1
|
Huang H, Han R, Huang PP, Qiao CY, Bian S, Xiao H, Ma L. Preparation and Performance Evaluation of a Zinc Oxide-Graphene Oxideloaded Chitosan-Based Thermosensitive Gel. J Microbiol Biotechnol 2024; 34:1229-1238. [PMID: 38755002 PMCID: PMC11239403 DOI: 10.4014/jmb.2402.02055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 04/05/2024] [Accepted: 04/09/2024] [Indexed: 05/18/2024]
Abstract
This study aimed to develop and assess a chitosan biomedical antibacterial gel ZincOxide-GrapheneOxide/Chitosan/β-Glycerophosphate (ZnO-GO/CS/β-GP) loaded with nano-zinc oxide (ZnO) and graphene oxide (GO), known for its potent antibacterial properties, biocompatibility, and sustained drug release. ZnO nanoparticles (ZnO-NPs) were modified and integrated with GO sheets to create 1% and 3% ZnO-GO/CS/β-GP thermo-sensitive hydrogels based on ZnO-GO to Chitosan (CS) mass ratio. Gelation time, pH, structural changes, and microscopic morphology were evaluated. The hydrogel's antibacterial efficacy against Porphyromonas gingivalis, biofilm biomass, and metabolic activity was examined alongside its impact (MC3T3-e1). The findings of this study revealed that both hydrogel formulations exhibited temperature sensitivity, maintaining a neutral pH. The ZnO-GO/CS/β-GP formulation effectively inhibited P. gingivalis bacterial activity and biofilm formation, with a 3% ZnO-GO/CS/β-GP antibacterial rate approaching 100%. MC3T3-e1 cells displayed good biocompatibility when cultured in the hydrogel extract.The ZnO-GO/CS/β-GP thermo-sensitive hydrogel demonstrates favorable physical and chemical properties, effectively preventing P. gingivalis biofilm formation. It exhibits promising biocompatibility, suggesting its potential as an adjuvant therapy for managing and preventing peri-implantitis, subject to further clinical investigations.
Collapse
Affiliation(s)
- Hao Huang
- Department of Prosthodontics, The Affiliated Hospital of Qingdao University, Qingdao 266003, P.R. China
- School of Stomatology, Qingdao University, Qingdao 266023, P.R. China
| | - Rui Han
- Department of Prosthodontics, The Affiliated Hospital of Qingdao University, Qingdao 266003, P.R. China
- School of Stomatology, Qingdao University, Qingdao 266023, P.R. China
| | - Ping-Ping Huang
- Department of Prosthodontics, The Affiliated Hospital of Qingdao University, Qingdao 266003, P.R. China
- School of Stomatology, Qingdao University, Qingdao 266023, P.R. China
| | - Chuan-Yue Qiao
- Department of Prosthodontics, The Affiliated Hospital of Qingdao University, Qingdao 266003, P.R. China
- School of Stomatology, Qingdao University, Qingdao 266023, P.R. China
| | - Shuang Bian
- Department of Prosthodontics, The Affiliated Hospital of Qingdao University, Qingdao 266003, P.R. China
- School of Stomatology, Qingdao University, Qingdao 266023, P.R. China
| | - Han Xiao
- Department of Prosthodontics, The Affiliated Hospital of Qingdao University, Qingdao 266003, P.R. China
- School of Stomatology, Qingdao University, Qingdao 266023, P.R. China
| | - Lei Ma
- Department of Prosthodontics, The Affiliated Hospital of Qingdao University, Qingdao 266003, P.R. China
- School of Stomatology, Qingdao University, Qingdao 266023, P.R. China
| |
Collapse
|
2
|
Das T, Das S, A BC. Fabrication of a Label-Free Immunosensor Using Surface-Engineered AuPt@GQD Core-Shell Nanocomposite for the Selective Detection of Trace Levels of Escherichia coli from Contaminated Food Samples. ACS Biomater Sci Eng 2024; 10:4018-4034. [PMID: 38816970 DOI: 10.1021/acsbiomaterials.4c00297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/01/2024]
Abstract
Fabrication of label-free immunosensors is highly necessitated due to their simplicity, cost-effectiveness, and robustness. Herein, we report the facile development of a label-free, direct, rapid, capacitive immunosensor for ultrasensitive and rapid recognition of trace levels of Escherichia coli from contaminated food samples. This was achieved using gold platinum core-shell nanoparticles loaded with graphene quantum dots (AuPt@GQDs) that were utilized as electrode modifiers. The incorporation of GQDs to the surface of AuPt core-shell nanoparticles was performed using the "greener" probe-sonication method. The electrochemical properties of AuPt@GQDs, determined using cyclic voltammetry and electrochemical impedance spectroscopy, suggested the optimized loading concentration of AuPt to be 0.05% in the core-shell nanocomposite to exhibit the highest current response. Furthermore, immobilization of anti-E. coli monoclonal antibodies (anti-E. coli mAb) onto the surface of modified electrodes was performed using amine coupling. The high specific binding of E. coli cells onto the surface of the immuno-electrode was measured as a direct function of change in transient capacitance with time that was measured at low and high frequencies. The resultant immunosensor (bovine serum albumin/anti-E. coli mAb/AuPt0.05@GQDs/FTO) demonstrated a detection range (5 to 4.5 × 103 cells/mL), with the detection limit as low as 1.5 × 102 cells/mL, and an excellent sensitivity ∼171,281.40 μF-1 mL cells-1 cm-2 without the use of any labels (R2-0.99). These findings were further verified using real sample analysis wherein the immuno-electrode demonstrated outstanding sensitivity, the highest noticed so far. More interestingly, the high resuability ∼48 weeks (RSD-5.92%) and excellent reproducibility in detection results (RSD ∼ 9.5%) testify its potential use in a clinical setting. The results reveal the usefulness of the surface-engineered AuPt@GQDs core-shell nanocomposite as an electrode modifier that can be used for the development of newer on-site monitoring devices to estimate trace levels of pathogens present as contaminants in food samples.
Collapse
Affiliation(s)
- Tushar Das
- Department of Chemistry, National Institute of Technology Patna, Bihar 800005, India
| | - Subrata Das
- Department of Chemistry, National Institute of Technology Patna, Bihar 800005, India
| | - Betty C A
- Chemistry Division, Bhabha Atomic Research Centre, Mumbai 400085, India
- Homi Bhabha National Institute, Mumbai 400085, India
| |
Collapse
|
3
|
Tabish TA, Zhu Y, Shukla S, Kadian S, Sangha GS, Lygate CA, Narayan RJ. Graphene nanocomposites for real-time electrochemical sensing of nitric oxide in biological systems. APPLIED PHYSICS REVIEWS 2023; 10:041310. [PMID: 38229764 PMCID: PMC7615530 DOI: 10.1063/5.0162640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/18/2024]
Abstract
Nitric oxide (NO) signaling plays many pivotal roles impacting almost every organ function in mammalian physiology, most notably in cardiovascular homeostasis, inflammation, and neurological regulation. Consequently, the ability to make real-time and continuous measurements of NO is a prerequisite research tool to understand fundamental biology in health and disease. Despite considerable success in the electrochemical sensing of NO, challenges remain to optimize rapid and highly sensitive detection, without interference from other species, in both cultured cells and in vivo. Achieving these goals depends on the choice of electrode material and the electrode surface modification, with graphene nanostructures recently reported to enhance the electrocatalytic detection of NO. Due to its single-atom thickness, high specific surface area, and highest electron mobility, graphene holds promise for electrochemical sensing of NO with unprecedented sensitivity and specificity even at sub-nanomolar concentrations. The non-covalent functionalization of graphene through supermolecular interactions, including π-π stacking and electrostatic interaction, facilitates the successful immobilization of other high electrolytic materials and heme biomolecules on graphene while maintaining the structural integrity and morphology of graphene sheets. Such nanocomposites have been optimized for the highly sensitive and specific detection of NO under physiologically relevant conditions. In this review, we examine the building blocks of these graphene-based electrochemical sensors, including the conjugation of different electrolytic materials and biomolecules on graphene, and sensing mechanisms, by reflecting on the recent developments in materials and engineering for real-time detection of NO in biological systems.
Collapse
Affiliation(s)
- Tanveer A. Tabish
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, British Heart Foundation (BHF) Centre of Research Excellence, University of Oxford, Oxford OX3 7BN, United Kingdom
| | - Yangzhi Zhu
- Terasaki Institute for Biomedical Innovation, Los Angeles, California 90064, USA
| | - Shubhangi Shukla
- Joint Department of Biomedical Engineering, University of North Carolina and North Carolina State University, Raleigh, North Carolina 27695-7907, USA
| | - Sachin Kadian
- Joint Department of Biomedical Engineering, University of North Carolina and North Carolina State University, Raleigh, North Carolina 27695-7907, USA
| | - Gurneet S. Sangha
- Fischell Department of Bioengineering, University of Maryland, 8278 Paint Branch Dr., College Park, Maryland 20742, USA
| | - Craig A. Lygate
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, British Heart Foundation (BHF) Centre of Research Excellence, University of Oxford, Oxford OX3 7BN, United Kingdom
| | - Roger J. Narayan
- Joint Department of Biomedical Engineering, University of North Carolina and North Carolina State University, Raleigh, North Carolina 27695-7907, USA
| |
Collapse
|
4
|
Cui X, Ruan Q, Zhuo X, Xia X, Hu J, Fu R, Li Y, Wang J, Xu H. Photothermal Nanomaterials: A Powerful Light-to-Heat Converter. Chem Rev 2023. [PMID: 37133878 DOI: 10.1021/acs.chemrev.3c00159] [Citation(s) in RCA: 184] [Impact Index Per Article: 184.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
All forms of energy follow the law of conservation of energy, by which they can be neither created nor destroyed. Light-to-heat conversion as a traditional yet constantly evolving means of converting light into thermal energy has been of enduring appeal to researchers and the public. With the continuous development of advanced nanotechnologies, a variety of photothermal nanomaterials have been endowed with excellent light harvesting and photothermal conversion capabilities for exploring fascinating and prospective applications. Herein we review the latest progresses on photothermal nanomaterials, with a focus on their underlying mechanisms as powerful light-to-heat converters. We present an extensive catalogue of nanostructured photothermal materials, including metallic/semiconductor structures, carbon materials, organic polymers, and two-dimensional materials. The proper material selection and rational structural design for improving the photothermal performance are then discussed. We also provide a representative overview of the latest techniques for probing photothermally generated heat at the nanoscale. We finally review the recent significant developments of photothermal applications and give a brief outlook on the current challenges and future directions of photothermal nanomaterials.
Collapse
Affiliation(s)
- Ximin Cui
- State Key Laboratory of Radio Frequency Heterogeneous Integration, College of Electronics and Information Engineering, Shenzhen University, Shenzhen 518060, China
| | - Qifeng Ruan
- Ministry of Industry and Information Technology Key Lab of Micro-Nano Optoelectronic Information System & Guangdong Provincial Key Laboratory of Semiconductor Optoelectronic Materials and Intelligent Photonic Systems, Harbin Institute of Technology, Shenzhen 518055, China
| | - Xiaolu Zhuo
- Guangdong Provincial Key Lab of Optoelectronic Materials and Chips, School of Science and Engineering, The Chinese University of Hong Kong (Shenzhen), Shenzhen 518172, China
| | - Xinyue Xia
- Department of Physics, The Chinese University of Hong Kong, Shatin, Hong Kong SAR 999077, China
| | - Jingtian Hu
- Department of Physics, The Chinese University of Hong Kong, Shatin, Hong Kong SAR 999077, China
| | - Runfang Fu
- Department of Physics, The Chinese University of Hong Kong, Shatin, Hong Kong SAR 999077, China
| | - Yang Li
- State Key Laboratory of Radio Frequency Heterogeneous Integration, College of Electronics and Information Engineering, Shenzhen University, Shenzhen 518060, China
| | - Jianfang Wang
- Department of Physics, The Chinese University of Hong Kong, Shatin, Hong Kong SAR 999077, China
| | - Hongxing Xu
- School of Physics and Technology and School of Microelectronics, Wuhan University, Wuhan 430072, Hubei, China
- Henan Academy of Sciences, Zhengzhou 450046, Henan, China
- Wuhan Institute of Quantum Technology, Wuhan 430205, Hubei, China
| |
Collapse
|
5
|
Hou S, Bai L, Lu D, Duan H. Interfacial Colloidal Self-Assembly for Functional Materials. Acc Chem Res 2023; 56:740-751. [PMID: 36920352 DOI: 10.1021/acs.accounts.2c00705] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023]
Abstract
ConspectusSelf-assembly bridges nanoscale and microscale colloidal particles into macroscale functional materials. In particular, self-assembly processes occurring at the liquid/liquid or solid/liquid/air interfaces hold great promise in constructing large-scale two- or three-dimensional (2D or 3D) architectures. Interaction of colloidal particles in the assemblies leads to emergent collective properties not found in individual building blocks, offering a much larger parameter space to tune the material properties. Interfacial self-assembly methods are rapid, cost-effective, scalable, and compatible with existing fabrication technologies, thus promoting widespread interest in a broad range of research fields.Surface chemistry of nanoparticles plays a predominant role in driving the self-assembly of nanoparticles at water/oil interfaces. Amphiphilic nanoparticles coated with mixed polymer brushes or mussel-inspired polydopamine were demonstrated to self-assemble into closely packed thin films, enabling diverse applications from electrochemical sensors and catalysis to surface-enhanced optical properties. Interfacial assemblies of amphiphilic gold nanoparticles were integrated with graphene paper to obtain flexible electrodes in a modular approach. The robust, biocompatible electrodes with exceptional electrocatalytic activities showed excellent sensitivity and reproducibility in biosensing. Recyclable catalysts were prepared by transferring monolayer assemblies of polydopamine-coated nanocatalysts to both hydrophilic and hydrophobic substrates. The immobilized catalysts were easily recovered and recycled without loss of catalytic activity. Plasmonic nanoparticles were self-assembled into a plasmonic substrate for surface-enhanced Raman scattering, metal-enhanced fluorescence, and modulated fluorescence resonance energy transfer (FRET). Strong Raman enhancement was accomplished by rationally directing the Raman probes to the electromagnetic hotspots. Optimal enhancement of fluorescence and FRET was realized by precisely controlling the spacing between the metal surface and the fluorophores and tuning the surface plasmon resonance wavelength of the self-assembled substrate to match the optical properties of the fluorescent dye.At liquid/solid interfaces, infiltration-assisted (IFAST) colloidal self-assembly introduces liquid infiltration in the substrate as a new factor to control the degree of order of the colloidal assemblies. The strong infiltration flow leads to the formation of amorphous colloidal arrays that display noniridescent structural colors. This method is compatible with a broad range of colloidal particle inks, and any solid substrate that is permeable to dispersing liquids but particle-excluding is suitable for IFAST colloidal assembly. Therefore, the IFAST technology offers rapid, scalable fabrication of structural color patterns of diverse colloidal particles with full-spectrum coverage and unprecedented flexibility. Metal-organic framework particles with either spherical or polyhedral morphology were used as ink particles in the Mayer rod coating on wettability patterned photopapers, leading to amorphous photonic structures with vapor-responsive colors. Anticounterfeiting labels have also been developed based on the complex optical features encoded in the photonic structures.Interfacial colloidal self-assembly at the water/oil interface and IFAST assembly at the solid/liquid/air interface have proven to be versatile fabrication platforms to produce functional materials with well-defined properties for diverse applications. These platform technologies are promising in the manufacturing of value-added functional materials.
Collapse
Affiliation(s)
- Shuai Hou
- Institute for Advanced Materials, School of Materials Science and Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, China
| | - Ling Bai
- School of Materials Science and Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013 China
| | - Derong Lu
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 70 Nanyang Drive, 637457 Singapore
| | - Hongwei Duan
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 70 Nanyang Drive, 637457 Singapore
| |
Collapse
|
6
|
Wang R, Liu X, Zhao Y, Qin J, Xu H, Dong L, Gao S, Zhong L. Novel electrochemical non-enzymatic glucose sensor based on 3D Au@Pt core–shell nanoparticles decorated graphene oxide/multi-walled carbon nanotubes composite. Microchem J 2022. [DOI: 10.1016/j.microc.2021.107061] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
7
|
Meng F, Aihaiti A, Li X, Zhang W, Qin Y, Zhu N, Zhang M. Functional graphene paper from smart building to sensor application. Biosens Bioelectron 2022; 203:114031. [DOI: 10.1016/j.bios.2022.114031] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Revised: 01/17/2022] [Accepted: 01/20/2022] [Indexed: 11/02/2022]
|
8
|
Urooj A, Rani M, Shah AA, Aslam S, Siddiqui R, Siddiqa A, Neffati R, Chandio AD. Morphological and optical investigation of 2D material-based ternary nanocomposite: Bi 2O 3/MgO/GO synthesized by a co-precipitation technique. RSC Adv 2022; 12:32986-32993. [DOI: 10.1039/d2ra04760h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 10/11/2022] [Indexed: 11/18/2022] Open
Abstract
A ternary oxide nanocomposite based on Bi2O3/MgO/GO was prepared using a co-precipitation method taking into consideration of preparing the material for photoconductive device applications.
Collapse
Affiliation(s)
- Ashwa Urooj
- Wet Chemistry Laboratory, Department of Metallurgical Engineering, NED University of Engineering and Technology, Karachi, 75270, Pakistan
| | - Malika Rani
- Wet Chemistry Laboratory, Department of Metallurgical Engineering, NED University of Engineering and Technology, Karachi, 75270, Pakistan
| | - Aqeel Ahmad Shah
- Department of Metallurgical Engineering, NED University of Engineering and Technology, 75270, Karachi, Pakistan
| | - Samina Aslam
- Department of Chemistry, The Women University Multan, 66000, Pakistan
| | - Rabia Siddiqui
- Wet Chemistry Laboratory, Department of Metallurgical Engineering, NED University of Engineering and Technology, Karachi, 75270, Pakistan
| | - Aisha Siddiqa
- Wet Chemistry Laboratory, Department of Metallurgical Engineering, NED University of Engineering and Technology, Karachi, 75270, Pakistan
| | - R. Neffati
- Department of Physics, King Khalid University, P. O. Box 9032, Abha 61413, Kingdom of Saudi Arabia
- Laboratoire de Physique de la Matière Condensée, Département de Physique, Faculté des Sciences de Tunis, Université Tunis El Manar, Campus Universitaire, 1060 Tunis, Tunisia
| | - Ali Dad Chandio
- Department of Metallurgical Engineering, NED University of Engineering and Technology, 75270, Karachi, Pakistan
| |
Collapse
|
9
|
Li L, Deng H, Zhao Z, Liu Z. Point-of-care testing of melamine via gas pressure readout using polythymine-coated Au@Pt nanoparticles through specific triple hydrogen-bonding recognition. Analyst 2021; 146:5898-5903. [PMID: 34570842 DOI: 10.1039/d1an01153g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The adsorption of single-stranded oligonucleotides (ssDNA) on gold nanoparticles (AuNPs) could stabilize AuNPs against aggregation even at high salt concentrations, and similar phenomena have also been observed on Au core/Pt shell nanoparticles (Au@PtNPs). Inspired by the knowledge that thymine can easily recognize melamine by forming triple H-bonds in aqueous medium, in this contribution, using polythymine-coated Au@PtNPs as the probe, we demonstrated that the responsive aggregation of polyT55 stabilized Au@PtNPs could occur and therefore result in the significant inhibition of the catalysed gas-generation reaction, the decomposition of H2O2 to H2O and O2 catalyzed by Au@PtNPs. Consequently, a pressure-based signaling strategy was developed for highly sensitive and specific melamine detection not only in laboratory but also in point-of-care (POC) settings, and the correlation between the pressure change (ΔP) signal and the melamine concentration was found to be linear from 0.025 to 10.0 μM with a limit of detection of 6.4 nM, providing a convenient new alternative and new train of thought for the specific detection of melamine.
Collapse
Affiliation(s)
- Ling Li
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry (Southwest University), Ministry of Education, College of Pharmaceutical Sciences, Southwest University, Chongqing 400716, China.
| | - Hanwen Deng
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry (Southwest University), Ministry of Education, College of Pharmaceutical Sciences, Southwest University, Chongqing 400716, China.
| | - Zhongshuai Zhao
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry (Southwest University), Ministry of Education, College of Pharmaceutical Sciences, Southwest University, Chongqing 400716, China.
| | - Zhongde Liu
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry (Southwest University), Ministry of Education, College of Pharmaceutical Sciences, Southwest University, Chongqing 400716, China.
| |
Collapse
|
10
|
Jiang M, Wang C, Zhang X, Cai C, Ma Z, Chen J, Xie T, Huang X, Chen D. A cellular nitric oxide sensor based on porous hollow fiber with flow-through configuration. Biosens Bioelectron 2021; 191:113442. [PMID: 34157599 DOI: 10.1016/j.bios.2021.113442] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Revised: 05/29/2021] [Accepted: 06/13/2021] [Indexed: 11/15/2022]
Abstract
Nitric oxide plays important transmission and regulation roles in the human body, but its in-vitro concentration is extremely low with a short half-life. In this work, we developed a three-dimensional 'flow-through' configuration based on polysulfone hollow fiber (PHF) for efficient detection of cell released NO. The PHF served as the substrate for cell culture as well as the base layer of the working electrode. The carbon nanotubes-gold nanoparticles (CNT-AuNPs) composites uniformly wrapped around the PHF as the sensing layer. The CNT provided a large specific surface area, which allowed uniform distribution and high loading of AuNPs, thus enhancing the electrocatalytic activity synergistically. Compared with the conventional flow-by configuration, such configuration resulted in a higher surface area per unit volume and enhanced NO molecule capture efficiency. The CNT-AuNPs PHF sensor showed a low detection limit (91 nM), high stability, selectivity, and biocompatibility. We utilized it for real-time in-situ detection of NO released by human lung cancer cell H1299 under drug stimulation. Furthermore, owing to the unique PHF structure, we performed long-term monitoring of NO release under the treatment of Lipopolysaccharide, Nitroglycerin and Aminoguanidine, which helps to understand the kinetic process of cellular drug response.
Collapse
Affiliation(s)
- Min Jiang
- College of Pharmacy, Hangzhou Normal University, China
| | | | - Xinran Zhang
- College of Pharmacy, Hangzhou Normal University, China
| | - Chengsong Cai
- College of Pharmacy, Hangzhou Normal University, China
| | - Zhen Ma
- College of Pharmacy, Hangzhou Normal University, China; VivaChek Biotech (Hangzhou) Co., Ltd, China
| | - Jianxiang Chen
- College of Pharmacy, Hangzhou Normal University, China; Key Laboratory of Elemene Class Anti-Cancer Medicines, Hangzhou Normal University, China
| | - Tian Xie
- College of Pharmacy, Hangzhou Normal University, China; Key Laboratory of Elemene Class Anti-Cancer Medicines, Hangzhou Normal University, China.
| | - Xiaojun Huang
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, China
| | - Dajing Chen
- College of Pharmacy, Hangzhou Normal University, China; Key Laboratory of Elemene Class Anti-Cancer Medicines, Hangzhou Normal University, China.
| |
Collapse
|
11
|
Almeida B, Rogers KE, Nag OK, Delehanty JB. Sensing Nitric Oxide in Cells: Historical Technologies and Future Outlook. ACS Sens 2021; 6:1695-1703. [PMID: 33871990 DOI: 10.1021/acssensors.1c00051] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Nitric oxide (NO) is a critical cell signaling molecule with important roles in both normal cellular physiology and pathology. Over the past 20 years, multiple sensing modalities have been developed for the intracellular synthesis (endogenous) and release (exogenous) of NO. In this review, we survey the historical progression of NO sensing platforms, highlight the current state of the art, and offer a forward-looking view of how we expect the field of NO sensing to develop in the context of recent advances in bio-nanotechnology and nanoscale cellular biosensors.
Collapse
Affiliation(s)
- Bethany Almeida
- American Society for Engineering Education, Washington, D.C. 20036, United States
- Center for Bio/Molecular Science and Engineering, Code 6900, U.S. Naval Research Laboratory, Washington, D.C. 20375, United States
| | - Katherine E. Rogers
- Center for Bio/Molecular Science and Engineering, Code 6900, U.S. Naval Research Laboratory, Washington, D.C. 20375, United States
- Fischell Department of Bioengineering, University of Maryland, 2330 Kim Engineering Building, College Park, Maryland 20742, United States
| | - Okhil K. Nag
- Center for Bio/Molecular Science and Engineering, Code 6900, U.S. Naval Research Laboratory, Washington, D.C. 20375, United States
| | - James B. Delehanty
- Center for Bio/Molecular Science and Engineering, Code 6900, U.S. Naval Research Laboratory, Washington, D.C. 20375, United States
| |
Collapse
|
12
|
Wu Y, Liu C, Liu X, Zhu C, Dang X, Hu S, Zheng D. Amperometric Biomedical Sensor for the Determination of Nitric Oxide Using an Electrochemically Activated and Modified Pencil Graphite Electrode. ANAL LETT 2021. [DOI: 10.1080/00032719.2021.1877297] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Ying Wu
- College of Biomedical Engineering, South-Central University for Nationalities, Wuhan, China
- The First Hospital of Wuhan City, Wuhan, China
| | - Chao Liu
- College of Biomedical Engineering, South-Central University for Nationalities, Wuhan, China
- Key Laboratory of Brain Cognitive Science (South-Central University for Nationalities), State Ethnic Affairs Commission, Wuhan, China
- Hubei Key Laboratory of Medical Information Analysis and Tumor Diagnosis and Treatment, Wuhan, China
| | - Xiaojun Liu
- College of Biomedical Engineering, South-Central University for Nationalities, Wuhan, China
- Key Laboratory of Brain Cognitive Science (South-Central University for Nationalities), State Ethnic Affairs Commission, Wuhan, China
- Hubei Key Laboratory of Medical Information Analysis and Tumor Diagnosis and Treatment, Wuhan, China
| | - Chunnan Zhu
- College of Biomedical Engineering, South-Central University for Nationalities, Wuhan, China
- Key Laboratory of Brain Cognitive Science (South-Central University for Nationalities), State Ethnic Affairs Commission, Wuhan, China
- Hubei Key Laboratory of Medical Information Analysis and Tumor Diagnosis and Treatment, Wuhan, China
| | - Xueping Dang
- Hubei Key Laboratory of Medical Information Analysis and Tumor Diagnosis and Treatment, Wuhan, China
| | - Shengshui Hu
- College of Chemistry and Molecule Science, Wuhan University, Wuhan, China
| | - Dongyun Zheng
- College of Biomedical Engineering, South-Central University for Nationalities, Wuhan, China
- Key Laboratory of Brain Cognitive Science (South-Central University for Nationalities), State Ethnic Affairs Commission, Wuhan, China
- Hubei Key Laboratory of Medical Information Analysis and Tumor Diagnosis and Treatment, Wuhan, China
- College of Chemistry and Molecule Science, Wuhan University, Wuhan, China
| |
Collapse
|
13
|
Ge L, Wu J, Wang C, Zhang F, Liu Z. Engineering artificial switchable nanochannels for selective monitoring of nitric oxide release from living cells. Biosens Bioelectron 2020; 169:112606. [DOI: 10.1016/j.bios.2020.112606] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 08/22/2020] [Accepted: 09/07/2020] [Indexed: 12/20/2022]
|
14
|
Aksoy M, Kıranşan KD. The Construction and Testing of an Amperometric Biosensor for Oxidized Glutathione with Glutathione Reductase Immobilized on Reduced Graphene Oxide Paper Modified with Cobalt Sulphur. ChemistrySelect 2020. [DOI: 10.1002/slct.202003552] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Mine Aksoy
- Atatürk University Faculty of Science Department of Chemistry Erzurum Turkey
| | | |
Collapse
|
15
|
Jiang H, Rao X, Li L, Liu Z. A gas pressure and colorimetric signal dual-mode strategy for sensitive detection of spermine using ssDNA-coated Au@Pt nanoparticles as the probe. Analyst 2020; 145:7673-7679. [PMID: 32970056 DOI: 10.1039/d0an01473g] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The naturally occurring spermine (Spm), as one of the many cationic polyamines, plays a key role in biological processes and is involved in a variety of diseases. The very similar structures among biogenic polyamines present a major challenge to achieve discriminative testing among them. In this contribution, using arbitrary ssDNA-coated Au@PtNPs as the probe, we demonstrated that a dual-mode strategy via a gas pressure and colorimetric signal readout can be used for the sensitive and specific detection of Spm, due to the target-responsive aggregation of the Au@PtNPs leading to the inhibition of the catalyzed gas-generation reaction and the colorimetric change of the Au@PtNP solution. The proposed pressure-based signaling strategy has a detection limit of 9.6 nM, and can be used not only in the laboratory but also in the point-of-care setting. Meanwhile, the colorimetric assay displays the advantage of being easily discerned with the naked eye. Compared with the traditional methods of chromatography and capillary electrophoresis combined with chemical derivatization, the strategy described here would provide a convenient new alternative for the specific detection of Spm in biological samples.
Collapse
Affiliation(s)
- Huan Jiang
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry (Southwest University), Ministry of Education, College of Pharmaceutical Sciences, Southwest University, Chongqing 400716, China.
| | | | | | | |
Collapse
|
16
|
Vidanapathirana AK, Psaltis PJ, Bursill CA, Abell AD, Nicholls SJ. Cardiovascular bioimaging of nitric oxide: Achievements, challenges, and the future. Med Res Rev 2020; 41:435-463. [PMID: 33075148 DOI: 10.1002/med.21736] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 08/03/2020] [Accepted: 08/24/2020] [Indexed: 12/17/2022]
Abstract
Nitric oxide (NO) is a ubiquitous, volatile, cellular signaling molecule that operates across a wide physiological concentration range (pM-µM) in different tissues. It is a highly diffusible messenger and intermediate in various metabolic pathways. NO plays a pivotal role in maintaining optimum cardiovascular function, particularly by regulating vascular tone and blood flow. This review highlights the need for accurate, real-time bioimaging of NO in clinical diagnostic, therapeutic, monitoring, and theranostic applications within the cardiovascular system. We summarize electrochemical, optical, and nanoscale sensors that allow measurement and imaging of NO, both directly and indirectly via surrogate measurements. The physical properties of NO render it difficult to accurately measure in tissues using direct methods. There are also significant limitations associated with the NO metabolites used as surrogates to indirectly estimate NO levels. All these factors added to significant variability in the measurement of NO using available methodology have led to a lack of sensors and imaging techniques of clinical applicability in relevant vascular pathologies such as atherosclerosis and ischemic heart disease. Challenges in applying current methods to biomedical and clinical translational research, including the wide physiological range of NO and limitations due to the characteristics and toxicity of the sensors are discussed, as are potential targets and modifications for future studies. The development of biocompatible nanoscale sensors for use in combination with existing clinical imaging modalities provides a feasible opportunity for bioimaging NO within the cardiovascular system.
Collapse
Affiliation(s)
- Achini K Vidanapathirana
- Vascular Research Centre, Lifelong Health Theme, South Australian Health and Medical Research Institute (SAHMRI), Adelaide, South Australia, Australia.,Australian Research Council (ARC), Centre of Excellence for Nanoscale BioPhotonics (CNBP), Adelaide, Australia.,Institute for Photonics and Advanced Sensing (IPAS), University of Adelaide, Adelaide, South Australia, Australia.,Adelaide Medical School, University of Adelaide, Adelaide, South Australia, Australia
| | - Peter J Psaltis
- Vascular Research Centre, Lifelong Health Theme, South Australian Health and Medical Research Institute (SAHMRI), Adelaide, South Australia, Australia.,Australian Research Council (ARC), Centre of Excellence for Nanoscale BioPhotonics (CNBP), Adelaide, Australia.,Adelaide Medical School, University of Adelaide, Adelaide, South Australia, Australia
| | - Christina A Bursill
- Vascular Research Centre, Lifelong Health Theme, South Australian Health and Medical Research Institute (SAHMRI), Adelaide, South Australia, Australia.,Australian Research Council (ARC), Centre of Excellence for Nanoscale BioPhotonics (CNBP), Adelaide, Australia.,Adelaide Medical School, University of Adelaide, Adelaide, South Australia, Australia
| | - Andrew D Abell
- Australian Research Council (ARC), Centre of Excellence for Nanoscale BioPhotonics (CNBP), Adelaide, Australia.,Institute for Photonics and Advanced Sensing (IPAS), University of Adelaide, Adelaide, South Australia, Australia.,Department of Chemistry, University of Adelaide, Adelaide, South Australia, Australia
| | - Stephen J Nicholls
- Australian Research Council (ARC), Centre of Excellence for Nanoscale BioPhotonics (CNBP), Adelaide, Australia.,Monash Cardiovascular Research Centre, Monash University, Clayton, Victoria, Australia
| |
Collapse
|
17
|
He X, White DL, Kapralov AA, Kagan VE, Star A. Photoluminescence Response in Carbon Nanomaterials to Enzymatic Degradation. Anal Chem 2020; 92:12880-12890. [PMID: 32803946 DOI: 10.1021/acs.analchem.0c01380] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Myeloperoxidase (MPO), a key enzyme released by neutrophils during inflammation, has been shown to catalyze the biodegradation of carbon nanomaterials. In this work, we perform photoluminescence studies on the MPO-catalyzed oxidation of graphene oxide (GO) and surfactant-coated pristine (6,5) single-walled carbon nanotubes (SWCNTs). The enzymatic degradation mechanism involves the introduction of defects, which promotes further degradation. Interestingly, the photoluminescence responses of GO and SWCNTs to enzymatic degradation are counterposed. Although the near-infrared (NIR) fluorescence intensity of SWCNTs at 998 nm is either unchanged or decreases depending on the surfactant identity, the blue fluorescence intensity of GO at 440 nm increases with the progression of oxidation by MPO/H2O2/Cl- due to the formation of graphene quantum dots (GQDs). Turn-on GO fluorescence is also observed with neutrophil-like HL-60 cells, indicative of potential applications of GO for imaging MPO activity in live cells. Based on these results, we further construct two ratiometric sensors using SWCNT/GO nanoscrolls by incorporating surfactant-wrapped pristine SWCNTs as the internal either turn-off (with sodium cholate (SC)) or reference (with carboxymethylcellulose (CMC)) sensor. The ratiometric approach enables the sensors to be more stable to external noise by providing response invariant to the absolute intensity emitted from the sensors. Our sensors show linear response to MPO oxidative machinery and hold the promise to be used as self-calibrating carbon nanomaterial-based MPO activity indicators.
Collapse
Affiliation(s)
- Xiaoyun He
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - David L White
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Alexandr A Kapralov
- Department of Environmental and Occupational Health, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
| | - Valerian E Kagan
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States.,Department of Environmental and Occupational Health, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States.,Institute for Regenerative Medicine, Sechenov First Moscow Medical State University, Moscow 119991, Russia
| | - Alexander Star
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States.,Department of Bioengineering, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
| |
Collapse
|
18
|
Reddy KK, Bandal H, Satyanarayana M, Goud KY, Gobi KV, Jayaramudu T, Amalraj J, Kim H. Recent Trends in Electrochemical Sensors for Vital Biomedical Markers Using Hybrid Nanostructured Materials. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2020; 7:1902980. [PMID: 32670744 PMCID: PMC7341105 DOI: 10.1002/advs.201902980] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Revised: 03/12/2020] [Indexed: 05/09/2023]
Abstract
This work provides a succinct insight into the recent developments in electrochemical quantification of vital biomedical markers using hybrid metallic composite nanostructures. After a brief introduction to the biomarkers, five types of crucial biomarkers, which require timely and periodical monitoring, are shortlisted, namely, cancer, cardiac, inflammatory, diabetic and renal biomarkers. This review emphasizes the usage and advantages of hybrid nanostructured materials as the recognition matrices toward the detection of vital biomarkers. Different transduction methods (fluorescence, electrophoresis, chemiluminescence, electrochemiluminescence, surface plasmon resonance, surface-enhanced Raman spectroscopy) reported for the biomarkers are discussed comprehensively to present an overview of the current research works. Recent advancements in the electrochemical (amperometric, voltammetric, and impedimetric) sensor systems constructed with metal nanoparticle-derived hybrid composite nanostructures toward the selective detection of chosen vital biomarkers are specifically analyzed. It describes the challenges involved and the strategies reported for the development of selective, sensitive, and disposable electrochemical biosensors with the details of fabrication, functionalization, and applications of hybrid metallic composite nanostructures.
Collapse
Affiliation(s)
- K. Koteshwara Reddy
- Smart Living Innovation Technology CentreDepartment of Energy Science and TechnologyMyongji UniversityYonginGyeonggi‐do17058Republic of Korea
- Laboratory of Materials ScienceInstituto de Química de Recursos NaturalesUniversidad de TalcaP.O. Box 747Talca3460000Chile
| | - Harshad Bandal
- Smart Living Innovation Technology CentreDepartment of Energy Science and TechnologyMyongji UniversityYonginGyeonggi‐do17058Republic of Korea
| | - Moru Satyanarayana
- Department of ChemistryNational Institute of Technology WarangalWarangalTelangana506004India
| | - Kotagiri Yugender Goud
- Department of ChemistryNational Institute of Technology WarangalWarangalTelangana506004India
| | | | - Tippabattini Jayaramudu
- Laboratory of Materials ScienceInstituto de Química de Recursos NaturalesUniversidad de TalcaP.O. Box 747Talca3460000Chile
| | - John Amalraj
- Laboratory of Materials ScienceInstituto de Química de Recursos NaturalesUniversidad de TalcaP.O. Box 747Talca3460000Chile
| | - Hern Kim
- Smart Living Innovation Technology CentreDepartment of Energy Science and TechnologyMyongji UniversityYonginGyeonggi‐do17058Republic of Korea
| |
Collapse
|
19
|
Cheng H, Weng W, Xie H, Liu J, Luo G, Huang S, Sun W, Li G. Au-Pt@Biomass porous carbon composite modified electrode for sensitive electrochemical detection of baicalein. Microchem J 2020. [DOI: 10.1016/j.microc.2020.104602] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
20
|
Manivasagam V, Popat KC. In Vitro Investigation of Hemocompatibility of Hydrothermally Treated Titanium and Titanium Alloy Surfaces. ACS OMEGA 2020; 5:8108-8120. [PMID: 32309720 PMCID: PMC7161035 DOI: 10.1021/acsomega.0c00281] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Accepted: 03/25/2020] [Indexed: 06/01/2023]
Abstract
For decades, titanium and its alloys have been established as a biocompatible material for cardiovascular medical devices such as heart valves, stents, vascular grafts, catheters, etc. However, thrombosis is one of the reasons for implant failure, where blood clot forms on the implant surface, thus obstructing the flow of the blood and that leads to some serious complications. Various surface modification techniques such as heparin modification, albumin coating, surface anodization, plasma etching, and hydrothermal treatments have been explored to improve the hemocompatibility of titanium-based materials. However, there are several limitations related to the robustness of the surfaces and long-term efficacy in vivo. In this study, titanium and its alloy Ti-6Al-4V were hydrothermally treated to form nanostructured surfaces with the aim to enhance their hemocompatibility. These modified surfaces were characterized for their wettability, surface morphology, surface chemistry, and crystallinity. The hemocompatibility of these surfaces was characterized by evaluating blood plasma protein adsorption, platelet adhesion and activation, platelet-leukocyte complex formation, and whole blood clotting. The results indicate lower fibrinogen adsorption, cell adhesion, platelet activation, and whole blood clotting on hydrothermally treated surfaces. Thus, these surfaces may be a promising approach to prevent thrombosis for several titanium blood-contacting medical devices.
Collapse
Affiliation(s)
- Vignesh
K. Manivasagam
- Department
of Mechanical Engineering, Colorado State
University, Fort Collins, Colorado 80523, United States
| | - Ketul C. Popat
- Department
of Mechanical Engineering, Colorado State
University, Fort Collins, Colorado 80523, United States
- School
of Biomedical Engineering, Colorado State
University, Fort Collins, Colorado 80523, United States
- School
of Advanced Materials Discovery, Colorado
State University, Fort Collins, Colorado 80523, United States
| |
Collapse
|
21
|
Yao Y, Lan L, Liu X, Ying Y, Ping J. Spontaneous growth and regulation of noble metal nanoparticles on flexible biomimetic MXene paper for bioelectronics. Biosens Bioelectron 2020; 148:111799. [DOI: 10.1016/j.bios.2019.111799] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Revised: 10/09/2019] [Accepted: 10/18/2019] [Indexed: 10/25/2022]
|
22
|
Paper-Based Flexible Electrode Using Chemically-Modified Graphene and Functionalized Multiwalled Carbon Nanotube Composites for Electrophysiological Signal Sensing. INFORMATION 2019. [DOI: 10.3390/info10100325] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Flexible paper-based physiological sensor electrodes were developed using chemically-modified graphene (CG) and carboxylic-functionalized multiwalled carbon nanotube composites (f@MWCNTs). A solvothermal process with additional treatment was conducted to synthesize CG and f@MWCNTs to make CG-f@MWCNT composites. The composite was sonicated in an appropriate solvent to make a uniform suspension, and then it was drop cast on a nylon membrane in a vacuum filter. A number of batches (0%~35% f@MWCNTs) were prepared to investigate the performance of the physical characteristics. The 25% f@MWCNT-loaded composite showed the best adhesion on the paper substrate. The surface topography and chemical bonding of the proposed CG-f@MWCNT electrodes were characterized by scanning electron microscopy (SEM) and Raman spectroscopy, respectively. The average sheet resistance of the 25% CG-f@MWCNT electrode was determined to be 75 Ω/□, and it showed a skin contact impedance of 45.12 kΩ at 100 Hz. Electrocardiogram (ECG) signals were recorded from the chest and fingertips of healthy adults using the proposed electrodes. The CG-f@MWCNT electrodes demonstrated comfortability and a high sensitivity for electrocardiogram signal detection.
Collapse
|
23
|
Mohammadniaei M, Nguyen HV, Tieu MV, Lee MH. 2D Materials in Development of Electrochemical Point-of-Care Cancer Screening Devices. MICROMACHINES 2019; 10:E662. [PMID: 31575012 PMCID: PMC6843145 DOI: 10.3390/mi10100662] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Revised: 09/28/2019] [Accepted: 09/29/2019] [Indexed: 02/07/2023]
Abstract
Effective cancer treatment requires early detection and monitoring the development progress in a simple and affordable manner. Point-of care (POC) screening can provide a portable and inexpensive tool for the end-users to conveniently operate test and screen their health conditions without the necessity of special skills. Electrochemical methods hold great potential for clinical analysis of variety of chemicals and substances as well as cancer biomarkers due to their low cost, high sensitivity, multiplex detection ability, and miniaturization aptitude. Advances in two-dimensional (2D) material-based electrochemical biosensors/sensors are accelerating the performance of conventional devices toward more practical approaches. Here, recent trends in the development of 2D material-based electrochemical biosensors/sensors, as the next generation of POC cancer screening tools, are summarized. Three cancer biomarker categories, including proteins, nucleic acids, and some small molecules, will be considered. Various 2D materials will be introduced and their biomedical applications and electrochemical properties will be given. The role of 2D materials in improving the performance of electrochemical sensing mechanisms as well as the pros and cons of current sensors as the prospective devices for POC screening will be emphasized. Finally, the future scopes of implementing 2D materials in electrochemical POC cancer diagnostics for the clinical translation will be discussed.
Collapse
Affiliation(s)
- Mohsen Mohammadniaei
- School of Integrative Engineering, Chung-Ang University, Heukseok-dong, Dongjak-gu, Seoul 06910, Korea.
| | - Huynh Vu Nguyen
- School of Integrative Engineering, Chung-Ang University, Heukseok-dong, Dongjak-gu, Seoul 06910, Korea.
| | - My Van Tieu
- School of Integrative Engineering, Chung-Ang University, Heukseok-dong, Dongjak-gu, Seoul 06910, Korea.
| | - Min-Ho Lee
- School of Integrative Engineering, Chung-Ang University, Heukseok-dong, Dongjak-gu, Seoul 06910, Korea.
| |
Collapse
|
24
|
Li Y, He R, Niu Y, Li F. Paper-Based Electrochemical Biosensors for Point-of-Care Testing of Neurotransmitters. JOURNAL OF ANALYSIS AND TESTING 2019. [DOI: 10.1007/s41664-019-00085-0] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
25
|
Xu M, Obodo D, Yadavalli VK. The design, fabrication, and applications of flexible biosensing devices. Biosens Bioelectron 2019; 124-125:96-114. [PMID: 30343162 PMCID: PMC6310145 DOI: 10.1016/j.bios.2018.10.019] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Revised: 09/29/2018] [Accepted: 10/09/2018] [Indexed: 12/13/2022]
Abstract
Flexible biosensors form part of a rapidly growing research field that take advantage of a multidisciplinary approach involving materials, fabrication and design strategies to be able to function at biological interfaces that may be soft, intrinsically curvy, irregular, or elastic. Numerous exciting advancements are being proposed and developed each year towards applications in healthcare, fundamental biomedical research, food safety and environmental monitoring. In order to place these developments in perspective, this review is intended to present an overview on field of flexible biosensor development. We endeavor to show how this subset of the broader field of flexible and wearable devices presents unique characteristics inherent in their design. Initially, a discussion on the structure of flexible biosensors is presented to address the critical issues specific to their design. We then summarize the different materials as substrates that can resist mechanical deformation while retaining their function of the bioreceptors and active elements. Several examples of flexible biosensors are presented based on the different environments in which they may be deployed or on the basis of targeted biological analytes. Challenges and future perspectives pertinent to the current and future stages of development are presented. Through these summaries and discussion, this review is expected to provide insights towards a systematic and fundamental understanding for the fabrication and utilization of flexible biosensors, as well as inspire and improve designs for smart and effective devices in the future.
Collapse
Affiliation(s)
- Meng Xu
- Department of Chemical and Life Science Engineering, Virginia Commonwealth University, 601 W Main Street, Richmond, VA 23284, USA
| | - Dora Obodo
- Department of Chemical and Life Science Engineering, Virginia Commonwealth University, 601 W Main Street, Richmond, VA 23284, USA
| | - Vamsi K Yadavalli
- Department of Chemical and Life Science Engineering, Virginia Commonwealth University, 601 W Main Street, Richmond, VA 23284, USA.
| |
Collapse
|
26
|
He B, Yan S. Voltammetric kanamycin aptasensor based on the use of thionine incorporated into Au@Pt core-shell nanoparticles. Mikrochim Acta 2019; 186:77. [PMID: 30627864 DOI: 10.1007/s00604-018-3188-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Accepted: 12/14/2018] [Indexed: 01/06/2023]
Abstract
A signal-on aptasensor is described for the voltammetric determination of kanamycin (KANA). Au@Pt core-shell nanoparticles with large surface and good electrical conductivity were synthetized and act as both a conductive material and as the carrier for complementary strands (CS2) and thionine (TH). In the presence of KANA, the electrochemical response of TH changes due to hybridization between CS1 immobilized on the electrode and the Au@Pt-CS2/TH system. The peak current increases linearly with the logarithm of the KANA concentration in the range from 1 pM to 1 μM, and the limit of detection is 0.16 pM. The sensor was characterized in terms of selectivity, reproducibility and stability, and satisfactory results were obtained. It was also utilized for the determination of KANA in (spiked) chicken samples. The recoveries (95.8-103.2%) demonstrate the potential of the method for KANA detection in real samples. Graphical abstract A signal-on aptasensor for kanamycin (KANA) was developed by using Au@Pt core-shell nanoparticles as nanocarrier for probe aptamer and as a sensing probe.
Collapse
Affiliation(s)
- Baoshan He
- School of Food Science and Technology, Henan Key Laboratory of Cereal and Oil Food Safety Inspection and Control, Zhengzhou High & New Technology Industries Development Zone, Henan University of Technology, Lianhua Road 100#, Zhengzhou, 450001, Henan Province, People's Republic of China.
| | - Sasa Yan
- School of Food Science and Technology, Henan Key Laboratory of Cereal and Oil Food Safety Inspection and Control, Zhengzhou High & New Technology Industries Development Zone, Henan University of Technology, Lianhua Road 100#, Zhengzhou, 450001, Henan Province, People's Republic of China
| |
Collapse
|
27
|
Piperno A, Scala A, Mazzaglia A, Neri G, Pennisi R, Sciortino MT, Grassi G. Cellular Signaling Pathways Activated by Functional Graphene Nanomaterials. Int J Mol Sci 2018; 19:E3365. [PMID: 30373263 PMCID: PMC6274994 DOI: 10.3390/ijms19113365] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Revised: 10/11/2018] [Accepted: 10/23/2018] [Indexed: 12/12/2022] Open
Abstract
The paper reviews the network of cellular signaling pathways activated by Functional Graphene Nanomaterials (FGN) designed as a platform for multi-targeted therapy or scaffold in tissue engineering. Cells communicate with each other through a molecular device called signalosome. It is a transient co-cluster of signal transducers and transmembrane receptors activated following the binding of transmembrane receptors to extracellular signals. Signalosomes are thus efficient and sensitive signal-responding devices that amplify incoming signals and convert them into robust responses that can be relayed from the plasma membrane to the nucleus or other target sites within the cell. The review describes the state-of-the-art biomedical applications of FGN focusing the attention on the cell/FGN interactions and signalosome activation.
Collapse
Affiliation(s)
- Anna Piperno
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, V.le F. Stagno d'Alcontres 31, 98166 Messina, Italy.
| | - Angela Scala
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, V.le F. Stagno d'Alcontres 31, 98166 Messina, Italy.
| | - Antonino Mazzaglia
- CNR-ISMN c/o Department of Chemical, Biological, Pharmaceutical and Environmental Sciences of the University of Messina, V.le F. Stagno d'Alcontres 31, 98166 Messina, Italy.
| | - Giulia Neri
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, V.le F. Stagno d'Alcontres 31, 98166 Messina, Italy.
- Department of Chemistry, Materials, and Chemical Engineering "Giulio Natta", Politecnico di Milano, 20131 Milan, Italy.
| | - Rosamaria Pennisi
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, V.le F. Stagno d'Alcontres 31, 98166 Messina, Italy.
| | - Maria Teresa Sciortino
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, V.le F. Stagno d'Alcontres 31, 98166 Messina, Italy.
| | - Giovanni Grassi
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, V.le F. Stagno d'Alcontres 31, 98166 Messina, Italy.
| |
Collapse
|
28
|
Zhu F, Zhao G, Dou W. Electrochemical sandwich immunoassay for Escherichia coli O157:H7 based on the use of magnetic nanoparticles and graphene functionalized with electrocatalytically active Au@Pt core/shell nanoparticles. Mikrochim Acta 2018; 185:455. [PMID: 30215173 DOI: 10.1007/s00604-018-2984-2] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2018] [Accepted: 08/29/2018] [Indexed: 12/21/2022]
Abstract
A highly sensitive electrochemical sandwich immunoassay is described for determination of Escherichia coli O157:H7 (E. coli O157:H7). Silica coated magnetite nanoparticles (Fe3O4) were modified with primary antibody to capture E. coli O157:H7. Gold-platinum core/shell nanoparticles (Au@Pt NPs) with different Pt shell thicknesses were prepared via changing the molar ratio of H2PtCl6 to HAuCl4 in the precursor solution. The optimized Au@Pt NPs exhibit enhanced activity in the electrocatalytic reduction of hydrogen peroxide (H2O2). The Au@Pt NPs were modified with graphene that was functionalized with Neutral Red, and then used as an electrochemical label for secondary antibodies and horseradish peroxidase (HRP). The sandwich immunocomplexes were magnetically absorbed on a 4-channel screen printed carbon electrode. Due to the catalysis of the Au@Pt NPs and HRP, the signal is strongly amplified in the presence of H2O2 when using thionine as the electron mediator. Under optimal conditions, the immunoassay has a linear response in the 4.0 × 102 to 4.0 × 108 CFU·mL-1 concentration range, with a limit of detection of 91 CFU·mL-1 (at an S/N ratio of 3). Graphical abstract Preparation of Au@Pt core/shell nanoparticles with different Pt shell thickness (A), rGO-NR (B), rGO-NR-Au@Pt-Ab2-HRP (C) and the preparation and the detection process of the immunoassay (D). rGO: reduced graphene oxide, GO: graphene oxide, NR: Neutral Red, HRP: horseradish peroxidase, AuNPs: gold nanoparticles, Fe3O4@SiO2: Silica coated magnetite nanoparticles, 4-SPCE: 4-channel screen printed carbon electrode.
Collapse
Affiliation(s)
- Fanjun Zhu
- Food Safety Key Laboratory of Zhejiang Province, College of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, 310018, China
| | - Guangying Zhao
- Food Safety Key Laboratory of Zhejiang Province, College of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, 310018, China
| | - Wenchao Dou
- Food Safety Key Laboratory of Zhejiang Province, College of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, 310018, China.
| |
Collapse
|
29
|
Madhurantakam S, Babu KJ, Rayappan JBB, Krishnan UM. Nanotechnology-based electrochemical detection strategies for hypertension markers. Biosens Bioelectron 2018; 116:67-80. [DOI: 10.1016/j.bios.2018.05.034] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Revised: 05/18/2018] [Accepted: 05/21/2018] [Indexed: 12/15/2022]
|
30
|
Zhu F, Zhao G, Dou W. A non-enzymatic electrochemical immunoassay for quantitative detection of Escherichia coli O157:H7 using Au@Pt and graphene. Anal Biochem 2018; 559:34-43. [PMID: 30144412 DOI: 10.1016/j.ab.2018.08.016] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Revised: 08/17/2018] [Accepted: 08/18/2018] [Indexed: 10/28/2022]
Abstract
Herein, a non-enzymatic sandwich-type electrochemical immunoassay was fabricated for quantitative monitoring of Escherichia coli O157:H7 (E. coli O157:H7). Silica coated Fe3O4 magnetic nanoparticles (Fe3O4@SiO2) were modified with mouse anti-E. coli O157:H7 monoclonal antibody (Ab1) to act as capture probes to reduce detection time and increase the sensitivity of the immunoassay. The Au@Pt nanoparticles were loaded on neutral red (NR) functionalized graphene to form composite complex rGO-NR-Au@Pt. rGO-NR-Au@Pt has high specific surface area and good biocompatibility. rGO-NR-Au@Pt was used as the carriers of detection antibodies (Ab2). Au@Pt catalyzed the reduction of hydrogen peroxide (H2O2) to detection of E. coli O157:H7 with the thionine (TH) as electron mediator to effectually amply the current signal. Under the optimized conditions, a linear relationship between the reduction peak current change (ΔIpc) and the logarithm of the E. coli O157:H7 concentration is obtained in the range from 4.0 × 103 to 4.0 × 108 CFU mL-1 and the limit of detection (LOD) is 4.5 × 102 CFU mL-1 at a signal-to-noise ratio of 3. The immunoassay exhibits acceptable specificity, reproducibility and stability on the detection of E. coli O157:H7. Furthermore, the immunoassay showed good performance in pork and milk samples. The results suggest that this immunoassay will be promising in the food safety area.
Collapse
Affiliation(s)
- Fanjun Zhu
- Food Safety Key Laboratory of Zhejiang Province, College of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, 310018, China
| | - Guangying Zhao
- Food Safety Key Laboratory of Zhejiang Province, College of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, 310018, China
| | - Wenchao Dou
- Food Safety Key Laboratory of Zhejiang Province, College of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, 310018, China.
| |
Collapse
|
31
|
Yao Y, Ping J. Recent advances in graphene-based freestanding paper-like materials for sensing applications. Trends Analyt Chem 2018. [DOI: 10.1016/j.trac.2018.04.014] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
32
|
Liu Z, Forsyth H, Khaper N, Chen A. Sensitive electrochemical detection of nitric oxide based on AuPt and reduced graphene oxide nanocomposites. Analyst 2018; 141:4074-83. [PMID: 27143513 DOI: 10.1039/c6an00429f] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Since nitric oxide (NO) plays a critical role in many biological processes, its precise detection is essential toward an understanding of its specific functions. Here we report on a facile and environmentally compatible strategy for the construction of an electrochemical sensor based on reduced graphene oxide (rGO) and AuPt bimetallic nanoparticles. The prepared nanocomposites were further employed for the electroanalysis of NO using differential pulse voltammetry (DPV) and amperometric methods. The dependence of AuPt molar ratios on the electrochemical performance was investigated. Through the combination of the advantages of the high conductivity from rGO and highly electrocatalytic activity from AuPt bimetallic nanoparticles, the AuPt-rGO based NO sensor exhibited a high sensitivity of 7.35 μA μM(-1) and a low detection limit of 2.88 nM. Additionally, negligible interference from common ions or organic molecules was observed, and the AuPt-rGO modified electrode demonstrated excellent stability. Moreover, this optimized electrochemical sensor was practicable for efficiently monitoring the NO released from rat cardiac cells, which were stimulated by l-arginine (l-arg), showing that stressed cells generated over 10 times more NO than normal cells. The novel sensor developed in this study may have significant medical diagnostic applications for the prevention and monitoring of disease.
Collapse
Affiliation(s)
- Zhonggang Liu
- Department of Chemistry, Lakehead University, 955 Oliver Road, Thunder Bay, Ontario P7B 5E1, Canada.
| | - Heidi Forsyth
- Northern Ontario School of Medicine, Lakehead University, 955 Oliver Road, Thunder Bay, Ontario P7B 5E1, Canada
| | - Neelam Khaper
- Northern Ontario School of Medicine, Lakehead University, 955 Oliver Road, Thunder Bay, Ontario P7B 5E1, Canada
| | - Aicheng Chen
- Department of Chemistry, Lakehead University, 955 Oliver Road, Thunder Bay, Ontario P7B 5E1, Canada.
| |
Collapse
|
33
|
Ma L, Zhou L, He Y, Wang L, Huang Z, Jiang Y, Gao J. Mesoporous Bimetallic PtPd Nanoflowers as a Platform to Enhance Electrocatalytic Activity of Acetylcholinesterase for Organophosphate Pesticide Detection. ELECTROANAL 2018. [DOI: 10.1002/elan.201700845] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Li Ma
- School of Chemical Engineering and Technology; Hebei University of Technology; Tianjin 300130 China
| | - Liya Zhou
- School of Chemical Engineering and Technology; Hebei University of Technology; Tianjin 300130 China
| | - Ying He
- School of Chemical Engineering and Technology; Hebei University of Technology; Tianjin 300130 China
| | - Lihui Wang
- School of Chemical Engineering and Technology; Hebei University of Technology; Tianjin 300130 China
| | - Zhihong Huang
- School of Chemical Engineering and Technology; Hebei University of Technology; Tianjin 300130 China
| | - Yanjun Jiang
- School of Chemical Engineering and Technology; Hebei University of Technology; Tianjin 300130 China
- National-Local Joint Engineering Laboratory for Energy Conservation of Chemical Process Integration and Resources Utilization; Hebei University of Technology; Tianjin 300130 China
| | - Jing Gao
- School of Chemical Engineering and Technology; Hebei University of Technology; Tianjin 300130 China
| |
Collapse
|
34
|
Wu J, He J, Zhang C, Chen J, Niu Y, Yuan Q, Yu C. PdPt nanoparticles anchored on the N-G with the integration of PANI nanohybrids as novel redox probe and catalyst for the detection of rs1801177. Biosens Bioelectron 2018; 102:403-410. [DOI: 10.1016/j.bios.2017.11.054] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2017] [Revised: 11/11/2017] [Accepted: 11/17/2017] [Indexed: 01/12/2023]
|
35
|
First Time Synthesis, Characterization And Synergistic Photocatalytic Effect Of GO/Bi 2 O 3 /Nb 2 O 5 Nanocomposites. ACTA ACUST UNITED AC 2018. [DOI: 10.1016/j.matpr.2017.10.164] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
36
|
Wang Z, Dong S, Gui M, Asif M, Wang W, Wang F, Liu H. Graphene paper supported MoS 2 nanocrystals monolayer with Cu submicron-buds: High-performance flexible platform for sensing in sweat. Anal Biochem 2017; 543:82-89. [PMID: 29233679 DOI: 10.1016/j.ab.2017.12.010] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Revised: 12/06/2017] [Accepted: 12/08/2017] [Indexed: 01/09/2023]
Abstract
Flexible sweat biosensors are of considerable current interest for the development of wearable smart miniature devices. In this work, we report a novel type of flexible and electrochemical sweat platform fabricated by depositing Cu submicron buds on freestanding graphene paper (GP) carrying MoS2 nanocrystals monolayer for bio-functional detection of glucose and lactate. Quantitative analysis of glucose and lactate was carried out by using amperometric i-t method. Linear ranges were obtained between 5 and 1775 μM for glucose and 0.01-18.4 mM for lactate, and their corresponding limits of detection were 500 nM and 0.1 μM, respectively. The platform demonstrates fast response, good selectivity, superb reproducibility and outstanding flexibility, which enable its use for monitoring glucose and lactate in human perspiration. The strategy of structurally integrating 3D transition metal, 0D transition metal sulfide and 2D graphene will provide new insight into the design of flexible electrodes for sweat glucose and lactate monitoring and a wider range of applications in biosensing, bioelectronics, and lab-on-a-chip devices.
Collapse
Affiliation(s)
- Zhengyun Wang
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, PR China
| | - Shuang Dong
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, PR China
| | - Mengxi Gui
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, PR China
| | - Muhammad Asif
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, PR China
| | - Wei Wang
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, PR China
| | - Feng Wang
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, PR China
| | - Hongfang Liu
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, PR China.
| |
Collapse
|
37
|
Liang H, Wu Y, Ou XY, Li JY, Li J. Au@Pt nanoparticles as catalase mimics to attenuate tumor hypoxia and enhance immune cell-mediated cytotoxicity. NANOTECHNOLOGY 2017; 28:465702. [PMID: 28925921 DOI: 10.1088/1361-6528/aa8d9c] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Hypoxic tumor microenvironment (TME) is closely linked to tumor progression, heterogeneity and immune suppression. Therefore, the development of effective methods to overcome hypoxia and substantially enhance the immunotherapy efficacy remains a desirable goal. Herein, we engineered a biocompatible Au core/Pt shell nanoparticles (Au@Pt NPs) to reoxygenate the TME by reacting with endogenous H2O2. Treatment with Au@Pt NPs appeared to improve oxygen in intracellular environments and decrease hypoxia-inducible factor-1α expression. Furthermore, the integration of high catalytic efficiency of Au@Pt NPs with cytokine-induced killer (CIK) cell immunotherapy, could lead to significantly improve the effect of CIK cell-mediated cytotoxicity. These results suggest great potential of Au@Pt NPs for regulation of the hypoxic TME and enhance immune cell mediated anti-tumor immunity.
Collapse
Affiliation(s)
- Hong Liang
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou 350002, People's Republic of China
| | | | | | | | | |
Collapse
|
38
|
Freestanding and flexible graphene papers as bioelectrochemical cathode for selective and efficient CO 2 conversion. Sci Rep 2017; 7:9107. [PMID: 28831188 PMCID: PMC5567247 DOI: 10.1038/s41598-017-09841-7] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2017] [Accepted: 07/31/2017] [Indexed: 12/19/2022] Open
Abstract
During microbial electrosynthesis (MES) driven CO2 reduction, cathode plays a vital role by donating electrons to microbe. Here, we exploited the advantage of reduced graphene oxide (RGO) paper as novel cathode material to enhance electron transfer between the cathode and microbe, which in turn facilitated CO2 reduction. The acetate production rate of Sporomusa ovata-driven MES reactors was 168.5 ± 22.4 mmol m−2 d−1 with RGO paper cathodes poised at −690 mV versus standard hydrogen electrode. This rate was approximately 8 fold faster than for carbon paper electrodes of the same dimension. The current density with RGO paper cathodes of 2580 ± 540 mA m−2 was increased 7 fold compared to carbon paper cathodes. This also corresponded to a better cathodic current response on their cyclic voltammetric curves. The coulombic efficiency for the electrons conversion into acetate was 90.7 ± 9.3% with RGO paper cathodes and 83.8 ± 4.2% with carbon paper cathodes, respectively. Furthermore, more intensive cell attachment was observed on RGO paper electrodes than on carbon paper electrodes with confocal laser scanning microscopy and scanning electron microscopy. These results highlight the potential of RGO paper as a promising cathode for MES from CO2.
Collapse
|
39
|
Kim TH, Lee D, Choi JW. Live cell biosensing platforms using graphene-based hybrid nanomaterials. Biosens Bioelectron 2017; 94:485-499. [DOI: 10.1016/j.bios.2017.03.032] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Revised: 03/01/2017] [Accepted: 03/14/2017] [Indexed: 12/12/2022]
|
40
|
Fu Q, Wu Z, Du D, Zhu C, Lin Y, Tang Y. Versatile Barometer Biosensor Based on Au@Pt Core/Shell Nanoparticle Probe. ACS Sens 2017; 2:789-795. [PMID: 28723117 DOI: 10.1021/acssensors.7b00156] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
There is a high global demand for sensitive, portable, user-friendly, and cost-effective biosensors. In this work, we introduce a barometer-based biosensor for the detection of a broad range of targets. The device is operated by measuring the pressure change produced by oxygen (O2) generation in a limited chamber using a portable barometer. The design employs core-shell Au@Pt nanoparticles (Au@PtNPs) as the bioassay probe to catalyze the decomposition of H2O2 and the release of O2. As a proof of concept, we developed barometer-based immunosensors to detect carcinoembryonic antigen (CEA) and ractopamine (Rac). In addition, barometer-based aptasensors for sensitive detection of thrombin and mercury ion (Hg2+) were also developed. In order to facilitate the analysis of results, we have developed smartphone software to calculate, save, and wirelessly trsnsmit the results. Linear detection ranges for detection of CEA, Rac, thrombin, and Hg2+ were 0.025-1.6 ng/mL, 0.0625-4 ng/mL, 4-128 U/L, and 0.25-16 ng/mL, respectively. The detection limit of these four analytes is 0.021 ng/mL, 0.051 ng/mL, 2.4 U/L, and 0.22 ng/mL, respectively. Furthermore, the developed barometer-based biosensors exhibited high specificities for these four analytes. CEA in serum samples, Rac in urine samples, thrombin in serum samples, and Hg2+ in river water samples were measured by the barometer-based biosensors. Obtained results of these targets from barometer-based biosensors were consistent with detection results from traditional methods, indicating that barometer-based biosensors are widely applicable.
Collapse
Affiliation(s)
- Qiangqiang Fu
- School
of Mechanical and Materials Engineering, Washington State University, Pullman, Washington 99164, United States
| | | | - Dan Du
- School
of Mechanical and Materials Engineering, Washington State University, Pullman, Washington 99164, United States
| | - Chengzhou Zhu
- School
of Mechanical and Materials Engineering, Washington State University, Pullman, Washington 99164, United States
| | - Yuehe Lin
- School
of Mechanical and Materials Engineering, Washington State University, Pullman, Washington 99164, United States
| | | |
Collapse
|
41
|
Liu H, Weng L, Yang C. A review on nanomaterial-based electrochemical sensors for H2O2, H2S and NO inside cells or released by cells. Mikrochim Acta 2017. [DOI: 10.1007/s00604-017-2179-2] [Citation(s) in RCA: 105] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
42
|
Abstract
Recent progress in the electrochemical field enabled development of miniaturized sensing devices that can be used in biological settings to obtain fundamental and practical biochemically relevant information on physiology, metabolism, and disease states in living systems. Electrochemical sensors and biosensors have demonstrated potential for rapid, real-time measurements of biologically relevant molecules. This chapter provides an overview of the most recent advances in the development of miniaturized sensors for biological investigations in living systems, with focus on the detection of neurotransmitters and oxidative stress markers. The design of electrochemical (bio)sensors, including their detection mechanism and functionality in biological systems, is described as well as their advantages and limitations. Application of these sensors to studies in live cells, embryonic development, and rodent models is discussed.
Collapse
|
43
|
Wang L, Xiong Q, Xiao F, Duan H. 2D nanomaterials based electrochemical biosensors for cancer diagnosis. Biosens Bioelectron 2017; 89:136-151. [DOI: 10.1016/j.bios.2016.06.011] [Citation(s) in RCA: 114] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Revised: 06/05/2016] [Accepted: 06/06/2016] [Indexed: 12/19/2022]
|
44
|
Dong S, Wang Z, Asif M, Wang H, Yu Y, Hu Y, Liu H, Xiao F. Inkjet Printing Synthesis of Sandwiched Structured Ionic Liquid-Carbon Nanotube-Graphene Film: Toward Disposable Electrode for Sensitive Heavy Metal Detection in Environmental Water Samples. Ind Eng Chem Res 2017. [DOI: 10.1021/acs.iecr.6b04251] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Shuang Dong
- Department of Chemistry
and Chemical Engineering, Hubei Key Laboratory of Material Chemistry
and Service Failure, Key Laboratory for Large-Format Battery Materials
and System, Ministry of Education, Huazhong University of Science and Technology, Wuhan 430074, PR China
| | - Zhengyun Wang
- Department of Chemistry
and Chemical Engineering, Hubei Key Laboratory of Material Chemistry
and Service Failure, Key Laboratory for Large-Format Battery Materials
and System, Ministry of Education, Huazhong University of Science and Technology, Wuhan 430074, PR China
| | - Muhammad Asif
- Department of Chemistry
and Chemical Engineering, Hubei Key Laboratory of Material Chemistry
and Service Failure, Key Laboratory for Large-Format Battery Materials
and System, Ministry of Education, Huazhong University of Science and Technology, Wuhan 430074, PR China
| | - Haitao Wang
- Department of Chemistry
and Chemical Engineering, Hubei Key Laboratory of Material Chemistry
and Service Failure, Key Laboratory for Large-Format Battery Materials
and System, Ministry of Education, Huazhong University of Science and Technology, Wuhan 430074, PR China
| | - Yang Yu
- Department of Chemistry
and Chemical Engineering, Hubei Key Laboratory of Material Chemistry
and Service Failure, Key Laboratory for Large-Format Battery Materials
and System, Ministry of Education, Huazhong University of Science and Technology, Wuhan 430074, PR China
| | - Yulong Hu
- College of Science, Naval University of Engineering, 717 Jiefang
Avenue, Wuhan 430033, China
| | - Hongfang Liu
- Department of Chemistry
and Chemical Engineering, Hubei Key Laboratory of Material Chemistry
and Service Failure, Key Laboratory for Large-Format Battery Materials
and System, Ministry of Education, Huazhong University of Science and Technology, Wuhan 430074, PR China
| | - Fei Xiao
- Department of Chemistry
and Chemical Engineering, Hubei Key Laboratory of Material Chemistry
and Service Failure, Key Laboratory for Large-Format Battery Materials
and System, Ministry of Education, Huazhong University of Science and Technology, Wuhan 430074, PR China
| |
Collapse
|
45
|
Cheng C, Li S, Thomas A, Kotov NA, Haag R. Functional Graphene Nanomaterials Based Architectures: Biointeractions, Fabrications, and Emerging Biological Applications. Chem Rev 2017; 117:1826-1914. [PMID: 28075573 DOI: 10.1021/acs.chemrev.6b00520] [Citation(s) in RCA: 257] [Impact Index Per Article: 36.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Functional graphene nanomaterials (FGNs) are fast emerging materials with extremely unique physical and chemical properties and physiological ability to interfere and/or interact with bioorganisms; as a result, FGNs present manifold possibilities for diverse biological applications. Beyond their use in drug/gene delivery, phototherapy, and bioimaging, recent studies have revealed that FGNs can significantly promote interfacial biointeractions, in particular, with proteins, mammalian cells/stem cells, and microbials. FGNs can adsorb and concentrate nutrition factors including proteins from physiological media. This accelerates the formation of extracellular matrix, which eventually promotes cell colonization by providing a more beneficial microenvironment for cell adhesion and growth. Furthermore, FGNs can also interact with cocultured cells by physical or chemical stimulation, which significantly mediate their cellular signaling and biological performance. In this review, we elucidate FGNs-bioorganism interactions and summarize recent advancements on designing FGN-based two-dimensional and three-dimensional architectures as multifunctional biological platforms. We have also discussed the representative biological applications regarding these FGN-based bioactive architectures. Furthermore, the future perspectives and emerging challenges will also be highlighted. Due to the lack of comprehensive reviews in this emerging field, this review may catch great interest and inspire many new opportunities across a broad range of disciplines.
Collapse
Affiliation(s)
- Chong Cheng
- Institute of Chemistry and Biochemistry, Freie Universität Berlin , Takustrasse 3, 14195 Berlin, Germany
| | - Shuang Li
- Department of Chemistry, Functional Materials, Technische Universität Berlin , Hardenbergstraße 40, 10623 Berlin, Germany
| | - Arne Thomas
- Department of Chemistry, Functional Materials, Technische Universität Berlin , Hardenbergstraße 40, 10623 Berlin, Germany
| | - Nicholas A Kotov
- Department of Chemical Engineering, University of Michigan , Ann Arbor, Michigan 48109, United States
| | - Rainer Haag
- Institute of Chemistry and Biochemistry, Freie Universität Berlin , Takustrasse 3, 14195 Berlin, Germany
| |
Collapse
|
46
|
Ashori E, Nazari F, Illas F. Influence of NO and (NO)2 adsorption on the properties of Fe-N4 porphyrin-like graphene sheets. Phys Chem Chem Phys 2017; 19:3201-3213. [DOI: 10.1039/c6cp07898b] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Fe-N4 porphyrin-like graphene catalysis and spin filter characteristics toward NO and (NO)2 dimer adsorption.
Collapse
Affiliation(s)
- Elham Ashori
- Department of Chemistry
- Institute for Advanced Studies in Basic Sciences
- Zanjan 45137-66731
- Iran
| | - Fariba Nazari
- Department of Chemistry
- Institute for Advanced Studies in Basic Sciences
- Zanjan 45137-66731
- Iran
- Center of Climate Change and Global Warming
| | - Francesc Illas
- Departament de Ciència de Materials i Química Física & Institut de Química Teòrica i Computacional (IQTCUB)
- Universitat de Barcelona
- 08028 Barcelona
- Spain
| |
Collapse
|
47
|
Govindhan M, Liu Z, Chen A. Design and Electrochemical Study of Platinum-Based Nanomaterials for Sensitive Detection of Nitric Oxide in Biomedical Applications. NANOMATERIALS (BASEL, SWITZERLAND) 2016; 6:E211. [PMID: 28335341 PMCID: PMC5245754 DOI: 10.3390/nano6110211] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/21/2016] [Revised: 11/04/2016] [Accepted: 11/07/2016] [Indexed: 12/14/2022]
Abstract
The extensive physiological and regulatory roles of nitric oxide (NO) have spurred the development of NO sensors, which are of critical importance in neuroscience and various medical applications. The development of electrochemical NO sensors is of significant importance, and has garnered a tremendous amount of attention due to their high sensitivity and selectivity, rapid response, low cost, miniaturization, and the possibility of real-time monitoring. Nanostructured platinum (Pt)-based materials have attracted considerable interest regarding their use in the design of electrochemical sensors for the detection of NO, due to their unique properties and the potential for new and innovative applications. This review focuses primarily on advances and insights into the utilization of nanostructured Pt-based electrode materials, such as nanoporous Pt, Pt and PtAu nanoparticles, PtAu nanoparticle/reduced graphene oxide (rGO), and PtW nanoparticle/rGO-ionic liquid (IL) nanocomposites, for the detection of NO. The design, fabrication, characterization, and integration of electrochemical NO sensing performance, selectivity, and durability are addressed. The attractive electrochemical properties of Pt-based nanomaterials have great potential for increasing the competitiveness of these new sensors and open up new opportunities in the creation of novel NO-sensing technologies for biological and medical applications.
Collapse
Affiliation(s)
- Maduraiveeran Govindhan
- Department of Chemistry, Lakehead University, 955 Oliver Road, Thunder Bay, ON P7B 5E1, Canada.
| | - Zhonggang Liu
- Department of Chemistry, Lakehead University, 955 Oliver Road, Thunder Bay, ON P7B 5E1, Canada.
| | - Aicheng Chen
- Department of Chemistry, Lakehead University, 955 Oliver Road, Thunder Bay, ON P7B 5E1, Canada.
| |
Collapse
|
48
|
Flexible Graphene Electrodes for Prolonged Dynamic ECG Monitoring. SENSORS 2016; 16:s16111833. [PMID: 27809270 PMCID: PMC5134492 DOI: 10.3390/s16111833] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/12/2016] [Revised: 10/15/2016] [Accepted: 10/28/2016] [Indexed: 11/16/2022]
Abstract
This paper describes the development of a graphene-based dry flexible electrocardiography (ECG) electrode and a portable wireless ECG measurement system. First, graphene films on polyethylene terephthalate (PET) substrates and graphene paper were used to construct the ECG electrode. Then, a graphene textile was synthesized for the fabrication of a wearable ECG monitoring system. The structure and the electrical properties of the graphene electrodes were evaluated using Raman spectroscopy, scanning electron microscopy (SEM), and alternating current impedance spectroscopy. ECG signals were then collected from healthy subjects using the developed graphene electrode and portable measurement system. The results show that the graphene electrode was able to acquire the typical characteristics and features of human ECG signals with a high signal-to-noise (SNR) ratio in different states of motion. A week-long continuous wearability test showed no degradation in the ECG signal quality over time. The graphene-based flexible electrode demonstrates comfortability, good biocompatibility, and high electrophysiological detection sensitivity. The graphene electrode also combines the potential for use in long-term wearable dynamic cardiac activity monitoring systems with convenience and comfort for use in home health care of elderly and high-risk adults.
Collapse
|
49
|
Mostafalu P, Nezhad AS, Nikkhah M, Akbari M. Flexible Electronic Devices for Biomedical Applications. ACTA ACUST UNITED AC 2016. [DOI: 10.1007/978-3-319-32180-6_16] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
50
|
In situ, dual-mode monitoring of organ-on-a-chip with smartphone-based fluorescence microscope. Biosens Bioelectron 2016; 86:697-705. [PMID: 27474967 DOI: 10.1016/j.bios.2016.07.015] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2016] [Revised: 06/29/2016] [Accepted: 07/06/2016] [Indexed: 11/22/2022]
Abstract
The use of organ-on-a-chip (OOC) platforms enables improved simulation of the human kidney's response to nephrotoxic drugs. The standard method of analyzing nephrotoxicity from existing OOC has majorly consisted of invasively collecting samples (cells, lysates, media, etc.) from an OOC. Such disruptive analyses potentiate contamination, disrupt the replicated in vivo environment, and require expertize to execute. Moreover, traditional analyses, including immunofluorescence microscopy, immunoblot, and microplate immunoassay are essentially not in situ and require substantial time, resources, and costs. In the present work, the incorporation of fluorescence nanoparticle immunocapture/immunoagglutination assay into an OOC enabled dual-mode monitoring of drug-induced nephrotoxicity in situ. A smartphone-based fluorescence microscope was fabricated as a handheld in situ monitoring device attached to an OOC. Both the presence of γ-glutamyl transpeptidase (GGT) on the apical brush-border membrane of 786-O proximal tubule cells within the OOC surface, and the release of GGT to the outflow of the OOC were evaluated with the fluorescence scatter detection of captured and immunoagglutinated anti-GGT conjugated nanoparticles. This dual-mode assay method provides a novel groundbreaking tool to enable the internal and external in situ monitoring of the OOC, which may be integrated into any existing OOCs to facilitate their subsequent analyses.
Collapse
|