1
|
Ghaedamini H, Kim DS. A non-enzymatic hydrogen peroxide biosensor based on cerium metal-organic frameworks, hemin, and graphene oxide composite. Bioelectrochemistry 2025; 161:108823. [PMID: 39332214 DOI: 10.1016/j.bioelechem.2024.108823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 09/11/2024] [Accepted: 09/18/2024] [Indexed: 09/29/2024]
Abstract
This study presents the development of a novel non-enzymatic electrochemical biosensor for the real-time detection of hydrogen peroxide (H2O2) based on a composite of cerium metal-organic frameworks (Ce-MOFs), hemin, and graphene oxide (GO). The Ce-MOFs served as an efficient matrix for hemin encapsulation, while GO enhanced the conductivity of the composite. Characterization techniques including scanning electron microscopy (SEM), X-ray diffraction (XRD), Fourier-transform infrared (FTIR) spectroscopy, UV-vis spectroscopy, and thermogravimetric analysis (TGA) confirmed the successful integration of hemin into the Ce-MOFs. The Ce-MOFs@hemin/GO-modified sensor demonstrated sensitive H2O2 detection due to the exceptional electrocatalytic activity of Ce-MOFs@hemin and the high conductivity of GO. This biosensor exhibited a linear response to H2O2 concentrations from 0.05 to 10 mM with a limit of detection (LOD) of 9.3 μM. The capability of the biosensor to detect H2O2 released from human prostate carcinoma cells was demonstrated, highlighting its potential for real-time monitoring of cellular oxidative stress in complex biological environments. To further assess its practical applicability, the sensor was tested in human serum samples, yielding promising results with recovery values ranging from 94.50 % to 103.29 %. In addition, the sensor showed excellent selectivity against common interfering compounds due to the outstanding peroxidase-like activity of the composite.
Collapse
Affiliation(s)
| | - Dong-Shik Kim
- Department of Chemical Engineering, University of Toledo, Toledo, OH 43606, USA.
| |
Collapse
|
2
|
Kim HS, Ahn K, Han BY, Haque AMJ, Kim S, Kim S, Wee Y, Kim J. Conductive single enzyme nanocomposites prepared by in-situ growth of nanoscale polyaniline for high performance enzymatic bioelectrode. Biosens Bioelectron 2025; 267:116841. [PMID: 39406565 DOI: 10.1016/j.bios.2024.116841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 10/03/2024] [Accepted: 10/04/2024] [Indexed: 11/08/2024]
Abstract
Enzyme-based electrochemical biosensors hold great promise for applications in health/disease monitoring, drug discovery, and environmental monitoring. However, inherently non-conductive nature of proteinaceous enzymes often hampers effective electron transfer at enzyme-electrode interface, limiting biosensor performance of enzyme bioelectrodes. To address this problem, we present an approach to synthesize polyaniline (PAN)-based conductive single enzyme nanocomposites of glucose oxidase (GOx) (denoted as PAN-GOx). To prevent multimerization of enzymes during nanocomposite synthesis and enable single enzyme wrapping, we activate GOx surface with phenylamine groups based on the programmed diffusion of reactants in the reaction solution. Subsequent in-situ polymerization enables the synthesis of nanoscale conductive PAN layer (∼2.7 nm thickness) grafted from individual GOx molecule. PAN-GOx retains 83% and 74% of its specific activity and catalytic efficiency, respectively, compared to free GOx, while demonstrating a ∼500% improved conductivity. Furthermore, PAN-GOx-based glucose biosensors show an approximately 16- and 3-fold higher sensitivity compared to biosensors prepared by using free GOx and a mixture of PAN and GOx, respectively. This study provides a facile method to fabricate conductive single enzyme nanocomposites with enhanced electron transfer, which can potentially be further modified and/or compounded with conductive materials for demonstrating high performance enzymatic bioelectrodes.
Collapse
Affiliation(s)
- Han Sol Kim
- Department of NanoEngineering, University of California San Diego, 9500 Gilman Dr., La Jolla, CA, 92039, USA
| | - Kyungmin Ahn
- Department of Chemical and Biological Engineering, Korea University, Seoul, 02841, South Korea
| | - Byeol Yi Han
- Department of Chemical and Biological Engineering, Korea University, Seoul, 02841, South Korea
| | | | - Sujin Kim
- Department of Chemical and Biological Engineering, Korea University, Seoul, 02841, South Korea
| | - Seungkeun Kim
- Department of Chemical and Biological Engineering, Korea University, Seoul, 02841, South Korea
| | - Youngho Wee
- Department of Chemical and Biological Engineering, Korea University, Seoul, 02841, South Korea
| | - Jungbae Kim
- Department of Chemical and Biological Engineering, Korea University, Seoul, 02841, South Korea.
| |
Collapse
|
3
|
Lee MJ, Shin JH, Jung SH, Oh BK. Recent Advances in Biosensors Using Enzyme-Stabilized Gold Nanoclusters. BIOSENSORS 2024; 15:2. [PMID: 39852053 PMCID: PMC11763740 DOI: 10.3390/bios15010002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Revised: 12/20/2024] [Accepted: 12/20/2024] [Indexed: 01/26/2025]
Abstract
Recently, gold nanoclusters (AuNCs) have been widely used in biological applications due to their ultrasmall size, ranging within a few nanometers; large specific surface area; easy functionalization; unique fluorescence properties; and excellent conductivity. However, because they are unstable in solution, AuNCs require stabilization by using ligands such as dendrimers, peptides, DNA, and proteins. As a result, the properties of AuNCs and their formation are determined by the ligand, so the selection of the ligand is important. Of the many ligands implemented, enzyme-stabilized gold nanoclusters (enzyme-AuNCs) have attracted increasing attention for biosensor applications because of the excellent optical/electrochemical properties of AuNCs and the highly target-specific reactions of enzymes. In this review, we explore how enzyme-AuNCs are prepared, their properties, and the various types of enzyme-AuNC-based biosensors that use optical and electrochemical detection techniques. Finally, we discuss the current challenges and prospects of enzyme-AuNCs in biosensing applications. We expect this review to provide interdisciplinary knowledge about the application of enzyme-AuNC-based materials within the biomedical and environmental fields.
Collapse
Affiliation(s)
| | | | | | - Byung-Keun Oh
- Department of Chemical and Biomolecular Engineering, Sogang University, Seoul 04107, Republic of Korea; (M.-J.L.); (J.-H.S.); (S.-H.J.)
| |
Collapse
|
4
|
Göbel G, Müller F, Talke A, Ahnert U, Lisdat F. Qualitative and quantitative protease activity tests based on protein degradation in three-dimensional structures. Bioelectrochemistry 2024; 160:108775. [PMID: 39003949 DOI: 10.1016/j.bioelechem.2024.108775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 06/27/2024] [Accepted: 07/04/2024] [Indexed: 07/16/2024]
Abstract
The pattern of the activity of proteases is related to distinct physiological states of living organisms. Often activity changes of a certain protease can be assigned to a specific disease. Hence, they are useful biomarkers and a simple and fast determination method of their activity could be a valuable tool for the efficient monitoring of numerous diseases. Here, two different methods for the qualitative and quantitative determination of protease activity are demonstrated using the model system of proteinase K. The first test system is based on a protein-modified and colored 3D silica structure that changes color when exposed to the enzyme. This method has also been used for the detection of matrix metallo-protease 2 (MMP2) with gelatine as protease substrate on the plates. The second detection system uses the decrease in the voltammetric signal of a cytochrome c/DNA multilayer electrode after incubation with a protease to quantitatively determine its proteolytic activity. While activities down to 0.15 U/ml can be detected with the first method, the second one provides detection limits of about 0.03U/ml (for proteinase K.) The functionality of both systems can be demonstrated and ways for further enhancement of sensitivity have been elucidated.
Collapse
Affiliation(s)
- G Göbel
- Biosystems Technology, Institute of Life Sciences and Biomedical Technologies, Technical University Wildau, Germany.
| | - F Müller
- Biosystems Technology, Institute of Life Sciences and Biomedical Technologies, Technical University Wildau, Germany
| | - A Talke
- BioTeZ Berlin Buch GmbH, Berlin, Germany
| | - U Ahnert
- BioTeZ Berlin Buch GmbH, Berlin, Germany
| | - F Lisdat
- Biosystems Technology, Institute of Life Sciences and Biomedical Technologies, Technical University Wildau, Germany.
| |
Collapse
|
5
|
Song C, Guo J, Wang Y, Xiang H, Yang Y. Electrochemical Glucose Sensors: Classification, Catalyst Innovation, and Sampling Mode Evolution. Biotechnol J 2024; 19:e202400349. [PMID: 39385538 DOI: 10.1002/biot.202400349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 08/26/2024] [Accepted: 09/12/2024] [Indexed: 10/12/2024]
Abstract
Glucose sensors are essential tools for monitoring blood glucose concentration in diabetic patients. In recent years, with the increasing number of individuals suffering from diabetes, blood glucose monitoring has become extremely necessary, which expedites the iteration and upgrade of glucose sensors greatly. Currently, two main types of glucose sensors are available for blood glucose testing: enzyme-based glucose sensor (EBGS) and enzyme-free glucose sensor (EFGS). For EBGS, several progresses have been made to comprehensively improve detection performance, ranging from enhancing enzyme activity, thermostability, and electron transfer properties, to introducing new materials with superior properties. For EFGS, more and more new metallic materials and their oxides are being applied to further optimize its blood glucose monitoring. Here the latest progress of electrochemical glucose sensors, their manufacturing methods, electrode materials, electrochemical parameters, and applications were summarized, the development glucose sensors with various noninvasive sampling modes were also compared.
Collapse
Affiliation(s)
- Chenyang Song
- School of Bioengineering, Zunyi Medical University Zhuhai Campus, Zhuhai, Guangdong, China
| | - Jian Guo
- School of Bioengineering, Zunyi Medical University Zhuhai Campus, Zhuhai, Guangdong, China
| | - Yuhan Wang
- School of Bioengineering, Zunyi Medical University Zhuhai Campus, Zhuhai, Guangdong, China
| | - Hongying Xiang
- Clinical Laboratory, Guizhou Provincial People's Hospital, Guiyang, Guizhou, China
| | - Yufeng Yang
- School of Bioengineering, Zunyi Medical University Zhuhai Campus, Zhuhai, Guangdong, China
| |
Collapse
|
6
|
Probst D, Batchu K, Younce JR, Sode K. Levodopa: From Biological Significance to Continuous Monitoring. ACS Sens 2024; 9:3828-3839. [PMID: 39047295 PMCID: PMC11348912 DOI: 10.1021/acssensors.4c00602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 06/21/2024] [Accepted: 07/03/2024] [Indexed: 07/27/2024]
Abstract
A continuous levodopa sensor can improve the quality of life for patients suffering with Parkinson's disease by enhancing levodopa titration and treatment effectiveness; however, its development is currently hindered by the absence of a specific levodopa molecular recognition element and limited insights into how real-time monitoring might affect clinical outcomes. This gap in research contributes to clinician uncertainty regarding the practical value of continuous levodopa monitoring data. This paper examines the current state of levodopa sensing and the inherent limitations in today's methods. Further, these challenges are described, including aspects such as interference from the metabolic pathway and adjunct medications, temporal resolution, and clinical questions, with a specific focus on a comprehensive selection of molecules, such as adjunct medications and structural isomers, as an interferent panel designed to assess and validate future levodopa sensors. We review insights and lessons from previously reported levodopa sensors and present a comparative analysis of potential molecular recognition elements, discussing their advantages and drawbacks.
Collapse
Affiliation(s)
- David Probst
- Joint
Department of Biomedical Engineering, The
University of North Carolina at Chapel Hill and North Carolina State
University, Chapel Hill, North Carolina 27599, United States
| | - Kartheek Batchu
- Joint
Department of Biomedical Engineering, The
University of North Carolina at Chapel Hill and North Carolina State
University, Chapel Hill, North Carolina 27599, United States
| | - John Robert Younce
- Department
of Neurology, University of North Carolina
at Chapel Hill, Chapel
Hill, North Carolina 27599, United States
| | - Koji Sode
- Joint
Department of Biomedical Engineering, The
University of North Carolina at Chapel Hill and North Carolina State
University, Chapel Hill, North Carolina 27599, United States
| |
Collapse
|
7
|
Sowa K, Okuda-Shimazaki J, Fukawa E, Sode K. Direct Electron Transfer-Type Oxidoreductases for Biomedical Applications. Annu Rev Biomed Eng 2024; 26:357-382. [PMID: 38424090 DOI: 10.1146/annurev-bioeng-110222-101926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2024]
Abstract
Among the various types of enzyme-based biosensors, sensors utilizing enzymes capable of direct electron transfer (DET) are recognized as the most ideal. However, only a limited number of redox enzymes are capable of DET with electrodes, that is, dehydrogenases harboring a subunit or domain that functions specifically to accept electrons from the redox cofactor of the catalytic site and transfer the electrons to the external electron acceptor. Such subunits or domains act as built-in mediators for electron transfer between enzymes and electrodes; consequently, such enzymes enable direct electron transfer to electrodes and are designated as DET-type enzymes. DET-type enzymes fall into several categories, including redox cofactors of catalytic reactions, built-in mediators for DET with electrodes and by their protein hierarchic structures, DET-type oxidoreductases with oligomeric structures harboring electron transfer subunits, and monomeric DET-type oxidoreductases harboring electron transfer domains. In this review, we cover the science of DET-type oxidoreductases and their biomedical applications. First, we introduce the structural biology and current understanding of DET-type enzyme reactions. Next, we describe recent technological developments based on DET-type enzymes for biomedical applications, such as biosensors and biochemical energy harvesting for self-powered medical devices. Finally, after discussing how to further engineer and create DET-type enzymes, we address the future prospects for DET-type enzymes in biomedical engineering.
Collapse
Affiliation(s)
- Keisei Sowa
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Sakyo, Kyoto, Japan
| | - Junko Okuda-Shimazaki
- Department of Biotechnology and Life Science, Graduate School of Engineering, Tokyo University of Agriculture and Technology, Kogane, Tokyo, Japan
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Chapel Hill, North Carolina, USA;
| | - Eole Fukawa
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Sakyo, Kyoto, Japan
| | - Koji Sode
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Chapel Hill, North Carolina, USA;
| |
Collapse
|
8
|
Melo RLF, Neto FS, Dari DN, Fernandes BCC, Freire TM, Fechine PBA, Soares JM, Dos Santos JCS. A comprehensive review on enzyme-based biosensors: Advanced analysis and emerging applications in nanomaterial-enzyme linkage. Int J Biol Macromol 2024; 264:130817. [PMID: 38479669 DOI: 10.1016/j.ijbiomac.2024.130817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 02/20/2024] [Accepted: 03/10/2024] [Indexed: 04/10/2024]
Abstract
Biosensors with nanomaterials and enzymes detect and quantify specific targets in samples, converting recognition into measurable signals. The study explores the intrinsic synergy between these elements for detecting and quantifying particular targets in biological and environmental samples, with results demonstrated through bibliometric analysis and a comprehensive review of enzyme-based biosensors. Using WoS, 57,331 articles were analyzed and refined to 880. Key journals, countries, institutions, and relevant authors were identified. The main areas highlighted the multidisciplinary nature of the field, and critical keywords identified five thematic clusters, revealing the primary nanoparticles used (CNTs, graphene, AuNPs), major application fields, basic application themes, and niche topics such as sensitive detection, peroxidase activity, and quantum dot utilization. The biosensor overview covered nanomaterials and their primary applications, addressing recent advances and inherent challenges. Patent analysis emphasized the U.S. leadership in the industrial sector, contrasting with China's academic prominence. Future studies should focus on enhancing biosensor portability and analysis speed, with challenges encompassing efficient integration with recent technologies and improving stability and reproducibility in the nanomaterial-enzyme interaction.
Collapse
Affiliation(s)
- Rafael Leandro Fernandes Melo
- Departamento de Engenharia Metalúrgica e de Materiais, Universidade Federal do Ceará, Campus do Pici, Bloco 729, CEP 60440-554 Fortaleza, CE, Brazil; Grupo de Química de Materiais Avançados (GQMat), Departamento de Química Analítica e Físico-Química, Universidade Federal do Ceará, Campus do Pici, CEP 60451-970 Fortaleza, CE, Brazil
| | - Francisco Simão Neto
- Departamento de Engenharia Química, Universidade Federal do Ceará, Campus do Pici, CEP 60455-760 Fortaleza, CE, Brazil
| | - Dayana Nascimento Dari
- Instituto de Engenharias e Desenvolvimento Sustentável, Universidade da Integração Internacional da Lusofonia Afro-Brasileira, Campus das Auroras, CEP 62790-970 Redenção, CE, Brazil
| | - Bruno Caio Chaves Fernandes
- Departamento de Agronomia e Ciência Vegetais, Universidade Federal Rural do Semi-Árido, Campus Mossoró, Mossoró CEP 59625-900, RN, Brazil
| | - Tiago Melo Freire
- Grupo de Química de Materiais Avançados (GQMat), Departamento de Química Analítica e Físico-Química, Universidade Federal do Ceará, Campus do Pici, CEP 60451-970 Fortaleza, CE, Brazil
| | - Pierre Basílio Almeida Fechine
- Grupo de Química de Materiais Avançados (GQMat), Departamento de Química Analítica e Físico-Química, Universidade Federal do Ceará, Campus do Pici, CEP 60451-970 Fortaleza, CE, Brazil
| | - João Maria Soares
- Departamento de Física, Universidade do Estado do Rio Grande do Norte, Campus Mossoró, Mossoró CEP 59610-090, RN, Brazil.
| | - José Cleiton Sousa Dos Santos
- Instituto de Engenharias e Desenvolvimento Sustentável, Universidade da Integração Internacional da Lusofonia Afro-Brasileira, Campus das Auroras, CEP 62790-970 Redenção, CE, Brazil.
| |
Collapse
|
9
|
Damirchi Z, Firoozbakhtian A, Hosseini M, Ganjali MR. Ti 3C 2/Ni/Sm-based electrochemical glucose sensor for sweat analysis using bipolar electrochemistry. Mikrochim Acta 2024; 191:137. [PMID: 38358570 DOI: 10.1007/s00604-024-06209-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 01/10/2024] [Indexed: 02/16/2024]
Abstract
An innovative electrochemical sensor is introduced that utilizes bipolar electrochemistry on a paper substrate for detecting glucose in sweat. The sensor employs a three-dimensional porous nanocomposite (MXene/NiSm-LDH) formed by decorating nickel-samarium nanoparticles with double-layer MXene hydroxide. These specially designed electrodes exhibit exceptional electrocatalytic activity during glucose oxidation. The glucose sensing mechanism involves enzyme-free oxidation of the analyte within the sensor cell, achieved by applying an appropriate potential. This leads to the reduction of K3Fe(CN)6 in the reporter cell, and the resulting current serves as the response signal. By optimizing various parameters, the measurement platform enables the accurate determination of sweat glucose concentrations within a linear range of 10 to 200 µM. The limit of detection (LOD) for glucose is 3.6 µM (S/N = 3), indicating a sensitive and reliable detection capability. Real samples were analysed to validate the sensor's efficiency, and the results obtained were both promising and encouraging.
Collapse
Affiliation(s)
- Zahra Damirchi
- Center of Excellence in Electrochemistry, School of Chemistry, College of Science, University of Tehran, Tehran, 1439817435, Iran
| | - Ali Firoozbakhtian
- Nanobiosensors Lab, Department of Life Science Engineering, Faculty of New Sciences & Technologies, University of Tehran, Tehran, 1439817435, Iran
| | - Morteza Hosseini
- Nanobiosensors Lab, Department of Life Science Engineering, Faculty of New Sciences & Technologies, University of Tehran, Tehran, 1439817435, Iran.
- Medical Genetics Department, Institute of Medical Biotechnology (IMB), National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran.
| | - Mohammad Reza Ganjali
- Center of Excellence in Electrochemistry, School of Chemistry, College of Science, University of Tehran, Tehran, 1439817435, Iran.
| |
Collapse
|
10
|
Sharma A, James A, Kapoor DN, Kaurav H, Sharma AK, Nagraik R. An insight into biosensing platforms used for the diagnosis of various lung diseases: A review. Biotechnol Bioeng 2024; 121:71-81. [PMID: 37661712 DOI: 10.1002/bit.28538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 07/08/2023] [Accepted: 08/15/2023] [Indexed: 09/05/2023]
Abstract
Many of the infectious diseases are ubiquitous in nature and pose a threat to global and public health. The original cause for such type of serious maladies can be summarized as the scarcity of appropriate analysis and treatment methods. Pulmonary diseases are considered one of the life-threatening lung diseases that affect millions of people globally. It consists of several types, namely, asthma, lung cancer, tuberculosis, chronic obstructive pulmonary disease, and several respiratory-related infections. This is due to the limited access to well-equipped healthcare facilities for early disease diagnosis. This needs the availability of processes and technologies that can help to stop this harmful disease-diagnosing practice. Various approaches for diagnosing various lung diseases have been developed over time, namely, autopsy, chest X-rays, low-dose CT scans, and so forth. The need of the hour is to develop a rapid, simple, portable, and low-cost method for the diagnosis of pulmonary diseases. So nowadays, biosensors have been becoming one of the highest priority research areas as a potentially useful tool for the early diagnosis and detection of many pulmonary lung diseases. In this review article, various types of biosensors and their applications in the diagnosis of lung-related disorders are expansively explained.
Collapse
Affiliation(s)
- Avinash Sharma
- Faculty of Applied Sciences and Biotechnology, Shoolini University, Solan, Himachal Pradesh, India
| | - Abija James
- Faculty of Applied Sciences and Biotechnology, Shoolini University, Solan, Himachal Pradesh, India
| | - Deepak N Kapoor
- Faculty of Pharmaceutical Sciences, Shoolini University, Solan, Himachal Pradesh, India
| | - Hemlata Kaurav
- Faculty of Pharmaceutical Sciences, Shoolini University, Solan, Himachal Pradesh, India
| | - Abhishek Kumar Sharma
- Faculty of Pharmaceutical Sciences, Shoolini University, Solan, Himachal Pradesh, India
| | - Rupak Nagraik
- Faculty of Applied Sciences and Biotechnology, Shoolini University, Solan, Himachal Pradesh, India
| |
Collapse
|
11
|
Ratautė K, Ratautas D. A Review from a Clinical Perspective: Recent Advances in Biosensors for the Detection of L-Amino Acids. BIOSENSORS 2023; 14:5. [PMID: 38248382 PMCID: PMC10813600 DOI: 10.3390/bios14010005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 12/14/2023] [Accepted: 12/19/2023] [Indexed: 01/23/2024]
Abstract
The field of biosensors is filled with reports and designs of various sensors, with the vast majority focusing on glucose sensing. However, in addition to glucose, there are many other important analytes that are worth investigating as well. In particular, L-amino acids appear as important diagnostic markers for a number of conditions. However, the progress in L-amino acid detection and the development of biosensors for L-amino acids are still somewhat insufficient. In recent years, the need to determine L-amino acids from clinical samples has risen. More clinical data appear to demonstrate that abnormal concentrations of L-amino acids are related to various clinical conditions such as inherited metabolic disorders, dyslipidemia, type 2 diabetes, muscle damage, etc. However, to this day, the diagnostic potential of L-amino acids is not yet fully established. Most likely, this is because of the difficulties in measuring L-amino acids, especially in human blood. In this review article, we extensively investigate the 'overlooked' L-amino acids. We review typical levels of amino acids present in human blood and broadly survey the importance of L-amino acids in most common conditions which can be monitored or diagnosed from changes in L-amino acids present in human blood. We also provide an overview of recent biosensors for L-amino acid monitoring and their advantages and disadvantages, with some other alternative methods for L-amino acid quantification, and finally we outline future perspectives related to the development of biosensing devices for L-amino acid monitoring.
Collapse
Affiliation(s)
- Kristina Ratautė
- Faculty of Medicine, Vilnius University, M. K. Čiurlionio Str. 21, LT-03101 Vilnius, Lithuania
| | - Dalius Ratautas
- Life Science Center, Vilnius University, Saulėtekio al. 7, LT-10257 Vilnius, Lithuania
| |
Collapse
|
12
|
Kalita N, Gogoi S, Minteer SD, Goswami P. Advances in Bioelectrode Design for Developing Electrochemical Biosensors. ACS MEASUREMENT SCIENCE AU 2023; 3:404-433. [PMID: 38145027 PMCID: PMC10740130 DOI: 10.1021/acsmeasuresciau.3c00034] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 09/26/2023] [Accepted: 09/27/2023] [Indexed: 12/26/2023]
Abstract
The critical performance factors such as selectivity, sensitivity, operational and storage stability, and response time of electrochemical biosensors are governed mainly by the function of their key component, the bioelectrode. Suitable design and fabrication strategies of the bioelectrode interface are essential for realizing the requisite performance of the biosensors for their practical utility. A multifaceted attempt to achieve this goal is visible from the vast literature exploring effective strategies for preparing, immobilizing, and stabilizing biorecognition elements on the electrode surface and efficient transduction of biochemical signals into electrical ones (i.e., current, voltage, and impedance) through the bioelectrode interface with the aid of advanced materials and techniques. The commercial success of biosensors in modern society is also increasingly influenced by their size (and hence portability), multiplexing capability, and coupling in the interface of the wireless communication technology, which facilitates quick data transfer and linked decision-making processes in real-time in different areas such as healthcare, agriculture, food, and environmental applications. Therefore, fabrication of the bioelectrode involves careful selection and control of several parameters, including biorecognition elements, electrode materials, shape and size of the electrode, detection principles, and various fabrication strategies, including microscale and printing technologies. This review discusses recent trends in bioelectrode designs and fabrications for developing electrochemical biosensors. The discussions have been delineated into the types of biorecognition elements and their immobilization strategies, signal transduction approaches, commonly used advanced materials for electrode fabrication and techniques for fabricating the bioelectrodes, and device integration with modern electronic communication technology for developing electrochemical biosensors of commercial interest.
Collapse
Affiliation(s)
- Nabajyoti Kalita
- Department
of Biosciences and Bioengineering, Indian
Institute of Technology Guwahati, Guwahati, Assam 781039, India
| | - Sudarshan Gogoi
- Department
of Chemistry, Sadiya College, Chapakhowa, Assam 786157, India
| | - Shelley D. Minteer
- Department
of Chemistry, University of Utah, 315 S 1400 E, Salt Lake City, Utah 84112, United States
- Kummer
Institute Center for Resource Sustainability, Missouri University of Science and Technology, Rolla, Missouri 65409, United States
| | - Pranab Goswami
- Department
of Biosciences and Bioengineering, Indian
Institute of Technology Guwahati, Guwahati, Assam 781039, India
| |
Collapse
|
13
|
Fernández H, Zon MA, Maccio SA, Alaníz RD, Di Tocco A, Carrillo Palomino RA, Cabas Rodríguez JA, Granero AM, Arévalo FJ, Robledo SN, Pierini GD. Multivariate Optimization of Electrochemical Biosensors for the Determination of Compounds Related to Food Safety-A Review. BIOSENSORS 2023; 13:694. [PMID: 37504093 PMCID: PMC10377565 DOI: 10.3390/bios13070694] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 06/16/2023] [Accepted: 06/28/2023] [Indexed: 07/29/2023]
Abstract
We summarize the application of multivariate optimization for the construction of electrochemical biosensors. The introduction provides an overview of electrochemical biosensing, which is classified into catalytic-based and affinity-based biosensors, and discusses the most recent published works in each category. We then explore the relevance of electrochemical biosensors for food safety analysis, taking into account analytes of different natures. Then, we describe the chemometrics tools used in the construction of electrochemical sensors/biosensors and provide examples from the literature. Finally, we carefully discuss the construction of electrochemical biosensors based on design of experiments, including the advantages, disadvantages, and future perspectives of using multivariate optimization in this field. The discussion section offers a comprehensive analysis of these topics.
Collapse
Affiliation(s)
- Héctor Fernández
- Grupo de Electroanalítica (GEANA), Departamento de Química, Instituto para el Desarrollo Agroindustrial y de la Salud UNRC-CONICET (IDAS), Facultad de Ciencias Exactas, Físico-Químicas y Naturales, Universidad Nacional de Río Cuarto, Río Cuarto 5800, Argentina
| | - María Alicia Zon
- Grupo de Electroanalítica (GEANA), Departamento de Química, Instituto para el Desarrollo Agroindustrial y de la Salud UNRC-CONICET (IDAS), Facultad de Ciencias Exactas, Físico-Químicas y Naturales, Universidad Nacional de Río Cuarto, Río Cuarto 5800, Argentina
| | - Sabrina Antonella Maccio
- Grupo de Electroanalítica (GEANA), Departamento de Química, Instituto para el Desarrollo Agroindustrial y de la Salud UNRC-CONICET (IDAS), Facultad de Ciencias Exactas, Físico-Químicas y Naturales, Universidad Nacional de Río Cuarto, Río Cuarto 5800, Argentina
| | - Rubén Darío Alaníz
- Grupo de Electroanalítica (GEANA), Departamento de Química, Instituto para el Desarrollo Agroindustrial y de la Salud UNRC-CONICET (IDAS), Facultad de Ciencias Exactas, Físico-Químicas y Naturales, Universidad Nacional de Río Cuarto, Río Cuarto 5800, Argentina
| | - Aylen Di Tocco
- Grupo de Electroanalítica (GEANA), Departamento de Química, Instituto para el Desarrollo Agroindustrial y de la Salud UNRC-CONICET (IDAS), Facultad de Ciencias Exactas, Físico-Químicas y Naturales, Universidad Nacional de Río Cuarto, Río Cuarto 5800, Argentina
| | - Roodney Alberto Carrillo Palomino
- Grupo de Electroanalítica (GEANA), Departamento de Química, Instituto para el Desarrollo Agroindustrial y de la Salud UNRC-CONICET (IDAS), Facultad de Ciencias Exactas, Físico-Químicas y Naturales, Universidad Nacional de Río Cuarto, Río Cuarto 5800, Argentina
| | - Jose Alberto Cabas Rodríguez
- Grupo de Electroanalítica (GEANA), Departamento de Química, Instituto para el Desarrollo Agroindustrial y de la Salud UNRC-CONICET (IDAS), Facultad de Ciencias Exactas, Físico-Químicas y Naturales, Universidad Nacional de Río Cuarto, Río Cuarto 5800, Argentina
| | - Adrian Marcelo Granero
- Grupo de Electroanalítica (GEANA), Departamento de Química, Instituto para el Desarrollo Agroindustrial y de la Salud UNRC-CONICET (IDAS), Facultad de Ciencias Exactas, Físico-Químicas y Naturales, Universidad Nacional de Río Cuarto, Río Cuarto 5800, Argentina
| | - Fernando J Arévalo
- Grupo de Electroanalítica (GEANA), Departamento de Química, Instituto para el Desarrollo Agroindustrial y de la Salud UNRC-CONICET (IDAS), Facultad de Ciencias Exactas, Físico-Químicas y Naturales, Universidad Nacional de Río Cuarto, Río Cuarto 5800, Argentina
| | - Sebastian Noel Robledo
- Grupo de Electroanalítica (GEANA), Departamento de Química, Instituto para el Desarrollo Agroindustrial y de la Salud UNRC-CONICET (IDAS), Facultad de Ciencias Exactas, Físico-Químicas y Naturales, Universidad Nacional de Río Cuarto, Río Cuarto 5800, Argentina
- Departamento de Tecnología Química (IDAS), Facultad de Ingeniería, Universidad Nacional de Río Cuarto, Río Cuarto 5800, Argentina
| | - Gastón Darío Pierini
- Grupo de Electroanalítica (GEANA), Departamento de Química, Instituto para el Desarrollo Agroindustrial y de la Salud UNRC-CONICET (IDAS), Facultad de Ciencias Exactas, Físico-Químicas y Naturales, Universidad Nacional de Río Cuarto, Río Cuarto 5800, Argentina
| |
Collapse
|
14
|
Kilic NM, Singh S, Keles G, Cinti S, Kurbanoglu S, Odaci D. Novel Approaches to Enzyme-Based Electrochemical Nanobiosensors. BIOSENSORS 2023; 13:622. [PMID: 37366987 DOI: 10.3390/bios13060622] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 05/29/2023] [Accepted: 06/01/2023] [Indexed: 06/28/2023]
Abstract
Electrochemistry is a genuinely interdisciplinary science that may be used in various physical, chemical, and biological domains. Moreover, using biosensors to quantify biological or biochemical processes is critical in medical, biological, and biotechnological applications. Nowadays, there are several electrochemical biosensors for various healthcare applications, such as for the determination of glucose, lactate, catecholamines, nucleic acid, uric acid, and so on. Enzyme-based analytical techniques rely on detecting the co-substrate or, more precisely, the products of a catalyzed reaction. The glucose oxidase enzyme is generally used in enzyme-based biosensors to measure glucose in tears, blood, etc. Moreover, among all nanomaterials, carbon-based nanomaterials have generally been utilized thanks to the unique properties of carbon. The sensitivity can be up to pM levels using enzyme-based nanobiosensor, and these sensors are very selective, as all enzymes are specific for their substrates. Furthermore, enzyme-based biosensors frequently have fast reaction times, allowing for real-time monitoring and analyses. These biosensors, however, have several drawbacks. Changes in temperature, pH, and other environmental factors can influence the stability and activity of the enzymes, affecting the reliability and repeatability of the readings. Additionally, the cost of the enzymes and their immobilization onto appropriate transducer surfaces might be prohibitively expensive, impeding the large-scale commercialization and widespread use of biosensors. This review discusses the design, detection, and immobilization techniques for enzyme-based electrochemical nanobiosensors, and recent applications in enzyme-based electrochemical studies are evaluated and tabulated.
Collapse
Affiliation(s)
- Nur Melis Kilic
- Faculty of Science Biochemistry Department, Ege University, 35100 Bornova, Turkey
| | - Sima Singh
- Department of Pharmacy, University of Naples Federico II, 80138 Naples, Italy
| | - Gulsu Keles
- Department of Analytical Chemistry, Faculty of Pharmacy, Ankara University, 06560 Ankara, Turkey
| | - Stefano Cinti
- Department of Pharmacy, University of Naples Federico II, 80138 Naples, Italy
| | - Sevinc Kurbanoglu
- Department of Analytical Chemistry, Faculty of Pharmacy, Ankara University, 06560 Ankara, Turkey
| | - Dilek Odaci
- Faculty of Science Biochemistry Department, Ege University, 35100 Bornova, Turkey
| |
Collapse
|
15
|
Cho W, Yoon SH, Chung TD. Streamlining the interface between electronics and neural systems for bidirectional electrochemical communication. Chem Sci 2023; 14:4463-4479. [PMID: 37152246 PMCID: PMC10155913 DOI: 10.1039/d3sc00338h] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 04/13/2023] [Indexed: 05/09/2023] Open
Abstract
Seamless neural interfaces conjoining neurons and electrochemical devices hold great potential for highly efficient signal transmission across neural systems and the external world. Signal transmission through chemical sensing and stimulation via electrochemistry is remarkable because communication occurs through the same chemical language of neurons. Emerging strategies based on synaptic interfaces, iontronics-based neuromodulation, and improvements in selective neurosensing techniques have been explored to achieve seamless integration and efficient neuro-electronics communication. Synaptic interfaces can directly exchange signals to and from neurons, in a similar manner to that of chemical synapses. Hydrogel-based iontronic chemical delivery devices are operationally compatible with neural systems for improved neuromodulation. In this perspective, we explore developments to improve the interface between neurons and electrodes by targeting neurons or sub-neuronal regions including synapses. Furthermore, recent progress in electrochemical neurosensing and iontronics-based chemical delivery is examined.
Collapse
Affiliation(s)
- Wonkyung Cho
- Department of Chemistry, Seoul National University Seoul 08826 Republic of Korea
| | - Sun-Heui Yoon
- Department of Chemistry, Seoul National University Seoul 08826 Republic of Korea
| | - Taek Dong Chung
- Department of Chemistry, Seoul National University Seoul 08826 Republic of Korea
- Advanced Institutes of Convergence Technology Suwon-si 16229 Gyeonggi-do Republic of Korea
| |
Collapse
|
16
|
Tariq Z, Qadeer MI, Anjum I, Hano C, Anjum S. Thalassemia and Nanotheragnostics: Advanced Approaches for Diagnosis and Treatment. BIOSENSORS 2023; 13:bios13040450. [PMID: 37185525 PMCID: PMC10136341 DOI: 10.3390/bios13040450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 03/20/2023] [Accepted: 03/27/2023] [Indexed: 05/17/2023]
Abstract
Thalassemia is a monogenic autosomal recessive disorder caused by mutations, which lead to abnormal or reduced production of hemoglobin. Ineffective erythropoiesis, hemolysis, hepcidin suppression, and iron overload are common manifestations that vary according to genotypes and dictate, which diagnosis and therapeutic modalities, including transfusion therapy, iron chelation therapy, HbF induction, gene therapy, and editing, are performed. These conventional therapeutic methods have proven to be effective, yet have several disadvantages, specifically iron toxicity, associated with them; therefore, there are demands for advanced therapeutic methods. Nanotechnology-based applications, such as the use of nanoparticles and nanomedicines for theragnostic purposes have emerged that are simple, convenient, and cost-effective methods. The therapeutic potential of various nanoparticles has been explored by developing artificial hemoglobin, nano-based iron chelating agents, and nanocarriers for globin gene editing by CRISPR/Cas9. Au, Ag, carbon, graphene, silicon, porous nanoparticles, dendrimers, hydrogels, quantum dots, etc., have been used in electrochemical biosensors development for diagnosis of thalassemia, quantification of hemoglobin in these patients, and analysis of conventional iron chelating agents. This review summarizes the potential of nanotechnology in the development of various theragnostic approaches to determine thalassemia-causing gene mutations using various nano-based biosensors along with the employment of efficacious nano-based therapeutic procedures, in contrast to conventional therapies.
Collapse
Affiliation(s)
- Zahra Tariq
- Department of Biotechnology, Kinnaird College for Women, 92-Jail Road, Lahore 54000, Pakistan
| | | | - Iram Anjum
- Department of Biotechnology, Kinnaird College for Women, 92-Jail Road, Lahore 54000, Pakistan
| | - Christophe Hano
- Department of Chemical Biology, Eure & Loir Campus, University of Orleans, 28000 Chartres, France
| | - Sumaira Anjum
- Department of Biotechnology, Kinnaird College for Women, 92-Jail Road, Lahore 54000, Pakistan
| |
Collapse
|
17
|
Wang Q, Wang Y, Xiao G, Zhu X. Electrophoretic Deposition of Co 3O 4 Particles/Reduced Graphene Oxide Composites for Efficient Non-Enzymatic H 2O 2 Sensing. MATERIALS (BASEL, SWITZERLAND) 2023; 16:1261. [PMID: 36770267 PMCID: PMC9918914 DOI: 10.3390/ma16031261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 01/30/2023] [Accepted: 01/31/2023] [Indexed: 06/18/2023]
Abstract
In this work, the facile fabrication of Co3O4 particles/reduced graphene oxide (Co3O4/rGO) composites on Indium tin oxide (ITO) slide was achieved by an electrophoretic deposition and annealing process. The deposition time and ratio of the precursors were optimized. Structural characterization and chemical composition investigation indicated successful loading of Co3O4 particles on graphene sheets. When applied as a non-enzymatic H2O2 sensor, Co3O4/rGO showed significant electrocatalytic activity, with a wide linear range (0.1-19.5 mM) and high sensitivity (0.2247 mA mM-1 cm-2). The good anti-interference ability, reproducibility, and long-term stability of the constructed sensor were also presented. The application of Co3O4/rGO in real sample analysis was evaluated in human urine sample with satisfactory results, indicating the feasibility of the sensor in physiological and medical applications.
Collapse
Affiliation(s)
- Qian Wang
- Key Laboratory of Liquid-Solid Structural Evolution and Processing of Materials of Ministry of Education, School of Materials Science and Engineering, Shandong University, Jinan 250061, China
- Shandong Engineering & Technology Research Center for Superhard Material, Jinan 250061, China
| | - Yuzhe Wang
- Key Laboratory of Liquid-Solid Structural Evolution and Processing of Materials of Ministry of Education, School of Materials Science and Engineering, Shandong University, Jinan 250061, China
| | - Guiyong Xiao
- Key Laboratory of Liquid-Solid Structural Evolution and Processing of Materials of Ministry of Education, School of Materials Science and Engineering, Shandong University, Jinan 250061, China
| | - Xinde Zhu
- Key Laboratory of Liquid-Solid Structural Evolution and Processing of Materials of Ministry of Education, School of Materials Science and Engineering, Shandong University, Jinan 250061, China
| |
Collapse
|
18
|
Zhang X, Jiang X, Wang W, Luo S, Guan S, Li W, Situ B, Li B, Zhang Y, Zheng L. A simple and sensitive electrochemical biosensor for circulating tumor cell determination based on dual-toehold accelerated catalytic hairpin assembly. Mikrochim Acta 2023; 190:65. [PMID: 36692585 DOI: 10.1007/s00604-023-05649-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Accepted: 01/04/2023] [Indexed: 01/25/2023]
Abstract
Tumor cells in blood circulation (CTCs) are vital biomarkers for noninvasive cancer diagnosis. We developed a simple and sensitive electrochemical biosensor based on dual-toehold accelerated catalytic hairpin assembly (DCHA) to distinguish CTCs from blood cells. In the presence of CTCs, the aptamer probe initiates the DCHA process, which produces amplified electrochemical signals. Compared with conventional catalytic hairpin assembly (CHA), the proposed DCHA showed high sensitivity, which led to a broader working range of 10-1000 cells mL-1 with a limit of detection of 4 cells mL-1. Furthermore, our method exhibited an excellent capability of distinguishing malignant breast cancers from healthy people, with a sensitivity of 97.4%. In summary, we have established an enzyme-free, easy-to-operate, and nondisruptive method for detecting circulating tumor cells in blood circulation based on the DCHA strategy. Its versatility and simplicity will make it more widely used in clinical diagnosis and biomedical research.
Collapse
Affiliation(s)
- Xiaohe Zhang
- Laboratory Medicine Center, Department of Laboratory Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China.,Guangdong Engineering and Technology Research Center for Rapid Diagnostic Biosensors, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Xiujuan Jiang
- Laboratory Medicine Center, Department of Laboratory Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China.,Guangdong Engineering and Technology Research Center for Rapid Diagnostic Biosensors, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Wen Wang
- Laboratory Medicine Center, Department of Laboratory Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China.,Medical Laboratory of Shenzhen Luohu People's Hospital, Shenzhen, 518003, Guangdong Province, China
| | - Shihua Luo
- Laboratory Medicine Center, Department of Laboratory Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China.,Guangdong Engineering and Technology Research Center for Rapid Diagnostic Biosensors, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Shujuan Guan
- Laboratory Medicine Center, Department of Laboratory Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China.,Guangdong Engineering and Technology Research Center for Rapid Diagnostic Biosensors, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Wenbin Li
- Laboratory Medicine Center, Department of Laboratory Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China.,Guangdong Engineering and Technology Research Center for Rapid Diagnostic Biosensors, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Bo Situ
- Laboratory Medicine Center, Department of Laboratory Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China.,Guangdong Engineering and Technology Research Center for Rapid Diagnostic Biosensors, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Bo Li
- Laboratory Medicine Center, Department of Laboratory Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China.,Guangdong Engineering and Technology Research Center for Rapid Diagnostic Biosensors, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Ye Zhang
- Laboratory Medicine Center, Department of Laboratory Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China. .,Guangdong Engineering and Technology Research Center for Rapid Diagnostic Biosensors, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China.
| | - Lei Zheng
- Department of Clinical Laboratory, Shunde Hospital, Southern Medical University, (The First People's Hospital of Shunde), Foshan, 528300, Guangdong Province, China. .,Laboratory Medicine Center, Department of Laboratory Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China. .,Guangdong Engineering and Technology Research Center for Rapid Diagnostic Biosensors, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China.
| |
Collapse
|
19
|
Zhang J, Chen M, Peng Y, Li S, Han D, Ren S, Qin K, Li S, Han T, Wang Y, Gao Z. Wearable biosensors for human fatigue diagnosis: A review. Bioeng Transl Med 2023; 8:e10318. [PMID: 36684114 PMCID: PMC9842037 DOI: 10.1002/btm2.10318] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Revised: 03/11/2022] [Accepted: 03/13/2022] [Indexed: 02/01/2023] Open
Abstract
Fatigue causes deleterious effects to physical and mental health of human being and may cause loss of lives. Therefore, the adverse effects of fatigue on individuals and the society are massive. With the ever-increasing frequency of overtraining among modern military and sports personnel, timely, portable and accurate fatigue diagnosis is essential to avoid fatigue-induced accidents. However, traditional detection methods require complex sample preparation and blood sampling processes, which cannot meet the timeliness and portability of fatigue diagnosis. With the development of flexible materials and biosensing technology, wearable biosensors have attracted increased attention to the researchers. Wearable biosensors collect biomarkers from noninvasive biofluids, such as sweat, saliva, and tears, followed by biosensing with the help of biosensing modules continuously and quantitatively. The detection signal can then be transmitted through wireless communication modules that constitute a method for real-time understanding of abnormality. Recent developments of wearable biosensors are focused on miniaturized wearable electrochemistry and optical biosensors for metabolites detection, of which, few have exhibited satisfactory results in medical diagnosis. However, detection performance limits the wide-range applicability of wearable fatigue diagnosis. In this article, the application of wearable biosensors in fatigue diagnosis has been discussed. In fact, exploration of the composition of different biofluids and their potential toward fatigue diagnosis have been discussed here for the very first time. Moreover, discussions regarding the current bottlenecks in wearable fatigue biosensors and the latest advancements in biochemical reaction and data communication modules have been incorporated herein. Finally, the main challenges and opportunities were discussed for wearable fatigue diagnosis in the future.
Collapse
Affiliation(s)
- Jingyang Zhang
- Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety Institute of Environmental and Operational Medicine Tianjin P.R. China
| | - Mengmeng Chen
- Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety Institute of Environmental and Operational Medicine Tianjin P.R. China
| | - Yuan Peng
- Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety Institute of Environmental and Operational Medicine Tianjin P.R. China
| | - Shuang Li
- Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety Institute of Environmental and Operational Medicine Tianjin P.R. China
| | - Dianpeng Han
- Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety Institute of Environmental and Operational Medicine Tianjin P.R. China
| | - Shuyue Ren
- Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety Institute of Environmental and Operational Medicine Tianjin P.R. China
| | - Kang Qin
- Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety Institute of Environmental and Operational Medicine Tianjin P.R. China
| | - Sen Li
- Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety Institute of Environmental and Operational Medicine Tianjin P.R. China
| | - Tie Han
- Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety Institute of Environmental and Operational Medicine Tianjin P.R. China
| | - Yu Wang
- Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety Institute of Environmental and Operational Medicine Tianjin P.R. China
| | - Zhixian Gao
- Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety Institute of Environmental and Operational Medicine Tianjin P.R. China
| |
Collapse
|
20
|
Chen H, Fan J, Chen X, Ma Z, Zhang L, Chen X. Gold Nanoparticle (Au NP)-Decorated Ionic Liquid (IL) Based Liposome: A Stable, Biocompatible, and Conductive Biomimetic Platform for the Fabrication of an Enzymatic Electrochemical Glucose Biosensor. ANAL LETT 2022. [DOI: 10.1080/00032719.2022.2153256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Hongzhuang Chen
- College of Chemistry and Chemical Engineering, Shenyang Normal University, Shenyang, China
| | - Jialin Fan
- College of Chemistry and Chemical Engineering, Shenyang Normal University, Shenyang, China
| | - Xue Chen
- College of Chemistry and Chemical Engineering, Shenyang Normal University, Shenyang, China
| | - Zhenkuan Ma
- College of Chemistry and Chemical Engineering, Shenyang Normal University, Shenyang, China
| | - Ling Zhang
- College of Chemistry and Chemical Engineering, Shenyang Normal University, Shenyang, China
| | - Xuwei Chen
- Department of Chemistry, College of Sciences, Northeastern University, Shenyang, China
| |
Collapse
|
21
|
Madej-Kiełbik L, Gzyra-Jagieła K, Jóźwik-Pruska J, Dziuba R, Bednarowicz A. Biopolymer Composites with Sensors for Environmental and Medical Applications. MATERIALS (BASEL, SWITZERLAND) 2022; 15:7493. [PMID: 36363084 PMCID: PMC9659006 DOI: 10.3390/ma15217493] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 10/13/2022] [Accepted: 10/21/2022] [Indexed: 06/16/2023]
Abstract
One of the biggest economic and environmental sustainability problems is the over-reliance on petroleum chemicals in polymer production. This paper presents an overview of the current state of knowledge on biopolymers combined with biosensors in terms of properties, compounding methods and applications, with a focus on medical and environmental aspects. Therefore, this article is devoted to environmentally friendly polymer materials. The paper presents an overview of the current state of knowledge on biopolymers combined with biosensors in terms of properties, compounding methods and applications, with a special focus on medical and environmental aspects. The paper presents the current state of knowledge, as well as prospects. The article shows that biopolymers made from renewable raw materials are of great interest in various fields of science and industry. These materials not only replace existing polymers in many applications, but also provide new combinations of properties for new applications. Composite materials based on biopolymers are considered superior to traditional non-biodegradable materials due to their ability to degrade when exposed to environmental factors. The paper highlights the combination of polymers with nanomaterials which allows the preparation of chemical sensors, thus enabling their use in environmental or medical applications due to their biocompatibility and sensitivity. This review focuses on analyzing the state of research in the field of biopolymer-sensor composites.
Collapse
Affiliation(s)
- Longina Madej-Kiełbik
- Lukasiewicz Research Network—Lodz Institute of Technology, 19/27 M. Sklodowskiej-Curie Str., 90-570 Lodz, Poland
| | - Karolina Gzyra-Jagieła
- Lukasiewicz Research Network—Lodz Institute of Technology, 19/27 M. Sklodowskiej-Curie Str., 90-570 Lodz, Poland
- Faculty of Material Technologies and Textile Design, Lodz University of Technology, 116 Żeromskiego Street, 90-924 Lodz, Poland
| | - Jagoda Jóźwik-Pruska
- Lukasiewicz Research Network—Lodz Institute of Technology, 19/27 M. Sklodowskiej-Curie Str., 90-570 Lodz, Poland
| | - Radosław Dziuba
- Department of World Economy and European Integration, University of Lodz, 41/43 Rewolucji 1905 Str., 90-214 Lodz, Poland
| | - Anna Bednarowicz
- Lukasiewicz Research Network—Lodz Institute of Technology, 19/27 M. Sklodowskiej-Curie Str., 90-570 Lodz, Poland
- Faculty of Material Technologies and Textile Design, Lodz University of Technology, 116 Żeromskiego Street, 90-924 Lodz, Poland
| |
Collapse
|
22
|
Subcutaneous amperometric biosensors for continuous glucose monitoring in diabetes. Talanta 2022. [DOI: 10.1016/j.talanta.2022.124033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
23
|
Flexible biochemical sensors for point-of-care management of diseases: a review. Mikrochim Acta 2022; 189:380. [PMID: 36094594 PMCID: PMC9465157 DOI: 10.1007/s00604-022-05469-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 08/19/2022] [Indexed: 11/26/2022]
Abstract
Health problems have been widely concerned by all mankind. Real-time monitoring of disease-related biomarkers can feedback the physiological status of human body in time, which is very helpful to the diseases management of healthcare. However, conventional non-flexible/rigid biochemical sensors possess low fit and comfort with the human body, hence hindering the accurate and comfortable long-time health monitoring. Flexible and stretchable materials make it possible for sensors to be continuously attached to the human body with good fit, and more precise and higher quality results can be obtained. Thus, tremendous attention has been paid to flexible biochemical sensors in point-of-care (POC) for real-time monitoring the entire disease process. Here, recent progress on flexible biochemical sensors for management of various diseases, focusing on chronic and communicable diseases, is reviewed, and the detection principle and performance of these flexible biochemical sensors are discussed. Finally, some directions and challenges are proposed for further development of flexible biochemical sensors.
Collapse
|
24
|
Mao S, Fu L, Yin C, Liu X, Karimi-Maleh H. The role of electrochemical biosensors in SARS-CoV-2 detection: a bibliometrics-based analysis and review. RSC Adv 2022; 12:22592-22607. [PMID: 36105989 PMCID: PMC9372877 DOI: 10.1039/d2ra04162f] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Accepted: 08/03/2022] [Indexed: 12/16/2022] Open
Abstract
The global pandemic of COVID-19, which began in late 2019, has resulted in extremely high morbidity and severe mortality worldwide, with important implications for human health, international trade, and national politics. Severe acute respiratory syndrome coronavirus (SARS-CoV-2) is the primary pathogen causing COVID-19. Analytical chemistry played an important role in this global epidemic event, and detection of SARS-CoV-2 even became a part of daily life. Analytical chemists have devoted much effort and enthusiasm to this event, and different analytical techniques have shown very rapid development. Electrochemical biosensors are highly efficient, sensitive, and cost-effective and have been used to detect many highly pathogenic viruses long before this event. However, another fact is that electrochemical biosensors are not the technology of choice for most detection applications. This review describes for the first time the role played by electrochemical biosensors in SARS-CoV-2 detection from a bibliometric perspective. This paper analyzed 254 relevant research papers up to June 2022. The contributions of different countries and institutions to this topic were analyzed. Keyword analysis was used to explore different methodological attempts of electrochemical detection techniques. More importantly, we are trying to find an answer to the question: do electrochemical biosensors have the potential to become a genuinely employable detection technology in an outbreak of infectious disease?
Collapse
Affiliation(s)
- Shudan Mao
- Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, Interdisciplinary Research Academy, Zhejiang Shuren University Hangzhou 310021 PR China
| | - Li Fu
- Key Laboratory of Novel Materials for Sensor of Zhejiang Province, College of Materials and Environmental Engineering, Hangzhou Dianzi University Hangzhou 310018 China
| | - Chengliang Yin
- National Engineering Laboratory for Medical Big Data Application Technology, Chinese PLA General Hospital Beijing China
- Medical Big Data Research Center, Medical Innovation Research Division of PLA General Hospital Beijing China
| | - Xiaozhu Liu
- Department of Cardiology, The Second Affiliated Hospital of Chongqing Medical University Chongqing 400010 China
| | - Hassan Karimi-Maleh
- School of Resources and Environment, University of Electronic Science and Technology of China Xiyuan Ave 611731 Chengdu China
- Department of Chemical Engineering, Quchan University of Technology Quchan 9477177870 Iran
- Department of Chemical Sciences, University of Johannesburg Doornfontein Campus, 2028 Johannesburg 17011 South Africa
| |
Collapse
|
25
|
Wang X, Lu D, Liu Y, Wang W, Ren R, Li M, Liu D, Liu Y, Liu Y, Pang G. Electrochemical Signal Amplification Strategies and Their Use in Olfactory and Taste Evaluation. BIOSENSORS 2022; 12:bios12080566. [PMID: 35892464 PMCID: PMC9394270 DOI: 10.3390/bios12080566] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Revised: 07/20/2022] [Accepted: 07/24/2022] [Indexed: 05/07/2023]
Abstract
Biosensors are powerful analytical tools used to identify and detect target molecules. Electrochemical biosensors, which combine biosensing with electrochemical analysis techniques, are efficient analytical instruments that translate concentration signals into electrical signals, enabling the quantitative and qualitative analysis of target molecules. Electrochemical biosensors have been widely used in various fields of detection and analysis due to their high sensitivity, superior selectivity, quick reaction time, and inexpensive cost. However, the signal changes caused by interactions between a biological probe and a target molecule are very weak and difficult to capture directly by using detection instruments. Therefore, various signal amplification strategies have been proposed and developed to increase the accuracy and sensitivity of detection systems. This review serves as a reference for biosensor and detector research, as it introduces the research progress of electrochemical signal amplification strategies in olfactory and taste evaluation. It also discusses the latest signal amplification strategies currently being employed in electrochemical biosensors for nanomaterial development, enzyme labeling, and nucleic acid amplification techniques, and highlights the most recent work in using cell tissues as biosensitive elements.
Collapse
Affiliation(s)
- Xinqian Wang
- Tianjin Key Laboratory of Food Biotechnology, College of Biotechnology & Food Science, Tianjin University of Commerce, Tianjin 300134, China; (X.W.); (M.L.); (D.L.); (Y.L.); (Y.L.)
| | - Dingqiang Lu
- Tianjin Key Laboratory of Food Biotechnology, College of Biotechnology & Food Science, Tianjin University of Commerce, Tianjin 300134, China; (X.W.); (M.L.); (D.L.); (Y.L.); (Y.L.)
- Correspondence: (D.L.); (G.P.)
| | - Yuan Liu
- Department of Food Science & Technology, School of Agriculture & Biology, Shanghai Jiao Tong University, Shanghai 200240, China; (Y.L.); (W.W.)
| | - Wenli Wang
- Department of Food Science & Technology, School of Agriculture & Biology, Shanghai Jiao Tong University, Shanghai 200240, China; (Y.L.); (W.W.)
| | - Ruijuan Ren
- Tianjin Institute for Food Safety Inspection Technology, Tianjin 300308, China;
| | - Ming Li
- Tianjin Key Laboratory of Food Biotechnology, College of Biotechnology & Food Science, Tianjin University of Commerce, Tianjin 300134, China; (X.W.); (M.L.); (D.L.); (Y.L.); (Y.L.)
| | - Danyang Liu
- Tianjin Key Laboratory of Food Biotechnology, College of Biotechnology & Food Science, Tianjin University of Commerce, Tianjin 300134, China; (X.W.); (M.L.); (D.L.); (Y.L.); (Y.L.)
| | - Yujiao Liu
- Tianjin Key Laboratory of Food Biotechnology, College of Biotechnology & Food Science, Tianjin University of Commerce, Tianjin 300134, China; (X.W.); (M.L.); (D.L.); (Y.L.); (Y.L.)
| | - Yixuan Liu
- Tianjin Key Laboratory of Food Biotechnology, College of Biotechnology & Food Science, Tianjin University of Commerce, Tianjin 300134, China; (X.W.); (M.L.); (D.L.); (Y.L.); (Y.L.)
| | - Guangchang Pang
- Tianjin Key Laboratory of Food Biotechnology, College of Biotechnology & Food Science, Tianjin University of Commerce, Tianjin 300134, China; (X.W.); (M.L.); (D.L.); (Y.L.); (Y.L.)
- Correspondence: (D.L.); (G.P.)
| |
Collapse
|
26
|
Liu Y, Deng Y, Li S, Wang-Ngai Chow F, Liu M, He N. Monitoring and detection of antibiotic residues in animal derived foods: Solutions using aptamers. Trends Food Sci Technol 2022. [DOI: 10.1016/j.tifs.2022.04.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
27
|
Drozd M, Duszczyk A, Ivanova P, Pietrzak M. Interactions of proteins with metal-based nanoparticles from a point of view of analytical chemistry - Challenges and opportunities. Adv Colloid Interface Sci 2022; 304:102656. [PMID: 35367856 DOI: 10.1016/j.cis.2022.102656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 03/18/2022] [Accepted: 03/23/2022] [Indexed: 11/01/2022]
Abstract
Interactions of proteins with nanomaterials draw attention of many research groups interested in fundamental phenomena. However, alongside with valuable information regarding physicochemical aspects of such processes and their mechanisms, they more and more often prove to be useful from a point of view of bioanalytics. Deliberate use of processes based on adsorption of proteins on nanoparticles (or vice versa) allows for a development of new analytical methods and improvement of the existing ones. It also leads to obtaining of nanoparticles of desired properties and functionalities, which can be used as elements of analytical tools for various applications. Due to interactions with nanoparticles, proteins can also gain new functionalities or lose their interfering potential, which from perspective of bioanalytics seems to be very inviting and attractive. In the framework of this article we will discuss the bioanalytical potential of interactions of proteins with a chosen group of nanoparticles, and implementation of so driven processes for biosensing. Moreover, we will show both positive and negative (opportunities and challenges) aspects resulting from the presence of proteins in media/samples containing metal-based nanoparticles or their precursors.
Collapse
|
28
|
Wei W, Tang H, Dong S, Fu Y, Huang T. A novel pomegranate-inspired bifunctional electrode materials design for acetylcholinesterase biosensor and methanol oxidation reaction. Bioelectrochemistry 2022; 145:108094. [DOI: 10.1016/j.bioelechem.2022.108094] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 03/01/2022] [Accepted: 03/08/2022] [Indexed: 12/31/2022]
|
29
|
Research progress of acetylcholinesterase bioelectrochemical sensor based on carbon nanotube composite material in the detection of organophosphorus pesticides. CHEMICAL PAPERS 2022. [DOI: 10.1007/s11696-022-02073-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
30
|
Patra R, Ghosal K, Saha R, Sarkar P, Chattopadhyay S, Sarkar K. Advances in the Development of Biodegradable Polymeric Materials for Biomedical Applications with Respect to Their Synthesis Procedures, Degradation Properties, Toxicity, Stability and Applications. ENCYCLOPEDIA OF MATERIALS: PLASTICS AND POLYMERS 2022:567-592. [DOI: 10.1016/b978-0-12-820352-1.00252-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
31
|
Haque SU, Duteanu N, Ciocan S, Nasar A. A review: Evolution of enzymatic biofuel cells. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2021; 298:113483. [PMID: 34391107 DOI: 10.1016/j.jenvman.2021.113483] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 07/04/2021] [Accepted: 08/03/2021] [Indexed: 06/13/2023]
Abstract
Ever-growing demands for energy, the unsustainability of fossil fuel due to its scarcity and massive impact on global economies and the environment, have encouraged the research on alternative power sources to work upon for the governments, companies, and scientists across the world. Enzymatic biofuel cells (eBFCs) is one category of fuel cell that can harvest energy from biological moieties and has the future to be used as an alternative source of energy. The aim of this review is to summarize the background and state-of-the-art in the field of eBFCs. This review article will be very beneficial for a wide audience including students and new researchers in the field. A part of the paper summarized the challenges in the preparation of anode and cathode and the involvement of nanomaterials and conducting polymers to construct the effective bioelectrodes. It will provide an insight for the researchers working in this challenging field. Furthermore, various applications of eBFCs in implantable power devices, tiny electronic gadgets, and self powered biosensors are reported. This review article explains the development in the area of eBFCs for several years from its origin to growth systematically. It reveals the strategies that have been taken for the improvements required for the better electrochemical performance and operational stability of eBFCs. It also mentions the challenges in this field that will require proper attention so that the eBFCs can be utilized commercially in the future. The review article is written and structurized in a way so that it can provide a decent background of eBFCs to its reader. It will definitely help in enhancing the interest of reader in eBFCs.
Collapse
Affiliation(s)
- Sufia Ul Haque
- Advanced Functional Materials Laboratory, Department of Applied Chemistry, Faculty of Engineering and Technology, Aligarh Muslim University, Aligarh, 202002, India.
| | - Narcis Duteanu
- Faculty of Industrial Chemistry and Environmental Engineering, University of Politehnica, Timisoara, Romania.
| | - Stefania Ciocan
- Faculty of Industrial Chemistry and Environmental Engineering, University of Politehnica, Timisoara, Romania.
| | - Abu Nasar
- Advanced Functional Materials Laboratory, Department of Applied Chemistry, Faculty of Engineering and Technology, Aligarh Muslim University, Aligarh, 202002, India.
| |
Collapse
|
32
|
Guan L, Wu F, Ren G, Wang J, Yang X, Huang X, Yu P, Lin Y, Mao L. Role of rare-earth elements in enhancing bioelectrocatalysis for biosensing with NAD +-dependent glutamate dehydrogenase. Chem Sci 2021; 12:13434-13441. [PMID: 34777762 PMCID: PMC8528072 DOI: 10.1039/d1sc00193k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Accepted: 09/01/2021] [Indexed: 11/21/2022] Open
Abstract
Dehydrogenases (DHs) are widely explored bioelectrocatalysts in the development of enzymatic bioelectronics like biosensors and biofuel cells. However, the relatively low intrinsic reaction rates of DHs which mostly depend on diffusional coenzymes (e.g., NAD+) have limited their bioelectrocatalytic performance in applications such as biosensors with a high sensitivity. In this study, we find that rare-earth elements (REEs) can enhance the activity of NAD+-dependent glutamate dehydrogenase (GDH) toward highly sensitive electrochemical biosensing of glutamate in vivo. Electrochemical studies show that the sensitivity of the GDH-based glutamate biosensor is remarkably enhanced in the presence of REE cations (i.e., Yb3+, La3+ or Eu3+) in solution, of which Yb3+ yields the highest sensitivity increase (ca. 95%). With the potential effect of REE cations on NAD+ electrochemistry being ruled out, homogeneous kinetic assays by steady-state and stopped-flow spectroscopy reveal a two-fold enhancement in the intrinsic reaction rate of GDH by introducing Yb3+, mainly through accelerating the rate-determining NADH releasing step during the catalytic cycle. In-depth structural investigations using small angle X-ray scattering and infrared spectroscopy indicate that Yb3+ induces the backbone compaction of GDH and subtle β-sheet transitions in the active site, which may reduce the energetic barrier to NADH dissociation from the binding pocket as further suggested by molecular dynamics simulation. This study not only unmasks the mechanism of REE-promoted GDH kinetics but also paves a new way to highly sensitive biosensing of glutamate in vivo.
Collapse
Affiliation(s)
- Lihao Guan
- Department of Chemistry, Capital Normal University Beijing 100048 China
| | - Fei Wu
- Beijing National Laboratory for Molecular Science, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, University of Chinese Academy of Sciences Beijing 100049 China
| | - Guoyuan Ren
- Department of Chemistry, Capital Normal University Beijing 100048 China
| | - Jialu Wang
- Department of Chemistry, Capital Normal University Beijing 100048 China
| | - Xiaoti Yang
- Beijing National Laboratory for Molecular Science, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, University of Chinese Academy of Sciences Beijing 100049 China
| | - Xiaohua Huang
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University Nanjing 210023 China
| | - Ping Yu
- Beijing National Laboratory for Molecular Science, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, University of Chinese Academy of Sciences Beijing 100049 China
| | - Yuqing Lin
- Department of Chemistry, Capital Normal University Beijing 100048 China
| | - Lanqun Mao
- Beijing National Laboratory for Molecular Science, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, University of Chinese Academy of Sciences Beijing 100049 China
- College of Chemistry, Beijing Normal University Beijing 100875 China
| |
Collapse
|
33
|
Cui H, Cui S, Zhang S, Tian Q, Liu Y, Zhang P, Wang M, Zhang J, Li X. Cu-MOF/hemin: a bionic enzyme with excellent dispersity for the determination of hydrogen peroxide released from living cells. Analyst 2021; 146:5951-5961. [PMID: 34490872 DOI: 10.1039/d1an01323h] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The stability, repeatability and sensitivity of an electrochemical biosensor material are closely connected with the dispersibility of metal organic frameworks (MOFs) in aqueous media. Herein, a nanocomposite based on Cu-MOF/hemin, which is not only highly water-soluble but also simple and efficient in synthesis, was used for the construction of a non-enzymatic sensor to detect hydrogen peroxide (H2O2). The Cu-MOF/hemin was characterized via scanning electron microscopy (SEM), transmission electron microscopy (TEM), energy dispersive X-ray spectroscopy (EDS)-mapping, X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), X-ray photoelectron spectroscopy (XPS) and thermal gravimetric analysis (TGA), which indicate that hemin and the Cu-MOF were successfully combined. As a H2O2 electrochemical biomimetic enzyme, the Cu-MOF/hemin exhibited excellent electrocatalytic performance, which was confirmed by the electrochemical experiments and chromogenic reactions, and the possible mechanism of the reactions has been deduced. The electrochemical sensor based on the biomimetic enzyme exhibited an extended linear detection range from 0.01-5.0 mM (R = 0.998), low detection limit of 4.14 μM, and high selectivity and stability under the optimized conditions. More importantly, the practical application ability of the sensor was verified by the test of H2O2 in human serum samples and it could be used for the real-time detection of H2O2 released from living cells with satisfactory results. Therefore, this novel nanocomposite has certain potential in preparing electrochemical sensing platforms for nonenzymatic biosensing and provides a new method for clinical diagnosis and real-time monitoring.
Collapse
Affiliation(s)
- Hong Cui
- School of Public Health, Shanxi Medical University, 56 Xinjian South Road, Taiyuan, 030001, China.
| | - Shuaishuai Cui
- School of Public Health, Shanxi Medical University, 56 Xinjian South Road, Taiyuan, 030001, China.
| | - Siyuan Zhang
- School of Public Health, Shanxi Medical University, 56 Xinjian South Road, Taiyuan, 030001, China.
| | - Qiuju Tian
- School of Public Health, Shanxi Medical University, 56 Xinjian South Road, Taiyuan, 030001, China.
| | - Yunfeng Liu
- School of Public Health, Shanxi Medical University, 56 Xinjian South Road, Taiyuan, 030001, China.
| | - Ping Zhang
- School of Public Health, Shanxi Medical University, 56 Xinjian South Road, Taiyuan, 030001, China.
| | - Mingxiu Wang
- School of Public Health, Shanxi Medical University, 56 Xinjian South Road, Taiyuan, 030001, China.
| | - Jialing Zhang
- School of Public Health, Shanxi Medical University, 56 Xinjian South Road, Taiyuan, 030001, China.
| | - Xiangjun Li
- School of Chemical Sciences, University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing, 100049, China.
| |
Collapse
|
34
|
Manan FAA, Yusof NA, Abdullah J, Mohammad F, Nurdin A, Yazan LS, Khiste SK, Al-Lohedan HA. Drug Release Profiles of Mitomycin C Encapsulated Quantum Dots-Chitosan Nanocarrier System for the Possible Treatment of Non-Muscle Invasive Bladder Cancer. Pharmaceutics 2021; 13:1379. [PMID: 34575455 PMCID: PMC8469644 DOI: 10.3390/pharmaceutics13091379] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 08/23/2021] [Accepted: 08/26/2021] [Indexed: 12/16/2022] Open
Abstract
Nanotechnology-based drug delivery systems are an emerging technology for the targeted delivery of chemotherapeutic agents in cancer therapy with low/no toxicity to the non-cancer cells. With that view, the present work reports the synthesis, characterization, and testing of Mn:ZnS quantum dots (QDs) conjugated chitosan (CS)-based nanocarrier system encapsulated with Mitomycin C (MMC) drug. This fabricated nanocarrier, MMC@CS-Mn:ZnS, has been tested thoroughly for the drug loading capacity, drug encapsulation efficiency, and release properties at a fixed wavelength (358 nm) using a UV-Vis spectrophotometer. Followed by the physicochemical characterization, the cumulative drug release profiling data of MMC@CS-Mn:ZnS nanocarrier (at pH of 6.5, 6.8, 7.2, and 7.5) were investigated to have the highest release of 56.48% at pH 6.8, followed by 50.22%, 30.88%, and 10.75% at pH 7.2, 6.5, and 7.5, respectively. Additionally, the drug release studies were fitted to five different pharmacokinetic models including pesudo-first-order, pseudo-second-order, Higuchi, Hixson-Crowell, and Korsmeyers-Peppas models. From the analysis, the cumulative MMC release suits the Higuchi model well, revealing the diffusion-controlled mechanism involving the correlation of cumulative drug release proportional to the function square root of time at equilibrium, with the correlation coefficient values (R2) of 0.9849, 0.9604, 0.9783, and 0.7989 for drug release at pH 6.5, 6.8, 7.2, and 7.5, respectively. Based on the overall results analysis, the formulated nanocarrier system of MMC synergistically envisages the efficient delivery of chemotherapeutic agents to the target cancerous sites, able to sustain it for a longer time, etc. Consequently, the developed nanocarrier system has the capacity to improve the drug loading efficacy in combating the reoccurrence and progression of cancer in non-muscle invasive bladder diseases.
Collapse
Affiliation(s)
- Fariza Aina Abd Manan
- Institute of Advanced Technology, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia; (F.A.A.M.); (J.A.)
| | - Nor Azah Yusof
- Institute of Advanced Technology, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia; (F.A.A.M.); (J.A.)
- Department of Chemistry, Faculty of Science, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
| | - Jaafar Abdullah
- Institute of Advanced Technology, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia; (F.A.A.M.); (J.A.)
- Department of Chemistry, Faculty of Science, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
| | - Faruq Mohammad
- Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia;
| | - Armania Nurdin
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia; (A.N.); (L.S.Y.)
| | - Latifah Saiful Yazan
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia; (A.N.); (L.S.Y.)
| | - Sachin K. Khiste
- Department of Medicine, Harvard Medical School, Boston, MA 02115, USA;
| | - Hamad A. Al-Lohedan
- Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia;
| |
Collapse
|
35
|
Thermally responsive reduced graphene oxide with electroactive functionality for controllable electroanalysis. Talanta 2021; 231:122368. [PMID: 33965033 DOI: 10.1016/j.talanta.2021.122368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2020] [Revised: 03/18/2021] [Accepted: 03/22/2021] [Indexed: 11/21/2022]
Abstract
A thermally responsive hybrid poly(NIPAm-b-BVIm[FcCOO])-rGO composed of block co-polymer poly(NIPAm-b-BVImBr), reduced graphene oxide (rGO) and electroactive anions was designed and synthesized to achieve electroactive functionality. It is the polymeric ionic liquids (PILs) segment in the block co-polymer that integrated the three different components into a whole hybrid. Such segment of PILs could not only promote the modification of polar PNIPAm onto the non-polar rGO by cation-π interaction, but also realize the immobilization of ferrocenecarboxylate anion (FcCOO-) via anion-exchange reaction. The PNIPAm moiety endowed the poly(NIPAm-b-BVIm[FcCOO])-rGO with thermal responsiveness, while the anion moiety provided additional electroactive function. It is noteworthy that the conformational change of PNIPAm segment upon different temperature could reveal or seal the redox probe of FcCOO-, thereby leading to a controllable expression of electroactivity switching by thermal stimuli. Owing to such regulation on surface property and conformation of PNIPAm segment, the modified electrode exhibited excellent thermally responsive electrocatalysis with reversible 'ON-OFF' effect toward the detection of ascorbic acid (AA), which led to two different catalytic states at the same electrode. The reversible electrocatalytic performance with switching capability of the poly(NIPAm-b-BVIm[FcCOO])-rGO/GCE is expected to have a broad application in the field of intelligent electrochemical sensors and devices.
Collapse
|
36
|
Yan Z, He M, Zhang Y, Hu G, Li H. Methylene blue-enhanced electrochemical oxidation of tyrosine residues in native/denatured bovine serum albumin and HIV-1 Tat peptide. J Electroanal Chem (Lausanne) 2021. [DOI: 10.1016/j.jelechem.2021.115532] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
37
|
Li M, Blum NT, Wu J, Lin J, Huang P. Weaving Enzymes with Polymeric Shells for Biomedical Applications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2008438. [PMID: 34197008 DOI: 10.1002/adma.202008438] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 01/13/2021] [Indexed: 06/13/2023]
Abstract
Enzyme therapeutics have received increasing attention due to their high biological specificity, outstanding catalytic efficiency, and impressive therapeutic outcomes. Protecting and delivering enzymes into target cells while retaining enzyme catalytic efficiency is a big challenge. Wrapping of enzymes with rational designed polymer shells, rather than trapping them into large nanoparticles such as liposomes, have been widely explored because they can protect the folded state of the enzyme and make post-functionalization easier. In this review, the methods for wrapping up enzymes with protective polymer shells are mainly focused on. It is aimed to provide a toolbox for the rational design of polymeric enzymes by introducing methods for the preparation of polymeric enzymes including physical adsorption and chemical conjugation with specific examples of these conjugates/hybrid applications. Finally, a conclusion is drawn and key points are emphasized.
Collapse
Affiliation(s)
- Meng Li
- Marshall Laboratory of Biomedical Engineering, International Cancer Center, Laboratory of Evolutionary Theranostics (LET), School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen, 518060, China
| | - Nicholas Thomas Blum
- Marshall Laboratory of Biomedical Engineering, International Cancer Center, Laboratory of Evolutionary Theranostics (LET), School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen, 518060, China
| | - Jiayingzi Wu
- Marshall Laboratory of Biomedical Engineering, International Cancer Center, Laboratory of Evolutionary Theranostics (LET), School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen, 518060, China
| | - Jing Lin
- Marshall Laboratory of Biomedical Engineering, International Cancer Center, Laboratory of Evolutionary Theranostics (LET), School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen, 518060, China
| | - Peng Huang
- Marshall Laboratory of Biomedical Engineering, International Cancer Center, Laboratory of Evolutionary Theranostics (LET), School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen, 518060, China
| |
Collapse
|
38
|
Zuccarello L, Barbosa C, Galdino E, Lončar N, Silveira CM, Fraaije MW, Todorovic S. SERR Spectroelectrochemistry as a Guide for Rational Design of DyP-Based Bioelectronics Devices. Int J Mol Sci 2021; 22:7998. [PMID: 34360763 PMCID: PMC8348443 DOI: 10.3390/ijms22157998] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 07/16/2021] [Accepted: 07/22/2021] [Indexed: 11/16/2022] Open
Abstract
Immobilised dye-decolorizing peroxidases (DyPs) are promising biocatalysts for the development of biotechnological devices such as biosensors for the detection of H2O2. To this end, these enzymes have to preserve native, solution properties upon immobilisation on the electrode surface. In this work, DyPs from Cellulomonas bogoriensis (CboDyP), Streptomyces coelicolor (ScoDyP) and Thermobifida fusca (TfuDyP) are immobilised on biocompatible silver electrodes functionalized with alkanethiols. Their structural, redox and catalytic properties upon immobilisation are evaluated by surface-enhanced resonance Raman (SERR) spectroelectrochemistry and cyclic voltammetry. Among the studied electrode/DyP constructs, only CboDyP shows preserved native structure upon attachment to the electrode. However, a comparison of the redox potentials of the enzyme in solution and immobilised states reveals a large discrepancy, and the enzyme shows no electrocatalytic activity in the presence of H2O2. While some immobilised DyPs outperform existing peroxidase-based biosensors, others fail to fulfil the essential requirements that guarantee their applicability in the immobilised state. The capacity of SERR spectroelectrochemistry for fast screening of the performance of immobilised heme enzymes places it in the front-line of experimental approaches that can advance the search for promising DyP candidates.
Collapse
Affiliation(s)
- Lidia Zuccarello
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade NOVA de Lisboa, Av. da República, 2780-157 Oeiras, Portugal; (L.Z.); (C.B.); (E.G.); (C.M.S.)
| | - Catarina Barbosa
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade NOVA de Lisboa, Av. da República, 2780-157 Oeiras, Portugal; (L.Z.); (C.B.); (E.G.); (C.M.S.)
| | - Edilson Galdino
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade NOVA de Lisboa, Av. da República, 2780-157 Oeiras, Portugal; (L.Z.); (C.B.); (E.G.); (C.M.S.)
| | - Nikola Lončar
- Gecco Biotech, Nijenborgh 4, 9747AG Groningen, The Netherlands;
| | - Célia M. Silveira
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade NOVA de Lisboa, Av. da República, 2780-157 Oeiras, Portugal; (L.Z.); (C.B.); (E.G.); (C.M.S.)
| | - Marco W. Fraaije
- Molecular Enzymology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Nijenborgh 4, 9747AG Groningen, The Netherlands;
| | - Smilja Todorovic
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade NOVA de Lisboa, Av. da República, 2780-157 Oeiras, Portugal; (L.Z.); (C.B.); (E.G.); (C.M.S.)
| |
Collapse
|
39
|
Ashrafi AM, Bytesnikova Z, Barek J, Richtera L, Adam V. A critical comparison of natural enzymes and nanozymes in biosensing and bioassays. Biosens Bioelectron 2021; 192:113494. [PMID: 34303137 DOI: 10.1016/j.bios.2021.113494] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2021] [Revised: 07/02/2021] [Accepted: 07/06/2021] [Indexed: 02/06/2023]
Abstract
Nanozymes (NZs) are nanomaterials that mimic enzyme-like catalytic activity. They have attracted substantial attention due to their inherent physicochemical properties for use as promising alternatives to natural enzymes (NEs) in a variety of research fields. Particularly, in biosensing and bioassays, NZs have opened a new horizon to eliminate the intrinsic limitations of NEs, including their denaturation at extreme pH values and temperatures, poor reusability and recyclability, and high production costs. Moreover, the catalytic activity of NZs can be modulated in the preparation step by following an appropriate synthesis strategy. This review aims to gain insight into the potential substitution of NEs by NZs in biosensing and bioassays while considering both the pros and cons.
Collapse
Affiliation(s)
- Amir M Ashrafi
- Department of Chemistry and Biochemistry, Mendel University in Brno, CZ-613 00, Brno, Czech Republic; Central European Institute of Technology, Brno University of Technology, 612 00, Brno, Czech Republic
| | - Zuzana Bytesnikova
- Department of Chemistry and Biochemistry, Mendel University in Brno, CZ-613 00, Brno, Czech Republic; Central European Institute of Technology, Brno University of Technology, 612 00, Brno, Czech Republic
| | - Jiri Barek
- Charles University, Faculty of Science, Department of Analytical Chemistry, UNESCO Laboratory of Environmental Electrochemistry, Albertov 6, CZ-12843, Prague 2, Czech Republic
| | - Lukas Richtera
- Department of Chemistry and Biochemistry, Mendel University in Brno, CZ-613 00, Brno, Czech Republic; Central European Institute of Technology, Brno University of Technology, 612 00, Brno, Czech Republic
| | - Vojtech Adam
- Department of Chemistry and Biochemistry, Mendel University in Brno, CZ-613 00, Brno, Czech Republic; Central European Institute of Technology, Brno University of Technology, 612 00, Brno, Czech Republic.
| |
Collapse
|
40
|
Zhang X, Chen J, Wang Q, Du B, Fan G, Zheng W, Yang H, Xu T. Amperometric Sarcosine Biosensors Based on Electrodeposited Conductive Films Contain Indole‐6‐carboxylic Acid. ELECTROANAL 2021. [DOI: 10.1002/elan.202100225] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Affiliation(s)
- Xiaofang Zhang
- College of Materials Science and Engineering Guangdong Research Center for Interfacial Engineering of Functional Materials and Shenzhen Key Laboratory of Polymer Science and Technology Shenzhen University Shenzhen 518060 PR China
| | - Jing Chen
- College of Materials Science and Engineering Guangdong Research Center for Interfacial Engineering of Functional Materials and Shenzhen Key Laboratory of Polymer Science and Technology Shenzhen University Shenzhen 518060 PR China
| | - Qia Wang
- College of Materials Science and Engineering Guangdong Research Center for Interfacial Engineering of Functional Materials and Shenzhen Key Laboratory of Polymer Science and Technology Shenzhen University Shenzhen 518060 PR China
| | - Bing Du
- College of Materials Science and Engineering Guangdong Research Center for Interfacial Engineering of Functional Materials and Shenzhen Key Laboratory of Polymer Science and Technology Shenzhen University Shenzhen 518060 PR China
| | - Gaochao Fan
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science MOE Shandong Key Laboratory of Biochemical Analysis Qingdao University of Science and Technology Qingdao 266042 PR China
| | - Weidong Zheng
- Department of Laboratory Medicine Shenzhen University General Hospital Shenzhen 518060 PR China
| | - Haipeng Yang
- College of Materials Science and Engineering Guangdong Research Center for Interfacial Engineering of Functional Materials and Shenzhen Key Laboratory of Polymer Science and Technology Shenzhen University Shenzhen 518060 PR China
| | - Tailin Xu
- College of Materials Science and Engineering Guangdong Research Center for Interfacial Engineering of Functional Materials and Shenzhen Key Laboratory of Polymer Science and Technology Shenzhen University Shenzhen 518060 PR China
| |
Collapse
|
41
|
Shehu IA, Auwal NM, Musa MK, Mukhtar A, Yusuf MS, Yau AA, Muhammad M, Baba Dala Y, Sani SA, Ahmad MS, Islam M. Innovative Nanotechnology a Boon for Fight Against Pandemic COVID–19. FRONTIERS IN NANOTECHNOLOGY 2021. [DOI: 10.3389/fnano.2021.651308] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
COVID – 19 is a contagious disease caused by severe acute respiratory syndrome (SARS-CoV2). The rate at which COVID – 19-virus spread from epidemic to pandemic within a short period is quite alarming. As of July 2020, the Dashboard of the World Health Organization (WHO) recorded over 15 million COVID – 19 cases across 213 countries, with mortality of over 620,000. The governments and healthcare agencies responsible for mitigating the virus's spread have adopted several strategies to end the pandemic. However, all hands were on deck to establish the standard treatment modalities of SARS-CoV-2 through inventing new drugs, vaccine candidates, or repurposing the existing medicines and robust diagnostic tools, in addition to other technological innovations. Therefore, nanotechnology’s employment would play a vital role in bringing multidisciplinary ways of developing affordable, reliable, and powerful tools for diagnosis, in addition to personal protection and effective medicines. Additionally, nanosensors' application would significantly aid the diagnoses of the COVID–19 even on asymptomatic patients, and thus would be an essential means for determining its prevalence. Likewise, nanoscale fibers can optimize personal equipment protection and allow their reusability for medical and economic benefits. Accordingly, the literature was intensively reviewed by searching for the combinations of the research keywords in the official scientific databases such as Science Direct, PubMed, and Google Scholar. Hence, this research highlighted the perspective contributions of nanotechnology in the war against the COVID-19 pandemic.
Collapse
|
42
|
Ding S, Lyu Z, Fang L, Li T, Zhu W, Li S, Li X, Li JC, Du D, Lin Y. Single-Atomic Site Catalyst with Heme Enzymes-Like Active Sites for Electrochemical Sensing of Hydrogen Peroxide. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2100664. [PMID: 34028983 DOI: 10.1002/smll.202100664] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 03/13/2021] [Indexed: 05/28/2023]
Abstract
Heme enzymes, with the pentacoordinate heme iron active sites, possess high catalytic activity and selectivity in biosensing applications. However, they are still subject to limited catalytic stability in the complex environment and high cost for broad applications in electrochemical sensing. It is meaningful to develop a novel substitute that has a similar structure to some heme enzymes and mimics their enzyme activities. One emerging strategy is to design the Fe-N-C based single-atomic site catalysts (SASCs). The obtained atomically dispersed Fe-Nx active sites can mimic the active sites of heme enzymes effectively. In this work, a SASC (Fe-SASC/NW) is synthesized by doping single iron atoms in polypyrrole (PPy) derived carbon nanowire via a zinc-atom-assisted method. The proposed Fe-SASC/NW shows high heme enzyme-like catalytic performance for hydrogen peroxide (H2 O2 ) with a specific activity of 42.8 U mg-1 . An electrochemical sensor based on Fe-SASC/NW is developed for the detection of H2 O2 . This sensor exhibits a wide detection concentration range from 5.0 × 10-10 m to 0.5 m and an excellent limit of detection (LOD) of 46.35 × 10-9 m. Such excellent catalytic activity and electrochemical sensing sensitivity are attributed to the isolated Fe-Nx active sites and their structural similarity with natural metalloproteases.
Collapse
Affiliation(s)
- Shichao Ding
- School of Mechanical and Materials Engineering, Washington State University, Pullman, WA, 99164, USA
| | - Zhaoyuan Lyu
- School of Mechanical and Materials Engineering, Washington State University, Pullman, WA, 99164, USA
| | - Lingzhe Fang
- Department of Chemistry and Biochemistry, Northern Illinois University, DeKalb, IL, 60115, USA
| | - Tao Li
- Department of Chemistry and Biochemistry, Northern Illinois University, DeKalb, IL, 60115, USA
- X-ray Science Division, Argonne National Laboratory, Lemont, IL, 60439, USA
| | - Wenlei Zhu
- School of Mechanical and Materials Engineering, Washington State University, Pullman, WA, 99164, USA
| | | | - Xin Li
- School of Mechanical and Materials Engineering, Washington State University, Pullman, WA, 99164, USA
| | - Jin-Cheng Li
- School of Mechanical and Materials Engineering, Washington State University, Pullman, WA, 99164, USA
| | - Dan Du
- School of Mechanical and Materials Engineering, Washington State University, Pullman, WA, 99164, USA
| | - Yuehe Lin
- School of Mechanical and Materials Engineering, Washington State University, Pullman, WA, 99164, USA
| |
Collapse
|
43
|
Lipińska W, Grochowska K, Siuzdak K. Enzyme Immobilization on Gold Nanoparticles for Electrochemical Glucose Biosensors. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:1156. [PMID: 33925155 PMCID: PMC8146701 DOI: 10.3390/nano11051156] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/20/2021] [Revised: 04/22/2021] [Accepted: 04/26/2021] [Indexed: 11/17/2022]
Abstract
More than 50 years have passed since Clark and Lyon developed the concept of glucose biosensors. Extensive research about biosensors has been carried out up to this day, and an exponential trend in this topic can be observed. The scope of this review is to present various enzyme immobilization methods on gold nanoparticles used for glucose sensing over the past five years. This work covers covalent bonding, adsorption, cross-linking, entrapment, and self-assembled monolayer methods. The experimental approach of each modification as well as further results are described. Designated values of sensitivity, the limit of detection, and linear range are used for the comparison of immobilization techniques.
Collapse
Affiliation(s)
| | | | - Katarzyna Siuzdak
- Centre for Plasma and Laser Engineering, The Szewalski Institute of Fluid-Flow Machinery, Polish Academy of Sciences, Fiszera 14 St., 80-231 Gdańsk, Poland; (W.L.); (K.G.)
| |
Collapse
|
44
|
Walker NL, Dick JE. Oxidase-loaded hydrogels for versatile potentiometric metabolite sensing. Biosens Bioelectron 2021; 178:112997. [PMID: 33535157 PMCID: PMC7919600 DOI: 10.1016/j.bios.2021.112997] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2020] [Revised: 01/08/2021] [Accepted: 01/10/2021] [Indexed: 12/30/2022]
Abstract
Continuous monitoring of biological metabolites of interest necessitates sensors that are robust, versatile, miniaturizable, and reliable. Electrochemical biosensors have dominated the field of biosensors for decades due to their robust and inexpensive nature. Classically, these sensors use amperometric and voltammetric methods as the sensing modality. One of the greatest limitations with these methods is the dependence of the signal (current, i) on the electrode size, which can change with respect to time due to fouling. Here, we present open circuit potential, an electrochemical technique that is relatively insensitive to electrode size, as a reliable alternative to amperometric and voltammetric techniques for monitoring metabolites of interest. The sensor operates by trapping an oxidase enzyme in a chitosan hydrogel. The oxidase enzyme is required for metabolite specificity. When the oxidase enzyme meets its substrate, oxygen is consumed, and hydrogen peroxide is generated. Hydrogen peroxide generation dominates a half reaction at the platinum surface, resulting in a change in potential. Using the above criteria, we demonstrate the efficacy, long lifetime, sensitivity, and ease of fabrication of glucose sensors, and miniaturize the sensors from macro- to microelectrodes. Additionally, we demonstrate the ease with which this platform can be extended to detect other analytes in the form of a galactose sensor. Our results set a foundation for the generalized use of potentiometric sensors for a broad range of metabolites and applications.
Collapse
Affiliation(s)
- Nicole L Walker
- Department of Chemistry, The University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Jeffrey E Dick
- Department of Chemistry, The University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA; Lineberger Comprehensive Cancer Center, School of Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA.
| |
Collapse
|
45
|
Markel U, Sauer DF, Wittwer M, Schiffels J, Cui H, Davari MD, Kröckert KW, Herres-Pawlis S, Okuda J, Schwaneberg U. Chemogenetic Evolution of a Peroxidase-like Artificial Metalloenzyme. ACS Catal 2021. [DOI: 10.1021/acscatal.1c00134] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Ulrich Markel
- Institute of Biotechnology, RWTH Aachen University, Worringerweg 3, 52074 Aachen, Germany
| | - Daniel F. Sauer
- Institute of Biotechnology, RWTH Aachen University, Worringerweg 3, 52074 Aachen, Germany
| | - Malte Wittwer
- Institute of Biotechnology, RWTH Aachen University, Worringerweg 3, 52074 Aachen, Germany
| | - Johannes Schiffels
- Institute of Biotechnology, RWTH Aachen University, Worringerweg 3, 52074 Aachen, Germany
| | - Haiyang Cui
- Institute of Biotechnology, RWTH Aachen University, Worringerweg 3, 52074 Aachen, Germany
| | - Mehdi D. Davari
- Institute of Biotechnology, RWTH Aachen University, Worringerweg 3, 52074 Aachen, Germany
| | - Konstantin W. Kröckert
- Institute of Inorganic Chemistry, RWTH Aachen University, Landoltweg 1, 52056 Aachen, Germany
| | - Sonja Herres-Pawlis
- Institute of Inorganic Chemistry, RWTH Aachen University, Landoltweg 1, 52056 Aachen, Germany
| | - Jun Okuda
- Institute of Inorganic Chemistry, RWTH Aachen University, Landoltweg 1, 52056 Aachen, Germany
| | - Ulrich Schwaneberg
- Institute of Biotechnology, RWTH Aachen University, Worringerweg 3, 52074 Aachen, Germany
- DWI—Leibniz Institute for Interactive Materials, Forckenbeckstraße 50, 52074 Aachen, Germany
| |
Collapse
|
46
|
Designing of Nanomaterials-Based Enzymatic Biosensors: Synthesis, Properties, and Applications. ELECTROCHEM 2021. [DOI: 10.3390/electrochem2010012] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Among the many biological entities employed in the development of biosensors, enzymes have attracted the most attention. Nanotechnology has been fostering excellent prospects in the development of enzymatic biosensors, since enzyme immobilization onto conductive nanostructures can improve characteristics that are crucial in biosensor transduction, such as surface-to-volume ratio, signal response, selectivity, sensitivity, conductivity, and biocatalytic activity, among others. These and other advantages of nanomaterial-based enzymatic biosensors are discussed in this work via the compilation of several reports on their applications in different industrial segments. To provide detailed insights into the state of the art of this technology, all the relevant concepts around the topic are discussed, including the properties of enzymes, the mechanisms involved in their immobilization, and the application of different enzyme-derived biosensors and nanomaterials. Finally, there is a discussion around the pressing challenges in this technology, which will be useful for guiding the development of future research in the area.
Collapse
|
47
|
Yi K, Li H, Zhang X, Zhang L. Designed Tb(III)-Functionalized MOF-808 as Visible Fluorescent Probes for Monitoring Bilirubin and Identifying Fingerprints. Inorg Chem 2021; 60:3172-3180. [PMID: 33599496 DOI: 10.1021/acs.inorgchem.0c03312] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Abnormal bilirubin (BR) level is a sign of several fatal diseases, so it is of great significance and challenge to develop a facile and effective family routine strategy for BR sensing. Herein, novel water-stable Tb3+@MOF-808 has been synthesized using a coordinated postsynthetic modification strategy and designed as a convenient and efficient fluorescence probe. The fabricated fluorescent probe exhibits a remarkable fluorescence quenching effect with the successive addition of BR, which displays fascinating features, such as fast response time, high sensitivity, and excellent selectivity. The quenching mechanism between the fluorescent probe and BR was also illustrated in detail. Importantly, the devised fluorescent probe successfully achieved the determination of BR in serum and urine, which has also been successfully used in the design of portable BR test paper. The developed monitoring platform for BR levels in vivo provides promising application potential for the prevention and early diagnosis of fatal diseases. Additionally, a molecular logic gate device that performs intelligent fluorescent sensing of BR was constructed. More interestingly, Tb3+@MOF-808 is used for development of latent fingerprints on different guest surfaces. The lines of the fluorescent fingerprints are clear and coherent, the details are obvious, and even sweat pores can be observed by naked eyes, which provides new means for tracking the criminal clue and handling cases efficiently.
Collapse
Affiliation(s)
- Kuiyu Yi
- College of Chemistry, Liaoning University, 66 Chongshan Middle Road, Shenyang, Liaoning 110036, People's Republic of China
| | - Hui Li
- College of Chemistry, Liaoning University, 66 Chongshan Middle Road, Shenyang, Liaoning 110036, People's Republic of China
| | - Xiaoting Zhang
- College of Chemistry, Liaoning University, 66 Chongshan Middle Road, Shenyang, Liaoning 110036, People's Republic of China
| | - Lei Zhang
- College of Chemistry, Liaoning University, 66 Chongshan Middle Road, Shenyang, Liaoning 110036, People's Republic of China
| |
Collapse
|
48
|
Tan C, Robbins EM, Wu B, Cui XT. Recent Advances in In Vivo Neurochemical Monitoring. MICROMACHINES 2021; 12:208. [PMID: 33670703 PMCID: PMC7922317 DOI: 10.3390/mi12020208] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 02/11/2021] [Accepted: 02/14/2021] [Indexed: 12/20/2022]
Abstract
The brain is a complex network that accounts for only 5% of human mass but consumes 20% of our energy. Uncovering the mysteries of the brain's functions in motion, memory, learning, behavior, and mental health remains a hot but challenging topic. Neurochemicals in the brain, such as neurotransmitters, neuromodulators, gliotransmitters, hormones, and metabolism substrates and products, play vital roles in mediating and modulating normal brain function, and their abnormal release or imbalanced concentrations can cause various diseases, such as epilepsy, Alzheimer's disease, and Parkinson's disease. A wide range of techniques have been used to probe the concentrations of neurochemicals under normal, stimulated, diseased, and drug-induced conditions in order to understand the neurochemistry of drug mechanisms and develop diagnostic tools or therapies. Recent advancements in detection methods, device fabrication, and new materials have resulted in the development of neurochemical sensors with improved performance. However, direct in vivo measurements require a robust sensor that is highly sensitive and selective with minimal fouling and reduced inflammatory foreign body responses. Here, we review recent advances in neurochemical sensor development for in vivo studies, with a focus on electrochemical and optical probes. Other alternative methods are also compared. We discuss in detail the in vivo challenges for these methods and provide an outlook for future directions.
Collapse
Affiliation(s)
- Chao Tan
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA 15261, USA; (C.T.); (E.M.R.); (B.W.)
| | - Elaine M. Robbins
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA 15261, USA; (C.T.); (E.M.R.); (B.W.)
- Department of Chemistry, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Bingchen Wu
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA 15261, USA; (C.T.); (E.M.R.); (B.W.)
- Center for Neural Basis of Cognition, Pittsburgh, PA 15213, USA
| | - Xinyan Tracy Cui
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA 15261, USA; (C.T.); (E.M.R.); (B.W.)
- Center for Neural Basis of Cognition, Pittsburgh, PA 15213, USA
- McGowan Institute for Regenerative Medicine, Pittsburgh, PA 15219, USA
| |
Collapse
|
49
|
Abstract
Heme proteins take part in a number of fundamental biological processes, including oxygen transport and storage, electron transfer, catalysis and signal transduction. The redox chemistry of the heme iron and the biochemical diversity of heme proteins have led to the development of a plethora of biotechnological applications. This work focuses on biosensing devices based on heme proteins, in which they are electronically coupled to an electrode and their activity is determined through the measurement of catalytic currents in the presence of substrate, i.e., the target analyte of the biosensor. After an overview of the main concepts of amperometric biosensors, we address transduction schemes, protein immobilization strategies, and the performance of devices that explore reactions of heme biocatalysts, including peroxidase, cytochrome P450, catalase, nitrite reductase, cytochrome c oxidase, cytochrome c and derived microperoxidases, hemoglobin, and myoglobin. We further discuss how structural information about immobilized heme proteins can lead to rational design of biosensing devices, ensuring insights into their efficiency and long-term stability.
Collapse
|
50
|
Shumyantseva VV, Bulko TV, Tikhonova EG, Sanzhakov MA, Kuzikov AV, Masamrekh RA, Pergushov DV, Schacher FH, Sigolaeva LV. Electrochemical studies of the interaction of rifampicin and nanosome/rifampicin with dsDNA. Bioelectrochemistry 2020; 140:107736. [PMID: 33494014 DOI: 10.1016/j.bioelechem.2020.107736] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 12/21/2020] [Accepted: 12/23/2020] [Indexed: 12/31/2022]
Abstract
The interactions of dsDNA with rifampicin (RF) or with rifampicin after encapsulation in phospholipid micelles (nanosome/rifampicin) (NRF) were studied electrochemically. Screen-printed electrodes (SPEs) modified by stable dispersions of multi-wolled carbon nanotubes (MWCNTs) in aqueous solution of poly(1,2-butadiene)-block-poly(2-(dimethylamino)ethyl methacrylate) (PB290-b-PDMAEMA240) diblock copolymer were used for quantitative electrochemical investigation of direct electrochemical oxidation of guanine at E = 0.591 V (vs. Ag/AgCl) and adenine at E = 0.874 V (vs. Ag/AgCl) of dsDNA and its change in the presence of RF or NRF. Due to RF or NRF interaction with dsDNA, the differential pulse voltammetry (DPV) peak currents of guanine and adenine decreased and the peak potentials shifted to more positive values with increasing drug concentration (RF or NRF). Binding constants (Kb) of complexes RF-dsDNA and NRF-dsDNA were calculated based on adenine and guanine oxidation signals. The Kb values for RF-dsDNA were 1.48 × 104 M-1/8.56 × 104 M-1, while for NRF-dsDNA were 2.51 × 104 M-1/1.78 × 103 M-1 (based on adenine or guanine oxidation signals, respectively). The values of Kb revealed intercalation mode of interaction with dsDNA for RF and mixed type of interaction (intercalation and electrostatic mode) for NRF. The estimated values of ΔG (Gibbs free energy) of the complex formation confirmed that drug-dsDNA interactions are spontaneous and favourable reactions.
Collapse
Affiliation(s)
- Victoria V Shumyantseva
- Institute of Biomedical Chemistry, Pogodinskaya Street 10, 119121 Moscow, Russia; Pirogov Russian National Research Medical University, Ostrovitianov Street 1, 117997 Moscow, Russia; Department of Chemistry, M.V. Lomonosov Moscow State University, Leninskie Gory 1/3, 119991 Moscow, Russia.
| | - Tatiana V Bulko
- Institute of Biomedical Chemistry, Pogodinskaya Street 10, 119121 Moscow, Russia; Department of Chemistry, M.V. Lomonosov Moscow State University, Leninskie Gory 1/3, 119991 Moscow, Russia
| | - Elena G Tikhonova
- Institute of Biomedical Chemistry, Pogodinskaya Street 10, 119121 Moscow, Russia
| | - Maxim A Sanzhakov
- Institute of Biomedical Chemistry, Pogodinskaya Street 10, 119121 Moscow, Russia
| | - Alexey V Kuzikov
- Institute of Biomedical Chemistry, Pogodinskaya Street 10, 119121 Moscow, Russia; Pirogov Russian National Research Medical University, Ostrovitianov Street 1, 117997 Moscow, Russia; Department of Chemistry, M.V. Lomonosov Moscow State University, Leninskie Gory 1/3, 119991 Moscow, Russia
| | - Rami A Masamrekh
- Institute of Biomedical Chemistry, Pogodinskaya Street 10, 119121 Moscow, Russia; Pirogov Russian National Research Medical University, Ostrovitianov Street 1, 117997 Moscow, Russia; Department of Chemistry, M.V. Lomonosov Moscow State University, Leninskie Gory 1/3, 119991 Moscow, Russia
| | - Dmitry V Pergushov
- Department of Chemistry, M.V. Lomonosov Moscow State University, Leninskie Gory 1/3, 119991 Moscow, Russia
| | - Felix H Schacher
- Institute of Organic Chemistry and Macromolecular Chemistry (IOMC), Friedrich-Schiller-University Jena, D-07743 Jena, Germany; Jena Center for Soft Matter (JCSM), Friedrich-Schiller-University Jena, D-07743 Jena, Germany; Center for Energy and Environmental Chemistry (CEEC), Friedrich-Schiller-University Jena, D-07743 Jena, Germany
| | - Larisa V Sigolaeva
- Institute of Biomedical Chemistry, Pogodinskaya Street 10, 119121 Moscow, Russia; Department of Chemistry, M.V. Lomonosov Moscow State University, Leninskie Gory 1/3, 119991 Moscow, Russia
| |
Collapse
|