1
|
Shkhair AI, Madanan AS, Varghese S, Abraham MK, Indongo G, Rajeevan G, Kala ABK, Abbas SM, George S. Bovine Serum Albumin-Capped Fluorescent Copper Nanocluster Incorporated with 2D-Molybdenum Disulfide Nanosheets as a FRET-Based Immune Probe for the "Turn-On" Detection of cTnT. ACS APPLIED BIO MATERIALS 2024. [PMID: 39727303 DOI: 10.1021/acsabm.4c01670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2024]
Abstract
Cardiovascular disease is the primary cause of mortality worldwide, as stated by the World Health Organization. We utilized the red fluorescence emitted by copper nanoclusters (CuNCs) to detect cardiac Troponin T (cTnT). We designed a fluorescent probe to detect cTnT using an on-off-on technique. The cTnT antibody was coupled on the surface of a bovine serum albumin-capped CuNC (Ab-BSA©CuNC) MoS2 nanosheet, efficiently quenching the luminescence of Ab-BSA©CuNCs due to their high affinity and binding interaction by establishing an Ab-BSA©CuNC/MoS2 platform. The luminescence of Ab-BSA©CuNCs was restored due to the antigen-antibody interaction. With a detection limit of 9.4 pg/mL, a linear relationship between the luminescence intensity concentrations of cTnT was observed in the 0.161-1.57 ng/mL ranges. Additionally, the efficacy of the developed technique to measure cTnT in blood serum samples was evaluated, and it exhibited a good recovery percentage.
Collapse
Affiliation(s)
- Ali Ibrahim Shkhair
- Department of Chemistry, School of Physical and Mathematical Sciences, University of Kerala, Kariavattom Campus, Thiruvananthapuram, 695581 Kerala, India
- College of Food Science, Al-Qasim Green University, 51013 Babylon, Iraq
| | - Anju S Madanan
- Department of Chemistry, School of Physical and Mathematical Sciences, University of Kerala, Kariavattom Campus, Thiruvananthapuram, 695581 Kerala, India
| | - Susan Varghese
- Department of Chemistry, School of Physical and Mathematical Sciences, University of Kerala, Kariavattom Campus, Thiruvananthapuram, 695581 Kerala, India
| | - Merin K Abraham
- Department of Chemistry, School of Physical and Mathematical Sciences, University of Kerala, Kariavattom Campus, Thiruvananthapuram, 695581 Kerala, India
| | - Geneva Indongo
- Department of Chemistry, School of Physical and Mathematical Sciences, University of Kerala, Kariavattom Campus, Thiruvananthapuram, 695581 Kerala, India
| | - Greeshma Rajeevan
- Department of Chemistry, School of Physical and Mathematical Sciences, University of Kerala, Kariavattom Campus, Thiruvananthapuram, 695581 Kerala, India
| | - Arathy B K Kala
- Department of Chemistry, School of Physical and Mathematical Sciences, University of Kerala, Kariavattom Campus, Thiruvananthapuram, 695581 Kerala, India
| | - Sara Muneer Abbas
- Department of Chemistry, School of Physical and Mathematical Sciences, University of Kerala, Kariavattom Campus, Thiruvananthapuram, 695581 Kerala, India
- College of Food Science, Al-Qasim Green University, 51013 Babylon, Iraq
| | - Sony George
- Department of Chemistry, School of Physical and Mathematical Sciences, University of Kerala, Kariavattom Campus, Thiruvananthapuram, 695581 Kerala, India
- International Inter-University Centre for Sensing and Imaging (IIUCSI), Department of Chemistry, University of Kerala, Kariavattom Campus, Thiruvananthapuram, 695581 Kerala, India
| |
Collapse
|
2
|
Varghese S, Madanan AS, Abraham MK, Shkhair AI, Indongo G, Rajeevan G, Arathy BK, George S. Quantum dot-to-dye-based fluorescent ratiometric immunoassay for GFAP: a biomarker for ischaemic stroke and glioblastoma multiforme. Analyst 2024. [PMID: 39665509 DOI: 10.1039/d4an01292e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2024]
Abstract
Ischaemic stroke and glioma, as leading causes of mortality and long-term disability, pose critical challenges to healthcare systems, necessitating innovative approaches to enable early and cost-effective diagnosis for timely intervention. Glial fibrillary acidic protein (GFAP), an astrocyte-produced protein, is highly responsive to both ischaemic stroke and glioblastoma multiforme, with its levels correlating to the extent of brain damage. In this study, we present the development of an immunoassay probe for the ratiometric fluorescent detection of glial fibrillary acidic protein (GFAP), employing a monoclonal GFAP antibody-conjugated silicon quantum dots (Ab@SiQDs) and rhodamine B dye (RhB)-based immunoprobe. The developed probe exhibited a fluorescence emission shift from 580 nm to 530 nm in response to GFAP, demonstrating a linear detection range from 31.15 pg mL-1 to 243 pg mL-1, with a limit of detection of 0.7 pg mL-1. Additionally, the immunoprobe showed high selectivity for GFAP, effectively discriminating it from other potential interfering biomolecules and ions. The probe was also capable of detecting GFAP in spiked serum samples, achieving a recovery rate ranging from 83% to 111%. Notably, a cost-effective paper strip assay was developed, offering significant potential for the visual detection of GFAP under ultraviolet illumination.
Collapse
Affiliation(s)
- Susan Varghese
- Department of Chemistry, School of Physical and Mathematical Sciences, University of Kerala, Kariavattom campus, Thiruvananthapuram-695581, Kerala, India.
| | - Anju S Madanan
- Department of Chemistry, School of Physical and Mathematical Sciences, University of Kerala, Kariavattom campus, Thiruvananthapuram-695581, Kerala, India.
| | - Merin K Abraham
- Department of Chemistry, School of Physical and Mathematical Sciences, University of Kerala, Kariavattom campus, Thiruvananthapuram-695581, Kerala, India.
| | - Ali Ibrahim Shkhair
- Department of Chemistry, School of Physical and Mathematical Sciences, University of Kerala, Kariavattom campus, Thiruvananthapuram-695581, Kerala, India.
- College of Food Science, Al-Qasim Green University, Babylon 51013, Iraq
| | - Geneva Indongo
- Department of Chemistry, School of Physical and Mathematical Sciences, University of Kerala, Kariavattom campus, Thiruvananthapuram-695581, Kerala, India.
| | - Greeshma Rajeevan
- Department of Chemistry, School of Physical and Mathematical Sciences, University of Kerala, Kariavattom campus, Thiruvananthapuram-695581, Kerala, India.
| | - B K Arathy
- Department of Chemistry, School of Physical and Mathematical Sciences, University of Kerala, Kariavattom campus, Thiruvananthapuram-695581, Kerala, India.
| | - Sony George
- Department of Chemistry, School of Physical and Mathematical Sciences, University of Kerala, Kariavattom campus, Thiruvananthapuram-695581, Kerala, India.
- International Inter University Centre for Sensing and Imaging (IIUCSI), Department of Chemistry, University of Kerala, Kariavattom campus, Thiruvananthapuram-695581, Kerala, India
| |
Collapse
|
3
|
Kala ABK, Rajeevan G, Madanan AS, Varghese S, Abraham MK, Shkhair AI, Indongo G, George S. Immunosensing of Cardiac Troponin I (cTnI) Using a Two-Electrode Electrochemiluminescence Platform with Near Persisting Luminescence Generated on a Ru(bpy) 32+-Tripropylamine System. ACS APPLIED BIO MATERIALS 2024; 7:7700-7709. [PMID: 39487038 DOI: 10.1021/acsabm.4c01247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2024]
Abstract
An economical, rapid, and ultrasensitive detection of biomolecules in clinical settings is very crucial, particularly for the early detection of Cardiac Troponin I (cTnI), which is the gold standard biomarker for Acute Myocardial Infarction (AMI). Electrochemiluminescence (ECL) has risen in prominence as an important technique for in vitro diagnosis and detection by virtue of its high sensitivity reaching a femtomolar level. This study introduces an economically feasible nanoplatform for ECL immunosensing, consisting of a gold nanoparticle (AuNP) with Ru(bpy)32+ and tripropylamine (TPA) system, which is a potential ECL luminophore and coreactant system. AuNPs serve the role of an ECL signal enhancer as well as the carrier of antibody, which enables the creation of a label-free immunosensor for antigen-antibody interactions. The prepared immunosensor detected cTnI with a detection limit (LOD) of 0.03 ng/mL. This potential immunosensor provides appreciable results in the detection of cTnI from spiked real serum analysis, which shows its potential application in low-resource clinical settings.
Collapse
Affiliation(s)
- Arathy B K Kala
- Department of Chemistry, School of Physical and Mathematical Sciences, University of Kerala, Kariavattom Campus, Thiruvananthapuram 695581, Kerala, India
| | - Greeshma Rajeevan
- Department of Chemistry, School of Physical and Mathematical Sciences, University of Kerala, Kariavattom Campus, Thiruvananthapuram 695581, Kerala, India
| | - Anju S Madanan
- Department of Chemistry, School of Physical and Mathematical Sciences, University of Kerala, Kariavattom Campus, Thiruvananthapuram 695581, Kerala, India
| | - Susan Varghese
- Department of Chemistry, School of Physical and Mathematical Sciences, University of Kerala, Kariavattom Campus, Thiruvananthapuram 695581, Kerala, India
| | - Merin K Abraham
- Department of Chemistry, School of Physical and Mathematical Sciences, University of Kerala, Kariavattom Campus, Thiruvananthapuram 695581, Kerala, India
| | - Ali Ibrahim Shkhair
- Department of Chemistry, School of Physical and Mathematical Sciences, University of Kerala, Kariavattom Campus, Thiruvananthapuram 695581, Kerala, India
- College of Food Science, Al-Qasim Green University, Babylon 51013, Iraq
| | - Geneva Indongo
- Department of Chemistry, School of Physical and Mathematical Sciences, University of Kerala, Kariavattom Campus, Thiruvananthapuram 695581, Kerala, India
| | - Sony George
- Department of Chemistry, School of Physical and Mathematical Sciences, University of Kerala, Kariavattom Campus, Thiruvananthapuram 695581, Kerala, India
- International Inter University Centre for Sensing and Imaging (IIUCSI), Department of Chemistry, University of Kerala, Kariavattom Campus, Thiruvananthapuram 695581, Kerala, India
| |
Collapse
|
4
|
Indongo G, Madanan AS, Varghese S, Shkhair AI, Abraham MK, Rajeevan G, Kala AB, George S. Exploring Selective Fluorescence Turn-On Sensing of Caspase-3 with Molybdenum Disulfide Quenched Copper Nanoclusters: FRET Biosensor. ACS APPLIED MATERIALS & INTERFACES 2024; 16:61599-61608. [PMID: 39475561 DOI: 10.1021/acsami.4c10967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2024]
Abstract
Sensing caspase-3 activity is essential for understanding the role of apoptosis in cancer dynamics, controlling therapeutic strategies, and improving patient care in cancer treatment. In this study, we demonstrate a highly sensitive recombinant human caspase-3 (rhC3) detection technique in biological fluids. This technique uses a copper nanocluster stabilized with bovine serum albumin (BSA-CuNCs) as a metal-based fluorescent biosensor, conjugated with anti-human caspase-3 (ahC3). To turn its fluorescence off, molybdenum disulfide nanosheets (MoS2 NSs) are added; this partnership is termed ahC3@BSA-CuNCs/MoS2 nanocouple. In the presence of rhC3, the energy transfer process is affected by strong ahC3/rhC3 interactions. When in close proximity, the rhC3 molecules cause detachment of the nanocluster from the MoS2 NS surface by attracting the ahC3 component of the nanocluster. This increases the distance between the nanocluster and quencher with a consequent restoration of intensity. As the concentration of rhC3 increases, the fluorescence intensity of the system also increases. A proportional response is seen in the concentration between 0.1 and 1.3 ng/mL with a very low limit of detection of 2.75 pg/mL and a quantification limit of 8.60 pg/mL. A simple filter paper strip was made to visually identify the presence of rhC3 under UV light.
Collapse
Affiliation(s)
- Geneva Indongo
- Department of Biotechnology, Faculty of Applied Sciences and Technology, University of Kerala, Kariavattom Campus, Thiruvananthapuram 695581, Kerala, India
| | - Anju S Madanan
- Department of Chemistry, School of Physical and Mathematical Sciences, University of Kerala, Kariavattom Campus, Thiruvananthapuram 695581, Kerala, India
| | - Susan Varghese
- Department of Chemistry, School of Physical and Mathematical Sciences, University of Kerala, Kariavattom Campus, Thiruvananthapuram 695581, Kerala, India
| | - Ali Ibrahim Shkhair
- Department of Chemistry, School of Physical and Mathematical Sciences, University of Kerala, Kariavattom Campus, Thiruvananthapuram 695581, Kerala, India
| | - Merin K Abraham
- Department of Chemistry, School of Physical and Mathematical Sciences, University of Kerala, Kariavattom Campus, Thiruvananthapuram 695581, Kerala, India
| | - Greeshma Rajeevan
- Department of Chemistry, School of Physical and Mathematical Sciences, University of Kerala, Kariavattom Campus, Thiruvananthapuram 695581, Kerala, India
| | - Arathy B Kala
- Department of Chemistry, School of Physical and Mathematical Sciences, University of Kerala, Kariavattom Campus, Thiruvananthapuram 695581, Kerala, India
| | - Sony George
- Department of Chemistry, School of Physical and Mathematical Sciences, University of Kerala, Kariavattom Campus, Thiruvananthapuram 695581, Kerala, India
- International Inter University Centre for Sensing and Imaging (IIUCSI), Department of Chemistry, University of Kerala, Kariavattom Campus, Thiruvananthapuram 695581, Kerala, India
| |
Collapse
|
5
|
Ibrahim Shkhair A, Madanan AS, Varghese S, Abraham MK, Indongo G, Rajeevan G, Arathy BK, Muneer Abbas S, George S. Non-Enzymatic Detection of Cardiac Troponin-I with Graphene Oxide Quenched Fluorescent Iron Nanoclusters (FeNCs). Chemistry 2024; 30:e202401867. [PMID: 39166354 DOI: 10.1002/chem.202401867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 07/02/2024] [Accepted: 08/20/2024] [Indexed: 08/22/2024]
Abstract
Cardiac troponin I (cTnI) is the most resorted biomarker for the detection of cardiovascular disease (CVD). The means of rapid quantification of cTnI levels in the blood can substantially minimize the risk of acute myocardial infarction and heart failure. A sensor for the non-enzymatic evaluation of cardiac troponin-I has been developed using fluorescent iron nanoclusters via a one-pot synthesis employing (BSA) as the template and reducing agent, and hydrogen peroxide as the additive. The fluorescence of Iron Nanocluster is quenched with graphene oxide (GO) via fluorescence resonance energy transfer (FRET) between conjugate iron nanoclusters and graphene oxide. The sensor shows a low detection limit of 0.011 ng/mL. The benefits of utilizing a non-enzymatic probe for detecting cardiac troponin I is that it avoids the need for enzymes and hence is economical, stable, and less impacted by environmental conditions such as temperature and pH. Non-enzymatic probes are more useful for clinical use since they are more stable and have a longer shelf life. The developed non-enzymatic probes are also highly selective and sensitive to the target analyte, making them suitable for the direct detection of cardiac troponin I in actual biological samples.
Collapse
Affiliation(s)
- Ali Ibrahim Shkhair
- Department of Chemistry, School of Physical and Mathematical Sciences, University of Kerala, Kariavattom Campus, Thiruvananthapuram, Kerala, 695581, India
- College of Food Science, Al-Qasim Green University, Babylon, 51013, Iraq
| | - Anju S Madanan
- Department of Chemistry, School of Physical and Mathematical Sciences, University of Kerala, Kariavattom Campus, Thiruvananthapuram, Kerala, 695581, India
| | - Susan Varghese
- Department of Chemistry, School of Physical and Mathematical Sciences, University of Kerala, Kariavattom Campus, Thiruvananthapuram, Kerala, 695581, India
| | - Merin K Abraham
- Department of Chemistry, School of Physical and Mathematical Sciences, University of Kerala, Kariavattom Campus, Thiruvananthapuram, Kerala, 695581, India
| | - Geneva Indongo
- Department of Chemistry, School of Physical and Mathematical Sciences, University of Kerala, Kariavattom Campus, Thiruvananthapuram, Kerala, 695581, India
| | - Greeshma Rajeevan
- Department of Chemistry, School of Physical and Mathematical Sciences, University of Kerala, Kariavattom Campus, Thiruvananthapuram, Kerala, 695581, India
| | - B K Arathy
- Department of Chemistry, School of Physical and Mathematical Sciences, University of Kerala, Kariavattom Campus, Thiruvananthapuram, Kerala, 695581, India
| | - Sara Muneer Abbas
- Department of Chemistry, School of Physical and Mathematical Sciences, University of Kerala, Kariavattom Campus, Thiruvananthapuram, Kerala, 695581, India
- College of Food Science, Al-Qasim Green University, Babylon, 51013, Iraq
| | - Sony George
- Department of Chemistry, School of Physical and Mathematical Sciences, University of Kerala, Kariavattom campus, Thiruvananthapuram, Kerala, 695581, India Mob: +91-9446462933
| |
Collapse
|
6
|
Madanan AS, Varghese S, Abraham MK, Shkhair AI, Rajeevan G, Indongo G, Arathy BK, George S. Fluorescence anisotropic probe for sensing cardiac troponin-I antigen through target-specific antibody-conjugated gold nanoclusters. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2024; 16:6899-6906. [PMID: 39279533 DOI: 10.1039/d4ay01240b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/18/2024]
Abstract
Fluorescence anisotropy (FA) is a versatile and efficient platform for developing biosensors that rely on the rate of rotations of fluorescence molecular entities in biochemical systems. However, by virtue of its intricate complexity, FA is a neglected and less explored area for developing biosensors. Herein, we experimented with the possibility of developing a fluorescence anisotropic probe to detect cardiac troponin I (cTnI), the gold standard biomarker for acute myocardial infarction, via target-specific monoclonal antibody-conjugated gold nanoclusters. The successful detection of cTnI antigen in clinically relevant concentration with a low detection limit of 0.91 ng mL-1 was achieved. The specific molecular interaction between the cTnI antigen and its monoclonal antibody tagged at the surface of gold nanoclusters has restricted the free rotation of gold nanoclusters and increased the FA value. This incremental increase in FA can be correlated to the concentration of cTnI antigen in the sample, thereby achieving the quantitative linear detection of cTnI.
Collapse
Affiliation(s)
- Anju S Madanan
- Department of Chemistry, School of Physical and Mathematical Science, University of Kerala, Thiruvananthapuram, Kerala, 695581, India.
| | - Susan Varghese
- Department of Chemistry, School of Physical and Mathematical Science, University of Kerala, Thiruvananthapuram, Kerala, 695581, India.
| | - Merin K Abraham
- Department of Chemistry, School of Physical and Mathematical Science, University of Kerala, Thiruvananthapuram, Kerala, 695581, India.
| | - Ali Ibrahim Shkhair
- Department of Chemistry, School of Physical and Mathematical Science, University of Kerala, Thiruvananthapuram, Kerala, 695581, India.
| | - Greeshma Rajeevan
- Department of Chemistry, School of Physical and Mathematical Science, University of Kerala, Thiruvananthapuram, Kerala, 695581, India.
| | - Geneva Indongo
- Department of Chemistry, School of Physical and Mathematical Science, University of Kerala, Thiruvananthapuram, Kerala, 695581, India.
| | - B K Arathy
- Department of Chemistry, School of Physical and Mathematical Science, University of Kerala, Thiruvananthapuram, Kerala, 695581, India.
| | - Sony George
- Department of Chemistry, School of Physical and Mathematical Science, University of Kerala, Thiruvananthapuram, Kerala, 695581, India.
| |
Collapse
|
7
|
Ding N, Zhou F, Li G, Shen H, Bai L, Su J. Quantum dots for bone tissue engineering. Mater Today Bio 2024; 28:101167. [PMID: 39205871 PMCID: PMC11350444 DOI: 10.1016/j.mtbio.2024.101167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 07/26/2024] [Accepted: 07/27/2024] [Indexed: 09/04/2024] Open
Abstract
In confronting the global prevalence of bone-related disorders, bone tissue engineering (BTE) has developed into a critical discipline, seeking innovative materials to revolutionize treatment paradigms. Quantum dots (QDs), nanoscale semiconductor particles with tunable optical properties, are at the cutting edge of improving bone regeneration. This comprehensive review delves into the multifaceted roles that QDs play within the realm of BTE, emphasizing their potential to not only revolutionize imaging but also to osteogenesis, drug delivery, antimicrobial strategies and phototherapy. The customizable nature of QDs, attributed to their size-dependent optical and electronic properties, has been leveraged to develop precise imaging modalities, enabling the visualization of bone growth and scaffold integration at an unprecedented resolution. Their nanoscopic scale facilitates targeted drug delivery systems, ensuring the localized release of therapeutics. QDs also possess the potential to combat infections at bone defect sites, preventing and improving bacterial infections. Additionally, they can be used in phototherapy to stimulate important bone repair processes and work well with the immune system to improve the overall healing environment. In combination with current trendy artificial intelligence (AI) technology, the development of bone organoids can also be combined with QDs. While QDs demonstrate considerable promise in BTE, the transition from laboratory research to clinical application is fraught with challenges. Concerns regarding the biocompatibility, long-term stability of QDs within the biological environment, and the cost-effectiveness of their production pose significant hurdles to their clinical adoption. This review summarizes the potential of QDs in BTE and highlights the challenges that lie ahead. By overcoming these obstacles, more effective, efficient, and personalized bone regeneration strategies will emerge, offering new hope for patients suffering from debilitating bone diseases.
Collapse
Affiliation(s)
- Ning Ding
- Organoid Research Center, Institute of Translational Medicine, Shanghai University, Shanghai, 200444, China
- National Center for Translational Medicine (Shanghai) SHU Branch, Shanghai University, Shanghai, 200444, China
| | - Fengjin Zhou
- Department of Orthopaedics, Honghui Hospital, Xi'an Jiao Tong University, Xi'an, 710000, China
| | - Guangfeng Li
- Organoid Research Center, Institute of Translational Medicine, Shanghai University, Shanghai, 200444, China
- National Center for Translational Medicine (Shanghai) SHU Branch, Shanghai University, Shanghai, 200444, China
- Department of Orthopedics, Shanghai Zhongye Hospital, Shanghai, 200444, China
| | - Hao Shen
- Department of Orthopedics, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China
| | - Long Bai
- Organoid Research Center, Institute of Translational Medicine, Shanghai University, Shanghai, 200444, China
- National Center for Translational Medicine (Shanghai) SHU Branch, Shanghai University, Shanghai, 200444, China
- Wenzhou Institute of Shanghai University, Wenzhou, Zhejiang, China
| | - Jiacan Su
- Organoid Research Center, Institute of Translational Medicine, Shanghai University, Shanghai, 200444, China
- Department of Orthopedics, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China
- National Center for Translational Medicine (Shanghai) SHU Branch, Shanghai University, Shanghai, 200444, China
| |
Collapse
|
8
|
Abraham MK, Madanan AS, Varghese S, Shkhair AI, Indongo G, Rajeevan G, S VN, George S. MnO 2 nanosheet quenched thulium doped photon-up conversion luminescent immunoprobe for the 'turn-on' detection of cardiac troponin T. Talanta 2024; 275:126096. [PMID: 38631263 DOI: 10.1016/j.talanta.2024.126096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 03/19/2024] [Accepted: 04/10/2024] [Indexed: 04/19/2024]
Abstract
A "turn-on" photon up conversion nano couple based on NaYF4: Yb, Tm UCNPs quenched with MnO2 nanosheet was developed for the rapid and selective detection of cTnT. Herein, MnO2 nanosheet hold on the surface of Antibody cTnT (Ab-cTnT) conjugated blue emitting up conversion nanoprobe (λem at 475 nm), which leads to quenching of fluorescence due to energy transfer from photon up conversion nanoparticles to MnO2 nanosheets. On introducing cTnT antigen to the system, the energy transfer process is hindered due to strong antigen -antibody interface on the surface. This in turn, influences the nano-couples positions and effectively separates up conversion nanoprobe from MnO2 nanosheets surface resulting in restriction to energy transfer process enabling fluorescence recovery. The developed probe shows a linear response towards cTnT in the range of 0.16-2.77 ng/mL with a Limit of Detection (LoD) of 0.025 ng/mL. The practical feasibility of the nanoprobe is performed with possible coexisting biomolecules. Biological study in human blood serum samples exhibited sufficient recovery percentage in the range of 92-103 % is obtained.
Collapse
Affiliation(s)
- Merin K Abraham
- Department of Chemistry, School of Physical and Mathematical Science, Research Centre, University of Kerala, Kariavattom Campus, Thiruvananthapuram, 695581, Kerala, India
| | - Anju S Madanan
- Department of Chemistry, School of Physical and Mathematical Science, Research Centre, University of Kerala, Kariavattom Campus, Thiruvananthapuram, 695581, Kerala, India
| | - Susan Varghese
- Department of Chemistry, School of Physical and Mathematical Science, Research Centre, University of Kerala, Kariavattom Campus, Thiruvananthapuram, 695581, Kerala, India
| | - Ali Ibrahim Shkhair
- Department of Chemistry, School of Physical and Mathematical Science, Research Centre, University of Kerala, Kariavattom Campus, Thiruvananthapuram, 695581, Kerala, India
| | - Geneva Indongo
- Department of Chemistry, School of Physical and Mathematical Science, Research Centre, University of Kerala, Kariavattom Campus, Thiruvananthapuram, 695581, Kerala, India
| | - Greeshma Rajeevan
- Department of Chemistry, School of Physical and Mathematical Science, Research Centre, University of Kerala, Kariavattom Campus, Thiruvananthapuram, 695581, Kerala, India
| | - Vijila N S
- Department of Chemistry, School of Physical and Mathematical Science, Research Centre, University of Kerala, Kariavattom Campus, Thiruvananthapuram, 695581, Kerala, India
| | - Sony George
- Department of Chemistry, School of Physical and Mathematical Science, Research Centre, University of Kerala, Kariavattom Campus, Thiruvananthapuram, 695581, Kerala, India.
| |
Collapse
|
9
|
Gerdan Z, Saylan Y, Denizli A. Biosensing Platforms for Cardiac Biomarker Detection. ACS OMEGA 2024; 9:9946-9960. [PMID: 38463295 PMCID: PMC10918812 DOI: 10.1021/acsomega.3c06571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 01/24/2024] [Accepted: 01/30/2024] [Indexed: 03/12/2024]
Abstract
Myocardial infarction (MI) is a cardiovascular disease that occurs when there is an elevated demand for myocardial oxygen as a result of the rupture or erosion of atherosclerotic plaques. Globally, the mortality rates associated with MI are steadily on the rise. Traditional diagnostic biomarkers employed in clinical settings for MI diagnosis have various drawbacks, prompting researchers to investigate fast, precise, and highly sensitive biosensor platforms and technologies. Biosensors are analytical devices that combine biological elements with physicochemical transducers to detect and quantify specific compounds or analytes. These devices play a crucial role in various fields including healthcare, environmental monitoring, food safety, and biotechnology. Biosensors developed for the detection of cardiac biomarkers are typically electrochemical, mass, and optical biosensors. Nanomaterials have emerged as revolutionary components in the field of biosensing, offering unique properties that significantly enhance the sensitivity and specificity of the detection systems. This review provides a comprehensive overview of the advancements and applications of nanomaterial-based biosensing systems. Beginning with an exploration of the fundamental principles governing nanomaterials, we delve into their diverse properties, including but not limited to electrical, optical, magnetic, and thermal characteristics. The integration of these nanomaterials as transducers in biosensors has paved the way for unprecedented developments in analytical techniques. Moreover, the principles and types of biosensors and their applications in cardiovascular disease diagnosis are explained in detail. The current biosensors for cardiac biomarker detection are also discussed, with an elaboration of the pros and cons of existing platforms and concluding with future perspectives.
Collapse
Affiliation(s)
- Zeynep Gerdan
- Department
of Biomedical Engineering, Istanbul Beykent
University, Istanbul 34398, Turkey
| | - Yeşeren Saylan
- Department
of Chemistry, Hacettepe University, Ankara 06800, Turkey
| | - Adil Denizli
- Department
of Chemistry, Hacettepe University, Ankara 06800, Turkey
| |
Collapse
|
10
|
Hu X, Li J, Li YT, Zhang Y, Xiao MM, Zhang Z, Liu Y, Zhang ZY, Zhang GJ. Plug-and-play smart transistor bio-chips implementing point-of-care diagnosis of AMI with modified CRISPR/Cas12a system. Biosens Bioelectron 2024; 246:115909. [PMID: 38070238 DOI: 10.1016/j.bios.2023.115909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Revised: 12/01/2023] [Accepted: 12/01/2023] [Indexed: 12/30/2023]
Abstract
The point-of-care diagnosis of acute myocardial infarction (AMI), an extremely lethal disease with only a few hours of golden rescue time, is significant and urgently required. Here, we describe a plug-and-play carbon nanotube field effect transistor (CNT-FET) bio-chip supported with a smart portable readout for ultrasensitive and on-site testing of cardiac troponin I (cTnI), which is one of the most specific and valuable biomarkers of AMI. A modified clustered regularly interspaced short palindromic repeats (CRISPR)/Cas12a system, featuring the G-triplex structured reporter, was first combined with the CNT-FET to realize non-nucleic acid detection. Such a unique CNT-FET biosensor achieved the high sensitivity (LOD: 0.33 fg/mL), which is expected to give timely warning in the early stage of myocardial injury. In addition, a bilayer gate dielectric consisting of Y2O3/HfO2, employed into the passivation process, enabled the high environmental stability and repeatability of CNT-FET. More importantly, the homemade compact chip readout forged a field-deployable cTnI analytical tool, realizing "plasma-to-answer" performance for AMI patients in point-of-care testing scenarios. The developed technology holds promise to help doctors make clinical decisions faster, especially in remote areas.
Collapse
Affiliation(s)
- Xiao Hu
- School of Laboratory Medicine, Hubei University of Chinese Medicine, 16 Huangjia Lake West Road, Wuhan, 430065, PR China; Department of Pharmacy, Renmin Hospital, Hubei University of Medicine, Shiyan, 442000, Hubei, PR China
| | - Jiahao Li
- School of Laboratory Medicine, Hubei University of Chinese Medicine, 16 Huangjia Lake West Road, Wuhan, 430065, PR China
| | - Yu-Tao Li
- School of Laboratory Medicine, Hubei University of Chinese Medicine, 16 Huangjia Lake West Road, Wuhan, 430065, PR China
| | - Yulin Zhang
- School of Laboratory Medicine, Hubei University of Chinese Medicine, 16 Huangjia Lake West Road, Wuhan, 430065, PR China
| | - Meng-Meng Xiao
- Key Laboratory for the Physics and Chemistry of Nanodevices and Center for Carbon-based Electronics, School of Electronics, Peking University, Beijing, 100871, PR China; Hunan Institute of Advanced Sensing and Information Technology, Xiangtan University, Hunan, 411105, PR China
| | - Zhenlu Zhang
- Wuhan Asia Heart Hospital, 753 Jinghan Avenue, Wuhan, 430022, PR China
| | - Yiwei Liu
- Hunan Institute of Advanced Sensing and Information Technology, Xiangtan University, Hunan, 411105, PR China
| | - Zhi-Yong Zhang
- Key Laboratory for the Physics and Chemistry of Nanodevices and Center for Carbon-based Electronics, School of Electronics, Peking University, Beijing, 100871, PR China; Hunan Institute of Advanced Sensing and Information Technology, Xiangtan University, Hunan, 411105, PR China
| | - Guo-Jun Zhang
- School of Laboratory Medicine, Hubei University of Chinese Medicine, 16 Huangjia Lake West Road, Wuhan, 430065, PR China.
| |
Collapse
|
11
|
Anju SM, Merin KA, Varghese S, Shkhair AI, Rajeevan G, Indongo G, George S. Antibody-functionalized gold nanoclusters/gold nanoparticle platform for the fluorescence turn-on detection of cardiac troponin I. Mikrochim Acta 2024; 191:124. [PMID: 38326603 DOI: 10.1007/s00604-024-06194-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 01/05/2024] [Indexed: 02/09/2024]
Abstract
A selective fluorescence turn-on immunosensor for the specific detection of cardiac troponin I (cTnI), the potent biomarker for myocardial infarction diagnosis, was developed with a nano couple comprised of protein-stabilized gold nanocluster and gold nanoparticle. The red fluorescence of cTnI-specific antibody tagged bovine serum albumin stabilized gold nanoclusters was quenched with gold nanoparticles (AuNP) via the intensive interaction between amine and hydroxyl functionalities of BSA and AuNP. Through this, the adsorption of gold nanoclusters at the surface of AuNP, resulting in a core-satellite assembly, was assumed to quench the fluorescence emission. While in the presence of cTnI antigen, this gets disturbed due to the formation of immunocomplex between cTnI antigen and antibody, which restricts the close interaction between gold clusters and nanoparticles, thereby restoring quenched fluorescence. The enhancement in fluorescence signal is directly related to the concentration of cTnI, and this facilitates the selective detection of cTnI in the linear concentration range 0.7 to 10 ng/mL without any interference from other potentially interfering co-existing biomolecules. An appreciable limit of detection of 0.51 ng/mL and a limit of quantification of 0.917 ng/mL for cTnI is comparable to that of the previous report.
Collapse
Affiliation(s)
- S Madanan Anju
- Department of Chemistry, School of Physical and Mathematical Science, University of Kerala, Thiruvananthapuram, Kerala, 695581, India
| | - K Abraham Merin
- Department of Chemistry, School of Physical and Mathematical Science, University of Kerala, Thiruvananthapuram, Kerala, 695581, India
| | - Susan Varghese
- Department of Chemistry, School of Physical and Mathematical Science, University of Kerala, Thiruvananthapuram, Kerala, 695581, India
| | - Ali Ibrahim Shkhair
- Department of Chemistry, School of Physical and Mathematical Science, University of Kerala, Thiruvananthapuram, Kerala, 695581, India
| | - Greeshma Rajeevan
- Department of Chemistry, School of Physical and Mathematical Science, University of Kerala, Thiruvananthapuram, Kerala, 695581, India
| | - Geneva Indongo
- Department of Chemistry, School of Physical and Mathematical Science, University of Kerala, Thiruvananthapuram, Kerala, 695581, India
| | - Sony George
- Department of Chemistry, School of Physical and Mathematical Science, University of Kerala, Thiruvananthapuram, Kerala, 695581, India.
| |
Collapse
|
12
|
Tade RS, Kalkal A, Patil PO. Functionalized Graphene Quantum Dots (GQDs) based Label-Free Optical Fluorescence Sensor for CD59 Antigen Detection and Cellular Bioimaging. J Fluoresc 2023:10.1007/s10895-023-03501-y. [PMID: 37976023 DOI: 10.1007/s10895-023-03501-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Accepted: 11/06/2023] [Indexed: 11/19/2023]
Abstract
Cluster of differentiation (CD59), a cell surface glycoprotein, regulates the complement system to prevent immune damage. In cancer, altered CD59 expression allows tumors to evade immune surveillance, promote growth, and resist certain immunotherapies. Targeting CD59 could enhance cancer treatment strategies by boosting the immune response against tumors. Herein, we present a one-step synthesis of Polyethyleneimine (PEI) functionalized graphene quantum dots (Lf-GQDs) from weathered lemon leaf extract. The fabricated Lf-GQDs were successfully used for the quantitative detection of the cluster of CD59 antigen that is reported for its expression in different types of cancer. In this work, we utilized orientation-based attachment of CD59 antibody (Anti-CD59). Our findings reveal that, instead of using random serial addition of antigen or antibody, oriented conjugation saves accumulated concentration offering greater sensitivity and selectivity. The Anti-CD59@Lf-GQDs immunosensor was fabricated using the oriented conjugation of antibodies onto the Lf-GQDs surface. Besides, the fabricated immunosensor demonstrated detection of CD59 in the range of 0.01 to 40.0 ng mL-1 with a low detection limit of 5.3 pg mL-1. Besides, the cellular uptake potential of the synthesized Lf-GQDs was also performed in A549 cells using a bioimaging study. The present approach represents the optimal utilization of Anti-CD59 and CD59 antigen. This approach could afford a pathway for constructing oriented conjugation of antibodies on the nanomaterials-based immunosensor for different biomarkers detection.
Collapse
Affiliation(s)
- Rahul Shankar Tade
- Department of Pharmaceutical Chemistry, H. R. Patel Institute of Pharmaceutical Education and Research, Shirpur - 425405, (MS), India
| | - Ashish Kalkal
- Department of Bioscience and Bioengineering, Indian Institute of Technology, Roorkee, 247667, Uttarakhand, India
| | - Pravin Onkar Patil
- Department of Pharmaceutical Chemistry, H. R. Patel Institute of Pharmaceutical Education and Research, Shirpur - 425405, (MS), India.
| |
Collapse
|
13
|
Nejati-Koshki K, Fathi F, Arabzadeh A, Mohammadzadeh A. Biomarkers and optical based biosensors in cardiac disease detection: early and accurate diagnosis. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2023; 15:5441-5458. [PMID: 37814547 DOI: 10.1039/d3ay01414b] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/11/2023]
Abstract
Rapid and precise detection methods for the early-stage detection of cardiovascular irregularities are crucial to stopping and reducing their development. Cardiovascular diseases (CVDs) are the leading cause of death in the world. Hence, cardiac-related biomarkers are essential for monitoring and managing of process. The necessity for biomarker detection has significantly widened the field of biosensor development. Bio-sensing methods offer rapid detection, low cost, sensitivity, portability, and selectivity in the development of devices for biomarker detection. For the prediction of cardiovascular diseases, some biomarkers can be used, like C-reactive protein (CRP), troponin I or T, creatine kinase (CK-MB), B-type natriuretic peptide (BNP), myoglobin (Mb), suppression of tumorigenicity 2 protein (ST2) and galectin-3 (Gal3). In this review, recent research studies were covered for gaining insight into utilizing optical-based biosensors, including surface plasmon resonance (SPR), photonic crystals (PCs), fluorescence-based techniques, fiber optics, and also Raman spectroscopy biosensors for the ultrasensitive detection of cardiac biomarkers. The main goal of this review is to focus on the improvement of optical biosensors in the future for the diagnosis of heart diseases and to discuss how to enhance their properties for use in medicine. Some main data from each study reviewed are emphasized, including the CVD biomarkers and the response range of the optical-based devices and biosensors.
Collapse
Affiliation(s)
- Kazem Nejati-Koshki
- Pharmaceutical Sciences Research Center, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Farzaneh Fathi
- Pharmaceutical Sciences Research Center, Ardabil University of Medical Sciences, Ardabil, Iran
| | - AmirAhmad Arabzadeh
- Department of Surgery, School of Medicine, Ardabil University of Medical Sciences, Ardabil, Iran.
| | - Alireza Mohammadzadeh
- Department of Surgery, School of Medicine, Ardabil University of Medical Sciences, Ardabil, Iran.
| |
Collapse
|
14
|
Kar A, Gupta S, Matilal A, Kumar D, Sarkar S. Nanotherapeutics for the Myocardium: A Potential Alternative for Treating Cardiac Diseases. J Cardiovasc Pharmacol 2023; 82:180-188. [PMID: 37341530 DOI: 10.1097/fjc.0000000000001444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 06/03/2023] [Indexed: 06/22/2023]
Abstract
ABSTRACT Cardiovascular diseases (CVDs) are the foremost cause of morbidity and mortality worldwide. Current clinical interventions include invasive approaches for progressed conditions and pharmacological assistance for initial stages, which has systemic side effects. Preventive, curative, diagnostic, and theranostic (therapeutic + diagnostic) approaches till date are not very useful in combating the ongoing CVD epidemic, which demands a promising efficient alternative approach. To combat the growing CVD outbreak globally, the ideal strategy is to make the therapeutic intervention least invasive and direct to the heart to reduce the bystander effects on other organs and increase the bioavailability of the therapeutics to the myocardium. The application of nanoscience and nanoparticle-mediated approaches have gained a lot of momentum because of their efficient passive and active myocardium targeting capability owing to their improved specificity and controlled release. This review provides extensive insight into the various types of nanoparticles available for CVDs, their mechanisms of targeting (eg, direct or indirect), and the utmost need for further development of bench-to-bedside cardiac tissue-based nanomedicines. Furthermore, the review aims to summarize the different ideas and methods of nanoparticle-mediated therapeutic approaches to the myocardium till date with present clinical trials and future perspectives. This review also reflects the potential of such nanoparticle-mediated tissue-targeted therapies to contribute to the sustainable development goals of good health and well-being.
Collapse
Affiliation(s)
- Abhik Kar
- Department of Zoology, University of Calcutta, Kolkata, West Bengal, India
| | | | | | | | | |
Collapse
|
15
|
Nisar S, Chansi, Mathur A, Basu T, Singh KRB, Singh J. Template Free Anisotropically Grown Gold Nanocluster Based Electrochemical Immunosensor for Ultralow Detection of Cardiac Troponin I. BIOSENSORS 2022; 12:1144. [PMID: 36551111 PMCID: PMC9775497 DOI: 10.3390/bios12121144] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 11/29/2022] [Accepted: 12/02/2022] [Indexed: 10/28/2023]
Abstract
Anisotropic gold nanostructures have fascinated with their exceptional electronic properties, henceforth exploited for the fabrication of electrochemical sensors. However, their synthesis approaches are tedious and often require a growth template. Modern lifestyle has caused an upsurge in the risk of heart attack and requires urgent medical attention. Cardiac troponin I can serve as a biomarker in identification of suspected myocardial infection (heart attack). Hence the present work demonstrates the fabrication of a sensing platform developed by assimilating anisotropic gold nanoclusters (AuNCs) with anti cTnI antibody (acTnI) for the detection of cardiac troponin I (cTnI). The uniqueness and ease of synthesis by a template-free approach provides an extra edge for the fabrication of AuNC coated electrodes. The template-free growth of anisotropic AuNCs onto the indium tin oxide (ITO) glass substrates offers high sensitivity (2.2 × 10-4 A ng-1 mL cm-2) to the developed sensor. The immunosensor was validated by spiking different concentrations of cTnI in artificial serum with negligible interference under optimized conditions. The sensor shows a wide range of detection from 0.06-100 ng/mL with an ultralow detection limit. Thus, it suggests that the template-free immunosensor can potentially be used to screen the traces of cTnI present in blood serum samples, and the AuNCs based platform holds great promise as a transduction matrix, hence it can be exploited for broader sensing applications.
Collapse
Affiliation(s)
- Sumaya Nisar
- Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, Delhi, India
| | - Chansi
- Amity Centre for Nanomedicine, Amity University, Noida 201301, Uttar Pradesh, India
| | - Ashish Mathur
- Centre for Interdisciplinary Research and Innovation (CIDRI), University of Petroleum and Energy Studies (UPES), Dehradun 248007, Uttarakhan, India
| | - Tinku Basu
- Amity Centre for Nanomedicine, Amity University, Noida 201301, Uttar Pradesh, India
| | - Kshitij RB Singh
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi 221005, Uttar Pradesh, India
| | - Jay Singh
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi 221005, Uttar Pradesh, India
| |
Collapse
|
16
|
Disha, Kumari P, Patel MK, Kumar P, Nayak MK. Carbon Dots Conjugated Antibody as an Effective FRET-Based Biosensor for Progesterone Hormone Screening. BIOSENSORS 2022; 12:993. [PMID: 36354503 PMCID: PMC9688503 DOI: 10.3390/bios12110993] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 11/04/2022] [Accepted: 11/06/2022] [Indexed: 08/29/2023]
Abstract
In this work, carbon dots (CDs) were synthesized by a one-step hydrothermal method using citric acid and ethylene diamine, and covalently functionalized with antibodies for the sensing of progesterone hormone. The structural and morphological analysis reveals that the synthesized CDs are of average size (diameter 8-10 nm) and the surface functionalities are confirmed by XPS, XRD and FT-IR. Further graphene oxide (GO) is used as a quencher due to the fluorescence resonance energy transfer (FRET) mechanism, whereas the presence of the analyte progesterone turns on the fluorescence because of displacement of GO from the surface of CDs effectively inhibiting FRET efficiency due to the increased distance between donor and acceptor moieties. The linear curve is obtained with different progesterone concentrations with 13.8 nM detection limits (R2 = 0.974). The proposed optical method demonstrated high selectivity performance in the presence of structurally resembling interfering compounds. The PL intensity increased linearly with the increased progesterone concentration range (10-900 nM) under the optimal experimental parameters. The developed level-free immunosensor has emerged as a potential platform for simplified progesterone analysis due to the high selectivity performance and good recovery in different samples of spiked water.
Collapse
Affiliation(s)
- Disha
- Materials Science and Sensor Applications, CSIR-Central Scientific Instruments Organisation (CSIR-CSIO), Sector 30-C, Chandigarh 160030, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Poonam Kumari
- Materials Science and Sensor Applications, CSIR-Central Scientific Instruments Organisation (CSIR-CSIO), Sector 30-C, Chandigarh 160030, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Manoj K. Patel
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
- Manufacturing Science and lnstrumentation, CSIR-Central Scientific Instruments Organisation (CSIR-CSIO), Sector 30-C, Chandigarh 160030, India
| | | | - Manoj K. Nayak
- Materials Science and Sensor Applications, CSIR-Central Scientific Instruments Organisation (CSIR-CSIO), Sector 30-C, Chandigarh 160030, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| |
Collapse
|
17
|
Graphene quantum dots: synthesis, properties, and applications to the development of optical and electrochemical sensors for chemical sensing. Mikrochim Acta 2022; 189:258. [PMID: 35701638 DOI: 10.1007/s00604-022-05353-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 05/24/2022] [Indexed: 10/18/2022]
Abstract
GQDs exhibits exceptional electrochemical activity owing to their active edge sites that make them very attractive for biosensing applications. However, their use in the design of new biosensing devices for application to the detection and quantification of toxins, pathogens, and clinical biomarkers has so far not investigated in detail. In this regard, herein we provide a detailed review on various methodologies employed for the synthesis of GQDs, including bottom-up and top-down approaches, with a special focus on their applications in biosensing via fluorescence, photoluminescence, chemiluminescence, electrochemiluminescence, fluorescence resonance energy transfer, and electrochemical techniques. We believe that this review will shed light on the critical issues and widen the applications of GQDs for the design of biosensors with improved analytical response for future applications. HIGHLIGHTS: • Properties of GQDs play a critical role in biosensing applications. • Synthesis of GQDs using top-down and bottom-up approaches is discussed comprehensively. • Overview of advancements in GQD-based sensors over the last decade. • Methods for the design of selective and sensitive GQD-based sensors. • Challenges and opportunities for future GQD-based sensors.
Collapse
|
18
|
Graphene nanomaterials: The wondering material from synthesis to applications. SENSORS INTERNATIONAL 2022. [DOI: 10.1016/j.sintl.2022.100190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
19
|
Sargazi S, Fatima I, Hassan Kiani M, Mohammadzadeh V, Arshad R, Bilal M, Rahdar A, Díez-Pascual AM, Behzadmehr R. Fluorescent-based nanosensors for selective detection of a wide range of biological macromolecules: A comprehensive review. Int J Biol Macromol 2022; 206:115-147. [PMID: 35231532 DOI: 10.1016/j.ijbiomac.2022.02.137] [Citation(s) in RCA: 74] [Impact Index Per Article: 24.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 02/01/2022] [Accepted: 02/23/2022] [Indexed: 12/11/2022]
Abstract
Thanks to their unique attributes, such as good sensitivity, selectivity, high surface-to-volume ratio, and versatile optical and electronic properties, fluorescent-based bioprobes have been used to create highly sensitive nanobiosensors to detect various biological and chemical agents. These sensors are superior to other analytical instrumentation techniques like gas chromatography, high-performance liquid chromatography, and capillary electrophoresis for being biodegradable, eco-friendly, and more economical, operational, and cost-effective. Moreover, several reports have also highlighted their application in the early detection of biomarkers associated with drug-induced organ damage such as liver, kidney, or lungs. In the present work, we comprehensively overviewed the electrochemical sensors that employ nanomaterials (nanoparticles/colloids or quantum dots, carbon dots, or nanoscaled metal-organic frameworks, etc.) to detect a variety of biological macromolecules based on fluorescent emission spectra. In addition, the most important mechanisms and methods to sense amino acids, protein, peptides, enzymes, carbohydrates, neurotransmitters, nucleic acids, vitamins, ions, metals, and electrolytes, blood gases, drugs (i.e., anti-inflammatory agents and antibiotics), toxins, alkaloids, antioxidants, cancer biomarkers, urinary metabolites (i.e., urea, uric acid, and creatinine), and pathogenic microorganisms were outlined and compared in terms of their selectivity and sensitivity. Altogether, the small dimensions and capability of these nanosensors for sensitive, label-free, real-time sensing of chemical, biological, and pharmaceutical agents could be used in array-based screening and in-vitro or in-vivo diagnostics. Although fluorescent nanoprobes are widely applied in determining biological macromolecules, unfortunately, they present many challenges and limitations. Efforts must be made to minimize such limitations in utilizing such nanobiosensors with an emphasis on their commercial developments. We believe that the current review can foster the wider incorporation of nanomedicine and will be of particular interest to researchers working on fluorescence technology, material chemistry, coordination polymers, and related research areas.
Collapse
Affiliation(s)
- Saman Sargazi
- Cellular and Molecular Research Center, Research Institute of Cellular and Molecular Sciences in Infectious Diseases, Zahedan University of Medical Sciences, 98167-43463 Zahedan, Iran
| | - Iqra Fatima
- Department of Pharmacy, Quaid-i-Azam University, Islamabad 45320, Pakistan
| | - Maria Hassan Kiani
- Department of Pharmacy, Quaid-i-Azam University, Islamabad 45320, Pakistan
| | - Vahideh Mohammadzadeh
- Department of Pharmaceutical Nanotechnology, School of Pharmacy, Mashhad University of Medical Science, Mashhad 1313199137, Iran
| | - Rabia Arshad
- Faculty of Pharmacy, University of Lahore, Lahore 45320, Pakistan
| | - Muhammad Bilal
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian 223003, China
| | - Abbas Rahdar
- Department of Physics, University of Zabol, Zabol, P. O. Box. 98613-35856, Iran.
| | - Ana M Díez-Pascual
- Universidad de Alcalá, Facultad de Ciencias, Departamento de Química Analítica, Química Física e Ingeniería Química, Ctra. Madrid-Barcelona, Km. 33.6, 28805 Alcalá de Henares, Madrid, Spain.
| | - Razieh Behzadmehr
- Department of Radiology, Zabol University of Medical Sciences, Zabol, Iran
| |
Collapse
|
20
|
Agrawal N, Bhagel D, Mishra P, Prasad D, Kohli E. Post-synthetic modification of graphene quantum dots bestows enhanced biosensing and antibiofilm ability: efficiency facet. RSC Adv 2022; 12:12310-12320. [PMID: 35480352 PMCID: PMC9027252 DOI: 10.1039/d2ra00494a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 04/01/2022] [Indexed: 12/22/2022] Open
Abstract
Graphene quantum dots (GQDs) are a luminescent class of carbon nanomaterials with a graphene-like core structure, possessing quantum confinement and edge effects. They have gained importance in the biological world due to their inherent biocompatibility, good water dispersibility, excellent fluorescence and photostability. The improved properties of GQDs require the logical enactment of functional groups, which can be easily attained through post-synthetic non-covalent routes of modification. In this regard, the present work has for the first time employed a simple one-pot post-modification method utilizing the salt of amino caproic acid, an FDA approved reagent. The adsorption of the modifier on GQDs with varying weight ratios is characterized through DLS, zeta potential, Raman, absorption and fluorescence spectroscopy. A decrease of 20% in the fluorescence intensity with an increase in the modifier ratio from 1 to 1000 and an increased DLS size as well as zeta potential demonstrate the efficient modification as well as higher stability of the modified GQDs. The modified GQDs with a high weight ratio (1 : 100) of the modifier showed superior ability to sense dopamine, a neurotransmitter, as well as competent biofilm degradation ability. The modified GQDs could sense more efficiently than pristine GQDs, with a sensitivity as low as 0.06 μM (limit of detection) and 90% selectivity in the presence of other neurotransmitters. The linear relationship showed a decrease in the fluorescence intensity with increasing dopamine concentration from 0.0625 μM to 50 μM. Furthermore, the efficiency of the modified GQDs was also assessed in terms of their antibiofilm effect against Staphylococcus aureus. The unmodified GQDs showed only 10% disruption of the adhered bacterial colonies, while the modified GQDs (1 : 100) showed significantly more than 60% disruption of the biofilm, presenting the competency of the modified GQDs. The unique modifications of GQDs have thus proven to be an effective method for the proficient utilization of zero-dimensional carbon nanomaterials for biosensing, bioimaging, antibacterial and anti-biofilm applications.
Collapse
Affiliation(s)
- Neha Agrawal
- Department of Neurobiobiology, DIPAS, DRDO New Delhi 110045 India
| | - Dolly Bhagel
- Department of Neurobiobiology, DIPAS, DRDO New Delhi 110045 India
| | - Priyanka Mishra
- Department of Immunomodulation, DIPAS, DRDO New Delhi-110045 India
| | - Dipti Prasad
- Department of Neurobiobiology, DIPAS, DRDO New Delhi 110045 India
| | - Ekta Kohli
- Department of Neurobiobiology, DIPAS, DRDO New Delhi 110045 India
| |
Collapse
|
21
|
Yang A, Su Y, Zhang Z, Wang H, Qi C, Ru S, Wang J. Preparation of Graphene Quantum Dots by Visible-Fenton Reaction and Ultrasensitive Label-Free Immunosensor for Detecting Lipovitellin of Paralichthys Olivaceus. BIOSENSORS 2022; 12:bios12040246. [PMID: 35448306 PMCID: PMC9024531 DOI: 10.3390/bios12040246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 01/21/2022] [Accepted: 01/22/2022] [Indexed: 11/16/2022]
Abstract
The increasing levels of environmental estrogens are causing negative effects on water, soil, wildlife, and human beings; label-free immunosensors with high specificities and sensitivities are being developed to test estrogeneous chemicals in complex environmental conditions. For the first time, highly fluorescent graphene quantum dots (GQDs) were prepared using a visible-Fenton catalysis reaction with graphene oxide (GO) as a precursor. Different microscopy and spectroscopy techniques were employed to characterize the physical and chemical properties of the GQDs. Based on the fluorescence resonance energy transfer (FRET) between amino-functionalized GQDs conjugated with anti-lipovitellin monoclonal antibodies (Anti-Lv-mAb) and reduced graphene oxide (rGO), an ultrasensitive fluorescent “ON-OFF” label-free immunosensor for the detection of lipovitellin (Lv), a sensitive biomarker derived from Paralichthys olivaceus for environmental estrogen, has been established. The immunosensor has a wide linear test range (0.001–1500 ng/mL), a lower limit of detection (LOD, 0.9 pg/mL), excellent sensitivity (26,407.8 CPS/(ng/mL)), and high selectivity and reproducibility for Lv quantification. The results demonstrated that the visible-Fenton is a simple, mild, green, efficient, and general approach to fabricating GQDs, and the fluorescent “ON-OFF” immunosensor is an easy-to-use, time-saving, ultrasensitive, and accurate detection method for weak estrogenic activity.
Collapse
Affiliation(s)
- Ailing Yang
- College of Physics & Optoelectronic Engineering, Ocean University of China, Qingdao 266100, China; (Y.S.); (H.W.); (C.Q.)
- Correspondence: (A.Y.); (J.W.); Tel.: +86-532-66781204 (A.Y.)
| | - Yue Su
- College of Physics & Optoelectronic Engineering, Ocean University of China, Qingdao 266100, China; (Y.S.); (H.W.); (C.Q.)
| | - Zhenzhong Zhang
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China; (Z.Z.); (S.R.)
| | - Huaidong Wang
- College of Physics & Optoelectronic Engineering, Ocean University of China, Qingdao 266100, China; (Y.S.); (H.W.); (C.Q.)
| | - Chong Qi
- College of Physics & Optoelectronic Engineering, Ocean University of China, Qingdao 266100, China; (Y.S.); (H.W.); (C.Q.)
| | - Shaoguo Ru
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China; (Z.Z.); (S.R.)
| | - Jun Wang
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China; (Z.Z.); (S.R.)
- Correspondence: (A.Y.); (J.W.); Tel.: +86-532-66781204 (A.Y.)
| |
Collapse
|
22
|
Liu S, Huo Y, Fan L, Ning B, Sun T, Gao Z. Rapid and ultrasensitive detection of DNA and microRNA-21 using a zirconium porphyrin metal-organic framework-based switch fluorescence biosensor. Anal Chim Acta 2022; 1192:339340. [PMID: 35057960 DOI: 10.1016/j.aca.2021.339340] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 10/19/2021] [Accepted: 11/28/2021] [Indexed: 01/15/2023]
Abstract
Sensitive and accurate detection of nucleic acid biomarkers is critical for early cancer diagnosis, disease monitoring, and clinical treatment. In this study, we developed a switch fluorescence biosensor for simple and high-efficient detection of nucleic acid biomarkers using 6-carboxyfluorescein (FAM)-modified single-stranded DNA (ssDNA) probes (FAM-P1/P2), and zirconium porphyrin metal-organic framework nanoparticles (ZrMOF) acted as fluorescence quencher. FAM-P1/P2 probes were adsorbed on ZrMOF surface because of π-π stacking, hydrogen bonding, and electrostatic interactions. Fluorescence quenching event occurred by fluorescence resonance energy transfer (FRET) and photo-induced electron transfer (PET) processes, thereby achieving the "off" fluorescence status. Once the specific binding was formed between the fluorescence probes and the targets, the rigid double-stranded DNA (dsDNA) structures were released from ZrMOF surface, resulting in the recovery of fluorescence and the "on" status. Because of the superior adsorption ability of ZrMOF toward ssDNA than dsDNA, the switch of fluorescence signals from "off" to "on" allowed rapid and ultrasensitive detection of ssDNA (T1) and microRNA-21 (miR-21) within 30 min. The limit of detection (signal-to-noise ratio = 3) for T1 and miR-21 were 2 fM and 11 aM, respectively. Moreover, the proposed strategy was very simple as it worked by the facile adsorption-quenching-recovery mechanism without difficult and complicated immobilization processes. Also, this biosensor showed an excellent analytical performance in the detection of miR-21 in human serum samples. Therefore, this biosensor might be considered a potential tool for the detection of DNA and miRNA biomarkers in clinical samples.
Collapse
Affiliation(s)
- Sha Liu
- Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety, Tianjin Institute of Environmental and Operational Medicine, Tianjin, 300050, China.
| | - Yapeng Huo
- Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety, Tianjin Institute of Environmental and Operational Medicine, Tianjin, 300050, China
| | - Longxing Fan
- Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety, Tianjin Institute of Environmental and Operational Medicine, Tianjin, 300050, China
| | - Baoan Ning
- Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety, Tianjin Institute of Environmental and Operational Medicine, Tianjin, 300050, China
| | - Tieqiang Sun
- Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety, Tianjin Institute of Environmental and Operational Medicine, Tianjin, 300050, China.
| | - Zhixian Gao
- Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety, Tianjin Institute of Environmental and Operational Medicine, Tianjin, 300050, China.
| |
Collapse
|
23
|
He S, Zhang P, Sun J, Ji Y, Huang C, Jia N. Integrating potential-resolved electrochemiluminescence with molecularly imprinting immunoassay for simultaneous detection of dual acute myocardial infarction markers. Biosens Bioelectron 2022; 201:113962. [PMID: 35021132 DOI: 10.1016/j.bios.2022.113962] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2021] [Revised: 12/11/2021] [Accepted: 01/01/2022] [Indexed: 12/19/2022]
Abstract
A novel potential-resolved molecularly imprinted electrochemical luminescence (ECL) immunosensor has been developed for the first time for the dual sensitive detection of markers of acute myocardial infarction (AMI): cardiac troponin I (cTnI) and myoglobin (Mb). In this work, cost-effective and robust molecularly imprinted polymer (MIP) as biomimetic antibody was used to construct the immunosensors through electropolymerization and elution to form polydopamine (PDA)-MIP modified electrode. In the presence of AMI biomarkers, two ECL probes including Ru(bpy)32+@ MOCs and MoS2 QDs functionalized by cTnI antibody and Mb aptamer could be specifically captured respectively. And two potential distinct ECL signals will be generated in one potential scan. The intensity of ECL reflects the concentrations of cTnI and Mb. The two ECL probes were characterized with field emission scanning electron microscopy, X-ray diffraction, FT-IR spectrum and UV-Vis diffuse reflectance spectroscopy. The prepared sensor exhibited a wide linear range (0.05-104 ng/mL) and a low detection limit (0.0184 ng/mL for cTnI and 0.0492 ng/mL for Mb). Additionally, the MIP-ECL sensor displayed excellent anti-interference, sensitivity and stability to detect cTnI and Mb. Therefore, it will be conducive to accelerate more precise and credible early diagnosis for AMI.
Collapse
Affiliation(s)
- Shuang He
- The Education Ministry Key Lab of Resource Chemistry, Joint International Research Laboratory of Resource Chemistry, Ministry of Education, and Shanghai Key Laboratory of Rare Earth Functional Materials, College of Chemistry and Materials Science, Shanghai Normal University, Shanghai, 200234, China
| | - Pei Zhang
- The Education Ministry Key Lab of Resource Chemistry, Joint International Research Laboratory of Resource Chemistry, Ministry of Education, and Shanghai Key Laboratory of Rare Earth Functional Materials, College of Chemistry and Materials Science, Shanghai Normal University, Shanghai, 200234, China
| | - Jing Sun
- The Education Ministry Key Lab of Resource Chemistry, Joint International Research Laboratory of Resource Chemistry, Ministry of Education, and Shanghai Key Laboratory of Rare Earth Functional Materials, College of Chemistry and Materials Science, Shanghai Normal University, Shanghai, 200234, China
| | - Yu Ji
- The Education Ministry Key Lab of Resource Chemistry, Joint International Research Laboratory of Resource Chemistry, Ministry of Education, and Shanghai Key Laboratory of Rare Earth Functional Materials, College of Chemistry and Materials Science, Shanghai Normal University, Shanghai, 200234, China
| | - Chusen Huang
- The Education Ministry Key Lab of Resource Chemistry, Joint International Research Laboratory of Resource Chemistry, Ministry of Education, and Shanghai Key Laboratory of Rare Earth Functional Materials, College of Chemistry and Materials Science, Shanghai Normal University, Shanghai, 200234, China.
| | - Nengqin Jia
- The Education Ministry Key Lab of Resource Chemistry, Joint International Research Laboratory of Resource Chemistry, Ministry of Education, and Shanghai Key Laboratory of Rare Earth Functional Materials, College of Chemistry and Materials Science, Shanghai Normal University, Shanghai, 200234, China.
| |
Collapse
|
24
|
Kalkal A, Kadian S, Kumar S, Manik G, Sen P, Kumar S, Packirisamy G. Ti 3C 2-MXene decorated with nanostructured silver as a dual-energy acceptor for the fluorometric neuron specific enolase detection. Biosens Bioelectron 2022; 195:113620. [PMID: 34560349 DOI: 10.1016/j.bios.2021.113620] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 08/18/2021] [Accepted: 09/06/2021] [Indexed: 12/15/2022]
Abstract
Nanohybrids of two-dimensional (2D) layered materials have shown fascinating prospects towards the fabrication of highly efficient fluorescent immunosensor. In this context, a nanohybrid of ultrathin Ti3C2-MXene nanosheets and silver nanoparticles (Ag@Ti3C2-MXene) has been reported as a dual-energy acceptor for ultrahigh fluorescence quenching of protein-functionalized graphene quantum dots (anti-NSE/amino-GQDs). The Ti3C2-MXene nanosheets are decorated with silver nanoparticles (AgNPs) to obsolete the agglomeration and restacking through a one-pot direct reduction method wherein the 2D Ti3C2-MXene nanosheets acted both as a reducing agent and support matrix for AgNPs. The as-prepared nanohybrid is characterized by various techniques to analyze the optical, structural, compositional, and morphological parameters. The quenching efficiency and energy transfer capability between the anti-NSE/amino-GQDs (donor) and Ag@Ti3C2-MXene (acceptor) have been explored through steady state and time-resolved spectroscopic studies. Interestingly, the Ag@Ti3C2-MXene nanohybrid exhibits better quenching and energy transfer efficiencies in contrast to bare Ti3C2-MXene, AgNPs and previously reported AuNPs. Based on optimized donor-acceptor pair, a fluorescent turn-on biosensing system is constructed that revealed improved biosensing characteristics compared to Ti3C2-MXene, graphene and AuNPs for the detection of neuron-specific enolase (NSE), including higher sensitivity (∼771 mL ng-1), broader linear detection range (0.0001-1500 ng mL-1), better LOD (0.05 pg mL-1), and faster response time (12 min). Besides, remarkable biosensing capability has been observed in serum samples, with fluorescence recovery of ∼98%.
Collapse
Affiliation(s)
- Ashish Kalkal
- Nanobiotechnology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Uttarakhand, 247667, India
| | - Sachin Kadian
- Department of Polymer and Process Engineering, Indian Institute of Technology Roorkee, Uttarakhand, 247667, India
| | - Sumit Kumar
- Department of Research and Innovations, Division of Research and Development, Lovely Professional University, Jalandhar, Punjab, 144411, India
| | - Gaurav Manik
- Department of Polymer and Process Engineering, Indian Institute of Technology Roorkee, Uttarakhand, 247667, India
| | - Prosenjit Sen
- Centre for Nano Science and Engineering (CeNSE), Indian Institute of Science Bengaluru, Karnataka, 560012, India
| | - Saurabh Kumar
- Centre for Nano Science and Engineering (CeNSE), Indian Institute of Science Bengaluru, Karnataka, 560012, India; Department of Medical Devices, National Institute of Pharmaceutical Education and Research Guwahati, Assam, 781101, India.
| | - Gopinath Packirisamy
- Nanobiotechnology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Uttarakhand, 247667, India; Centre for Nanotechnology, Indian Institute of Technology Roorkee, Uttarakhand, 247667, India.
| |
Collapse
|
25
|
Shahriar SMS, Nafiujjaman M, An JM, Revuri V, Nurunnabi M, Han DW, Lee YK. Graphene: A Promising Theranostic Agent. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1351:149-176. [DOI: 10.1007/978-981-16-4923-3_8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
26
|
Ghaffarkhah A, Hosseini E, Kamkar M, Sehat AA, Dordanihaghighi S, Allahbakhsh A, van der Kuur C, Arjmand M. Synthesis, Applications, and Prospects of Graphene Quantum Dots: A Comprehensive Review. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2102683. [PMID: 34549513 DOI: 10.1002/smll.202102683] [Citation(s) in RCA: 110] [Impact Index Per Article: 36.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 08/12/2021] [Indexed: 05/24/2023]
Abstract
Graphene quantum dot (GQD) is one of the youngest superstars of the carbon family. Since its emergence in 2008, GQD has attracted a great deal of attention due to its unique optoelectrical properties. Non-zero bandgap, the ability to accommodate functional groups and dopants, excellent dispersibility, highly tunable properties, and biocompatibility are among the most important characteristics of GQDs. To date, GQDs have displayed significant momentum in numerous fields such as energy devices, catalysis, sensing, photodynamic and photothermal therapy, drug delivery, and bioimaging. As this field is rapidly evolving, there is a strong need to identify the emerging challenges of GQDs in recent advances, mainly because some novel applications and numerous innovations on the ease of synthesis of GQDs are not systematically reviewed in earlier studies. This feature article provides a comparative and balanced discussion of recent advances in synthesis, properties, and applications of GQDs. Besides, current challenges and future prospects of these emerging carbon-based nanomaterials are also highlighted. The outlook provided in this review points out that the future of GQD research is boundless, particularly if upcoming studies focus on the ease of purification and eco-friendly synthesis along with improving the photoluminescence quantum yield and production yield of GQDs.
Collapse
Affiliation(s)
- Ahmadreza Ghaffarkhah
- Nanomaterials and Polymer Nanocomposites Laboratory, School of Engineering, University of British Columbia, Kelowna, BC, V1V 1V7, Canada
| | - Ehsan Hosseini
- Nanomaterials and Polymer Nanocomposites Laboratory, School of Engineering, University of British Columbia, Kelowna, BC, V1V 1V7, Canada
| | - Milad Kamkar
- Nanomaterials and Polymer Nanocomposites Laboratory, School of Engineering, University of British Columbia, Kelowna, BC, V1V 1V7, Canada
| | - Ali Akbari Sehat
- Nanomaterials and Polymer Nanocomposites Laboratory, School of Engineering, University of British Columbia, Kelowna, BC, V1V 1V7, Canada
| | - Sara Dordanihaghighi
- Nanomaterials and Polymer Nanocomposites Laboratory, School of Engineering, University of British Columbia, Kelowna, BC, V1V 1V7, Canada
| | - Ahmad Allahbakhsh
- Department of Materials and Polymer Engineering, Faculty of Engineering, Hakim Sabzevari University, Sabzevar, Iran
| | - Colin van der Kuur
- ZEN Graphene Solutions, 210-1205 Amber Dr., Thunder Bay, ON, P7B 6M4, Canada
| | - Mohammad Arjmand
- Nanomaterials and Polymer Nanocomposites Laboratory, School of Engineering, University of British Columbia, Kelowna, BC, V1V 1V7, Canada
| |
Collapse
|
27
|
Hong C, Zhang P, Lu K, Ji Y, He S, Liu D, Jia N. A dual-signal electrochemiluminescence immunosensor for high-sensitivity detection of acute myocardial infarction biomarker. Biosens Bioelectron 2021; 194:113591. [PMID: 34500228 DOI: 10.1016/j.bios.2021.113591] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 08/10/2021] [Accepted: 08/24/2021] [Indexed: 01/03/2023]
Abstract
Based on two different types of luminescence systems (Ru﹡(bpy)32+/TPA and SnO2 NFs/K2S2O8), a new type of electrochemiluminescence (ECL) immunosensor was prepared, which realized the detection of acute myocardial infarction biomarker cTnI. In this strategy, Ru(bpy)32+, above all, was immobilized on the NH2-MIL-125 as a capture probe. Subsequently, cTnI and SnO2 NFs was bonded to the electrode surface through the interaction between antigen and antibody in turn. During this process, Ru(bpy)32+ and the co-reactant TPA first showed strong and stable ECL emission. As the concentration of cTnI in the test system increased, the signal of SnO2 NFs and the co-reactant K2S2O8 gradually enhanced, indicating self-calibrating mechanism of the assay system. Therefore, the "off-on" ECL immunosensor can be detected in the linear range of 10-5 -104 ng/mL, and the limit of detection (LOD) is 3.39 fg/mL (S/N = 3), respectively. The dual-signal electrochemiluminescence method has the advantages of low cost, simple analysis process, wide detection range and good selectivity, providing a promising analysis protocol for clinical applications.
Collapse
Affiliation(s)
- Chenghui Hong
- The Education Ministry Key Lab of Resource Chemistry, Joint International Research Laboratory of Resource Chemistry, Ministry of Education, and Shanghai Key Laboratory of Rare Earth Functional Materials, College of Chemistry and Materials Science, Shanghai Normal University, Shanghai, 200234, China
| | - Pei Zhang
- The Education Ministry Key Lab of Resource Chemistry, Joint International Research Laboratory of Resource Chemistry, Ministry of Education, and Shanghai Key Laboratory of Rare Earth Functional Materials, College of Chemistry and Materials Science, Shanghai Normal University, Shanghai, 200234, China
| | - Kening Lu
- The Education Ministry Key Lab of Resource Chemistry, Joint International Research Laboratory of Resource Chemistry, Ministry of Education, and Shanghai Key Laboratory of Rare Earth Functional Materials, College of Chemistry and Materials Science, Shanghai Normal University, Shanghai, 200234, China
| | - Yu Ji
- The Education Ministry Key Lab of Resource Chemistry, Joint International Research Laboratory of Resource Chemistry, Ministry of Education, and Shanghai Key Laboratory of Rare Earth Functional Materials, College of Chemistry and Materials Science, Shanghai Normal University, Shanghai, 200234, China
| | - Shuang He
- The Education Ministry Key Lab of Resource Chemistry, Joint International Research Laboratory of Resource Chemistry, Ministry of Education, and Shanghai Key Laboratory of Rare Earth Functional Materials, College of Chemistry and Materials Science, Shanghai Normal University, Shanghai, 200234, China
| | - Dongqin Liu
- The Education Ministry Key Lab of Resource Chemistry, Joint International Research Laboratory of Resource Chemistry, Ministry of Education, and Shanghai Key Laboratory of Rare Earth Functional Materials, College of Chemistry and Materials Science, Shanghai Normal University, Shanghai, 200234, China
| | - Nengqin Jia
- The Education Ministry Key Lab of Resource Chemistry, Joint International Research Laboratory of Resource Chemistry, Ministry of Education, and Shanghai Key Laboratory of Rare Earth Functional Materials, College of Chemistry and Materials Science, Shanghai Normal University, Shanghai, 200234, China.
| |
Collapse
|
28
|
Azzouz A, Hejji L, Sonne C, Kim KH, Kumar V. Nanomaterial-based aptasensors as an efficient substitute for cardiovascular disease diagnosis: Future of smart biosensors. Biosens Bioelectron 2021; 193:113617. [PMID: 34555756 DOI: 10.1016/j.bios.2021.113617] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 08/23/2021] [Accepted: 09/04/2021] [Indexed: 01/11/2023]
Abstract
As a major cause of deaths in developed countries, cardiovascular disease (CVD) has been a big burden for human health systems. Its early and rapid detection is crucial to efficiently apply appropriate on time therapy and to ultimately reduce the associated mortality rate. Aptamers, known as single-stranded DNA/RNA or oligonucleotides containing receptors and/or catalytic properties, have been widely employed in biodetection platforms due to their beneficial properties. Like antibodies, aptamers have served as artificial target receptors in affinity biosensors. Currently, advanced biosensors with improved sensitivity and specificity are fabricated by the synergistic combination of aptamers and diverse nanomaterials. Herein, we review the current development and applications of nanomaterial-based aptasensors for the recognition of CVD biomarkers with special emphasis on electrochemical and optical technologies. The performance of aptasensors has been assessed further in terms of key quality assurance metrics along with discussions on recent technologies developed for the amplification of signals with enhanced portability.
Collapse
Affiliation(s)
- Abdelmonaim Azzouz
- Department of Chemistry, Faculty of Science, University of Abdelmalek Essaadi, B.P. 2121, M'Hannech II, 93002, Tétouan, Morocco
| | - Lamia Hejji
- Department of Chemistry, Faculty of Science, University of Abdelmalek Essaadi, B.P. 2121, M'Hannech II, 93002, Tétouan, Morocco
| | - Christian Sonne
- Aarhus University, Arctic Research Centre Department of Bioscience, Frederiksborgvej 399, P.O. Box 358, DK-4000, Roskilde, Denmark
| | - Ki-Hyun Kim
- Department of Civil and Environmental Engineering, Hanyang University, 222 Wangsimni-Ro, Seoul, 133-791, South Korea.
| | - Vanish Kumar
- National Agri-Food Biotechnology Institute (NABI), S.A.S. Nagar, Punjab, 140306, India.
| |
Collapse
|
29
|
Wang J, Sui L, Huang J, Miao L, Nie Y, Wang K, Yang Z, Huang Q, Gong X, Nan Y, Ai K. MoS 2-based nanocomposites for cancer diagnosis and therapy. Bioact Mater 2021; 6:4209-4242. [PMID: 33997503 PMCID: PMC8102209 DOI: 10.1016/j.bioactmat.2021.04.021] [Citation(s) in RCA: 72] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2020] [Revised: 04/05/2021] [Accepted: 04/11/2021] [Indexed: 12/24/2022] Open
Abstract
Molybdenum is a trace dietary element necessary for the survival of humans. Some molybdenum-bearing enzymes are involved in key metabolic activities in the human body (such as xanthine oxidase, aldehyde oxidase and sulfite oxidase). Many molybdenum-based compounds have been widely used in biomedical research. Especially, MoS2-nanomaterials have attracted more attention in cancer diagnosis and treatment recently because of their unique physical and chemical properties. MoS2 can adsorb various biomolecules and drug molecules via covalent or non-covalent interactions because it is easy to modify and possess a high specific surface area, improving its tumor targeting and colloidal stability, as well as accuracy and sensitivity for detecting specific biomarkers. At the same time, in the near-infrared (NIR) window, MoS2 has excellent optical absorption and prominent photothermal conversion efficiency, which can achieve NIR-based phototherapy and NIR-responsive controlled drug-release. Significantly, the modified MoS2-nanocomposite can specifically respond to the tumor microenvironment, leading to drug accumulation in the tumor site increased, reducing its side effects on non-cancerous tissues, and improved therapeutic effect. In this review, we introduced the latest developments of MoS2-nanocomposites in cancer diagnosis and therapy, mainly focusing on biosensors, bioimaging, chemotherapy, phototherapy, microwave hyperthermia, and combination therapy. Furthermore, we also discuss the current challenges and prospects of MoS2-nanocomposites in cancer treatment.
Collapse
Affiliation(s)
- Jianling Wang
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410078, China
- Hunan Provincial Key Laboratory of Cardiovascular Research, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410078, China
| | - Lihua Sui
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410078, China
- Hunan Provincial Key Laboratory of Cardiovascular Research, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410078, China
| | - Jia Huang
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410078, China
- Hunan Provincial Key Laboratory of Cardiovascular Research, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410078, China
| | - Lu Miao
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410078, China
- Hunan Provincial Key Laboratory of Cardiovascular Research, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410078, China
| | - Yubing Nie
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410078, China
- Hunan Provincial Key Laboratory of Cardiovascular Research, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410078, China
| | - Kuansong Wang
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, Hunan, 410078, China
- Department of Pathology, School of Basic Medical Science, Central South University, Changsha, Hunan, 410013, China
| | - Zhichun Yang
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410078, China
- Hunan Provincial Key Laboratory of Cardiovascular Research, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410078, China
| | - Qiong Huang
- Department of Pharmacology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Xue Gong
- Department of Radiology, The Second Hospital of Jilin University, Changchun, 130041, China
| | - Yayun Nan
- Geriatric Medical Center, Ningxia People's Hospital, Yinchuan, China
| | - Kelong Ai
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410078, China
- Hunan Provincial Key Laboratory of Cardiovascular Research, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410078, China
| |
Collapse
|
30
|
Fritea L, Banica F, Costea TO, Moldovan L, Dobjanschi L, Muresan M, Cavalu S. Metal Nanoparticles and Carbon-Based Nanomaterials for Improved Performances of Electrochemical (Bio)Sensors with Biomedical Applications. MATERIALS (BASEL, SWITZERLAND) 2021; 14:6319. [PMID: 34771844 PMCID: PMC8585379 DOI: 10.3390/ma14216319] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 10/15/2021] [Accepted: 10/20/2021] [Indexed: 12/30/2022]
Abstract
Monitoring human health for early detection of disease conditions or health disorders is of major clinical importance for maintaining a healthy life. Sensors are small devices employed for qualitative and quantitative determination of various analytes by monitoring their properties using a certain transduction method. A "real-time" biosensor includes a biological recognition receptor (such as an antibody, enzyme, nucleic acid or whole cell) and a transducer to convert the biological binding event to a detectable signal, which is read out indicating both the presence and concentration of the analyte molecule. A wide range of specific analytes with biomedical significance at ultralow concentration can be sensitively detected. In nano(bio)sensors, nanoparticles (NPs) are incorporated into the (bio)sensor design by attachment to the suitably modified platforms. For this purpose, metal nanoparticles have many advantageous properties making them useful in the transducer component of the (bio)sensors. Gold, silver and platinum NPs have been the most popular ones, each form of these metallic NPs exhibiting special surface and interface features, which significantly improve the biocompatibility and transduction of the (bio)sensor compared to the same process in the absence of these NPs. This comprehensive review is focused on the main types of NPs used for electrochemical (bio)sensors design, especially screen-printed electrodes, with their specific medical application due to their improved analytical performances and miniaturized form. Other advantages such as supporting real-time decision and rapid manipulation are pointed out. A special attention is paid to carbon-based nanomaterials (especially carbon nanotubes and graphene), used by themselves or decorated with metal nanoparticles, with excellent features such as high surface area, excellent conductivity, effective catalytic properties and biocompatibility, which confer to these hybrid nanocomposites a wide biomedical applicability.
Collapse
Affiliation(s)
- Luminita Fritea
- Faculty of Medicine and Pharmacy, University of Oradea, 10 P-ta 1 Decembrie, 410087 Oradea, Romania; (L.F.); (F.B.); (M.M.); (S.C.)
| | - Florin Banica
- Faculty of Medicine and Pharmacy, University of Oradea, 10 P-ta 1 Decembrie, 410087 Oradea, Romania; (L.F.); (F.B.); (M.M.); (S.C.)
| | - Traian Octavian Costea
- Advanced Materials Research Infrastructure—SMARTMAT, University of Oradea, 1 Universitatii Street, 410087 Oradea, Romania;
| | - Liviu Moldovan
- Faculty of Electrical Engineering and Information Technology, University of Oradea, 1 Universitatii Street, 410087 Oradea, Romania
| | - Luciana Dobjanschi
- Faculty of Medicine and Pharmacy, University of Oradea, 10 P-ta 1 Decembrie, 410087 Oradea, Romania; (L.F.); (F.B.); (M.M.); (S.C.)
| | - Mariana Muresan
- Faculty of Medicine and Pharmacy, University of Oradea, 10 P-ta 1 Decembrie, 410087 Oradea, Romania; (L.F.); (F.B.); (M.M.); (S.C.)
| | - Simona Cavalu
- Faculty of Medicine and Pharmacy, University of Oradea, 10 P-ta 1 Decembrie, 410087 Oradea, Romania; (L.F.); (F.B.); (M.M.); (S.C.)
| |
Collapse
|
31
|
State-of-the-art progress of switch fluorescence biosensors based on metal-organic frameworks and nucleic acids. Mikrochim Acta 2021; 188:168. [PMID: 33884514 DOI: 10.1007/s00604-021-04827-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Accepted: 04/06/2021] [Indexed: 02/07/2023]
Abstract
Metal-organic frameworks (MOFs) have captured substantial attention of an increasing number of scientists working in sensing analysis fields, due to their large surface area, high porosity, and tunable structure. Recently, MOFs as attractive fluorescence quenchers have been extensively investigated. Given their high quenching efficiency toward the fluorescence intensity of dyes-labeled specific biological recognition molecules, such as nucleic acids, MOFs have been widely developed to switch fluorescence biosensors with low background fluorescence signal. These strategies not only lead to specificity, simplicity, and low cost of biosensors, but also possess advantages such as ultrasensitive, rapid, and multiple detection of switch fluorescence methods. At present, researches of the analysis of switch fluorescence biosensors based on MOFs and nucleic acids mainly focus on sensing of different types of in vitro and intracellular analytes, indicating their increasing potential. In this review, we briefly introduce the principle of switch fluorescence biosensor and the mechanism of fluorescence quenching of MOFs, and mainly discuss and summarize the state-of-the-art advances of MOFs and nucleic acids-based switch fluorescence biosensors over the years 2013 to 2020. Most of them have been proposed to the in vitro detection of different types of analytes, showing their wide scope and applicability, such as deoxyribonucleic acid (DNAs), ribonucleic acid (RNAs), proteins, enzymes, antibiotics, and heavy metal ions. Besides, some of them have also been applied to the bioimaging of intracellular analytes, emerging their potential for biomedical applications, for example, cellular adenosine triphosphate (ATP) and subcellular glutathione (GSH). Finally, the remaining challenges in this sensing field and prospects for future research trends are addressed. Graphical abstract.
Collapse
|
32
|
Enzyme-Free Electrochemical Nano-Immunosensor Based on Graphene Quantum Dots and Gold Nanoparticles for Cardiac Biomarker Determination. NANOMATERIALS 2021; 11:nano11030578. [PMID: 33652547 PMCID: PMC7996554 DOI: 10.3390/nano11030578] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Revised: 02/15/2021] [Accepted: 02/21/2021] [Indexed: 12/12/2022]
Abstract
An ultrasensitive enzyme-free electrochemical nano-immunosensor based on a screen-printed gold electrode (SPGE) modified with graphene quantum dots (GQDs) and gold nanoparticles (AuNPs) was engineered to detect cardiac troponin-I (cTnI) for the early diagnosis of acute myocardial infarction (AMI). The GQDs and in-house synthesized AuNPs were implanted onto the SPGE and allowed for anti-cTnI immobilization prior to quantifying cTnI. The biomarker could be determined in a wide concentration range using square-wave voltammetry (SWV), cyclic voltammetry (CV), electron impedance spectroscopy (EIS) and amperometry. The analyses were performed in buffer, as well as in human serum, in the investigation ranges of 1–1000 and 10–1000 pg mL−1, respectively. The detection time ranged from 10.5–13 min, depending on the electrochemical method employed. The detection limit was calculated as 0.1 and 0.5 pg mL−1 for buffer and serum, respectively. The sensitivity of the immunosensor was found to be 6.81 µA cm−2 pg mL−1, whereas the binding affinity was determined to be <0.89 pM. The sensor showed high specificity for cTnI with slight responses for nonspecific biomolecules. Each step of the sensor fabrication was characterized using CV, SWV, EIS and atomic force microscopy (AFM). Moreover, AuNPs, GQDs and their nanocomposites were characterized by transmission electron microscopy (TEM) and scanning electron microscopy (SEM). This is the first immunosensor that represents the successful determination of an analyte using four different electrochemical techniques. Such a sensor could demonstrate a promising future for on-site detection of AMI with its sensitivity, cost-effectiveness, rapidity and specificity.
Collapse
|
33
|
Zeng Y, Wang Y, Liang Z, Jiao Z. The study of chiral recognition on ibuprofen enantiomers by a fluorescent probe based on β-cyclodextrin modified ZnS:Mn quantum dots. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2021; 246:119002. [PMID: 33035885 DOI: 10.1016/j.saa.2020.119002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 09/17/2020] [Accepted: 09/20/2020] [Indexed: 06/11/2023]
Abstract
In this paper, a fluorescence method for chiral detection of ibuprofen and its enantiomer was developed. The L-cystenine-capped ZnS:Mn quantum dots were synthesized and functionalized with β-cyclodextrin (β-CD-QDs). The β-CD-QDs exhibited different quenching effect to the S-(+)-ibuprofen and the R-(-)-ibuprofen based on the advantage of the inclusion complex of cyclodextrin. It was found that the quenching of β-CD-QDs by S-(+)-ibuprofen was due to the formation of inclusion complex through both static quenching and photoinduced electron transfer, but only slight quenching with the R-(-)-ibuprofen. The stability constants derived from Hildebrand-Benesi method and absorption titration experiments were applied to determine the stability constants of the formed complexes, the double reciprocal plots suggest that a conclusion complex with a ratio of 1:1 was formed between β-CD-QDs and S-(+)-ibuprofen, but did not with the R-(-)-ibuprofen. The fluorescence intensity of the β-CD-QDs was linearly dependent on the concentration of the S-(+)-IBP in the range of 0-0.5 nmol/L with an limit of detection of 0.29 nmol/L.
Collapse
Affiliation(s)
- Yanyan Zeng
- School of Environment and Civil Engineering, Dongguan University of Technology, Dongguan 523808, China
| | - Yueting Wang
- School of Environment and Civil Engineering, Dongguan University of Technology, Dongguan 523808, China
| | - Zhihui Liang
- School of Environment and Civil Engineering, Dongguan University of Technology, Dongguan 523808, China
| | - Zhe Jiao
- School of Environment and Civil Engineering, Dongguan University of Technology, Dongguan 523808, China.
| |
Collapse
|
34
|
Arndt N, Tran HDN, Zhang R, Xu ZP, Ta HT. Different Approaches to Develop Nanosensors for Diagnosis of Diseases. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2020; 7:2001476. [PMID: 33344116 PMCID: PMC7740096 DOI: 10.1002/advs.202001476] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 07/18/2020] [Indexed: 05/09/2023]
Abstract
The success of clinical treatments is highly dependent on early detection and much research has been conducted to develop fast, efficient, and precise methods for this reason. Conventional methods relying on nonspecific and targeting probes are being outpaced by so-called nanosensors. Over the last two decades a variety of activatable sensors have been engineered, with a great diversity concerning the operating principle. Therefore, this review delineates the achievements made in the development of nanosensors designed for diagnosis of diseases.
Collapse
Affiliation(s)
- Nina Arndt
- Queensland Micro‐ and Nanotechnology CentreGriffith UniversityBrisbaneQueensland4111Australia
- Australian Institute for Bioengineering and Nanotechnologythe University of QueenslandBrisbaneQueensland4072Australia
- Department of BiotechnologyTechnische Universität BerlinBerlin10623Germany
| | - Huong D. N. Tran
- Queensland Micro‐ and Nanotechnology CentreGriffith UniversityBrisbaneQueensland4111Australia
- Australian Institute for Bioengineering and Nanotechnologythe University of QueenslandBrisbaneQueensland4072Australia
| | - Run Zhang
- Australian Institute for Bioengineering and Nanotechnologythe University of QueenslandBrisbaneQueensland4072Australia
| | - Zhi Ping Xu
- Australian Institute for Bioengineering and Nanotechnologythe University of QueenslandBrisbaneQueensland4072Australia
| | - Hang T. Ta
- Queensland Micro‐ and Nanotechnology CentreGriffith UniversityBrisbaneQueensland4111Australia
- Australian Institute for Bioengineering and Nanotechnologythe University of QueenslandBrisbaneQueensland4072Australia
- School of Environment and ScienceGriffith UniversityBrisbaneQueensland4111Australia
| |
Collapse
|
35
|
Walther BK, Dinu CZ, Guldi DM, Sergeyev VG, Creager SE, Cooke JP, Guiseppi-Elie A. Nanobiosensing with graphene and carbon quantum dots: Recent advances. MATERIALS TODAY (KIDLINGTON, ENGLAND) 2020; 39:23-46. [PMID: 37974933 PMCID: PMC10653125 DOI: 10.1016/j.mattod.2020.04.008] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2023]
Abstract
Graphene and carbon quantum dots (GQDs and CQDs) are relatively new nanomaterials that have demonstrated impact in multiple different fields thanks to their unique quantum properties and excellent biocompatibility. Biosensing, analyte detection and monitoring wherein a key feature is coupled molecular recognition and signal transduction, is one such field that is being greatly advanced by the use of GQDs and CQDs. In this review, recent progress on the development of biotransducers and biosensors enabled by the creative use of GQDs and CQDs is reviewed, with special emphasis on how these materials specifically interface with biomolecules to improve overall analyte detection. This review also introduces nano-enabled biotransducers and different biosensing configurations and strategies, as well as highlights key properties of GQDs and CQDs that are pertinent to functional biotransducer design. Following relevant introductory material, the literature is surveyed with emphasis on work performed over the last 5 years. General comments and suggestions to advance the direction and potential of the field are included throughout the review. The strategic purpose is to inspire and guide future investigations into biosensor design for quality and safety, as well as serve as a primer for developing GQD- and CQD-based biosensors.
Collapse
Affiliation(s)
- Brandon K. Walther
- Biosensors and Biochips (C3), Department of Biomedical Engineering and Department of Electrical and Computer Engineering, Texas A&M University, College Station, TX 77843, USA
- Department of Cardiovascular Sciences, Houston Methodist Institute for Academic Medicine and Houston Methodist Research Institute, 6670 Bertner Ave., Houston, TX 77030, USA
| | - Cerasela Zoica Dinu
- Department of Chemical and Biomedical Engineering, West Virginia University, Morgantown, WV 26506, USA
| | - Dirk M. Guldi
- Department of Chemistry and Pharmacy, Friedrich Alexander University Erlangen-Nürnberg 91058 Erlangen, Germany
| | - Vladimir G. Sergeyev
- Department of Chemistry, Lomonosov Moscow State University, Leninskie Gory 1-3, Moscow 119991, Russian Federation
| | - Stephen E. Creager
- Department of Chemistry and Department of Materials Science and Engineering, Clemson University, Clemson, SC 29634, USA
| | - John P. Cooke
- Biosensors and Biochips (C3), Department of Biomedical Engineering and Department of Electrical and Computer Engineering, Texas A&M University, College Station, TX 77843, USA
- Department of Cardiovascular Sciences, Houston Methodist Institute for Academic Medicine and Houston Methodist Research Institute, 6670 Bertner Ave., Houston, TX 77030, USA
| | - Anthony Guiseppi-Elie
- Biosensors and Biochips (C3), Department of Biomedical Engineering and Department of Electrical and Computer Engineering, Texas A&M University, College Station, TX 77843, USA
- Department of Cardiovascular Sciences, Houston Methodist Institute for Academic Medicine and Houston Methodist Research Institute, 6670 Bertner Ave., Houston, TX 77030, USA
- ABTECH Scientific, Inc., Biotechnology Research Park, 800 East Leigh Street, Richmond, VA 23219, USA
| |
Collapse
|
36
|
Hu B, Boakye‐Yiadom KO, Yu W, Yuan Z, Ho W, Xu X, Zhang X. Nanomedicine Approaches for Advanced Diagnosis and Treatment of Atherosclerosis and Related Ischemic Diseases. Adv Healthc Mater 2020; 9:e2000336. [PMID: 32597562 DOI: 10.1002/adhm.202000336] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Revised: 04/30/2020] [Indexed: 12/16/2022]
Abstract
Cardiovascular diseases (CVDs) remain one of the major causes of mortality worldwide. In response to this and other worldwide health epidemics, nanomedicine has emerged as a rapidly evolving discipline that involves the development of innovative nanomaterials and nanotechnologies and their applications in therapy and diagnosis. Nanomedicine presents unique advantages over conventional medicines due to the superior properties intrinsic to nanoscopic therapies. Once used mainly for cancer therapies, recently, tremendous progress has been made in nanomedicine that has led to an overall improvement in the treatment and diagnosis of CVDs. This review elucidates the pathophysiology and potential targets of atherosclerosis and associated ischemic diseases. It may be fruitful to pursue future work in the nanomedicine-mediated treatment of CVDs based on these targets. A comprehensive overview is then provided featuring the latest preclinical and clinical outcomes in cardiovascular imaging, biomarker detection, tissue engineering, and nanoscale delivery, with specific emphasis on nanoparticles, nanostructured scaffolds, and nanosensors. Finally, the challenges and opportunities regarding the future development and clinical translation of nanomedicine in related fields are discussed. Overall, this review aims to provide a deep and thorough understanding of the design, application, and future development of nanomedicine for atherosclerosis and related ischemic diseases.
Collapse
Affiliation(s)
- Bin Hu
- Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, and School of PharmacyShanghai Jiao Tong University 800 Dongchuan Road Shanghai 200240 P. R. China
| | - Kofi Oti Boakye‐Yiadom
- Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, and School of PharmacyShanghai Jiao Tong University 800 Dongchuan Road Shanghai 200240 P. R. China
| | - Wei Yu
- Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, and School of PharmacyShanghai Jiao Tong University 800 Dongchuan Road Shanghai 200240 P. R. China
| | - Zi‐Wei Yuan
- Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, and School of PharmacyShanghai Jiao Tong University 800 Dongchuan Road Shanghai 200240 P. R. China
| | - William Ho
- Department of Chemical and Materials EngineeringNew Jersey Institute of Technology Newark NJ 07102 USA
| | - Xiaoyang Xu
- Department of Chemical and Materials EngineeringNew Jersey Institute of Technology Newark NJ 07102 USA
| | - Xue‐Qing Zhang
- Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, and School of PharmacyShanghai Jiao Tong University 800 Dongchuan Road Shanghai 200240 P. R. China
| |
Collapse
|
37
|
Graphene quantum dots redefine nanobiomedicine. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 110:110651. [DOI: 10.1016/j.msec.2020.110651] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Revised: 06/08/2019] [Accepted: 01/03/2020] [Indexed: 01/08/2023]
|
38
|
Tade RS, Nangare SN, Patil AG, Pandey A, Deshmukh PK, Patil DR, Agrawal TN, Mutalik S, Patil AM, More MP, Bari SB, Patil PO. Recent Advancement in Bio-precursor derived graphene quantum dots: Synthesis, Characterization and Toxicological Perspective. NANOTECHNOLOGY 2020; 31:292001. [PMID: 32176876 DOI: 10.1088/1361-6528/ab803e] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Graphene quantum dots (GQDs), impressive materials with enormous future potential, are reviewed from their inception, including different precursors. Considering the increasing burden of industrial and ecological bio-waste, there is an urgency to develop techniques which will convert biowaste into active moieties of interest. Amongst the various materials explored, we selectively highlight the use of potential carbon containing bioprecursors (e.g. plant-based, amino acids, carbohydrates), and industrial waste and its conversion into GQDs with negligible use of chemicals. This review focuses on the effects of different processing parameters that affect the properties of GQDs, including the surface functionalization, paradigmatic characterization, toxicity and biocompatibility issues of bioprecursor derived GQDs. This review also examines current challenges and s the ongoing exploration of potential bioprecursors for ecofriendly GQD synthesis for future applications. This review sheds further light on the electronic and optical properties of GQDs along with the effects of doping on the same. This review may aid in future design approaches and applications of GQDs in the biomedical and materials design fields.
Collapse
Affiliation(s)
- Rahul S Tade
- H R Patel Institute of Pharmaceutical Education and Research, Shirpur, Maharashtra 425405, India
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Zhu L, Ye J, Yan M, Zhu Q, Yang X. A wavelength-resolved electrochemiluminescence resonance energy transfer ratiometric immunosensor for detection of cardiac troponin I. Analyst 2020; 144:6554-6560. [PMID: 31576385 DOI: 10.1039/c9an01445d] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
In this study, a wavelength-resolved electrochemiluminescence resonance energy transfer (ECL-RET) ratiometric immunosensor from Au nanoparticle functionalized graphite-like carbon nitride nanosheets (Au-g-C3N4) to Au nanoclusters (Au NCs) has been constructed for the first time. At a working voltage of 0 to -1.2 V, Au-g-C3N4 showed a strong cathodic ECL emission with a peak at 460 nm, which overlapped well with the absorption spectra of Au NCs thus stimulating the fluorescence emission of Au NCs at 610 nm. Moreover, within this voltage range, the Au NCs showed no ECL signal; therefore, they would not interfere with the detection of the system. We used cardiac troponin I (cTnI) as an analytical model to construct a sandwich immunosensor based on the ECL-RET ratiometric strategy. By measuring the responses of the ECL460 nm/FL610 nm ratio at different cTnI concentrations, the sensitive detection of cTnI with a wide range of 50 fg mL-1 to 50 ng mL-1 and a low detection limit of 9.73 fg mL-1 can be achieved. This work enriches the wavelength-resolved ECL-RET system and provides an innovative reference for the development of more efficient and sensitive ECL-RET ratiometry.
Collapse
Affiliation(s)
- Liping Zhu
- Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China.
| | | | | | | | | |
Collapse
|
40
|
Veerubhotla K, Lee CH. Emerging Trends in Nanocarbon‐Based Cardiovascular Applications. ADVANCED THERAPEUTICS 2020. [DOI: 10.1002/adtp.201900208] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Krishna Veerubhotla
- Division of Pharmacology and Pharmaceutics Sciences School of Pharmacy University of Missouri–Kansas City Kansas City MO 64108 USA
| | - Chi H. Lee
- Division of Pharmacology and Pharmaceutics Sciences School of Pharmacy University of Missouri–Kansas City Kansas City MO 64108 USA
| |
Collapse
|
41
|
Wang Z, Hu T, Liang R, Wei M. Application of Zero-Dimensional Nanomaterials in Biosensing. Front Chem 2020; 8:320. [PMID: 32373593 PMCID: PMC7182656 DOI: 10.3389/fchem.2020.00320] [Citation(s) in RCA: 76] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Accepted: 03/30/2020] [Indexed: 12/15/2022] Open
Abstract
Zero-dimensional (0D) nanomaterials, including graphene quantum dots (GQDs), carbon quantum dots (CQDs), fullerenes, inorganic quantum dots (QDs), magnetic nanoparticles (MNPs), noble metal nanoparticles, upconversion nanoparticles (UCNPs) and polymer dots (Pdots), have attracted extensive research interest in the field of biosensing in recent years. Benefiting from the ultra-small size, quantum confinement effect, excellent physical and chemical properties and good biocompatibility, 0D nanomaterials have shown great potential in ion detection, biomolecular recognition, disease diagnosis and pathogen detection. Here we first introduce the structures and properties of different 0D nanomaterials. On this basis, recent progress and application examples of 0D nanomaterials in the field of biosensing are discussed. In the last part, we summarize the research status of 0D nanomaterials in the field of biosensing and anticipate the development prospects and future challenges in this field.
Collapse
Affiliation(s)
| | | | - Ruizheng Liang
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, China
| | - Min Wei
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, China
| |
Collapse
|
42
|
Tang Z, Liu X, Su B, Chen Q, Cao H, Yun Y, Xu Y, Hammock BD. Ultrasensitive and rapid detection of ochratoxin A in agro-products by a nanobody-mediated FRET-based immunosensor. JOURNAL OF HAZARDOUS MATERIALS 2020; 387:121678. [PMID: 31753666 PMCID: PMC7990105 DOI: 10.1016/j.jhazmat.2019.121678] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Revised: 11/05/2019] [Accepted: 11/11/2019] [Indexed: 05/04/2023]
Abstract
Ochratoxin A (OTA) is a major concern for public health and the rapid detection of trace OTA in food is always a challenge. To minimize OTA exposure to consumers, a nanobody (Nb)-mediated förster resonance energy transfer (FRET)-based immunosensor using quantum dots (Nb-FRET immunosensor) was proposed for ultrasensitive, single-step and competitive detection of OTA in agro-products at present work. QDs of two sizes were covalently labeled with OTA and Nb, acting as the energy donor and acceptor, respectively. The free OTA competed with the donor to bind to acceptor, thus the FRET efficiency increased with the decrease of OTA concentration. The single-step assay could be finished in 5 min with a limit of detection of 5 pg/mL, which was attributed to the small size of Nb for shortening the effective FRET distance and improving the FRET efficiency. The Nb-FRET immunosensor exhibited high selectivity for OTA. Moreover, acceptable accuracy and precision were obtained in the analysis of cereals and confirmed by the liquid chromatography-tandem mass spectrometry. Thus the developed Nb-FRET immunosensor was demonstrated to be an efficient tool for ultrasensitive and rapid detection of OTA in cereals and provides a detection model for other toxic small molecules in food and environment.
Collapse
Affiliation(s)
- Zongwen Tang
- College of Food Science and Engineering, Hainan University, 58 Renmin Avenue, Haikou 570228, PR China
| | - Xing Liu
- College of Food Science and Engineering, Hainan University, 58 Renmin Avenue, Haikou 570228, PR China.
| | - Benchao Su
- College of Food Science and Engineering, Hainan University, 58 Renmin Avenue, Haikou 570228, PR China
| | - Qi Chen
- College of Food Science and Engineering, Hainan University, 58 Renmin Avenue, Haikou 570228, PR China
| | - Hongmei Cao
- College of Food Science and Engineering, Hainan University, 58 Renmin Avenue, Haikou 570228, PR China
| | - Yonghuan Yun
- College of Food Science and Engineering, Hainan University, 58 Renmin Avenue, Haikou 570228, PR China
| | - Yang Xu
- State Key Laboratory of Food Science and Technology, Nanchang University, 235 Nanjing East Road, Nanchang, 330047, PR China
| | - Bruce D Hammock
- Department of Entomology and Nematology and UCD Comprehensive Cancer Center, University of California, Davis, CA, 95616, United States
| |
Collapse
|
43
|
Sha R, Badhulika S. Recent advancements in fabrication of nanomaterial based biosensors for diagnosis of ovarian cancer: a comprehensive review. Mikrochim Acta 2020; 187:181. [PMID: 32076837 DOI: 10.1007/s00604-020-4152-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Accepted: 02/02/2020] [Indexed: 12/30/2022]
Abstract
Ovarian cancer is commonly diagnosed via determination of biomarkers like CA125, Mucin 1, HE4, and prostasin that can be present in the blood. However, there is a substantial need for less expensive, simpler, and portable diagnostic tools, both for timely diagnosis and management of ovarian cancer. This review (with 101 refs.) discusses various kinds of nanomaterial-based biosensors for tumor markers. Following an introduction into the field, a first section covers different kinds of biomarkers for ovarian cancer including CA125 (MUC16), mucin 1 (MUC1), human epididymis protein 4 (HE4), and prostasin. This is followed by a short overview on conventional diagnostic approaches. A large section is then presented on biosensors for determination of ovarian cancer, with subsections on optical biosensors (fluorimetric, colorimetric, surface plasmon resonance, chemiluminescence, electrochemiluminescence), on electrochemical sensors, molecularly imprinted sensors, paper-based biosensors, microfluidic (lab-on-a-chip) assays, chemiresistive and field effect transistor-based sensors, and giant magnetoresistive sensors. Tables are presented that give an overview on the wealth of methods and materials. A concluding section summarizes the current status, addresses current challenges, and gives an outlook on potential future trends. Graphical abstract Schematic representation of the review covering the advancements in the fabrication of various nanomaterial based biosensors for diagnosis of ovarian cancer.
Collapse
Affiliation(s)
- Rinky Sha
- Department of Electrical Engineering, Indian Institute of Technology, Hyderabad, 502285, India
| | - Sushmee Badhulika
- Department of Electrical Engineering, Indian Institute of Technology, Hyderabad, 502285, India.
| |
Collapse
|
44
|
Mansuriya BD, Altintas Z. Applications of Graphene Quantum Dots in Biomedical Sensors. SENSORS (BASEL, SWITZERLAND) 2020; 20:E1072. [PMID: 32079119 PMCID: PMC7070974 DOI: 10.3390/s20041072] [Citation(s) in RCA: 97] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/25/2020] [Revised: 02/12/2020] [Accepted: 02/13/2020] [Indexed: 01/02/2023]
Abstract
Due to the proliferative cancer rates, cardiovascular diseases, neurodegenerative disorders, autoimmune diseases and a plethora of infections across the globe, it is essential to introduce strategies that can rapidly and specifically detect the ultralow concentrations of relevant biomarkers, pathogens, toxins and pharmaceuticals in biological matrices. Considering these pathophysiologies, various research works have become necessary to fabricate biosensors for their early diagnosis and treatment, using nanomaterials like quantum dots (QDs). These nanomaterials effectively ameliorate the sensor performance with respect to their reproducibility, selectivity as well as sensitivity. In particular, graphene quantum dots (GQDs), which are ideally graphene fragments of nanometer size, constitute discrete features such as acting as attractive fluorophores and excellent electro-catalysts owing to their photo-stability, water-solubility, biocompatibility, non-toxicity and lucrativeness that make them favorable candidates for a wide range of novel biomedical applications. Herein, we reviewed about 300 biomedical studies reported over the last five years which entail the state of art as well as some pioneering ideas with respect to the prominent role of GQDs, especially in the development of optical, electrochemical and photoelectrochemical biosensors. Additionally, we outline the ideal properties of GQDs, their eclectic methods of synthesis, and the general principle behind several biosensing techniques.
Collapse
Affiliation(s)
| | - Zeynep Altintas
- Technical University of Berlin, Straße des 17. Juni 124, 10623 Berlin, Germany;
| |
Collapse
|
45
|
A zirconium-porphyrin MOF-based ratiometric fluorescent biosensor for rapid and ultrasensitive detection of chloramphenicol. Biosens Bioelectron 2020; 149:111801. [DOI: 10.1016/j.bios.2019.111801] [Citation(s) in RCA: 68] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Revised: 09/25/2019] [Accepted: 10/19/2019] [Indexed: 12/20/2022]
|
46
|
Kabir E, Raza N, Kumar V, Singh J, Tsang YF, Lim DK, Szulejko JE, Kim KH. Recent Advances in Nanomaterial-Based Human Breath Analytical Technology for Clinical Diagnosis and the Way Forward. Chem 2019. [DOI: 10.1016/j.chempr.2019.08.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
47
|
Hajipour MJ, Mehrani M, Abbasi SH, Amin A, Kassaian SE, Garbern JC, Caracciolo G, Zanganeh S, Chitsazan M, Aghaverdi H, Shahri SMK, Ashkarran A, Raoufi M, Bauser-Heaton H, Zhang J, Muehlschlegel JD, Moore A, Lee RT, Wu JC, Serpooshan V, Mahmoudi M. Nanoscale Technologies for Prevention and Treatment of Heart Failure: Challenges and Opportunities. Chem Rev 2019; 119:11352-11390. [PMID: 31490059 PMCID: PMC7003249 DOI: 10.1021/acs.chemrev.8b00323] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The adult myocardium has a limited regenerative capacity following heart injury, and the lost cells are primarily replaced by fibrotic scar tissue. Suboptimal efficiency of current clinical therapies to resurrect the infarcted heart results in injured heart enlargement and remodeling to maintain its physiological functions. These remodeling processes ultimately leads to ischemic cardiomyopathy and heart failure (HF). Recent therapeutic approaches (e.g., regenerative and nanomedicine) have shown promise to prevent HF postmyocardial infarction in animal models. However, these preclinical, clinical, and technological advancements have yet to yield substantial enhancements in the survival rate and quality of life of patients with severe ischemic injuries. This could be attributed largely to the considerable gap in knowledge between clinicians and nanobioengineers. Development of highly effective cardiac regenerative therapies requires connecting and coordinating multiple fields, including cardiology, cellular and molecular biology, biochemistry and chemistry, and mechanical and materials sciences, among others. This review is particularly intended to bridge the knowledge gap between cardiologists and regenerative nanomedicine experts. Establishing this multidisciplinary knowledge base may help pave the way for developing novel, safer, and more effective approaches that will enable the medical community to reduce morbidity and mortality in HF patients.
Collapse
Affiliation(s)
| | - Mehdi Mehrani
- Tehran Heart Center, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Ahmad Amin
- Rajaie Cardiovascular, Medical and Research Center, Iran University of Medical Science Tehran, Iran
| | | | - Jessica C. Garbern
- Department of Stem Cell and Regenerative Biology, Harvard University, Harvard Stem Cell Institute, Cambridge, Massachusetts, United States
- Department of Cardiology, Boston Children’s Hospital, Boston, Massachusetts, United States
| | - Giulio Caracciolo
- Department of Molecular Medicine, Sapienza University of Rome, V.le Regina Elena 291, 00161, Rome, Italy
| | - Steven Zanganeh
- Department of Radiology, Memorial Sloan Kettering, New York, NY 10065, United States
| | - Mitra Chitsazan
- Rajaie Cardiovascular, Medical and Research Center, Iran University of Medical Science Tehran, Iran
| | - Haniyeh Aghaverdi
- Department of Anesthesiology, Perioperative and Pain Medicine, Brigham & Women’s Hospital, Harvard Medical School, Boston, Massachusetts 02115, United States
| | - Seyed Mehdi Kamali Shahri
- Department of Anesthesiology, Perioperative and Pain Medicine, Brigham & Women’s Hospital, Harvard Medical School, Boston, Massachusetts 02115, United States
| | - Aliakbar Ashkarran
- Precision Health Program, Michigan State University, East Lansing, MI, United States
- Department of Anesthesiology, Perioperative and Pain Medicine, Brigham & Women’s Hospital, Harvard Medical School, Boston, Massachusetts 02115, United States
| | - Mohammad Raoufi
- Physical Chemistry I, Department of Chemistry and Biology & Research Center of Micro and Nanochemistry and Engineering, University of Siegen, Siegen, Germany
| | - Holly Bauser-Heaton
- Department of Pediatrics, Emory University School of Medicine, Atlanta, Georgia, United States
| | - Jianyi Zhang
- Department of Biomedical Engineering, The University of Alabama at Birmingham, Birmingham, Alabama, United States
| | - Jochen D. Muehlschlegel
- Department of Anesthesiology, Perioperative and Pain Medicine, Brigham & Women’s Hospital, Harvard Medical School, Boston, Massachusetts 02115, United States
| | - Anna Moore
- Precision Health Program, Michigan State University, East Lansing, MI, United States
| | - Richard T. Lee
- Department of Stem Cell and Regenerative Biology, Harvard University, Harvard Stem Cell Institute, Cambridge, Massachusetts, United States
- Department of Medicine, Division of Cardiology, Brigham and Women’s Hospital and Harvard Medical School, Cambridge, Massachusetts, United States
| | - Joseph C. Wu
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, California, United States
- Department of Medicine, Division of Cardiology, Stanford University School of Medicine, Stanford, California, United States
- Institute of Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, California, United States
| | - Vahid Serpooshan
- Department of Biomedical Engineering, Georgia Institute of Technology & Emory University School of Medicine, Atlanta, Georgia, United States
- Department of Pediatrics, Emory University School of Medicine, Atlanta, Georgia, United States
| | - Morteza Mahmoudi
- Precision Health Program, Michigan State University, East Lansing, MI, United States
- Department of Anesthesiology, Perioperative and Pain Medicine, Brigham & Women’s Hospital, Harvard Medical School, Boston, Massachusetts 02115, United States
- Connors Center for Women’s Health & Gender Biology, Brigham & Women’s Hospital, Harvard Medical School, Boston, Massachusetts, United States
| |
Collapse
|
48
|
Li G, Ma Y, Pei M, Lin W. A Unique Approach to Development of a Multiratiometric Fluorescent Composite Probe for Multichannel Bioimaging. Anal Chem 2019; 91:14586-14590. [DOI: 10.1021/acs.analchem.9b03653] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Guanghan Li
- Institute of Fluorescent Probes for Biological Imaging, School of Chemistry and Chemical Engineering, School of Materials Science and Engineering, University of Jinan, Shandong 250022, P.R. China
| | - Yanyan Ma
- Institute of Fluorescent Probes for Biological Imaging, School of Chemistry and Chemical Engineering, School of Materials Science and Engineering, University of Jinan, Shandong 250022, P.R. China
| | - Meishan Pei
- Institute of Fluorescent Probes for Biological Imaging, School of Chemistry and Chemical Engineering, School of Materials Science and Engineering, University of Jinan, Shandong 250022, P.R. China
| | - Weiying Lin
- Institute of Fluorescent Probes for Biological Imaging, School of Chemistry and Chemical Engineering, School of Materials Science and Engineering, University of Jinan, Shandong 250022, P.R. China
| |
Collapse
|
49
|
Fe3O4@PDA immune probe-based signal amplification in surface plasmon resonance (SPR) biosensing of human cardiac troponin I. Colloids Surf B Biointerfaces 2019; 177:105-111. [DOI: 10.1016/j.colsurfb.2019.01.053] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Revised: 11/19/2018] [Accepted: 01/26/2019] [Indexed: 11/21/2022]
|
50
|
Krishnan SK, Singh E, Singh P, Meyyappan M, Nalwa HS. A review on graphene-based nanocomposites for electrochemical and fluorescent biosensors. RSC Adv 2019; 9:8778-8881. [PMID: 35517682 PMCID: PMC9062009 DOI: 10.1039/c8ra09577a] [Citation(s) in RCA: 276] [Impact Index Per Article: 46.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Accepted: 02/15/2019] [Indexed: 12/16/2022] Open
Abstract
Biosensors with high sensitivity, selectivity and a low limit of detection, reaching nano/picomolar concentrations of biomolecules, are important to the medical sciences and healthcare industry for evaluating physiological and metabolic parameters.
Collapse
Affiliation(s)
- Siva Kumar Krishnan
- CONACYT-Instituto de Física
- Benemérita Universidad Autónoma de Puebla
- Puebla 72570
- Mexico
| | - Eric Singh
- Department of Computer Science
- Stanford University
- Stanford
- USA
| | - Pragya Singh
- Department of Electrical Engineering and Computer Science
- National Chiao Tung University
- Hsinchu 30010
- Taiwan
| | - Meyya Meyyappan
- Center for Nanotechnology
- NASA Ames Research Center
- Moffett Field
- Mountain View
- USA
| | | |
Collapse
|