1
|
Balaban Hanoglu S, Harmanci D, Evran S, Timur S. Detection strategies of infectious diseases via peptide-based electrochemical biosensors. Bioelectrochemistry 2024; 160:108784. [PMID: 39094447 DOI: 10.1016/j.bioelechem.2024.108784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 07/21/2024] [Accepted: 07/24/2024] [Indexed: 08/04/2024]
Abstract
Infectious diseases have threatened human life for as long as humankind has existed. One of the most crucial aspects of fighting against these infections is diagnosis to prevent disease spread. However, traditional diagnostic methods prove insufficient and time-consuming in the face of a pandemic. Therefore, studies focusing on detecting viruses causing these diseases have increased, with a particular emphasis on developing rapid, accurate, specific, user-friendly, and portable electrochemical biosensor systems. Peptides are used integral components in biosensor fabrication for several reasons, including various and adaptable synthesis protocols, long-term stability, and specificity. Here, we discuss peptide-based electrochemical biosensor systems that have been developed over the last decade for the detection of infectious diseases. In contrast to other reports on peptide-based biosensors, we have emphasized the following points i) the synthesis methods of peptides for biosensor applications, ii) biosensor fabrication approaches of peptide-based electrochemical biosensor systems, iii) the comparison of electrochemical biosensors with other peptide-based biosensor systems and the advantages and limitations of electrochemical biosensors, iv) the pros and cons of peptides compared to other biorecognition molecules in the detection of infectious diseases, v) different perspectives for future studies with the shortcomings of the systems developed in the past decade.
Collapse
Affiliation(s)
- Simge Balaban Hanoglu
- Department of Biochemistry, Faculty of Science, Ege University, Bornova, Izmir 35100, Turkey.
| | - Duygu Harmanci
- Central Research Test and Analysis Laboratory, Application and Research Center, Ege University, Bornova, Izmir 35100, Turkey
| | - Serap Evran
- Department of Biochemistry, Faculty of Science, Ege University, Bornova, Izmir 35100, Turkey
| | - Suna Timur
- Department of Biochemistry, Faculty of Science, Ege University, Bornova, Izmir 35100, Turkey; Central Research Test and Analysis Laboratory, Application and Research Center, Ege University, Bornova, Izmir 35100, Turkey.
| |
Collapse
|
2
|
He R, Chen L, Chu P, Gao P, Wang J. Recent advances in nonenzymatic electrochemical biosensors for sports biomarkers: focusing on antibodies, aptamers and molecularly imprinted polymers. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2024; 16:6079-6097. [PMID: 39212159 DOI: 10.1039/d4ay01002g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Nonenzymatic electrochemical biosensors, renowned for their high sensitivity, multi-target analysis capabilities, and miniaturized integration, align well with the requirements of non-invasive, multi-index integrated, continuous monitoring, and user-friendly wearable biosensors in sports science. In the past three years, novel strategies targeting specific responses to sports biomarkers have opened new avenues for applications in sports science. However, these advancements also pose challenges in achieving adequate sensitivity and specificity for online analysis of complex sweat bio-samples. Our article focuses on three key nonenzymatic electrochemical biosensing strategies: antigen-antibody reactions, nucleic acid aptamer recognition, and molecular imprinting capture. We delve into strategies to enhance specificity and sensitivity in the application of biosensors in sports science, including shortening signal transduction paths through built-in signal probes, increasing reaction sites through increased surface area and the introduction of nanostructures, multi-target analyses, and microfluidic techniques.
Collapse
Affiliation(s)
- Rui He
- Physical Education Department, Wuhan University, No. 299 Bayi Road, Wuchang District, Wuhan City, Hubei province, People's Republic of China
| | - Long Chen
- School of Physical Education and Equestrian, Wuhan Business University, No. 816 Dongfeng Avenue, Wuhan Economic and Technological Development Zone, Hubei Province, People's Republic of China
| | - Pengfei Chu
- School of Sports Science and Physical Education, China University of Geosciences, Wuhan 430074, People's Republic of China.
| | - Pengcheng Gao
- Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, People's Republic of China.
| | - Junjie Wang
- School of Sports Science and Physical Education, China University of Geosciences, Wuhan 430074, People's Republic of China.
| |
Collapse
|
3
|
Kaur R, Rana S, Mehra P, Kaur K. Surface-Initiated Reversible Addition-Fragmentation Chain Transfer Polymerization (SI-RAFT) to Produce Molecularly Imprinted Polymers on Graphene Oxide for Electrochemical Sensing of Methylparathion. ACS APPLIED MATERIALS & INTERFACES 2024; 16:49889-49901. [PMID: 39251248 DOI: 10.1021/acsami.4c08168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/11/2024]
Abstract
A nonenzymatic redox-responsive sensor was put forward for the detection of methylparathion (MP) by designing globular nanostructures of molecularly imprinted polymers on graphene oxide (GO@MIPs) via surface-initiated reversible addition-fragmentation chain transfer polymerization (SI-RAFT). Fourier transform infrared (FTIR) spectroscopy, field emission scanning electron microscopy (FESEM), and small-angle X-ray scattering (SAXS) studies have confirmed the successful formation of receptor layers of MIPs on RAFT agent-functionalized GO sheets. The electrochemical signal with an amplified current response was attained because of the enhanced diffusion rate of ions at the interface provided by widening the pore size of the MIP film. The analytical response of GO@MIPs, validated by recording square-wave anodic stripping voltammetry (SWASV) at varying MP concentrations, followed the linear response between 0.2 and 200 ng/mL. Under optimized conditions, the sensor exhibited a limit of detection of 4.25 ng/mL with high selectivity over other interfering ions or molecules. The anti-interfering ability and good recovery (%) in food samples directed the use of the proposed sensor toward real-time monitoring and also toward future mimicking of surfaces.
Collapse
Affiliation(s)
- Ranjeet Kaur
- Department of Chemistry, Panjab University, Chandigarh 160014, India
- University Centre for Research & Development (UCRD), Department of Chemistry, Chandigarh University, Gharuan, Mohali 140413, Punjab, India
| | - Shweta Rana
- Department of Chemistry, Panjab University, Chandigarh 160014, India
| | - Palak Mehra
- Department of Chemistry, Panjab University, Chandigarh 160014, India
| | - Khushwinder Kaur
- Department of Chemistry, Panjab University, Chandigarh 160014, India
| |
Collapse
|
4
|
Deng H, Feng L, Shi K, Du R. Binding activity and specificity of tail fiber protein 35Q for Salmonella pullorum. Front Microbiol 2024; 15:1429504. [PMID: 38983624 PMCID: PMC11231377 DOI: 10.3389/fmicb.2024.1429504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Accepted: 06/14/2024] [Indexed: 07/11/2024] Open
Abstract
Salmonella, a prevalent pathogen with significant implications for the poultry industry and food safety, presents a global public health concern. The rise in antibiotic resistance has exacerbated the challenge of prevention. Accurate and sensitive detection methods are essential in combating Salmonella infections. Bacteriophages, viruses capable of targeting and destroying bacteria, leverage their host specificity for accurate microbial detection. Notably, the tail fiber protein of bacteriophages plays a crucial role in recognizing specific hosts, making it a valuable tool for targeted microbial detection. This study focused on the tail fiber protein 35Q of Salmonella pullorum (SP) bacteriophage YSP2, identified through protein sequencing and genome analysis. Bioinformatics analysis revealed similarities between 35Q and other Salmonella bacteriophage tail fiber proteins. The protein was successfully expressed and purified using an Escherichia coli expression system, and its binding activity and specificity were confirmed. ELISA assays and adsorption experiments demonstrated that 35Q interacts with the outer membrane protein (OMP) receptor on bacterial surfaces. This investigation provides valuable insights for targeted Salmonella detection, informs the development of specific therapeutics, and enhances our understanding of the interaction between Salmonella bacteriophages and their hosts.
Collapse
Affiliation(s)
- Hewen Deng
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
| | - Linwan Feng
- College of Chinese Medicine Materials, Jilin Agricultural University, Changchun, China
| | - Kun Shi
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
- College of Chinese Medicine Materials, Jilin Agricultural University, Changchun, China
| | - Rui Du
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
- College of Chinese Medicine Materials, Jilin Agricultural University, Changchun, China
| |
Collapse
|
5
|
Su Y, Xia C, Zhang H, Gan W, Zhang GQ, Yang Z, Li D. Emerging biosensor probes for glycated hemoglobin (HbA1c) detection. Mikrochim Acta 2024; 191:300. [PMID: 38709399 DOI: 10.1007/s00604-024-06380-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 04/22/2024] [Indexed: 05/07/2024]
Abstract
Glycated hemoglobin (HbA1c), originating from the non-enzymatic glycosylation of βVal1 residues in hemoglobin (Hb), is an essential biomarker indicating average blood glucose levels over a period of 2 to 3 months without external environmental disturbances, thereby serving as the gold standard in the management of diabetes instead of blood glucose testing. The emergence of HbA1c biosensors presents affordable, readily available options for glycemic monitoring, offering significant benefits to small-scale laboratories and clinics. Utilizing nanomaterials coupled with high-specificity probes as integral components for recognition, labeling, and signal transduction, these sensors demonstrate exceptional sensitivity and selectivity in HbA1c detection. This review mainly focuses on the emerging probes and strategies integral to HbA1c sensor development. We discussed the advantages and limitations of various probes in sensor construction as well as recent advances in diverse sensing strategies for HbA1c measurement and their potential clinical applications, highlighting the critical gaps in current technologies and future needs in this evolving field.
Collapse
Affiliation(s)
- Yang Su
- Key Laboratory of DrugTargeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, 610041, China
| | - Chengen Xia
- Key Laboratory of DrugTargeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, 610041, China
| | - He Zhang
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Wei Gan
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Guo-Qi Zhang
- Department of Chemistry, School of Science, Xihua University, Chengdu, 610039, People's Republic of China
| | - Zi Yang
- Key Laboratory of DrugTargeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, 610041, China
| | - Dapeng Li
- Key Laboratory of DrugTargeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
6
|
Kalita N, Gogoi S, Minteer SD, Goswami P. Advances in Bioelectrode Design for Developing Electrochemical Biosensors. ACS MEASUREMENT SCIENCE AU 2023; 3:404-433. [PMID: 38145027 PMCID: PMC10740130 DOI: 10.1021/acsmeasuresciau.3c00034] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 09/26/2023] [Accepted: 09/27/2023] [Indexed: 12/26/2023]
Abstract
The critical performance factors such as selectivity, sensitivity, operational and storage stability, and response time of electrochemical biosensors are governed mainly by the function of their key component, the bioelectrode. Suitable design and fabrication strategies of the bioelectrode interface are essential for realizing the requisite performance of the biosensors for their practical utility. A multifaceted attempt to achieve this goal is visible from the vast literature exploring effective strategies for preparing, immobilizing, and stabilizing biorecognition elements on the electrode surface and efficient transduction of biochemical signals into electrical ones (i.e., current, voltage, and impedance) through the bioelectrode interface with the aid of advanced materials and techniques. The commercial success of biosensors in modern society is also increasingly influenced by their size (and hence portability), multiplexing capability, and coupling in the interface of the wireless communication technology, which facilitates quick data transfer and linked decision-making processes in real-time in different areas such as healthcare, agriculture, food, and environmental applications. Therefore, fabrication of the bioelectrode involves careful selection and control of several parameters, including biorecognition elements, electrode materials, shape and size of the electrode, detection principles, and various fabrication strategies, including microscale and printing technologies. This review discusses recent trends in bioelectrode designs and fabrications for developing electrochemical biosensors. The discussions have been delineated into the types of biorecognition elements and their immobilization strategies, signal transduction approaches, commonly used advanced materials for electrode fabrication and techniques for fabricating the bioelectrodes, and device integration with modern electronic communication technology for developing electrochemical biosensors of commercial interest.
Collapse
Affiliation(s)
- Nabajyoti Kalita
- Department
of Biosciences and Bioengineering, Indian
Institute of Technology Guwahati, Guwahati, Assam 781039, India
| | - Sudarshan Gogoi
- Department
of Chemistry, Sadiya College, Chapakhowa, Assam 786157, India
| | - Shelley D. Minteer
- Department
of Chemistry, University of Utah, 315 S 1400 E, Salt Lake City, Utah 84112, United States
- Kummer
Institute Center for Resource Sustainability, Missouri University of Science and Technology, Rolla, Missouri 65409, United States
| | - Pranab Goswami
- Department
of Biosciences and Bioengineering, Indian
Institute of Technology Guwahati, Guwahati, Assam 781039, India
| |
Collapse
|
7
|
Hashemi Shabankareh S, Asghari A, Azadbakht M, Asefpour Vakilian K. Physical and physiological characteristics, as well as miRNA concentrations, are affected by the storage time of tomatoes. Food Chem 2023; 429:136792. [PMID: 37480772 DOI: 10.1016/j.foodchem.2023.136792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 06/30/2023] [Accepted: 07/01/2023] [Indexed: 07/24/2023]
Abstract
This study aims to investigate the potential of miRNA measurements in indicating tomato quality during transportation and storage. The impact of storage temperature, duration, and mechanical loading on tomato senescence, carotenoid content, total soluble solids, fruit firmness, and relevant miRNA concentrations were examined. Significant two-way or three-way interactions were observed between storage conditions and physical/physiological characteristics (excluding carotenoids). Remarkably, significant three-way interactions were found between storage conditions and miRNA concentrations. Strong correlations were observed between the physiological characteristics of the tomatoes and their miRNA concentrations. These findings suggest that measuring miRNAs could serve as a convenient and portable method for evaluating postharvest fruit quality, reducing reliance on labor-intensive laboratory techniques.
Collapse
Affiliation(s)
| | - Ali Asghari
- Department of Biosystems Engineering, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran.
| | - Mohsen Azadbakht
- Department of Biosystems Engineering, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran
| | - Keyvan Asefpour Vakilian
- Department of Biosystems Engineering, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran.
| |
Collapse
|
8
|
Silva GBL, Campos FV, Guimarães MCC, Oliveira JP. Recent Developments in Lateral Flow Assays for Salmonella Detection in Food Products: A Review. Pathogens 2023; 12:1441. [PMID: 38133324 PMCID: PMC10747123 DOI: 10.3390/pathogens12121441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 11/22/2023] [Accepted: 12/11/2023] [Indexed: 12/23/2023] Open
Abstract
Salmonellosis is a disease transmitted by contaminated food and is one of the leading causes of infections worldwide, making the early detection of Salmonella of crucial importance for public health. However, current detection methods are laborious and time-consuming, thus impacting the entire food supply chain and leading to production losses and economic sanctions. To mitigate these issues, a number of different biosensors have been developed, including lateral flow assays (LFAs), which have emerged as valuable tools in pathogen detection due to their portability, ease of use, time efficiency, and cost effectiveness. The performance of LFAs has been considerably enhanced by the development of new nanomaterials over the years. In this review, we address the principles and formats of the assay and discuss future prospects and challenges with an emphasis on LFAs developed for the detection of different Salmonella serovars in food.
Collapse
Affiliation(s)
| | | | | | - Jairo P. Oliveira
- Morphology Department, Health Sciences Center, Federal University of Espírito Santo, Av Marechal Campos 1468, Vitória 29040-090, Brazil; (G.B.L.S.); (F.V.C.); (M.C.C.G.)
| |
Collapse
|
9
|
Zhang Y, Chen D, He W, Chen N, Zhou L, Yu L, Yang Y, Yuan Q. Interface-Engineered Field-Effect Transistor Electronic Devices for Biosensing. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023:e2306252. [PMID: 38048547 DOI: 10.1002/adma.202306252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 09/17/2023] [Indexed: 12/06/2023]
Abstract
Promising advances in molecular medicine have promoted the urgent requirement for reliable and sensitive diagnostic tools. Electronic biosensing devices based on field-effect transistors (FETs) exhibit a wide range of benefits, including rapid and label-free detection, high sensitivity, easy operation, and capability of integration, possessing significant potential for application in disease screening and health monitoring. In this perspective, the tremendous efforts and achievements in the development of high-performance FET biosensors in the past decade are summarized, with emphasis on the interface engineering of FET-based electrical platforms for biomolecule identification. First, an overview of engineering strategies for interface modulation and recognition element design is discussed in detail. For a further step, the applications of FET-based electrical devices for in vitro detection and real-time monitoring in biological systems are comprehensively reviewed. Finally, the key opportunities and challenges of FET-based electronic devices in biosensing are discussed. It is anticipated that a comprehensive understanding of interface engineering strategies in FET biosensors will inspire additional techniques for developing highly sensitive, specific, and stable FET biosensors as well as emerging designs for next-generation biosensing electronics.
Collapse
Affiliation(s)
- Yun Zhang
- College of Chemistry and Molecular Sciences, Key Laboratory of Biomedical Polymers of Ministry of Education, Institute of Molecular Medicine, Renmin Hospital of Wuhan University, School of Microelectronics, Wuhan University, Wuhan, 430072, P. R. China
| | - Duo Chen
- College of Chemistry and Molecular Sciences, Key Laboratory of Biomedical Polymers of Ministry of Education, Institute of Molecular Medicine, Renmin Hospital of Wuhan University, School of Microelectronics, Wuhan University, Wuhan, 430072, P. R. China
| | - Wang He
- College of Chemistry and Molecular Sciences, Key Laboratory of Biomedical Polymers of Ministry of Education, Institute of Molecular Medicine, Renmin Hospital of Wuhan University, School of Microelectronics, Wuhan University, Wuhan, 430072, P. R. China
| | - Na Chen
- College of Chemistry and Molecular Sciences, Key Laboratory of Biomedical Polymers of Ministry of Education, Institute of Molecular Medicine, Renmin Hospital of Wuhan University, School of Microelectronics, Wuhan University, Wuhan, 430072, P. R. China
| | - Liping Zhou
- College of Chemistry and Molecular Sciences, Key Laboratory of Biomedical Polymers of Ministry of Education, Institute of Molecular Medicine, Renmin Hospital of Wuhan University, School of Microelectronics, Wuhan University, Wuhan, 430072, P. R. China
| | - Lilei Yu
- College of Chemistry and Molecular Sciences, Key Laboratory of Biomedical Polymers of Ministry of Education, Institute of Molecular Medicine, Renmin Hospital of Wuhan University, School of Microelectronics, Wuhan University, Wuhan, 430072, P. R. China
| | - Yanbing Yang
- College of Chemistry and Molecular Sciences, Key Laboratory of Biomedical Polymers of Ministry of Education, Institute of Molecular Medicine, Renmin Hospital of Wuhan University, School of Microelectronics, Wuhan University, Wuhan, 430072, P. R. China
| | - Quan Yuan
- College of Chemistry and Molecular Sciences, Key Laboratory of Biomedical Polymers of Ministry of Education, Institute of Molecular Medicine, Renmin Hospital of Wuhan University, School of Microelectronics, Wuhan University, Wuhan, 430072, P. R. China
| |
Collapse
|
10
|
Chen X, He Z, Huang X, Sun Z, Cao H, Wu L, Zhang S, Hammock BD, Liu X. Illuminating the path: aggregation-induced emission for food contaminants detection. Crit Rev Food Sci Nutr 2023:1-28. [PMID: 37983139 DOI: 10.1080/10408398.2023.2282677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2023]
Abstract
Food safety is a global concern that deeply affects human health. To ensure the profitability of the food industry and consumer safety, there is an urgent need to develop rapid, sensitive, accurate, and cost-effective detection methods for food contaminants. Recently, the Aggregation-Induced Emission (AIE) has been successfully used to detect food contaminants. AIEgens, fluorescent dyes that cause AIE, have several valuable properties including high quantum yields, photostability, and large Stokes shifts. This review provides a detailed introduction to the principles and advantages of AIE-triggered detection, followed by a focus on the past five years' applications of AIE in detecting various food contaminants including pesticides, veterinary drugs, mycotoxins, food additives, ions, pathogens, and biogenic amines. Each detection principle and component is comprehensively covered and explained. Moreover, the similarities and differences among different types of food contaminants are summarized, aiming to inspire future researchers. Finally, this review concludes with a discussion of the prospects for incorporating AIEgens more effectively into the detection of food contaminants.
Collapse
Affiliation(s)
- Xincheng Chen
- School of Food Science and Engineering, Key Laboratory of Tropical Fruits and Vegetables Quality and Safety for State Market Regulation, Hainan University, Haikou, China
| | - Zhenyun He
- School of Food Science and Engineering, Key Laboratory of Tropical Fruits and Vegetables Quality and Safety for State Market Regulation, Hainan University, Haikou, China
| | - Xiaolin Huang
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, Nanchang University, Nanchang, China
| | - Zhichang Sun
- School of Food Science and Engineering, Key Laboratory of Tropical Fruits and Vegetables Quality and Safety for State Market Regulation, Hainan University, Haikou, China
| | - Hongmei Cao
- School of Food Science and Engineering, Key Laboratory of Tropical Fruits and Vegetables Quality and Safety for State Market Regulation, Hainan University, Haikou, China
| | - Long Wu
- School of Food Science and Engineering, Key Laboratory of Tropical Fruits and Vegetables Quality and Safety for State Market Regulation, Hainan University, Haikou, China
| | - Sihang Zhang
- School of Food Science and Engineering, Key Laboratory of Tropical Fruits and Vegetables Quality and Safety for State Market Regulation, Hainan University, Haikou, China
| | - Bruce D Hammock
- Department of Entomology and Nematology, and UC Davis Comprehensive Cancer Center, University of California, Davis, Davis, California, USA
| | - Xing Liu
- School of Food Science and Engineering, Key Laboratory of Tropical Fruits and Vegetables Quality and Safety for State Market Regulation, Hainan University, Haikou, China
| |
Collapse
|
11
|
Karuppaiah G, Lee MH, Bhansali S, Manickam P. Electrochemical sensors for cortisol detection: Principles, designs, fabrication, and characterisation. Biosens Bioelectron 2023; 239:115600. [PMID: 37611448 DOI: 10.1016/j.bios.2023.115600] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 08/09/2023] [Accepted: 08/12/2023] [Indexed: 08/25/2023]
Abstract
Psychological stress is a major factor contributing to health discrepancies among individuals. Sustained exposure to stress triggers signalling pathways in the brain, which leading to the release of stress hormones in the body. Cortisol, a steroid hormone, is a significant biomarker for stress management due to its responsibility in the body's reply to stress. The release of cortisol in bloodstream prepares the body for a "fight or flight" response by increasing heart rate, blood pressure, metabolism, and suppressing the immune system. Detecting cortisol in biological samples is crucial for understanding its role in stress and personalized healthcare. Traditional techniques for cortisol detection have limitations, prompting researchers to explore alternative strategies. Electrochemical sensing has emerged as a reliable method for point-of-care (POC) cortisol detection. This review focuses on the progress made in electrochemical sensors for cortisol detection, covering their design, principle, and electroanalytical methodologies. The analytical performance of these sensors is also analysed and summarized. Despite significant advancements, the development of electrochemical cortisol sensors faces challenges such as biofouling, sample preparation, sensitivity, flexibility, stability, and recognition layer performance. Therefore, the need to develop more sensitive electrodes and materials is emphasized. Finally, we discussed the potential strategies for electrode design and provides examples of sensing approaches. Moreover, the encounters of translating research into real world applications are addressed.
Collapse
Affiliation(s)
- Gopi Karuppaiah
- Electrodics and Electrocatalysis Division, CSIR-Central Electrochemical Research Institute (CECRI), Karaikudi, 630 003, Tamil Nadu, India; School of Integrative Engineering, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul, 06974, Republic of Korea
| | - Min-Ho Lee
- School of Integrative Engineering, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul, 06974, Republic of Korea
| | - Shekhar Bhansali
- Department of Electrical and Computer Engineering, Florida International University, Miami, FL, 33174, USA.
| | - Pandiaraj Manickam
- Electrodics and Electrocatalysis Division, CSIR-Central Electrochemical Research Institute (CECRI), Karaikudi, 630 003, Tamil Nadu, India; Academy of Scientific and Innovative Research, Ghaziabad, 201 002, Uttar Pradesh, India.
| |
Collapse
|
12
|
Rahn KL, Peramune U, Zhang T, Anand RK. Label-Free Electrochemical Methods for Disease Detection. ANNUAL REVIEW OF ANALYTICAL CHEMISTRY (PALO ALTO, CALIF.) 2023; 16:49-69. [PMID: 36854209 DOI: 10.1146/annurev-anchem-091622-085754] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Label-free electrochemical biosensing leverages the advantages of label-free techniques, low cost, and fewer user steps, with the sensitivity and portability of electrochemical analysis. In this review, we identify four label-free electrochemical biosensing mechanisms: (a) blocking the electrode surface, (b) allowing greater access to the electrode surface, (c) changing the intercalation or electrostatic affinity of a redox probe to a biorecognition unit, and (d) modulating ion or electron transport properties due to conformational and surface charge changes. Each mechanism is described, recent advancements are summarized, and relative advantages and disadvantages of the techniques are discussed. Furthermore, two avenues for gaining further diagnostic information from label-free electrochemical biosensors, through multiplex analysis and incorporating machine learning, are examined.
Collapse
Affiliation(s)
- Kira L Rahn
- Department of Chemistry, Colorado State University, Fort Collins, Colorado, USA
- Department of Chemistry, Iowa State University, Ames, Iowa, USA;
| | - Umesha Peramune
- Department of Chemistry, Iowa State University, Ames, Iowa, USA;
| | - Tianyi Zhang
- Department of Chemistry, Iowa State University, Ames, Iowa, USA;
| | - Robbyn K Anand
- Department of Chemistry, Iowa State University, Ames, Iowa, USA;
| |
Collapse
|
13
|
Label-free electrochemical bioplatform based on Au-modified magnetic Fe3O4/α-Fe2O3 hetero-nanorods for sensitive quantification of ovarian cancer tumor marker. Microchem J 2023. [DOI: 10.1016/j.microc.2023.108546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/04/2023]
|
14
|
Azzouz A, Kumar V, Hejji L, Kim KH. Advancements in nanomaterial-based aptasensors for the detection of emerging organic pollutants in environmental and biological samples. Biotechnol Adv 2023; 66:108156. [PMID: 37084799 DOI: 10.1016/j.biotechadv.2023.108156] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 03/16/2023] [Accepted: 04/15/2023] [Indexed: 04/23/2023]
Abstract
The combination of nanomaterials (NMs) and aptamers into aptasensors enables highly specific and sensitive detection of diverse pollutants. The great potential of aptasensors is recognized for the detection of diverse emerging organic pollutants (EOPs) in different environmental and biological matrices. In addition to high sensitivity and selectivity, NM-based aptasensors have many other advantages such as portability, miniaturization, facile use, and affordability. This work showcases the recent advances achieved in the design and fabrication of NM-based aptasensors for monitoring EOPs (e.g., hormones, phenolic contaminants, pesticides, and pharmaceuticals). On the basis of their sensing mechanisms, the covered aptasensing systems are classified as electrochemical, colorimetric, PEC, fluorescence, SERS, and ECL. Special attention has been paid to the fabrication processes, analytical achievements, and sensing mechanisms of NM-based aptasensors. Further, the practical utility of aptasensing approaches has also been assessed based on their basic performance metrics (e.g., detection limits, sensing ranges, and response times).
Collapse
Affiliation(s)
- Abdelmonaim Azzouz
- Department of Chemistry, Faculty of Science, University of Abdelmalek Essaadi, B.P. 2121, M'Hannech II, 93002 Tetouan, Morocco
| | - Vanish Kumar
- National Agri-Food Biotechnology Institute (NABI), Sector 81, SAS Nagar, Mohali, Punjab 140306, India
| | - Lamia Hejji
- Department of Chemistry, Faculty of Science, University of Abdelmalek Essaadi, B.P. 2121, M'Hannech II, 93002 Tetouan, Morocco; Department of Chemical, Environmental, and Materials Engineering, Higher Polytechnic School of Linares, University of Jaén, Campus Científico-Tecnológico, Cinturón Sur s/n, 23700 Linares, Jaén, Spain
| | - Ki-Hyun Kim
- Department of Civil and Environmental Engineering, Hanyang University, 222 Wangsimni-Ro, Seoul 04763, South Korea.
| |
Collapse
|
15
|
Wei Y, Qi H, Zhang C. Recent advances and challenges in developing electrochemiluminescence biosensors for health analysis. Chem Commun (Camb) 2023; 59:3507-3522. [PMID: 36820650 DOI: 10.1039/d2cc06930j] [Citation(s) in RCA: 24] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
Abstract
This Feature Article simply introduces principles and mechanisms of electrochemiluminescence (ECL) biosensors for the determination of biomarkers and highlights recent advances of ECL biosensors on key aspects including new ECL reagents and materials, new biological recognition elements, and emerging construction biointerfacial strategies with illustrative examples and a critical eye on pitfalls and discusses challenges and perspectives of ECL biosensors for health analysis.
Collapse
Affiliation(s)
- Yuxi Wei
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710062, P. R. China.
| | - Honglan Qi
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710062, P. R. China.
| | - Chengxiao Zhang
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710062, P. R. China.
| |
Collapse
|
16
|
Wei LN, Luo L, Wang BZ, Lei HT, Guan T, Shen YD, Wang H, Xu ZL. Biosensors for detection of paralytic shellfish toxins: Recognition elements and transduction technologies. Trends Food Sci Technol 2023. [DOI: 10.1016/j.tifs.2023.02.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/12/2023]
|
17
|
Assessment of Diabetes Biomarker Monitoring via Novel Biosensor Activity. RESULTS IN CHEMISTRY 2023. [DOI: 10.1016/j.rechem.2023.100777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
|
18
|
Sypabekova M, Hagemann A, Rho D, Kim S. Review: 3-Aminopropyltriethoxysilane (APTES) Deposition Methods on Oxide Surfaces in Solution and Vapor Phases for Biosensing Applications. BIOSENSORS 2022; 13:bios13010036. [PMID: 36671871 PMCID: PMC9856095 DOI: 10.3390/bios13010036] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Revised: 12/19/2022] [Accepted: 12/23/2022] [Indexed: 05/31/2023]
Abstract
Surface functionalization and bioreceptor immobilization are critical processes in developing a highly sensitive and selective biosensor. The silanization process with 3-aminopropyltriethoxysilane (APTES) on oxide surfaces is frequently used for surface functionalization because of beneficial characteristics such as its bifunctional nature and low cost. Optimizing the deposition process of the APTES layer to obtain a monolayer is crucial to having a stable surface and effectively immobilizing the bioreceptors, which leads to the improved repeatability and sensitivity of the biosensor. This review provides an overview of APTES deposition methods, categorized into the solution-phase and vapor-phase, and a comprehensive summary and guide for creating stable APTES monolayers on oxide surfaces for biosensing applications. A brief explanation of APTES is introduced, and the APTES deposition methods with their pre/post-treatments and characterization results are discussed. Lastly, APTES deposition methods on nanoparticles used for biosensors are briefly described.
Collapse
Affiliation(s)
- Marzhan Sypabekova
- Department of Electrical & Computer Engineering, Baylor University, Waco, TX 76798, USA
| | - Aidan Hagemann
- Department of Electrical & Computer Engineering, Baylor University, Waco, TX 76798, USA
| | - Donggee Rho
- Center for Nano Bio Development, National NanoFab Center (NNFC), Daejeon 34141, Republic of Korea
| | - Seunghyun Kim
- Department of Electrical & Computer Engineering, Baylor University, Waco, TX 76798, USA
| |
Collapse
|
19
|
Zhao Z, Zhang Z, Zhang H, Liang Z. Small Peptides in the Detection of Mycotoxins and Their Potential Applications in Mycotoxin Removal. Toxins (Basel) 2022; 14:toxins14110795. [PMID: 36422969 PMCID: PMC9698726 DOI: 10.3390/toxins14110795] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 10/29/2022] [Accepted: 11/08/2022] [Indexed: 11/19/2022] Open
Abstract
Mycotoxins pose significant risks to humans and livestock. In addition, contaminated food- and feedstuffs can only be discarded, leading to increased economic losses and potential ecological pollution. Mycotoxin removal and real-time toxin level monitoring are effective approaches to solve this problem. As a hot research hotspot, small peptides derived from phage display peptide libraries, combinatorial peptide libraries, and rational design approaches can act as coating antigens, competitive antigens, and anti-immune complexes in immunoassays for the detection of mycotoxins. Furthermore, as a potential approach to mycotoxin degradation, small peptides can mimic the natural enzyme catalytic site to construct artificial enzymes containing oxidoreductases, hydrolase, and lyase activities. In summary, with the advantages of mature synthesis protocols, diverse structures, and excellent biocompatibility, also sharing their chemical structure with natural proteins, small peptides are widely used for mycotoxin detection and artificial enzyme construction, which have promising applications in mycotoxin degradation. This paper mainly reviews the advances of small peptides in the detection of mycotoxins, the construction of peptide-based artificial enzymes, and their potential applications in mycotoxin control.
Collapse
Affiliation(s)
- Zitong Zhao
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Zhenzhen Zhang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Haoxiang Zhang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Zhihong Liang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
- The Supervision, Inspection and Testing Center of Genetically Modified Organisms, Ministry of Agriculture, Beijing 100083, China
- Beijing Laboratory for Food Quality and Safety, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
- Correspondence: ; Tel.: +86-010-62737055
| |
Collapse
|
20
|
Sun H, Liu Z, Li Z, Ma X, Duan Z, Sun C. Label-Free Fluorescent Determination of Lead (II) Using DNAzyme and Thiazole Orange. ANAL LETT 2022. [DOI: 10.1080/00032719.2022.2143793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Hongjing Sun
- Department of Food Quality and Safety, College of Food Science and Engineering, Jilin University, Changchun, Jilin, China
| | - Zheng Liu
- Department of Food Quality and Safety, College of Food Science and Engineering, Jilin University, Changchun, Jilin, China
| | - Zhihong Li
- Department of Food Quality and Safety, College of Food Science and Engineering, Jilin University, Changchun, Jilin, China
| | - Xinyue Ma
- Department of Food Quality and Safety, College of Food Science and Engineering, Jilin University, Changchun, Jilin, China
| | - Zixuan Duan
- Department of Food Quality and Safety, College of Food Science and Engineering, Jilin University, Changchun, Jilin, China
| | - Chunyan Sun
- Department of Food Quality and Safety, College of Food Science and Engineering, Jilin University, Changchun, Jilin, China
| |
Collapse
|
21
|
Xi L, Jiang C, Wang F, Zhang X, Huo D, Sun M, Dramou P, He H. Recent Advances in Construction and Application of Metal-Nanozymes in Pharmaceutical Analysis. Crit Rev Anal Chem 2022; 54:1661-1679. [PMID: 36183252 DOI: 10.1080/10408347.2022.2128632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/07/2022]
Abstract
Nanozymes, made of emerging nanomaterials, have similar activity to natural enzyme and exhibit promising applications in in the fields of environment, biology and medicine, and food safety science. In recent years, with the deep finding and research to nanozymes by researchers, its application in field of pharmaceutical analysis has emerged gradually, possessing great significance in drug safety evaluation and quality control. This review summarizes the construction of metal nanozymes, strategies to improve their performance and their application in pharmaceutical detection and analysis, especially in detection of target analytes consisting of small molecule medicine macromolecule, toxic and others, which proposes theoretical foundation for development of nanozymes in this field. At the same time, it also provides opportunities and challenges for the construction and application of new nanozymes.
Collapse
Affiliation(s)
- Liping Xi
- Department of Chemistry, China Pharmaceutical University, Nanjing, China
| | - Chenrui Jiang
- Department of Chemistry, China Pharmaceutical University, Nanjing, China
| | - Fangqi Wang
- Department of Chemistry, China Pharmaceutical University, Nanjing, China
| | - Xiaoni Zhang
- Department of Chemistry, China Pharmaceutical University, Nanjing, China
| | - Dezhi Huo
- Department of Chemistry, China Pharmaceutical University, Nanjing, China
| | - Meiling Sun
- Department of Chemistry, China Pharmaceutical University, Nanjing, China
| | - Pierre Dramou
- Department of Chemistry, China Pharmaceutical University, Nanjing, China
- Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, China Pharmaceutical University, Nanjing, China
| | - Hua He
- Department of Chemistry, China Pharmaceutical University, Nanjing, China
- Key Laboratory of Biomedical Functional Materials, China Pharmaceutical University, Nanjing, China
- Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, China Pharmaceutical University, Nanjing, China
| |
Collapse
|
22
|
Ostovan A, Arabi M, Wang Y, Li J, Li B, Wang X, Chen L. Greenificated Molecularly Imprinted Materials for Advanced Applications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2203154. [PMID: 35734896 DOI: 10.1002/adma.202203154] [Citation(s) in RCA: 118] [Impact Index Per Article: 59.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 06/12/2022] [Indexed: 06/15/2023]
Abstract
Molecular imprinting technology (MIT) produces artificial binding sites with precise complementarity to substrates and thereby is capable of exquisite molecular recognition. Over five decades of evolution, it is predicted that the resulting host imprinted materials will overtake natural receptors for research and application purposes, but in practice, this has not yet been realized due to the unsustainability of their life cycles (i.e., precursors, creation, use, recycling, and end-of-life). To address this issue, greenificated molecularly imprinted polymers (GMIPs) are a new class of plastic antibodies that have approached sustainability by following one or more of the greenification principles, while also demonstrating more far-reaching applications compared to their natural counterparts. In this review, the most recent developments in the delicate design and advanced application of GMIPs in six fast-growing and emerging fields are surveyed, namely biomedicine/therapy, catalysis, energy harvesting/storage, nanoparticle detection, gas sensing/adsorption, and environmental remediation. In addition, their distinct features are highlighted, and the optimal means to utilize these features for attaining incredibly far-reaching applications are discussed. Importantly, the obscure technical challenges of the greenificated MIT are revealed, and conceivable solutions are offered. Lastly, several perspectives on future research directions are proposed.
Collapse
Affiliation(s)
- Abbas Ostovan
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Shandong Key Laboratory of Coastal Environmental Processes, Shandong Research Center for Coastal Environmental Engineering and Technology, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, 266071, China
| | - Maryam Arabi
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Shandong Key Laboratory of Coastal Environmental Processes, Shandong Research Center for Coastal Environmental Engineering and Technology, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, 266071, China
| | - Yunqing Wang
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Shandong Key Laboratory of Coastal Environmental Processes, Shandong Research Center for Coastal Environmental Engineering and Technology, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, 266071, China
| | - Jinhua Li
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Shandong Key Laboratory of Coastal Environmental Processes, Shandong Research Center for Coastal Environmental Engineering and Technology, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, 266071, China
| | - Bowei Li
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Shandong Key Laboratory of Coastal Environmental Processes, Shandong Research Center for Coastal Environmental Engineering and Technology, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, 266071, China
| | - Xiaoyan Wang
- School of Pharmacy, Binzhou Medical University, Yantai, 264003, China
| | - Lingxin Chen
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Shandong Key Laboratory of Coastal Environmental Processes, Shandong Research Center for Coastal Environmental Engineering and Technology, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, 266071, China
- Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology, Qingdao, 266237, China
- School of Environmental & Municipal Engineering, Qingdao University of Technology, Qingdao, 266033, China
| |
Collapse
|
23
|
Yin S, Niu L, Liu Y. Recent Progress on Techniques in the Detection of Aflatoxin B 1 in Edible Oil: A Mini Review. Molecules 2022; 27:6141. [PMID: 36234684 PMCID: PMC9573432 DOI: 10.3390/molecules27196141] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 09/12/2022] [Accepted: 09/15/2022] [Indexed: 11/16/2022] Open
Abstract
Contamination of agricultural products and foods by aflatoxin B1 (AFB1) is becoming a serious global problem, and the presence of AFB1 in edible oil is frequent and has become inevitable, especially in underdeveloped countries and regions. As AFB1 results from a possible degradation of aflatoxins and the interaction of the resulting toxic compound with food components, it could cause chronic disease or severe cancers, increasing morbidity and mortality. Therefore, rapid and reliable detection methods are essential for checking AFB1 occurrence in foodstuffs to ensure food safety. Recently, new biosensor technologies have become a research hotspot due to their characteristics of speed and accuracy. This review describes various technologies such as chromatographic and spectroscopic techniques, ELISA techniques, and biosensing techniques, along with their advantages and weaknesses, for AFB1 control in edible oil and provides new insight into AFB1 detection for future work. Although compared with other technologies, biosensor technology involves the cross integration of multiple technologies, such as spectral technology and new nano materials, and has great potential, some challenges regarding their stability, cost, etc., need further studies.
Collapse
Affiliation(s)
- Shipeng Yin
- School of Food Science and Technology, Jiangnan University, No. 1800 Lihu Road, Binhu District, Wuxi 214122, China
| | - Liqiong Niu
- School of Life Sciences, Guangzhou University, Guangzhou 510006, China
| | - Yuanfa Liu
- School of Food Science and Technology, Jiangnan University, No. 1800 Lihu Road, Binhu District, Wuxi 214122, China
| |
Collapse
|
24
|
Transcription Factor-Based Biosensors for Detecting Pathogens. BIOSENSORS 2022; 12:bios12070470. [PMID: 35884273 PMCID: PMC9312912 DOI: 10.3390/bios12070470] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 06/21/2022] [Accepted: 06/27/2022] [Indexed: 12/23/2022]
Abstract
Microorganisms are omnipresent and inseparable from our life. Many of them are beneficial to humans, while some are not. Importantly, foods and beverages are susceptible to microbial contamination, with their toxins causing illnesses and even death in some cases. Therefore, monitoring and detecting harmful microorganisms are critical to ensuring human health and safety. For several decades, many methods have been developed to detect and monitor microorganisms and their toxicants. Conventionally, nucleic acid analysis and antibody-based analysis were used to detect pathogens. Additionally, diverse chromatographic methods were employed to detect toxins based on their chemical and structural properties. However, conventional techniques have several disadvantages concerning analysis time, sensitivity, and expense. With the advances in biotechnology, new approaches to detect pathogens and toxins have been reported to compensate for the disadvantages of conventional analysis from different research fields, including electrochemistry, nanotechnology, and molecular biology. Among them, we focused on the recent studies of transcription factor (TF)-based biosensors to detect microorganisms and discuss their perspectives and applications. Additionally, the other biosensors for detecting microorganisms reported in recent studies were also introduced in this review.
Collapse
|
25
|
Label-Free Detection of Saxitoxin with Field-Effect Device-Based Biosensor. NANOMATERIALS 2022; 12:nano12091505. [PMID: 35564214 PMCID: PMC9102806 DOI: 10.3390/nano12091505] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Revised: 04/23/2022] [Accepted: 04/26/2022] [Indexed: 11/16/2022]
Abstract
Saxitoxin (STX) is a highly toxic and widely distributed paralytic shellfish toxin (PSP), posing a serious hazard to the environment and human health. Thus, it is highly required to develop new STX detection approaches that are convenient, desirable, and affordable. This study presented a label-free electrolyte-insulator-semiconductor (EIS) sensor covered with a layer-by-layer developed positively charged Poly (amidoamine) (PAMAM) dendrimer. An aptamer (Apt), which is sensitive to STX was electrostatically immobilized onto the PAMAM dendrimer layer. This results in an Apt that is preferably flat inside a Debye length, resulting in less charge-screening effect and a higher sensor signal. Capacitance-voltage and constant-capacitance measurements were utilized to monitor each step of a sensor surface variation, namely, the immobilization of PAMAM dendrimers, Apt, and STX. Additionally, the surface morphology of PAMAM dendrimer layers was studied by using atomic force microscopy and scanning electron microscopy. Fluorescence microscopy was utilized to confirm that Apt was successfully immobilized on a PAMAM dendrimer-modified EIS sensor. The results presented an aptasensor with a detection range of 0.5–100 nM for STX detection and a limit of detection was 0.09 nM. Additionally, the aptasensor demonstrated high selectivity and 9-day stability. The extraction of mussel tissue indicated that an aptasensor may be applied to the detection of STX in real samples. An aptasensor enables marine toxin detection in a rapid and label-free manner.
Collapse
|
26
|
Nan M, Xue H, Bi Y. Contamination, Detection and Control of Mycotoxins in Fruits and Vegetables. Toxins (Basel) 2022; 14:309. [PMID: 35622556 PMCID: PMC9143439 DOI: 10.3390/toxins14050309] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 04/18/2022] [Accepted: 04/24/2022] [Indexed: 01/09/2023] Open
Abstract
Mycotoxins are secondary metabolites produced by pathogenic fungi that colonize fruits and vegetables either during harvesting or during storage. Mycotoxin contamination in fruits and vegetables has been a major problem worldwide, which poses a serious threat to human and animal health through the food chain. This review systematically describes the major mycotoxigenic fungi and the produced mycotoxins in fruits and vegetables, analyzes recent mycotoxin detection technologies including chromatography coupled with detector (i.e., mass, ultraviolet, fluorescence, etc.) technology, electrochemical biosensors technology and immunological techniques, as well as summarizes the degradation and detoxification technologies of mycotoxins in fruits and vegetables, including physical, chemical and biological methods. The future prospect is also proposed to provide an overview and suggestions for future mycotoxin research directions.
Collapse
Affiliation(s)
- Mina Nan
- College of Science, Gansu Agricultural University, Lanzhou 730070, China;
- Basic Experiment Teaching Center, Gansu Agricultural University, Lanzhou 730070, China
| | - Huali Xue
- College of Science, Gansu Agricultural University, Lanzhou 730070, China;
| | - Yang Bi
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, China
| |
Collapse
|
27
|
Mayoral-Peña K, González Peña OI, Orrantia Clark AM, Flores-Vallejo RDC, Oza G, Sharma A, De Donato M. Biorecognition Engineering Technologies for Cancer Diagnosis: A Systematic Literature Review of Non-Conventional and Plausible Sensor Development Methods. Cancers (Basel) 2022; 14:1867. [PMID: 35454775 PMCID: PMC9030888 DOI: 10.3390/cancers14081867] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 03/14/2022] [Accepted: 03/22/2022] [Indexed: 12/21/2022] Open
Abstract
Cancer is the second cause of mortality worldwide. Early diagnosis of this multifactorial disease is challenging, especially in populations with limited access to healthcare services. A vast repertoire of cancer biomarkers has been studied to facilitate early diagnosis; particularly, the use of antibodies against these biomarkers has been of interest to detect them through biorecognition. However, there are certain limitations to this approach. Emerging biorecognition engineering technologies are alternative methods to generate molecules and molecule-based scaffolds with similar properties to those presented by antibodies. Molecularly imprinted polymers, recombinant antibodies, and antibody mimetic molecules are three novel technologies commonly used in scientific studies. This review aimed to present the fundamentals of these technologies and address questions about how they are implemented for cancer detection in recent scientific studies. A systematic analysis of the scientific peer-reviewed literature regarding the use of these technologies on cancer detection was carried out starting from the year 2000 up to 2021 to answer these questions. In total, 131 scientific articles indexed in the Web of Science from the last three years were included in this analysis. The results showed that antibody mimetic molecules technology was the biorecognition technology with the highest number of reports. The most studied cancer types were: multiple, breast, leukemia, colorectal, and lung. Electrochemical and optical detection methods were the most frequently used. Finally, the most analyzed biomarkers and cancer entities in the studies were carcinoembryonic antigen, MCF-7 cells, and exosomes. These technologies are emerging tools with adequate performance for developing biosensors useful in cancer detection, which can be used to improve cancer diagnosis in developing countries.
Collapse
Affiliation(s)
- Kalaumari Mayoral-Peña
- School of Engineering and Sciences, Campus Queretaro, Tecnologico de Monterrey, Av. Epigmenio González No. 500, San Pablo, Queretaro 76130, Mexico; (K.M.-P.); (A.S.)
| | - Omar Israel González Peña
- School of Engineering and Sciences, Campus Monterrey, Tecnologico de Monterrey, Av. Eugenio Garza Sada Sur No. 2501, Tecnológico, Monterrey 64849, Mexico
- Institute for the Future of Education, Tecnologico de Monterrey, Av. Eugenio Garza Sada Sur No. 2501, Tecnológico, Monterrey 64849, Mexico
| | - Alexia María Orrantia Clark
- School of Engineering and Sciences, Campus Mexico City, Tecnologico de Monterrey, C. Puente 222, Ejidos de Huipulco, Tlalpan, Mexico City 14380, Mexico;
| | - Rosario del Carmen Flores-Vallejo
- Department of Biomedical Engineering and Mechatronics, Campus Toluca, Universidad del Valle de México (UVM), C. De Las Palmas Poniente 439, San Jorge Pueblo Nuevo, Metepec 52164, Mexico;
| | - Goldie Oza
- Laboratorio Nacional de Micro y Nanofluídica (LABMyN), Centro de Investigación y Desarrollo Tecnológico en Electroquímica (CIDETEQ), Parque San Fandila, Pedro Escobedo, Queretaro 76703, Mexico;
| | - Ashutosh Sharma
- School of Engineering and Sciences, Campus Queretaro, Tecnologico de Monterrey, Av. Epigmenio González No. 500, San Pablo, Queretaro 76130, Mexico; (K.M.-P.); (A.S.)
| | - Marcos De Donato
- School of Engineering and Sciences, Campus Queretaro, Tecnologico de Monterrey, Av. Epigmenio González No. 500, San Pablo, Queretaro 76130, Mexico; (K.M.-P.); (A.S.)
| |
Collapse
|
28
|
Liu Y, Li B, Zhang H, Liu Y, Xie P. Participation of fluorescence technology in the cross-disciplinary detection of microcystins. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2022.214416] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
29
|
Nelis JLD, Bose U, Broadbent JA, Hughes J, Sikes A, Anderson A, Caron K, Schmoelzl S, Colgrave ML. Biomarkers and biosensors for the diagnosis of noncompliant pH, dark cutting beef predisposition, and welfare in cattle. Compr Rev Food Sci Food Saf 2022; 21:2391-2432. [DOI: 10.1111/1541-4337.12935] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 02/02/2022] [Accepted: 02/09/2022] [Indexed: 11/29/2022]
Affiliation(s)
| | - Utpal Bose
- CSIRO Agriculture and Food St Lucia Australia
| | | | | | - Anita Sikes
- CSIRO Agriculture and Food Coopers Plains Australia
| | | | | | | | | |
Collapse
|
30
|
Sim D, Brothers MC, Slocik JM, Islam AE, Maruyama B, Grigsby CC, Naik RR, Kim SS. Biomarkers and Detection Platforms for Human Health and Performance Monitoring: A Review. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2104426. [PMID: 35023321 PMCID: PMC8895156 DOI: 10.1002/advs.202104426] [Citation(s) in RCA: 37] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 11/19/2021] [Indexed: 05/04/2023]
Abstract
Human health and performance monitoring (HHPM) is imperative to provide information necessary for protecting, sustaining, evaluating, and improving personnel in various occupational sectors, such as industry, academy, sports, recreation, and military. While various commercially wearable sensors are on the market with their capability of "quantitative assessments" on human health, physical, and psychological states, their sensing is mostly based on physical traits, and thus lacks precision in HHPM. Minimally or noninvasive biomarkers detectable from the human body, such as body fluid (e.g., sweat, tear, urine, and interstitial fluid), exhaled breath, and skin surface, can provide abundant additional information to the HHPM. Detecting these biomarkers with novel or existing sensor technologies is emerging as critical human monitoring research. This review provides a broad perspective on the state of the art biosensor technologies for HHPM, including the list of biomarkers and their physiochemical/physical characteristics, fundamental sensing principles, and high-performance sensing transducers. Further, this paper expands to the additional scope on the key technical challenges in applying the current HHPM system to the real field.
Collapse
Affiliation(s)
- Daniel Sim
- Air Force Research Laboratory711th Human Performance WingWright‐Patterson Air Force BaseOH 45433USA
- Research Associateship Program (RAP)the National Academies of Sciences, Engineering and MedicineWashingtonDC20001USA
- Integrative Health & Performance Sciences DivisionUES Inc.DaytonOH45432USA
| | - Michael C. Brothers
- Air Force Research Laboratory711th Human Performance WingWright‐Patterson Air Force BaseOH 45433USA
- Integrative Health & Performance Sciences DivisionUES Inc.DaytonOH45432USA
| | - Joseph M. Slocik
- Air Force Research LaboratoryMaterials and Manufacturing DirectorateWright‐Patterson Air Force BaseOH 45433USA
| | - Ahmad E. Islam
- Air Force Research LaboratorySensors DirectorateWright‐Patterson Air Force BaseOH 45433USA
| | - Benji Maruyama
- Air Force Research LaboratoryMaterials and Manufacturing DirectorateWright‐Patterson Air Force BaseOH 45433USA
| | - Claude C. Grigsby
- Air Force Research Laboratory711th Human Performance WingWright‐Patterson Air Force BaseOH 45433USA
| | - Rajesh R. Naik
- Air Force Research Laboratory711th Human Performance WingWright‐Patterson Air Force BaseOH 45433USA
| | - Steve S. Kim
- Air Force Research Laboratory711th Human Performance WingWright‐Patterson Air Force BaseOH 45433USA
| |
Collapse
|
31
|
Islam MA, Karim A, Ethiraj B, Raihan T, Kadier A. Antimicrobial peptides: Promising alternatives over conventional capture ligands for biosensor-based detection of pathogenic bacteria. Biotechnol Adv 2022; 55:107901. [PMID: 34974156 DOI: 10.1016/j.biotechadv.2021.107901] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 11/19/2021] [Accepted: 12/25/2021] [Indexed: 02/07/2023]
Abstract
The detection of pathogenic bacteria using biosensing techniques could be a potential alternative to traditional culture based methods. However, the low specificity and sensitivity of conventional biosensors, critically related to the choice of bio-recognition elements, limit their practical applicability. Mammalian antibodies have been widely investigated as biorecognition ligands due to high specificity and technological advancement in antibody production. However, antibody-based biosensors are not considered as an efficient approach due to the batch-to-batch inconsistencies as well as low stability. In recent years, antimicrobial peptides (AMPs) have been increasingly investigated as ligands as they have demonstrated high stability and possessed multiple sites for capturing bacteria. The conjugation of chemo-selective groups with AMPs has allowed effective immobilization of peptides on biosensor surface. However, the specificity of AMPs is a major concern for consideration as an efficient ligand. In this article, we have reviewed the advances and concerns, particularly the selectivity of AMPs for specific detection of pathogenic bacteria. This review also focuses the state-of-the-art mechanisms, challenges and prospects for designing potential AMP conjugated biosensors. The application of AMP in different biosensing transducers such as electrochemical, optical and piezoelectric varieties has been widely discussed. We argue that this review would provide insights to design and construct AMP conjugated biosensors for the pathogenic bacteria detection.
Collapse
Affiliation(s)
- M Amirul Islam
- Interdisciplinary Institute for Technological Innovation (3IT), CNRS UMI-3463, Laboratory for Quantum Semiconductors and Photon-based BioNanotechnology, Department of Electrical and Computer Engineering, Université de Sherbrooke, 3000, boul. de l'Université, Sherbrooke, Québec J1K 0A5, Canada.
| | - Ahasanul Karim
- Department of Soil Sciences and Agri-Food Engineering, Université Laval, Quebec, QC G1V 0A6, Canada
| | - Baranitharan Ethiraj
- Department of Biotechnology, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences (SIMATS), Chennai, India
| | - Topu Raihan
- Deapartment of Genetic Engineering and Biotechnology, Shahjalal, University of Science and Technology, Sylhet 3114, Bangladesh
| | - Abudukeremu Kadier
- Laboratory of Environmental Science and Technology, The Xinjiang Technical Institute of Physics and Chemistry, Key Laboratory of Functional Materials and Devices for Special Environments, Chinese Academy of Sciences, Urumqi 830011, China
| |
Collapse
|
32
|
Ye J, Guo J, Li T, Tian J, Yu M, Wang X, Majeed U, Song W, Xiao J, Luo Y, Yue T. Phage-based technologies for highly sensitive luminescent detection of foodborne pathogens and microbial toxins: A review. Compr Rev Food Sci Food Saf 2022; 21:1843-1867. [PMID: 35142431 DOI: 10.1111/1541-4337.12908] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 12/25/2021] [Accepted: 12/28/2021] [Indexed: 02/05/2023]
Abstract
Foodborne pathogens and microbial toxins are the main causes of foodborne illness. However, trace pathogens and toxins in foods are difficult to detect. Thus, techniques for their rapid and sensitive identification and quantification are urgently needed. Phages can specifically recognize and adhere to certain species of microbes or toxins due to molecular complementation between capsid proteins of phages and receptors on the host cell wall or toxins, and thus they have been successfully developed into a detection platform for pathogens and toxins. This review presents an update on phage-based luminescent detection technologies as well as their working principles and characteristics. Based on phage display techniques of temperate phages, reporter gene detection assays have been designed to sensitively detect trace pathogens by luminous intensity. By the host-specific lytic effects of virulent phages, enzyme-catalyzed chemiluminescent detection technologies for pathogens have been exploited. Notably, these phage-based luminescent detection technologies can discriminate viable versus dead microbes. Further, highly selective and sensitive immune-based assays have been developed to detect trace toxins qualitatively and quantitatively via antibody analogs displayed by phages, such as phage-ELISA (enzyme-linked immunosorbent assay) and phage-IPCR (immuno-polymerase chain reaction). This literature research may lead to novel and innocuous phage-based rapid detection technologies to ensure food safety.
Collapse
Affiliation(s)
- Jianming Ye
- College of Food Science and Technology, Northwest University, Xi'an, Shaanxi, China
| | - Jiaqing Guo
- College of Food Science and Technology, Northwest University, Xi'an, Shaanxi, China
| | - Tairan Li
- College of Food Science and Technology, Northwest University, Xi'an, Shaanxi, China
| | - Jiaxin Tian
- College of Food Science and Technology, Northwest University, Xi'an, Shaanxi, China
| | - Mengxi Yu
- College of Food Science and Technology, Northwest University, Xi'an, Shaanxi, China
| | - Xiaochen Wang
- College of Food Science and Technology, Northwest University, Xi'an, Shaanxi, China
| | - Usman Majeed
- College of Food Science and Technology, Northwest University, Xi'an, Shaanxi, China
| | - Wei Song
- College of Food Science and Technology, Northwest University, Xi'an, Shaanxi, China
| | - Jianbo Xiao
- Department of Analytical Chemistry and Food Science, Faculty of Food Science and Technology, University of Vigo-Ourense Campus, Ourense, Spain
| | - Yane Luo
- College of Food Science and Technology, Northwest University, Xi'an, Shaanxi, China.,Laboratory of Nutritional and Healthy Food-Individuation Manufacturing Engineering, Xi'an, Shaanxi, China.,Research Center of Food Safety Risk Assessment and Control, Xi'an, Shaanxi, China
| | - Tianli Yue
- College of Food Science and Technology, Northwest University, Xi'an, Shaanxi, China.,Laboratory of Nutritional and Healthy Food-Individuation Manufacturing Engineering, Xi'an, Shaanxi, China.,Research Center of Food Safety Risk Assessment and Control, Xi'an, Shaanxi, China
| |
Collapse
|
33
|
Peltomaa R, Barderas R, Benito-Peña E, Moreno-Bondi MC. Recombinant antibodies and their use for food immunoanalysis. Anal Bioanal Chem 2022; 414:193-217. [PMID: 34417836 PMCID: PMC8380008 DOI: 10.1007/s00216-021-03619-7] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 08/04/2021] [Accepted: 08/12/2021] [Indexed: 12/26/2022]
Abstract
Antibodies are widely employed as biorecognition elements for the detection of a plethora of compounds including food and environmental contaminants, biomarkers, or illicit drugs. They are also applied in therapeutics for the treatment of several disorders. Recent recommendations from the EU on animal protection and the replacement of animal-derived antibodies by non-animal-derived ones have raised a great controversy in the scientific community. The application of recombinant antibodies is expected to achieve a high growth rate in the years to come thanks to their versatility and beneficial characteristics in comparison to monoclonal and polyclonal antibodies, such as stability in harsh conditions, small size, relatively low production costs, and batch-to-batch reproducibility. This review describes the characteristics, advantages, and disadvantages of recombinant antibodies including antigen-binding fragments (Fab), single-chain fragment variable (scFv), and single-domain antibodies (VHH) and their application in food analysis with especial emphasis on the analysis of biotoxins, antibiotics, pesticides, and foodborne pathogens. Although the wide application of recombinant antibodies has been hampered by a number of challenges, this review demonstrates their potential for the sensitive, selective, and rapid detection of food contaminants.
Collapse
Affiliation(s)
- Riikka Peltomaa
- Department of Life Sciences, University of Turku, 20014, Turku, Finland
- Turku Collegium for Science and Medicine, University of Turku, 20014, Turku, Finland
| | - Rodrigo Barderas
- Chronic Disease Programme, UFIEC, Instituto de Salud Carlos III, 28220, Madrid, Spain
| | - Elena Benito-Peña
- Department of Analytical Chemistry, Universidad Complutense de Madrid, 28040, Madrid, Spain.
| | - María C Moreno-Bondi
- Department of Analytical Chemistry, Universidad Complutense de Madrid, 28040, Madrid, Spain.
| |
Collapse
|
34
|
|
35
|
Serrano PC, Nunes GE, Avila LB, Reis CPS, Gomes AMC, Reis FT, Sartorelli ML, Melegari SP, Matias WG, Bechtold IH. Electrochemical impedance biosensor for detection of saxitoxin in aqueous solution. Anal Bioanal Chem 2021; 413:6393-6399. [PMID: 34389880 DOI: 10.1007/s00216-021-03603-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 07/26/2021] [Accepted: 08/05/2021] [Indexed: 10/20/2022]
Abstract
Saxitoxin is a cyanotoxin which is very harmful to human health; the concentration limit in drinking water is only 3 μg/L. Therefore, a simple, fast, sensitive, low-cost, and specific method for its detection, quantification, and monitoring in water bodies is needed to avoid adverse effects on animal and human health. In this work, we developed an electrochemical impedimetric biosensor using a specific aptamer as recognition element for saxitoxin detection. This method allies the superior sensing characteristics of aptamers with the nondestructive, label-free, and easy working principles of the electrochemical impedance technique. The device presented sensitivity for detecting saxitoxin concentrations above 0.3 μg/L, with high selectivity in negative control experiments, demonstrating a promising alternative for water toxin detection.
Collapse
Affiliation(s)
- Pablo C Serrano
- Departamento de Física, Universidade Federal de Santa Catarina, Florianópolis, SC, 88040-900, Brazil
| | - Gisele E Nunes
- Departamento de Física, Universidade Federal de Santa Catarina, Florianópolis, SC, 88040-900, Brazil
| | - Lindiomar B Avila
- Departamento de Física, Universidade Federal de Santa Catarina, Florianópolis, SC, 88040-900, Brazil
| | - Carleane P S Reis
- Departamento de Física, Universidade Federal de Santa Catarina, Florianópolis, SC, 88040-900, Brazil
| | - Aldo M C Gomes
- Departamento de Física, Universidade Federal de Santa Catarina, Florianópolis, SC, 88040-900, Brazil
| | - Françoise T Reis
- Departamento de Física, Universidade Federal de Santa Catarina, Florianópolis, SC, 88040-900, Brazil
| | - Maria L Sartorelli
- Departamento de Física, Universidade Federal de Santa Catarina, Florianópolis, SC, 88040-900, Brazil
| | - Silvia Pedroso Melegari
- Centro de Estudos do Mar, Universidade Federal do Paraná, Pontal do Paraná, PR, 83255-976, Brazil
| | - William G Matias
- Departamento de Engenharia Sanitária e Ambiental, Universidade Federal de Santa Catarina, Florianópolis, SC, 88040-900, Brazil
| | - Ivan H Bechtold
- Departamento de Física, Universidade Federal de Santa Catarina, Florianópolis, SC, 88040-900, Brazil.
| |
Collapse
|
36
|
Cai C, Zhang Q, Nidiaye S, Yan H, Zhang W, Tang X, Li P. Development of a specific anti-idiotypic nanobody for monitoring aflatoxin M1 in milk and dairy products. Microchem J 2021. [DOI: 10.1016/j.microc.2021.106326] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
37
|
Moreno-Bondi MC, Benito-Peña E. Analytical applications of biomimetic recognition elements - an update. Anal Bioanal Chem 2021; 413:6059-6061. [PMID: 34302184 DOI: 10.1007/s00216-021-03534-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Accepted: 07/07/2021] [Indexed: 10/20/2022]
Affiliation(s)
- Maria C Moreno-Bondi
- Department of Analytical Chemistry, Universidad Complutense de Madrid, Madrid, Spain.
| | - Elena Benito-Peña
- Department of Analytical Chemistry, Universidad Complutense de Madrid, Madrid, Spain.
| |
Collapse
|
38
|
Mikuła E. Recent Advancements in Electrochemical Biosensors for Alzheimer's Disease Biomarkers Detection. Curr Med Chem 2021; 28:4049-4073. [PMID: 33176635 PMCID: PMC8287894 DOI: 10.2174/0929867327666201111141341] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 09/28/2020] [Accepted: 10/07/2020] [Indexed: 02/06/2023]
Abstract
Background It is estimated that the average time between the diagnosis of Alzheimer’s disease (AD) and the patient’s death is 5-9 years. Therefore, both the initial phase of the disease and the preclinical state can be included in the critical period in disease diagnosis. Accordingly, huge progress has recently been observed in biomarker research to identify risk factors for dementia in older people with normal cognitive functions and mild cognitive impairments. Methods Electrochemical biosensors are excellent analytical tools that are used in the detection of AD biomarkers as they are easy to use, portable, and can do analysis in real time. Results This review presents the analytical techniques currently used to determine AD biomarkers in terms of their advantages and disadvantages; the most important clinical biomarkers of AD and their role in the disease. All recently used biorecognition molecules in electrochemical biosensor development, i.e., receptor protein, antibodies, aptamers and nucleic acids, are summarized for the first time. Novel electrochemical biosensors for AD biomarker detection, as ideal analytical platforms for point-of-care diagnostics, are also reviewed. Conclusion The article focuses on various strategies of biosensor chemical surface modifications to immobilize biorecognition molecules, enabling specific, quantitative AD biomarker detection in synthetic and clinical samples. In addition, this is the first review that presents innovative single-platform systems for simultaneous detection of multiple biomarkers and other important AD-associated biological species based on electrochemical techniques. The importance of these platforms in disease diagnosis is discussed.
Collapse
Affiliation(s)
- Edyta Mikuła
- Department of Biosensors, Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Tuwima 10, 10-748 Olsztyn, Poland
| |
Collapse
|
39
|
Rajpal S, Bhakta S, Mishra P. Biomarker imprinted magnetic core-shell nanoparticles for rapid, culture free detection of pathogenic bacteria. J Mater Chem B 2021; 9:2436-2446. [PMID: 33625438 DOI: 10.1039/d0tb02842h] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Rapid and selective detection of microorganisms in complex biological systems draws huge attention to address the rising issue of antimicrobial resistance. Diagnostics based on the identification of whole microorganisms are laborious, time-consuming and costly, thus alternative strategies for early clinical diagnosis include biomarker based microbial detection. This paper describes a low-cost, easy-to-use method for the detection of Pseudomonas aeruginosa infections by specifically identifying a biomarker pyocyanin, using surface-molecularly imprinted nanoparticles or "plastibodies". The selective nanopockets are created by templating pyocyanin onto 20 nm allyl-functionalized magnetic nanoparticles coated with a thin layer of the acrylamide-based polymer. This functional material with an impressive imprinting factor (IF) of 5 and a binding capacity of ∼2.5 mg g-1 of polymers can be directly applied for the detection of bacteria in complex biological samples based on the presence of pyocyanin. These MIPs are highly selective and sensitive to pyocyanin and can consistently bind with pyocyanin in repeated use. Finally, the facile and efficient capture of pyocyanin has versatile applications ranging from biomarker based culture free detection of P. aeruginosa to monitoring of the therapeutic regime, in addition to developing a new class of antibiotics.
Collapse
Affiliation(s)
- Soumya Rajpal
- Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology Delhi, New Delhi 110016, India.
| | - Snehasis Bhakta
- Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology Delhi, New Delhi 110016, India. and Department of Chemistry, Cooch Behar College, West Bengal 736101, India and Nanoscale Research Facilities, Indian Institute of Technology Delhi, New Delhi 110016, India
| | - Prashant Mishra
- Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology Delhi, New Delhi 110016, India.
| |
Collapse
|
40
|
Wang C, Yang J, Qin J, Yang Y. Eco-Friendly Nanoplatforms for Crop Quality Control, Protection, and Nutrition. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:2004525. [PMID: 33977068 PMCID: PMC8097385 DOI: 10.1002/advs.202004525] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 12/31/2020] [Indexed: 05/27/2023]
Abstract
Agricultural chemicals have been widely utilized to manage pests, weeds, and plant pathogens for maximizing crop yields. However, the excessive use of these organic substances to compensate their instability in the environment has caused severe environmental consequences, threatened human health, and consumed enormous economic costs. In order to improve the utilization efficiency of these agricultural chemicals, one strategy that attracted researchers is to design novel eco-friendly nanoplatforms. To date, numerous advanced nanoplatforms with functional components have been applied in the agricultural field, such as silica-based materials for pesticides delivery, metal/metal oxide nanoparticles for pesticides/mycotoxins detection, and carbon nanoparticles for fertilizers delivery. In this review, the synthesis, applications, and mechanisms of recent eco-friendly nanoplatforms in the agricultural field, including pesticides and mycotoxins on-site detection, phytopathogen inactivation, pest control, and crops growth regulation for guaranteeing food security, enhancing the utilization efficiency of agricultural chemicals and increasing crop yields are highlighted. The review also stimulates new thinking for improving the existing agricultural technologies, protecting crops from biotic and abiotic stress, alleviating the global food crisis, and ensuring food security. In addition, the challenges to overcome the constrained applications of functional nanoplatforms in the agricultural field are also discussed.
Collapse
Affiliation(s)
- Chao‐Yi Wang
- College of Chemistry and College of Plant ScienceJilin UniversityChangchun130012P. R. China
| | - Jie Yang
- College of Chemistry and College of Plant ScienceJilin UniversityChangchun130012P. R. China
| | - Jian‐Chun Qin
- College of Chemistry and College of Plant ScienceJilin UniversityChangchun130012P. R. China
| | - Ying‐Wei Yang
- College of Chemistry and College of Plant ScienceJilin UniversityChangchun130012P. R. China
| |
Collapse
|
41
|
Recent developments in non-enzymatic (bio)sensors for detection of pesticide residues: Focusing on antibody, aptamer and molecularly imprinted polymer. Talanta 2021; 232:122397. [PMID: 34074393 DOI: 10.1016/j.talanta.2021.122397] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Revised: 04/01/2021] [Accepted: 04/02/2021] [Indexed: 12/13/2022]
Abstract
The utilization of pesticides has been increased in recent years due to population growth and increasing urbanization. The constant use of pesticides has resulted in contamination of the environment and agricultural products with serious human health concerns associated with their use. Therefore, detection and quantification of pesticides by sensitive and selective methods is highly required in food safety management. Traditional detection methods cannot realize highly sensitive, selective and on-site detection, which limits their application. (Bio)sensors and (bio)assays are emerging tools with unique properties such as rapid, sensitive, efficient and portable detection. Among them, enzyme-based biosensors have been widely developed and some have even been commercialized. However, they suffer from some limitations such as instability and low reproducibility that originate from the nature of enzyme. Non-enzymatic (bio)sensors overcome the current limitations of enzyme-based detection methods and provide great potential for efficient, highly sensitive and low-cost detection assays using smart and miniaturized devices. In this study, we provide an overview of recent advances and new trends in optical and electrochemical non-enzymatic (bio)sensors for the detection of pesticides by focusing on antibody, aptamer and molecularly imprinted polymer (MIP) as recognition elements. Performance, advantages and drawbacks of the developed (bio)sensors are discussed well. The main advantage these recognition elements is their stability over an extended period of time compared to the enzymes. Furthermore, the combination of nanomaterials in these (bio)sensors can significantly improve their performance.
Collapse
|
42
|
Yadav N, Yadav SS, Chhillar AK, Rana JS. An overview of nanomaterial based biosensors for detection of Aflatoxin B1 toxicity in foods. Food Chem Toxicol 2021; 152:112201. [PMID: 33862122 DOI: 10.1016/j.fct.2021.112201] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 03/02/2021] [Accepted: 04/08/2021] [Indexed: 02/08/2023]
Abstract
Aflatoxin B1 (AFB1) is one of the most potent mycotoxin contaminating several foods and feeds. It suppresses immunity and consequently increases mutagenicity, carcinogenicity, teratogenicity, hepatotoxicity, embryonic toxicity and increasing morbidity and mortality. Continuous exposure of AFB1 causes liver damage and thus increases the prevalence of cirrhosis and hepatic cancer. This article was planned to provide understanding of AFB1 toxicity and provides future directions for fabrication of cost effective and user-friendly nanomaterials based analytical devices. In the present article various conventional (chromatographic & spectroscopic), modern (PCR & immunoassays) and nanomaterials based biosensing techniques (electrochemical, optical, piezoelectrical and microfluidic) are discussed alongwith their merits and demerits. Nanomaterials based amperometric biosensors are found to be more stable, selective and cost-effective analytical devices in comparison to other biosensors. But many unresolved issues about their stability, toxicity and metabolic fate needs further studies. In-depth studies are needed for development of advanced nanomaterials integrated biosensors for specific, sensitive and fast monitoring of AFB1 toxicity in foods. Integration of biosensing system with micro array technology for simultaneous and automated detection of multiple AFs in real samples is also needed. Concerted efforts are also required to reduce their possible hazardous consequences of nanomaterials based biosensors.
Collapse
Affiliation(s)
- Neelam Yadav
- Department of Biotechnology, Deenbandhu Chhotu Ram University of Science and Technology, Murthal, Sonepat, Haryana, 131039, India; Centre for Biotechnology, Maharshi Dayanand University, Rohtak, Haryana, 124001, India
| | - Surender Singh Yadav
- Deparment of Botany, MaharshiDayanand University, Rohtak, Haryana, 124001, India.
| | - Anil Kumar Chhillar
- Centre for Biotechnology, Maharshi Dayanand University, Rohtak, Haryana, 124001, India
| | - Jogender Singh Rana
- Department of Biotechnology, Deenbandhu Chhotu Ram University of Science and Technology, Murthal, Sonepat, Haryana, 131039, India.
| |
Collapse
|
43
|
|
44
|
|
45
|
Nagraik R, Sharma A, Kumar D, Mukherjee S, Sen F, Kumar AP. Amalgamation of biosensors and nanotechnology in disease diagnosis: Mini-review. SENSORS INTERNATIONAL 2021. [DOI: 10.1016/j.sintl.2021.100089] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
46
|
Faradaic electrochemical impedance spectroscopy for enhanced analyte detection in diagnostics. Biosens Bioelectron 2020; 177:112949. [PMID: 33429205 DOI: 10.1016/j.bios.2020.112949] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Revised: 12/13/2020] [Accepted: 12/24/2020] [Indexed: 02/07/2023]
Abstract
Electrochemical impedance spectroscopy (EIS) is a widely implementable technique that can be applied to many fields, ranging from disease detection to environmental monitoring. EIS as a biosensing tool allows detection of a broad range of target analytes in point-of-care (POC) and continuous applications. The technique is highly suitable for multimarker detection due to its ability to produce specific frequency responses depending on the target analyte and molecular recognition element (MRE) combination. EIS biosensor development has shown promising results for the medical industry in terms of diagnosis and prognosis for various biomarkers. EIS sensors offer a cost-efficient system and rapid detection times using minimal amounts of sample volumes, while simultaneously not disturbing the sample being studied due to low amplitude perturbations. These properties make the technique highly sensitive and specific. This paper presents a review of EIS biosensing advancements and introduces different detection techniques and MREs. Additionally, EIS's underlying theory and potential surface modification techniques are presented to further demonstrate the technique's ability to produce stable, specific, and sensitive biosensors.
Collapse
|
47
|
Majdinasab M, Ben Aissa S, Marty JL. Advances in Colorimetric Strategies for Mycotoxins Detection: Toward Rapid Industrial Monitoring. Toxins (Basel) 2020; 13:13. [PMID: 33374434 PMCID: PMC7823678 DOI: 10.3390/toxins13010013] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 12/14/2020] [Accepted: 12/22/2020] [Indexed: 02/07/2023] Open
Abstract
Mycotoxins contamination is a global public health concern. Therefore, highly sensitive and selective techniques are needed for their on-site monitoring. Several approaches are conceivable for mycotoxins analysis, among which colorimetric methods are the most attractive for commercialization purposes thanks to their visual read-out, easy operation, cost-effectiveness, and rapid response. This review covers the latest achievements in the last five years for the development of colorimetric methods specific to mycotoxins analysis, with a particular emphasis on their potential for large-scale applications in food industries. Gathering all types of (bio)receptors, main colorimetric methods are critically discussed, including enzyme-linked assays, lateral flow-assays, microfluidic devices, and homogenous in-solution strategies. This special focus on colorimetry as a versatile transduction method for mycotoxins analysis is comprehensively reviewed for the first time.
Collapse
Affiliation(s)
- Marjan Majdinasab
- Department of Food Science & Technology, School of Agriculture, Shiraz University, Shiraz 71441-65186, Iran;
| | - Sondes Ben Aissa
- BAE-LBBM Laboratory, University of Perpignan via Domitia, 52 Avenue Paul Alduy, CEDEX 9, 66860 Perpignan, France;
| | - Jean Louis Marty
- BAE-LBBM Laboratory, University of Perpignan via Domitia, 52 Avenue Paul Alduy, CEDEX 9, 66860 Perpignan, France;
| |
Collapse
|
48
|
|
49
|
Demeke Teklemariam A, Samaddar M, Alharbi MG, Al-Hindi RR, Bhunia AK. Biosensor and molecular-based methods for the detection of human coronaviruses: A review. Mol Cell Probes 2020; 54:101662. [PMID: 32911064 PMCID: PMC7477626 DOI: 10.1016/j.mcp.2020.101662] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 09/02/2020] [Accepted: 09/02/2020] [Indexed: 12/28/2022]
Abstract
The ongoing crisis due to the global pandemic caused by a highly contagious coronavirus (Coronavirus disease - 2019; COVID-19) and the lack of either proven effective therapy or a vaccine has made diagnostic a valuable tool in disease tracking and prevention. The complex nature of this newly emerging virus calls for scientists' attention to find the most reliable, highly sensitive, and selective detection techniques for better control or spread of the disease. Reverse transcriptase-polymerase chain reaction (RT-PCR) and serology-based tests are currently being used. However, the speed and accuracy of these tests may not meet the current demand; thus, alternative technology platforms are being developed. Nano biosensor technology platforms have been established as a promising diagnostic tool for rapid and accurate detection of viruses as well as other life-threatening diseases even in resource-limited settings. This review aims to provide a short overview of recent advancements in molecular and biosensor-based diagnosis of viruses, including the human coronaviruses, and highlight the challenges and future perspectives of these detection technologies.
Collapse
Affiliation(s)
- Addisu Demeke Teklemariam
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Manalee Samaddar
- Department of Food Science, Purdue University, West Lafayette, 47907, IN, USA; Purdue Institute of Inflammation, Immunology and Infectious Disease, Purdue University, West Lafayette, 47907, IN, USA
| | - Mona G Alharbi
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Rashad R Al-Hindi
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Arun K Bhunia
- Department of Food Science, Purdue University, West Lafayette, 47907, IN, USA; Department of Comparative Pathobiology, Purdue University, West Lafayette, 47907, IN, USA; Purdue Institute of Inflammation, Immunology and Infectious Disease, Purdue University, West Lafayette, 47907, IN, USA.
| |
Collapse
|
50
|
Rodriguez-Salazar L, Guevara-Pulido J, Cifuentes A. In Silico Design of a Peptide Receptor for Dopamine Recognition. Molecules 2020; 25:E5509. [PMID: 33255517 PMCID: PMC7727804 DOI: 10.3390/molecules25235509] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 10/03/2020] [Accepted: 10/08/2020] [Indexed: 12/24/2022] Open
Abstract
Dopamine (DA) is an important neurotransmitter with a fundamental role in regulatory functions related to the central, peripheral, renal, and hormonal nervous systems. Dopaminergic neurotransmission dysfunctions are commonly associated with several diseases; thus, in situ quantification of DA is a major challenge. To achieve this goal, enzyme-based biosensors have been employed for substrate recognition in the past. However, due to their sensitivity to changes in temperature and pH levels, new peptide bioreceptors have been developed. Therefore, in this study, four bioreceptors were designed in silico to exhibit a higher affinity for DA than the DA transporters (DATs). The design was based on the hot spots of the active sites of crystallized enzyme structures that are physiologically related to DA. The affinities between the chosen targets and designed bioreceptors were calculated using AutoDock Vina. Additionally, the binding free energy, ∆G, of the dopamine-4xp1 complex was calculated by molecular dynamics (MD). This value presented a direct relationship with the E_refine value obtained from molecular docking based on the ∆G functions obtained from MOE of the promising bioreceptors. The control variables in the design were amino acids, bond type, steric volume, stereochemistry, affinity, and interaction distances. As part of the results, three out of the four bioreceptor candidates presented promising values in terms of DA affinity and distance.
Collapse
Affiliation(s)
| | - James Guevara-Pulido
- Química Farmacéutica, Facultad de Ciencias, Universidad El Bosque, Bogotá 110121, Colombia;
| | - Andrés Cifuentes
- Química Farmacéutica, Facultad de Ciencias, Universidad El Bosque, Bogotá 110121, Colombia;
| |
Collapse
|