1
|
Xue T, Lu X, Wen Y, Maleh HK, Duan X, Xu J. Recent progress of black phosphorene from preparation to diversified bio-/chemo-nanosensors and their challenges and opportunities for comprehensive health. Mikrochim Acta 2024; 191:771. [PMID: 39609277 DOI: 10.1007/s00604-024-06828-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Accepted: 11/04/2024] [Indexed: 11/30/2024]
Abstract
The introduction of comprehensive health, related to human living environment and mental state, helps people to improve human health literacy and accept scientific health guidance. The unique structure and properties of black phosphorene (BP) provide potential opportunities for rapid development and versatile applications of high-performance sensors serving comprehensive health. The review begins with the preparation from bulk black phosphorous crystals via transforming requirements of phosphorous allotropes and BP nanosheets via preparative strategies using both "top-down" and "bottom-up" methods. Then the diversified modification of BP and versatile fabrication of diversified bio-/chemo-nanosensors for sensitive detection of analytes are discussed. Besides, the challenges including the preparation of BP, diversified modification, devices for improving performance defects and chemo-/bio-nanosensors for enhancing performance are outlined together with potential opportunities for the BP preparation and applications in comprehensive health from agricultural environments, food safety, personal life, physical and mental life, and finally to medical care.
Collapse
Affiliation(s)
- Ting Xue
- Key Laboratory of Chemical Utilization of Plant Resources of Nanchang, Institute of Functional Materials and Agricultural Applied Chemistry, College of Chemistry and Material, Jiangxi Agricultural University, Nanchang, 330045, PR China
| | - Xinyu Lu
- Key Laboratory of Chemical Utilization of Plant Resources of Nanchang, Institute of Functional Materials and Agricultural Applied Chemistry, College of Chemistry and Material, Jiangxi Agricultural University, Nanchang, 330045, PR China.
| | - Yangping Wen
- Key Laboratory of Chemical Utilization of Plant Resources of Nanchang, Institute of Functional Materials and Agricultural Applied Chemistry, College of Chemistry and Material, Jiangxi Agricultural University, Nanchang, 330045, PR China.
| | - Hassan Karimi Maleh
- Key Laboratory of Chemical Utilization of Plant Resources of Nanchang, Institute of Functional Materials and Agricultural Applied Chemistry, College of Chemistry and Material, Jiangxi Agricultural University, Nanchang, 330045, PR China
- School of Resources and Environment, University of Electronic Science and Technology of China, Chengdu, 611731, PR China
| | - Xuemin Duan
- Jiangxi Provincial Key Laboratory of Drug Design and Evaluation, School of Pharmacy, Jiangxi Science & Technology Normal University, Nanchang, 330013, PR China
| | - Jingkun Xu
- Jiangxi Key Laboratory of Flexible Electronics, Jiangxi Science & Technology Normal University, Nanchang, 330013, PR China
- College of Chemistry and Molecular Engineering, Qingdao University of Science & Technology, Qingdao, 266042, PR China
| |
Collapse
|
2
|
Lakavath K, Kafley C, Sajeevan A, Jana S, Marty JL, Kotagiri YG. Progress on Electrochemical Biomimetic Nanosensors for the Detection and Monitoring of Mycotoxins and Pesticides. Toxins (Basel) 2024; 16:244. [PMID: 38922139 PMCID: PMC11209398 DOI: 10.3390/toxins16060244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 05/19/2024] [Accepted: 05/20/2024] [Indexed: 06/27/2024] Open
Abstract
Monitoring agricultural toxins such as mycotoxins is crucial for a healthy society. High concentrations of these toxins lead to the cause of several chronic diseases; therefore, developing analytical systems for detecting/monitoring agricultural toxins is essential. These toxins are found in crops such as vegetables, fruits, food, and beverage products. Currently, screening of these toxins is mostly performed with sophisticated instrumentation such as chromatography and spectroscopy techniques. However, these techniques are very expensive and require extensive maintenance, and their availability is limited to metro cities only. Alternatively, electrochemical biomimetic sensing methodologies have progressed hugely during the last decade due to their unique advantages like point-of-care sensing, miniaturized instrumentations, and mobile/personalized monitoring systems. Specifically, affinity-based sensing strategies including immunosensors, aptasensors, and molecular imprinted polymers offer tremendous sensitivity, selectivity, and stability to the sensing system. The current review discusses the principal mechanisms and the recent developments in affinity-based sensing methodologies for the detection and continuous monitoring of mycotoxins and pesticides. The core discussion has mainly focused on the fabrication protocols, advantages, and disadvantages of affinity-based sensing systems and different exploited electrochemical transduction techniques.
Collapse
Affiliation(s)
- Kavitha Lakavath
- Department of Chemistry, Indian Institute of Technology Palakkad, Palakkad 678 557, Kerala, India; (K.L.); (C.K.); (A.S.); (S.J.)
| | - Chandan Kafley
- Department of Chemistry, Indian Institute of Technology Palakkad, Palakkad 678 557, Kerala, India; (K.L.); (C.K.); (A.S.); (S.J.)
| | - Anjana Sajeevan
- Department of Chemistry, Indian Institute of Technology Palakkad, Palakkad 678 557, Kerala, India; (K.L.); (C.K.); (A.S.); (S.J.)
| | - Soumyajit Jana
- Department of Chemistry, Indian Institute of Technology Palakkad, Palakkad 678 557, Kerala, India; (K.L.); (C.K.); (A.S.); (S.J.)
| | - Jean Louis Marty
- BAE Laboratory, Université de Perpignan Via Domitia, 52 Avenue Paul Alduy, 66860 Perpignan, France
| | - Yugender Goud Kotagiri
- Department of Chemistry, Indian Institute of Technology Palakkad, Palakkad 678 557, Kerala, India; (K.L.); (C.K.); (A.S.); (S.J.)
| |
Collapse
|
3
|
Huang Z, Luo X, Yan F, Zhou B. Homogeneous Electrochemical Aptasensor for Sensitive Detection of Zearalenone Using Nanocomposite Probe and Silica Nanochannel Film. Molecules 2023; 28:7241. [PMID: 37959660 PMCID: PMC10647457 DOI: 10.3390/molecules28217241] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Revised: 10/20/2023] [Accepted: 10/21/2023] [Indexed: 11/15/2023] Open
Abstract
Developing rapid and efficient analytical methods is of great importance for food safety Herein, we present a novel homogeneous electrochemical aptasensor for ultrasensitive quantitative determination of zearalenone (ZEN) based on a nanocomposite probe and silica nanochannel film. X-ray photoelectron spectroscopy, Fourier transform infrared spectroscopy and UV-Vis characterization techniques confirm that graphene oxide (GO) bears an aromatic conjugated structure, along with hydroxyl and carboxyl groups, facilitating the subsequent adsorption of cationic redox hexa-ammine-ruthenium (III) (Ru(NH3)63+) and anionic ZEN aptamer, to form a Ru(NH3)63+-ZEN aptamer-GO nanocomposite probe in a homogeneous solution. Vertically-ordered mesoporous silica films (VMSF) bearing silanol groups can be simply grown on the solid indium tin oxide (ITO) electrode surface and enable the selective preconcentration of Ru(NH3)63+, eventually leading to signal amplification. Since the detachment of Ru(NH3)63+ from the GO surface by the recognized ZEN aptamer in the presence of ZEN, more free Ru(NH3)63+ is released in solution and produces enhanced redox signals at the VMSF modified ITO electrode, allowing quantitative detection of ZEN. On the basis of the above sensing strategy, the proposed homogeneity, due to the assistance of graphene, as well as of the signal amplification and anti-fouling effects of VMSF, accurate analysis of ZEN can be realized in maize and Chinese chestnut samples.
Collapse
Affiliation(s)
- Zhongnan Huang
- Collaborative Innovation Centre of Regenerative Medicine and Medical Bioresource Development, Application Co-Constructed by the Province and Ministry, Guangxi Medical University, Nanning 530021, China;
| | - Xuan Luo
- Key Laboratory of Surface & Interface Science of Polymer Materials of Zhejiang Province, Department of Chemistry, School of Chemistry and Chemical Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, China;
| | - Fei Yan
- Key Laboratory of Surface & Interface Science of Polymer Materials of Zhejiang Province, Department of Chemistry, School of Chemistry and Chemical Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, China;
| | - Bo Zhou
- Collaborative Innovation Centre of Regenerative Medicine and Medical Bioresource Development, Application Co-Constructed by the Province and Ministry, Guangxi Medical University, Nanning 530021, China;
| |
Collapse
|
4
|
Poeta E, Liboà A, Mistrali S, Núñez-Carmona E, Sberveglieri V. Nanotechnology and E-Sensing for Food Chain Quality and Safety. SENSORS (BASEL, SWITZERLAND) 2023; 23:8429. [PMID: 37896524 PMCID: PMC10610592 DOI: 10.3390/s23208429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 10/02/2023] [Accepted: 10/07/2023] [Indexed: 10/29/2023]
Abstract
Nowadays, it is well known that sensors have an enormous impact on our life, using streams of data to make life-changing decisions. Every single aspect of our day is monitored via thousands of sensors, and the benefits we can obtain are enormous. With the increasing demand for food quality, food safety has become one of the main focuses of our society. However, fresh foods are subject to spoilage due to the action of microorganisms, enzymes, and oxidation during storage. Nanotechnology can be applied in the food industry to support packaged products and extend their shelf life. Chemical composition and sensory attributes are quality markers which require innovative assessment methods, as existing ones are rather difficult to implement, labour-intensive, and expensive. E-sensing devices, such as vision systems, electronic noses, and electronic tongues, overcome many of these drawbacks. Nanotechnology holds great promise to provide benefits not just within food products but also around food products. In fact, nanotechnology introduces new chances for innovation in the food industry at immense speed. This review describes the food application fields of nanotechnologies; in particular, metal oxide sensors (MOS) will be presented.
Collapse
Affiliation(s)
- Elisabetta Poeta
- Department of Life Sciences, University of Modena and Reggio Emilia, Via J.F. Kennedy, 17/i, 42124 Reggio Emilia, RE, Italy
| | - Aris Liboà
- Department of Chemistry, Life Science and Environmental Sustainability, University of Parma, Parco Area delle Scienze, 11/a, 43124 Parma, PR, Italy;
| | - Simone Mistrali
- Nano Sensor System srl (NASYS), Via Alfonso Catalani, 9, 42124 Reggio Emilia, RE, Italy;
| | - Estefanía Núñez-Carmona
- National Research Council, Institute of Bioscience and Bioresources (CNR-IBBR), Via J.F. Kennedy, 17/i, 42124 Reggio Emilia, RE, Italy;
| | - Veronica Sberveglieri
- Nano Sensor System srl (NASYS), Via Alfonso Catalani, 9, 42124 Reggio Emilia, RE, Italy;
- National Research Council, Institute of Bioscience and Bioresources (CNR-IBBR), Via J.F. Kennedy, 17/i, 42124 Reggio Emilia, RE, Italy;
| |
Collapse
|
5
|
Wijayanti SD, Tsvik L, Haltrich D. Recent Advances in Electrochemical Enzyme-Based Biosensors for Food and Beverage Analysis. Foods 2023; 12:3355. [PMID: 37761066 PMCID: PMC10529900 DOI: 10.3390/foods12183355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 08/28/2023] [Accepted: 09/04/2023] [Indexed: 09/29/2023] Open
Abstract
Food analysis and control are crucial aspects in food research and production in order to ensure quality and safety of food products. Electrochemical biosensors based on enzymes as the bioreceptors are emerging as promising tools for food analysis because of their high selectivity and sensitivity, short analysis time, and high-cost effectiveness in comparison to conventional methods. This review provides the readers with an overview of various electrochemical enzyme-based biosensors in food analysis, focusing on enzymes used for different applications in the analysis of sugars, alcohols, amino acids and amines, and organic acids, as well as mycotoxins and chemical contaminants. In addition, strategies to improve the performance of enzyme-based biosensors that have been reported over the last five years will be discussed. The challenges and future outlooks for the food sector are also presented.
Collapse
Affiliation(s)
- Sudarma Dita Wijayanti
- Laboratory of Food Biotechnology, Department of Food Science and Technology, University of Natural Resources and Life Sciences Vienna, Muthgasse 11, A-1190 Wien, Austria; (S.D.W.)
- Department of Food Science and Biotechnology, Brawijaya University, Malang 65145, Indonesia
| | - Lidiia Tsvik
- Laboratory of Food Biotechnology, Department of Food Science and Technology, University of Natural Resources and Life Sciences Vienna, Muthgasse 11, A-1190 Wien, Austria; (S.D.W.)
| | - Dietmar Haltrich
- Laboratory of Food Biotechnology, Department of Food Science and Technology, University of Natural Resources and Life Sciences Vienna, Muthgasse 11, A-1190 Wien, Austria; (S.D.W.)
| |
Collapse
|
6
|
Kaur M, Gaba J, Singh K, Bhatia Y, Singh A, Singh N. Recent Advances in Recognition Receptors for Electrochemical Biosensing of Mycotoxins-A Review. BIOSENSORS 2023; 13:391. [PMID: 36979603 PMCID: PMC10046307 DOI: 10.3390/bios13030391] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 03/06/2023] [Accepted: 03/08/2023] [Indexed: 06/18/2023]
Abstract
Mycotoxins are naturally occurring toxic secondary metabolites produced by fungi in cereals and foodstuffs during the stages of cultivation and storage. Electrochemical biosensing has emerged as a rapid, efficient, and economical approach for the detection and quantification of mycotoxins in different sample media. An electrochemical biosensor consists of two main units, a recognition receptor and a signal transducer. Natural or artificial antibodies, aptamers, molecularly imprinted polymers (MIP), peptides, and DNAzymes have been extensively employed as selective recognition receptors for the electrochemical biosensing of mycotoxins. This article affords a detailed discussion of the recent advances and future prospects of various types of recognition receptors exploited in the electrochemical biosensing of mycotoxins.
Collapse
Affiliation(s)
- Manpreet Kaur
- Department of Chemistry, Punjab Agricultural University, Ludhiana 141004, India
| | - Jyoti Gaba
- Department of Chemistry, Punjab Agricultural University, Ludhiana 141004, India
| | - Komal Singh
- Department of Chemistry, Punjab Agricultural University, Ludhiana 141004, India
| | - Yashika Bhatia
- Department of Chemistry, Punjab Agricultural University, Ludhiana 141004, India
| | - Anoop Singh
- Department of Chemistry, Indian Institute of Technology, Ropar 140001, India
| | - Narinder Singh
- Department of Chemistry, Indian Institute of Technology, Ropar 140001, India
| |
Collapse
|
7
|
Wang J, Yu J, Yu Y, Luo Z, Li G, Lin X. Nanoporous electrode with stable polydimethylsiloxane coating for direct electrochemical analysis of bisphenol A in complex wine media. Food Chem 2023; 405:134806. [DOI: 10.1016/j.foodchem.2022.134806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 10/06/2022] [Accepted: 10/27/2022] [Indexed: 11/10/2022]
|
8
|
Siva S, Jin JO, Choi I, Kim M. Nanoliposome based biosensors for probing mycotoxins and their applications for food: A review. Biosens Bioelectron 2023; 219:114845. [PMID: 36327568 DOI: 10.1016/j.bios.2022.114845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 09/28/2022] [Accepted: 10/19/2022] [Indexed: 11/19/2022]
Abstract
Mycotoxins are the most common feed and food contaminants affecting animals and humans, respectively; continuous exposure causes tremendous health problems such as kidney disorders, infertility, immune suppression, liver inflammation, and cancer. Consequently, their control and quantification in food materials is crucial. Biosensors are potential tools for the rapid detection and quantification of mycotoxins with high sensitivity and selectivity. Nanoliposomes (NLs) are vesicular carriers formed by self-assembling phospholipids that surround the aqueous cores. Utilizing their biocompatibility, biodegradability, and high carrying capacity, researchers have employed NLs in biosensors for monitoring various targets in biological and food samples. The NLs are used for surface modification, signal marker delivery, and detection of toxins, bacteria, pesticides, and diseases. Here, we review marker-entrapped NLs used in the development of NL-based biosensors for mycotoxins. These biosensors are sensitive, selective, portable, and cost-effective analytical tools, and the resulting signal can be produced and/or amplified with or without destroying the NLs. In addition, this review emphasizes the benefits of the immunoliposome method in comparison with traditional detection approaches. We expect this review to serve as a valuable reference for researchers in this rapidly growing field. The insights provided may facilitate the rational design of next-generation NL-based biosensors.
Collapse
Affiliation(s)
- Subramanian Siva
- Department of Food Science and Technology, Yeungnam University, Gyeongsan, Gyeongsangbuk-do, 38541, Republic of Korea; Research Institute of Cell Culture, Yeungnam University, Gyeongsan, Gyeongsangbuk-do, 38541, Republic of Korea.
| | - Jun-O Jin
- Research Institute of Cell Culture, Yeungnam University, Gyeongsan, Gyeongsangbuk-do, 38541, Republic of Korea; Department of Medical Biotechnology, Yeungnam University, Gyeongsan, Gyeongsangbuk-do, 38541, Republic of Korea.
| | - Inho Choi
- Research Institute of Cell Culture, Yeungnam University, Gyeongsan, Gyeongsangbuk-do, 38541, Republic of Korea; Department of Medical Biotechnology, Yeungnam University, Gyeongsan, Gyeongsangbuk-do, 38541, Republic of Korea.
| | - Myunghee Kim
- Department of Food Science and Technology, Yeungnam University, Gyeongsan, Gyeongsangbuk-do, 38541, Republic of Korea; Research Institute of Cell Culture, Yeungnam University, Gyeongsan, Gyeongsangbuk-do, 38541, Republic of Korea.
| |
Collapse
|
9
|
Gupta R, Rahi Alhachami F, Khalid I, Majdi HS, Nisar N, Mohamed Hasan Y, Sivaraman R, Romero Parra RM, Al Mashhadani ZI, Fakri Mustafa Y. Recent Progress in Aptamer-Functionalized Metal-Organic Frameworks-Based Optical and Electrochemical Sensors for Detection of Mycotoxins. Crit Rev Anal Chem 2022; 54:1707-1728. [PMID: 36197710 DOI: 10.1080/10408347.2022.2128634] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/10/2022]
Abstract
Mycotoxin contamination in foodstuffs and agricultural products has posed a serious hazard to human health and raised international concern. The progress of cost-effective, facile, rapid and reliable analytical tools for mycotoxin determination is in urgent need. In this regard, the potential utility of metal-organic frameworks (MOFs) as a class of crystalline porous materials has sparked immense attention due to their large specific surface area, adjustable pore size, nanoscale framework structure and good chemical stability. The amalgamation of MOFs with high-affinity aptamers has resulted in the progress of advanced aptasensing methods for clinical and food/water safety diagnosis. Aptamers have many advantages over classical approaches as exceptional molecular recognition constituents for versatile bioassays tools. The excellent sensitivity and selectivity of the MOF-aptamer biocomposite nominate them as efficient lab-on-chip tools for portable, label-free, cost-effective and real-time screening of mycotoxins. Current breakthroughs in the concept, progress and biosensing applications of aptamer functionalized MOFs-derived electrochemical and optical sensors for mycotoxins have been discussed in this study. We first highlighted an overview part, which provides some insights into the functionalization mechanisms of MOFs with aptamers, offering a foundation to create MOFs-based aptasensors. Then, we discuss various strategies to design high-performance MOFs-based aptamer scaffolds, which serve as either signal nanoprobe carriers or signal nanoprobes and their applications. We perceived that applications of optical aptamers are in their infancy in comparison with electrochemical MOFs-derived aptasensors. Finally, current challenges and prospective trends of MOFs-aptamer sensors are discussed.
Collapse
Affiliation(s)
- Reena Gupta
- Institute of Pharmaceutical Research, GLA University, Mathura, India
| | - Firas Rahi Alhachami
- Radiology Department, College of Health and Medical Technololgy, Al-Ayen University, Thi-Qar, Iraq
| | - Imran Khalid
- Department of Agriculture Extension Education, The Islamia University of Bahawalpur, Pakistan
| | - Hasan Sh Majdi
- Department of Chemical Engineering and Petroleum Industries, Al-Mustaqbal University College, Hilla, Iraq
| | - Nazima Nisar
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, Abha, Saudi Arabia
| | | | - R Sivaraman
- Dwaraka Doss Goverdhan Doss Vaishnav College, University of Madras Chennai, Arumbakkam, India
| | | | | | - Yasser Fakri Mustafa
- Department of Pharmaceutical Chemistry, College of Pharmacy, University of Mosul, Mosul, Iraq
| |
Collapse
|
10
|
Yin S, Niu L, Liu Y. Recent Progress on Techniques in the Detection of Aflatoxin B 1 in Edible Oil: A Mini Review. Molecules 2022; 27:6141. [PMID: 36234684 PMCID: PMC9573432 DOI: 10.3390/molecules27196141] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 09/12/2022] [Accepted: 09/15/2022] [Indexed: 11/16/2022] Open
Abstract
Contamination of agricultural products and foods by aflatoxin B1 (AFB1) is becoming a serious global problem, and the presence of AFB1 in edible oil is frequent and has become inevitable, especially in underdeveloped countries and regions. As AFB1 results from a possible degradation of aflatoxins and the interaction of the resulting toxic compound with food components, it could cause chronic disease or severe cancers, increasing morbidity and mortality. Therefore, rapid and reliable detection methods are essential for checking AFB1 occurrence in foodstuffs to ensure food safety. Recently, new biosensor technologies have become a research hotspot due to their characteristics of speed and accuracy. This review describes various technologies such as chromatographic and spectroscopic techniques, ELISA techniques, and biosensing techniques, along with their advantages and weaknesses, for AFB1 control in edible oil and provides new insight into AFB1 detection for future work. Although compared with other technologies, biosensor technology involves the cross integration of multiple technologies, such as spectral technology and new nano materials, and has great potential, some challenges regarding their stability, cost, etc., need further studies.
Collapse
Affiliation(s)
- Shipeng Yin
- School of Food Science and Technology, Jiangnan University, No. 1800 Lihu Road, Binhu District, Wuxi 214122, China
| | - Liqiong Niu
- School of Life Sciences, Guangzhou University, Guangzhou 510006, China
| | - Yuanfa Liu
- School of Food Science and Technology, Jiangnan University, No. 1800 Lihu Road, Binhu District, Wuxi 214122, China
| |
Collapse
|
11
|
Wang F, Li Z, Jia H, Lu R, Zhang S, Pan C, Zhang Z. An ultralow concentration of Al-MOFs for turn-on fluorescence detection of aflatoxin B 1 in tea samples. Food Chem 2022; 383:132389. [PMID: 35180600 DOI: 10.1016/j.foodchem.2022.132389] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Revised: 01/09/2022] [Accepted: 02/06/2022] [Indexed: 11/04/2022]
Abstract
A turn-on fluorescent sensing platform based on an ultralow concentration of Al-metal organic frameworks for the detection of aflatoxin B1 has been developed for the first time. This fluorescence turn-on sensor exhibits the largest fluorescence enhancement (or quenching) constant value of 179404 M-1 among all luminescence-based chemical sensors reported till date. Moreover, the sensor afforded a rapid detection of aflatoxin B1, with a linear response in the concentration range of 0.05-9.61 μM and a low detection limit of 11.67 ppb. Additionally, the fabricated sensor showed good repeatability, reproducibility, stability, and selectivity. Most importantly, the practical application of this sensor has been demonstrated by detecting aflatoxin B1 in complex tea samples with low relative standard deviation (≤7.72%; n = 3) and satisfactory recoveries. In summary, the proposed method has great potential as a simple, sensitive and selective strategy for monitoring aflatoxin B1 in food samples.
Collapse
Affiliation(s)
- Fuxiang Wang
- Department of Applied Chemistry, College of Science, China Agricultural University, Yuanmingyuan West Road 2#, Haidian District, Beijing 100193, China
| | - Zuopeng Li
- Institute of Applied Chemistry, Shanxi Datong University, No. 5 Xingyun Street, Datong 037009, China
| | - Hongping Jia
- Department of Applied Chemistry, College of Science, China Agricultural University, Yuanmingyuan West Road 2#, Haidian District, Beijing 100193, China
| | - Runhua Lu
- Department of Applied Chemistry, College of Science, China Agricultural University, Yuanmingyuan West Road 2#, Haidian District, Beijing 100193, China
| | - Sanbing Zhang
- Department of Applied Chemistry, College of Science, China Agricultural University, Yuanmingyuan West Road 2#, Haidian District, Beijing 100193, China.
| | - Canping Pan
- Department of Applied Chemistry, College of Science, China Agricultural University, Yuanmingyuan West Road 2#, Haidian District, Beijing 100193, China
| | - Zhiqiang Zhang
- Shanghai Uzong Industrial Co. Ltd, Chunshen Road 2525#, Minhang District, Shanghai 201104, China
| |
Collapse
|
12
|
Hua Y, Ahmadi Y, Sonne C, Kim KH. Progress and challenges in sensing of mycotoxins using molecularly imprinted polymers. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 305:119218. [PMID: 35364185 DOI: 10.1016/j.envpol.2022.119218] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 02/27/2022] [Accepted: 03/24/2022] [Indexed: 06/14/2023]
Abstract
Mycotoxin is toxic secondary metabolite formed by certain filamentous fungi. This toxic compound can enter the food chain through contamination of food (e.g., by colonization of toxigenic fungi on food). In light of the growing concerns on the health hazards posed by mycotoxins, it is desirable to develop reliable analytical tools for their detection in food products in both sensitive and efficient manner. For this purpose, the potential utility of molecularly imprinted polymers (MIPs) has been explored due to their meritful properties (e.g., large number of tailor-made binding sites, sensitive template molecules, high recognition specificity, and structure predictability). This review addresses the recent advances in the application of MIPs toward the sensing of various mycotoxins (e.g., aflatoxins and patulin) along with their fabrication strategies. Then, performance evaluation is made for various types of MIP- and non-MIP-based sensing platforms built for the listed target mycotoxins in terms of quality assurance such as limit of detection (LOD). Further, the present challenges in the MIP-based sensing application of mycotoxins are discussed along with the future outlook in this research field.
Collapse
Affiliation(s)
- Yongbiao Hua
- Department of Civil and Environmental Engineering, Hanyang University, 222 Wangsimni-Ro, Seoul, 04763, Republic of Korea
| | - Younes Ahmadi
- Department of Civil and Environmental Engineering, Hanyang University, 222 Wangsimni-Ro, Seoul, 04763, Republic of Korea
| | - Christian Sonne
- Department of Ecoscience, Aarhus University, Frederiksborgvej 399, DK-4000, Roskilde, Denmark
| | - Ki-Hyun Kim
- Department of Civil and Environmental Engineering, Hanyang University, 222 Wangsimni-Ro, Seoul, 04763, Republic of Korea.
| |
Collapse
|
13
|
Nan M, Xue H, Bi Y. Contamination, Detection and Control of Mycotoxins in Fruits and Vegetables. Toxins (Basel) 2022; 14:309. [PMID: 35622556 PMCID: PMC9143439 DOI: 10.3390/toxins14050309] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 04/18/2022] [Accepted: 04/24/2022] [Indexed: 01/09/2023] Open
Abstract
Mycotoxins are secondary metabolites produced by pathogenic fungi that colonize fruits and vegetables either during harvesting or during storage. Mycotoxin contamination in fruits and vegetables has been a major problem worldwide, which poses a serious threat to human and animal health through the food chain. This review systematically describes the major mycotoxigenic fungi and the produced mycotoxins in fruits and vegetables, analyzes recent mycotoxin detection technologies including chromatography coupled with detector (i.e., mass, ultraviolet, fluorescence, etc.) technology, electrochemical biosensors technology and immunological techniques, as well as summarizes the degradation and detoxification technologies of mycotoxins in fruits and vegetables, including physical, chemical and biological methods. The future prospect is also proposed to provide an overview and suggestions for future mycotoxin research directions.
Collapse
Affiliation(s)
- Mina Nan
- College of Science, Gansu Agricultural University, Lanzhou 730070, China;
- Basic Experiment Teaching Center, Gansu Agricultural University, Lanzhou 730070, China
| | - Huali Xue
- College of Science, Gansu Agricultural University, Lanzhou 730070, China;
| | - Yang Bi
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, China
| |
Collapse
|
14
|
Sohrabi H, Majidi MR, Arbabzadeh O, Khaaki P, Pourmohammad S, Khataee A, Orooji Y. Recent advances in the highly sensitive determination of zearalenone residues in water and environmental resources with electrochemical biosensors. ENVIRONMENTAL RESEARCH 2022; 204:112082. [PMID: 34555403 DOI: 10.1016/j.envres.2021.112082] [Citation(s) in RCA: 54] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 08/18/2021] [Accepted: 09/16/2021] [Indexed: 06/13/2023]
Abstract
Zearalenone (ZEN), a significant class of mycotoxin which is considered as a xenoestrogen, permits, similar to natural estrogens, it's binding to the receptors of estrogen resulting in various reproductive diseases especially, hormonal misbalance. ZEN has toxic effects on human and animal health as a result of its teratogenicity, carcinogenicity, mutagenicity, nephrotoxicity, genotoxicity, and immunotoxicity. To ensure water and environmental resources safety, precise, rapid, sensitive, and reliable analytical and conventional methods can be progressed for the determination of toxins such as ZEN. Different selective nanomaterial-based compounds are used in conjunction with different analytical detection approaches to achieve this goal. The current review demonstrates the state-of-the-art advances of nanomaterial-based electrochemical sensing assays including various sensing, apta-sensing and, immunosensing studies to the highly sensitive determination of various ZEN families. At first, a concise study of the occurrence, structure, toxicity, legislations, and distribution of ZEN in monitoring has been performed. Then, different conventional and clinical techniques and procedures to sensitive and selective sensing techniques have been reviewed and the efficient comparison of them has been thoroughly discussed. This study has also summarized the salient features and the requirements for applying various sensing and biosensing platforms and diverse immobilization techniques in ZEN detection. Finally, we have defined the performance of several electrochemical sensors applying diverse recognition elements couples with nanomaterials fabricated using various recognition elements coupled with nanomaterials (metal NPs, metal oxide nanoparticles (NPs), graphene, and CNT) the issues limiting development, and the forthcoming tasks in successful construction with the applied nanomaterials.
Collapse
Affiliation(s)
- Hessamaddin Sohrabi
- Department of Analytical Chemistry, Faculty of Chemistry, University of Tabriz, 51666-16471, Tabriz, Iran
| | - Mir Reza Majidi
- Department of Analytical Chemistry, Faculty of Chemistry, University of Tabriz, 51666-16471, Tabriz, Iran
| | - Omid Arbabzadeh
- Faculty of Chemical and Petroleum Engineering, University of Tabriz, 51666-16471, Tabriz, Iran
| | - Pegah Khaaki
- Department of Biology, Faculty of Natural Science, University of Tabriz, 51666-16471, Tabriz, Iran
| | - Sajjad Pourmohammad
- Faculty of Chemical and Petroleum Engineering, University of Tabriz, 51666-16471, Tabriz, Iran
| | - Alireza Khataee
- Research Laboratory of Advanced Water and Wastewater Treatment Processes, Department of Applied Chemistry, Faculty of Chemistry, University of Tabriz, 51666-16471, Tabriz, Iran; Department of Environmental Engineering, Gebze Technical University, 41400, Gebze, Turkey.
| | - Yasin Orooji
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, 321004, China.
| |
Collapse
|
15
|
Lijalem YG, Gab-Allah MA, Choi K, Kim B. Development of isotope dilution-liquid chromatography/tandem mass spectrometry for the accurate determination of zearalenone and its metabolites in corn. Food Chem 2022; 384:132483. [PMID: 35202990 DOI: 10.1016/j.foodchem.2022.132483] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 01/12/2022] [Accepted: 02/14/2022] [Indexed: 12/26/2022]
Abstract
A method using isotope dilution-liquid chromatography-tandem mass spectrometry (ID-LC/MS/MS) was developed for the accurate determination of zearalenone (ZEN) and its five major metabolites in corn. 13C- or 2H-labeled analogues of the target mycotoxins were used as internal standards. As the immunoaffinity columns used demonstrated selectivity to a specific chiral isomer of a racemic mixture of zearalanone-d6, a clean-up cartridge without stereoselectivity (Mycosep 226 column) was selected for the same recovery of the analyte and its internal standard with adequate elimination of matrix interferences. The method demonstrated sufficient selectivity, sensitivity, accuracy and precision over a concentration range of 20-400 µg/kg. The limit of detections and limit of quantifications were 0.14-0.33 µg/kg and 0.45-1.11 µg/kg, respectively. The accuracy values were 96.7%-103.6%, with intra and inter-day precisions of less than 3% and 4%, respectively. The expanded measurement uncertainty was less than 7% (with a 95% confidence level).
Collapse
Affiliation(s)
- Yared Getachew Lijalem
- Organic Metrology Group, Division of Chemical and Biological Metrology, Korea Research Institute of Standards and Science, Daejeon 34113, South Korea; Department of Bio-Analytical Science, University of Science and Technology, Daejeon 34113, South Korea; National Metrology Institute of Ethiopia, Addis Ababa P. O. Box: 5722, Ethiopia
| | - Mohamed A Gab-Allah
- Organic Metrology Group, Division of Chemical and Biological Metrology, Korea Research Institute of Standards and Science, Daejeon 34113, South Korea; Department of Bio-Analytical Science, University of Science and Technology, Daejeon 34113, South Korea; Reference Materials Lab, National Institute of Standards, Tersa St, Haram, P. O. Box: 136, Giza 12211, Egypt
| | - Kihwan Choi
- Organic Metrology Group, Division of Chemical and Biological Metrology, Korea Research Institute of Standards and Science, Daejeon 34113, South Korea; Graduate School of Analytical Science and Technology, Chungnam National University, Daejeon 34134, South Korea.
| | - Byungjoo Kim
- Organic Metrology Group, Division of Chemical and Biological Metrology, Korea Research Institute of Standards and Science, Daejeon 34113, South Korea; Department of Bio-Analytical Science, University of Science and Technology, Daejeon 34113, South Korea.
| |
Collapse
|
16
|
Pérez-Fernández B, Muñiz ADLE. Electrochemical biosensors based on nanomaterials for aflatoxins detection: A review (2015–2021). Anal Chim Acta 2022; 1212:339658. [DOI: 10.1016/j.aca.2022.339658] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 02/09/2022] [Accepted: 02/24/2022] [Indexed: 12/25/2022]
|
17
|
Li W, Pei Y, Wang J. Development and analysis of a novel AF11-2 aptamer capable of enhancing the fluorescence of aflatoxin B1. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.01.040] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
18
|
Mousivand M, Bagherzadeh K, Anfossi L, Javan-Nikkhah M. Key criteria for engineering mycotoxin binding aptamers via computational simulations: Aflatoxin B1 as a case study. Biotechnol J 2021; 17:e2100280. [PMID: 34800084 DOI: 10.1002/biot.202100280] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Revised: 11/16/2021] [Accepted: 11/16/2021] [Indexed: 12/30/2022]
Abstract
Due to the difficulties in monoclonal antibody production specific to mycotoxins, aptameric probes have been considered as suitable alternatives. The low efficiency of the SELEX procedure in screening high affinity aptamers for binding mycotoxins as small molecules can be significantly improved through computational techniques. Previously, we designed five new aptamers to aflatoxin B1 (AFB1) based on a known aptamer sequence (Patent: PCT/CA2010/001 292, Apt1) through a genetic algorithm-based in silico maturation strategy and experimentally measured their affinity to the target toxin. Here, integrated molecular dynamic simulation (MDs) studies with molecular mechanics Poisson-Boltzmann surface area (MM-PBSA) analysis to clarify the binding modes, critical interacting nucleic bases and energy component contributions in the six AFB1-binding aptamers. The aptamer F20, which was selected in the first work, showed the best free binding energy and complex stability compared to other aptamers. The trajectory analysis revealed that AFB1 recognized F20 through the groove binding mode along with precise shape complementarity. The MD simulation results revealed that dynamic water intermediate interactions also play a key role in promoting complex stability. According to the MM-PBSA calculations, van der Waals contacts were identified as dominant energy components in all complexes. Interestingly, a high consistency is observed between the experimentally obtained binding affinities of the six aptamers with their free energy solvation. The computational findings, confirmed via previous experiments, highlighted the binding modes, the dynamic hydration of complex components and the total free interacting energy as the crucial criteria in discovering high functional aptameric probes.
Collapse
Affiliation(s)
- Maryam Mousivand
- Microbial Biotechnology Department, Agricultural Biotechnology Research Institute of Iran, Agricultural Research, Education and Extension Organization, Department of Plant Protection, College of Agricultural Sciences and Engineering, University of Tehran, Karaj, Iran
| | - Kowsar Bagherzadeh
- Stem Cell and Regenerative Medicine Research Center, Iran University of Medical Sciences, Eye Research Center, the Five Senses Health Institute, Rassoul Akram Hospital, Iran University of Medical Sciences, Tehran, Iran
| | - Laura Anfossi
- Department of Chemistry, University of Turin, Department of Plant Protection, College of Agricultural Sciences and Engineering, University of Tehran, Turin, Italy
| | - Mohammad Javan-Nikkhah
- Microbial Biotechnology Department, Agricultural Biotechnology Research Institute of Iran, Agricultural Research, Education and Extension Organization, Department of Plant Protection, College of Agricultural Sciences and Engineering, University of Tehran, Karaj, Iran
| |
Collapse
|
19
|
Nano optical and electrochemical sensors and biosensors for detection of narrow therapeutic index drugs. Mikrochim Acta 2021; 188:411. [PMID: 34741213 DOI: 10.1007/s00604-021-05003-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Accepted: 08/24/2021] [Indexed: 01/02/2023]
Abstract
For the first time, a comprehensive review is presented on the quantitative determination of narrow therapeutic index drugs (NTIDs) by nano optical and electrochemical sensors and biosensors. NTIDs have a narrow index between their effective doses and those at which they produce adverse toxic effects. Therefore, accurate determination of these drugs is very important for clinicians to provide a clear judgment about drug therapy for patients. Routine analytical techniques have limitations such as being expensive, laborious, and time-consuming, and need a skilled user and therefore the nano/(bio)sensing technology leads to high interest.
Collapse
|
20
|
Yue F, Li F, Kong Q, Guo Y, Sun X. Recent advances in aptamer-based sensors for aminoglycoside antibiotics detection and their applications. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 762:143129. [PMID: 33121792 DOI: 10.1016/j.scitotenv.2020.143129] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2020] [Revised: 10/13/2020] [Accepted: 10/14/2020] [Indexed: 05/25/2023]
Abstract
Aminoglycoside antibiotics (AAs) have been extensively applied in medical field and animal husbandry owing to desirable broad-spectrum antibacterial activity. Excessive AAs residues in the environment can be accumulated in human body through food chain and cause detrimental effect on human health. The establishment of highly specific, simple and sensitive detection methods for monitoring AAs residues is highly in demand. Aptasensor using aptamer as the biological recognition element is the efficient and promising sensing method for detection of AAs. In this review, we have made a summary of specific aptamers sequences against AAs. Subsequently, we provide a systematical and comprehensive overview of modern techniques in aptasensors for detection of AAs according to optical aptasensors as well as electrochemical aptasensors and further summarize their advantages and disadvantages to compare their applications. In addition, we present an overview of practical applications of aptasensors in sample detection of AAs. Moreover, the current challenges and future trends in this field are also included to reveal a promising perspective for developing novel aptasensors for AAs.
Collapse
Affiliation(s)
- Fengling Yue
- School of Agricultural Engineering and Food Science, Shandong University of Technology, No.12 Zhangzhou Road, Zibo 255049, Shandong Province, China; Shandong Provincial Engineering Research Center of Vegetable Safety and Quality Traceability, No. 12 Zhangzhou Road, Zibo 255049, Shandong Province, China; Zibo City Key Laboratory of Agricultural Product Safety Traceability, China
| | - Falan Li
- School of Agricultural Engineering and Food Science, Shandong University of Technology, No.12 Zhangzhou Road, Zibo 255049, Shandong Province, China; Shandong Provincial Engineering Research Center of Vegetable Safety and Quality Traceability, No. 12 Zhangzhou Road, Zibo 255049, Shandong Province, China; Zibo City Key Laboratory of Agricultural Product Safety Traceability, China
| | - Qianqian Kong
- School of Agricultural Engineering and Food Science, Shandong University of Technology, No.12 Zhangzhou Road, Zibo 255049, Shandong Province, China; Shandong Provincial Engineering Research Center of Vegetable Safety and Quality Traceability, No. 12 Zhangzhou Road, Zibo 255049, Shandong Province, China; Zibo City Key Laboratory of Agricultural Product Safety Traceability, China
| | - Yemin Guo
- School of Agricultural Engineering and Food Science, Shandong University of Technology, No.12 Zhangzhou Road, Zibo 255049, Shandong Province, China; Shandong Provincial Engineering Research Center of Vegetable Safety and Quality Traceability, No. 12 Zhangzhou Road, Zibo 255049, Shandong Province, China; Zibo City Key Laboratory of Agricultural Product Safety Traceability, China
| | - Xia Sun
- School of Agricultural Engineering and Food Science, Shandong University of Technology, No.12 Zhangzhou Road, Zibo 255049, Shandong Province, China; Shandong Provincial Engineering Research Center of Vegetable Safety and Quality Traceability, No. 12 Zhangzhou Road, Zibo 255049, Shandong Province, China; Zibo City Key Laboratory of Agricultural Product Safety Traceability, China.
| |
Collapse
|
21
|
De Rycke E, Foubert A, Dubruel P, Bol'hakov OI, De Saeger S, Beloglazova N. Recent advances in electrochemical monitoring of zearalenone in diverse matrices. Food Chem 2021; 353:129342. [PMID: 33714123 DOI: 10.1016/j.foodchem.2021.129342] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 02/02/2021] [Accepted: 02/08/2021] [Indexed: 02/06/2023]
Abstract
The current manuscript summarizes different electrochemical sensing systems developed within the last 5 years for the detection of zearalenone (ZEN) in diverse matrices such as food, feed, and biofluids. ZEN is one of the most prevalent non-steroidal mycotoxins that is often found in pre- and post-harvest crops. Crops contamination with ZEN and animal exposure to it via contaminated feed, is a global health and economic concern. The European Union has established various preventive programs to control ZEN contamination, and regulations on the maximum levels of ZEN in food and feed. Electrochemical (bio)sensors are a very promising alternative to sensitive but sophisticated and expensive chromatographic techniques. In the current review, recent developments towards electrochemical sensing of ZEN, sorted by type of transducer, their design, development, and approbation/validation are discussed, and the use of specialized electrochemical instrumentation is highlighted.
Collapse
Affiliation(s)
- Esther De Rycke
- Centre of Excellence in Mycotoxicology and Public Health, Department of Bioanalysis, Faculty of Pharmaceutical Sciences, Ghent University, Ottergemsesteenweg 460, B-9000 Ghent, Belgium; Polymer Chemistry & Biomaterials Research Group, Department of Organic and Macromolecular Chemistry, Ghent University, Krijgslaan 281, Building S4-Bis, B-9000 Ghent, Belgium
| | - Astrid Foubert
- Centre of Excellence in Mycotoxicology and Public Health, Department of Bioanalysis, Faculty of Pharmaceutical Sciences, Ghent University, Ottergemsesteenweg 460, B-9000 Ghent, Belgium
| | - Peter Dubruel
- Polymer Chemistry & Biomaterials Research Group, Department of Organic and Macromolecular Chemistry, Ghent University, Krijgslaan 281, Building S4-Bis, B-9000 Ghent, Belgium
| | - Oleg I Bol'hakov
- Nanotechnology Education and Research Center, South Ural State University, 454080 Chelyabinsk, Russia; N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 119991 Moscow, Russia
| | - Sarah De Saeger
- Centre of Excellence in Mycotoxicology and Public Health, Department of Bioanalysis, Faculty of Pharmaceutical Sciences, Ghent University, Ottergemsesteenweg 460, B-9000 Ghent, Belgium; Department of Biotechnology and Food Technology, Faculty of Science, University of Johannesburg, Doornfontein Campus, Gauteng, South Africa
| | - Natalia Beloglazova
- Centre of Excellence in Mycotoxicology and Public Health, Department of Bioanalysis, Faculty of Pharmaceutical Sciences, Ghent University, Ottergemsesteenweg 460, B-9000 Ghent, Belgium; Nanotechnology Education and Research Center, South Ural State University, 454080 Chelyabinsk, Russia.
| |
Collapse
|
22
|
A review on graphene-based electrochemical sensor for mycotoxins detection. Food Chem Toxicol 2020; 148:111931. [PMID: 33340616 DOI: 10.1016/j.fct.2020.111931] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 11/21/2020] [Accepted: 12/12/2020] [Indexed: 12/21/2022]
Abstract
This work focuses on the study of nanomaterial-based sensors for mycotoxins detection. Due to their adverse effects on humans and animals, mycotoxins are heavily regulated, and the foodstuff and feed stocks with a high probability of being contaminated are often analyzed. In this context, the recent developments in graphene-based electrochemical sensors for mycotoxins detection were examined. The mycotoxins' toxicity implications on their detection and the development of diverse recognition elements are described considering the current challenges and limitations.
Collapse
|
23
|
|
24
|
Hassan MM, Zareef M, Xu Y, Li H, Chen Q. SERS based sensor for mycotoxins detection: Challenges and improvements. Food Chem 2020; 344:128652. [PMID: 33272760 DOI: 10.1016/j.foodchem.2020.128652] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 11/12/2020] [Accepted: 11/12/2020] [Indexed: 12/31/2022]
Abstract
Surface-enhanced Raman spectroscopy (SERS) has become a growing ultrasensitive analytical technique to quantify toxic molecules in foodstuffs. Monitoring the levels of chemical contaminants not only ensures food security but also offers a guideline on the production, processing, and risk analysis of consumer's health protection. The objective of this study was to point out the possible challenges associated with the detection of mycotoxins in foodstuffs. Herein, we have discussed briefly as to selectivity, accuracy, precision, robustness, ruggedness, non-specific adsorption (NSA), cross-reactivity (for both label-free and the target analyte capture approaches like the application of antibody, aptamer, molecularly imprinted polymer (MIP), linear polymer affinity agents and/or specific surface-modified nanomaterials) and their potential solution.
Collapse
Affiliation(s)
- Md Mehedi Hassan
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Muhammad Zareef
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Yi Xu
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Huanhuan Li
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, PR China.
| | - Quansheng Chen
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, PR China.
| |
Collapse
|
25
|
Zinoubi K, Chrouda A, Soltane R, Al‐Ghamdi YO, Garallah Almalki S, Osman G, Barhoumi H, Jaffrezic Renault N. Highly Sensitive Impedimetric Biosensor Based on Thermolysin Immobilized on a GCE Modified with AuNP‐decorated Graphene for the Detection of Ochratoxin A. ELECTROANAL 2020. [DOI: 10.1002/elan.202060247] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Khaoula Zinoubi
- Laboratory of Interfaces and Advanced Materials, Faculty of Sciences University of Monastir Monastir Tunisia
| | - Amani Chrouda
- Laboratory of Interfaces and Advanced Materials, Faculty of Sciences University of Monastir Monastir Tunisia
- Department of chemistry, College of Science at Zulfi Majmaah University Zulfi 11932 Saudi Arabia
- Institute of Analytical Sciences, UMR CNRS-UCBL 5280 5 Rue la Doua 69100 Villeurbanne Cedex France
| | - Raya Soltane
- Department Faculty of Sciences of Tunis Tunis El Manar University Tunisia
- Department of Basic Sciences, Adham University college Umm Al-Qura University Adham 21971 Saudi Arabia
| | - Youssef O. Al‐Ghamdi
- Department of chemistry, College of Science at Zulfi Majmaah University Zulfi 11932 Saudi Arabia
| | - Sami Garallah Almalki
- Department of Biology, College of Science Al-zulfi Majmaah University Al-Majmaah 11952 Saudi Arabia
| | - Gamal Osman
- Department of Biology, Faculty of Applied Sciences Umm Al-Qura University Makkah Saudi Arabia
- Research Laboratories Center, Faculty of Applied Science Umm Al-Qura University Mecca Saudi Arabia
- Agricultural Genetic Engineering Research Institute (AGERI), ARC 12619 Giza Egypt
| | - Houcine Barhoumi
- Laboratory of Interfaces and Advanced Materials, Faculty of Sciences University of Monastir Monastir Tunisia
- Institute of Analytical Sciences, UMR CNRS-UCBL 5280 5 Rue la Doua 69100 Villeurbanne Cedex France
| | - Nicole Jaffrezic Renault
- Institute of Analytical Sciences, UMR CNRS-UCBL 5280 5 Rue la Doua 69100 Villeurbanne Cedex France
| |
Collapse
|
26
|
Huang XB, Wu SH, Hu HC, Sun JJ. AuNanostar@4-MBA@Au Core-Shell Nanostructure Coupled with Exonuclease III-Assisted Cycling Amplification for Ultrasensitive SERS Detection of Ochratoxin A. ACS Sens 2020; 5:2636-2643. [PMID: 32786384 DOI: 10.1021/acssensors.0c01162] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The "turn-on" mode surface-enhanced Raman scattering (SERS) aptasensor for ultrasensitive ochratoxin A (OTA) detection was developed based on the SERS "hot spots" of AuNanostar@4-MBA@Au core-shell nanostructures (AuNS@4-MBA@Au) and exonuclease III (Exo III)-assisted target cycle amplification strategy. Compared with conventional gold nanoparticles, AuNS@4-MBA@Au provides a much higher SERS enhancement factor because AuNS exhibits a larger surface roughness and the lightning rod effect, as well as an excellent electromagnetic field between the AuNS core and the Au shell, which contribute to the superstrong SERS signal. Meanwhile, Exo III-assisted target cycle amplification can be used as an effective method for the further amplified detection of OTA. Additionally, the utilization of streptavidin magnesphere paramagnetic particles offers a green, economical, and facile technology for the accumulation and separation of the signal probe AuNS@4-MBA@Au from solution. All these factors lead to a significant enhancement of detectable signals and superhigh sensitivity. As a result, the limit of detection as low as 0.25 fg mL-1 could be achieved, which was lower than that in the other reported literatures on SERS methods for OTA detection as we know. The developed SERS aptasensor also provides a promising tool for foodstuff detection.
Collapse
Affiliation(s)
- Xiao-Bin Huang
- Ministry of Education Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350108, China
| | - Shao-Hua Wu
- Ministry of Education Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350108, China
| | - Hao-Cheng Hu
- Ministry of Education Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350108, China
| | - Jian-Jun Sun
- Ministry of Education Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350108, China
| |
Collapse
|
27
|
Impedimetric Aptamer-Based Biosensors: Applications. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2020; 174:43-91. [PMID: 32313965 DOI: 10.1007/10_2020_125] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Impedimetric aptamer-based biosensors show high potential for handheld devices and point-of-care tests. In this review, we report on recent advances in aptamer-based impedimetric biosensors for applications in biotechnology. We detail on analytes relevant in medical and environmental biotechnology as well as food control, for which aptamer-based impedimetric biosensors were developed. The reviewed biosensors are examined for their performance, including sensitivity, selectivity, response time, and real sample validation. Additionally, the benefits and challenges of impedimetric aptasensors are summarized.
Collapse
|
28
|
Campanile R, Scardapane E, Forente A, Granata C, Germano R, Di Girolamo R, Minopoli A, Velotta R, Della Ventura B, Iannotti V. Core-Shell Magnetic Nanoparticles for Highly Sensitive Magnetoelastic Immunosensor. NANOMATERIALS (BASEL, SWITZERLAND) 2020; 10:E1526. [PMID: 32759707 PMCID: PMC7466411 DOI: 10.3390/nano10081526] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 07/16/2020] [Accepted: 07/30/2020] [Indexed: 12/13/2022]
Abstract
A magnetoelastic (ME) biosensor for wireless detection of analytes in liquid is described. The ME biosensor was tested against human IgG in the range 0-20 μg∙mL-1. The sensing elements, anti-human IgG produced in goat, were immobilized on the surface of the sensor by using a recently introduced photochemical immobilization technique (PIT), whereas a new amplification protocol exploiting gold coated magnetic nanoparticles (core-shell nanoparticles) is demonstrated to significantly enhance the sensitivity. The gold nanoflowers grown on the magnetic core allowed us to tether anti-human IgG to the nanoparticles to exploit the sandwich detection scheme. The experimental results show that the 6 mm × 1 mm × 30 μm ME biosensor with an amplification protocol that uses magnetic nanoparticles has a limit of detection (LOD) lower than 1 nM, works well in water, and has a rapid response time of few minutes. Therefore, the ME biosensor is very promising for real-time wireless detection of pathogens in liquids and for real life diagnostic purpose.
Collapse
Affiliation(s)
- Raffaele Campanile
- Department of Physics “E. Pancini”, University of Naples Federico II, Via Cintia 26, I-80126 Napoli, Italy; (R.C.); (E.S.); (A.F.); (A.M.); (R.V.); (B.D.V.)
- PROMETE Srl, CNR Spin off, Piazzale Tecchio, 45 80125 Napoli, Italy;
| | - Emanuela Scardapane
- Department of Physics “E. Pancini”, University of Naples Federico II, Via Cintia 26, I-80126 Napoli, Italy; (R.C.); (E.S.); (A.F.); (A.M.); (R.V.); (B.D.V.)
- PROMETE Srl, CNR Spin off, Piazzale Tecchio, 45 80125 Napoli, Italy;
| | - Antonio Forente
- Department of Physics “E. Pancini”, University of Naples Federico II, Via Cintia 26, I-80126 Napoli, Italy; (R.C.); (E.S.); (A.F.); (A.M.); (R.V.); (B.D.V.)
| | - Carmine Granata
- Institute of Applied Sciences and Intelligent Systems of the National Research Council (CNR-ISASI), Via Campi Flegrei 34, I-80078 Pozzuoli, Italy;
- Department of Mathematics and Physics-University of Campania “L. Vanvitelli”, Viale Abramo Lincoln 5, 81100 Caserta, Italy
| | - Roberto Germano
- PROMETE Srl, CNR Spin off, Piazzale Tecchio, 45 80125 Napoli, Italy;
| | - Rocco Di Girolamo
- Department of Chemistry, University of Naples “Federico II”, Via Cintia 26, I-80126 Napoli, Italy;
| | - Antonio Minopoli
- Department of Physics “E. Pancini”, University of Naples Federico II, Via Cintia 26, I-80126 Napoli, Italy; (R.C.); (E.S.); (A.F.); (A.M.); (R.V.); (B.D.V.)
| | - Raffaele Velotta
- Department of Physics “E. Pancini”, University of Naples Federico II, Via Cintia 26, I-80126 Napoli, Italy; (R.C.); (E.S.); (A.F.); (A.M.); (R.V.); (B.D.V.)
- Institute of Applied Sciences and Intelligent Systems of the National Research Council (CNR-ISASI), Via Campi Flegrei 34, I-80078 Pozzuoli, Italy;
| | - Bartolomeo Della Ventura
- Department of Physics “E. Pancini”, University of Naples Federico II, Via Cintia 26, I-80126 Napoli, Italy; (R.C.); (E.S.); (A.F.); (A.M.); (R.V.); (B.D.V.)
- Institute of Applied Sciences and Intelligent Systems of the National Research Council (CNR-ISASI), Via Campi Flegrei 34, I-80078 Pozzuoli, Italy;
| | - Vincenzo Iannotti
- Department of Physics “E. Pancini”, University of Naples Federico II, Via Cintia 26, I-80126 Napoli, Italy; (R.C.); (E.S.); (A.F.); (A.M.); (R.V.); (B.D.V.)
- Institute for Superconducting, Oxides and other Innovative Materials and Devices of the National Research Council (CNR-SPIN), Piazzale V. Tecchio 80, I-80125 Napoli, Italy
| |
Collapse
|
29
|
Caglayan MO, Şahin S, Üstündağ Z. Detection Strategies of Zearalenone for Food Safety: A Review. Crit Rev Anal Chem 2020; 52:294-313. [PMID: 32715728 DOI: 10.1080/10408347.2020.1797468] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Zearalenone (ZEN) is a toxic compound produced by the metabolism of fungi (genus Fusarium) that threaten the food and agricultural industry belonging to the in foods and feeds. ZEN has toxic effects on human and animal health due to its mutagenicity, teratogenicity, carcinogenicity, nephrotoxicity, immunotoxicity, and genotoxicity. To ensure food safety, rapid, precise, and reliable analytical methods can be developed for the detection of toxins such as ZEN. Different selective molecular diagnostic elements are used in conjunction with different detection strategies to achieve this goal. In this review, the use of electrochemical, colorimetric, fluorometric, refractometric as well as other strategies were discussed for ZEN detection. The success of the sensors in analytical performance depends on the development of receptors with increased affinity to the target. This requirement has been met with different immunoassays, aptamer-assays, and molecular imprinting techniques. The immobilization techniques and analysis strategies developed with the combination of nanomaterials provided high precision, reliability, and convenience in ZEN detection, in which electrochemical strategies perform the best.
Collapse
Affiliation(s)
| | - Samet Şahin
- Department of Bioengineering, Bilecik Şeyh Edebali University, Bilecik, Turkey
| | - Zafer Üstündağ
- Department of Chemistry, Kütahya Dumlupınar University, Kütahya, Turkey
| |
Collapse
|
30
|
Rajabnejad SH, Badibostan H, Verdian A, Karimi GR, Fooladi E, Feizy J. Aptasensors as promising new tools in bisphenol A detection - An invisible pollution in food and environment. Microchem J 2020. [DOI: 10.1016/j.microc.2020.104722] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
31
|
Pang P, Lai Y, Zhang Y, Wang H, Conlan XA, Barrow CJ, Yang W. Recent Advancement of Biosensor Technology for the Detection of Microcystin-LR. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2020. [DOI: 10.1246/bcsj.20190365] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Pengfei Pang
- National and Local Joint Engineering Research Center for Green Preparation Technology of Biobased Materials, Yunnan Minzu University, Kunming 650500, P. R. China
- Deakin University, School of Life and Environmental Sciences, Geelong, VIC 3217, Australia
| | - Yanqiong Lai
- National and Local Joint Engineering Research Center for Green Preparation Technology of Biobased Materials, Yunnan Minzu University, Kunming 650500, P. R. China
| | - Yanli Zhang
- National and Local Joint Engineering Research Center for Green Preparation Technology of Biobased Materials, Yunnan Minzu University, Kunming 650500, P. R. China
- Deakin University, School of Life and Environmental Sciences, Geelong, VIC 3217, Australia
| | - Hongbin Wang
- National and Local Joint Engineering Research Center for Green Preparation Technology of Biobased Materials, Yunnan Minzu University, Kunming 650500, P. R. China
- Deakin University, School of Life and Environmental Sciences, Geelong, VIC 3217, Australia
| | - Xavier A. Conlan
- Deakin University, School of Life and Environmental Sciences, Geelong, VIC 3217, Australia
| | - Colin J. Barrow
- Deakin University, School of Life and Environmental Sciences, Geelong, VIC 3217, Australia
| | - Wenrong Yang
- Deakin University, School of Life and Environmental Sciences, Geelong, VIC 3217, Australia
| |
Collapse
|
32
|
Lv L, Wang X. Recent Advances in Ochratoxin A Electrochemical Biosensors: Recognition Elements, Sensitization Technologies, and Their Applications. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:4769-4787. [PMID: 32243155 DOI: 10.1021/acs.jafc.0c00258] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Ochratoxin A (OTA) is a class of mycotoxin that are mainly produced by Aspergillus and Penicillium and widely found in plant origin food. OTA-contaminated foods can cause serious harm to animals and humans, while high stability of OTA makes it difficult to remove in conventional food processing. Thus, sensitive and rapid detection of OTA undoubtedly plays an important role in OTA prevention and control. In this paper, the conventional and novel methods of OTA at home and abroad are summarized and compared. The latest research progress and related applications of novel OTA electrochemical biosensors are mainly described with a new perspective. We innovatively divided the recognition element into single and combined recognition elements. Specifically, signal amplification technologies applied to the OTA electrochemical aptasensor are proposed. Furthermore, summary of the current limitations and future challenges in OTA analysis is included, which provide reference for the further research and applications.
Collapse
Affiliation(s)
- Liangrui Lv
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, China
| | - Xiaoying Wang
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, China
| |
Collapse
|
33
|
Agriopoulou S, Stamatelopoulou E, Varzakas T. Advances in Analysis and Detection of Major Mycotoxins in Foods. Foods 2020; 9:E518. [PMID: 32326063 PMCID: PMC7230321 DOI: 10.3390/foods9040518] [Citation(s) in RCA: 90] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Accepted: 04/16/2020] [Indexed: 12/19/2022] Open
Abstract
Mycotoxins are the most widely studied biological toxins, which contaminate foods at very low concentrations. This review describes the emerging extraction techniques and the current and alternatives analytical techniques and methods that have been used to successfully detect and identify important mycotoxins. Some of them have proven to be particularly effective in not only the detection of mycotoxins, but also in detecting mycotoxin-producing fungi. Chromatographic techniques such as high-performance liquid chromatography coupled with various detectors like fluorescence, diode array, UV, liquid chromatography coupled with mass spectrometry, and liquid chromatography-tandem mass spectrometry, have been powerful tools for analyzing and detecting major mycotoxins. Recent progress of the development of rapid immunoaffinity-based detection techniques such as immunoassays and biosensors, as well as emerging technologies like proteomic and genomic methods, molecular techniques, electronic nose, aggregation-induced emission dye, quantitative NMR and hyperspectral imaging for the detection of mycotoxins in foods, have also been presented.
Collapse
Affiliation(s)
| | | | - Theodoros Varzakas
- Department of Food Science and Technology, University of the Peloponnese, Antikalamos, 24100 Kalamata, Greece; (S.A.); (E.S.)
| |
Collapse
|
34
|
Zha YH, Zhou Y. Functional nanomaterials based immunological detection of aflatoxin B1: a review. WORLD MYCOTOXIN J 2020. [DOI: 10.3920/wmj2019.2504] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Aflatoxin B1 (AFB1) is highly carcinogenic, mutagenic and teratogenic. Accordingly, sensitive, rapid and cost-effective techniques for detection of AFB1 is in urgent demand for food safety and the health of consumers. In this review, we report the current state of immunoassay formats and development, mainly based on nanomaterials for determination of AFB1. Following an introduction of the field, the microplate-, membrane- and microelectrode-based immunoassays are described. The relevant mechanisms, sensitivities, superiorities and deficiencies of each format are discussed. Finally, perspectives on the future development of nanomaterials-based immunoassays for AFB1 are provided.
Collapse
Affiliation(s)
- Y.-H. Zha
- Key Laboratory of Zoonoses Research, Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun 130062, China P.R
| | - Y. Zhou
- Key Laboratory of Zoonoses Research, Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun 130062, China P.R
- College of Animal Sciences, Yangtze University, Jingzhou 434023, China P.R
| |
Collapse
|
35
|
Abstract
Background:
Highly sensitive and rapid analysis of food contaminants is of great significance
for food safety control. Aptamer is a new kind of recognition molecules which could be applied
for constructing homogeneous analysis assays, potentially achieving highly sensitive, cheap and rapid
profiling of food contaminants.
Methods:
An overview of the literature concerning the homogeneous analysis of food contaminations
based on aptamers has been reviewed (focused on the most recent literature, 2000-2018).
Results:
Attributed to aptamer’s controllability, designability and feasibility for the adoption of nucleic
acid amplification, rapid, highly sensitive homogeneous assay for various food contaminants could
be constructed. The structure-switching aptamer probe would confer quick, efficient and specific response
to target food contaminants. Besides, the capability of amplification of aptamer sequences or
nucleic acid probes would lead to highly sensitive detection.
Conclusion:
Aptamer-based homogeneous analysis methods have already been applied to detect various
food contaminations ranging from toxins, heavy metal and pesticide to allergen and pathogenic
bacteria. However, it is still a challenge to achieve robust and accurate detection of food contaminants
in complex food samples.
Collapse
Affiliation(s)
- Xuhan Xia
- College of Light Industry, Textile and Food Engineering, Healthy Food Evaluation Research Center and Key Laboratory of Food Science and Technology of Ministry of Education of Sichuan Province, Sichuan University, Chengdu 610065, China
| | - Qiang He
- College of Light Industry, Textile and Food Engineering, Healthy Food Evaluation Research Center and Key Laboratory of Food Science and Technology of Ministry of Education of Sichuan Province, Sichuan University, Chengdu 610065, China
| | - Yi Dong
- College of Light Industry, Textile and Food Engineering, Healthy Food Evaluation Research Center and Key Laboratory of Food Science and Technology of Ministry of Education of Sichuan Province, Sichuan University, Chengdu 610065, China
| | - Ruijie Deng
- College of Light Industry, Textile and Food Engineering, Healthy Food Evaluation Research Center and Key Laboratory of Food Science and Technology of Ministry of Education of Sichuan Province, Sichuan University, Chengdu 610065, China
| | - Jinghong Li
- Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Department of Chemistry, Tsinghua University, Beijing 100084, China
| |
Collapse
|
36
|
Li Y, Zhang N, Wang H, Zhao Q. An immunoassay for ochratoxin A using tetramethylrhodamine-labeled ochratoxin A as a probe based on a binding-induced change in fluorescence intensity. Analyst 2020; 145:651-655. [DOI: 10.1039/c9an01879d] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
In an immunoassay, ochratoxin A (OTA) competitively displaces the bound tetramethylrhodamine (TMR)-OTA fluorescent probe from the antibody, causing a decrease in fluorescence.
Collapse
Affiliation(s)
- Yapiao Li
- State Key Laboratory of Environmental Chemistry and Ecotoxicology
- Research Center for Eco-Environmental Sciences
- Chinese Academy of Sciences
- Beijing 100085
- China
| | - Ning Zhang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology
- Research Center for Eco-Environmental Sciences
- Chinese Academy of Sciences
- Beijing 100085
- China
| | - Hailin Wang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology
- Research Center for Eco-Environmental Sciences
- Chinese Academy of Sciences
- Beijing 100085
- China
| | - Qiang Zhao
- State Key Laboratory of Environmental Chemistry and Ecotoxicology
- Research Center for Eco-Environmental Sciences
- Chinese Academy of Sciences
- Beijing 100085
- China
| |
Collapse
|
37
|
Wang Y, Zhao G, Wang H, Zhang Y, Zhang N, Wei D, Feng R, Wei Q. Label-free electrochemical immunosensor based on biocompatible nanoporous Fe3O4and biotin–streptavidin system for sensitive detection of zearalenone. Analyst 2020; 145:1368-1375. [DOI: 10.1039/c9an02543j] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
In this study, a sensitive label-free electrochemical immunosensor was designed based on nanoporous Fe3O4and a biotin–streptavidin system to specifically detect zearalenone (ZEN).
Collapse
Affiliation(s)
- Yaoguang Wang
- Shandong Provincial Key Laboratory of Molecular Engineering
- School of Chemistry and Pharmaceutical Engineering
- Qilu University of Technology (Shandong Academy of Sciences)
- Jinan 250353
- China
| | - Guanhui Zhao
- Collaborative Innovation Center for Green Chemical Manufacturing and Accurate Detection
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong
- School of Chemistry and Chemical Engineering
- University of Jinan
- Jinan 250022
| | - Huan Wang
- Collaborative Innovation Center for Green Chemical Manufacturing and Accurate Detection
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong
- School of Chemistry and Chemical Engineering
- University of Jinan
- Jinan 250022
| | - Yong Zhang
- Collaborative Innovation Center for Green Chemical Manufacturing and Accurate Detection
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong
- School of Chemistry and Chemical Engineering
- University of Jinan
- Jinan 250022
| | - Nuo Zhang
- Collaborative Innovation Center for Green Chemical Manufacturing and Accurate Detection
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong
- School of Chemistry and Chemical Engineering
- University of Jinan
- Jinan 250022
| | - Dong Wei
- School of Water Conservancy and Environment
- University of Jinan
- Jinan 250022
- China
| | - Rui Feng
- School of Water Conservancy and Environment
- University of Jinan
- Jinan 250022
- China
- Collaborative Innovation Center for Green Chemical Manufacturing and Accurate Detection
| | - Qin Wei
- Collaborative Innovation Center for Green Chemical Manufacturing and Accurate Detection
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong
- School of Chemistry and Chemical Engineering
- University of Jinan
- Jinan 250022
| |
Collapse
|
38
|
Peles F, Sipos P, Győri Z, Pfliegler WP, Giacometti F, Serraino A, Pagliuca G, Gazzotti T, Pócsi I. Adverse Effects, Transformation and Channeling of Aflatoxins Into Food Raw Materials in Livestock. Front Microbiol 2019; 10:2861. [PMID: 31921041 PMCID: PMC6917664 DOI: 10.3389/fmicb.2019.02861] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Accepted: 11/26/2019] [Indexed: 01/18/2023] Open
Abstract
Aflatoxins are wide-spread harmful carcinogenic secondary metabolites produced by Aspergillus species, which cause serious feed and food contaminations and affect farm animals deleteriously with acute or chronic manifestations of mycotoxicoses. On farm, both pre-harvest and post-harvest strategies are applied to minimize the risk of aflatoxin contaminations in feeds. The great economic losses attributable to mycotoxin contaminations have initiated a plethora of research projects to develop new, effective technologies to prevent the highly toxic effects of these secondary metabolites on domestic animals and also to block the carry-over of these mycotoxins to humans through the food chain. Among other areas, this review summarizes the latest findings on the effects of silage production technologies and silage microbiota on aflatoxins, and it also discusses the current applications of probiotic organisms and microbial products in feeding technologies. After ingesting contaminated foodstuffs, aflatoxins are metabolized and biotransformed differently in various animals depending on their inherent and acquired physiological properties. These mycotoxins may cause primary aflatoxicoses with versatile, species-specific adverse effects, which are also dependent on the susceptibility of individual animals within a species, and will be a function of the dose and duration of aflatoxin exposures. The transfer of these undesired compounds from contaminated feed into food of animal origin and the aflatoxin residues present in foods become an additional risk to human health, leading to secondary aflatoxicoses. Considering the biological transformation of aflatoxins in livestock, this review summarizes (i) the metabolism of aflatoxins in different animal species, (ii) the deleterious effects of the mycotoxins and their derivatives on the animals, and (iii) the major risks to animal health in terms of the symptoms and consequences of acute or chronic aflatoxicoses, animal welfare and productivity. Furthermore, we traced the transformation and channeling of Aspergillus-derived mycotoxins into food raw materials, particularly in the case of aflatoxin contaminated milk, which represents the major route of human exposure among animal-derived foods. The early and reliable detection of aflatoxins in feed, forage and primary commodities is an increasingly important issue and, therefore, the newly developed, easy-to-use qualitative and quantitative aflatoxin analytical methods are also summarized in the review.
Collapse
Affiliation(s)
- Ferenc Peles
- Institute of Food Science, Faculty of Agricultural and Food Sciences and Environmental Management, University of Debrecen, Debrecen, Hungary
| | - Péter Sipos
- Institute of Nutrition, University of Debrecen, Debrecen, Hungary
| | - Zoltán Győri
- Institute of Nutrition, University of Debrecen, Debrecen, Hungary
| | - Walter P. Pfliegler
- Department of Molecular Biotechnology and Microbiology, Institute of Biotechnology, Faculty of Science and Technology, University of Debrecen, Debrecen, Hungary
| | - Federica Giacometti
- Department of Veterinary Medical Sciences, University of Bologna, Bologna, Italy
| | - Andrea Serraino
- Department of Veterinary Medical Sciences, University of Bologna, Bologna, Italy
| | - Giampiero Pagliuca
- Department of Veterinary Medical Sciences, University of Bologna, Bologna, Italy
| | - Teresa Gazzotti
- Department of Veterinary Medical Sciences, University of Bologna, Bologna, Italy
| | - István Pócsi
- Department of Molecular Biotechnology and Microbiology, Institute of Biotechnology, Faculty of Science and Technology, University of Debrecen, Debrecen, Hungary
| |
Collapse
|
39
|
Goud KY, Reddy KK, Satyanarayana M, Kummari S, Gobi KV. A review on recent developments in optical and electrochemical aptamer-based assays for mycotoxins using advanced nanomaterials. Mikrochim Acta 2019; 187:29. [PMID: 31813061 DOI: 10.1007/s00604-019-4034-0] [Citation(s) in RCA: 81] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2019] [Accepted: 11/15/2019] [Indexed: 12/12/2022]
Abstract
This review (with 163 refs) covers the recent developments of nanomaterial-based optical and electrochemical sensors for mycotoxins. The review starts with a brief discussion on occurrence, distribution, toxicity of mycotoxins and the legislations in monitoring their levels. It further outlines the research methods, various recognition matrices and the strategies involved in the development of highly sensitive and selective sensor systems. It also points out the salient features and importance of aptasensors in the detection of mycotoxins along with the different immobilization methods of aptamers. The review meticulously discusses the performance of different optical and electrochemical sensors fabricated using aptamers coupled with nanomaterials (CNT, graphene, metal nanoparticles and metal oxide nanoparticles). The review addresses the limitations in the current developments as well as the future challenges involved in the successful construction of aptasensors with the functionalized nanomaterials. Graphical abstract Recent developments in nanomaterial based aptasensors for mycotoxins are summarized. Specifically, the efficiency of the nanomaterial coupled aptasensors (such as CNT, graphene, metal nanoparticles and metal oxide nanoparticles) in optical and electrochemical methods are discussed.
Collapse
Affiliation(s)
- K Yugender Goud
- Department of NanoEngineering, University of California San Diego, La Jolla, CA, 92093, USA.
| | - K Koteshwara Reddy
- Department of Chemistry, National Institute of Technology, Warangal, Telangana, 506004, India
| | - M Satyanarayana
- Electrical and Computer Engineering, Iowa State University, Ames, IA, 50011, USA
| | - Shekher Kummari
- Department of Chemistry, National Institute of Technology, Warangal, Telangana, 506004, India
| | - K Vengatajalabathy Gobi
- Department of Chemistry, National Institute of Technology, Warangal, Telangana, 506004, India.
| |
Collapse
|
40
|
Zhao L, Huang Y, Qi X, Yan X, Wang S, Liang X. Nanotetrahedron-assisted electrochemical aptasensor with cooperatively-folding aptamer chimera for sensitive and selective detection of lysozyme in red wines. Anal Chim Acta 2019; 1095:172-178. [PMID: 31864619 DOI: 10.1016/j.aca.2019.10.017] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Revised: 10/09/2019] [Accepted: 10/11/2019] [Indexed: 02/07/2023]
Abstract
Although aptamers show great potential in the field of analytical chemistry, their intrinsic shortcomings of relatively weak affinity and selectivity in complex working environment limit their applicability to real analysis, because the flexibility of aptamers makes the specific aptatopes (i.e., binding sites for targets) in the conformational structure unstable and deficient. Herein, an anti-lysozyme aptamer and lysozyme were chosen as models. An aptamer chimera which could cooperatively fold to provide stable aptatopes for lysozyme was designed for improvement of the anti-lysozyme aptamers' recognition ability, and an electrochemical aptasensor was then developed based on the aptamer chimera, with assistance of a rigid DNA nanotetrahedron as a spacer to orientate the aptamer chimera on the electrodes. The nanotetrahedron-aptamer chimera-based aptasensor presented highly sensitive and selective detection towards lysozyme in red wines, furnishing a 42-fold lower LOD (17.9 pmol L-1) and better selectivity than that of the aptasensor with the original aptamer. Moreover, the developed aptasensor was characterized by good recovery (91.3-109.0%), good accuracy, repeatability and stability, indicating the excellent practical applicability of the cooperatively-folding aptamer chimera in real world. This proof-of-concept study can be referred for any other aptamers, analytes, and samples.
Collapse
Affiliation(s)
- Lianhui Zhao
- College of Food Science and Engineering, Ocean University of China, Qingdao, 266003, China
| | - Yunfei Huang
- College of Food Science and Engineering, Ocean University of China, Qingdao, 266003, China
| | - Xiaoyan Qi
- College of Food Science and Engineering, Ocean University of China, Qingdao, 266003, China
| | - Xiaochen Yan
- College of Food Science and Engineering, Ocean University of China, Qingdao, 266003, China
| | - Sai Wang
- College of Food Science and Engineering, Ocean University of China, Qingdao, 266003, China.
| | - Xingguo Liang
- College of Food Science and Engineering, Ocean University of China, Qingdao, 266003, China; Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266000, China
| |
Collapse
|
41
|
|
42
|
Meija R, Livshits AI, Kosmaca J, Jasulaneca L, Andzane J, Biswas S, Holmes JD, Erts D. Resonance assisted jump-in voltage reduction for electrostatically actuated nanobeam-based gateless NEM switches. NANOTECHNOLOGY 2019; 30:385203. [PMID: 31216518 DOI: 10.1088/1361-6528/ab2b11] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Electrostatically actuated nanobeam-based electromechanical switches have shown promise for versatile novel applications, such as low power devices. However, their widespread use is restricted due to poor reliability resulting from high jump-in voltages. This article reports a new method for lowering the jump-in voltage by inducing mechanical oscillations in the active element during the switching ON process, reducing the jump-in voltage by more than three times. Ge0.91Sn0.09 alloy and Bi2Se3 nanowire-based nanoelectromechanical switches were constructed in situ to demonstrate the operation principles and advantages of the proposed method.
Collapse
Affiliation(s)
- R Meija
- Institute of Chemical Physics, University of Latvia, Latvia
| | | | | | | | | | | | | | | |
Collapse
|
43
|
Wang C, Li Y, Zhao Q. A signal-on electrochemical aptasensor for rapid detection of aflatoxin B1 based on competition with complementary DNA. Biosens Bioelectron 2019; 144:111641. [PMID: 31494505 DOI: 10.1016/j.bios.2019.111641] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Revised: 08/21/2019] [Accepted: 08/26/2019] [Indexed: 12/20/2022]
Abstract
Aflatoxin B1 (AFB1) is the most toxic mycotoxin, causing harmful effects on human and animal health, and the rapid and sensitive detection of AFB1 is highly demanded. We developed a simple electrochemical aptasensor achieving rapid detection of aflatoxin B1 (AFB1). A short anti-AFB1 aptamer having a methylene blue (MB) redox tag at the 3'-end was immobilized on the surface of a gold electrode. In the absence of AFB1, a complementary DNA (cDNA) strand hybridized with the MB-labeled aptamer, causing MB apart from the electrode surface and low current of MB. In the presence of AFB1, AFB1 competed with the cDNA in the binding to the MB-labeled aptamer, and the aptamer-AFB1 binding caused formation of a hairpin structure, making the MB close to the electrode surface and current of MB increase. Under optimized conditions, we achieved detection of AFB1 over dynamic concentration range of 2 nM-4 μM by using this signal-on electrochemical aptasensor. This method only required a simple 5-min incubation of sample solution prior to rapid electrochemical sensing, more rapid than other electrochemical aptasensors. The sensor could be well regenerated and reused. This sensor allowed to detect AFB1 spiked in 20-fold diluted beer and 50-fold diluted white wine, respectively. It shows potential for detection of AFB1 in wide applications.
Collapse
Affiliation(s)
- Chao Wang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yapiao Li
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Qiang Zhao
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
44
|
Development and Application of an Optical Biosensor Immunoassay for Aflatoxin M1 in Bovine Milk. FOOD ANAL METHOD 2019. [DOI: 10.1007/s12161-019-01621-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
45
|
|
46
|
Selvolini G, Lettieri M, Tassoni L, Gastaldello S, Grillo M, Maran C, Marrazza G. Electrochemical enzyme-linked oligonucleotide array for aflatoxin B 1 detection. Talanta 2019; 203:49-57. [PMID: 31202349 DOI: 10.1016/j.talanta.2019.05.044] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Revised: 05/07/2019] [Accepted: 05/09/2019] [Indexed: 01/21/2023]
Abstract
In this work, an electrochemical enzyme-linked oligonucleotide array to achieve simple and rapid multidetection of aflatoxin B1 (AFB1) is presented. The assay is based on a competitive format and disposable screen-printed cells (SPCs). Firstly, the electrodeposition of poly(aniline-anthranilic acid) copolymer (PANI-PAA) on graphite screen-printed working electrodes was performed by means of cyclic voltammetry (CV). Aflatoxin B1 conjugated with bovine serum albumin (AFB1-BSA) was then immobilized by covalent binding on PANI-PAA copolymer. After performing the affinity reaction between AFB1 and the biotinylated DNA-aptamer (apt-BIO), the solution was dropped on the modified SPCs and the competition was carried out. The biotinylated complexes formed onto the sensor surface were coupled with a streptavidin-alkaline phosphatase conjugate. 1-naphthyl phosphate was used as enzymatic substrate; the electroactive product was detected by differential pulse voltammetry (DPV). The response of the enzyme-linked oligonucleotide assay was signal-off, according to the competitive format. A dose-response curve was obtained between 0.1 ng mL-1 and 10 ng mL-1 and a limit of detection of 0.086 ng mL-1 was achieved. Finally, preliminary experiments in maize flour samples spiked with AFB1 were also performed.
Collapse
Affiliation(s)
- Giulia Selvolini
- Department of Chemistry "Ugo Schiff", University of Florence, Via della Lastruccia 3, 50019, Sesto Fiorentino, Florence, Italy
| | - Mariagrazia Lettieri
- Department of Chemistry "Ugo Schiff", University of Florence, Via della Lastruccia 3, 50019, Sesto Fiorentino, Florence, Italy
| | - Luca Tassoni
- ATPr&d S.r.l, Via Ca' Marzare 3, 36043, Camisano Vicentino (VI), Italy
| | | | - Maria Grillo
- ATPr&d S.r.l, Via Ca' Marzare 3, 36043, Camisano Vicentino (VI), Italy
| | - Claudio Maran
- ATPr&d S.r.l, Via Ca' Marzare 3, 36043, Camisano Vicentino (VI), Italy
| | - Giovanna Marrazza
- Department of Chemistry "Ugo Schiff", University of Florence, Via della Lastruccia 3, 50019, Sesto Fiorentino, Florence, Italy; Istituto Nazionale Biostrutture e Biosistemi, Viale delle Medaglie D'Oro 305, 00136 Rome, Italy.
| |
Collapse
|
47
|
Wei F, Liu X, Liao X, Shi L, Zhang S, Lu J, Zhou L, Kong W. Simultaneous determination of 19 mycotoxins in lotus seed using a multimycotoxin UFLC-MS/MS method. J Pharm Pharmacol 2019; 71:1172-1183. [DOI: 10.1111/jphp.13101] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Accepted: 04/07/2019] [Indexed: 01/26/2023]
Abstract
Abstract
Objectives
In relevance to the internal components and improper environmental conditions, lotus seeds are susceptible to fungal contamination and mycotoxins residue, leading to harmful impacts on the quality and safety, as well as their pharmaceutical efficacy and clinical use. It is necessary and urgent to assess various mycotoxins residue in lotus seeds. This study aimed to develop a sensitive method for accurate assessment of multimycotoxin residues in lotus seeds.
Methods
A simple and reliable modified ultrasonication-assisted extraction, QuEChERS purification based ultrafast liquid chromatography tandem mass spectrometry (UFLC-MS/MS) method was successfully developed for ultrasensitive determination of 19 multiclass mycotoxins in starch-rich lotus seeds. Four extraction modes and three clean-up sorbents for improving the recoveries of mycotoxins were optimized. Limits of detection (LODs) and quantification, linearity, precision, accuracy, and matrix effect were studied for method validation. For simultaneous qualitation and quantification, the 19 chemically diversified mycotoxins were well separated on a CAPCELL CORE C18 column (100 mm × 2.1 mm, 2.7 μm) and detected in positive/negative electrospray ionization mode within 7 min.
Key findings
The validated method exhibited satisfactory linearity (r > 0.995), ultragood selectivity (LODs of 0.1–15.0 μg/kg), excellent precision (RSDs <13.0%) and convincing accuracy (recoveries between 79.4% and 131.6% with RSDs <14.4%). Matrix effect, between 54.5% and 113.6%, appeared especially for aflatoxins B1 and B2, deoxynivalenol and T-2 toxins. Matrix-matched curve-based quantification showed that 26 (57.8%) out of 45 lotus seed samples were contaminated with one or more mycotoxins, and ochratoxin A, aflatoxin B2, aflatoxin B1 and citrinin were the most prevalent mycotoxins.
Conclusions
This study reports for the first time the incidence of a wide range of 19 mycotoxins in lotus seeds and the proposed method will get broad application for more trace components in other complex matrices.
Collapse
Affiliation(s)
- Fang Wei
- Pharmacy College, Jinzhou Medical University, Jinzhou, China
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Xiaofei Liu
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Xiaofang Liao
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Linchun Shi
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Shuwei Zhang
- The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Jinghua Lu
- Pharmacy College, Jinzhou Medical University, Jinzhou, China
| | - Lidong Zhou
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Weijun Kong
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| |
Collapse
|
48
|
Tan H, Ma L, Guo T, Zhou H, Chen L, Zhang Y, Dai H, Yu Y. A novel fluorescence aptasensor based on mesoporous silica nanoparticles for selective and sensitive detection of aflatoxin B 1. Anal Chim Acta 2019; 1068:87-95. [PMID: 31072481 DOI: 10.1016/j.aca.2019.04.014] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Revised: 03/13/2019] [Accepted: 04/08/2019] [Indexed: 11/27/2022]
Abstract
Based on the mesoporous silica nanoparticles (MSN), a novel, simple and label-free aptamer biosensor was designed for the detection of aflatoxin B1 (AFB1). Here, the aptamers were used as molecular recognition probes and "gated molecules" while Rh6G was loaded into the interior of the particles as the signal probe. In the absence of AFB1, the "gate" was closed to prevent the leakage of the signal probe because of the immobilization of aptamers on the surface of MSN-NH2. With the presence of AFB1, the "gate" could be opened to release the signal probe for the specifical binding of aptamers to AFB1. Our results showed that the fluorescence intensity was positively correlated with the concentration of AFB1 (0.5-50 ng mL-1), with the detection limit as low as 0.13 ng mL-1. What's more, this design provides a new approach for rapid, sensitive and selective detection based on aptamers and it could be applied to numerous other analytes if appropriate aptamers are available.
Collapse
Affiliation(s)
- Hongxia Tan
- College of Food Science, Southwest University, Chongqing, 400715, China
| | - Liang Ma
- College of Food Science, Southwest University, Chongqing, 400715, China.
| | - Ting Guo
- College of Food Science, Southwest University, Chongqing, 400715, China
| | - Hongyuan Zhou
- College of Food Science, Southwest University, Chongqing, 400715, China
| | - Lu Chen
- College of Food Science, Southwest University, Chongqing, 400715, China
| | - Yuhao Zhang
- College of Food Science, Southwest University, Chongqing, 400715, China
| | - Hongjie Dai
- College of Food Science, Southwest University, Chongqing, 400715, China
| | - Yong Yu
- College of Food Science, Southwest University, Chongqing, 400715, China
| |
Collapse
|
49
|
Abstract
Modern analysis of food and feed is mostly focused on development of fast and reliable portable devices intended for field applications. In this review, electrochemical biosensors based on immunological reactions and aptamers are considered in the determination of mycotoxins as one of most common contaminants able to negatively affect human health. The characteristics of biosensors are considered from the point of view of general principles of bioreceptor implementation and signal transduction providing sub-nanomolar detection limits of mycotoxins. Moreover, the modern trends of bioreceptor selection and modification are discussed as well as future trends of biosensor development for mycotoxin determination are considered.
Collapse
|
50
|
Transformation Products of Organic Contaminants and Residues-Overview of Current Simulation Methods. Molecules 2019; 24:molecules24040753. [PMID: 30791496 PMCID: PMC6413221 DOI: 10.3390/molecules24040753] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Revised: 02/14/2019] [Accepted: 02/16/2019] [Indexed: 01/27/2023] Open
Abstract
The formation of transformation products (TPs) from contaminants and residues is becoming an increasing focus of scientific community. All organic compounds can form different TPs, thus demonstrating the complexity and interdisciplinarity of this topic. The properties of TPs could stand in relation to the unchanged substance or be more harmful and persistent. To get important information about the generated TPs, methods are needed to simulate natural and manmade transformation processes. Current tools are based on metabolism studies, photochemical methods, electrochemical methods, and Fenton’s reagent. Finally, most transformation processes are based on redox reactions. This review aims to compare these methods for structurally different compounds. The groups of pesticides, pharmaceuticals, brominated flame retardants, and mycotoxins were selected as important residues/contaminants relating to their worldwide occurrence and impact to health, food, and environmental safety issues. Thus, there is an increasing need for investigation of transformation processes and identification of TPs by fast and reliable methods.
Collapse
|