Urban Construction, Wuhan University of Science and Technology, Wuhan, China
| | - Jie Fan
- College of Urban Construction, Wuhan University of Science and Technology, Wuhan, China
| |
Collapse
|
3
|
Sun P, Ji B, Li A, Zhang X, Liu Y. Efficient nitrogen removal by microalgal-bacterial granular sludge-marimo coupling process. BIORESOURCE TECHNOLOGY 2024; 402:130816. [PMID: 38723726 DOI: 10.1016/j.biortech.2024.130816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 04/28/2024] [Accepted: 05/06/2024] [Indexed: 05/27/2024]
Abstract
Current biological wastewater treatment processes usually have a drawback of insufficient nitrogen (N) removal, contributing to the ubiquitous eutrophication of aquatic ecosystems globally. To address such a challenging situation, this study explored an innovative microalgal-bacterial granular sludge-marimo (MBGS-MA) coupling process. The process removed 83.4 % of N with the effluent N concentration of 4.0 mg/L. With the growth of MBGS, there was a shift towards genes associated with nitrification and denitrification, and away from ammonia assimilation genes, revealing internal mechanism of the shift of N removal pathway. Contrarily, MA could use gaseous N2 with the N fixing genes in MA enriched, and the genes abundance related to assimilatory nitrate reduction were also raised under the mutualistic interactions between Proteobacteria and Cyanobacteria, which was beneficial to achieve efficient N removal. These findings may open a new horizon for developing innovative hybrid microalgal-bacterial processes aimed at high-efficiency N removal from wastewater.
Collapse
Affiliation(s)
- Penghui Sun
- Department of Water and Wastewater Engineering, School of Urban Construction, Wuhan University of Science and Technology, Wuhan 430065, China
| | - Bin Ji
- Department of Water and Wastewater Engineering, School of Urban Construction, Wuhan University of Science and Technology, Wuhan 430065, China; Hubei Provincial Engineering Research Center of Urban Regeneration, Wuhan University of Science and Technology, Wuhan 430065, China.
| | - Anjie Li
- Key Laboratory of Water and Sediment Sciences of Ministry of Education, State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China
| | - Xiaoyuan Zhang
- Engineering Laboratory of Low-Carbon Unconventional Water Resources Utilization and Water Quality Assurance, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Yu Liu
- Engineering Laboratory of Low-Carbon Unconventional Water Resources Utilization and Water Quality Assurance, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| |
Collapse
|
4
|
Kumar N, Shukla P. Microalgal multiomics-based approaches in bioremediation of hazardous contaminants. ENVIRONMENTAL RESEARCH 2024; 247:118135. [PMID: 38218523 DOI: 10.1016/j.envres.2024.118135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 12/26/2023] [Accepted: 01/05/2024] [Indexed: 01/15/2024]
Abstract
The enhanced industrial growth and higher living standards owing to the incessant population growth have caused heightened production of various chemicals in different manufacturing sectors globally, resulting in pollution of aquatic systems and soil with hazardous chemical contaminants. The bioremediation of such hazardous pollutants through microalgal processes is a viable and sustainable approach. Accomplishing microalgal-based bioremediation of polluted wastewater requires a comprehensive understanding of microalgal metabolic and physiological dynamics. Microalgae-bacterial consortia have emerged as a sustainable agent for synergistic bioremediation and metabolite production. Effective bioremediation involves proper consortium functioning and dynamics. The present review highlights the mechanistic processes employed through microalgae in reducing contaminants present in wastewater. It discusses the multi-omics approaches and their advantages in understanding the biological processes, monitoring, and dynamics among the partners in consortium through metagenomics. Transcriptomics, proteomics, and metabolomics enable an understanding of microalgal cell response toward the contaminants in the wastewater. Finally, the challenges and future research endeavors are summarised to provide an outlook on microalgae-based bioremediation.
Collapse
Affiliation(s)
- Niwas Kumar
- Enzyme Technology and Protein Bioinformatics Laboratory, School of Biotechnology, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| | - Pratyoosh Shukla
- Enzyme Technology and Protein Bioinformatics Laboratory, School of Biotechnology, Institute of Science, Banaras Hindu University, Varanasi, 221005, India.
| |
Collapse
|
5
|
Odibo A, Janpum C, Pombubpa N, Monshupanee T, Incharoensakdi A, Ur Rehman Z, In-Na P. Microalgal-bacterial immobilized co-culture as living biofilters for nutrient recovery from synthetic wastewater and their potential as biofertilizers. BIORESOURCE TECHNOLOGY 2024; 398:130509. [PMID: 38452949 DOI: 10.1016/j.biortech.2024.130509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 02/26/2024] [Accepted: 02/28/2024] [Indexed: 03/09/2024]
Abstract
This study investigates nutrient recovery from synthetic municipal wastewater using co-immobilized cultures of Chlorella vulgaris TISTR 8580 (CV) and plant growth-promoting bacteria, Bacillus subtilis TISTR 1415 (BS) as living biofilters for a subsequent biofertilizer activity. The optimal condition for nutrient recovery was at the 1:1 ratio of CV/BS using mixed guar gum/carrageenan (GG/CG) binders. After 7-day wastewater treatment, the living biofilters removed 86.7 ± 0.5% of ammonium and 99.3 ± 0.3% of phosphates and were tested subsequently as biofertilizers for 20 days to grow selected plants. The highest optimal biomass and chlorophyll a content was 2 ± 0.3 g (CV/BS 3:1) and 12.4 ± 0.7 µg/g (CV/BS 1:1) from cucumber respectively, however, the close-to-neutral pH (8.0 ± 0.3) was observed from sunflower using CV/BS 1:1 living biofilters. Conclusively, the designed living biofilters exhibit the potential to recover nutrients from wastewater and be used as biofertilizers for circular agriculture.
Collapse
Affiliation(s)
- Augustine Odibo
- Department of Chemical Technology, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Chalampol Janpum
- Department of Chemical Technology, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Nuttapon Pombubpa
- Department of Microbiology, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Tanakarn Monshupanee
- Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand; Research Unit on Sustainable Algal Cultivation and Applications (RU SACAS), Chulalongkorn University, Bangkok 10330, Thailand
| | - Aran Incharoensakdi
- Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Zia Ur Rehman
- Department of Chemical Technology, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Pichaya In-Na
- Department of Chemical Technology, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand; Research Unit on Sustainable Algal Cultivation and Applications (RU SACAS), Chulalongkorn University, Bangkok 10330, Thailand.
| |
Collapse
|
6
|
Song X, Liu BF, Kong F, Song Q, Ren NQ, Ren HY. New insights into rare earth element-induced microalgae lipid accumulation: Implication for biodiesel production and adsorption mechanism. WATER RESEARCH 2024; 251:121134. [PMID: 38244297 DOI: 10.1016/j.watres.2024.121134] [Citation(s) in RCA: 21] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Revised: 01/09/2024] [Accepted: 01/11/2024] [Indexed: 01/22/2024]
Abstract
A coupling technology for lipid production and adsorption of rare earth elements (REEs) using microalgae was studied in this work. The microalgae cell growth, lipid production, biochemical parameters and lipid profiles were investigated under different REEs (Ce3+, Gd3+and La3+). The results showed that the maximum lipid production was achieved at different concentrations of REEs, with lipid productivities of 300.44, 386.84 and 292.19 mg L-1 d-1 under treatment conditions of 100 μg L-1 Ce3+, 250 μg L-1 Gd3+ and 1 mg L-1 La3+, respectively. Moreover, the adsorption efficiency of Ce3+, Gd3+ and La3+exceeded 96.58 %, 93.06 % and 91.3 % at concentrations of 25-1000 μg L-1, 100-500 μg L-1 and 0.25-1 mg L-1, respectively. In addition, algal cells were able to adsorb 66.2 % of 100 μg L-1 Ce3+, 48.4 % of 250 μg L-1 Gd3+ and 59.9 % of 1 mg L-1 La3+. The combination of extracellular polysaccharide and algal cell wall could adsorb 25.2 % of 100 μg L-1 Ce3+, 44.5 % of 250 μg L-1 Gd3+ and 30.5 % of 1 mg L-1 La3+, respectively. These findings indicated that microalgae predominantly adsorbed REEs through the intracellular pathway. This study elucidates the mechanism of effective lipid accumulation and adsorption of REEs by microalgae under REEs stress conditions. It establishes a theoretical foundation for the efficient microalgae lipid production and REEs recovery from wastewater or waste residues containing REEs.
Collapse
Affiliation(s)
- Xueting Song
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Bing-Feng Liu
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Fanying Kong
- School of Water Conservancy and Civil Engineering, Northeast Agricultural University, Harbin 150030, China
| | - Qingqing Song
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Nan-Qi Ren
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Hong-Yu Ren
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China.
| |
Collapse
|
7
|
Zhang MY, Xu XR, Zhao RP, Huang C, Song YD, Zhao ZT, Zhao YB, Ren XJ, Zhao XH. Mechanism of enhanced microalgal biomass and lipid accumulation through symbiosis between a highly succinic acid-producing strain of Escherichia coli SUC and Aurantiochytrium sp. SW1. BIORESOURCE TECHNOLOGY 2024; 394:130232. [PMID: 38141881 DOI: 10.1016/j.biortech.2023.130232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Revised: 12/19/2023] [Accepted: 12/19/2023] [Indexed: 12/25/2023]
Abstract
Microalgae, known for rapid growth and lipid richness, hold potential in biofuels and high-value biomolecules. The symbiotic link with bacteria is crucial in large-scale open cultures. This study explores algal-bacterial interactions using a symbiotic model, evaluating acid-resistant Lactic acid bacteria (LAB), stress-resilient Bacillus subtilis and Bacillus licheniformis, and various Escherichia coli strains in the Aurantiochytrium sp. SW1 system. It was observed that E. coli SUC significantly enhanced the growth and lipid production of Aurantiochytrium sp. SW1 by increasing enzyme activity (NAD-IDH, NAD-ME, G6PDH) while maintaining sustained succinic acid release. Optimal co-culture conditions included temperature 28 °C, a 1:10 algae-to-bacteria ratio, and pH 8. Under these conditions, Aurantiochytrium sp. SW1 biomass increased 3.17-fold to 27.83 g/L, and total lipid content increased 2.63-fold to 4.87 g/L. These findings have implications for more efficient microalgal lipid production and large-scale cultivation.
Collapse
Affiliation(s)
- Mei-Yu Zhang
- International Cooperative Joint Laboratory for Marine Microbial Cell Factories, Colin Ratledge Center for Microbial Lipids, College of Agricultural Engineering and Food Science, Shandong University of Technology, China; Shandong (Zibo) Prefabricated Food Research Center, College of Agricultural Engineering and Food Science, Shandong University of Technology, Shandong, China
| | - Xin-Ru Xu
- International Cooperative Joint Laboratory for Marine Microbial Cell Factories, Colin Ratledge Center for Microbial Lipids, College of Agricultural Engineering and Food Science, Shandong University of Technology, China
| | - Ru-Ping Zhao
- International Cooperative Joint Laboratory for Marine Microbial Cell Factories, Colin Ratledge Center for Microbial Lipids, College of Agricultural Engineering and Food Science, Shandong University of Technology, China
| | - Chao Huang
- International Cooperative Joint Laboratory for Marine Microbial Cell Factories, Colin Ratledge Center for Microbial Lipids, College of Agricultural Engineering and Food Science, Shandong University of Technology, China
| | - Yuan-Da Song
- International Cooperative Joint Laboratory for Marine Microbial Cell Factories, Colin Ratledge Center for Microbial Lipids, College of Agricultural Engineering and Food Science, Shandong University of Technology, China
| | - Zi-Tong Zhao
- Shandong (Zibo) Prefabricated Food Research Center, College of Agricultural Engineering and Food Science, Shandong University of Technology, Shandong, China
| | - Yu-Bin Zhao
- Luzhou Bio-Chem Technology Limited, Linyi, China
| | - Xiao-Jie Ren
- International Cooperative Joint Laboratory for Marine Microbial Cell Factories, Colin Ratledge Center for Microbial Lipids, College of Agricultural Engineering and Food Science, Shandong University of Technology, China; Shandong (Zibo) Prefabricated Food Research Center, College of Agricultural Engineering and Food Science, Shandong University of Technology, Shandong, China.
| | - Xin-He Zhao
- International Cooperative Joint Laboratory for Marine Microbial Cell Factories, Colin Ratledge Center for Microbial Lipids, College of Agricultural Engineering and Food Science, Shandong University of Technology, China; Shandong (Zibo) Prefabricated Food Research Center, College of Agricultural Engineering and Food Science, Shandong University of Technology, Shandong, China; Shanli Health Food Technology Co., LTD, Shandong, China.
| |
Collapse
|
8
|
de Morais EG, Sampaio ICF, Gonzalez-Flo E, Ferrer I, Uggetti E, García J. Microalgae harvesting for wastewater treatment and resources recovery: A review. N Biotechnol 2023; 78:84-94. [PMID: 37820831 DOI: 10.1016/j.nbt.2023.10.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 09/21/2023] [Accepted: 10/07/2023] [Indexed: 10/13/2023]
Abstract
Microalgae-based wastewater treatment has been conceived to obtain reclaimed water and produce microalgal biomass for bio-based products and biofuels generation. However, microalgal biomass harvesting is challenging and expensive, hence one of the main bottlenecks for full-scale implementation. Finding an integrated approach that covers concepts of engineering, green chemistry and the application of microbial anabolism driven towards the harvesting processes, is mandatory for the widespread establishment of full-scale microalgae wastewater treatment plants. By using nature-based substances and applying concepts of chemical functionalization in already established harvesting methods, the costs of harvesting processes could be reduced while preventing microalgae biomass contamination. Moreover, microalgae produced during wastewater treatment have unique culture characteristics, such as the consortia, which are primarily composed of microalgae and bacteria, that should be accounted for prior to downstream processing. The aim of this review is to examine recent advances in microalgal biomass harvesting and recovery in wastewater treatment systems, considering the impact of consortia variability. The costs of available harvesting technologies, such as coagulation/flocculation, coupled to sedimentation and differential air flotation, are provided. Additionally, promising technologies are discussed, including autoflocculation, bioflocculation, new filtration materials, nanotechnology, microfluidic and magnetic methods.
Collapse
Affiliation(s)
- Etiele Greque de Morais
- GEMMA - Group of Environmental Engineering and Microbiology, Department of Civil and Environmental Engineering, Universitat Politècnica de Catalunya, BarcelonaTech, c/ Jordi Girona 1-3, Building D1, E-08034 Barcelona, Spain
| | - Igor Carvalho Fontes Sampaio
- CPID - Espírito Santo's Center for Research, Innovation and Development, Eliezer Batista hill, Jardim América, 29140-130 Cariacica, Espírito Santo, Brazil
| | - Eva Gonzalez-Flo
- GEMMA - Group of Environmental Engineering and Microbiology, Department of Civil and Environmental Engineering, Universitat Politècnica de Catalunya, BarcelonaTech, c/ Jordi Girona 1-3, Building D1, E-08034 Barcelona, Spain; GEMMA-Group of Environmental Engineering and Microbiology, Department of Civil and Environmental Engineering, Escola d'Enginyeria de Barcelona Est (EEBE), Universitat Politècnica de Catalunya-BarcelonaTech, Av. Eduard Maristany 16, Building C5.1, E-08019 Barcelona, Spain
| | - Ivet Ferrer
- GEMMA - Group of Environmental Engineering and Microbiology, Department of Civil and Environmental Engineering, Universitat Politècnica de Catalunya, BarcelonaTech, c/ Jordi Girona 1-3, Building D1, E-08034 Barcelona, Spain
| | - Enrica Uggetti
- GEMMA - Group of Environmental Engineering and Microbiology, Department of Civil and Environmental Engineering, Universitat Politècnica de Catalunya, BarcelonaTech, c/ Jordi Girona 1-3, Building D1, E-08034 Barcelona, Spain
| | - Joan García
- GEMMA - Group of Environmental Engineering and Microbiology, Department of Civil and Environmental Engineering, Universitat Politècnica de Catalunya, BarcelonaTech, c/ Jordi Girona 1-3, Building D1, E-08034 Barcelona, Spain.
| |
Collapse
|
9
|
Vo TKQ, Hoang QH, Ngo HH, Tran CS, Ninh TNN, Le SL, Nguyen AT, Pham TT, Nguyen TB, Lin C, Bui XT. Influence of salinity on microalgae-bacteria symbiosis treating shrimp farming wastewater. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 902:166111. [PMID: 37567299 DOI: 10.1016/j.scitotenv.2023.166111] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 08/02/2023] [Accepted: 08/05/2023] [Indexed: 08/13/2023]
Abstract
Shrimp farming has strongly developed in recent years, and became an important economic sector that helps create jobs and increase incomes for Vietnamese. However, the aquatic environment has also been greatly affected by the development due to the amount of wastewater discharged from shrimp farms. Among biological processes used for treating shrimp farming wastewater, the application of microalgae-bacteria co-culture is considered high potential due to its treatment and energy saving. Consequently, a photobioreactor operated with microalgae-bacteria co-culture was employed to treat shrimp farming wastewater. The salinity of wastewater and the operating condition (ratio of biomass retention time and hydraulic retention time, BRT/HRT) are the major factors affecting pollutant removal. Thus, this study investigated the effects of salinities of 0.5-20 ppt and BRT/HRT ratios of 1.5-16 on the removal performance. The results indicated that the nutrient removal was reduced when PBR operated under salinity over than 10 ppt and BRT/HRT over 5.5. Particularly, the nitrogen and phosphorus removal rates were achieved 6.56 ± 1.33 gN m-3 d-1 and 1.49 ± 0.59 gP m-3 d-1, and the removal rates decreased by 2-4 times under a salinity >10 ppt and 2-6 times under a BRT/HRT ratio >5.5. Whereas, organic matter treatment seems not to be affected when the removal rate was maintained at 28-34 gCOD m-3 d-1 under various conditions.
Collapse
Affiliation(s)
- Thi-Kim-Quyen Vo
- Faculty of Biology and Environment, Ho Chi Minh City University of Industry and Trade (HUIT), 140 Le Trong Tan street, Tay Thanh ward, Tan Phu district, Ho Chi Minh city, 700000, Viet Nam
| | - Quang-Huy Hoang
- Vietnam National University Ho Chi Minh (VNU-HCM), Linh Trung ward, Ho Chi Minh City 700000, Viet Nam; Key Laboratory of Advanced Waste Treatment Technology, Ho Chi Minh City University of Technology (HCMUT), 268 Ly Thuong Kiet Street, district 10, Ho Chi Minh City, Viet Nam
| | - Huu Hao Ngo
- School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, NWS 2007, Australia
| | - Cong-Sac Tran
- Vietnam National University Ho Chi Minh (VNU-HCM), Linh Trung ward, Ho Chi Minh City 700000, Viet Nam; Key Laboratory of Advanced Waste Treatment Technology, Ho Chi Minh City University of Technology (HCMUT), 268 Ly Thuong Kiet Street, district 10, Ho Chi Minh City, Viet Nam
| | - Tung N N Ninh
- Vietnam National University Ho Chi Minh (VNU-HCM), Linh Trung ward, Ho Chi Minh City 700000, Viet Nam; Key Laboratory of Advanced Waste Treatment Technology, Ho Chi Minh City University of Technology (HCMUT), 268 Ly Thuong Kiet Street, district 10, Ho Chi Minh City, Viet Nam
| | - Song-Lam Le
- Vietnam National University Ho Chi Minh (VNU-HCM), Linh Trung ward, Ho Chi Minh City 700000, Viet Nam; Key Laboratory of Advanced Waste Treatment Technology, Ho Chi Minh City University of Technology (HCMUT), 268 Ly Thuong Kiet Street, district 10, Ho Chi Minh City, Viet Nam
| | - An-Tan Nguyen
- Vietnam National University Ho Chi Minh (VNU-HCM), Linh Trung ward, Ho Chi Minh City 700000, Viet Nam; Key Laboratory of Advanced Waste Treatment Technology, Ho Chi Minh City University of Technology (HCMUT), 268 Ly Thuong Kiet Street, district 10, Ho Chi Minh City, Viet Nam
| | - Tan Thi Pham
- Vietnam National University Ho Chi Minh (VNU-HCM), Linh Trung ward, Ho Chi Minh City 700000, Viet Nam; Key Laboratory of Advanced Waste Treatment Technology, Ho Chi Minh City University of Technology (HCMUT), 268 Ly Thuong Kiet Street, district 10, Ho Chi Minh City, Viet Nam
| | - Thanh-Binh Nguyen
- Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung City, Taiwan
| | - Chitsan Lin
- Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung City, Taiwan
| | - Xuan-Thanh Bui
- Vietnam National University Ho Chi Minh (VNU-HCM), Linh Trung ward, Ho Chi Minh City 700000, Viet Nam; Key Laboratory of Advanced Waste Treatment Technology, Ho Chi Minh City University of Technology (HCMUT), 268 Ly Thuong Kiet Street, district 10, Ho Chi Minh City, Viet Nam.
| |
Collapse
|
10
|
Kiki C, Qin D, Liu L, Qiao M, Adyari B, Ifon BE, Adeoye ABE, Zhu L, Cui L, Sun Q. Unraveling the Role of Microalgae in Mitigating Antibiotics and Antibiotic Resistance Genes in Photogranules Treating Antibiotic Wastewater. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:16940-16952. [PMID: 37886817 DOI: 10.1021/acs.est.3c04798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/28/2023]
Abstract
Harnessing the potential of specific antibiotic-degrading microalgal strains to optimize microalgal-bacterial granular sludge (MBGS) technology for sustainable antibiotic wastewater treatment and antibiotic resistance genes (ARGs) mitigation is currently limited. This article examined the performance of bacterial granular sludge (BGS) and MBGS (of Haematococcus pluvialis, an antibiotic-degrading microalga) systems in terms of stability, nutrient and antibiotic removal, and fate of ARGs and mobile genetic elements (MGEs) under multiclass antibiotic loads. The systems exhibited excellent performance under none and 50 μg/L mixed antibiotics and a decrease in performance at a higher concentration. The MBGS showed superior potential, higher nutrient removal, 53.9 mg/L/day higher chemical oxygen demand (COD) removal, and 5.2-8.2% improved antibiotic removal, notably for refractory antibiotics, and the system removal capacity was predicted. Metagenomic analysis revealed lower levels of ARGs and MGEs in effluent and biomass of MBGS compared to the BGS bioreactor. Particle association niche and projection pursuit regression models indicated that microalgae in MBGS may limit gene transfers among biomass and effluent, impeding ARG dissemination. Moreover, a discrepancy was found in the bacterial antibiotic-degrading biomarkers of BGS and MBGS systems due to the microalgal effect on the microcommunity. Altogether, these findings deepened our understanding of the microalgae's value in the MBGS system for antibiotic remediation and ARG propagation control.
Collapse
Affiliation(s)
- Claude Kiki
- CAS Key Laboratory of Urban Pollutant Conversion, Fujian Key Laboratory of Watershed Ecology, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
- University of Chinese Academy of Sciences, Beijing 100043, China
- National Institute of Water, University of Abomey-Calavi, Cotonou 01 BP 526, Benin
| | - Dan Qin
- CAS Key Laboratory of Urban Pollutant Conversion, Fujian Key Laboratory of Watershed Ecology, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Lin Liu
- CAS Key Laboratory of Urban Pollutant Conversion, Fujian Key Laboratory of Watershed Ecology, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Min Qiao
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Bob Adyari
- CAS Key Laboratory of Urban Pollutant Conversion, Fujian Key Laboratory of Watershed Ecology, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
- University of Chinese Academy of Sciences, Beijing 100043, China
| | - Binessi Edouard Ifon
- CAS Key Laboratory of Urban Pollutant Conversion, Fujian Key Laboratory of Watershed Ecology, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
- University of Chinese Academy of Sciences, Beijing 100043, China
- National Institute of Water, University of Abomey-Calavi, Cotonou 01 BP 526, Benin
| | - Adenike B E Adeoye
- CAS Key Laboratory of Urban Pollutant Conversion, Fujian Key Laboratory of Watershed Ecology, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
- University of Chinese Academy of Sciences, Beijing 100043, China
| | - Longji Zhu
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Li Cui
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Qian Sun
- CAS Key Laboratory of Urban Pollutant Conversion, Fujian Key Laboratory of Watershed Ecology, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| |
Collapse
|
11
|
Jeon MS, Han SI, Ahn JW, Jung JH, Choi JS, Choi YE. Endophyte Bacillus tequilensis improves the growth of microalgae Haematococcus lacustris by regulating host cell metabolism. BIORESOURCE TECHNOLOGY 2023; 387:129546. [PMID: 37488011 DOI: 10.1016/j.biortech.2023.129546] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 07/21/2023] [Accepted: 07/21/2023] [Indexed: 07/26/2023]
Abstract
This study identified an endosymbiotic bacterium, Bacillus tequilensis, residing within the cells of the microalga Haematococcus lacustris through 16S rRNA analysis. To confirm the optimal interactive conditions between H. lacustris and B. tequilensis, the effects of different ratios of cells using H. lacustris of different growth stages were examined. Under optimized conditions, the cell density, dry weight, chlorophyll content, and astaxanthin content of H. lacustris increased significantly, and the fatty acid content improved 1.99-fold. Microscopy demonstrated the presence of bacteria within the H. lacustris cells. The interaction upregulated amino acid and nucleotide metabolism in H. lacustris. Interestingly, muramic and phenylacetic acids were found exclusively in H. lacustris cells in the presence of B. tequilensis. Furthermore, B. tequilensis delayed pigment degradation in H. lacustris. This study reveals the impact of the endosymbiont B. tequilensis on the metabolism of H. lacustris and offers new perspectives on the symbiotic relationship between them.
Collapse
Affiliation(s)
- Min Seo Jeon
- Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup 56212, Republic of Korea
| | - Sang-Il Han
- Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup 56212, Republic of Korea
| | - Joon-Woo Ahn
- Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup 56212, Republic of Korea
| | - Jong-Hyun Jung
- Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup 56212, Republic of Korea
| | - Jong-Soon Choi
- Division of Analytical Science, Korea Basic Science, Institute, Daejeon 34133, Republic of Korea
| | - Yoon-E Choi
- Division of Environmental Science & Ecological Engineering, Korea University, Seoul 02841, Republic of Korea.
| |
Collapse
|
12
|
Liu X, Ji B, Li A. Enhancing biolipid production and self-flocculation of Chlorella vulgaris by extracellular polymeric substances from granular sludge with CO 2 addition: Microscopic mechanism of microalgae-bacteria symbiosis. WATER RESEARCH 2023; 236:119960. [PMID: 37054610 DOI: 10.1016/j.watres.2023.119960] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Revised: 04/07/2023] [Accepted: 04/08/2023] [Indexed: 06/19/2023]
Abstract
Microalgae-bacteria symbiotic systems were known to have great potential for simultaneous water purification and resource recovery, among them, microalgae-bacteria biofilm/granules have attracted much attention due to its excellent effluent quality and convenient biomass recovery. However, the effect of bacteria with attached-growth mode on microalgae, which has more significance for bioresource utilization, has been historically ignored. Thus, this study attempted to explore the responses of C. vulgaris to extracellular polymeric substances (EPS) extracted from aerobic granular sludge (AGS), for enhancing the understanding of microscopic mechanism of attached microalgae-bacteria symbiosis. Results showed that the performance of C. vulgaris was effectively boosted with AGS-EPS treatment at 12-16 mg TOC/L, highest biomass production (0.32±0.01 g/L), lipid accumulation (44.33±5.69%) and flocculation ability (20.83±0.21%) were achieved. These phenotypes were promoted associated with bioactive microbial metabolites in AGS-EPS (N-acyl-homoserine lactones, humic acid and tryptophan). Furthermore, the addition of CO2 triggered carbon flow into the storage of lipids in C. vulgaris, and the synergistic effect of AGS-EPS and CO2 for improving microalgal flocculation ability was disclosed. Transcriptomic analysis further revealed up-regulation of synthesis pathways for fatty acid and triacylglycerol that was triggered by AGS-EPS. And within the context of CO2 addition, AGS-EPS substantially upregulated the expression of aromatic protein encoding genes, which further enhanced the self-flocculation of C. vulgaris. These findings provide novel insights into the microscopic mechanism of microalgae-bacteria symbiosis, and bring new enlightenment to wastewater valorization and carbon-neutral operation of wastewater treatment plants based on the symbiotic biofilm/biogranules system.
Collapse
Affiliation(s)
- Xiaolei Liu
- Key Laboratory of Water and Sediment Sciences of Ministry of Education/State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China
| | - Bin Ji
- Department of Water and Wastewater Engineering, Wuhan University of Science and Technology, Wuhan, 430065, China
| | - Anjie Li
- Key Laboratory of Water and Sediment Sciences of Ministry of Education/State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China.
| |
Collapse
|