1
|
Li T, Liu Y, Zhao F, Zeng B. Preparation of ratiometric electrochemical sensor based on molecular imprinting copolymer and β-cyclodextrin recognition for the reliable detection of dinotefuran. Food Chem 2025; 466:142237. [PMID: 39612854 DOI: 10.1016/j.foodchem.2024.142237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Revised: 11/20/2024] [Accepted: 11/22/2024] [Indexed: 12/01/2024]
Abstract
Dinotefuran (DNF) residue in foods is harmful to human health, hence, it is significant to detect it. Herein, a composite of β-cyclodextrin/activated mung bean-derived carbon (β-CD/AMBC-3) was prepared and used to modify GCE. Then a DNF imprinted copolymer (MIP) film of thionine and catechol was electrodeposited. The AMBC-3 had plentiful pores, excellent conductivity, and high catalytic activity, beneficial for β-CD immobilization and signal amplification; the MIP and β-CD could cooperate to improve recognition capability. In addition, the poly(thionine) could act as an internal-reference probe for ratiometric detection, calibrating the effects of condition fluctuation during detection. Thus, the resulted sensor displayed high reproducibility, selectivity, and sensitivity. It showed linear response to DNF over the range of 0.05 μM-10 μM, with a detection limit of 0.016 μM (S/N = 3) and sensitivity of 550.6 μA mM-1 cm-2. Its practicability was validated by determining DNF in real samples, with recoveries of 92.0 %-102 %.
Collapse
Affiliation(s)
- Tianning Li
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, Hubei Province, PR China
| | - Yiwei Liu
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, Hubei Province, PR China
| | - Faqiong Zhao
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, Hubei Province, PR China
| | - Baizhao Zeng
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, Hubei Province, PR China.
| |
Collapse
|
2
|
Jia R, Jia L, Zhao X, Huang Y, Zhang L, Zhao D, Xu J, Zhao T. High sensitivity distinguishing detection of fluoroquinolones with a cage-based lanthanide metal-organic framework in food. Food Chem 2025; 464:141652. [PMID: 39423545 DOI: 10.1016/j.foodchem.2024.141652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Revised: 10/12/2024] [Accepted: 10/13/2024] [Indexed: 10/21/2024]
Abstract
Sensitive and selective detection of fluoroquinolones, especially from different sources, is challenging. This study reported an uncommon three-cage lanthanide metal-organic framework (1-Eu) with a Eu3+ cluster as its structural primitive using a C2-symmetric 5,5-(Pyrazine-2,6-diyl) diisophthalic acid ligand. The 1-Eu probe effectively detected four fluoroquinolones through distinct color changes and spectral emission bands, demonstrating excellent performance with low detection limits: moxifloxacin (LOD: 9.3 nM), danofloxacin (LOD: 33.7 nM), gatifloxacin (LOD: 67.9 nM), and ofloxacin (LOD: 238.6 nM). Mechanistic studies revealed that internal filtration and photoinduced electron transfer (a-PET) effects were key factors. Furthermore, 1-Eu was successfully used to detect fluoroquinolones in food samples. Additionally, portable paper-based sensors were developed to quickly semi-quantify analyte concentrations using a smartphone color recognition app, underscoring the practical potential of this probe. This study introduces a novel methodology for the identification and detection of fluoroquinolones to enhance food safety.
Collapse
Affiliation(s)
- Ruoqin Jia
- College of Chemistry and Chemical Engineering, Henan Polytechnic University, Jiaozuo, Henan, 454000, China
| | - Lei Jia
- College of Chemistry and Chemical Engineering, Henan Polytechnic University, Jiaozuo, Henan, 454000, China.
| | - Xiaolei Zhao
- College of Chemistry and Chemical Engineering, Henan Polytechnic University, Jiaozuo, Henan, 454000, China
| | - Yuanyuan Huang
- College of Chemistry and Chemical Engineering, Henan Polytechnic University, Jiaozuo, Henan, 454000, China
| | - Lina Zhang
- College of Chemistry and Chemical Engineering, Henan Polytechnic University, Jiaozuo, Henan, 454000, China
| | - Dan Zhao
- College of Chemistry and Chemical Engineering, Henan Polytechnic University, Jiaozuo, Henan, 454000, China
| | - Jun Xu
- College of Chemistry and Chemical Engineering, Henan Polytechnic University, Jiaozuo, Henan, 454000, China.
| | - Tongqian Zhao
- Institute of Resources & Environment, Henan Polytechnic University, Jiaozuo, Henan, 454000, China.
| |
Collapse
|
3
|
Algmaal SE, Mahmoud AM, Boltia SA, El-Saharty YS, Ghoniem NS. Eco-friendly bupropion detection sensor with co-formulated dextromethorphan in AUVELITY tablet and spiked plasma. Sci Rep 2024; 14:29305. [PMID: 39592800 PMCID: PMC11599272 DOI: 10.1038/s41598-024-80227-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Accepted: 11/18/2024] [Indexed: 11/28/2024] Open
Abstract
Molecularly Imprinted Polymers (MIPs) are synthetic materials designed to selectively recognize and bind to specific target molecules. The process of determining Bupropion (BUP) using MIPs involves preparing the MIP, extracting the target molecule, and conducting subsequent analysis. A bio-inspired MIP-based electrochemical sensor was developed to detect BUP, utilizing the specific binding of MIPs to Bupropion molecules, enabling precise and sensitive detection. The combination of molecular imprinting and electrochemistry in this approach allows for the development of a highly reliable and effective sensor specifically designed for BUP detection. In this method, copolymerization conditions were carefully optimized to ensure selectivity and sensitivity in detecting BUP. Different monomers, including o-phenylenediamine, 4-aminophenol, L-dopa, and 1,4-phenylenediamine, were explored, with the best interaction observed for L-dopa and 1,4-phenylenediamine. Consequently, their copolymer was implemented to create selective MIPs through a straightforward electropolymerization process on a disposable pencil graphite electrode (PGE) substrate for BUP detection. The functionality of the copolymer of L-dopa and 1,4-phenylenediamine as an electroactive copolymer in preparing electro-polymerized MIP films was investigated for the first time. This was demonstrated by constructing a novel electrochemical sensor for the selective recognition of BUP in different matrices. The interactions between L-dopa and 1,4-phenylenediamine, used as functional monomers, and the template were studied experimentally using UV spectroscopy. BUP was used as the template, and the copolymer was electrografted onto PGE. The constructed sensor was characterized using cyclic voltammetry (CV), and BUP binding to the MIP cavities was measured indirectly with differential pulse voltammetry (DPV) using a ferrocyanide/ferricyanide redox probe. A linear and repeatable response was displayed by the sensor across a range of 1.0 × 10⁻13 M to 1.0 × 10⁻11 M of BUP, with a limit of detection of 3.18 × 10⁻14 M. The sensor demonstrated robust selectivity for BUP over interfering drugs, such as dextromethorphan, in pharmaceutical dosage forms and spiked human plasma. The environmental impact of the proposed approach was evaluated using green analytical chemistry principles, including the Green Analytical Procedure Index (GAPI) and the Analytical GREEnness (AGREE) metric.
Collapse
Affiliation(s)
- Shrouk E Algmaal
- Analytical Chemistry Department, Faculty of Pharmacy, Cairo University, Kasr El-Ainy St., Cairo, ET-11562, Egypt.
| | - Amr M Mahmoud
- Analytical Chemistry Department, Faculty of Pharmacy, Cairo University, Kasr El-Ainy St., Cairo, ET-11562, Egypt
| | - Shereen A Boltia
- Analytical Chemistry Department, Faculty of Pharmacy, Cairo University, Kasr El-Ainy St., Cairo, ET-11562, Egypt
| | - Yasser S El-Saharty
- Analytical Chemistry Department, Faculty of Pharmacy, Cairo University, Kasr El-Ainy St., Cairo, ET-11562, Egypt
| | - Nermine S Ghoniem
- Analytical Chemistry Department, Faculty of Pharmacy, Cairo University, Kasr El-Ainy St., Cairo, ET-11562, Egypt
| |
Collapse
|
4
|
Mokwebo KV, Douman SF, Januarie KC, Oranzie M, Sanga NA, Leve ZD, Cox M, Ross N, Iwuoha EI. Electromimetic molecularly imprinted Polymersensor for wastewater emtricitabine. Anal Chim Acta 2024; 1329:343184. [PMID: 39396276 DOI: 10.1016/j.aca.2024.343184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 08/26/2024] [Accepted: 08/29/2024] [Indexed: 10/15/2024]
Abstract
BACKGROUND Emtricitabine (FTC) is a commonly prescribed anti-human immunodeficiency virus (HIV) drug that has been classified as an emerging environmental pharmaceutical micropollutant due to its poor metabolism, refractory nature to wastewater treatment, continuous discharge with wastewater effluent and accumulation in the aquatic environment. Although there are no reported limits and toxicity of the drug in the environment yet, it is crucial to develop onsite, rapid, selective and ultrasensitive water sensing systems for FTC to ensure efficient risk management and environmental sustainability. RESULTS Herein, a molecularly imprinted poly(para-aminobenzoic acid) (MIP) was electrochemically prepared on iron oxide nanoparticles modified glassy carbon electrode (MIP/Fe3O4 NPs/GCE) for selective detection of FTC using differential pulse voltammetry (DPV) and electrochemical impedance spectroscopy (EIS). During the detection, the voltammetric signal of the MIP sensor decreased with increasing concentrations of the non-electroactive FTC, indicating hindrance of the MIP sensor's redox activity by the binding analyte. The sensor generated a calibration curve with a linear dynamic range of 1.24-24.7 μg L-1 and a limit of detection (LOD) and limit of quantification (LOQ) of 0.439 and 1.30 μg L-1, respectively. Moreover, the MIP sensor was 5.2 times more sensitive than the control sensor, a non-imprinted polymer (NIP) sensor, and had a higher apparent binding affinity for FTC than the NIP sensor. The MIP/PABA-Fe3O4/GCE-based sensor achieved recoveries of 98.8 %-101.5 % for applications in real wastewater and drinking water samples. SIGNIFICANCE The combination of Fe3O4 nanoparticles, electrically conducting polymer, and the MIP technology produced a novel, simple, cost-effective, and high-performance voltammetric MIP sensor for an anti-HIV drug, FTC. The result of this study shows that the sensor holds a significant promise for future onsite monitoring of emtricitabine in wastewater, pharmaceutical, and biological samples without prior sample pretreatment.
Collapse
Affiliation(s)
- Kefilwe V Mokwebo
- SensorLab (University of the Western Cape Sensor Laboratories), Chemical Sciences Building, University of the Western Cape, Bellville, 7535, Cape Town, South Africa; South African Research Chair Initiative (SARChI) Chair for NanoElectrochemistry & Sensor Technology, University of the Western Cape, Bellville, 7535, Cape Town, South Africa.
| | - Samantha F Douman
- SensorLab (University of the Western Cape Sensor Laboratories), Chemical Sciences Building, University of the Western Cape, Bellville, 7535, Cape Town, South Africa; Department of Chemistry, University of Cape Town, Rondebosch, Cape Town, 7701, South Africa
| | - Kaylin C Januarie
- SensorLab (University of the Western Cape Sensor Laboratories), Chemical Sciences Building, University of the Western Cape, Bellville, 7535, Cape Town, South Africa
| | - Marlon Oranzie
- SensorLab (University of the Western Cape Sensor Laboratories), Chemical Sciences Building, University of the Western Cape, Bellville, 7535, Cape Town, South Africa
| | - Nelia A Sanga
- SensorLab (University of the Western Cape Sensor Laboratories), Chemical Sciences Building, University of the Western Cape, Bellville, 7535, Cape Town, South Africa
| | - Zandile D Leve
- SensorLab (University of the Western Cape Sensor Laboratories), Chemical Sciences Building, University of the Western Cape, Bellville, 7535, Cape Town, South Africa
| | - Meleskow Cox
- SensorLab (University of the Western Cape Sensor Laboratories), Chemical Sciences Building, University of the Western Cape, Bellville, 7535, Cape Town, South Africa; South African Research Chair Initiative (SARChI) Chair for NanoElectrochemistry & Sensor Technology, University of the Western Cape, Bellville, 7535, Cape Town, South Africa
| | - Natasha Ross
- SensorLab (University of the Western Cape Sensor Laboratories), Chemical Sciences Building, University of the Western Cape, Bellville, 7535, Cape Town, South Africa
| | - Emmanuel I Iwuoha
- SensorLab (University of the Western Cape Sensor Laboratories), Chemical Sciences Building, University of the Western Cape, Bellville, 7535, Cape Town, South Africa; South African Research Chair Initiative (SARChI) Chair for NanoElectrochemistry & Sensor Technology, University of the Western Cape, Bellville, 7535, Cape Town, South Africa.
| |
Collapse
|
5
|
Wang X, Zang X, Deng L, Tan F, Liu X, Zhang Z, Cui B, Fang Y. Molecularly imprinted Photoelectrochemical sensor for Escherichia coli based on Cu:ZIF-8/KZ3TTz heterojunction. Food Chem 2024; 458:140495. [PMID: 39053393 DOI: 10.1016/j.foodchem.2024.140495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 07/07/2024] [Accepted: 07/15/2024] [Indexed: 07/27/2024]
Abstract
Herein, a signal stable molecularly imprinted photoelectrochemical (MIP-PEC) sensing platform was designed to sensitively detect Escherichia coli by incorporating polythiophene film with Cu: ZIF-8/KZ3TTz heterojunction. Attributed to the formation of a staggered type II heterostructure between KZ3TTz and Cu: ZIF-8 semiconductors, the Cu: ZIF-8/KZ3TTz heterojunction exhibited stable and significant cathode PEC response. Impressively, selective MIP film was grown on the surface of Cu: ZIF-8/KZ3TTz/GCE by electro-polymerization of 2,2-Dimethyl-5-(3-thienyl)-1,3-dioxane-4,6-dione (DTDD) in the presence of E. coli. After removing E. coli, more electrons were transferred to the electrolyte solution through the imprinting cavity on the MIP film, which was eliminated by O2 in the electrolyte, causing further enhancement of the cathode PEC response. On the contrary, when the imprinted cavity was filled with E. coli, the cathodic PEC response gradually decreased due to steric hindrance effect. The sensor showed excellent linearity in the range of 101 to 108 CFU/mL with a detection limit of 4.09 CFU/mL (S/N = 3). This strategy offered a novel approach for pathogenic bacteria detection in food safety and environmental monitoring.
Collapse
Affiliation(s)
- Xiaoqing Wang
- School of Food Science and Engineering, State Key Laboratory of Biobased Material and Green Papermaking, School of Materials Science and Engineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China
| | - Xufeng Zang
- Huzhou Key Laboratory of Materials for Energy Conversion and Storage, School of Science, Huzhou University, Zhejiang, Huzhou 313000, China
| | - Laiyi Deng
- Shandong Lurun ass hide glue Pharmaceutical Co., Ltd, Juye, Heze, 274900, China
| | - Fei Tan
- Shandong Xuanhong Biopharmaceutical Co., Ltd, Ji-nan, 250353, China
| | - Xingbo Liu
- Shandong Xuanhong Biopharmaceutical Co., Ltd, Ji-nan, 250353, China
| | - Zhiguo Zhang
- School of Food Science and Engineering, State Key Laboratory of Biobased Material and Green Papermaking, School of Materials Science and Engineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China.
| | - Bo Cui
- School of Food Science and Engineering, State Key Laboratory of Biobased Material and Green Papermaking, School of Materials Science and Engineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China
| | - Yishan Fang
- School of Food Science and Engineering, State Key Laboratory of Biobased Material and Green Papermaking, School of Materials Science and Engineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China.
| |
Collapse
|
6
|
Cheng Q, Xue C, Abdiryim T, Jamal R. Molecular imprinting electrochemical sensor based on hollow spherical PProDOT-2CH 2OH and chitosan-derived carbon materials for highly sensitive detection of chloramphenicol. JOURNAL OF HAZARDOUS MATERIALS 2024; 478:135615. [PMID: 39181003 DOI: 10.1016/j.jhazmat.2024.135615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 08/18/2024] [Accepted: 08/21/2024] [Indexed: 08/27/2024]
Abstract
The misuse of chloramphenicol (CAP) has jeopardized environmental safety. It is critical to create an effective and sensitive CAP detection technique. In this paper, a composite of chitosan (CS)-derived carbon material modified hollow spherical hydroxylated poly(3,4-propylenedioxythiophene) (PProDOT-2CH2OH) was designed, which innovatively used o-phenylenediamine and p-aminobenzoic acid as bi-functional monomers to prepare molecular imprinting polymer (MIP) sensors for highly sensitive analysis and determination of CAP. It was found that the hollow spherical structure of PProDOT-2CH2OH significantly enhanced the rapid electron migration. When combined with the CS-derived carbon material, which has multi-functional sites, it improved the electrical activity and stability of the sensor. It also provided more active centers for the MIP layer to specifically recognize CAP. Therefore, this MIP sensor had a wide linear response (0.0001 ∼ 125 μM), a low limit of detection (LOD, 6.6 pM), excellent selectivity and stability. In addition, studies showed that the sensor has potential practical value. ENVIRONMENTAL IMPLICATION: Chloramphenicol (CAP) is one of the most widely used antibiotics with the highest dosage due to its low price and broad-spectrum antimicrobial properties. Due to its incomplete metabolism in living organisms and its difficulty in degrading in the environment, contamination caused by it can pose a threat to public health. In this study, a novel molecularly imprinted sensor (MIP/PC2C1/GCE) was designed to provide a new idea for rapid and precise removal of CAP by adsorption. The detection of CAP in pharmaceutical, water quality, and food fields was realized.
Collapse
Affiliation(s)
- Qian Cheng
- College of Chemistry, Xinjiang University, Urumqi 830017, Xinjiang, PR China; State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, Xinjiang University, Urumqi 830017, Xinjiang, PR China
| | - Cong Xue
- College of Chemistry, Xinjiang University, Urumqi 830017, Xinjiang, PR China; State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, Xinjiang University, Urumqi 830017, Xinjiang, PR China
| | - Tursun Abdiryim
- College of Chemistry, Xinjiang University, Urumqi 830017, Xinjiang, PR China; State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, Xinjiang University, Urumqi 830017, Xinjiang, PR China.
| | - Ruxangul Jamal
- School of Chemical Engineering and Technology, Xinjiang University, Urumqi 830017, Xinjiang, PR China; State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, Xinjiang University, Urumqi 830017, Xinjiang, PR China.
| |
Collapse
|
7
|
Wen Y, Zhao S, Yu Z, Gong W, Lu S, Li H, Wang J. Preparation of molecularly imprinted polymer for the specific adsorption and selective extraction of alkylresorcinols from whole wheat flour. Food Chem 2024; 454:139815. [PMID: 38820642 DOI: 10.1016/j.foodchem.2024.139815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 05/14/2024] [Accepted: 05/22/2024] [Indexed: 06/02/2024]
Abstract
Alkylresorcinols are important biomarkers for evaluating whole wheat foods. However, their structures encompass a broad spectrum of homologs, making isolating and analyzing individual alkylresorcinol notably challenging. Herein, we synthesized highly selective molecularly imprinted polymers (MIPs) utilizing a facile and cost-effective precipitation polymerization method and 5-heneicosylresorcinol (ARC21:0) as the template molecule. Various crucial preparation parameters were systematically optimized, such as different porogens, functional monomers, imprinting ratios, and polymerization time. The polymers were characterized through scanning electron microscopy and Fourier transform infrared spectroscopy, and their adsorption performances were thoroughly evaluated. MIPs exhibited a notably enhanced adsorption capacity compared with that of non-imprinted polymers, reaching an optimal adsorption amount of 71.75 mg·mL-1 and imprinting factor of 2.02. Altogether, the synthesized MIPs showed superior affinity and selectivity for ARC21:0, as confirmed by their selective extraction, suggesting their potential applications in the analysis, separation, and monitoring of ARC21:0 in whole wheat foods.
Collapse
Affiliation(s)
- Yangyang Wen
- College of Chemistry and Materials Engineering, Beijing Technology and Business University, Beijing 100048, China
| | - Shichao Zhao
- College of Chemistry and Materials Engineering, Beijing Technology and Business University, Beijing 100048, China
| | - Zhenjia Yu
- College of Chemistry and Materials Engineering, Beijing Technology and Business University, Beijing 100048, China
| | - Weiwei Gong
- College of Chemistry and Materials Engineering, Beijing Technology and Business University, Beijing 100048, China
| | - Shiyi Lu
- Key Laboratory of Geriatric Nutrition and Health, Ministry of Education, Beijing Technology and Business University, Beijing, 100048, China
| | - Hongyan Li
- Key Laboratory of Geriatric Nutrition and Health, Ministry of Education, Beijing Technology and Business University, Beijing, 100048, China.
| | - Jing Wang
- Key Laboratory of Geriatric Nutrition and Health, Ministry of Education, Beijing Technology and Business University, Beijing, 100048, China.
| |
Collapse
|
8
|
Mintz Hemed N, Hwang FJ, Zhao ET, Ding JB, Melosh NA. Multiplexed neurochemical sensing with sub-nM sensitivity across 2.25 mm 2 area. Biosens Bioelectron 2024; 261:116474. [PMID: 38870827 DOI: 10.1016/j.bios.2024.116474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 05/20/2024] [Accepted: 06/05/2024] [Indexed: 06/15/2024]
Abstract
Multichannel arrays capable of real-time sensing of neuromodulators in the brain are crucial for gaining insights into new aspects of neural communication. However, measuring neurochemicals, such as dopamine, at low concentrations over large areas has proven challenging. In this research, we demonstrate a novel approach that leverages the scalability and processing power offered by microelectrode array devices integrated with a functionalized, high-density microwire bundle, enabling electrochemical sensing at an unprecedented scale and spatial resolution. The sensors demonstrate outstanding selective molecular recognition by incorporating a selective polymeric membrane. By combining cutting-edge commercial multiplexing, digitization, and data acquisition hardware with a bio-compatible and highly sensitive neurochemical interface array, we establish a powerful platform for neurochemical analysis. This multichannel array has been successfully utilized in vitro and ex vivo systems. Notably, our results show a sensing area of 2.25 mm2 with an impressive detection limit of 820 pM for dopamine. This new approach paves the way for investigating complex neurochemical processes and holds promise for advancing our understanding of brain function and neurological disorders.
Collapse
Affiliation(s)
- Nofar Mintz Hemed
- Department of Materials Science and Engineering, Stanford University, Stanford, CA, USA
| | - Fuu-Jiun Hwang
- Department of Neurosurgery, Stanford University, Stanford, CA, 94305, USA
| | - Eric T Zhao
- Department of Chemical Engineering, Stanford University, Stanford, CA, 94305, USA
| | - Jun B Ding
- Department of Neurosurgery, Stanford University, Stanford, CA, 94305, USA; Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA, 94305, USA
| | - Nicholas A Melosh
- Department of Materials Science and Engineering, Stanford University, Stanford, CA, USA.
| |
Collapse
|
9
|
Merli D, Cutaia A, Hallulli I, Bonanni A, Alberti G. Molecularly Imprinted Polypyrrole-Modified Screen-Printed Electrode for Dopamine Determination. Polymers (Basel) 2024; 16:2528. [PMID: 39274160 PMCID: PMC11397747 DOI: 10.3390/polym16172528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 09/01/2024] [Accepted: 09/05/2024] [Indexed: 09/16/2024] Open
Abstract
This paper introduces a quantitative method for dopamine determination. The method is based on a molecularly imprinted polypyrrole (e-MIP)-modified screen-printed electrode, with differential pulse voltammetry (DPV) as the chosen measurement technique. The dopamine molecules are efficiently entrapped in the polymeric film, creating recognition cavities. A comparison with bare and non-imprinted polypyrrole-modified electrodes clearly demonstrates the superior sensitivity, selectivity, and reproducibility of the e-MIP-based one; indeed, a sensitivity of 0.078 µA µM-1, a detection limit (LOD) of 0.8 µM, a linear range between 0.8 and 45 µM and a dynamic range of up to 350 µM are achieved. The method was successfully tested on fortified synthetic and human urine samples to underline its applicability as a screening method for biomedical tests.
Collapse
Affiliation(s)
- Daniele Merli
- Department of Chemistry, University of Pavia, Via Taramelli 12, 27100 Pavia, Italy
| | - Alessandra Cutaia
- Department of Chemistry, University of Pavia, Via Taramelli 12, 27100 Pavia, Italy
| | - Ines Hallulli
- Department of Chemistry, University of Pavia, Via Taramelli 12, 27100 Pavia, Italy
| | - Alessandra Bonanni
- Department of Chemistry, University of Pavia, Via Taramelli 12, 27100 Pavia, Italy
| | - Giancarla Alberti
- Department of Chemistry, University of Pavia, Via Taramelli 12, 27100 Pavia, Italy
| |
Collapse
|
10
|
Chen M, Li H, Xue X, Tan F, Ye L. Signal amplification in molecular sensing by imprinted polymers. Mikrochim Acta 2024; 191:574. [PMID: 39230601 PMCID: PMC11374865 DOI: 10.1007/s00604-024-06649-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Accepted: 08/21/2024] [Indexed: 09/05/2024]
Abstract
In the field of sensing, the development of sensors with high sensitivity, accuracy, selectivity, sustainability, simplicity, and low cost remains a key focus. Over the past decades, optical and electrochemical sensors based on molecular imprinting techniques have garnered significant attention due to the above advantages. Molecular imprinting technology utilizes molecularly imprinted polymers (MIPs) to mimic the specific recognition capabilities of enzymes or antibodies for target molecules. Recently, MIP-based sensors rooting in signal amplification techniques have been employed to enhance molecular detection level and the quantitative ability for environmental pollutants, biomolecules, therapeutic compounds, bacteria, and viruses. The signal amplification techniques involved in MIP-based sensors mainly cover nucleic acid chain amplification, enzyme-catalyzed cascade, introduction of high-performance nanomaterials, and rapid chemical reactions. The amplified analytical signals are centered around electrochemical, fluorescence, colorimetric, and surface-enhanced Raman techniques, which can effectively realize the determination of some low-abundance targets in biological samples. This review highlights the recent advancements of electrochemical/optical sensors based on molecular imprinting integrated with various signal amplification strategies and their dedication to the study of trace biomolecules. Finally, future research directions on developing multidimensional output signals of MIP-based sensors and introducing multiple signal amplification strategies are proposed.
Collapse
Affiliation(s)
- Mingli Chen
- Research Center for Analytical Sciences, Department of Chemistry, College of Sciences, Northeastern University, BOX 332, Shenyang, Liaoning, 110819, P.R. China.
- Division of Pure and Applied Biochemistry, Department of Chemistry, Lund University, Box124, 22100, Lund, Sweden.
| | - Haiyan Li
- Research Center for Analytical Sciences, Department of Chemistry, College of Sciences, Northeastern University, BOX 332, Shenyang, Liaoning, 110819, P.R. China
| | - Xiaoting Xue
- Division of Pure and Applied Biochemistry, Department of Chemistry, Lund University, Box124, 22100, Lund, Sweden
| | - Fang Tan
- Division of Pure and Applied Biochemistry, Department of Chemistry, Lund University, Box124, 22100, Lund, Sweden
- School of Optoelectronic Materials & Technology, Jianghan University, Wuhan, Hubei, 430056, P.R. China
| | - Lei Ye
- Division of Pure and Applied Biochemistry, Department of Chemistry, Lund University, Box124, 22100, Lund, Sweden.
| |
Collapse
|
11
|
Wang L, Li N, Zhang X, Bobrinetskiy I, Gadjanski I, Fu W. Sensing with Molecularly Imprinted Membranes on Two-Dimensional Solid-Supported Substrates. SENSORS (BASEL, SWITZERLAND) 2024; 24:5119. [PMID: 39204816 PMCID: PMC11358988 DOI: 10.3390/s24165119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Revised: 07/25/2024] [Accepted: 07/27/2024] [Indexed: 09/04/2024]
Abstract
Molecularly imprinted membranes (MIMs) have been a focal research interest since 1990, representing a breakthrough in the integration of target molecules into membrane structures for cutting-edge sensing applications. This paper traces the developmental history of MIMs, elucidating the diverse methodologies employed in their preparation and characterization on two-dimensional solid-supported substrates. We then explore the principles and diverse applications of MIMs, particularly in the context of emerging technologies encompassing electrochemistry, surface-enhanced Raman scattering (SERS), surface plasmon resonance (SPR), and the quartz crystal microbalance (QCM). Furthermore, we shed light on the unique features of ion-sensitive field-effect transistor (ISFET) biosensors that rely on MIMs, with the notable advancements and challenges of point-of-care biochemical sensors highlighted. By providing a comprehensive overview of the latest innovations and future trajectories, this paper aims to inspire further exploration and progress in the field of MIM-driven sensing technologies.
Collapse
Affiliation(s)
- Lishuang Wang
- School of Pharmaceutical Sciences, Capital Medical University, Beijing 100069, China; (L.W.); (N.L.)
| | - Nan Li
- School of Pharmaceutical Sciences, Capital Medical University, Beijing 100069, China; (L.W.); (N.L.)
| | - Xiaoyan Zhang
- School of Pharmaceutical Sciences, Capital Medical University, Beijing 100069, China; (L.W.); (N.L.)
| | - Ivan Bobrinetskiy
- BioSense Institute, University of Novi Sad, Dr Zorana Đinđića 1a, 21000 Novi Sad, Serbia; (I.B.); (I.G.)
| | - Ivana Gadjanski
- BioSense Institute, University of Novi Sad, Dr Zorana Đinđića 1a, 21000 Novi Sad, Serbia; (I.B.); (I.G.)
| | - Wangyang Fu
- School of Materials Science and Engineering, Tsinghua University, No. 1 Tsinghua Yuan, Haidian District, Beijing 100084, China
| |
Collapse
|
12
|
Lucia-Tamudo J, Nogueira JJ, Díaz-Tendero S. Charge Transfer Mechanism in Guanine-Based Self-Assembled Monolayers on a Gold Surface. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:15129-15139. [PMID: 38984413 PMCID: PMC11270990 DOI: 10.1021/acs.langmuir.4c01512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 06/27/2024] [Accepted: 06/28/2024] [Indexed: 07/11/2024]
Abstract
In this work, we have theoretically determined the one-electron oxidation potentials and charge transfer mechanisms in complex systems based on a self-assembled monolayer of guanine molecules adsorbed on a gold surface through different organic linkers. Classical molecular dynamics simulations were carried out to sample the conformational space of both the neutral and the cationic species. Thus, the redox potentials were determined for the ensembles of geometries through multiscale quantum-mechanics/molecular-mechanics/continuum solvation model calculations in the framework of the Marcus theory and in combination with an additive scheme previously developed. In this context, conformational sampling, description of the environment, and effects caused by the linker have been considered. Applying this methodology, we unravel the phenomena of electric current transport by evaluating the different stages in which charge transfer could occur. The results revealed how the positive charge migrates from the organic layer to the gold surface. Specifically, the transport mechanism seems to take place mainly along a single ligand and driven with the help of the electrostatic interactions of the surrounding molecules. Aside, several self-assembled monolayers with different linkers have been analyzed to understand how the nature of that moiety can tune the redox properties and the efficiency of the transport. We have found that the conjugation between the guanine and the linker, at the same time conjugated to the gold surface, gives rise to a more efficient transport. In conclusion, the established computational protocol sheds light on the mechanism behind charge transport in electrochemical DNA-based biosensor nanodevices.
Collapse
Affiliation(s)
- Jesús Lucia-Tamudo
- Department
of Chemistry, Universidad Autónoma
de Madrid, 28049 Madrid, Spain
| | - Juan J. Nogueira
- Department
of Chemistry, Universidad Autónoma
de Madrid, 28049 Madrid, Spain
- Institute
for Advanced Research in Chemistry (IAdChem), Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - Sergio Díaz-Tendero
- Department
of Chemistry, Universidad Autónoma
de Madrid, 28049 Madrid, Spain
- Institute
for Advanced Research in Chemistry (IAdChem), Universidad Autónoma de Madrid, 28049 Madrid, Spain
- Condensed
Matter Physics Center (IFIMAC), Universidad
Autónoma de Madrid, 28049 Madrid, Spain
| |
Collapse
|
13
|
Ramya K, Lakshmi KSJ, Amreen K, Goel S. Electrochemical Synthesis of Molecularly Imprinted Polymers for L-Tyrosine Detection. IEEE Trans Nanobioscience 2024; 23:410-417. [PMID: 38507383 DOI: 10.1109/tnb.2024.3379588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/22/2024]
Abstract
L-Tyrosine (L-Tyr), a critical amino acid whose aberrant levels impact melanin and dopamine levels in human body while also increasing insulin resistance thereby increasing the risk of type 2 diabetes. The objective of this study was to detect the amount of L-Tyr in human fluids by tailored electrochemical synthesis of well adhered, homogenous and thin molecularly imprinted polymers (MIPs) by the electro-polymerization of pyrrole on glassy carbon electrode modified functionalized multi-walled carbon nanotubes. The key benefits of this procedure over previous imprinting techniques were the elimination of expensive materials like Au and tedious multi-step synthesis, for L-Tyr detection using a handheld potentiostat. The developed particles were characterized using Fourier Transform Infrared Spectroscopy, Scanning Electron Microscope, Chronoamperometry, and Cyclic Voltammetry. With strong reproducibility and stability, this optimized approach provides a rapid and effective method of preparing and sensing MIPs for the target analyte with a broad linear range of [Formula: see text] to [Formula: see text]. The Limit of Detection and Limit of Quantification were [Formula: see text] and [Formula: see text], respectively. The engineered sensor was validated for quantifying the concentrations of L-Tyr in human blood and serum samples, yielding satisfactory recovery and can be expanded in future to detect analytes simultaneous.
Collapse
|
14
|
Kamel AH, Abd-Rabboh HSM. Electrochemical sensors based on molecularly imprinted polymers for the detection of chlorophenols as emergent distributing chemicals (EDCs): a review. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2024; 16:4024-4040. [PMID: 38860820 DOI: 10.1039/d4ay00386a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2024]
Abstract
Environmental pollutants like chlorophenol chemicals and their derivatives are commonplace. These compounds serve as building blocks in the production of medicines, biocides, dyes, and agricultural chemicals. Chlorophenols enter the environment through several different pathways, including the breakdown of complex chlorinated hydrocarbons, industrial waste, herbicides, and insecticides. Chlorophenols are destroyed thermally and chemically, creating dangerous chemicals that pose a threat to public health. Water in particular is affected, and thorough monitoring is required to find this source of pollution because it can pose a major hazard to both human and environmental health. For the detection of chlorophenols, molecularly imprinted polymers (MIPs) have been incorporated into a variety of electrochemical sensing systems and assay formats. Due to their long-term chemical and physical stability as well as their simple and affordable synthesis process, MIPs have become intriguing synthetic alternatives over the past few decades. In this review, we concentrate on the commercial potential of the MIP technology. Additionally, we want to outline the most recent advancements in their incorporation into electrochemical sensors with a high commercial potential for detecting chlorophenols.
Collapse
Affiliation(s)
- Ayman H Kamel
- Department, College of Science, University of Bahrain, Sokheer 32038, Kingdom of Bahrain.
- Department of Chemistry, Faculty of Science, Ain Shams University, Cairo 11566, Egypt.
| | - Hisham S M Abd-Rabboh
- Chemistry Department, College of Science, King Khalid University, PO Box 9004, Abha, 62223, Saudi Arabia
| |
Collapse
|
15
|
Sankar K, Kuzmanović U, Schaus SE, Galagan JE, Grinstaff MW. Strategy, Design, and Fabrication of Electrochemical Biosensors: A Tutorial. ACS Sens 2024; 9:2254-2274. [PMID: 38636962 DOI: 10.1021/acssensors.4c00043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/20/2024]
Abstract
Advanced healthcare requires novel technologies capable of real-time sensing to monitor acute and long-term health. The challenge relies on converting a real-time quantitative biological and chemical signal into a desired measurable output. Given the success in detecting glucose and the commercialization of glucometers, electrochemical biosensors continue to be a mainstay of academic and industrial research activities. Despite the wealth of literature on electrochemical biosensors, reports are often specific to a particular application (e.g., pathogens, cancer markers, glucose, etc.), and most fail to convey the underlying strategy and design, and if it is transferable to detection of a different analyte. Here we present a tutorial review for those entering this research area that summarizes the basic electrochemical techniques utilized as well as discusses the designs and optimization strategies employed to improve sensitivity and maximize signal output.
Collapse
|
16
|
Yan K, Ding Y, Liu X, Liu J, Zhang J. Portable self-powered electrochemical aptasensing platform for ratiometric detection of mycotoxins based on multichannel photofuel cell. Anal Chim Acta 2024; 1299:342442. [PMID: 38499422 DOI: 10.1016/j.aca.2024.342442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Revised: 02/25/2024] [Accepted: 02/29/2024] [Indexed: 03/20/2024]
Abstract
Self-powered electrochemical sensors based on photofuel cells have attracted considerable research interest because their unique advantage of not requiring an external electric source, but their application in portable and multiplexed targets assay is limited by the inherent mechanism. In this work, a portable self-powered sensor constructed with multichannel photofuel cells was developed for the ratiometric detection of mycotoxins, namely ochratoxin A (OTA) and patulin (PAT). The spatially resolved CdS/Bi2S3-modified photoanodes and a shared Prussian Blue cathode were integrated on an etched indium-tin oxide slide to fabricate the multichannel photofuel cell. The aptamers of OTA and PAT were covalently bonded to individual photoanode regions to build sensitive interfaces, and the specific recognition of analytes impaired the output performance of constructed PFC. Accordingly, ratiometric sensing of OTA and PAT was achieved by utilizing the output performance of a control PFC as a reference signal. This approach effectively eliminates the impact of light intensity on the accuracy of the detection. Under the optimal conditions, the proposed sensing chip exhibited linear ranges of 2.0-1000 nM and 5.0-500 nM for OTA and PAT, respectively. The detection limits (3 S/N) were determined to be 0.25 nM for OTA and 0.27 nM for PAT. The developed ratiometric sensing method demonstrated good selectivity and stability in the simultaneous detection of OTA and PAT. It was successfully utilized for the analysis of OTA and PAT real samples. This work provides a new perspective for construction of portable and ratiometric self-powered sensing platform.
Collapse
Affiliation(s)
- Kai Yan
- Key Laboratory of Material Chemistry for Energy Conversion and Storage (Ministry of Education), Hubei Key Laboratory of Bioinorganic Chemistry & Materia Medica, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Luoyu Road 1037, Wuhan, 430074, China; Guangdong HUST Industrial Technology Research Institute, Dongguan, 523808, China
| | - Yifan Ding
- Key Laboratory of Material Chemistry for Energy Conversion and Storage (Ministry of Education), Hubei Key Laboratory of Bioinorganic Chemistry & Materia Medica, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Luoyu Road 1037, Wuhan, 430074, China
| | - Xuqiao Liu
- Key Laboratory of Material Chemistry for Energy Conversion and Storage (Ministry of Education), Hubei Key Laboratory of Bioinorganic Chemistry & Materia Medica, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Luoyu Road 1037, Wuhan, 430074, China
| | - Jianqiao Liu
- Key Laboratory of Material Chemistry for Energy Conversion and Storage (Ministry of Education), Hubei Key Laboratory of Bioinorganic Chemistry & Materia Medica, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Luoyu Road 1037, Wuhan, 430074, China
| | - Jingdong Zhang
- Key Laboratory of Material Chemistry for Energy Conversion and Storage (Ministry of Education), Hubei Key Laboratory of Bioinorganic Chemistry & Materia Medica, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Luoyu Road 1037, Wuhan, 430074, China.
| |
Collapse
|
17
|
Li Y, Luo L, Kong Y, Li Y, Wang Q, Wang M, Li Y, Davenport A, Li B. Recent advances in molecularly imprinted polymer-based electrochemical sensors. Biosens Bioelectron 2024; 249:116018. [PMID: 38232451 DOI: 10.1016/j.bios.2024.116018] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Revised: 01/04/2024] [Accepted: 01/08/2024] [Indexed: 01/19/2024]
Abstract
Molecularly imprinted polymers (MIPs) are the equivalent of natural antibodies and have been widely used as synthetic receptors for the detection of disease biomarkers. Benefiting from their excellent chemical and physical stability, low-cost, relative ease of production, reusability, and high selectivity, MIP-based electrochemical sensors have attracted great interest in disease diagnosis and demonstrated superiority over other biosensing techniques. Here we compare various types of MIP-based electrochemical sensors with different working principles. We then evaluate the state-of-the-art achievements of the MIP-based electrochemical sensors for the detection of different biomarkers, including nucleic acids, proteins, saccharides, lipids, and other small molecules. The limitations, which prevent its successful translation into practical clinical settings, are outlined together with the potential solutions. At the end, we share our vision of the evolution of MIP-based electrochemical sensors with an outlook on the future of this promising biosensing technology.
Collapse
Affiliation(s)
- Yixuan Li
- Institute for Materials Discovery, University College London, London, WC1E 7JE, UK
| | - Liuxiong Luo
- School of Materials Science and Engineering, Central South University, Changsha, 410083, China
| | - Yingqi Kong
- Institute for Materials Discovery, University College London, London, WC1E 7JE, UK
| | - Yujia Li
- Institute for Materials Discovery, University College London, London, WC1E 7JE, UK
| | - Quansheng Wang
- Heilongjiang Academy of Traditional Chinese Medicine, Harbin, 150036, China
| | - Mingqing Wang
- Institute for Materials Discovery, University College London, London, WC1E 7JE, UK
| | - Ying Li
- Department of Brain Repair and Rehabilitation, Institute of Neurology, University College London, WC1N 3BG, UK
| | - Andrew Davenport
- Department of Renal Medicine, University College London, London, NW3 2PF, UK
| | - Bing Li
- Institute for Materials Discovery, University College London, London, WC1E 7JE, UK.
| |
Collapse
|
18
|
Faysal AA, Kaya SI, Cetinkaya A, Ozkan SA, Gölcü A. The Effect of Polymerization Techniques on the Creation of Molecularly Imprinted Polymer Sensors and Their Application on Pharmaceutical Compounds. Crit Rev Anal Chem 2024:1-20. [PMID: 38252120 DOI: 10.1080/10408347.2023.2301652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2024]
Abstract
Molecularly imprinted polymers (MIPs) have become more prevalent in fabricating sensor applications, particularly in medicine, pharmaceuticals, food quality monitoring, and the environment. The ease of their preparation, adaptability of templates, superior affinity and specificity, improved stability, and the possibility for downsizing are only a few benefits of these sensors. Moreover, from a medical perspective, monitoring therapeutic medications and determining pharmaceutical compounds in their pharmaceutical forms and biological systems is very important. Additionally, because medications are hazardous to the environment, effective, quick, and affordable determination in the surrounding environment is of major importance. Concerning a variety of performance criteria, including sensitivity, specificity, low detection limits, and affordability, MIP sensors outperform other published technologies for analyzing pharmaceutical drugs. MIP sensors have, therefore, been widely used as one of the most crucial techniques for analyzing pharmaceuticals. The first part of this review provides a detailed explanation of the many polymerization techniques that were employed to create high-performing MIP sensors. In the subsequent section of the review, the utilization of MIP-based sensors for quantifying the drugs in their pharmaceutical preparation, biological specimens, and environmental samples are covered in depth. Finally, a critical evaluation of the potential future research paths for MIP-based sensors clarifies the use of MIP in pharmaceutical fields.
Collapse
Affiliation(s)
- Abdullah Al Faysal
- Faculty of Sciences and Letters, Department of Chemistry, Istanbul Technical University, Maslak, Istanbul, Türkiye
| | - S Irem Kaya
- Gulhane Faculty of Pharmacy, Department of Analytical Chemistry, University of Health Sciences, Ankara, Türkiye
| | - Ahmet Cetinkaya
- Faculty of Pharmacy, Department of Analytical Chemistry, Ankara University, Türkiye
- Graduate School of Health Sciences, Ankara University, Türkiye
| | - Sibel A Ozkan
- Faculty of Pharmacy, Department of Analytical Chemistry, Ankara University, Türkiye
| | - Ayşegül Gölcü
- Faculty of Sciences and Letters, Department of Chemistry, Istanbul Technical University, Maslak, Istanbul, Türkiye
| |
Collapse
|
19
|
Zhang X, Yarman A, Bagheri M, El-Sherbiny IM, Hassan RYA, Kurbanoglu S, Waffo AFT, Zebger I, Karabulut TC, Bier FF, Lieberzeit P, Scheller FW. Imprinted Polymers on the Route to Plastibodies for Biomacromolecules (MIPs), Viruses (VIPs), and Cells (CIPs). ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2024; 187:107-148. [PMID: 37884758 DOI: 10.1007/10_2023_234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/28/2023]
Abstract
Around 30% of the scientific papers published on imprinted polymers describe the recognition of proteins, nucleic acids, viruses, and cells. The straightforward synthesis from only one up to six functional monomers and the simple integration into a sensor are significant advantages as compared with enzymes or antibodies. Furthermore, they can be synthesized against toxic substances and structures of low immunogenicity and allow multi-analyte measurements via multi-template synthesis. The affinity is sufficiently high for protein biomarkers, DNA, viruses, and cells. However, the cross-reactivity of highly abundant proteins is still a challenge.
Collapse
Affiliation(s)
- Xiaorong Zhang
- Institute for Biochemistry and Biology, Universität Potsdam, Potsdam, Germany
| | - Aysu Yarman
- Molecular Biotechnology, Faculty of Science, Turkish-German University, Istanbul, Turkey
| | - Mahdien Bagheri
- Department of Physical Chemistry, Faculty for Chemistry, University of Vienna, Vienna, Austria
| | - Ibrahim M El-Sherbiny
- Nanoscience Program, University of Science and Technology (UST), Zewail City of Science and Technology, Giza, Egypt
- Center for Materials Science (CMS), Zewail City of Science and Technology, Giza, Egypt
| | - Rabeay Y A Hassan
- Nanoscience Program, University of Science and Technology (UST), Zewail City of Science and Technology, Giza, Egypt
- Center for Materials Science (CMS), Zewail City of Science and Technology, Giza, Egypt
| | - Sevinc Kurbanoglu
- Department of Analytical Chemistry, Faculty of Pharmacy, Ankara University, Ankara, Turkey
| | | | - Ingo Zebger
- Institut für Chemie, PC 14 Technische Universität Berlin, Berlin, Germany
| | | | - Frank F Bier
- Institute for Biochemistry and Biology, Universität Potsdam, Potsdam, Germany
| | - Peter Lieberzeit
- Department of Physical Chemistry, Faculty for Chemistry, University of Vienna, Vienna, Austria.
| | - Frieder W Scheller
- Institute for Biochemistry and Biology, Universität Potsdam, Potsdam, Germany.
| |
Collapse
|
20
|
Li W, Xiang J, Han J, Man M, Chen L, Li B. An electrochemical molecularly imprinted microfluidic paper-based chip for detection of inflammatory biomarkers IL-6 and PCT. Analyst 2023; 148:5896-5904. [PMID: 37847494 DOI: 10.1039/d3an01367g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2023]
Abstract
Based on surface biomolecular imprinting technology, a rotary microfluidic electrochemical paper-based chip (MIP-ePADs) was proposed for sensitive and selective detection of human interleukin 6 (IL-6) and procalcitonin (PCT). Compared with the traditional method, the sample can be added directly on the MIP-ePAD by rotating the working electrode, which avoids the loss of the liquid to be tested and greatly simplifies the process of electropolymerization imprinting and template elution. Our experimental results show that linear concentration ranges of IL-6 and PCT in the electrochemical molecularly imprinted microfluidic paper-based chip ranged from 0.01 to 5 ng mL-1, with their detection limits being 3.5 and 2.1 pg mL-1, respectively. For the detection of actual serum samples, there was no significant difference between the results of MIP-ePADs and the traditional electrochemiluminescence method used in hospitals, indicating that the paper-based chip can be used for stable and accurate analysis and detection. The chip greatly reduces the cost of clinical trials due to its advantages of easy preparation and low cost. The chip can be used for the analysis of non-antibody inflammation markers and can be widely used in home and hospital treatment detection. This method will not only play an important role in rapid detection, but also provide new ideas for the improvement of rapid detection technology.
Collapse
Affiliation(s)
- Wenpeng Li
- School of Environment and Materials Engineering, Yantai University, Yantai 264005, China.
| | - Jiawen Xiang
- CAS Key Laboratory of Coastal Environment Processes and Ecological Remediation, Research Center for Coastal Environment Engineering and Technology, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China.
| | - Jinglong Han
- School of Environment and Materials Engineering, Yantai University, Yantai 264005, China.
| | - Mingsan Man
- CAS Key Laboratory of Coastal Environment Processes and Ecological Remediation, Research Center for Coastal Environment Engineering and Technology, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China.
| | - Lingxin Chen
- CAS Key Laboratory of Coastal Environment Processes and Ecological Remediation, Research Center for Coastal Environment Engineering and Technology, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China.
- School of Pharmacy, Binzhou Medical University, Yantai 264003, China
| | - Bowei Li
- CAS Key Laboratory of Coastal Environment Processes and Ecological Remediation, Research Center for Coastal Environment Engineering and Technology, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China.
| |
Collapse
|
21
|
Majer-Baranyi K, Adányi N, Székács A. Current Trends in Mycotoxin Detection with Various Types of Biosensors. Toxins (Basel) 2023; 15:645. [PMID: 37999508 PMCID: PMC10675009 DOI: 10.3390/toxins15110645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 10/24/2023] [Accepted: 11/01/2023] [Indexed: 11/25/2023] Open
Abstract
One of the most important tasks in food safety is to properly manage the investigation of mycotoxin contamination in agricultural products and foods made from them, as well as to prevent its occurrence. Monitoring requires a wide range of analytical methods, from expensive analytical procedures with high-tech instrumentation to significantly cheaper biosensor developments or even single-use assays suitable for on-site monitoring. This review provides a summary of the development directions over approximately a decade and a half, grouped according to the biologically sensitive components used. We provide an overview of the use of antibodies, molecularly imprinted polymers, and aptamers, as well as the diversity of biosensors and their applications within the food industry. We also mention the possibility of determining multiple toxins side by side, which would significantly reduce the time required for the analyses.
Collapse
Affiliation(s)
- Krisztina Majer-Baranyi
- Food Science Research Group, Institute of Food Science and Technology, Hungarian University of Agriculture and Life Sciences, Villányi út 29-43, H-1118 Budapest, Hungary;
| | - Nóra Adányi
- Food Science Research Group, Institute of Food Science and Technology, Hungarian University of Agriculture and Life Sciences, Villányi út 29-43, H-1118 Budapest, Hungary;
| | - András Székács
- Agro-Environmental Research Centre, Institute of Environmental Sciences, Hungarian University of Agriculture and Life Sciences, Herman Ottó út 15, H-1022 Budapest, Hungary;
| |
Collapse
|
22
|
Yu XY, He JY, Tang F, Yu P, Wu L, Xiao ZL, Sun LX, Cao Z, Yu D. Highly sensitive determination of L-glutamic acid in pig serum with an enzyme-free molecularly imprinted polymer on a carbon-nanotube modified electrode. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2023; 15:5589-5597. [PMID: 37850367 DOI: 10.1039/d3ay01499a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2023]
Abstract
Through electrochemical polymerization using L-glutamic acid (L-Glu) as a template and 4,6-diaminoresorcinol as a functional monomer, an enzyme-free molecularly imprinted polymer (MIP) based L-Glu sensor with multi-walled carbon nanotubes (MWCNTs) decorated on a glassy carbon electrode (GCE), namely G-MIP/MWCNTs/GCE, was developed in this work. The reaction conditions were optimized as follows: electrochemical polymerization of 23 cycles, pH of 3.0, molar ratio of template/monomer of 1 : 4, volume ratio of elution reagents of acetonitrile/formic acid of 1 : 1, and elution time of 2 min. The prepared materials and molecularly imprinted polymer were characterized by using scanning electron microscopy (SEM) and transmission electron microscopy (TEM) as well as electrochemical methods. The electrochemical properties of different electrodes were investigated via differential pulse voltammetry (DPV), showing that the electrode of G-MIP/MWCNTs/GCE exhibited excellent catalytic oxidation activity towards L-Glu. A good linear relationship between peak-currents and L-Glu concentrations in a range from 1.00 × 10-8 to 1.00 × 10-5 mol L-1 was observed, with a detection limit of 5.13 × 10-9 mol L-1 (S/N = 3). The imprinted sensor possesses excellent selectivity, high sensitivity, and good stability, which have been successfully applied for the detection of L-Glu in pig serum samples with a recovery rate of 97.4-105.5%, being comparable to commercial high-performance liquid chromatography, demonstrating a simple, rapid, and accurate way for the determination of L-Glu in the fields of animal nutrition and biomedical engineering.
Collapse
Affiliation(s)
- Xin-Yao Yu
- Hunan Provincial Key Laboratory of Materials Protection for Electric Power and Transportation, Hunan Provincial Key Laboratory of Cytochemistry, School of Chemistry and Chemical Engineering, Changsha University of Science and Technology, Changsha 410114, China.
| | - Jun-Yi He
- Hunan Provincial Key Laboratory of Materials Protection for Electric Power and Transportation, Hunan Provincial Key Laboratory of Cytochemistry, School of Chemistry and Chemical Engineering, Changsha University of Science and Technology, Changsha 410114, China.
| | - Fei Tang
- Hunan Provincial Key Laboratory of Materials Protection for Electric Power and Transportation, Hunan Provincial Key Laboratory of Cytochemistry, School of Chemistry and Chemical Engineering, Changsha University of Science and Technology, Changsha 410114, China.
| | - Peng Yu
- Hunan Provincial Key Laboratory of Materials Protection for Electric Power and Transportation, Hunan Provincial Key Laboratory of Cytochemistry, School of Chemistry and Chemical Engineering, Changsha University of Science and Technology, Changsha 410114, China.
| | - Ling Wu
- Hunan Provincial Key Laboratory of Materials Protection for Electric Power and Transportation, Hunan Provincial Key Laboratory of Cytochemistry, School of Chemistry and Chemical Engineering, Changsha University of Science and Technology, Changsha 410114, China.
| | - Zhong-Liang Xiao
- Hunan Provincial Key Laboratory of Materials Protection for Electric Power and Transportation, Hunan Provincial Key Laboratory of Cytochemistry, School of Chemistry and Chemical Engineering, Changsha University of Science and Technology, Changsha 410114, China.
| | - Li-Xian Sun
- School of Material Science and Engineering, Guilin University of Electronic Technology, Guilin 541004, China
| | - Zhong Cao
- Hunan Provincial Key Laboratory of Materials Protection for Electric Power and Transportation, Hunan Provincial Key Laboratory of Cytochemistry, School of Chemistry and Chemical Engineering, Changsha University of Science and Technology, Changsha 410114, China.
| | - Donghong Yu
- Department of Chemistry and Bioscience, Aalborg University, DK-9220 Aalborg, East, Denmark.
| |
Collapse
|
23
|
Cabaleiro-Lago C, Hasterok S, Gjörloff Wingren A, Tassidis H. Recent Advances in Molecularly Imprinted Polymers and Their Disease-Related Applications. Polymers (Basel) 2023; 15:4199. [PMID: 37959879 PMCID: PMC10649583 DOI: 10.3390/polym15214199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 10/19/2023] [Accepted: 10/20/2023] [Indexed: 11/15/2023] Open
Abstract
Molecularly imprinted polymers (MIPs) and the imprinting technique provide polymeric material with recognition elements similar to natural antibodies. The template of choice (i.e., the antigen) can be almost any type of smaller or larger molecule, protein, or even tissue. There are various formats of MIPs developed for different medical purposes, such as targeting, imaging, assay diagnostics, and biomarker detection. Biologically applied MIPs are widely used and currently developed for medical applications, and targeting the antigen with MIPs can also help in personalized medicine. The synthetic recognition sites of the MIPs can be tailor-made to function as analytics, diagnostics, and drug delivery systems. This review will cover the promising clinical applications of different MIP systems recently developed for disease diagnosis and treatment.
Collapse
Affiliation(s)
- Celia Cabaleiro-Lago
- Department of Bioanalysis, Faculty of Natural Sciences, Kristianstad University, 291 39 Kristianstad, Sweden; (C.C.-L.); (H.T.)
| | - Sylwia Hasterok
- Department of Biomedical Sciences, Faculty of Health and Society, Malmö University, 205 06 Malmö, Sweden;
- Biofilms-Research Center for Biointerfaces, Malmö University, 205 06 Malmö, Sweden
| | - Anette Gjörloff Wingren
- Department of Bioanalysis, Faculty of Natural Sciences, Kristianstad University, 291 39 Kristianstad, Sweden; (C.C.-L.); (H.T.)
- Department of Biomedical Sciences, Faculty of Health and Society, Malmö University, 205 06 Malmö, Sweden;
- Biofilms-Research Center for Biointerfaces, Malmö University, 205 06 Malmö, Sweden
| | - Helena Tassidis
- Department of Bioanalysis, Faculty of Natural Sciences, Kristianstad University, 291 39 Kristianstad, Sweden; (C.C.-L.); (H.T.)
| |
Collapse
|
24
|
Cheubong C, Sunayama H, Takano E, Kitayama Y, Minami H, Takeuchi T. A rapid abiotic/biotic hybrid sandwich detection for trace pork adulteration in halal meat extract. NANOSCALE 2023; 15:15171-15178. [PMID: 37641944 DOI: 10.1039/d3nr02863a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/31/2023]
Abstract
In this study, we prepared molecularly imprinted polymer nanogels with good affinity for the Fc domain of immunoglobulin G (IgG) using 4-(2-methacrylamidoethylaminomethyl) phenylboronic acid as a modifiable functional monomer for post-imprinting in-cavity modification of a fluorescent dye (F-Fc-MIP-NGs). A novel nanogel-based biotic/abiotic hybrid sandwich detection system for porcine serum albumin (PSA) was developed using F-Fc-MIP-NGs as an alternative to a secondary antibody for fluorescence detection and another molecularly imprinted polymer nanogel capable of recognizing PSA (PSA-MIP-NGs) as a capturing artificial antibody, along with a natural antibody toward PSA (Anti-PSA) that was used as a primary antibody. After incubation of PSA and Anti-PSA with F-Fc-MIP-NGs, the PSA/Anti-PSA/F-Fc-MIP-NGs complex was captured by immobilized PSA-MIP-NGs for fluorescence measurements. The analysis time was less than 30 min for detecting pork adulteration of 0.01 wt% in halal beef and lamb meats. The detection limit was comparable to that of frequently used immunoassays. Therefore, we believe that this method is a promising, sensitive, and rapid detection method for impurities in real samples and could be a simple, inexpensive, and rapid alternative to conventional methods that have cumbersome procedures of 4 hours or more.
Collapse
Affiliation(s)
- Chehasan Cheubong
- Graduate School of Engineering, Kobe University, 1-1, Rokkodai-cho, Nada-ku, Kobe 657-8501, Japan.
- Department of Chemistry, Faculty of Science and Technology, Rajamangala University of Technology, Thanyaburi, Pathumthani 12110, Thailand
| | - Hirobumi Sunayama
- Graduate School of Engineering, Kobe University, 1-1, Rokkodai-cho, Nada-ku, Kobe 657-8501, Japan.
| | - Eri Takano
- Graduate School of Engineering, Kobe University, 1-1, Rokkodai-cho, Nada-ku, Kobe 657-8501, Japan.
| | - Yukiya Kitayama
- Graduate School of Engineering, Osaka Metropolitan University, 1-1, Gakuen-cho, Naka-ku, Sakai, Osaka 599-8531, Japan
| | - Hideto Minami
- Graduate School of Engineering, Kobe University, 1-1, Rokkodai-cho, Nada-ku, Kobe 657-8501, Japan.
| | - Toshifumi Takeuchi
- Graduate School of Engineering, Kobe University, 1-1, Rokkodai-cho, Nada-ku, Kobe 657-8501, Japan.
- Center for Advanced Medical Engineering Research & Development (CAMED), Kobe University, 1-5-1, Minatojimaminami-machi, Chuo-ku, Kobe 650-0047, Japan
- Innovation Commercialization Division, Kobe University, 1-1, Rokkodai-cho, Nada-ku, Kobe 657-8501, Japan
| |
Collapse
|
25
|
Xu J, Liu X, Sun Y, Zhang D, Zhou H, Fan T. Bioinspired Photonic Microchip with Molecularly Imprinted Polymer for Single Recognition of c-Myc Protein in Predictive Medical Diagnostics. Adv Healthc Mater 2023; 12:e2203227. [PMID: 37037193 DOI: 10.1002/adhm.202203227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 03/30/2023] [Indexed: 04/12/2023]
Abstract
Monitoring of trace c-Myc protein as the biomarker of ubiquitous cancers is critical in achieving predictive medical diagnostics. However, qualitative and quantitative detection of c-Myc protein with superior single selectivity and sensitivity is still challenging. Herein, a bioinspired photonic sensing microchip for single recognition of c-Myc protein is outlined with two synergistic aspects involving chemical and physical design criteria. Chemical design uses specific molecularly imprinted polymer (MIP) with exquisite complementarity in its chemical functions and spatial geometries to targeted c-Myc protein, leading to excellent sensitivity and selectivity for single identification. Physical design involves optical geometrical double-reflection polarization rotation and multilayer interference of the fabricated periodic photonic architecture inspired by Papilio palinurus butterfly wings to enhance the spectral diversity of reflectance. Therefore, a one-of-a-kind sensing platform integrates the advantages of MIP and bioinspired photonic structure is demonstrated to actualize distinctive signal conversion and amplification for qualitative and quantitative detection of trace c-Myc protein, accompanied with superior sensitivity (detection limit is 0.014 µg mL-1 ), selectivity, stability, anti-interference ability as well as rapid response/recovery time. This sensor microchip uniquely ventures into the territory of functionally combining bioinspired photonic structure with MIP absorbers, proven promising for prevention or diagnosis of cancers in medical field.
Collapse
Affiliation(s)
- Jun Xu
- State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Xianghui Liu
- State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Ya Sun
- State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Di Zhang
- State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Han Zhou
- State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
- Future Materials Innovation Center, Zhangjiang Institute for Advanced Study, Shanghai Jiao Tong University, Shanghai, 201203, China
| | - Tongxiang Fan
- State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| |
Collapse
|
26
|
Zhao R, Li J, Wu C, Cai J, Li S, Li A, Zhong L. Reaction mechanism and detecting properties of a novel molecularly imprinted electrochemical sensor for microcystin based on three-dimensional AuNPs@MWCNTs/GQDs. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2023; 88:572-585. [PMID: 37578875 PMCID: wst_2023_238 DOI: 10.2166/wst.2023.238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/16/2023]
Abstract
Microcystins with leucine arginine (MC-LR) is a virulent hepatotoxin, which is commonly present in polluted water with its demethylated derivatives [Dha7] MC-LR. This study reported a low-cost molecularly imprinted polymer network-based electrochemical sensor for detecting MC-LR. The sensor was based on a three-dimensional conductive network composed of multi-walled carbon nanotubes (MWCNTs), graphene quantum dots (GQDs), and gold nanoparticles (AuNPs). The molecularly imprinted polymer was engineered by quantum chemical computation utilizing p-aminothiophenol (p-ATP) and methacrylic acid (MAA) as dual functional monomers and L-arginine as a segment template. The electrochemical reaction mechanism of MC-LR on the sensor was studied for the first time, which is an irreversible electrochemical oxidation reaction involving an electron and two protons, and is controlled by a mixed adsorption-diffusion mechanism. The sensor exhibited a great detection response to MC-LR in the linear range of 0.08-2 μg/L, and the limit of detection (LOD) is 0.0027 μg/L (S/N = 3). In addition, the recoveries of the total amount of MC-LR and [Dha7] MC-LR in the actual sample by the obtained sensor were in the range from 91.4 to 116.7%, which indicated its great potential for environmental detection.
Collapse
Affiliation(s)
- Rujing Zhao
- Key Laboratory of Marine Environment and Ecology, Ministry of Education, Ocean University of China, Qingdao 266100, China; College of Materials and Environmental Engineering, Modern Facility Agriculture Engineering Research Center of Fujian Universities, Fujian Polytechnic Normal University, Fuqing 350300, China; These two authors contributed equally to this paper. E-mail:
| | - Jin Li
- Key Laboratory of Marine Environment and Ecology, Ministry of Education, Ocean University of China, Qingdao 266100, China; These two authors contributed equally to this paper
| | - Chengsi Wu
- Qingdao Rely Environmental Technology Co., Ltd, Qindao, China
| | - Jun Cai
- Key Laboratory of Fermentation Engineering, Ministry of Education, Hubei University of Technology, Wuhan 430068, China
| | - Shiqian Li
- College of Materials and Environmental Engineering, Modern Facility Agriculture Engineering Research Center of Fujian Universities, Fujian Polytechnic Normal University, Fuqing 350300, China
| | - Aifeng Li
- Key Laboratory of Marine Environment and Ecology, Ministry of Education, Ocean University of China, Qingdao 266100, China
| | - Lian Zhong
- College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao 266100, China
| |
Collapse
|
27
|
Abstract
Optical biosensors are frontrunners for the rapid and real-time detection of analytes, particularly for low concentrations. Among them, whispering gallery mode (WGM) resonators have recently attracted a growing focus due to their robust optomechanical features and high sensitivity, measuring down to single binding events in small volumes. In this review, we provide a broad overview of WGM sensors along with critical advice and additional "tips and tricks" to make them more accessible to both biochemical and optical communities. Their structures, fabrication methods, materials, and surface functionalization chemistries are discussed. We propose this reflection under a pedagogical approach to describe and explain these biochemical sensors with a particular focus on the most recent achievements in the field. In addition to highlighting the advantages of WGM sensors, we also discuss and suggest strategies to overcome their current limitations, leaving room for further development as practical tools in various applications. We aim to provide new insights and combine different knowledge and perspectives to advance the development of the next generation of WGM biosensors. With their unique advantages and compatibility with different sensing modalities, these biosensors have the potential to become major game changers for biomedical and environmental monitoring, among many other relevant target applications.
Collapse
Affiliation(s)
- Médéric Loyez
- Department of Electrical & Systems Engineering, Washington University, One Brookings Drive Green Hall 2120F, St. Louis, Missouri 63130, United States
| | - Maxwell Adolphson
- Department of Electrical & Systems Engineering, Washington University, One Brookings Drive Green Hall 2120F, St. Louis, Missouri 63130, United States
| | - Jie Liao
- Department of Electrical & Systems Engineering, Washington University, One Brookings Drive Green Hall 2120F, St. Louis, Missouri 63130, United States
| | - Lan Yang
- Department of Electrical & Systems Engineering, Washington University, One Brookings Drive Green Hall 2120F, St. Louis, Missouri 63130, United States
| |
Collapse
|
28
|
Jin L, Liu W, Xiao Z, Yang H, Yu H, Dong C, Wu M. Recent Advances in Electrochemiluminescence Biosensors for Mycotoxin Assay. BIOSENSORS 2023; 13:653. [PMID: 37367018 DOI: 10.3390/bios13060653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 05/26/2023] [Accepted: 06/13/2023] [Indexed: 06/28/2023]
Abstract
Rapid and efficient detection of mycotoxins is of great significance in the field of food safety. In this review, several traditional and commercial detection methods are introduced, such as high-performance liquid chromatography (HPLC), liquid chromatography/mass spectrometry (LC/MS), enzyme-linked immunosorbent assay (ELISA), test strips, etc. Electrochemiluminescence (ECL) biosensors have the advantages of high sensitivity and specificity. The use of ECL biosensors for mycotoxins detection has attracted great attention. According to the recognition mechanisms, ECL biosensors are mainly divided into antibody-based, aptamer-based, and molecular imprinting techniques. In this review, we focus on the recent effects towards the designation of diverse ECL biosensors in mycotoxins assay, mainly including their amplification strategies and working mechanism.
Collapse
Affiliation(s)
- Longsheng Jin
- Department of Chemistry, College of Sciences, Nanjing Agricultural University, 1 Weigang, Nanjing 210095, China
| | - Weishuai Liu
- Department of Chemistry, College of Sciences, Nanjing Agricultural University, 1 Weigang, Nanjing 210095, China
| | - Ziying Xiao
- Department of Chemistry, College of Sciences, Nanjing Agricultural University, 1 Weigang, Nanjing 210095, China
| | - Haijian Yang
- Department of Chemistry, College of Sciences, Nanjing Agricultural University, 1 Weigang, Nanjing 210095, China
| | - Huihui Yu
- Department of Chemistry, College of Sciences, Nanjing Agricultural University, 1 Weigang, Nanjing 210095, China
| | - Changxun Dong
- Department of Chemistry, College of Sciences, Nanjing Agricultural University, 1 Weigang, Nanjing 210095, China
| | - Meisheng Wu
- Department of Chemistry, College of Sciences, Nanjing Agricultural University, 1 Weigang, Nanjing 210095, China
| |
Collapse
|
29
|
Karimi-Maleh H, Liu Y, Li Z, Darabi R, Orooji Y, Karaman C, Karimi F, Baghayeri M, Rouhi J, Fu L, Rostamnia S, Rajendran S, Sanati AL, Sadeghifar H, Ghalkhani M. Calf thymus ds-DNA intercalation with pendimethalin herbicide at the surface of ZIF-8/Co/rGO/C 3N 4/ds-DNA/SPCE; A bio-sensing approach for pendimethalin quantification confirmed by molecular docking study. CHEMOSPHERE 2023; 332:138815. [PMID: 37146774 DOI: 10.1016/j.chemosphere.2023.138815] [Citation(s) in RCA: 43] [Impact Index Per Article: 43.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 04/11/2023] [Accepted: 04/28/2023] [Indexed: 05/07/2023]
Abstract
Pendimethalin (PND) is a herbicide that is regarded to be possibly carcinogenic to humans and toxic to the environment. Herein, we fabricated a highly sensitive DNA biosensor based on ZIF-8/Co/rGO/C3N4 nanohybrid modification of a screen-printed carbon electrode (SPCE) to monitor PND in real samples. The layer-by-layer fabrication pathway was conducted to construct ZIF-8/Co/rGO/C3N4/ds-DNA/SPCE biosensor. The physicochemical characterization techniques confirmed the successful synthesis of ZIF-8/Co/rGO/C3N4 hybrid nanocomposite, as well as the appropriate modification of the SPCE surface. The utilization of ZIF-8/Co/rGO/C3N4 nanohybrid as a modifier was analyzed using. The electrochemical impedance spectroscopy results showed that the modified SPCE exhibited significantly lowered charge transfer resistance due to the enhancement of its electrical conductivity and facilitation of the transfer of charged particles. The proposed biosensor successfully quantified PND in a wide concentration range of 0.01-35 μM, with a limit of detection (LOD) value of 8.0 nM. The PND monitoring capability of the fabricated biosensor in real samples including rice, wheat, tap, and river water samples was verified with a recovery range of 98.2-105.6%. Moreover, to predict the interaction sites of PND herbicide with DNA, the molecular docking study was performed between the PND molecule and two sequence DNA fragments and confirmed the experimental findings. This research sets the stage for developing highly sensitive DNA biosensors that will be used to monitor and quantify toxic herbicides in real samples by fusing the advantages of nanohybrid structures with crucial knowledge from a molecular docking investigation.
Collapse
Affiliation(s)
- Hassan Karimi-Maleh
- School of Resources and Environment, University of Electronic Science and Technology of China, P.O. Box 611731, Xiyuan Ave, Chengdu, PR China; Department of Sustainable Engineering, Saveetha School of Engineering, SIMATS, Chennai, 602105, India; Department of Chemical Sciences, University of Johannesburg, Doornfontein Campus, 2028, Johannesburg, 17011, South Africa.
| | - Yuezhen Liu
- The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Quzhou, 324000, China.
| | - Zhangping Li
- The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Quzhou, 324000, China.
| | - Rozhin Darabi
- School of Resources and Environment, University of Electronic Science and Technology of China, P.O. Box 611731, Xiyuan Ave, Chengdu, PR China
| | - Yasin Orooji
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, 321004, China
| | - Ceren Karaman
- Department of Electricity and Energy, Akdeniz University, Antalya, 07070, Turkey; School of Engineering, Lebanese American University, Byblos, Lebanon.
| | - Fatemeh Karimi
- School of Resources and Environment, University of Electronic Science and Technology of China, P.O. Box 611731, Xiyuan Ave, Chengdu, PR China
| | - Mehdi Baghayeri
- Department of Chemistry, Faculty of Science, Hakim Sabzevari University, PO. Box 397, Sabzevar, Iran
| | - Jalal Rouhi
- Faculty of Physics, University of Tabriz, Tabriz, 51566, Iran
| | - Li Fu
- College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou, 310018, PR China
| | - Sadegh Rostamnia
- Organic and Nano Group (ONG), Department of Chemistry, Iran University of Science and Technology (IUST), PO Box 16846-13114, Tehran, Iran
| | - Saravanan Rajendran
- Faculty of Engineering, Department of Mechanical Engineering, University of Tarapac´a, Avda, General Velasquez, 1775, Arica, Chile
| | - Afsaneh L Sanati
- Institute of Systems and Robotics, Department of Electrical and Computer Engineering, University of Coimbra, Polo II, 3030-290, Coimbra, Portugal
| | - Hasan Sadeghifar
- Hollingsworth & Vose, R&D Center, 219 Townsend Road, Groton, MA, 01450, USA
| | - Masoumeh Ghalkhani
- Electrochemical Sensors Research Laboratory, Department of Chemistry, Faculty of Science, Shahid Rajaee Teacher Training University, Tehran, Iran
| |
Collapse
|
30
|
Duan D, Wang J, Han P, Liu X, Zhao L, Ma S. Dual-monomer molecularly imprinted electrochemical sensor based on amino-functionalized MOFs and graphene for trace determination of taurine. Mikrochim Acta 2023; 190:162. [PMID: 36988765 DOI: 10.1007/s00604-023-05751-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 03/14/2023] [Indexed: 03/30/2023]
Abstract
A molecularly imprinted electrochemical sensor (MIECS) for trace determination of taurine was developed. The sensor was constructed by electropolymerizing dopamine and o-phenylenediamine as dual monomers on the surface of amino-functionalized iron-based MOFs and graphene composite-modified electrode. The porous structure and large specific surface area of amino-functionalized iron-based MOFs not only increase the number of imprinted sites, but also facilitate the binding of molecularly imprinted films. The presence of dual monomers can increase the binding sites during the formation of imprinted films. The linear range of this sensor for taurine detection is 1.00 × 10-14-1.00 × 10-8 mol L-1 with a determination limit of 3.20 × 10-15 mol L-1. The proposed MIECS was successfully applied to quantify the amount of taurine in human serum sample with good recovery values from 97.3 to 113%.
Collapse
Affiliation(s)
- Dingding Duan
- Nanyang Institute of Technology, Nanyang, Henan, China.
| | - Jun Wang
- Nanyang Institute of Technology, Nanyang, Henan, China
| | - Pengxin Han
- Nanyang Institute of Technology, Nanyang, Henan, China
| | - Xin Liu
- Nanyang Institute of Technology, Nanyang, Henan, China
| | - Luhang Zhao
- Nanyang Institute of Technology, Nanyang, Henan, China
| | - Shenao Ma
- Nanyang Institute of Technology, Nanyang, Henan, China
| |
Collapse
|
31
|
Jiang W, Li Z, Yang Q, Hou X. Integration of Metallic Nanomaterials and Recognition Elements for the Specifically Monitoring of Pesticides in Electrochemical Sensing. Crit Rev Anal Chem 2023; 54:2636-2657. [PMID: 36971430 DOI: 10.1080/10408347.2023.2189955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
Abstract
Although all countries have been controlling the excessive use of pesticides, incidents of pesticide residues still existed. Electrochemical biosensors are extensively applied detection techniques to monitor pesticides with the help of different types of biorecognition components mainly including, antibodies, aptamers, enzymes (i.e., acetylcholinesterase, organophosphorus hydrolase, etc.), and synthetic molecularly imprinted polymers. Besides, the electrode materials mainly affected the sensitivity of electrochemical biosensors. Metallic nanomaterials with various structures and excellent electrical conductivity were desirable choice to construct electrochemical platforms to achieve the detection with high sensitivity and good specificity toward the target. This work reviewed the developed metallic materials including monometallic nanoparticles, bimetallic nanomaterials, metal atoms, metal oxides, metal molybdates, metal-organic frameworks, MXene, etc. Integration of recognition elements endowed the electrode materials with higher specificity toward the target pesticide. Besides, future challenges of metallic nanomaterials-based electrochemical biosensors for the detection of pesticides are also discussed and described.
Collapse
Affiliation(s)
- Wenpeng Jiang
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao, Shandong Province, China
| | - Zhaojie Li
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao, Shandong Province, China
| | - Qingli Yang
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao, Shandong Province, China
| | - Xiudan Hou
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao, Shandong Province, China
| |
Collapse
|
32
|
Karasu T, Özgür E, Uzun L. MIP-on-a-chip: Artificial receptors on microfluidic platforms for biomedical applications. J Pharm Biomed Anal 2023; 226:115257. [PMID: 36669397 DOI: 10.1016/j.jpba.2023.115257] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 01/03/2023] [Accepted: 01/16/2023] [Indexed: 01/19/2023]
Abstract
Lab-on-a-chip (LOC) as an alternative biosensing approach concerning cost efficiency, parallelization, ergonomics, diagnostic speed, and sensitivity integrates the techniques of various laboratory operations such as biochemical analysis, chemical synthesis, or DNA sequencing, etc. on miniaturized microfluidic single chips. Meanwhile, LOC tools based on molecularly imprinted biosensing approach permit their applications in various fields such as medical diagnostics, pharmaceuticals, etc., which are user-, and eco-friendly sensing platforms for not only alternative to the commercial competitor but also on-site detection like point-of-care measurements. In this review, we focused our attention on compiling recent pioneer studies that utilized those intriguing methodologies, the microfluidic Lab-on-a-chip and molecularly imprinting approach, and their biomedical applications.
Collapse
Affiliation(s)
- Tunca Karasu
- Department of Chemistry, Faculty of Science, Hacettepe University, Ankara, Turkiye
| | - Erdoğan Özgür
- Department of Chemistry, Faculty of Science, Hacettepe University, Ankara, Turkiye
| | - Lokman Uzun
- Department of Chemistry, Faculty of Science, Hacettepe University, Ankara, Turkiye.
| |
Collapse
|
33
|
Pourhajghanbar M, Arvand M, Habibi MF. Surface imprinting by using bi-functional monomers on spherical template magnetite for selective detection of levodopa in biological fluids. Talanta 2023; 254:124136. [PMID: 36462277 DOI: 10.1016/j.talanta.2022.124136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 11/21/2022] [Accepted: 11/24/2022] [Indexed: 11/27/2022]
Abstract
The present work introduces an innovative biosensing platform for greatly sensitive determination of levodopa medicine. Initially, spherical magnetic (SM) nanoparticles were prepared by hydrothermal fabrication approach and used as a pattern to make spherical magnetic molecular imprinted polymer (SMMIP). Afterward, levodopa-molecularly imprinted layer was grown on the surface of the spherical magnetic pattern by electropolymerization with dopamine and resorcinol as bi-functional monomers and levodopa as a template molecule, which enhanced the specific recognition of the sensing platform to levodopa. The presence of SM nanoparticles could not only accelerate the mass transfer, the electron transport rate, and improve specific surface area of the electrode but also facilitate the recognition of the polymer, in this way increasing the current response and improving the performance of the biosensor. The superior sensing efficiency of the presented biosensor was confirmed based on the low limit of detection of 10 nmol L-1 which represented two linear ranges from 0.5 to 200 μmol L-1 and 200-1000 μmol L-1 for levodopa. More importantly, the practicability of the biosensor was proved by detecting levodopa in tablet, blood serum and plasma, implying that the sensing platform was suitable for monitoring levodopa in actual biological fluid and medicine.
Collapse
Affiliation(s)
- Maedeh Pourhajghanbar
- Electroanalytical Chemistry Laboratory, Faculty of Chemistry, University of Guilan, Namjoo Street, P.O. Box: 1914-41335, Rasht, Iran
| | - Majid Arvand
- Electroanalytical Chemistry Laboratory, Faculty of Chemistry, University of Guilan, Namjoo Street, P.O. Box: 1914-41335, Rasht, Iran.
| | - Maryam Farahmand Habibi
- Electroanalytical Chemistry Laboratory, Faculty of Chemistry, University of Guilan, Namjoo Street, P.O. Box: 1914-41335, Rasht, Iran
| |
Collapse
|
34
|
Wardani NI, Kangkamano T, Wannapob R, Kanatharana P, Thavarungkul P, Limbut W. Electrochemical sensor based on molecularly imprinted polymer cryogel and multiwalled carbon nanotubes for direct insulin detection. Talanta 2023; 254:124137. [PMID: 36463801 DOI: 10.1016/j.talanta.2022.124137] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 11/21/2022] [Accepted: 11/24/2022] [Indexed: 11/27/2022]
Abstract
Insulin is the polypeptide hormone that regulates blood glucose levels. It is used as an indicator of both types of diabetes. An electrochemical insulin sensor was developed using a gold electrode modified with carboxylated multiwalled carbon nanotubes (f-MWCNTs) and molecularly imprinted polymer (MIP) cryogel. The MIP provided specific recognition sites for insulin, while the macropores of the cryogel promoted the mass transfer of insulin to the recognition sites. The f-MWCNTs increased the effective surface area and conductivity of the sensor and also reduced the potential required to oxidize insulin. Insulin oxidation was directly measured in a flow system using square wave voltammetry. This MIP cryogel/f-MWCNTs sensor provided a linear range of 0.050-1.40 pM with a very low limit of detection (LOD) of 33 fM. The sensor exhibited high selectivity and long-term stability over 10 weeks of dry storage at room temperature. The results of insulin determination in human serum using the sensor compared well with the results of the Elecsys insulin assay. The developed MIP sensor offers a promising alternative for the diagnosis and treatment of diabetes.
Collapse
Affiliation(s)
- Nur Indah Wardani
- Center of Excellence for Trace Analysis and Biosensor, Prince of Songkla University, Hat Yai, Songkhla, 90110, Thailand; Center of Excellence for Innovation in Chemistry, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla, 90110, Thailand; Division of Physical Science, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla, 90110, Thailand
| | - Tawatchai Kangkamano
- Center of Excellence for Trace Analysis and Biosensor, Prince of Songkla University, Hat Yai, Songkhla, 90110, Thailand; Center of Excellence for Innovation in Chemistry, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla, 90110, Thailand; Division of Physical Science, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla, 90110, Thailand; Department of Chemistry, Faculty of Science, Thaksin University (Phatthalung Campus), Papayom, Phatthalung, 93110, Thailand
| | - Rodtichoti Wannapob
- Center of Excellence for Trace Analysis and Biosensor, Prince of Songkla University, Hat Yai, Songkhla, 90110, Thailand; Center of Excellence for Innovation in Chemistry, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla, 90110, Thailand; Division of Physical Science, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla, 90110, Thailand
| | - Proespichaya Kanatharana
- Center of Excellence for Trace Analysis and Biosensor, Prince of Songkla University, Hat Yai, Songkhla, 90110, Thailand; Center of Excellence for Innovation in Chemistry, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla, 90110, Thailand; Division of Physical Science, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla, 90110, Thailand
| | - Panote Thavarungkul
- Center of Excellence for Trace Analysis and Biosensor, Prince of Songkla University, Hat Yai, Songkhla, 90110, Thailand; Center of Excellence for Innovation in Chemistry, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla, 90110, Thailand; Division of Physical Science, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla, 90110, Thailand
| | - Warakorn Limbut
- Center of Excellence for Trace Analysis and Biosensor, Prince of Songkla University, Hat Yai, Songkhla, 90110, Thailand; Center of Excellence for Innovation in Chemistry, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla, 90110, Thailand; Division of Health and Applied Sciences, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla, 90110, Thailand.
| |
Collapse
|
35
|
Zidarič T, Majer D, Maver T, Finšgar M, Maver U. The development of an electropolymerized, molecularly imprinted polymer (MIP) sensor for insulin determination using single-drop analysis. Analyst 2023; 148:1102-1115. [PMID: 36723087 DOI: 10.1039/d2an02025d] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
An electrochemical sensor for the detection of insulin in a single drop (50 μL) was developed based on the concept of molecularly imprinted polymers (MIP). The synthetic MIP receptors were assembled on a screen-printed carbon electrode (SPCE) by the electropolymerization of pyrrole (Py) in the presence of insulin (the protein template) using cyclic voltammetry. After electropolymerization, insulin was removed from the formed polypyrrole (Ppy) matrix to create imprinting cavities for the subsequent analysis of the insulin analyte in test samples. The surface characterization, before and after each electrosynthesis step of the MIP sensors, was performed using atomic force microscopy, scanning electron microscopy, and energy-dispersive X-ray spectroscopy. The performance of the developed MIP-SPCE sensor was evaluated using a single drop of solution containing K3Fe(CN)6 and the square-wave voltammetry technique. The MIP-SPCE showed a linear concentration range of 20.0-70.0 pM (R2 = 0.9991), a limit of detection of 1.9 pM, and a limit of quantification of 6.2 pM. The rapid response time to the protein target and the portability of the developed sensor, which is considered a disposable MIP-based system, make this MIP-SPCE sensor a promising candidate for point-of-care applications. In addition, the MIP-SPCE sensor was successfully used to detect insulin in a pharmaceutical sample. The sensor was deemed to be accurate (the average recovery was 108.46%) and precise (the relative standard deviation was 7.23%).
Collapse
Affiliation(s)
- Tanja Zidarič
- University of Maribor, Faculty of Medicine, Institute of Biomedical Sciences, Taborska ulica 8, 2000 Maribor, Slovenia
| | - David Majer
- University of Maribor, Faculty of Chemistry and Chemical Engineering, Smetanova ulica 17, 2000 Maribor, Slovenia.
| | - Tina Maver
- University of Maribor, Faculty of Medicine, Institute of Biomedical Sciences, Taborska ulica 8, 2000 Maribor, Slovenia.,University of Maribor, Faculty of Medicine, Department of Pharmacology, Taborska ulica 8, 2000 Maribor, Slovenia
| | - Matjaž Finšgar
- University of Maribor, Faculty of Chemistry and Chemical Engineering, Smetanova ulica 17, 2000 Maribor, Slovenia.
| | - Uroš Maver
- University of Maribor, Faculty of Medicine, Institute of Biomedical Sciences, Taborska ulica 8, 2000 Maribor, Slovenia.,University of Maribor, Faculty of Medicine, Department of Pharmacology, Taborska ulica 8, 2000 Maribor, Slovenia
| |
Collapse
|
36
|
Chen X, Li Q, Yuan T, Ma M, Ye Z, Wei X, Fang X, Mao S. Highly Specific Antibiotic Detection on Water-Stable Black Phosphorus Field-Effect Transistors. ACS Sens 2023; 8:858-866. [PMID: 36701186 DOI: 10.1021/acssensors.2c02562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Two-dimensional (2D) black phosphorus (BP) has been reported to have appealing semiconducting properties as the sensing channel in field-effect transistor (FET) sensors. However, the intrinsic instability of BP in water greatly hinders its application, and little is known about its sensing performance and mechanism in aqueous medium. Herein, a water-stable BP FET sensor for antibiotic detection is reported. A novel surface engineering strategy with Ag+ coordination and melamine cyanurate (MC) supramolecular passivation is utilized to enhance the stability and transistor performance of BP. With molecularly imprinted polymers (MIPs) as the detection probe for tetracycline, the BPAg(+)/MC/MIPs sensor shows high sensitivity to tetracycline with a detection limit of 7.94 nM and a quick response within 6 s as well as high selectivity against other antibiotics with similar molecular structures. A new sensing mechanism relying on the conjugation effect of the probe structure is proposed, and new knowledge about alkalinity-enhanced and ionic strength-related response from the electrostatic gating effect is given based on the solution chemistry impact study. This work offers an efficient surface engineering strategy to enable the application of 2D BP for antibiotic detection in aqueous medium and presents a new sensing mechanism in chemical analysis by FET sensors.
Collapse
Affiliation(s)
- Xiaoyan Chen
- Department of Chemistry and Materials Science, College of Science, Nanjing Forestry University, 159 Longpan Road, Nanjing, Jiangsu210037, China
| | - Qiuju Li
- College of Environmental Science and Engineering, State Key Laboratory of Pollution Control and Resource Reuse, Tongji University, 1239 Siping Road, Shanghai200092, China
| | - Taoyue Yuan
- Department of Chemistry and Materials Science, College of Science, Nanjing Forestry University, 159 Longpan Road, Nanjing, Jiangsu210037, China
| | - Mengtao Ma
- Department of Chemistry and Materials Science, College of Science, Nanjing Forestry University, 159 Longpan Road, Nanjing, Jiangsu210037, China
| | - Ziwei Ye
- College of Environmental Science and Engineering, State Key Laboratory of Pollution Control and Resource Reuse, Tongji University, 1239 Siping Road, Shanghai200092, China
| | - Xiaojie Wei
- College of Environmental Science and Engineering, State Key Laboratory of Pollution Control and Resource Reuse, Tongji University, 1239 Siping Road, Shanghai200092, China
| | - Xian Fang
- School of Exercise and Health, Shanghai University of Sport, Shanghai200438, China
| | - Shun Mao
- College of Environmental Science and Engineering, State Key Laboratory of Pollution Control and Resource Reuse, Tongji University, 1239 Siping Road, Shanghai200092, China
| |
Collapse
|
37
|
Lucia-Tamudo J, Nogueira JJ, Díaz-Tendero S. An Efficient Multilayer Approach to Model DNA-Based Nanobiosensors. J Phys Chem B 2023; 127:1513-1525. [PMID: 36779932 PMCID: PMC9969517 DOI: 10.1021/acs.jpcb.2c07225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/14/2023]
Abstract
In this work, we present a full computational protocol to successfully obtain the one-electron reduction potential of nanobiosensors based on a self-assembled monolayer of DNA nucleobases linked to a gold substrate. The model is able to account for conformational sampling and environmental effects at a quantum mechanical (QM) level efficiently, by combining molecular mechanics (MM) molecular dynamics and multilayer QM/MM/continuum calculations within the framework of Marcus theory. The theoretical model shows that a guanine-based biosensor is more prone to be oxidized than the isolated nucleobase in water due to the electrostatic interactions between the assembled guanine molecules. In addition, the redox properties of the biosensor can be tuned by modifying the nature of the linker that anchor the nucleobases to the metal support.
Collapse
Affiliation(s)
- Jesús Lucia-Tamudo
- Department of Chemistry, Universidad Autónoma de Madrid, 28049, Madrid, Spain
| | - Juan J Nogueira
- Department of Chemistry, Universidad Autónoma de Madrid, 28049, Madrid, Spain.,Institute for Advanced Research in Chemistry (IAdChem), Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - Sergio Díaz-Tendero
- Department of Chemistry, Universidad Autónoma de Madrid, 28049, Madrid, Spain.,Institute for Advanced Research in Chemistry (IAdChem), Universidad Autónoma de Madrid, 28049 Madrid, Spain.,Condensed Matter Physics Center (IFIMAC), Universidad Autónoma de Madrid, 28049 Madrid, Spain
| |
Collapse
|
38
|
Liu R, Ko CC. Molecularly Imprinted Polymer-Based Luminescent Chemosensors. BIOSENSORS 2023; 13:295. [PMID: 36832061 PMCID: PMC9953969 DOI: 10.3390/bios13020295] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 02/07/2023] [Accepted: 02/16/2023] [Indexed: 06/18/2023]
Abstract
Molecularly imprinted polymer (MIP)-based luminescent chemosensors combine the advantages of the highly specific molecular recognition of the imprinting sites and the high sensitivity with the luminescence detection. These advantages have drawn great attention during the past two decades. Luminescent molecularly imprinted polymers (luminescent MIPs) towards different targeted analytes are constructed with different strategies, such as the incorporation of luminescent functional monomers, physical entrapment, covalent attachment of luminescent signaling elements on the MIPs, and surface-imprinting polymerization on the luminescent nanomaterials. In this review, we will discuss the design strategies and sensing approaches of luminescent MIP-based chemosensors, as well as their selected applications in biosensing, bioimaging, food safety, and clinical diagnosis. The limitations and prospects for the future development of MIP-based luminescent chemosensors will also be discussed.
Collapse
|
39
|
Elfadil D, Silveri F, Palmieri S, Della Pelle F, Sergi M, Del Carlo M, Amine A, Compagnone D. Liquid-phase exfoliated 2D graphene nanoflakes electrochemical sensor coupled to molecularly imprinted polymers for the determination of citrinin in food. Talanta 2023. [DOI: 10.1016/j.talanta.2022.124010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
40
|
Construction of a Molecularly Imprinted Sensor Modified with Tea Branch Biochar and Its Rapid Detection of Norfloxacin Residues in Animal-Derived Foods. Foods 2023; 12:foods12030544. [PMID: 36766073 PMCID: PMC9913916 DOI: 10.3390/foods12030544] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 01/08/2023] [Accepted: 01/22/2023] [Indexed: 01/28/2023] Open
Abstract
Norfloxacin (NOR) is a common antibiotic used in humans and animals, and its high levels can cause intolerance or poisoning. Therefore, NOR levels in animal-derived foods must be monitored due to potential side effects and illegal use phenomena. This research centered on the development of an environmentally friendly electrochemical sensor for NOR detection. Potassium carbonate activated tea branch biochar (K-TBC) as an efficient use of waste was coated on the surface of glassy carbon electrode (GCE), and a molecular-imprinted polymer (MIP) layer was subsequently electropolymerized onto the modified electrode. NOR was used as template molecule and o-phenylenediamine (o-PD) and o-aminophenol (o-AP) were used as bifunctional monomers. The electrochemical sensor was built and its electrochemical behavior on NOR was investigated. The sensor demonstrated an excellent linear current response to NOR concentrations in the ranges of 0.1-0.5 nM and 0.5-100 nM under ideal experimental circumstances, with a detection limit of 0.028 nM (S/N = 3). With recoveries ranging from 85.90% to 101.71%, the designed sensor was effectively used to detect NOR in actual samples of milk, honey, and pork. Besides, the fabricated sensor had low price, short detection time, good selectivity and stability, which can provide a theoretical and practical basis for the actual monitoring of NOR residues.
Collapse
|
41
|
Cui G, Liang R, Qin W. Potentiometric sensor based on a computationally designed molecularly imprinted receptor. Anal Chim Acta 2023; 1239:340720. [PMID: 36628722 DOI: 10.1016/j.aca.2022.340720] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Revised: 12/03/2022] [Accepted: 12/10/2022] [Indexed: 12/15/2022]
Abstract
Molecularly imprinted polymer (MIP)-based polymeric membrane potentiometric sensors are ideal candidates for detection of organic species. The development of such sensors has opened new attractive horizons for potentiometric sensing. However, it should be noted that in the preparation of these MIP receptors, the selection of the functional monomer usually depends on empirical trial- and error-based optimization, which involves tedious and time-consuming experiments. In this work, the computer-aided design and synthesis of an MIP receptor are applied in the fabrication of an MIP-based potentiometric sensor. The density functional theory calculation with the B3LYP model and 6-31G(d) basis set is used to study the interactions between the functional monomer and template molecules. The binding energies of the complexations between the template molecule and different functional monomers are used as a criterion for the selection of the proper monomer. The designed MIP is then synthesized and employed as the receptor for the fabrication of the potentiometric sensor. As a proof-of-concept experiment, the antibiotic sulfadiazine has been selected as a model and 4 functional monomers, 2-hydroxyethyl methacrylate, methyl methacrylate, N-isopropylacrylamide and N-phenylacrylamide, have been chosen. The designed MIP-based sensor exhibits excellent sensitivity with a linear range of 1-10 μM and also shows a good selectivity. We believe that the proposed computer-aided synthesis technique for the MIP receptor selection can provide a general and facile way to replace the traditional empirical MIP preparation method in the fabrication of MIP-based electrochemical and optical sensors.
Collapse
Affiliation(s)
- Guohua Cui
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research (YIC), Chinese Academy of Sciences (CAS), Shandong Key Laboratory of Coastal Environmental Processes, YICCAS, Yantai, Shandong, 264003, PR China
| | - Rongning Liang
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research (YIC), Chinese Academy of Sciences (CAS), Shandong Key Laboratory of Coastal Environmental Processes, YICCAS, Yantai, Shandong, 264003, PR China.
| | - Wei Qin
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research (YIC), Chinese Academy of Sciences (CAS), Shandong Key Laboratory of Coastal Environmental Processes, YICCAS, Yantai, Shandong, 264003, PR China; Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology, Qingdao, Shandong, 266237, PR China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, Shandong, 266071, PR China.
| |
Collapse
|
42
|
Wang S, Liu Y, Zhu A, Tian Y. In Vivo Electrochemical Biosensors: Recent Advances in Molecular Design, Electrode Materials, and Electrochemical Devices. Anal Chem 2023; 95:388-406. [PMID: 36625112 DOI: 10.1021/acs.analchem.2c04541] [Citation(s) in RCA: 32] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Electrochemical biosensors provide powerful tools for dissecting the dynamically changing neurochemical signals in the living brain, which contribute to the insight into the physiological and pathological processes of the brain, due to their high spatial and temporal resolutions. Recent advances in the integration of in vivo electrochemical sensors with cross-disciplinary advances have reinvigorated the development of in vivo sensors with even better performance. In this Review, we summarize the recent advances in molecular design, electrode materials, and electrochemical devices for in vivo electrochemical sensors from molecular to macroscopic dimensions, highlighting the methods to obtain high performance for fulfilling the requirements for determination in the complex brain through flexible and smart design of molecules, materials, and devices. Also, we look forward to the development of next-generation in vivo electrochemical biosensors.
Collapse
Affiliation(s)
- Shidi Wang
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, Department of Chemistry, School of Chemistry and Molecular Engineering, East China Normal University, Dongchuan Road 500, Shanghai 200241, China
| | - Yuandong Liu
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, Department of Chemistry, School of Chemistry and Molecular Engineering, East China Normal University, Dongchuan Road 500, Shanghai 200241, China
| | - Anwei Zhu
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, Department of Chemistry, School of Chemistry and Molecular Engineering, East China Normal University, Dongchuan Road 500, Shanghai 200241, China
| | - Yang Tian
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, Department of Chemistry, School of Chemistry and Molecular Engineering, East China Normal University, Dongchuan Road 500, Shanghai 200241, China
| |
Collapse
|
43
|
Liu D, Yi S, Ni X, Zhang J, Wang F, Yang P, Liu M, Peng J, Dramou P, He H. Preparation and Application of Nanozymes with Uricase-Like Activity Based on Molecularly Imprinted Polymers. Chempluschem 2023; 88:e202200286. [PMID: 36591998 DOI: 10.1002/cplu.202200286] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 10/19/2022] [Indexed: 11/16/2022]
Abstract
Nanozymes have advantages over natural enzymes in terms of efficiency, stability, and economy. MVSM (Mixed Valence State MOF) is a nano-oxidase with uricase-like activity that may catalyze uric acid (UA) in the body into allantoin and H2 O2 to treat gout and hyperuricemia by substituting natural uricase. However, it cannot specifically identify and choose UA. To increase the selectivity and affinity of MVSM for UA, the composite material MVSM@MIP is innovatively synthesized using a new synthetic approach termed the "two-step synthesis method," which may prevent UA from being oxidized by MVSM during manufacture in this study. At the same time, this study also provides experimental proof of the effective creation of the material, the advantages of the "two-step synthesis approach," and the high selectivity and affinity of MVSM@MIP for UA. Based on these findings, the suggested technique may be used to effectively catalyze uric acid in human urine with high activity.
Collapse
Affiliation(s)
- Donghao Liu
- Department of Analytical Chemistry, China Pharmaceutical University, Nanjing, 211198, P. R. China
- Key Laboratory of Biomedical Functional Materials, China Pharmaceutical University, Nanjing, 211198, P. R. China
| | - Simin Yi
- Department of Analytical Chemistry, China Pharmaceutical University, Nanjing, 211198, P. R. China
| | - Xu Ni
- Department of Analytical Chemistry, China Pharmaceutical University, Nanjing, 211198, P. R. China
| | - Jingjing Zhang
- Department of Analytical Chemistry, China Pharmaceutical University, Nanjing, 211198, P. R. China
| | - Fangqi Wang
- Department of Analytical Chemistry, China Pharmaceutical University, Nanjing, 211198, P. R. China
| | - Ping Yang
- Department of Analytical Chemistry, China Pharmaceutical University, Nanjing, 211198, P. R. China
| | - Meiru Liu
- Department of Analytical Chemistry, China Pharmaceutical University, Nanjing, 211198, P. R. China
| | - Jun Peng
- College of Medical Engineering & the Key Laboratory for Medical Functional Nanomaterials, Jining Medical University, Jining, 272067, P. R. China
| | - Pierre Dramou
- Department of Analytical Chemistry, China Pharmaceutical University, Nanjing, 211198, P. R. China
- Key Laboratory of Biomedical Functional Materials, China Pharmaceutical University, Nanjing, 211198, P. R. China
| | - Hua He
- Department of Analytical Chemistry, China Pharmaceutical University, Nanjing, 211198, P. R. China
- Key Laboratory of Biomedical Functional Materials, China Pharmaceutical University, Nanjing, 211198, P. R. China
- Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, China Pharmaceutical University, Nanjing, 211198, P. R. China
| |
Collapse
|
44
|
Ghaani M, Büyüktaş D, Carullo D, Farris S. Development of a New Electrochemical Sensor Based on Molecularly Imprinted Biopolymer for Determination of 4,4'-Methylene Diphenyl Diamine. SENSORS (BASEL, SWITZERLAND) 2022; 23:s23010046. [PMID: 36616643 PMCID: PMC9824447 DOI: 10.3390/s23010046] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 12/16/2022] [Accepted: 12/17/2022] [Indexed: 06/12/2023]
Abstract
A new molecularly imprinted electrochemical sensor was proposed to determine 4,4'-methylene diphenyl diamine (MDA) using molecularly imprinted polymer-multiwalled carbon nanotubes modified glassy carbon electrode (MIP/MWCNTs/GCE). GCE was coated by MWCNTs (MWCNTs/GCE) because of their antifouling qualities and in order to improve the sensor sensitivity. To make the whole sensor, a polymeric film made up of chitosan nanoparticles was electrodeposited by the cyclic voltammetry method on the surface of MWCNTs/GCE in the presence of MDA as a template. Different parameters such as scan cycles, elution time, incubation time, molar ratio of template molecules to functional monomers, and pH were optimized to increase the performance of the MIP sensor. With a detection limit of 15 nM, a linear response to MDA was seen in the concentration range of 0.5-100 µM. The imprinting factor (IF) of the proposed sensor was also calculated at around 3.66, demonstrating the extremely high recognition performance of a MIP/MWCNT-modified electrode. Moreover, the sensor exhibited good reproducibility and selectivity. Finally, the proposed sensor was efficiently used to determine MDA in real samples with satisfactory recoveries ranging from 94.10% to 106.76%.
Collapse
Affiliation(s)
- Masoud Ghaani
- DeFENS, Department of Food, Environmental, and Nutritional Sciences, Food Packaging Lab., University of Milan, via Celoria 2—I, 20133 Milan, Italy
| | - Duygu Büyüktaş
- Department of Food Engineering, Faculty of Engineering, Izmir Institute of Technology, Gülbahçe Köyü, Urla, Izmir 35430, Turkey
| | - Daniele Carullo
- DeFENS, Department of Food, Environmental, and Nutritional Sciences, Food Packaging Lab., University of Milan, via Celoria 2—I, 20133 Milan, Italy
| | - Stefano Farris
- DeFENS, Department of Food, Environmental, and Nutritional Sciences, Food Packaging Lab., University of Milan, via Celoria 2—I, 20133 Milan, Italy
- INSTM, National Consortium of Materials Science and Technology, Local Unit University of Milan, Via Celoria 2—I, 20133 Milan, Italy
| |
Collapse
|
45
|
Epitope-imprinted Polydopamine and Reduced Graphene Oxide-Based Sensing Interface for Label-free Detection of Gliadin. J Food Compost Anal 2022. [DOI: 10.1016/j.jfca.2022.105090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
46
|
Singh R, Singh M. Highly selective and specific monitoring of pollutants using dual template imprinted MIP sensor. J Electroanal Chem (Lausanne) 2022. [DOI: 10.1016/j.jelechem.2022.116939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
47
|
Wang Q, Cheng S, Ren S, Zheng Z. Construction of molecularly imprinted voltammetric sensor based on Cu N C polyhedron porous carbon from Cu doping ZIF-8 for the selective determination of norfloxacin. Microchem J 2022. [DOI: 10.1016/j.microc.2022.107963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
48
|
Wang M, Cetó X, del Valle M. A Sensor Array Based on Molecularly Imprinted Polymers and Machine Learning for the Analysis of Fluoroquinolone Antibiotics. ACS Sens 2022; 7:3318-3325. [PMID: 36281963 PMCID: PMC9706806 DOI: 10.1021/acssensors.2c01260] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Fluoroquinolones (FQs) are one of the most important types of antibiotics in the clinical, poultry, and aquaculture industries, and their monitoring is required as the abuse has led to severe issues, such as antibiotic residues and antimicrobial resistance. In this study, we report a voltammetric electronic tongue (ET) for the simultaneous determination of ciprofloxacin, levofloxacin, and moxifloxacin in both pharmaceutical and biological samples. The ET comprises four sensors modified with three different customized molecularly imprinted polymers (MIPs) and a nonimprinted polymer integrated with Au nanoparticle-decorated multiwall carbon nanotubes (Au-fMWCNTs). MWCNTs were first functionalized to serve as a supporting substrate, while the anchored Au nanoparticles acted as a catalyst. Subsequently, MIP films were obtained by electropolymerization of pyrrole in the presence of the different target FQs. The sensors' morphology was characterized by scanning electron microscopy and transmission electron microscopy, while the modification process was followed electrochemically step by step employing [Fe(CN)6]3-/4- as the redox probe. Under the optimal conditions, the MIP(FQs)@Au-fMWCNT sensors exhibited different responses, limits of detection of ca. 1 μM, and a wide detection range up to 300 μM for the three FQs. Lastly, the developed ET presents satisfactory agreement between the expected and obtained values when used for the simultaneous determination of mixtures of the three FQs (R2 ≥0.960, testing subset), which was also applied to the analysis of FQs in commercial pharmaceuticals and spiked human urine samples.
Collapse
|
49
|
Takahashi F, Matsuda K, Nakazawa T, Mori S, Yoshida M, Shimizu R, Tatsumi H, Jin J. Synthesis and characterization of molecularly imprinted polymers for detection of the local anesthetic lidocaine in urine. SEPARATION SCIENCE PLUS 2022. [DOI: 10.1002/sscp.202200081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Affiliation(s)
- Fumiki Takahashi
- Department of Chemistry Faculty of Science Shinshu University Matsumoto Nagano Japan
| | - Kazusane Matsuda
- Department of Chemistry Faculty of Science Shinshu University Matsumoto Nagano Japan
| | - Tomoyuki Nakazawa
- Department of Chemistry Faculty of Science Shinshu University Matsumoto Nagano Japan
| | - Shuki Mori
- Department of Chemistry Faculty of Science Shinshu University Matsumoto Nagano Japan
| | - Masachika Yoshida
- Department of Chemistry Faculty of Science Shinshu University Matsumoto Nagano Japan
| | - Ryo Shimizu
- Department of Chemistry Faculty of Science Shinshu University Matsumoto Nagano Japan
| | - Hirosuke Tatsumi
- Department of Chemistry Faculty of Science Shinshu University Matsumoto Nagano Japan
| | - Jiye Jin
- Department of Chemistry Faculty of Science Shinshu University Matsumoto Nagano Japan
| |
Collapse
|
50
|
Saxena K, Murti BT, Yang PK, Malhotra BD, Chauhan N, Jain U. Fabrication of a Molecularly Imprinted Nano-Interface-Based Electrochemical Biosensor for the Detection of CagA Virulence Factors of H. pylori. BIOSENSORS 2022; 12:1066. [PMID: 36551033 PMCID: PMC9775653 DOI: 10.3390/bios12121066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 11/12/2022] [Accepted: 11/18/2022] [Indexed: 06/17/2023]
Abstract
H. pylori is responsible for several stomach-related diseases including gastric cancer. The main virulence factor responsible for its establishment in human gastric cells is known as CagA. Therefore, in this study, we have fabricated a highly sensitive MIP-based electrochemical biosensor for the detection of CagA. For this, an rGO and gold-coated, screen-printed electrode sensing platform was designed to provide a surface for the immobilization of a CagA-specific, molecularly imprinted polymer; then it was characterized electrochemically. Interestingly, molecular dynamics simulations were studied to optimize the MIP prepolymerization system, resulting in a well-matched, optimized molar ratio within the experiment. A low binding energy upon template removal indicates the capability of MIP to recognize the CagA antigen through a strong binding affinity. Under the optimized electrochemical experimental conditions, the fabricated CagA-MIP/Au/rGO@SPE sensor exhibited high sensitivity (0.275 µA ng-1 mL-1) and a very low limit of detection (0.05 ng mL-1) in a linear range of 0.05-50 ng mL-1. The influence of other possible interferents in analytical response has also been observed with the successful determination of the CagA antigen.
Collapse
Affiliation(s)
- Kirti Saxena
- Amity Institute of Nanotechnology, Amity University Uttar Pradesh (AUUP), Sector-125, Noida 201313, India
| | - Bayu Tri Murti
- Graduate Institute of Biomedical Materials and Tissue Engineering, Taipei Medical University, Taipei 11031, Taiwan
- Department of Biomedical Sciences and Engineering, National Central University, Chung-li 32001, Taiwan
| | - Po-Kang Yang
- Department of Biomedical Sciences and Engineering, National Central University, Chung-li 32001, Taiwan
| | - Bansi Dhar Malhotra
- Nanobioelectronics Laboratory, Department of Biotechnology, Delhi Technological University, Delhi 110042, India
| | - Nidhi Chauhan
- Amity Institute of Nanotechnology, Amity University Uttar Pradesh (AUUP), Sector-125, Noida 201313, India
| | - Utkarsh Jain
- Amity Institute of Nanotechnology, Amity University Uttar Pradesh (AUUP), Sector-125, Noida 201313, India
| |
Collapse
|