1
|
Capelli L, Pedrini F, Di Pede AC, Chamorro-Garcia A, Bagheri N, Fortunati S, Giannetto M, Mattarozzi M, Corradini R, Porchetta A, Bertucci A. Synthetic Protein-to-DNA Input Exchange for Protease Activity Detection Using CRISPR-Cas12a. Anal Chem 2024; 96:18645-18654. [PMID: 39542433 PMCID: PMC11603406 DOI: 10.1021/acs.analchem.4c02622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 08/26/2024] [Accepted: 09/06/2024] [Indexed: 11/17/2024]
Abstract
We present a novel activity-based detection strategy for matrix metalloproteinase 2 (MMP2), a critical cancer protease biomarker, leveraging a mechanism responsive to the proteolytic activity of MMP2 and its integration with CRISPR-Cas12a-assisted signal amplification. We designed a chemical translator comprising two functional units─a peptide and a peptide nucleic acid (PNA), fused together. The peptide presents the substrate of MMP2, while the PNA serves as a nucleic acid output for subsequent processing. This chemical translator was immobilized on micrometer magnetic beads as a physical support for an activity-based assay. We incorporated into our design a single-stranded DNA partially hybridized with the PNA sequence and bearing a region complementary to the RNA guide of CRISPR-Cas12a. The target-induced nuclease activity of Cas12a results in the degradation of FRET-labeled DNA reporters and amplified fluorescence signal, enabling the detection of MMP2 in the low picomolar range, showing a limit of detection of 72 pg/mL. This study provides new design principles for a broader applicability of CRISPR-Cas-based biosensing.
Collapse
Affiliation(s)
- Luca Capelli
- Department
of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parco Area Delle Scienze 17/A, 43124 Parma, Italy
| | - Federica Pedrini
- Department
of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parco Area Delle Scienze 17/A, 43124 Parma, Italy
| | - Andrea C. Di Pede
- Department
of Chemistry, University of Rome Tor Vergata, Via della Ricerca Scientifica 1, 00133 Rome, Italy
| | - Alejandro Chamorro-Garcia
- Department
of Chemistry, University of Rome Tor Vergata, Via della Ricerca Scientifica 1, 00133 Rome, Italy
| | - Neda Bagheri
- Department
of Chemistry, University of Rome Tor Vergata, Via della Ricerca Scientifica 1, 00133 Rome, Italy
| | - Simone Fortunati
- Department
of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parco Area Delle Scienze 17/A, 43124 Parma, Italy
| | - Marco Giannetto
- Department
of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parco Area Delle Scienze 17/A, 43124 Parma, Italy
| | - Monica Mattarozzi
- Department
of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parco Area Delle Scienze 17/A, 43124 Parma, Italy
| | - Roberto Corradini
- Department
of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parco Area Delle Scienze 17/A, 43124 Parma, Italy
| | - Alessandro Porchetta
- Department
of Chemistry, University of Rome Tor Vergata, Via della Ricerca Scientifica 1, 00133 Rome, Italy
| | - Alessandro Bertucci
- Department
of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parco Area Delle Scienze 17/A, 43124 Parma, Italy
| |
Collapse
|
2
|
Rizvi SFA, Zhang H, Fang Q. Engineering peptide drug therapeutics through chemical conjugation and implication in clinics. Med Res Rev 2024; 44:2420-2471. [PMID: 38704826 DOI: 10.1002/med.22046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 03/21/2024] [Accepted: 04/21/2024] [Indexed: 05/07/2024]
Abstract
The development of peptide drugs has made tremendous progress in the past few decades because of the advancements in modification chemistry and analytical technologies. The novel-designed peptide drugs have been modified through various biochemical methods with improved diagnostic, therapeutic, and drug-delivery strategies. Researchers found it a helping hand to overcome the inherent limitations of peptides and bring continued advancements in their applications. Furthermore, the emergence of peptide-drug conjugates (PDCs)-utilizes target-oriented peptide moieties as a vehicle for cytotoxic payloads via conjugation with cleavable chemical agents, resulting in the key foundation of the new era of targeted peptide drugs. This review summarizes the various classifications of peptide drugs, suitable chemical modification strategies to improve the ADME (adsorption, distribution, metabolism, and excretion) features of peptide drugs, and recent (2015-early 2024) progress/achievements in peptide-based drug delivery systems as well as their fruitful implication in preclinical and clinical studies. Furthermore, we also summarized the brief description of other types of PDCs, including peptide-MOF conjugates and peptide-UCNP conjugates. The principal aim is to provide scattered and diversified knowledge in one place and to help researchers understand the pinching knots in the science of PDC development and progress toward a bright future of novel peptide drugs.
Collapse
Affiliation(s)
- Syed Faheem Askari Rizvi
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, Gansu, China
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, Institute of Pathology, School of Basic Medical Sciences, Lanzhou University, Lanzhou, Gansu, China
| | - Haixia Zhang
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, Gansu, China
| | - Quan Fang
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, Institute of Pathology, School of Basic Medical Sciences, Lanzhou University, Lanzhou, Gansu, China
| |
Collapse
|
3
|
Dash P, Panda PK, Su C, Lin YC, Sakthivel R, Chen SL, Chung RJ. Near-infrared-driven upconversion nanoparticles with photocatalysts through water-splitting towards cancer treatment. J Mater Chem B 2024; 12:3881-3907. [PMID: 38572601 DOI: 10.1039/d3tb01066j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2024]
Abstract
Water splitting is promising, especially for energy and environmental applications; however, there are limited studies on the link between water splitting and cancer treatment. Upconversion nanoparticles (UCNPs) can be used to convert near-infrared (NIR) light to ultraviolet (UV) or visible (Vis) light and have great potential for biomedical applications because of their profound penetration ability, theranostic approaches, low self-fluorescence background, reduced damage to biological tissue, and low toxicity. UCNPs with photocatalytic materials can enhance the photocatalytic activities that generate a shorter wavelength to increase the tissue penetration depth in the biological microenvironment under NIR light irradiation. Moreover, UCNPs with a photosensitizer can absorb NIR light and convert it into UV/vis light and emit upconverted photons, which excite the photoinitiator to create H2, O2, and/or OH˙ via water splitting processes when exposed to NIR irradiation. Therefore, combining UCNPs with intensified photocatalytic and photoinitiator materials may be a promising therapeutic approach for cancer treatment. This review provides a novel strategy for explaining the principles and mechanisms of UCNPs and NIR-driven UCNPs with photocatalytic materials through water splitting to achieve therapeutic outcomes for clinical applications. Moreover, the challenges and future perspectives of UCNP-based photocatalytic materials for water splitting for cancer treatment are discussed in this review.
Collapse
Affiliation(s)
- Pranjyan Dash
- Department of Chemical Engineering and Biotechnology, National Taipei University of Technology (Taipei Tech), No. 1, Sec. 3, Zhongxiao E. Rd., Taipei 10608, Taiwan.
| | - Pradeep Kumar Panda
- Department of Chemical Engineering and Materials Science, Yuan Ze University, Taoyuan City 32003, Taiwan
| | - Chaochin Su
- Institute of Organic and Polymeric Materials, Research and Development Center for Smart Textile Technology, National Taipei University of Technology (Taipei Tech), Taipei 10608, Taiwan
| | - Yu-Chien Lin
- Department of Chemical Engineering and Biotechnology, National Taipei University of Technology (Taipei Tech), No. 1, Sec. 3, Zhongxiao E. Rd., Taipei 10608, Taiwan.
- School of Materials Science and Engineering, Nanyang Technological University, Singapore 639798, Singapore
- ZhongSun Co., LTD, New Taipei City 220031, Taiwan
| | - Rajalakshmi Sakthivel
- Department of Chemical Engineering and Biotechnology, National Taipei University of Technology (Taipei Tech), No. 1, Sec. 3, Zhongxiao E. Rd., Taipei 10608, Taiwan.
| | - Sung-Lung Chen
- Department of Chemical Engineering and Biotechnology, National Taipei University of Technology (Taipei Tech), No. 1, Sec. 3, Zhongxiao E. Rd., Taipei 10608, Taiwan.
| | - Ren-Jei Chung
- Department of Chemical Engineering and Biotechnology, National Taipei University of Technology (Taipei Tech), No. 1, Sec. 3, Zhongxiao E. Rd., Taipei 10608, Taiwan.
- High-value Biomaterials Research and Commercialization Center, National Taipei University of Technology (Taipei Tech), Taipei 10608, Taiwan
| |
Collapse
|
4
|
Zhang S, Kong N, Wang Z, Zhang Y, Ni C, Li L, Wang H, Yang M, Yang W, Yan F. Nanochemistry of gold: from surface engineering to dental healthcare applications. Chem Soc Rev 2024; 53:3656-3686. [PMID: 38502089 DOI: 10.1039/d3cs00894k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/20/2024]
Abstract
Advancements in nanochemistry have led to the development of engineered gold nanostructures (GNSs) with remarkable potential for a variety of dental healthcare applications. These innovative nanomaterials offer unique properties and functionalities that can significantly improve dental diagnostics, treatment, and overall oral healthcare applications. This review provides an overview of the latest advancements in the design, synthesis, and application of GNSs for dental healthcare applications. Engineered GNSs have emerged as versatile tools, demonstrating immense potential across different aspects of dentistry, including enhanced imaging and diagnosis, prevention, bioactive coatings, and targeted treatment of oral diseases. Key highlights encompass the precise control over GNSs' size, crystal structure, shape, and surface functionalization, enabling their integration into sensing, imaging diagnostics, drug delivery systems, and regenerative therapies. GNSs, with their exceptional biocompatibility and antimicrobial properties, have demonstrated efficacy in combating dental caries, periodontitis, peri-implantitis, and oral mucosal diseases. Additionally, they show great promise in the development of advanced sensing techniques for early diagnosis, such as nanobiosensor technology, while their role in targeted drug delivery, photothermal therapy, and immunomodulatory approaches has opened new avenues for oral cancer therapy. Challenges including long-term toxicity, biosafety, immune recognition, and personalized treatment are under rigorous investigation. As research at the intersection of nanotechnology and dentistry continues to thrive, this review highlights the transformative potential of engineered GNSs in revolutionizing dental healthcare, offering accurate, personalized, and minimally invasive solutions to address the oral health challenges of the modern era.
Collapse
Affiliation(s)
- Shuang Zhang
- Nanjing Stomatological Hospital, Affiliated Hospital of Medical School, Institute of Stomatology, Nanjing University, Nanjing, China.
| | - Na Kong
- School of Life and Environmental Science, Centre for Sustainable Bioproducts, Deakin University, Geelong, VIC, Australia.
- Hainan Provincial Key Laboratory of Natural Rubber Processing, Agricultural Products Processing Research Institute, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang, China
| | - Zezheng Wang
- Nanjing Stomatological Hospital, Affiliated Hospital of Medical School, Institute of Stomatology, Nanjing University, Nanjing, China.
| | - Yangheng Zhang
- Nanjing Stomatological Hospital, Affiliated Hospital of Medical School, Institute of Stomatology, Nanjing University, Nanjing, China.
| | - Can Ni
- Nanjing Stomatological Hospital, Affiliated Hospital of Medical School, Institute of Stomatology, Nanjing University, Nanjing, China.
| | - Lingjun Li
- Nanjing Stomatological Hospital, Affiliated Hospital of Medical School, Institute of Stomatology, Nanjing University, Nanjing, China.
| | - Hongbin Wang
- School of Chemistry and Environment, Yunnan Minzu University, Kunming, China
| | - Min Yang
- School of Chemistry and Environment, Yunnan Minzu University, Kunming, China
| | - Wenrong Yang
- School of Life and Environmental Science, Centre for Sustainable Bioproducts, Deakin University, Geelong, VIC, Australia.
| | - Fuhua Yan
- Nanjing Stomatological Hospital, Affiliated Hospital of Medical School, Institute of Stomatology, Nanjing University, Nanjing, China.
| |
Collapse
|
5
|
Gupta N, Bhargava A, Saigal S, Mehta V. Nanoparticle-based immunosensors for enhanced DNA analysis in oral cancer: A systematic review. J Oral Maxillofac Pathol 2024; 28:284-292. [PMID: 39157838 PMCID: PMC11329074 DOI: 10.4103/jomfp.jomfp_345_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 12/10/2023] [Accepted: 12/20/2023] [Indexed: 08/20/2024] Open
Abstract
To investigate the diagnostic and therapeutic potential of nanoparticle (NP)-based immunosensors in the field of oral cancer. PubMed, Embase, Scopus, Web of Science, and Google Scholar databases were explored for NP applications in oral cancer. Data extraction in terms and quality assessment of all the articles were done. Out of 147, 17 articles were included in this review. A majority of the studies showed improved sensitivity and specificity for saliva analysis using an enzyme-linked immunosorbent assay based on gold NPs, improving early identification. Additionally, novel therapeutic approaches, utilising NP-based immunosensors, demonstrated targeted drug delivery, coupled chemo-photothermal therapy, and gene silencing. Imaging methods have made it possible to distinguish between malignant and healthy states, such as surface-enhanced Raman scattering and optical coherence tomography. The reviews' findings highlight the transformational potential of NP-based immunosensors in addressing the difficulties associated with diagnosing and treating oral cancer. However, for an accurate interpretation and application of NP-based solutions in clinical practise, it is essential to be thoroughly aware of the intricacies involved, and the synthesised data in this review support the continued investigation and improvement of NP-based therapies in the ongoing effort to improve the management of oral cancer.
Collapse
Affiliation(s)
- Neha Gupta
- Department of Oral Pathology, Microbiology and Forensic Odontology, Dental College, Rajendra Institute of Medical Sciences (RIMS), Ranchi, India
| | - Ankur Bhargava
- Department of Oral Pathology and Microbiology, Hazaribag College of Dental Sciences and Hospital, Hazaribag, Jharkhand, India
| | - Sonal Saigal
- Department of Oral Pathology, Microbiology and Forensic Odontology, Dental College, Rajendra Institute of Medical Sciences (RIMS), Ranchi, India
| | - Vini Mehta
- Department of Dental Research Cell, Dr. D. Y. Patil Dental College and Hospital, Dr. D.Y. Patil Vidyapeeth, Pimpri, Pune, Maharashtra, India
| |
Collapse
|
6
|
Lee MH, Lin CC, Thomas JL, Chang YH, Chen CY, Lin CY, Wang TL, Lin HY. Upconversion nanoparticle-based fluorescence resonance energy transfer sensing of programmed death ligand 1 using sandwich epitope-imprinted polymers. Biosens Bioelectron 2024; 246:115889. [PMID: 38043301 DOI: 10.1016/j.bios.2023.115889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 11/09/2023] [Accepted: 11/24/2023] [Indexed: 12/05/2023]
Abstract
Programmed death ligand 1 (PD-L1) has been shown to suppress the anti-tumor immune response of some lung cancer patients, and thus PD-L1 expression may be a valuable predictor of the efficacy of anti-PD-1/PD-L1 monoclonal therapy in such patients. In this work, a sandwich approach to fluorescence resonance energy transfer (FRET) was used with green-emitting Yb3+/Ho3+-doped upconversion nanoparticles (UCNPs) and a rhodamine-conjugated conductive polymer as donor and acceptor, respectively. Yb3+/Ho3+-doped UCNPs were synthesized and then coated with poly(ethylene-co-vinyl alcohol), pEVAL, imprinted with PD-L1 peptide. Epitope-imprinted composite nanoparticles were characterized by dynamic light scattering, superconducting quantum interference magnetometry, and atomic force microscopy. Poly(triphenylamine rhodamine-3-acetic acid-co-3,4-ethoxylenedioxythiophene)s copolymers (p(TPAR-co-EDOT)) were imprinted with various epitopes of PD-L1 by in situ electrochemical polymerization. The epitope-imprinted polymer-coated electrodes were then characterized by scanning electron microscopy, atomic force microscopy, and X-ray photoelectron spectroscopy. Finally, the sandwich sensing of various PD-L1 concentrations with peptide-imprinted p(TPAR-co-EDOT)-coated substrate and UCNP-containing magnetic peptide-imprinted pEVAL nanoparticles by FRET was conducted to measure the concentration of PD-L1 in A549 lung cancer cell lysate.
Collapse
Affiliation(s)
- Mei-Hwa Lee
- Department of Materials Science and Engineering, I-Shou University, Kaohsiung, 84001, Taiwan
| | - Cheng-Chih Lin
- Division of Pulmonary Medicine, Department of Internal Medicine, Armed-Forces Zuoying General Hospital, Kaohsiung, 81342, Taiwan; Department of Electrical Engineering, National University of Kaohsiung, Kaohsiung, 81148, Taiwan
| | - James L Thomas
- Department of Physics and Astronomy, University of New Mexico, Albuquerque, NM, 87131, USA
| | - Yu-Hua Chang
- Department of Chemical and Materials Engineering, National University of Kaohsiung, Kaohsiung, 81148, Taiwan
| | - Chen-Yuan Chen
- Department of Chemical and Materials Engineering, National University of Kaohsiung, Kaohsiung, 81148, Taiwan
| | - Chien-Yu Lin
- Department of Chemical and Materials Engineering, National University of Kaohsiung, Kaohsiung, 81148, Taiwan
| | - Tzong-Liu Wang
- Department of Chemical and Materials Engineering, National University of Kaohsiung, Kaohsiung, 81148, Taiwan
| | - Hung-Yin Lin
- Department of Chemical and Materials Engineering, National University of Kaohsiung, Kaohsiung, 81148, Taiwan.
| |
Collapse
|
7
|
Chen Y, Yang X, Lu C, Yang Z, Wu W, Wang X. Novel colorimetric, photothermal and up-conversion fluorescence triple-signal sensor for rosmarinic acid detection. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.108099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
8
|
Emerging Biosensors for Oral Cancer Detection and Diagnosis—A Review Unravelling Their Role in Past and Present Advancements in the Field of Early Diagnosis. BIOSENSORS 2022; 12:bios12070498. [PMID: 35884301 PMCID: PMC9312890 DOI: 10.3390/bios12070498] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 06/21/2022] [Accepted: 07/03/2022] [Indexed: 11/17/2022]
Abstract
Oral cancer is a serious concern to people all over the world because of its high mortality rate and metastatic spread to other areas of the body. Despite recent advancements in biomedical research, OC detection at an early stage remains a challenge and is complex and inaccurate with conventional diagnostics procedures. It is critical to study innovative approaches that can enable a faster, easier, non-invasive, and more precise diagnosis of OC in order to increase the survival rate of patients. In this paper, we conducted a review on how biosensors might be an excellent tool for detecting OC. This review covers the strategies that use different biosensors to target various types of biomarkers and focuses on biosensors that function at the molecular level viz. DNA biosensors, RNA biosensors, and protein biosensors. In addition, we reviewed non-invasive electrochemical methods, optical methods, and nano biosensors to analyze the OC biomarkers present in body fluids such as saliva and serum. As a result, this review sheds light on the development of ground-breaking biosensors for the early detection and diagnosis of OC.
Collapse
|
9
|
Wang M, Li L, Zhang L, Zhao J, Jiang Z, Wang W. Peptide-Derived Biosensors and Their Applications in Tumor Immunology-Related Detection. Anal Chem 2021; 94:431-441. [PMID: 34846861 DOI: 10.1021/acs.analchem.1c04461] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Small-molecular targeting peptides possess features of biocompatibility, affinity, and specificity, which is widely applied in molecular recognition and detection. Moreover, peptides can be developed into highly ordered supramolecular assemblies with boosting binding affinities, diverse functions, and enhanced stabilities suitable for biosensors construction. In this Review, we summarize recent progress of peptide-based biosensors for precise detection, especially on tumor-related analysis, as well as further provide a brief overview of the progress in tumor immune-related detection. Also, we are looking forward to the prospective future of peptide-based biosensors.
Collapse
Affiliation(s)
- Minxuan Wang
- Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Ministry of Industry and Information Technology, Key Laboratory of Cluster Science of Ministry of Education, Beijing Key Laboratory of Photoelectronic/Electro-photonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, People's Republic of China
| | - Lingyun Li
- Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Ministry of Industry and Information Technology, Key Laboratory of Cluster Science of Ministry of Education, Beijing Key Laboratory of Photoelectronic/Electro-photonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, People's Republic of China
| | - Limin Zhang
- Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Ministry of Industry and Information Technology, Key Laboratory of Cluster Science of Ministry of Education, Beijing Key Laboratory of Photoelectronic/Electro-photonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, People's Republic of China
| | - Jinge Zhao
- Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Ministry of Industry and Information Technology, Key Laboratory of Cluster Science of Ministry of Education, Beijing Key Laboratory of Photoelectronic/Electro-photonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, People's Republic of China
| | - Zhenqi Jiang
- Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Ministry of Industry and Information Technology, Key Laboratory of Cluster Science of Ministry of Education, Beijing Key Laboratory of Photoelectronic/Electro-photonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, People's Republic of China
| | - Weizhi Wang
- Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Ministry of Industry and Information Technology, Key Laboratory of Cluster Science of Ministry of Education, Beijing Key Laboratory of Photoelectronic/Electro-photonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, People's Republic of China
| |
Collapse
|
10
|
Liu YQ, Qin LY, Li HJ, Wang YX, Zhang R, Shi JM, Wu JH, Dong GX, Zhou P. Application of lanthanide-doped upconversion nanoparticles for cancer treatment: a review. Nanomedicine (Lond) 2021; 16:2207-2242. [PMID: 34533048 DOI: 10.2217/nnm-2021-0214] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
With the excellent ability to transform near-infrared light to localized visible or UV light, thereby achieving deep tissue penetration, lanthanide ion-doped upconversion nanoparticles (UCNP) have emerged as one of the most striking nanoscale materials for more effective and safer cancer treatment. Up to now, UCNPs combined with photosensitive components have been widely used in the delivery of chemotherapy drugs, photodynamic therapy and photothermal therapy. Applications in these directions are reviewed in this article. We also highlight microenvironmental tumor monitoring and precise targeted therapies. Then we briefly summarize some new trends and the existing challenges for UCNPs. We hope this review can provide new ideas for future cancer treatment based on UCNPs.
Collapse
Affiliation(s)
- Yu-Qi Liu
- School & Hospital of Stomatology, Lanzhou University, Lanzhou, 730000, PR China
| | - Li-Ying Qin
- School & Hospital of Stomatology, Lanzhou University, Lanzhou, 730000, PR China
| | - Hong-Jiao Li
- School & Hospital of Stomatology, Lanzhou University, Lanzhou, 730000, PR China
| | - Yi-Xi Wang
- School & Hospital of Stomatology, Lanzhou University, Lanzhou, 730000, PR China
| | - Rui Zhang
- School & Hospital of Stomatology, Lanzhou University, Lanzhou, 730000, PR China
| | - Jia-Min Shi
- School & Hospital of Stomatology, Lanzhou University, Lanzhou, 730000, PR China
| | - Jin-Hua Wu
- Department of Materials Science, School of Physical Science & Technology, Key Laboratory of Special Function Materials & Structure Design of Ministry of Education, Lanzhou University, Lanzhou, 730000, PR China
| | - Gen-Xi Dong
- School & Hospital of Stomatology, Lanzhou University, Lanzhou, 730000, PR China
| | - Ping Zhou
- School & Hospital of Stomatology, Lanzhou University, Lanzhou, 730000, PR China
| |
Collapse
|
11
|
Arai MS, de Camargo ASS. Exploring the use of upconversion nanoparticles in chemical and biological sensors: from surface modifications to point-of-care devices. NANOSCALE ADVANCES 2021; 3:5135-5165. [PMID: 36132634 PMCID: PMC9417030 DOI: 10.1039/d1na00327e] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Accepted: 07/21/2021] [Indexed: 05/04/2023]
Abstract
Upconversion nanoparticles (UCNPs) have emerged as promising luminescent nanomaterials due to their unique features that allow the overcoming of several problems associated with conventional fluorescent probes. Although UCNPs have been used in a broad range of applications, it is probably in the field of sensing where they best evidence their potential. UCNP-based sensors have been designed with high sensitivity and selectivity, for detection and quantification of multiple analytes ranging from metal ions to biomolecules. In this review, we deeply explore the use of UCNPs in sensing systems emphasizing the most relevant and recent studies on the topic and explaining how these platforms are constructed. Before diving into UCNP-based sensing platforms it is important to understand the unique characteristics of these nanoparticles, why they are attracting so much attention, and the most significant interactions occurring between UCNPs and additional probes. These points are covered over the first two sections of the article and then we explore the types of fluorescent responses, the possible analytes, and the UCNPs' integration with various material types such as gold nanostructures, quantum dots and dyes. All the topics are supported by analysis of recently reported sensors, focusing on how they are built, the materials' interactions, the involved synthesis and functionalization mechanisms, and the conjugation strategies. Finally, we explore the use of UCNPs in paper-based sensors and how these platforms are paving the way for the development of new point-of-care devices.
Collapse
Affiliation(s)
- Marylyn S Arai
- São Carlos Institute of Physics, University of São Paulo Av. Trabalhador Sãocarlense 400 13566-590 São Carlos Brazil
| | - Andrea S S de Camargo
- São Carlos Institute of Physics, University of São Paulo Av. Trabalhador Sãocarlense 400 13566-590 São Carlos Brazil
| |
Collapse
|
12
|
Zeng W, Wu L, Sun Y, Wang Y, Wang J, Ye D. Ratiometric Imaging of MMP-2 Activity Facilitates Tumor Detection Using Activatable Near-Infrared Fluorescent Semiconducting Polymer Nanoparticles. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2101924. [PMID: 34309199 DOI: 10.1002/smll.202101924] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Indexed: 06/13/2023]
Abstract
Enzyme-activatable ratiometric near-infrared (NIR) fluorescent probes enabling noninvasive imaging of enzyme activity in vivo are promising for biomedical research; however, such probes with ratiometric fluorescence emissions both in NIR window under a single NIR light excitation are largely unexplored. Here, a quenched NIR fluorophore of Cy5.5 is integrated with NIR fluorescent poly[2,6-(4,4-bis-(2-ethylhexyl)-4H-cyclopenta[2,1-b;3,4-b']dithiophene)-alt-4,7(2,1,3-benzothiadiazole)] (PCPDTBT)-based semiconducting polymer nanoparticles (SPNs), and an αv β3 integrin-targeting and matrix metalloproteinase-2 (MMP-2)-activatable ratiometric fluorescent probe (SPN-MMP-RGD) is developed. Under excitation at 660 nm, SPN-MMP-RGD shows "always-on" fluorescence of PCPDTBT (830 nm) and activatable fluorescence of Cy5.5 (690 nm) toward MMP-2, affording a remarkable ≈176-fold enhancement in fluorescence intensity ratio between 690 and 830 nm (I690 /I830 ) for sensitive detection of MMP-2 activity in vitro and in tumor cells. By virtue of ratiometric fluorescence imaging independently of probe's concentration, SPN-MMP-RGD can not only accurately report on MMP-2 levels regarding different tumor sizes, but also noninvasively delineate MMP-2-positive tiny gastric tumors metastasis in vivo. The authors' study reveals the potential of SPN-MMP-RGD for ratiometric fluorescence imaging of MMP-2 activity via combining two independent NIR fluorophores, which can be amenable for the design of other enzyme-activatable ratiometric NIR fluorescent probes for reliable in vivo imaging.
Collapse
Affiliation(s)
- Wenhui Zeng
- State Key Laboratory of Analytical Chemistry for Life Science, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Luyan Wu
- State Key Laboratory of Analytical Chemistry for Life Science, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Yidan Sun
- State Key Laboratory of Analytical Chemistry for Life Science, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Yuqi Wang
- State Key Laboratory of Analytical Chemistry for Life Science, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Jinfang Wang
- State Key Laboratory of Analytical Chemistry for Life Science, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
- Research Center of Resources and Environment, School of Chemical Engineering and Materials, Changzhou Institute of Technology, Changzhou, 213022, China
| | - Deju Ye
- State Key Laboratory of Analytical Chemistry for Life Science, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| |
Collapse
|
13
|
Nanoparticles in Dentistry: A Comprehensive Review. Pharmaceuticals (Basel) 2021; 14:ph14080752. [PMID: 34451849 PMCID: PMC8398506 DOI: 10.3390/ph14080752] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 07/20/2021] [Accepted: 07/28/2021] [Indexed: 02/07/2023] Open
Abstract
In recent years, nanoparticles (NPs) have been receiving more attention in dentistry. Their advantageous physicochemical and biological properties can improve the diagnosis, prevention, and treatment of numerous oral diseases, including dental caries, periodontal diseases, pulp and periapical lesions, oral candidiasis, denture stomatitis, hyposalivation, and head, neck, and oral cancer. NPs can also enhance the mechanical and microbiological properties of dental prostheses and implants and can be used to improve drug delivery through the oral mucosa. This paper reviewed studies from 2015 to 2020 and summarized the potential applications of different types of NPs in the many fields of dentistry.
Collapse
|
14
|
Lin B, Wu J, Wang Y, Sun S, Yuan Y, Tao X, Lv R. Peptide functionalized upconversion/NIR II luminescent nanoparticles for targeted imaging and therapy of oral squamous cell carcinoma. Biomater Sci 2021; 9:1000-1007. [PMID: 33305773 DOI: 10.1039/d0bm01737j] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Early diagnosis is critical and challenging for tongue squamous cell carcinoma (TSCC), which is a kind of tumor with high malignancy, poor prognosis, and a high incidence of invasion and metastasis. In this research, dual-modal optical imaging rare earth nanoparticle (RENP) probes with peptide functionalization are designed for targeted TSCC imaging and therapy. RENP@C@Au (UCA) with enhanced red upconversion luminescence (UCL) and near infrared II (NIR II) imaging intensity is designed by metal and codopant modulation, and the two peaks at about 650 nm and 1064 nm of Nd ions are relatively stable with less quenching and suitable for luminescence bioimaging. Then, the cMBP peptide targeted to Cal 27 TSCC cells with highly expressed c-MET proteins is combined with UCA. Compared with human's normal cells of MCF-10A, other tumor cell lines such as A549 and HeLa, together with mice tumor cells of 4T1, the designed probe has targeted imaging and therapy to Cal 27. The final in vivo experiment shows that the probe with high NIR II luminescence signals is not easy to retain when injected into the tail vein, indicating its potential precise clinical application for the diagnosis and therapy of TSCC.
Collapse
Affiliation(s)
- Bi Lin
- Engineering Research Center of Molecular and Neuro Imaging, Ministry of Education, School of Life Science and Technology, Xidian University, Xi'an, Shanxi 710071, China.
| | - Jun Wu
- Department of Radiology, School of Medicine, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University, Shanghai 200011, China.
| | - Yanxing Wang
- Engineering Research Center of Molecular and Neuro Imaging, Ministry of Education, School of Life Science and Technology, Xidian University, Xi'an, Shanxi 710071, China.
| | - Song Sun
- Engineering Research Center of Molecular and Neuro Imaging, Ministry of Education, School of Life Science and Technology, Xidian University, Xi'an, Shanxi 710071, China.
| | - Ying Yuan
- Department of Radiology, School of Medicine, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University, Shanghai 200011, China.
| | - Xiaofeng Tao
- Department of Radiology, School of Medicine, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University, Shanghai 200011, China.
| | - Ruichan Lv
- Engineering Research Center of Molecular and Neuro Imaging, Ministry of Education, School of Life Science and Technology, Xidian University, Xi'an, Shanxi 710071, China.
| |
Collapse
|
15
|
Fang Y, Li Y, Li Y, He R, Zhang Y, Zhang X, Liu Y, Ju H. In Situ Protease Secretion Visualization and Metastatic Lymph Nodes Imaging via a Cell Membrane-Anchored Upconversion Nanoprobe. Anal Chem 2021; 93:7258-7265. [PMID: 33939420 DOI: 10.1021/acs.analchem.1c00469] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Matrix metalloproteinase (MMP) secretion is highly associated with tumor invasion and metastasis; therefore, monitoring MMP secretion is important for disease progression study and therapy choosing. Though working well for intracellular MMP imaging, the performance of current MMP detection probes is impaired in secretion monitoring due to the diffusion of MMP in an extracellular environment after secretion and low secreted amount. Here, we design a cell membrane-anchored ratiometric upconversion nanoprobe (UCNPs-Cy3/Pep-QSY7/Ab) for in situ MMP secretion visualization. Anti-EGFR is functionalized on the nanoprobe to provide specific recognition to tumor cells and guarantee fast response to MMP2 in the local place of secretion. MMP-responsive cleavage of Pep-QSY7 results in Cy3 luminescence recovery at 580 nm, which is ratioed over an internal standard of UCNP emission at 654 nm for MMP2 detection. The presented cell membrane-anchored ratiometric upconversion nanoprobe demonstrated that satisfactory results for in situ monitoring of MMP2 secretion from MDA-MB-231 cells and MCF-7 cells, as well as in vivo imaging of metastatic lymph nodes, would provide a universal platform for protease secretion study and contribute to tumor invasiveness assessment.
Collapse
Affiliation(s)
- Yanyun Fang
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Yuetong Li
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Yuyi Li
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Rong He
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Yue Zhang
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China.,School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Xiaobo Zhang
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Ying Liu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China.,Chemistry and Biomedicine Innovation Center, Nanjing University, Nanjing 210023, China
| | - Huangxian Ju
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| |
Collapse
|
16
|
Zheng W, Zhou Q, Yuan C. Nanoparticles for Oral Cancer Diagnosis and Therapy. Bioinorg Chem Appl 2021; 2021:9977131. [PMID: 33981334 PMCID: PMC8088384 DOI: 10.1155/2021/9977131] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Revised: 04/04/2021] [Accepted: 04/07/2021] [Indexed: 02/06/2023] Open
Abstract
Oral cancer is the sixth most common malignant cancer, affecting the health of people with an unacceptably high mortality rate. Despite numerous clinical methods in the diagnosis and therapy of oral cancer (e.g., magnetic resonance imaging, computed tomography, surgery, and chemoradiotherapy), they still remain far from optimal. Therefore, an urgent need exists for effective and practical techniques of early diagnosis and effective therapy of oral cancer. Currently, various types of nanoparticles have aroused wide public concern, representing a promising tool for diagnostic probes and therapeutic devices. Their inherent physicochemical features, including ultrasmall size, high reactivity, and tunable surface modification, enable them to overcome some of the limitations and achieve the expected diagnostic and therapeutic effect. In this review, we introduce different types of nanoparticles that emerged for the diagnosis and therapy of oral cancers. Then, the challenges and future perspectives for nanoparticles applied in oral cancer diagnosis and therapy are presented. The objective of this review is to help researchers better understand the effect of nanoparticles on oral cancer diagnosis and therapy and may accelerate breakthroughs in this field.
Collapse
Affiliation(s)
- Weiping Zheng
- Department of Stomatology, The Affiliated Hospital of Qingdao University, Qingdao 266003, China
- School of Stomatology, Qingdao University, Qingdao 266003, China
| | - Qihui Zhou
- Department of Stomatology, The Affiliated Hospital of Qingdao University, Qingdao 266003, China
- School of Stomatology, Qingdao University, Qingdao 266003, China
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao 266021, China
| | - Changqing Yuan
- Department of Stomatology, The Affiliated Hospital of Qingdao University, Qingdao 266003, China
- School of Stomatology, Qingdao University, Qingdao 266003, China
| |
Collapse
|
17
|
Li R, Li Y, Mu M, Yang B, Chen X, Lee WYW, Ke Y, Yung WH, Tang BZ, Bian L. Multifunctional Nanoprobe for the Delivery of Therapeutic siRNA and Real-Time Molecular Imaging of Parkinson's Disease Biomarkers. ACS APPLIED MATERIALS & INTERFACES 2021; 13:11609-11620. [PMID: 33683858 DOI: 10.1021/acsami.0c22112] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Parkinson's disease (PD) has been recently associated with the excessive expression of matrix metalloproteinase 3 (MMP3). One of the major challenges in treating PD is to effectively detect and inhibit the early MMP3 activities to relieve the neural stress and inflammation responses. Previously, numerous upconversion nanoparticle (UCNP)-based nanoprobes have been designed for the detection of biomarkers in neurodegenerative diseases. To further improve the performance of the conventional nanoprobes, we introduced novel reporting units and integrated the therapeutic reagents to fabricate a theragnostic platform for PD and other neurodegenerative diseases. Here, we designed a multifunctional UCNP/aggregation-induced emission luminogen (AIEgen)-based nanoprobe to effectively detect the time-lapse MMP3 activities in the inflammatory catecholaminergic SH-SY5Y cells and simultaneously deliver the MMP3-siRNA into the stressed catecholaminergic SH-SY5Y cells, inhibiting the MMP3-induced inflammatory neural responses. The unique features of our UCNP/AIEgen-based nanoprobe platform shed light on the development of a novel theragnostic probe for the early diagnosis and cure of neurodegenerative diseases.
Collapse
Affiliation(s)
- Rui Li
- Department of Biomedical Engineering, The Chinese University of Hong Kong, Shatin, New Territories, 999077 Hong Kong, P. R. China
| | - Yi Li
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, New Territories, 999077 Hong Kong, P. R. China
| | - Mingdao Mu
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, New Territories, 999077 Hong Kong, P. R. China
| | - Boguang Yang
- Department of Biomedical Engineering, The Chinese University of Hong Kong, Shatin, New Territories, 999077 Hong Kong, P. R. China
| | - Xiaoyu Chen
- Department of Biomedical Engineering, The Chinese University of Hong Kong, Shatin, New Territories, 999077 Hong Kong, P. R. China
| | - Wayne Yuk Wai Lee
- Department of Orthopedic and Traumatology, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, New Territories, 999077 Hong Kong, P. R. China
| | - Ya Ke
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, New Territories, 999077 Hong Kong, P. R. China
| | - Wing Ho Yung
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, New Territories, 999077 Hong Kong, P. R. China
| | - Ben Zhong Tang
- Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, 999077 Hong Kong, P. R. China
| | - Liming Bian
- Department of Biomedical Engineering, The Chinese University of Hong Kong, Shatin, New Territories, 999077 Hong Kong, P. R. China
- The Chinese University of Hong Kong Shenzhen Research Institute, Shenzhen 518000, China
| |
Collapse
|
18
|
Lei Z, Jian M, Li X, Wei J, Meng X, Wang Z. Biosensors and bioassays for determination of matrix metalloproteinases: state of the art and recent advances. J Mater Chem B 2021; 8:3261-3291. [PMID: 31750853 DOI: 10.1039/c9tb02189b] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Matrix metalloproteinases (MMPs) are closely associated with various physiological and pathological processes, and have been regarded as potential biomarkers for severe diseases including cancer. Accurate determination of MMPs would advance our understanding of their roles in disease progression, and is of great significance for disease diagnosis, treatment and prognosis. In this review, we present a comprehensive overview of the developed bioassays/biosensors for detection of MMPs, and highlight the recent advancement in nanomaterial-based immunoassays for MMP abundance measurements and nanomaterial-based biosensors for MMP activity determination. Enzyme-linked immunosorbent assay (ELISA)-based immunoassays provide information about total levels of MMPs with high specificity and sensitivity, while target-based biosensors measure the amounts of active MMPs, and allow imaging of MMP activities in vivo. For multiplex and high-throughput analysis of MMPs, microfluidics and microarray-based assays are described. Additionally, we put forward the existing challenges and future prospects from our perspective.
Collapse
Affiliation(s)
- Zhen Lei
- School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Wuhan, 430205, P. R. China
| | | | | | | | | | | |
Collapse
|
19
|
Singhal J, Verma S, Kumar S, Mehrotra D. Recent Advances in Nano-Bio-Sensing Fabrication Technology for the Detection of Oral Cancer. Mol Biotechnol 2021; 63:339-362. [PMID: 33638110 DOI: 10.1007/s12033-021-00306-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/06/2021] [Indexed: 12/24/2022]
Abstract
Nanotechnology-based miniaturized devices have been a breakthrough in the pre-clinical and clinical research areas, e.g. drug delivery, personalized medicine. They have revolutionized the discovery and development of biomarker-based diagnostic devices for detection of various diseases such as tuberculosis, malaria and cancer. Nanomaterials (NMs) hold tremendous diagnostic potential due to their high surface-to-volume ratio and quantum confinement phenomenon, improving the detection limit of clinically relevant biomolecules in bio-fluids. Thus, they are helpful in the translation of bench-on platform to point-of-care (POC) screening device. The nanomaterial-based biosensor fabrication technology has also simplified and improved oral cancer (OC) or oral squamous cell carcinomas (OSCC) diagnosis. The fabrication of nano-bio sensors involves application specific modifications of NMs. The unique properties functionalized NMs have augmented their application on the nano-biosensing platform for the detection of clinically relevant biomolecules in bio-fluids. Therefore, this article summarizes the recent advancements in the process of fabrication of nano-biosensors for detection of OC.
Collapse
Affiliation(s)
- Jaya Singhal
- Department of Health Research - Multidisciplinary Research Unit, King George's Medical University, Lucknow, 226003, Uttar Pradesh, India.,Department of Oral and Maxillofacial Surgery, King George's Medical University, Lucknow, 226003, Uttar Pradesh, India
| | - Saurabh Verma
- Department of Health Research - Multidisciplinary Research Unit, King George's Medical University, Lucknow, 226003, Uttar Pradesh, India
| | - Sumit Kumar
- Department of Health Research - Multidisciplinary Research Unit, King George's Medical University, Lucknow, 226003, Uttar Pradesh, India.
| | - Divya Mehrotra
- Department of Health Research - Multidisciplinary Research Unit, King George's Medical University, Lucknow, 226003, Uttar Pradesh, India. .,Department of Oral and Maxillofacial Surgery, King George's Medical University, Lucknow, 226003, Uttar Pradesh, India.
| |
Collapse
|
20
|
Kuang Y, Li T, Jia T, Gulzar A, Zhong C, Gai S, He F, Yang P, Lin J. Insight into the Luminescence Alternation of Sub-30 nm Upconversion Nanoparticles with a Small NaHoF 4 Core and Multi-Gd 3+ /Yb 3+ Coexisting Shells. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2020; 16:e2003799. [PMID: 33006248 DOI: 10.1002/smll.202003799] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 07/24/2020] [Indexed: 06/11/2023]
Abstract
It is absolutely imperative for development of material science to adjust upconversion luminescence (UCL) properties of highly doped upconversion nanoparticles (UCNPs) with special optical properties and prominent application prospects. In this work, featuring NaHoF4 @NaYbF4 (Ho@Yb) structures, sub-30 nm core-multishell UCNPs are synthesized with a small NaHoF4 core and varied Gd3+ /Yb3+ coexisting shells. X-ray diffraction, transmission electron microscopy, UCL spectrum, UCL lifetime, and pump power dependence are adhibited for characterization. Compared with the former work, except for a smaller total size, tunable emission in color from red to yellow to green, and intensity from low to stronger than that of traditional UCNPs is achieved for ≈10 nm NaHoF4 core size by means of changing number of layers and Gd3+ /Yb3+ concentration ratios in different layers. Besides, simultaneously doping Ho3+ into the shells will result in lowered UCL intensity and lifted green/red ratio. Surface energy loss and sensitizing energy supply, which can be modulated with inert shielding of Gd3+ and sensitization of Yb3+ , are proved to be the essential determinant. More UCL properties of these peculiar Ho@Yb UCNPs are uncovered and detailedly summarized, and the findings can help to expand the application scope of NaHoF4 into photoinduced therapy.
Collapse
Affiliation(s)
- Ye Kuang
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Material Science and Chemical Engineering, Harbin Engineering University, Harbin, 150001, P. R. China
| | - Tianyao Li
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Material Science and Chemical Engineering, Harbin Engineering University, Harbin, 150001, P. R. China
| | - Tao Jia
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Material Science and Chemical Engineering, Harbin Engineering University, Harbin, 150001, P. R. China
| | - Arif Gulzar
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Material Science and Chemical Engineering, Harbin Engineering University, Harbin, 150001, P. R. China
| | - Chongna Zhong
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Material Science and Chemical Engineering, Harbin Engineering University, Harbin, 150001, P. R. China
| | - Shili Gai
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Material Science and Chemical Engineering, Harbin Engineering University, Harbin, 150001, P. R. China
| | - Fei He
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Material Science and Chemical Engineering, Harbin Engineering University, Harbin, 150001, P. R. China
| | - Piaoping Yang
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Material Science and Chemical Engineering, Harbin Engineering University, Harbin, 150001, P. R. China
| | - Jun Lin
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130021, P. R. China
| |
Collapse
|
21
|
Ha M, Kim JH, You M, Li Q, Fan C, Nam JM. Multicomponent Plasmonic Nanoparticles: From Heterostructured Nanoparticles to Colloidal Composite Nanostructures. Chem Rev 2019; 119:12208-12278. [PMID: 31794202 DOI: 10.1021/acs.chemrev.9b00234] [Citation(s) in RCA: 198] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Plasmonic nanostructures possessing unique and versatile optoelectronic properties have been vastly investigated over the past decade. However, the full potential of plasmonic nanostructure has not yet been fully exploited, particularly with single-component homogeneous structures with monotonic properties, and the addition of new components for making multicomponent nanoparticles may lead to new-yet-unexpected or improved properties. Here we define the term "multi-component nanoparticles" as hybrid structures composed of two or more condensed nanoscale domains with distinctive material compositions, shapes, or sizes. We reviewed and discussed the designing principles and synthetic strategies to efficiently combine multiple components to form hybrid nanoparticles with a new or improved plasmonic functionality. In particular, it has been quite challenging to precisely synthesize widely diverse multicomponent plasmonic structures, limiting realization of the full potential of plasmonic heterostructures. To address this challenge, several synthetic approaches have been reported to form a variety of different multicomponent plasmonic nanoparticles, mainly based on heterogeneous nucleation, atomic replacements, adsorption on supports, and biomolecule-mediated assemblies. In addition, the unique and synergistic features of multicomponent plasmonic nanoparticles, such as combination of pristine material properties, finely tuned plasmon resonance and coupling, enhanced light-matter interactions, geometry-induced polarization, and plasmon-induced energy and charge transfer across the heterointerface, were reported. In this review, we comprehensively summarize the latest advances on state-of-art synthetic strategies, unique properties, and promising applications of multicomponent plasmonic nanoparticles. These plasmonic nanoparticles including heterostructured nanoparticles and composite nanostructures are prepared by direct synthesis and physical force- or biomolecule-mediated assembly, which hold tremendous potential for plasmon-mediated energy transfer, magnetic plasmonics, metamolecules, and nanobiotechnology.
Collapse
Affiliation(s)
- Minji Ha
- Department of Chemistry , Seoul National University , Seoul 08826 , South Korea
| | - Jae-Ho Kim
- Department of Chemistry , Seoul National University , Seoul 08826 , South Korea
| | - Myunghwa You
- Department of Chemistry , Seoul National University , Seoul 08826 , South Korea
| | - Qian Li
- School of Chemistry and Chemical Engineering, and Institute of Molecular Medicine, Renji Hospital, School of Medicine , Shanghai Jiao Tong University , Shanghai 200240 , China
| | - Chunhai Fan
- School of Chemistry and Chemical Engineering, and Institute of Molecular Medicine, Renji Hospital, School of Medicine , Shanghai Jiao Tong University , Shanghai 200240 , China
| | - Jwa-Min Nam
- Department of Chemistry , Seoul National University , Seoul 08826 , South Korea
| |
Collapse
|
22
|
Wen Y, Huo F, Wang J, Yin C. Multicolor Fluorescence Based on FRET Regulated by Functional Peptides To Screen High Metastatic Potential Cancer Cells. Anal Chem 2019; 91:15057-15063. [DOI: 10.1021/acs.analchem.9b03731] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Ying Wen
- Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Key Laboratory of Materials for Energy Conversion and Storage of Shanxi Province, Institute of Molecular Science, Shanxi University, Taiyuan 030006, China
| | - Fangjun Huo
- Research Institute of Applied Chemistry, Shanxi University, Taiyuan 030006, China
| | - Junping Wang
- Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Key Laboratory of Materials for Energy Conversion and Storage of Shanxi Province, Institute of Molecular Science, Shanxi University, Taiyuan 030006, China
| | - Caixia Yin
- Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Key Laboratory of Materials for Energy Conversion and Storage of Shanxi Province, Institute of Molecular Science, Shanxi University, Taiyuan 030006, China
| |
Collapse
|
23
|
Liu J, Yang F, Feng M, Wang Y, Peng X, Lv R. Surface Plasmonic Enhanced Imaging-Guided Photothermal/Photodynamic Therapy Based on Lanthanide–Metal Nanocomposites under Single 808 nm Laser. ACS Biomater Sci Eng 2019; 5:5051-5059. [DOI: 10.1021/acsbiomaterials.9b01112] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
24
|
Chan MH, Lai CY, Chan YC, Hsiao M, Chung RJ, Chen X, Liu RS. Development of upconversion nanoparticle-conjugated indium phosphide quantum dot for matrix metalloproteinase-2 cancer transformation sensing. Nanomedicine (Lond) 2019; 14:1791-1804. [PMID: 31305218 DOI: 10.2217/nnm-2018-0524] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Aim: Matrix metalloproteinase-2 (MMP2) plays an important role in extracellular matrix remodeling, that is, it increases significantly during cancer progression. In this regard, MMP2 monitoring is important. Experiment: A well-designed MMP2-sensitive polypeptide chain was used to link indium phosphide quantum dots (InP QDs) with upconversion nanoparticles (UCNPs) to form a nanocomposite that was utilized as biosensor. Results: We produced a biosensor that can be recognized by MMP2 and determined the presence or absence of MMP2 in cells by identifying difference in fluorescence wavelength. The InP QDs modified the arginylglycylaspartic acid molecules as targeting ligand based on chitosan. Conclusion: The MMP2-based biosensor, named UCNP-p@InP-cRGD, is sensitive and can be applied for biosensing probes.
Collapse
Affiliation(s)
- Ming-Hsien Chan
- Department of Chemistry, National Taiwan University, Taipei 106, Taiwan.,CAS Key Laboratory of Design & Assembly of Functional Nanostructures, & Fujian Key Laboratory of Nano-materials, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, PR China
| | - Chen-Yu Lai
- Department of Chemical Engineering & Biotechnology, National Taipei University of Technology, Taipei 106, Taiwan
| | - Yung-Chieh Chan
- Genomics Research Center, Academia Sinica, Taipei 115, Taiwan
| | - Michael Hsiao
- Genomics Research Center, Academia Sinica, Taipei 115, Taiwan.,Department of Biochemistry College of Medicine, Kaohsiung Medical University, Kaohsiung, 807, Taiwan
| | - Ren-Jei Chung
- Department of Chemical Engineering & Biotechnology, National Taipei University of Technology, Taipei 106, Taiwan
| | - Xueyuan Chen
- CAS Key Laboratory of Design & Assembly of Functional Nanostructures, & Fujian Key Laboratory of Nano-materials, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, PR China
| | - Ru-Shi Liu
- Department of Chemistry, National Taiwan University, Taipei 106, Taiwan.,Genomics Research Center, Academia Sinica, Taipei 115, Taiwan.,Department of Mechanical Engineering & Graduate, Institute of Manufacturing Technology, National Taipei University of Technology, Taipei 106, Taiwan
| |
Collapse
|
25
|
Ren L, Ma Z, Li Q, Zhao W, Wang Y, Wang H, Shen L, Zhang C, Fang X, Yu J. Identifying a Membrane-Type 2 Matrix Metalloproteinase-Targeting Peptide for Human Lung Cancer Detection and Targeting Chemotherapy with Functionalized Mesoporous Silica. ACS APPLIED BIO MATERIALS 2019; 2:397-405. [PMID: 35016363 DOI: 10.1021/acsabm.8b00633] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Membrane-type 2 matrix metalloproteinase (MT2-MMP) is critical for the aggressive lung tumor growth, progression, and metastasis. Here, to obtain the peptides in binding specifically to MT2-MMP, a phage-displayed 12 peptide library was used and the affinity of peptides toward MT2-MMP was identified by multitest methods. The results showed that a specific MT2-MMP-targeting peptide with the sequence of HHRLHSAPPPQA (MT2-AF5p) exhibited a high specificity and strong affinity against lung tumors. To further achieve specific targeting and precise therapeutic effects, MT2-AF5p was conjugated onto fluorescent mesoporous silica nanoparticles (FMSN-NH2) and loaded with doxorubicin (DOX) to construct a chemotherapeutic drug-targeting delivery system (DOX-loaded FMSN@MT2-AF5p). The DOX-loaded FMSN@MT2-AF5p achieved a boost in DOX release in an acidic environment. Most importantly, FMSN@MT2-AF5p efficiently targeted the tumor area, as seen in the fluorescent imaging ex vivo. The novel peptide-functionalized nanoparticles with a good biocompatibility are promising for clinical use as a precise targeting nanodrug for lung cancer diagnosis and therapy.
Collapse
Affiliation(s)
- Li Ren
- College of Food Science and Engineering, Jilin University, 5333 Xi'an Street, Changchun 130062, People's Republic of China.,State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, People's Republic of China.,Key Laboratory of Molecular Enzymology and Enzyme Engineering of the Ministry of Education, Jilin University, 2699 Qianjin Street, Changchun 130012, People's Republic of China
| | - Zheng Ma
- Department of Thoracic Surgery, Qilu Hospital of Shandong University, 107 Wenhuaxi Road, Jinan 250012, People's Republic of China
| | - Qinglan Li
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, People's Republic of China
| | - Weidong Zhao
- State Key Laboratory of Electroanalytical Chemistry, Research Center of Biomembranomics, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun 130022, People's Republic of China
| | - Ye Wang
- The Life Science College, Jilin University, 2699 Qianjin Street, Changchun 130012, People's Republic of China
| | - Hongda Wang
- State Key Laboratory of Electroanalytical Chemistry, Research Center of Biomembranomics, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun 130022, People's Republic of China
| | - Liqiao Shen
- Key Laboratory of Molecular Enzymology and Enzyme Engineering of the Ministry of Education, Jilin University, 2699 Qianjin Street, Changchun 130012, People's Republic of China
| | - Chengkai Zhang
- Key Laboratory of Molecular Enzymology and Enzyme Engineering of the Ministry of Education, Jilin University, 2699 Qianjin Street, Changchun 130012, People's Republic of China
| | - Xuexun Fang
- Key Laboratory of Molecular Enzymology and Enzyme Engineering of the Ministry of Education, Jilin University, 2699 Qianjin Street, Changchun 130012, People's Republic of China
| | - Jihong Yu
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, People's Republic of China
| |
Collapse
|
26
|
Lingeshwar Reddy K, Prabhakar N, Rosenholm JM, Krishnan V. Core-Shell Structures of Upconversion Nanocrystals Coated with Silica for Near Infrared Light Enabled Optical Imaging of Cancer Cells. MICROMACHINES 2018; 9:E400. [PMID: 30424333 PMCID: PMC6187455 DOI: 10.3390/mi9080400] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Revised: 08/08/2018] [Accepted: 08/09/2018] [Indexed: 11/25/2022]
Abstract
Optical imaging of cancer cells using near infrared (NIR) light is currently an active area of research, as this spectral region directly corresponds to the therapeutic window of biological tissues. Upconversion nanocrystals are photostable alternatives to conventional fluorophores. In our work, we have prepared upconversion nanocrystals of NaYF₄:Yb/Er and encapsulated them in silica to form core-shell structures. The as-prepared core-shell nanostructures have been characterized for their structure, morphology, and optical properties using X-ray diffraction, transmission electron microscopy coupled with elemental mapping, and upconversion luminescence spectroscopy, respectively. The cytotoxicity examined using cell viability assay indicated a low level of toxicity of these core-shell nanostructures. Finally, these core-shell nanostructures have been utilized as photostable probes for NIR light enabled optical imaging of human breast cancer cells. This work paves the way for the development of advanced photostable, biocompatible, low-toxic core-shell nanostructures for potential optical imaging of biological cells and tissues.
Collapse
Affiliation(s)
- Kumbam Lingeshwar Reddy
- School of Basic Sciences and Advanced Materials Research Center, Indian Institute of Technology Mandi, Kamand, Mandi 175005, Himachal Pradesh, India.
| | - Neeraj Prabhakar
- Pharmaceutical Sciences Laboratory, Faculty of Sciences and Engineering, Åbo Akademi University, 20520 Turku, Finland.
| | - Jessica M Rosenholm
- Pharmaceutical Sciences Laboratory, Faculty of Sciences and Engineering, Åbo Akademi University, 20520 Turku, Finland.
| | - Venkata Krishnan
- School of Basic Sciences and Advanced Materials Research Center, Indian Institute of Technology Mandi, Kamand, Mandi 175005, Himachal Pradesh, India.
| |
Collapse
|
27
|
Sun L, Wei R, Feng J, Zhang H. Tailored lanthanide-doped upconversion nanoparticles and their promising bioapplication prospects. Coord Chem Rev 2018. [DOI: 10.1016/j.ccr.2018.03.007] [Citation(s) in RCA: 126] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
28
|
Murawala H, Patel S, Ranadive I, Desai I, Balakrishnan S. Variation in expression and activity pattern of mmp2 and mmp9 on different time scales in the regenerating caudal fin of Poecilia latipinna. JOURNAL OF FISH BIOLOGY 2018; 92:1604-1619. [PMID: 29633266 DOI: 10.1111/jfb.13618] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2017] [Accepted: 03/05/2018] [Indexed: 06/08/2023]
Abstract
Alteration in the expression pattern of matrix metalloproteinase (MMP)2 and MMP9 was studied in the regenerating caudal fin of Poecilia latipinna immediately following amputation until the new tissues gained structural integrity. Timed expression pattern of these two MMPs was studied at enzyme, transcript as well as protein levels. Additionally, both the gelatinases were localized in the regenerating caudal fin during three specific stages of regeneration. The results revealed a progressive increase in the expression of MMP2 starting at 1 h post amputation (hpa), indicating its possible role in the remodelling of extracellular matrix early on during caudal-fin regeneration. Nevertheless, a reduction in transcript level expression of MMP2 at 6 hpa and 12 hpa stages, points towards a possible transcriptional regulation, to further moderate its activity. As observed in the case of MMP2, expression of MMP9 too increased from 1 hpa and remained elevated until 5 dpa. However, the active MMP9 revealed its presence only 12 hpa onwards. Moreover, both the gelatinases were localised in the apical epithelial cap and in the progress zone at wound epithelium (1 dpa) and blastema (60 hpa) stages respectively. Further, during early differentiation stage (5 dpa), high intensities of MMP2 and MMP9 were localized in the newly formed actinotrichia as compared with the tissue proximal to it. Based on the results, it could be construed that the controlled up-regulation of MMP2 and MMP9 from 1 hpa until the early differentiation stage ensures a regulated digestion of extracellular matrix, perhaps to facilitate the recruitment, proliferation, morphogenesis and re-patterning of resident stem cells during caudal fin regeneration in P. latipinna.
Collapse
Affiliation(s)
- H Murawala
- Department of Zoology, Faculty of Science, The Maharaja Sayajirao University of Baroda, Vadodara, 390002, Gujarat, India
| | - S Patel
- Department of Zoology, Faculty of Science, The Maharaja Sayajirao University of Baroda, Vadodara, 390002, Gujarat, India
| | - I Ranadive
- Department of Zoology, Faculty of Science, The Maharaja Sayajirao University of Baroda, Vadodara, 390002, Gujarat, India
| | - I Desai
- N. V. Patel College of Pure and Applied Sciences, Vallabh Vidya Nagar, Anand, 388120, Gujarat, India
| | - S Balakrishnan
- Department of Zoology, Faculty of Science, The Maharaja Sayajirao University of Baroda, Vadodara, 390002, Gujarat, India
| |
Collapse
|
29
|
Chan YC, Chan MH, Chen CW, Liu RS, Hsiao M, Tsai DP. Near-Infrared-Activated Fluorescence Resonance Energy Transfer-Based Nanocomposite to Sense MMP2-Overexpressing Oral Cancer Cells. ACS OMEGA 2018; 3:1627-1634. [PMID: 30023811 PMCID: PMC6045330 DOI: 10.1021/acsomega.7b01494] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Accepted: 01/26/2018] [Indexed: 05/04/2023]
Abstract
The matrix metalloproteinases (MMPs) are well-known mediators that are activated in tumor progression. MMP2 is a kind of gelatinase in extracellular matrix remodeling and cancer metastasis processes. MMP2 secretion increased in many types of cancer diseases, and its abnormal expression is associated with a poor prognosis. We fabricated a nanocomposite that sensed MMP2 expression by a red and blue light change. This nanocomposite consisted of an upconversion nanoparticle (UCNP), MMP2-sensitive peptide, and CuInS2/ZnS quantum dot (CIS/ZnS QD). An UCNP is composed of NaYF4:Tm/Yb@NaYF4:Nd/Yb, which has multiple emissions at UV/blue-visible wavelengths under 808 nm laser excitation. The conjugated CIS/ZnS QD showed the red-visible fluorescence though the FRET process. The two fluorophores were connected by a MMP2-sensitive peptide to form a novel MMP2 biosensor, named UCNP@p-QD. UCNP@p-QD was highly biocompatible according to cell viability assay. The FRET-based biosensor was employed in the MMP2 determination in vitro and in vivo. Furthermore, it was administrated into the tumor-bearing mouse to check MMP2 expression. UCNP@p-QD could be a promising tool for biological study and biomedical application. In this study, we demonstrated that the CIS/ZnS QD improved the upconversion intensity through a near-infrared-induced FRET process. This nanocomposite has the advantage of light penetration, excellent biocompatibility, and high sensitivity to sense MMP2. The near-infrared-induced composites are a potential inspiration for use in biomedical applications.
Collapse
Affiliation(s)
| | - Ming-Hsien Chan
- Department
of Chemistry, National Taiwan University, Taipei 106, Taiwan
| | - Chieh-Wei Chen
- Department
of Chemistry, National Taiwan University, Taipei 106, Taiwan
| | - Ru-Shi Liu
- Genomics
Research Center, Academia Sinica, Taipei, Taiwan
- Department
of Chemistry, National Taiwan University, Taipei 106, Taiwan
- Department
of Mechanical Engineering and Graduate Institute of Manufacturing
Technology, National Taipei University of
Technology, Taipei 106, Taiwan
- Department
of Physics, National Taiwan University, Taipei 106, Taiwan
| | - Michael Hsiao
- Genomics
Research Center, Academia Sinica, Taipei, Taiwan
- Department
of Biochemistry, College of Medicine, Kaohsiung
Medical University, Kaohsiung, Taiwan
| | - Din Ping Tsai
- Research
Center for Applied Sciences, Academia Sinica, Taipei 115, Taiwan
- Department
of Physics, National Taiwan University, Taipei 106, Taiwan
| |
Collapse
|
30
|
Lei Z, Chen H, Zhang H, Wang Y, Meng X, Wang Z. Evaluation of Matrix Metalloproteinase Inhibition by Peptide Microarray-Based Fluorescence Assay on Polymer Brush Substrate and in Vivo Assessment. ACS APPLIED MATERIALS & INTERFACES 2017; 9:44241-44250. [PMID: 29190077 DOI: 10.1021/acsami.7b15445] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Matrix metalloproteinases (MMPs) are important biomarkers and potential therapeutic targets of tumor. In this report, a peptide microarray-based fluorescence assay is developed for MMPs inhibitors evaluation through immobilization of biotin-modified peptides on the poly(glycidyl methacrylate-co-2-hydroxyethyl methacrylate) (P(GMA-HEMA)) brush-modified glass slides. After biotin is recognized with cyanine 3 (Cy3)-modified avidin (Cy3-avidin), the microarrays can produce strong fluorescence signal. The biotin moieties detach from microarray, when the biotin-modified peptide substrates are specially cleaved by a MMP, resulting in decreased fluorescence intensity of the microarray. The decreasing level of fluorescence intensity is correlated with the MMP inhibition. Nine known MMP inhibitors against MMP-2 and MMP-9 are evaluated by the assay, and the quantitative determination of inhibitory potencies (half maximal inhibitory concentration) are obtained, which are comparable with the literatures. Two biocompatible fluorogenic peptides containing MMP-specific recognition sequences and FAM/Dabcyl fluorophore-quencher pair are designed as activatable reporter probes for sensing MMP-2 and MMP-9 activities in cell and in vivo. The peptide microarray-based results are well verified by the cell inhibition assay and in vitro fluorescence imaging, and further confirmed by the in vivo imaging of HT-1080 tumor-bearing mice.
Collapse
Affiliation(s)
- Zhen Lei
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences , Changchun, Jilin 130022, P. R. China
- University of Chinese Academy of Sciences , Beijing 100049, P. R. China
| | - Hongda Chen
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences , Changchun, Jilin 130022, P. R. China
| | - Hua Zhang
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences , Changchun, Jilin 130022, P. R. China
| | - Yaoqi Wang
- Department of Thyroid Surgery, The First Hospital of Jilin University , Changchun, Jilin 130021, P. R. China
| | - Xianying Meng
- Department of Thyroid Surgery, The First Hospital of Jilin University , Changchun, Jilin 130021, P. R. China
| | - Zhenxin Wang
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences , Changchun, Jilin 130022, P. R. China
| |
Collapse
|
31
|
Wang X, Gu M, Toh TB, Abdullah NLB, Chow EKH. Stimuli-Responsive Nanodiamond-Based Biosensor for Enhanced Metastatic Tumor Site Detection. SLAS Technol 2017; 23:44-56. [PMID: 29020497 DOI: 10.1177/2472630317735497] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Metastasis is often critical to cancer progression and linked to poor survival and drug resistance. Early detection of metastasis, as well as identification of metastatic tumor sites, can improve cancer patient survival. Thus, developing technology to improve the detection of cancer metastasis biomarkers can improve both diagnosis and treatment. In this study, we investigated the use of nanodiamonds to develop a stimuli-responsive metastasis detection complex that utilizes matrix metalloproteinase 9 (MMP9) as a metastasis biomarker, as MMP9 increased expression has been shown to be indicative of metastasis. The nanodiamond-MMP9 biosensor complex consists of nanodiamonds functionalized with MMP9-specific fluorescent-labeled substrate peptides. Using this design, protease activity of MMP9 can be accurately measured and correlated to MMP9 expression. The nanodiamond-MMP9 biosensor also demonstrated an enhanced ability to protect the base sensor peptide from nonspecific serum protease cleavage. This enhanced peptide stability, combined with a quantitative stimuli-responsive output function, provides strong evidence for the further development of a nanodiamond-MMP9 biosensor for metastasis site detection. More importantly, this work provides the foundation for use of nanodiamonds as a platform for stimuli-responsive biosensors and theranostic complexes that can be implemented across a wide range of biomedical applications.
Collapse
Affiliation(s)
- Xin Wang
- 1 Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Mengjie Gu
- 1 Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Tan Boon Toh
- 2 Cancer Science Institute of Singapore, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Nurrul Lissa Binti Abdullah
- 2 Cancer Science Institute of Singapore, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Edward Kai-Hua Chow
- 1 Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore.,2 Cancer Science Institute of Singapore, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| |
Collapse
|
32
|
Chan YC, Hsiao M. Protease-activated nanomaterials for targeted cancer theranostics. Nanomedicine (Lond) 2017; 12:2153-2159. [PMID: 28814163 DOI: 10.2217/nnm-2017-0068] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Cancer metastasis accompanies irreversible proteolysis. Malignant cells that abnormally express extracellular proteases usually lead to a poor outcome during cancer progression. The development of protease-activated drugs is an important goal. Moreover, the specific proteolytic mechanism can be used as a diagnostic strategy. Currently, nanotechnology for use in medication has been extensively developed to exploit the physical and chemical properties of nanoparticles. For example, to improve the efficacy of cancer therapy drugs, targeted delivery has been attempted by combining a targeting ligand with a nanoparticle. Multifunctional nanoparticles have been prepared for cancer therapy and diagnosis because of their advantages such as stable physical properties, drug carrying ability and potential specific targeting ability. In this review, we present reports on protease-activated nanoparticle design for cancer theranostics. We further describe recent protease-activated metalloprotease-based and cathepsin-based nanomaterials used in cancer nanotheranostics. Innovative protease-activated nanomaterials have significant potential for designing personalized treatment.
Collapse
Affiliation(s)
| | - Michael Hsiao
- Genomics Research Center, Academia Sinica, Taipei, Taiwan.,Department of Biochemistry, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| |
Collapse
|
33
|
Huang X, Liu Y, Yung B, Xiong Y, Chen X. Nanotechnology-Enhanced No-Wash Biosensors for in Vitro Diagnostics of Cancer. ACS NANO 2017; 11:5238-5292. [PMID: 28590117 DOI: 10.1021/acsnano.7b02618] [Citation(s) in RCA: 153] [Impact Index Per Article: 19.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
In vitro biosensors have been an integral component for early diagnosis of cancer in the clinic. Among them, no-wash biosensors, which only depend on the simple mixing of the signal generating probes and the sample solution without additional washing and separation steps, have been found to be particularly attractive. The outstanding advantages of facile, convenient, and rapid response of no-wash biosensors are especially suitable for point-of-care testing (POCT). One fast-growing field of no-wash biosensor design involves the usage of nanomaterials as signal amplification carriers or direct signal generating elements. The analytical capacity of no-wash biosensors with respect to sensitivity or limit of detection, specificity, stability, and multiplexing detection capacity is largely improved because of their large surface area, excellent optical, electrical, catalytic, and magnetic properties. This review provides a comprehensive overview of various nanomaterial-enhanced no-wash biosensing technologies and focuses on the analysis of the underlying mechanism of these technologies applied for the early detection of cancer biomarkers ranging from small molecules to proteins, and even whole cancerous cells. Representative examples are selected to demonstrate the proof-of-concept with promising applications for in vitro diagnostics of cancer. Finally, a brief discussion of common unresolved issues and a perspective outlook on the field are provided.
Collapse
Affiliation(s)
- Xiaolin Huang
- State Key Laboratory of Food Science and Technology, Nanchang University , Nanchang 330047, P. R. China
- Laboratory of Molecular Imaging and Nanomedicine (LOMIN), National Institute of Biomedical Imaging and Bioengineering (NIBIB), National Institutes of Health (NIH) , Bethesda, Maryland 20892, United States
| | - Yijing Liu
- Laboratory of Molecular Imaging and Nanomedicine (LOMIN), National Institute of Biomedical Imaging and Bioengineering (NIBIB), National Institutes of Health (NIH) , Bethesda, Maryland 20892, United States
| | - Bryant Yung
- Laboratory of Molecular Imaging and Nanomedicine (LOMIN), National Institute of Biomedical Imaging and Bioengineering (NIBIB), National Institutes of Health (NIH) , Bethesda, Maryland 20892, United States
| | - Yonghua Xiong
- State Key Laboratory of Food Science and Technology, Nanchang University , Nanchang 330047, P. R. China
| | - Xiaoyuan Chen
- Laboratory of Molecular Imaging and Nanomedicine (LOMIN), National Institute of Biomedical Imaging and Bioengineering (NIBIB), National Institutes of Health (NIH) , Bethesda, Maryland 20892, United States
| |
Collapse
|
34
|
Irimie AI, Sonea L, Jurj A, Mehterov N, Zimta AA, Budisan L, Braicu C, Berindan-Neagoe I. Future trends and emerging issues for nanodelivery systems in oral and oropharyngeal cancer. Int J Nanomedicine 2017; 12:4593-4606. [PMID: 28721037 PMCID: PMC5500515 DOI: 10.2147/ijn.s133219] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Oral cancer is a prevalent cancer type on a global scale, whose traditional treatment strategies have several drawbacks that could in the near future be overcome through the development of novel therapeutic and prognostic strategies. Nanotechnology provides an alternative to traditional therapy that leads to enhanced efficiency and less toxicity. Various nanosystems have been developed for the treatment of oral cancer, including polymeric, metallic, and lipid-based formulations that incorporate chemotherapeutics, natural compounds, siRNA, or other molecules. This review summarizes the main benefits of using these nanosystems, in parallel with a particular focus on the issues encountered in medical practice. These novel strategies have provided encouraging results in both in vitro and in vivo studies, but few have entered clinical trials. The use of nanosystems in oral cancer has the potential of becoming a valid therapeutic option for patients suffering from this malignancy, considering that clinical trials have already been completed and others are currently being developed.
Collapse
Affiliation(s)
| | - Laura Sonea
- MedFuture Research Center for Advanced Medicine
| | - Ancuta Jurj
- Research Center for Functional Genomics and Translational Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Nikolay Mehterov
- Department of Medical Biology, Medical University of Plovdiv.,Technological Center for Emergency Medicine, Plovdiv, Bulgaria
| | - Alina Andreea Zimta
- MedFuture Research Center for Advanced Medicine.,Research Center for Functional Genomics and Translational Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Liviuta Budisan
- Research Center for Functional Genomics and Translational Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Cornelia Braicu
- Research Center for Functional Genomics and Translational Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Ioana Berindan-Neagoe
- MedFuture Research Center for Advanced Medicine.,Research Center for Functional Genomics and Translational Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania.,Department of Functional Genomics and Experimental Pathology, Ion Chiricuta Oncology Institute, Cluj-Napoca, Romania
| |
Collapse
|
35
|
Chen CW, Chan YC, Hsiao M, Liu RS. Plasmon-Enhanced Photodynamic Cancer Therapy by Upconversion Nanoparticles Conjugated with Au Nanorods. ACS APPLIED MATERIALS & INTERFACES 2016; 8:32108-32119. [PMID: 27933825 DOI: 10.1021/acsami.6b07770] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Photodynamic therapy (PDT) based on photosensitizers (PSs) constructed with nanomaterials has been widely applied to treat cancer. This therapy is characterized by an improved PS accumulation in tumor regions. However, challenges, such as short penetration depth of light and low extinction coefficient of PSs, limit PDT applications. In this study, a nanocomposite consisting of NaYF4:Yb/Er upconversion nanoparticles (UCPs) conjugated with gold nanorods (Au NRs) was developed to improve the therapeutic efficiency of PDT. Methylene blue (MB) was embedded in a silica shell for plasmon-enhanced PDT. UCPs served as a light converter from near-infrared (NIR) to visible light to excite MB to generate reactive oxygen species (ROS). Au NRs could effectively enhance upconversion efficiency and ROS content through a localized surface plasmon resonance (SPR) effect. Silica shell thickness was adjusted to investigate the optimized MB loading amount, ROS production capability, and efficient distance for plasmon-enhanced ROS production. The mechanism of plasmon-enhanced PDT was verified by enhancing UC luminescence intensity through the plasmonic field and by increasing the light-harvesting capability and absorption cross section of the system. This process improved the ROS generation by comparing the exchange of Au NRs to Au nanoparticles with different SPR bands. NIR-triggered nanocomposites of UCP@SiO2:MB-NRs were significantly confirmed by improving ROS generation and further modifying folic acid (FA) to develop an active component targeting OECM-1 oral cancer cells. Consequently, UCP@SiO2:MB-NRs-FA could highly produce ROS and undergo efficient PDT in vitro and in vivo. The mechanism of PDT treatment by UCP@SiO2:MB-NRs-FA was evaluated via the cell apoptosis pathway. The proposed process is a promising strategy to enhance ROS production through plasmonic field enhancement and thus achieve high PDT therapeutic efficacy.
Collapse
Affiliation(s)
- Chieh-Wei Chen
- Department of Chemistry, National Taiwan University , Taipei 106, Taiwan
| | - Yung-Chieh Chan
- Genomics Research Center, Academia Sinica , Taipei 115, Taiwan
| | - Michael Hsiao
- Genomics Research Center, Academia Sinica , Taipei 115, Taiwan
- Department of Biochemistry, College of Medicine, Kaohsiung Medical University , Kaohsiung, Taiwan
| | - Ru-Shi Liu
- Department of Chemistry, National Taiwan University , Taipei 106, Taiwan
- Genomics Research Center, Academia Sinica , Taipei 115, Taiwan
- Department of Mechanical Engineering and Graduate Institute of Manufacturing Technology, National Taipei University of Technology , Taipei 106, Taiwan
| |
Collapse
|