1
|
Xiang Z, Yang L, Yu B, Zeng Q, Huang T, Shi S, Yu H, Zhang Y, Wu J, Zhu M. Recent advances in polymer-based thin-film electrodes for ECoG applications. J Mater Chem B 2025; 13:454-471. [PMID: 39588722 DOI: 10.1039/d4tb02090a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2024]
Abstract
Electrocorticography (ECoG) has garnered widespread attention owing to its superior signal resolution compared to conventional electroencephalogram (EEG). While ECoG signal acquisition entails invasiveness, the invasive rigid electrode used inevitably inflicts damage on brain tissue. Polymer electrodes that combine conductivity and transparency have garnered great interest because they not only facilitate high-quality signal acquisition but also provide additional insights while preserving the health of the brain, positioning them as the future frontier in the brain-computer interface (BCI). This review summarizes the multifaceted functions of polymers in ECoG thin-film electrodes for the BCI. We present the abilities of sensitive and structural polymers focusing on impedance reduction, signal quality improvement, good flexibility, and transparency. Typically, two sensitive polymers and four structural polymers are analyzed in detail in terms of ECoG electrode properties. Moreover, the underlying mechanism of polymer-based electrodes in signal quality enhancement is revealed. Finally, the remaining challenges and perspectives are discussed.
Collapse
Affiliation(s)
- Zhengchen Xiang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China.
| | - Liangtao Yang
- Research Center for Medical Artificial Intelligence, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, 518055 Shenzhen, China.
| | - Bin Yu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China.
| | - Qi Zeng
- Research Center for Medical Artificial Intelligence, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, 518055 Shenzhen, China.
| | - Tao Huang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China.
| | - Shuo Shi
- School of Fashion and Textiles, The Hong Kong Polytechnic University, 999077, Hong Kong S.A.R, China
| | - Hao Yu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China.
| | - Yi Zhang
- Research Center for Medical Artificial Intelligence, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, 518055 Shenzhen, China.
| | - Jinglong Wu
- Research Center for Medical Artificial Intelligence, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, 518055 Shenzhen, China.
| | - Meifang Zhu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China.
| |
Collapse
|
2
|
Han J, Lee Y, Lee JH, Yoon J. Flexible Electrochemical Biosensor Using Nanostructure-Modified Polymer Electrode for Detection of Viral Nucleic Acids. BIOSENSORS 2024; 14:594. [PMID: 39727860 DOI: 10.3390/bios14120594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 12/02/2024] [Accepted: 12/03/2024] [Indexed: 12/28/2024]
Abstract
In the biosensor field, the accurate detection of contagious disease has become one of the most important research topics in the post-pandemic period. However, conventional contagious viral biosensors normally require chemical modifications to introduce the probe molecules to nucleic acids such as a redox indicator, fluorescent dye, or quencher for biosensing. To avoid this complex chemical modification, in this research, mismatched DNA with an intercalated metal ion complex (MIMIC) is employed as the probe sequence. In addition, the MIMIC is fabricated on a lithography-assisted nanostructure-modified flexible polymer electrode. On this flexible electrode, as a proof-of-concept study, a human papillomavirus (HPV-16 and -18) was detected by the MIMIC with a high accuracy. The developed biosensor exhibits an ultrasensitive ability to detect HPV in viral DNA without target amplification and chemical modifications in a simple preparation manner. Moreover, it retains its nanostructures and high conductivity after bending. In conclusion, the use of the proposed biosensor suggests a novel approach to developing an ultrasensitive and flexible biosensor for the detection of important biomarkers in a simple manner that can be applied in point-of-care testing.
Collapse
Affiliation(s)
- Jiyu Han
- Department of Biomedical-Chemical Engineering, The Catholic University of Korea, Bucheon 14662, Republic of Korea
| | - Yejin Lee
- Department of Biomedical-Chemical Engineering, The Catholic University of Korea, Bucheon 14662, Republic of Korea
- Department of Biotechnology, The Catholic University of Korea, Bucheon 14662, Republic of Korea
| | - Jin-Ho Lee
- School of Biomedical Convergence Engineering, Pusan National University, Yangsan 50612, Republic of Korea
- Department of Information Convergence Engineering, Pusan National University, Yangsan 50612, Republic of Korea
| | - Jinho Yoon
- Department of Biomedical-Chemical Engineering, The Catholic University of Korea, Bucheon 14662, Republic of Korea
- Department of Biotechnology, The Catholic University of Korea, Bucheon 14662, Republic of Korea
| |
Collapse
|
3
|
Lourenço C, Moreira F, Igreja R, Martins G. Flexible, Electrochemical Skin-Like Platform for Inflammatory Biomarker Monitoring. Macromol Biosci 2024; 24:e2400287. [PMID: 39292822 DOI: 10.1002/mabi.202400287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 09/07/2024] [Indexed: 09/20/2024]
Abstract
Addressing global challenges in wound management has greatly encouraged the emergence of home diagnosis and monitoring devices. This technological shift has accelerated the development of new skin patch sensors for continuous health monitoring. A key requirement is the creation of flexible platforms capable of mimicking human skin features. Here, for the first time, an innovative, highly adaptable electrochemical biosensor with molecularly imprinted polymers (MIPs) is customized for the detection of the inflammatory biomarker interleukin-6 (IL-6). The 3-electrode gold pattern is geometrically standardized onto a 6 µm thick polyimide flexible membrane, an optically transparent, and biocompatible polymeric substrate. Subsequently, a biomimetic sensing layer specifically designed for the detection of IL-6 target is produced on these transducers. The obtained MIP biosensor shows a good linear response within the concentration range 50 pg mL-1-50 ng mL-1, with a low limit of detection (8 pg mL-1). X-ray photoelectron spectroscopy, scanning electron microscopy, and Fourier transform infrared spectroscopy characterizations confirm the modifications of the flexible gold transducer. After optimization, the biosensing device shows remarkable potential in terms of sensitivity, selectivity, and reproducibility. Overall, the integration of a low-cost electrochemical sensor on biocompatible flexible polymers opens the way for a new generation of monitoring tools with higher accuracy, less invasiveness, and greater patient comfort.
Collapse
Affiliation(s)
- Carolina Lourenço
- BioMark@ISEP, School of Engineering of Polytechnique School of Porto, Porto, 4200-072, Portugal
- CENIMAT|i3N, Department of Materials Science, School of Science and Technology, NOVA University Lisbon and CEMOP/UNINOVA, Caparica, 2829-516, Portugal
| | - Felismina Moreira
- BioMark@ISEP, School of Engineering of Polytechnique School of Porto, Porto, 4200-072, Portugal
- LABBELS/CEB, Centre of Biological Engineering, University of Minho, Braga, 4710-057, Portugal
- LabRISE-CIETI, School of Engineering of Polytechnique School of Porto, Porto, 4200-072, Portugal
| | - Rui Igreja
- CENIMAT|i3N, Department of Materials Science, School of Science and Technology, NOVA University Lisbon and CEMOP/UNINOVA, Caparica, 2829-516, Portugal
| | - Gabriela Martins
- BioMark@ISEP, School of Engineering of Polytechnique School of Porto, Porto, 4200-072, Portugal
- LABBELS/CEB, Centre of Biological Engineering, University of Minho, Braga, 4710-057, Portugal
- LabRISE-CIETI, School of Engineering of Polytechnique School of Porto, Porto, 4200-072, Portugal
| |
Collapse
|
4
|
Shankar S, Kumar Y, Sharma N, Chandra R, Kumar S. Disposable Zirconium trisulfide-Reduced graphene oxide modified conducting thread based electrochemical biosensor for lung cancer diagnosis. Bioelectrochemistry 2024; 160:108801. [PMID: 39226732 DOI: 10.1016/j.bioelechem.2024.108801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 08/14/2024] [Accepted: 08/21/2024] [Indexed: 09/05/2024]
Abstract
Flexible technology in sensors have received much attention in monitoring of human health through various physiological indicators. Thus, it drawn a lot of interest in the development of flexible substrate for the diagnosis of various diseases via analysis of analytes. Present work focusses on the development of ecofriendly, portable, flexible, conducting thread (Th) and used as smart substrate for fabrication of biosensor towards ultrasensitive detection of the lung cancer biomarker (cytoskeleton-associated protein 4; CKAP4). The zirconium trisulfide-reduced graphene oxide nanocomposite and poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) modified cotton thread based biosensor was fabricated via dip coating method. Next, successive immobilization of monoclonal antibodies of CKAP4 (anti-CKAP4) and bovine serum albumin (BSA) was performed via drop cast approach using fabricated electrode [nZrS3@rGO/PEDOT:PSS/Th]. The response of fabricated electrode (BSA/anti-CKAP4/ZrS3@rGO/PEDOT:PSS/Th) was recorded electrochemically versus CKAP4 concentration via chronoamperometry (CA). The results showed wider linear detection range of 6.25-800 pg mL-1, excellent sensitivity of 85.2 µA[log(pg mL-1)]-1cm-2 with good stability up to 42 days. The response of fabricated biosensor was supported by investigating response of CKAP4 biomarker present in patients of lung cancer (concentration as determined through enzyme-linked immunosorbent assay) and obtained results exhibited excellent correlation with that of standard samples.
Collapse
Affiliation(s)
- Saurav Shankar
- Department of Chemistry, University of Delhi, Delhi 110007, India
| | - Yogesh Kumar
- Department of Chemistry, University of Delhi, Delhi 110007, India
| | - Neera Sharma
- Department of Chemistry, Hindu College, University of Delhi, Delhi 110007, India
| | - Ramesh Chandra
- Department of Chemistry, University of Delhi, Delhi 110007, India; Maharaja Surajmal Brij University, Kumher, Bharatpur 321201, India.
| | - Suveen Kumar
- Department of Chemistry, University of Delhi, Delhi 110007, India.
| |
Collapse
|
5
|
Park SY, Son SY, Lee I, Nam H, Ryu B, Park S, Yun C. Highly Sensitive Biosensors Based on All-PEDOT:PSS Organic Electrochemical Transistors with Laser-Induced Micropatterning. ACS APPLIED MATERIALS & INTERFACES 2024; 16:46664-46676. [PMID: 39180554 DOI: 10.1021/acsami.4c05791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/26/2024]
Abstract
Recent advances in numerous biological applications have increased the accuracy of monitoring the level of biologically significant analytes in the human body to manage personal nutrition and physiological conditions. However, despite promising reports about costly wearable devices with high sensing performance, there has been a growing demand for inexpensive sensors that can quickly detect biological molecules. Herein, we present highly sensitive biosensors based on organic electrochemical transistors (OECTs), which are types of organic semiconductor-based sensors that operate consistently at low operating voltages in aqueous solutions. Instead of the gold or platinum electrode used in current electrochemical devices, poly(3,4-ethylenedioxythiophene):poly(4-styrenesulfonate) (PEDOT:PSS) was used as both the channel and gate electrodes in the OECT. Additionally, to overcome the patterning resolution limitations of conventional solution processing, we confirmed that the irradiation of a high-power IR laser (λ = 1064 nm) onto the coated PEDOT:PSS film was able to produce spatially resolvable micropatterns in a digital-printing manner. The proposed patterning technique exhibits high suitability for the fabrication of all-PEDOT:PSS OECT devices. The device geometry was optimized by fine-tuning the gate area and the channel-to-gate distance. Consequently, the sensor for detecting ascorbic acid (vitamin C) concentrations in an electrolyte exhibited the best sensitivity of 125 μA dec-1 with a limit of detection of 1.3 μM, which is nearly 2 orders of magnitude higher than previous findings. Subsequently, an all-plastic flexible epidermal biosensor was established by transferring the patterned all-PEDOT:PSS OECT from a glass substrate to a PET substrate, taking full advantage of the flexibility of PEDOT:PSS. The prepared all-plastic sensor device is highly cost-effective and suitable for single-use applications because of its acceptable sensing performance and reliable signal for detecting vitamin C. Additionally, the epidermal sensor successfully obtained the temporal profile of vitamin C in the sweat of a human volunteer after the consumption of vitamin C drinks. We believe that the highly sensitive all-PEDOT:PSS OECT device fabricated using the accurate patterning process exhibits versatile potential as a low-cost and single-use biosensor for emerging bioelectronic applications.
Collapse
Affiliation(s)
- Seong Yeon Park
- School of Polymer Science and Engineering, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Seo Yeong Son
- School of Polymer Science and Engineering, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Inwoo Lee
- School of Polymer Science and Engineering, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Hyuckjin Nam
- School of Polymer Science and Engineering, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Boeun Ryu
- School of Polymer Science and Engineering, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Sejung Park
- School of Polymer Science and Engineering, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Changhun Yun
- School of Polymer Science and Engineering, Chonnam National University, Gwangju 61186, Republic of Korea
| |
Collapse
|
6
|
Abbassy M, Ali MZ, Sharma RM, Irani YP, Dahlan A, Azhar M, Aslam N, Hasan B, Hameed A. Biosensors with left ventricular assist devices. Heart Fail Rev 2024; 29:957-967. [PMID: 38940991 PMCID: PMC11306381 DOI: 10.1007/s10741-024-10413-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 06/18/2024] [Indexed: 06/29/2024]
Abstract
Heart failure imposes a significant global health burden, standing as a primary contributor to mortality. Various indicators and physiological shifts within the body may hint at distinct cardiac conditions. Specific biosensors have the capability to identify these changes. Integrating or embedding these biosensors into mechanical circulatory support devices (MCSDs), such as left ventricular assist devices (LVADs), becomes crucial for monitoring alterations in biochemical and physiological factors subsequent to an MCSD implantation. Detecting abnormal changes early in the course of disease progression will allow for improved patient outcomes and prognosis following an MCSD implantation. The aim of this review is to explore the available biosensors that may be coupled or implanted alongside LVADs to monitor biomarkers and changes in physiological parameters. Different fabrication materials for the biosensors are discussed, including their advantages and disadvantages. This review also examines the feasibility of integrating feedback control mechanisms into LVAD systems using data from the biosensors. Challenges facing this emerging technology and future directions for research and development are outlined as well. The overarching goal is to provide an overview of how implanted biosensors may improve the performance and outcomes of LVADs through continuous monitoring and closed-loop control.
Collapse
Affiliation(s)
- Mahmoud Abbassy
- School of Medicine, RCSI University of Medicine and Health Sciences, Dublin 2, Dublin, Ireland
| | - Muhammad Zain Ali
- Internal Medicine, Kent Hospital, Brown University, Warwick, Rhode Island, USA
| | - Riya Manas Sharma
- School of Medicine, RCSI University of Medicine and Health Sciences, Dublin 2, Dublin, Ireland
| | - Yohan Porus Irani
- School of Medicine, RCSI University of Medicine and Health Sciences, Dublin 2, Dublin, Ireland
| | - Adil Dahlan
- UCD School of Medicine, University College Dublin, Health Sciences Centre, Dublin 4, Belfield, Dublin, Ireland
| | - Maimoona Azhar
- Graduate Entry Medicine, School of Medicine, RCSI University of Medicine and Health Sciences, Dublin 2, 123 St. Stephen's Green, Dublin, D02 YN77, Ireland
| | - Nadeem Aslam
- Division of Cardiothoracic Sciences, Sindh Institute of Urology and Transplantation (SIUT), Karachi, Pakistan
| | - Babar Hasan
- Division of Cardiothoracic Sciences, Sindh Institute of Urology and Transplantation (SIUT), Karachi, Pakistan
| | - Aamir Hameed
- Tissue Engineering Research Group (TERG), Department of Anatomy and Regenerative Medicine, RCSI University of Medicine and Health Sciences, 123 St. Stephen's Green, Dublin 2, Dublin, D02 YN77, Ireland.
- Trinity Centre for Biomedical Engineering (TCBE), Trinity College Dublin (TCD), Dublin, Ireland.
| |
Collapse
|
7
|
Hu Z, Hu Y, Huang L, Zhong W, Zhang J, Lei D, Chen Y, Ni Y, Liu Y. Recent Progress in Organic Electrochemical Transistor-Structured Biosensors. BIOSENSORS 2024; 14:330. [PMID: 39056606 PMCID: PMC11274720 DOI: 10.3390/bios14070330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Revised: 06/30/2024] [Accepted: 07/01/2024] [Indexed: 07/28/2024]
Abstract
The continued advancement of organic electronic technology will establish organic electrochemical transistors as pivotal instruments in the field of biological detection. Here, we present a comprehensive review of the state-of-the-art technology and advancements in the use of organic electrochemical transistors as biosensors. This review provides an in-depth analysis of the diverse modification materials, methods, and mechanisms utilized in organic electrochemical transistor-structured biosensors (OETBs) for the selective detection of a wide range of target analyte encompassing electroactive species, electro-inactive species, and cancer cells. Recent advances in OETBs for use in sensing systems and wearable and implantable applications are also briefly introduced. Finally, challenges and opportunities in the field are discussed.
Collapse
Affiliation(s)
- Zhuotao Hu
- School of Integrated Circuits, Guangdong University of Technology, Guangzhou 510006, China; (Z.H.); (Y.H.); (W.Z.); (J.Z.); (D.L.); (Y.C.)
| | - Yingchao Hu
- School of Integrated Circuits, Guangdong University of Technology, Guangzhou 510006, China; (Z.H.); (Y.H.); (W.Z.); (J.Z.); (D.L.); (Y.C.)
| | - Lu Huang
- School of Physics & Optoelectronic Engineering, Guangdong University of Technology, Guangzhou 510006, China;
| | - Wei Zhong
- School of Integrated Circuits, Guangdong University of Technology, Guangzhou 510006, China; (Z.H.); (Y.H.); (W.Z.); (J.Z.); (D.L.); (Y.C.)
| | - Jianfeng Zhang
- School of Integrated Circuits, Guangdong University of Technology, Guangzhou 510006, China; (Z.H.); (Y.H.); (W.Z.); (J.Z.); (D.L.); (Y.C.)
| | - Dengyun Lei
- School of Integrated Circuits, Guangdong University of Technology, Guangzhou 510006, China; (Z.H.); (Y.H.); (W.Z.); (J.Z.); (D.L.); (Y.C.)
| | - Yayi Chen
- School of Integrated Circuits, Guangdong University of Technology, Guangzhou 510006, China; (Z.H.); (Y.H.); (W.Z.); (J.Z.); (D.L.); (Y.C.)
| | - Yao Ni
- School of Integrated Circuits, Guangdong University of Technology, Guangzhou 510006, China; (Z.H.); (Y.H.); (W.Z.); (J.Z.); (D.L.); (Y.C.)
| | - Yuan Liu
- School of Integrated Circuits, Guangdong University of Technology, Guangzhou 510006, China; (Z.H.); (Y.H.); (W.Z.); (J.Z.); (D.L.); (Y.C.)
| |
Collapse
|
8
|
Sytu MRC, Cho DH, Hahm JI. Self-Assembled Block Copolymers as a Facile Pathway to Create Functional Nanobiosensor and Nanobiomaterial Surfaces. Polymers (Basel) 2024; 16:1267. [PMID: 38732737 PMCID: PMC11085100 DOI: 10.3390/polym16091267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 04/24/2024] [Accepted: 04/26/2024] [Indexed: 05/13/2024] Open
Abstract
Block copolymer (BCP) surfaces permit an exquisite level of nanoscale control in biomolecular assemblies solely based on self-assembly. Owing to this, BCP-based biomolecular assembly represents a much-needed, new paradigm for creating nanobiosensors and nanobiomaterials without the need for costly and time-consuming fabrication steps. Research endeavors in the BCP nanobiotechnology field have led to stimulating results that can promote our current understanding of biomolecular interactions at a solid interface to the never-explored size regimes comparable to individual biomolecules. Encouraging research outcomes have also been reported for the stability and activity of biomolecules bound on BCP thin film surfaces. A wide range of single and multicomponent biomolecules and BCP systems has been assessed to substantiate the potential utility in practical applications as next-generation nanobiosensors, nanobiodevices, and biomaterials. To this end, this Review highlights pioneering research efforts made in the BCP nanobiotechnology area. The discussions will be focused on those works particularly pertaining to nanoscale surface assembly of functional biomolecules, biomolecular interaction properties unique to nanoscale polymer interfaces, functionality of nanoscale surface-bound biomolecules, and specific examples in biosensing. Systems involving the incorporation of biomolecules as one of the blocks in BCPs, i.e., DNA-BCP hybrids, protein-BCP conjugates, and isolated BCP micelles of bioligand carriers used in drug delivery, are outside of the scope of this Review. Looking ahead, there awaits plenty of exciting research opportunities to advance the research field of BCP nanobiotechnology by capitalizing on the fundamental groundwork laid so far for the biomolecular interactions on BCP surfaces. In order to better guide the path forward, key fundamental questions yet to be addressed by the field are identified. In addition, future research directions of BCP nanobiotechnology are contemplated in the concluding section of this Review.
Collapse
Affiliation(s)
- Marion Ryan C. Sytu
- Department of Chemistry, Georgetown University, 37th & O Sts. NW., Washington, DC 20057, USA
| | - David H. Cho
- National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, 9000 Rockville Pike, Bethesda, MD 20892, USA;
| | - Jong-in Hahm
- Department of Chemistry, Georgetown University, 37th & O Sts. NW., Washington, DC 20057, USA
| |
Collapse
|
9
|
Khan SA, Ahmad H, Zhu G, Pang H, Zhang Y. Three-Dimensional Printing of Hydrogels for Flexible Sensors: A Review. Gels 2024; 10:187. [PMID: 38534605 DOI: 10.3390/gels10030187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 03/04/2024] [Accepted: 03/06/2024] [Indexed: 03/28/2024] Open
Abstract
The remarkable flexibility and heightened sensitivity of flexible sensors have drawn significant attention, setting them apart from traditional sensor technology. Within this domain, hydrogels-3D crosslinked networks of hydrophilic polymers-emerge as a leading material for the new generation of flexible sensors, thanks to their unique material properties. These include structural versatility, which imparts traits like adhesiveness and self-healing capabilities. Traditional templating-based methods fall short of tailor-made applications in crafting flexible sensors. In contrast, 3D printing technology stands out with its superior fabrication precision, cost-effectiveness, and satisfactory production efficiency, making it a more suitable approach than templating-based strategies. This review spotlights the latest hydrogel-based flexible sensors developed through 3D printing. It begins by categorizing hydrogels and outlining various 3D-printing techniques. It then focuses on a range of flexible sensors-including those for strain, pressure, pH, temperature, and biosensors-detailing their fabrication methods and applications. Furthermore, it explores the sensing mechanisms and concludes with an analysis of existing challenges and prospects for future research breakthroughs in this field.
Collapse
Affiliation(s)
- Suhail Ayoub Khan
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225009, China
- Institute of Advanced Materials and Flexible Electronics (IAMFE), School of Chemistry and Materials Science, Nanjing University of Information Science and Technology, Nanjing 210044, China
| | - Hamza Ahmad
- Institute of Advanced Materials and Flexible Electronics (IAMFE), School of Chemistry and Materials Science, Nanjing University of Information Science and Technology, Nanjing 210044, China
| | - Guoyin Zhu
- Institute of Advanced Materials and Flexible Electronics (IAMFE), School of Chemistry and Materials Science, Nanjing University of Information Science and Technology, Nanjing 210044, China
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing 210023, China
| | - Huan Pang
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225009, China
| | - Yizhou Zhang
- Institute of Advanced Materials and Flexible Electronics (IAMFE), School of Chemistry and Materials Science, Nanjing University of Information Science and Technology, Nanjing 210044, China
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing 210023, China
| |
Collapse
|
10
|
Miranda B, Dello Iacono S, Rea I, Borbone F, De Stefano L. Effect of the molecular weight on the sensing mechanism in polyethylene glycol diacrylate/gold nanocomposite optical transducers. Heliyon 2024; 10:e25593. [PMID: 38356564 PMCID: PMC10864976 DOI: 10.1016/j.heliyon.2024.e25593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 01/29/2024] [Accepted: 01/30/2024] [Indexed: 02/16/2024] Open
Abstract
The combination of plasmonic nanoparticles and hydrogels results in nanocomposite materials with unprecedented properties that give rise to powerful platforms for optical biosensing. Herein, we propose a physicochemical characterization of plasmonic hydrogel nanocomposites made of polyethylene glycol diacrylate (PEGDA) hydrogels with increasing molecular weights (700-10000 Da) and gold nanoparticles (AuNPs, ∼60 nm). The swelling capability, mechanical properties, and thermal responses of the nanocomposites are analyzed and the combination with the resulting optical properties is elucidated. The different optomechanical properties of the proposed nanocomposites result in different transduction mechanisms, which can be exploited for several biosensing applications. A correlation between the polymer molecular weight, the effective refractive index of the material, and the optical response is found by combining experimental data and numerical simulations. In particular, the localized surface plasmon resonance (LSPR) position of the AuNPs was found to follow a parabolic profile as a function of the monomer molecular weight (MW), while its absorbance intensity was found as inversely proportional to the monomer MW. Low MW PEGDA nanocomposites were found to be responsive to refractive index variations for small molecule sensing. Differently, high MW PEGDA nanocomposites exhibited absorbance intensity increase/decrease as a function of the hydrophobicity/hydrophilicity of the targeted small molecule. The proposed optomechanical model paves the way to the design of innovative platforms for real-life applications, such as wearable sensing, point-of-care testing, and food monitoring via smart packaging devices.
Collapse
Affiliation(s)
- Bruno Miranda
- Institute of Applied Sciences and Intelligent Systems (ISASI), National Research Council, Via P. Castellino 111, Naples, 80131, Italy
| | - Stefania Dello Iacono
- Institute of Polymers, Composites and Biomaterials (IPCB), National Research Council, P.le Enrico Fermi 1, 80055, Portici, Italy
| | - Ilaria Rea
- Institute of Applied Sciences and Intelligent Systems (ISASI), National Research Council, Via P. Castellino 111, Naples, 80131, Italy
| | - Fabio Borbone
- Department of Chemical Sciences, University of Naples “Federico II”, Complesso Universitario di Monte Sant'Angelo, Via Cintia 21, Naples, 80126, Italy
| | - Luca De Stefano
- Institute of Applied Sciences and Intelligent Systems (ISASI), National Research Council, Via P. Castellino 111, Naples, 80131, Italy
| |
Collapse
|
11
|
Zhang P, Zhu B, Du P, Travas-Sejdic J. Electrochemical and Electrical Biosensors for Wearable and Implantable Electronics Based on Conducting Polymers and Carbon-Based Materials. Chem Rev 2024; 124:722-767. [PMID: 38157565 DOI: 10.1021/acs.chemrev.3c00392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2024]
Abstract
Bioelectronic devices are designed to translate biological information into electrical signals and vice versa, thereby bridging the gap between the living biological world and electronic systems. Among different types of bioelectronics devices, wearable and implantable biosensors are particularly important as they offer access to the physiological and biochemical activities of tissues and organs, which is significant in diagnosing and researching various medical conditions. Organic conducting and semiconducting materials, including conducting polymers (CPs) and graphene and carbon nanotubes (CNTs), are some of the most promising candidates for wearable and implantable biosensors. Their unique electrical, electrochemical, and mechanical properties bring new possibilities to bioelectronics that could not be realized by utilizing metals- or silicon-based analogues. The use of organic- and carbon-based conductors in the development of wearable and implantable biosensors has emerged as a rapidly growing research field, with remarkable progress being made in recent years. The use of such materials addresses the issue of mismatched properties between biological tissues and electronic devices, as well as the improvement in the accuracy and fidelity of the transferred information. In this review, we highlight the most recent advances in this field and provide insights into organic and carbon-based (semi)conducting materials' properties and relate these to their applications in wearable/implantable biosensors. We also provide a perspective on the promising potential and exciting future developments of wearable/implantable biosensors.
Collapse
Affiliation(s)
- Peikai Zhang
- Centre for Innovative Materials for Health, School of Chemical Sciences, The University of Auckland, Auckland 1010, New Zealand
- MacDiarmid Institute for Advanced Materials and Nanotechnology, Victoria University of Wellington, Wellington 6012, New Zealand
- Auckland Bioengineering Institute, The University of Auckland, Auckland 1010, New Zealand
| | - Bicheng Zhu
- Centre for Innovative Materials for Health, School of Chemical Sciences, The University of Auckland, Auckland 1010, New Zealand
- MacDiarmid Institute for Advanced Materials and Nanotechnology, Victoria University of Wellington, Wellington 6012, New Zealand
| | - Peng Du
- Auckland Bioengineering Institute, The University of Auckland, Auckland 1010, New Zealand
| | - Jadranka Travas-Sejdic
- Centre for Innovative Materials for Health, School of Chemical Sciences, The University of Auckland, Auckland 1010, New Zealand
- MacDiarmid Institute for Advanced Materials and Nanotechnology, Victoria University of Wellington, Wellington 6012, New Zealand
| |
Collapse
|
12
|
Shankar S, Kumar Y, Chauhan D, Sharma N, Chandra R, Kumar S. Nanodot zirconium trisulfide modified conducting thread: A smart substrate for fabrication of next generation biosensor. Biosens Bioelectron 2023; 242:115722. [PMID: 37806017 DOI: 10.1016/j.bios.2023.115722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Revised: 09/13/2023] [Accepted: 09/28/2023] [Indexed: 10/10/2023]
Abstract
In present work, we report an eco-friendly, flexible and highly conducting cotton thread (CT) as a smart substrate for the development of biosensing platform towards ultrasensitive detection of swine flu serum amyloid A (SAA) biomarker. The biosensor was fabricated by optimized coating of CT with poly(3,4-ethylenedioxythiophene): poly(styrenesulfonate) (PEDOT:PSS) conductive ink followed by incorporation of nanodot zirconium trisulfide (nZrS3) which helped in enhancing the electrochemical properties and improving stability of PEDOT:PSS polymeric film. The fabricated nZrS3/PEDOT:PSS/CT electrode was then used for sequential immobilization of monoclonal antibodies of SAA (anti-SAA) and bovine serum albumin (BSA). The synthesized nanomaterials and fabricated electrodes were characterized through X-ray diffraction, Fourier-transform infrared spectroscopy, transmission electron microscopy, scanning electron microscopy and contact angle analyser techniques. The electrochemical response of the fabricated smart thread based biosensor (BSA/anti-SAA/ZrS3/PEDOT:PSS/CT) was recorded against SAA using chronoamperometry technique which revealed superior sensitivity {30.2 μA [log (μg mL-1)]-1 cm-2}, excellent lower detection limit (0.72 ng mL-1) and prolonged shelf life up to 48 days. The response of the biosensor was also validated by analysing the electrochemical response of SAA spiked serum samples and the obtained results showed good correlation with that of standard samples.
Collapse
Affiliation(s)
- Saurav Shankar
- Department of Chemistry, University of Delhi, Delhi, 110007, India
| | - Yogesh Kumar
- Department of Chemistry, University of Delhi, Delhi, 110007, India
| | - Dipti Chauhan
- Department of Chemistry, University of Delhi, Delhi, 110007, India
| | - Neera Sharma
- Department of Chemistry, Hindu College, University of Delhi, Delhi, 110007, India
| | - Ramesh Chandra
- Department of Chemistry, University of Delhi, Delhi, 110007, India; Maharaja Surajmal Brij University, Kumher, Bharatpur, 321201, India.
| | - Suveen Kumar
- Department of Chemistry, University of Delhi, Delhi, 110007, India.
| |
Collapse
|
13
|
Kaushal JB, Raut P, Kumar S. Organic Electronics in Biosensing: A Promising Frontier for Medical and Environmental Applications. BIOSENSORS 2023; 13:976. [PMID: 37998151 PMCID: PMC10669243 DOI: 10.3390/bios13110976] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 10/30/2023] [Accepted: 11/02/2023] [Indexed: 11/25/2023]
Abstract
The promising field of organic electronics has ushered in a new era of biosensing technology, thus offering a promising frontier for applications in both medical diagnostics and environmental monitoring. This review paper provides a comprehensive overview of organic electronics' remarkable progress and potential in biosensing applications. It explores the multifaceted aspects of organic materials and devices, thereby highlighting their unique advantages, such as flexibility, biocompatibility, and low-cost fabrication. The paper delves into the diverse range of biosensors enabled by organic electronics, including electrochemical, optical, piezoelectric, and thermal sensors, thus showcasing their versatility in detecting biomolecules, pathogens, and environmental pollutants. Furthermore, integrating organic biosensors into wearable devices and the Internet of Things (IoT) ecosystem is discussed, wherein they offer real-time, remote, and personalized monitoring solutions. The review also addresses the current challenges and future prospects of organic biosensing, thus emphasizing the potential for breakthroughs in personalized medicine, environmental sustainability, and the advancement of human health and well-being.
Collapse
Affiliation(s)
- Jyoti Bala Kaushal
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198, USA; (J.B.K.); (P.R.)
| | - Pratima Raut
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198, USA; (J.B.K.); (P.R.)
| | - Sanjay Kumar
- Durham School of Architectural Engineering and Construction, Scott Campus, University of Nebraska-Lincoln, Omaha, NE 68182, USA
| |
Collapse
|
14
|
Fan L, Wu R, Patel V, Huang JJ, Selvaganapathy PR. Solid-state, reagent-free and one-step laser-induced synthesis of graphene-supported metal nanocomposites from metal leaves and application to glucose sensing. Anal Chim Acta 2023; 1264:341248. [PMID: 37230727 DOI: 10.1016/j.aca.2023.341248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 04/05/2023] [Accepted: 04/20/2023] [Indexed: 05/27/2023]
Abstract
The laser-induced method to prepare three-dimensional (3D) porous graphene has been widely used in many fields owing to its low-cost, easy operation, maskless patterning and ease of mass production. Metal nanoparticles are further introduced on the surface of 3D graphene to enhance its property. The existing methods, however, such as laser irradiation and electrodeposition of metal precursor solution, suffer from many shortcomings, including complicated procedure of metal precursor solution preparation, strict experimental control, and poor adhesion of metal nanoparticles. Herein, a solid-state, reagent-free, and one-step laser-induced strategy has been developed for the fabrication of metal nanoparticle modified-3D porous graphene nanocomposites. Commercial transfer metal leaves were covered on a polyimide film followed by direct laser irradiation to produce 3D graphene nanocomposites modified with metal nanoparticles. The proposed method is versatile and applicable to incorporate various metal nanoparticles including gold silver, platinum, palladium, and copper. Furthermore, the 3D graphene nanocomposites modified with AuAg alloy nanoparticles were successfully synthesized in both 21 Karat (K) and 18K gold leaves. Its electrochemical characterization demonstrated that the synthesized 3D graphene-AuAg alloy nanocomposites exhibited excellent electrocatalytic properties. Finally, we fabricated LIG-AuAg alloy nanocomposites as enzyme-free flexible sensors for glucose detection. The LIG-18K electrodes exhibited the superior glucose sensitivity of 1194 μA mM-1 cm-2 and low detection limits of 0.21 μM. The LIG-21K nanocomposite sensors showed two linear ranges from 1 μM to 1 mM and 2 mM-20 mM with good sensitivity. Furthermore, the flexible glucose sensor showed good stability, sensitivity, and ability to sense in blood plasma samples. The proposed one-step fabrication of reagent-free and metal alloy nanoparticles on LIG with excellent electrochemical performance opens up possibilities for diversifying potential applications of sensing, water treatment and electrocatalysis.
Collapse
Affiliation(s)
- Liang Fan
- College of Environmental Science and Engineering, Sino-Canada R&D Centre on Water and Environmental Safety, Nankai University, Tianjin, 300350, China; Department of Mechanical Engineering, McMaster University, Hamilton, ON, L8S 4K1, Canada
| | - Rong Wu
- Department of Mechanical Engineering, McMaster University, Hamilton, ON, L8S 4K1, Canada
| | - Vinay Patel
- School of Biomedical Engineering, McMaster University, Hamilton, ON, L8S 4K1, Canada
| | - Jinhui Jeanne Huang
- College of Environmental Science and Engineering, Sino-Canada R&D Centre on Water and Environmental Safety, Nankai University, Tianjin, 300350, China.
| | - P Ravi Selvaganapathy
- Department of Mechanical Engineering, McMaster University, Hamilton, ON, L8S 4K1, Canada; School of Biomedical Engineering, McMaster University, Hamilton, ON, L8S 4K1, Canada.
| |
Collapse
|
15
|
Barhoum A, Sadak O, Ramirez IA, Iverson N. Stimuli-bioresponsive hydrogels as new generation materials for implantable, wearable, and disposable biosensors for medical diagnostics: Principles, opportunities, and challenges. Adv Colloid Interface Sci 2023; 317:102920. [PMID: 37207377 DOI: 10.1016/j.cis.2023.102920] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 05/12/2023] [Accepted: 05/12/2023] [Indexed: 05/21/2023]
Abstract
Hydrogels are excellent water-swollen polymeric materials for use in wearable, implantable, and disposable biosensors. Hydrogels have unique properties such as low cost, ease of preparation, transparency, rapid response to external conditions, biocompatibility and self-adhesion to the skin, flexibility, and strain sensitivity, making them ideal for use in biosensor platforms. This review provides a detailed overview of advanced applications of stimuli-responsive hydrogels in biosensor platforms, from hydrogel synthesis and functionalization for bioreceptor immobilization to several important diagnostic applications. Emphasis is placed on recent advances in the fabrication of ultrasensitive fluorescent and electrically conductive hydrogels and their applications in wearable, implantable, and disposable biosensors for quantitative measurements. Design, modification, and assembly techniques of fluorescent, ionically conductive, and electrically conductive hydrogels to improve performance will be addressed. The advantages and performance improvements of immobilizing bioreceptors (e.g., antibodies, enzymes, and aptamers), and incorporating fluorescent and electrically conductive nanomaterials are described, as are their limitations. Potential applications of hydrogels in implantable, wearable, disposable portable biosensors for quantitative detection of the various bioanalytes (ions, molecules, drugs, proteins, and biomarkers) are discussed. Finally, the global market for hydrogel-based biosensors and future challenges and prospects are discussed in detail.
Collapse
Affiliation(s)
- Ahmed Barhoum
- NanoStruc Research Group, Chemistry Department, Faculty of Science, Helwan University, Cairo 11795, Egypt; National Center for Sensor Research, School of Chemical Sciences, Dublin City University, Dublin 9 D09 Y074, Dublin, Ireland.
| | - Omer Sadak
- Biological Systems Engineering Department, University of Nebraska-Lincoln, Lincoln, NE, USA; Department of Electrical and Electronics Engineering, Ardahan University, Ardahan, Turkey
| | - Ivon Acosta Ramirez
- Biological Systems Engineering Department, University of Nebraska-Lincoln, Lincoln, NE, USA
| | - Nicole Iverson
- Biological Systems Engineering Department, University of Nebraska-Lincoln, Lincoln, NE, USA
| |
Collapse
|
16
|
Liu YC, Yang DY, Deng JP, Sheu SY. Molecular Dynamics Simulations of High-Performance, Dissipationless Desalination across Self-Assembled Amyloid Beta Nanotubes. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2205420. [PMID: 36670081 DOI: 10.1002/smll.202205420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 12/22/2022] [Indexed: 06/17/2023]
Abstract
Climate change is causing droughts and water shortages. Membrane desalination is one of the most widely employed conventional methods of creating a source of clean water, but is a very energy-intensive process. Membrane separation requires high salt selectivity across nano-channels, yet traditional techniques remain inefficient in this regard. Herein, a bioinspired, chemically robust, amyloid-fibril-based nanotube is designed, exhibiting water permeability and salt rejection properties capable of providing highly efficient desalination. Molecular dynamics simulations show that nano-dewetting facilitates the unidirectional motion of water molecules on the surface of amyloid beta (Aβ) sheets owing to the ratchet structure of the underlying potential surface and the broken detailed balance. The water inside the self-assembled Aβ nanotube (ABNT) overflows, while the passage of salts can be blocked using amphiphilic peptides. The designed nanofilter ABNT shows 100% desalination efficiency with perfect NaCl rejection. The production of ≈2.5 tons of pure water per day without any energy input, which corresponds to a water flux up to 200 times higher than those of existing commercial methods, is assessed by this simulation method. These results provide a detailed fundamental understanding of potential high-performance nanotechnologies for water treatment.
Collapse
Affiliation(s)
- Yu-Cheng Liu
- Institute of Biomedical Informatics, National Yang Ming Chiao Tung University, Taipei, 112, Taiwan
| | - Dah-Yen Yang
- Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei, 106, Taiwan
- Department of Chemistry, Tamkang University, New Taipei City, 251, Taiwan
- Department of Chemistry, Fu Jen Catholic University, New Taipei City, 242, Taiwan
| | - Jin-Pei Deng
- Department of Chemistry, Tamkang University, New Taipei City, 251, Taiwan
| | - Sheh-Yi Sheu
- Institute of Biomedical Informatics, National Yang Ming Chiao Tung University, Taipei, 112, Taiwan
- Department of Life Sciences and Institute of Genome Sciences, National Yang Ming Chiao Tung University, Taipei, 112, Taiwan
| |
Collapse
|
17
|
Xia C, Jin X, Garalleh HA, Garaleh M, Wu Y, Hill JM, Pugazhendhi A. Optimistic and possible contribution of nanomaterial on biomedical applications: A review. ENVIRONMENTAL RESEARCH 2023; 218:114921. [PMID: 36504007 DOI: 10.1016/j.envres.2022.114921] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Revised: 11/16/2022] [Accepted: 11/22/2022] [Indexed: 06/17/2023]
Abstract
Nanomaterials have many advantages over bulk materials, including enhanced surface-to-volume proportion as well as magnetic traits. It has been a steady rise in research with using nanomaterials in various biomedical fields in the past few decades. Constructing nanomaterials has emerged as a leading research primary concern in order to discover specialized biomedical applications. Since, their advantageous properties including chemical stability, non-toxicity, bio - compatibility, relatively high magnetization, and strong magnetic vulnerability, nanoparticles of iron oxide had already influenced implementations in different biomedical fields. Nanomaterials can be divided up into four nanomaterials such as metallic nanomaterials, bimetallic or alloy nanomaterials, metal oxide nanomaterials, as well as magnetic nanomaterials. Hence, the purpose of this review is to conduct such in discussion on emerging advancements in nanomaterials for biomedical, with such a special emphasis upon those options of nanomaterials including metallic nanomaterials: Au and Ag, bimetallic nanomaterials: Fe-Co and Fe-Pt, and metal oxides: TiO2 and CeO2. Securing this information gap will result in a better comprehension of the contribution of nanomaterial type and subsequent huge-scale applications in aspects of both their potential and challenges.
Collapse
Affiliation(s)
- Changlei Xia
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing, Jiangsu, 210037, China
| | - Xin Jin
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing, Jiangsu, 210037, China
| | - Hakim Al Garalleh
- Department of Mathematical Science, College of Engineering, University of Business and Technology-Dahban, Jeddah, 21361, Saudi Arabia
| | - Mazen Garaleh
- Department of Mathematical Science, College of Engineering, University of Business and Technology-Dahban, Jeddah, 21361, Saudi Arabia; Department of Applied Chemistry, Faculty of Science, Tafila Technical University, Tafila, Jordan
| | - Yingji Wu
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing, Jiangsu, 210037, China
| | - James M Hill
- School of Information Technology and Mathematical Sciences, University of South Australia, Adelaide SA, 5001, Australia
| | | |
Collapse
|
18
|
Blasques RV, de Oliveira PR, Kalinke C, Brazaca LC, Crapnell RD, Bonacin JA, Banks CE, Janegitz BC. Flexible Label-Free Platinum and Bio-PET-Based Immunosensor for the Detection of SARS-CoV-2. BIOSENSORS 2023; 13:190. [PMID: 36831956 PMCID: PMC9954080 DOI: 10.3390/bios13020190] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 01/14/2023] [Accepted: 01/20/2023] [Indexed: 06/18/2023]
Abstract
The demand for new devices that enable the detection of severe acute respiratory syndrome-coronavirus-2 (SARS-CoV-2) at a relatively low cost and that are fast and feasible to be used as point-of-care is required overtime on a large scale. In this sense, the use of sustainable materials, for example, the bio-based poly (ethylene terephthalate) (Bio-PET) can be an alternative to current standard diagnostics. In this work, we present a flexible disposable printed electrode based on a platinum thin film on Bio-PET as a substrate for the development of a sensor and immunosensor for the monitoring of COVID-19 biomarkers, by the detection of L-cysteine and the SARS-CoV-2 spike protein, respectively. The electrode was applied in conjunction with 3D printing technology to generate a portable and easy-to-analyze device with a low sample volume. For the L-cysteine determination, chronoamperometry was used, which achieved two linear dynamic ranges (LDR) of 3.98-39.0 μmol L-1 and 39.0-145 μmol L-1, and a limit of detection (LOD) of 0.70 μmol L-1. The detection of the SARS-CoV-2 spike protein was achieved by both square wave voltammetry (SWV) and electrochemical impedance spectroscopy (EIS) by a label-free immunosensor, using potassium ferro-ferricyanide solution as the electrochemical probe. An LDR of 0.70-7.0 and 1.0-30 pmol L-1, with an LOD of 0.70 and 1.0 pmol L-1 were obtained by SWV and EIS, respectively. As a proof of concept, the immunosensor was successfully applied for the detection of the SARS-CoV-2 spike protein in enriched synthetic saliva samples, which demonstrates the potential of using the proposed sensor as an alternative platform for the diagnosis of COVID-19 in the future.
Collapse
Affiliation(s)
- Rodrigo Vieira Blasques
- Laboratory of Sensors, Nanomedicine and Nanostructured Materials, Federal University of São Carlos, Araras 13600-970, Brazil
- Department of Physics, Chemistry, and Mathematics, Federal University of São Carlos, Sorocaba 18052-780, Brazil
| | - Paulo Roberto de Oliveira
- Laboratory of Sensors, Nanomedicine and Nanostructured Materials, Federal University of São Carlos, Araras 13600-970, Brazil
- Faculty of Science and Engineering, Manchester Metropolitan University, Chester Street, Manchester M1 5GD, UK
| | - Cristiane Kalinke
- Faculty of Science and Engineering, Manchester Metropolitan University, Chester Street, Manchester M1 5GD, UK
- Institute of Chemistry, University of Campinas, Campinas 13083-970, Brazil
| | - Laís Canniatti Brazaca
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138, USA
| | - Robert D. Crapnell
- Faculty of Science and Engineering, Manchester Metropolitan University, Chester Street, Manchester M1 5GD, UK
| | | | - Craig E. Banks
- Faculty of Science and Engineering, Manchester Metropolitan University, Chester Street, Manchester M1 5GD, UK
| | - Bruno Campos Janegitz
- Laboratory of Sensors, Nanomedicine and Nanostructured Materials, Federal University of São Carlos, Araras 13600-970, Brazil
| |
Collapse
|
19
|
de Assis SC, Morgado DL, Scheidt DT, de Souza SS, Cavallari MR, Ando Junior OH, Carrilho E. Review of Bacterial Nanocellulose-Based Electrochemical Biosensors: Functionalization, Challenges, and Future Perspectives. BIOSENSORS 2023; 13:142. [PMID: 36671977 PMCID: PMC9856105 DOI: 10.3390/bios13010142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 01/02/2023] [Accepted: 01/09/2023] [Indexed: 06/17/2023]
Abstract
Electrochemical biosensing devices are known for their simple operational procedures, low fabrication cost, and suitable real-time detection. Despite these advantages, they have shown some limitations in the immobilization of biochemicals. The development of alternative materials to overcome these drawbacks has attracted significant attention. Nanocellulose-based materials have revealed valuable features due to their capacity for the immobilization of biomolecules, structural flexibility, and biocompatibility. Bacterial nanocellulose (BNC) has gained a promising role as an alternative to antifouling surfaces. To widen its applicability as a biosensing device, BNC may form part of the supports for the immobilization of specific materials. The possibilities of modification methods and in situ and ex situ functionalization enable new BNC properties. With the new insights into nanoscale studies, we expect that many biosensors currently based on plastic, glass, or paper platforms will rely on renewable platforms, especially BNC ones. Moreover, substrates based on BNC seem to have paved the way for the development of sensing platforms with minimally invasive approaches, such as wearable devices, due to their mechanical flexibility and biocompatibility.
Collapse
Affiliation(s)
- Samuel Chagas de Assis
- Grupo de Pesquisa em Energia e Sustentabilidade Energética-GPEnSE, Universidade Federal da Integração Latino-Americana—UNILA, Av. Sílvio Américo Sasdelli, 1842, Foz do Iguaçu 85866-000, PR, Brazil
| | - Daniella Lury Morgado
- Grupo de Pesquisa em Energia e Sustentabilidade Energética-GPEnSE, Universidade Federal da Integração Latino-Americana—UNILA, Av. Sílvio Américo Sasdelli, 1842, Foz do Iguaçu 85866-000, PR, Brazil
- Instituto de Química de São Carlos, Universidade de São Paulo, São Carlos 13566-590, SP, Brazil
| | - Desiree Tamara Scheidt
- Instituto de Química de São Carlos, Universidade de São Paulo, São Carlos 13566-590, SP, Brazil
- Instituto Nacional de Ciência e Tecnologia de Bioanalítica-INCTBio, Campinas 13083-970, SP, Brazil
| | - Samara Silva de Souza
- Grupo de Pesquisa em Energia e Sustentabilidade Energética-GPEnSE, Universidade Federal da Integração Latino-Americana—UNILA, Av. Sílvio Américo Sasdelli, 1842, Foz do Iguaçu 85866-000, PR, Brazil
- Departamento de Engenharia de Bioprocessos e Biotecnologia, Universidade Tecnológica Federal do Paraná—UTFPR, Campus Dois Vizinhos, Dois Vizinhos 85660-000, PR, Brazil
| | - Marco Roberto Cavallari
- School of Electrical and Computer Engineering, University of Campinas (Unicamp), Av. Albert Einstein 400, Campinas 13083-852, SP, Brazil
| | - Oswaldo Hideo Ando Junior
- Grupo de Pesquisa em Energia e Sustentabilidade Energética-GPEnSE, Universidade Federal da Integração Latino-Americana—UNILA, Av. Sílvio Américo Sasdelli, 1842, Foz do Iguaçu 85866-000, PR, Brazil
- Academic Unit of Cabo de Santo Agostinho (UACSA), Universidade Federal Rural de Pernambuco (UFRPE), Rua Cento e Sessenta e Três, 300-Cohab, Cabo de Santo Agostinho 54518-430, PE, Brazil
| | - Emanuel Carrilho
- Instituto de Química de São Carlos, Universidade de São Paulo, São Carlos 13566-590, SP, Brazil
- Instituto Nacional de Ciência e Tecnologia de Bioanalítica-INCTBio, Campinas 13083-970, SP, Brazil
| |
Collapse
|
20
|
Integrated lab-on-a-chip devices: Fabrication methodologies, transduction system for sensing purposes. J Pharm Biomed Anal 2023; 223:115120. [DOI: 10.1016/j.jpba.2022.115120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 10/06/2022] [Accepted: 10/20/2022] [Indexed: 11/06/2022]
|
21
|
Prospective analytical role of sensors for environmental screening and monitoring. Trends Analyt Chem 2022. [DOI: 10.1016/j.trac.2022.116751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
22
|
Banakar M, Hamidi M, Khurshid Z, Zafar MS, Sapkota J, Azizian R, Rokaya D. Electrochemical Biosensors for Pathogen Detection: An Updated Review. BIOSENSORS 2022; 12:bios12110927. [PMID: 36354437 PMCID: PMC9688024 DOI: 10.3390/bios12110927] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Revised: 10/18/2022] [Accepted: 10/22/2022] [Indexed: 05/30/2023]
Abstract
Electrochemical biosensors are a family of biosensors that use an electrochemical transducer to perform their functions. In recent decades, many electrochemical biosensors have been created for pathogen detection. These biosensors for detecting infections have been comprehensively studied in terms of transduction elements, biorecognition components, and electrochemical methods. This review discusses the biorecognition components that may be used to identify pathogens. These include antibodies and aptamers. The integration of transducers and electrode changes in biosensor design is a major discussion topic. Pathogen detection methods can be categorized by sample preparation and secondary binding processes. Diagnostics in medicine, environmental monitoring, and biothreat detection can benefit from electrochemical biosensors to ensure food and water safety. Disposable and reusable biosensors for process monitoring, as well as multiplexed and conformal pathogen detection, are all included in this review. It is now possible to identify a wide range of diseases using biosensors that may be applied to food, bodily fluids, and even objects' surfaces. The sensitivity of optical techniques may be superior to electrochemical approaches, but optical methods are prohibitively expensive and challenging for most end users to utilize. On the other hand, electrochemical approaches are simpler to use, but their efficacy in identifying infections is still far from satisfactory.
Collapse
Affiliation(s)
- Morteza Banakar
- Dental Research Center, Dentistry Research Institute, Tehran University of Medical Sciences, Tehran 14176-14411, Iran
- Health Policy Research Center, Institute of Health, Shiraz University of Medical Sciences, Shiraz 71348-45794, Iran
| | - Masoud Hamidi
- Department of Medical Biotechnology, Faculty of Paramedicine, Guilan University of Medical Sciences, Rasht 41887-94755, Iran
| | - Zohaib Khurshid
- Department of Prosthodontics and Implantology, College of Dentistry, King Faisal University, Al-Hofuf, Al Ahsa 31982, Saudi Arabia
- Center of Excellence for Regenerative Dentistry, Department of Anatomy, Faculty of Dentistry, Chulalongkorn University, Bangkok 10330, Thailand
| | - Muhammad Sohail Zafar
- Department of Restorative Dentistry, College of Dentistry, Taibah University, Al Madinah, Al Munawwarah 41311, Saudi Arabia
- Department of Dental Materials, Islamic International Dental College, Riphah International University, Islamabad 44000, Pakistan
| | - Janak Sapkota
- Research Center of Applied Sciences and Technology, Kritipur 44600, Nepal
| | - Reza Azizian
- Pediatric Infectious Diseases Research Center (PIDRC), Tehran University of Medical Sciences, Tehran 14197-33151, Iran
- Biomedical Innovation & Start-Up Association (Biomino), Tehran University of Medical Sciences, Tehran 14166-34793, Iran
| | - Dinesh Rokaya
- Department of Clinical Dentistry, Walailak University International College of Dentistry, Walailak University, Bangkok 10400, Thailand
| |
Collapse
|
23
|
Baral T, Datta C, Das S. Cu Nanoparticle-Based Solution and Paper Strips for Colorimetric and Visual Detection of Heavy Metal Ions. ACS OMEGA 2022; 7:37279-37285. [PMID: 36312334 PMCID: PMC9609079 DOI: 10.1021/acsomega.2c03687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 09/29/2022] [Indexed: 06/16/2023]
Abstract
The intrinsic toxicity of heavy metal ions to human health or other species calls for the need to develop an analytical tool for the easy and rapid detection of these ions based on inexpensive and stable nanomaterials. This article describes the potential utility of stable Cu nanoparticles (CuNPs) in the detection of toxic metal ions by solution and paper strip-based methods. For this, first, a dodecyl sulfate ion-stabilized CuNP (DS-CuNP) colloid was synthesized by a chemical reduction method. This was followed by treating the dispersion with heavy metal ions and monitoring the spectral change by spectrophotometric and colorimetric techniques. Among a host of metal ions, Hg2+, Cd2+, and Pb2+ have been found to significantly affect the surface plasmon resonance band of CuNPs by concomitantly altering the color of its solution. Notably, the brownish color of CuNP solution changed readily to milky white in the presence of Hg2+. Furthermore, the fabricated brownish-yellow test paper strips containing DS-CuNPs transformed to a prominent white color in the presence of a few drops of Hg2+ solution. This change in color of the paper strips could be visually detected by the naked eye. The experiments involving the detection of the various ions were carried out by optimizing the experimental conditions qualitatively as well as quantitatively. The limit of detection of the analytes (metal ions) has been found to be 10 μM. Routine analytical techniques like UV-vis spectroscopy, dynamic light scattering, transmission electron microscopy, and Fourier transform infrared spectroscopy formed part of the experiments.
Collapse
Affiliation(s)
- Trilochan Baral
- Department
of Chemistry, National Institute of Technology
Agartala, Tripura799046, India
| | - Chitraniva Datta
- Department
of Chemistry, National Institute of Technology
Agartala, Tripura799046, India
| | - Subhojit Das
- Department
of Chemistry, National Institute of Technology
Agartala, Tripura799046, India
| |
Collapse
|
24
|
Negm A, Howlader MMR, Belyakov I, Bakr M, Ali S, Irannejad M, Yavuz M. Materials Perspectives of Integrated Plasmonic Biosensors. MATERIALS (BASEL, SWITZERLAND) 2022; 15:7289. [PMID: 36295354 PMCID: PMC9611134 DOI: 10.3390/ma15207289] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 10/02/2022] [Accepted: 10/13/2022] [Indexed: 06/16/2023]
Abstract
With the growing need for portable, compact, low-cost, and efficient biosensors, plasmonic materials hold the promise to meet this need owing to their label-free sensitivity and deep light-matter interaction that can go beyond the diffraction limit of light. In this review, we shed light on the main physical aspects of plasmonic interactions, highlight mainstream and future plasmonic materials including their merits and shortcomings, describe the backbone substrates for building plasmonic biosensors, and conclude with a brief discussion of the factors affecting plasmonic biosensing mechanisms. To do so, we first observe that 2D materials such as graphene and transition metal dichalcogenides play a major role in enhancing the sensitivity of nanoparticle-based plasmonic biosensors. Then, we identify that titanium nitride is a promising candidate for integrated applications with performance comparable to that of gold. Our study highlights the emerging role of polymer substrates in the design of future wearable and point-of-care devices. Finally, we summarize some technical and economic challenges that should be addressed for the mass adoption of plasmonic biosensors. We believe this review will be a guide in advancing the implementation of plasmonics-based integrated biosensors.
Collapse
Affiliation(s)
- Ayman Negm
- Department of Electrical and Computer Engineering, McMaster University, Hamilton, ON L8S 4K1, Canada
- Department of Electronics and Communications Engineering, Cairo University, Giza 12613, Egypt
| | - Matiar M. R. Howlader
- Department of Electrical and Computer Engineering, McMaster University, Hamilton, ON L8S 4K1, Canada
| | - Ilya Belyakov
- Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, ON N2L 3G1, Canada
| | - Mohamed Bakr
- Department of Electrical and Computer Engineering, McMaster University, Hamilton, ON L8S 4K1, Canada
| | - Shirook Ali
- Department of Electrical and Computer Engineering, McMaster University, Hamilton, ON L8S 4K1, Canada
- School of Mechanical and Electrical Engineering Technology, Sheridan College, Brampton, ON L6Y 5H9, Canada
| | | | - Mustafa Yavuz
- Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, ON N2L 3G1, Canada
| |
Collapse
|
25
|
Hassan RYA. Advances in Electrochemical Nano-Biosensors for Biomedical and Environmental Applications: From Current Work to Future Perspectives. SENSORS (BASEL, SWITZERLAND) 2022; 22:s22197539. [PMID: 36236638 PMCID: PMC9573286 DOI: 10.3390/s22197539] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 09/26/2022] [Accepted: 09/30/2022] [Indexed: 05/17/2023]
Abstract
Modern life quality is strongly supported by the advances made in biosensors, which has been attributed to their crucial and viable contribution in point-of-care (POC) technology developments. POC devices are exploited for the fast tracing of disease progression, rapid analysis of water, and food quality assessment. Blood glucose meters, home pregnancy strips, and COVID-19 rapid tests all represent common examples of successful biosensors. Biosensors can provide great specificity due to the incorporation of selective bio-recognition elements and portability at significantly reduced costs. Electrochemical biosensor platforms are one of the most advantageous of these platforms because they offer many merits, such as being cheap, selective, specific, rapid, and portable. Furthermore, they can be incorporated into smartphones and various analytical approaches in order to increase their sensitivity and many other properties. As a very broad and interdisciplinary area of research and development, biosensors include all disciplines and backgrounds from materials science, chemistry, physics, medicine, microbiology/biology, and engineering. Accordingly, in this state-of-the-art article, historical background alongside the long journey of biosensing construction and development, starting from the Clark oxygen electrode until reaching highly advanced wearable stretchable biosensing devices, are discussed. Consequently, selected examples among the miscellaneous applications of nanobiosensors (such as microbial detection, cancer diagnosis, toxicity analysis, food quality-control assurance, point of care, and health prognosis) are described. Eventually, future perspectives for intelligent biosensor commercialization and exploitation in real-life that is going to be supported by machine learning and artificial intelligence (AI) are stated.
Collapse
Affiliation(s)
- Rabeay Y. A. Hassan
- Applied Organic Chemistry Department, National Research Centre Dokki, Cairo 12622, Egypt; ; Tel.: +20-11292-16152
- Nanoscience Program, University of Science and Technology (UST), Zewail City of Science and Technology, Giza 12578, Egypt
| |
Collapse
|
26
|
The thermophysical properties of Bi-Ga alloys. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.119912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
27
|
Flexible biochemical sensors for point-of-care management of diseases: a review. Mikrochim Acta 2022; 189:380. [PMID: 36094594 PMCID: PMC9465157 DOI: 10.1007/s00604-022-05469-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 08/19/2022] [Indexed: 11/26/2022]
Abstract
Health problems have been widely concerned by all mankind. Real-time monitoring of disease-related biomarkers can feedback the physiological status of human body in time, which is very helpful to the diseases management of healthcare. However, conventional non-flexible/rigid biochemical sensors possess low fit and comfort with the human body, hence hindering the accurate and comfortable long-time health monitoring. Flexible and stretchable materials make it possible for sensors to be continuously attached to the human body with good fit, and more precise and higher quality results can be obtained. Thus, tremendous attention has been paid to flexible biochemical sensors in point-of-care (POC) for real-time monitoring the entire disease process. Here, recent progress on flexible biochemical sensors for management of various diseases, focusing on chronic and communicable diseases, is reviewed, and the detection principle and performance of these flexible biochemical sensors are discussed. Finally, some directions and challenges are proposed for further development of flexible biochemical sensors.
Collapse
|
28
|
Recent Developments and Implementations of Conductive Polymer-Based Flexible Devices in Sensing Applications. Polymers (Basel) 2022; 14:polym14183730. [PMID: 36145876 PMCID: PMC9504310 DOI: 10.3390/polym14183730] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 09/03/2022] [Accepted: 09/05/2022] [Indexed: 12/24/2022] Open
Abstract
Flexible sensing devices have attracted significant attention for various applications, such as medical devices, environmental monitoring, and healthcare. Numerous materials have been used to fabricate flexible sensing devices and improve their sensing performance in terms of their electrical and mechanical properties. Among the studied materials, conductive polymers are promising candidates for next-generation flexible, stretchable, and wearable electronic devices because of their outstanding characteristics, such as flexibility, light weight, and non-toxicity. Understanding the interesting properties of conductive polymers and the solution-based deposition processes and patterning technologies used for conductive polymer device fabrication is necessary to develop appropriate and highly effective flexible sensors. The present review provides scientific evidence for promising strategies for fabricating conductive polymer-based flexible sensors. Specifically, the outstanding nature of the structures, conductivity, and synthesis methods of some of the main conductive polymers are discussed. Furthermore, conventional and innovative technologies for preparing conductive polymer thin films in flexible sensors are identified and evaluated, as are the potential applications of these sensors in environmental and human health monitoring.
Collapse
|
29
|
Meng L, Chirtes S, Liu X, Eriksson M, Mak WC. A green route for lignin-derived graphene electrodes: A disposable platform for electrochemical biosensors. Biosens Bioelectron 2022; 218:114742. [DOI: 10.1016/j.bios.2022.114742] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 09/07/2022] [Accepted: 09/16/2022] [Indexed: 11/30/2022]
|
30
|
A flexible and highly sensitive organic electrochemical transistor-based biosensor for continuous and wireless nitric oxide detection. Proc Natl Acad Sci U S A 2022; 119:e2208060119. [PMID: 35972962 PMCID: PMC9407321 DOI: 10.1073/pnas.2208060119] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
As nitric oxide (NO) plays significant roles in a variety of physiological processes, the capability for real-time and accurate detection of NO in live organisms is in great demand. Traditional assessments of NO rely on indirect colorimetric techniques or electrochemical sensors that often comprise rigid constituent materials and can hardly satisfy sensitivity and spatial resolution simultaneously. Here, we report a flexible and highly sensitive biosensor based on organic electrochemical transistors (OECTs) capable of continuous and wireless detection of NO in biological systems. By modifying the geometry of the active channel and the gate electrodes of OECTs, devices achieve optimum signal amplification of NO. The sensor exhibits a low response limit, a wide linear range, high sensitivity, and excellent selectivity, with a miniaturized active sensing region compared with a conventional electrochemical sensor. The device demonstrates continuous detection of the nanomolar range of NO in cultured cells for hours without significant signal drift. Real-time and wireless measurement of NO is accomplished for 8 d in the articular cavity of New Zealand White rabbits with anterior cruciate ligament (ACL) rupture injuries. The observed high level of NO is associated with the onset of osteoarthritis (OA) at the later stage. The proposed device platform could provide critical information for the early diagnosis of chronic diseases and timely medical intervention to optimize therapeutic efficacy.
Collapse
|
31
|
Nitrogen Dioxide Optical Sensor Based on Redox-Active Tetrazolium/Pluronic Nanoparticles Embedded in PDMS Membranes. CHEMOSENSORS 2022. [DOI: 10.3390/chemosensors10060213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Abstract
Anthropogenic toxic vapour and gases are a worldwide threat for human health and to the environment. Therefore, it is crucial to develop highly sensitive devices that guarantee their rapid detection. Here, we prepared redox-switchable colloids by the in-situ reduction of 2,3,5-triphenyl-2H-tetrazolium (TTC) into triphenyl formazan (TF) stabilised with Pluronic F127 in aqueous media. The colloids were readily embedded in polydimethylsiloxane (PDMS) to produce a selective colour-switchable membrane for nitrogen dioxide (NO2) detection. We found that the TTC reduction resulted in the production of red-coloured colloids with zeta potential between −1 to 3 mV and hydrodynamic diameters between 114 to 305 nm as hydrophobic dispersion in aqueous media stabilised by Pluronic at different molar concentrations. Moreover, the embedded colloids rendered highly homogenous red colour gas-permeable PDMS elastomeric membrane. Once exposed to NO2, the membrane began to bleach after 30 s due to the oxidation of the embedded TF and undergo a complete decolouration after 180 s. Such features allowed the membrane integration in a low-cost sensing device that showed a high sensitivity and low detection limit to NO2.
Collapse
|
32
|
Development of a paper printed colorimetric sensor based on Cu-Curcumin nanoparticles for evolving point-of-care clinical diagnosis of sodium. Sci Rep 2022; 12:6247. [PMID: 35428770 PMCID: PMC9012761 DOI: 10.1038/s41598-022-09852-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Accepted: 03/21/2022] [Indexed: 12/19/2022] Open
Abstract
The homeostatic control of Sodium (Na+) ion in the human body assumes paramount relevance owing to its physiological importance. Any deviation from the normal level causes serious health problems like hypernatremia, hyponatremia, stroke, kidney problems etc. Therefore, quantification of Na+ levels in body fluids has significant diagnostic and prognostic importance. However, interfering ions like Potassium ion (K+) is the major hurdle in sodium detection. In this work, we synthesized the clusters of 3-9 nm-sized highly stable and pure Copper nanoparticles surface functionalised with curcumin, through chemical reduction method. Each cluster of particles is encapsulated in a curcumin layer which is clearly visible in TEM images. The results show that these curcumin functionalized Cu NPs (CuC) are highly selective to the colorimetric detection of Na+. The ions like K+, Mg2+ and Zn2+ did not interfere with the Na+ in this sensing technique. Low-cost paper-based sensor strips are fabricated and calibrated for the sensing of sodium in the physiological range and shade cards were developed as a calorimetric guide for estimation of Na+ which makes them ideal point of care diagnostic platform. We demonstrate that the proposed CuC paper strip can be used for detecting Na+ concentration within the whole physiological range in both blood serum and urine.
Collapse
|
33
|
Silveri F, Della Pelle F, Scroccarello A, Ain Bukhari QU, Del Carlo M, Compagnone D. Modular graphene mediator film-based electrochemical pocket device for chlorpyrifos determination. Talanta 2022; 240:123212. [PMID: 35026635 DOI: 10.1016/j.talanta.2022.123212] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Revised: 12/01/2021] [Accepted: 01/04/2022] [Indexed: 12/12/2022]
Abstract
In this work, a redox-graphene (Rx-Gr) film with electron-mediating ability has been integrated into a modular flexible pocket device, giving rise to a reusable biosensing platform. The Rx-Gr has been obtained in water from graphite taking advantage of catechin, a redox-antioxidant, able to assist the sonochemical layered-material exfoliation, conferring electron mediating feature. A film composed exclusively of Rx-Gr has been transferred via thermal rolling onto a flexible PET-support that was used as the biosensor base. The biosensing platform, composed of office-grade materials, was then fabricated using a cutter-plotter and assembled by thermal lamination; an interchangeable paper-based strip was used to host the enzymatic reaction and drive the capillary flow. An acetylcholinesterase-based inhibition assay has been optimized onboard the pocket device to determine chlorpyriphos, a widespread environmental pesticide. The proposed set-up allows the determination of chlorpyriphos at low overpotential (0.2 V) with satisfactory sensitivity (LOD = 0.2 ppb), thanks to the straightforward electroactivity of the Rx-Gr film towards thiocholine (enzymatic product). The modular design allows 5 consecutive complete inhibition assays (control + inhibition measure) retaining the performance (RSD = 5.4%; n = 5). The coupling of bench-top technologies and a new functional graphene film resulted in the development of a cost-effective, reusable, transportable, and within everyone's reach biosensing platform.
Collapse
Affiliation(s)
- Filippo Silveri
- Faculty of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Campus "Aurelio Saliceti" via R. Balzarini 1, 64100, Teramo, Italy
| | - Flavio Della Pelle
- Faculty of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Campus "Aurelio Saliceti" via R. Balzarini 1, 64100, Teramo, Italy.
| | - Annalisa Scroccarello
- Faculty of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Campus "Aurelio Saliceti" via R. Balzarini 1, 64100, Teramo, Italy
| | - Qurat Ul Ain Bukhari
- Faculty of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Campus "Aurelio Saliceti" via R. Balzarini 1, 64100, Teramo, Italy
| | - Michele Del Carlo
- Faculty of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Campus "Aurelio Saliceti" via R. Balzarini 1, 64100, Teramo, Italy
| | - Dario Compagnone
- Faculty of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Campus "Aurelio Saliceti" via R. Balzarini 1, 64100, Teramo, Italy.
| |
Collapse
|
34
|
Balakrishnan G, Song J, Mou C, Bettinger CJ. Recent Progress in Materials Chemistry to Advance Flexible Bioelectronics in Medicine. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2106787. [PMID: 34751987 PMCID: PMC8917047 DOI: 10.1002/adma.202106787] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 10/15/2021] [Indexed: 05/09/2023]
Abstract
Designing bioelectronic devices that seamlessly integrate with the human body is a technological pursuit of great importance. Bioelectronic medical devices that reliably and chronically interface with the body can advance neuroscience, health monitoring, diagnostics, and therapeutics. Recent major efforts focus on investigating strategies to fabricate flexible, stretchable, and soft electronic devices, and advances in materials chemistry have emerged as fundamental to the creation of the next generation of bioelectronics. This review summarizes contemporary advances and forthcoming technical challenges related to three principal components of bioelectronic devices: i) substrates and structural materials, ii) barrier and encapsulation materials, and iii) conductive materials. Through notable illustrations from the literature, integration and device fabrication strategies and associated challenges for each material class are highlighted.
Collapse
Affiliation(s)
| | - Jiwoo Song
- Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, PA, 15213, USA
| | - Chenchen Mou
- Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, PA, 15213, USA
| | | |
Collapse
|
35
|
Adam T, Gopinath SC. Nanosensors: Recent Perspectives on Attainments and Future Promise of Downstream Applications. Process Biochem 2022. [DOI: 10.1016/j.procbio.2022.03.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
36
|
Kukhta N, Marks A, Luscombe CK. Molecular Design Strategies toward Improvement of Charge Injection and Ionic Conduction in Organic Mixed Ionic-Electronic Conductors for Organic Electrochemical Transistors. Chem Rev 2022; 122:4325-4355. [PMID: 34902244 PMCID: PMC8874907 DOI: 10.1021/acs.chemrev.1c00266] [Citation(s) in RCA: 78] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Indexed: 12/23/2022]
Abstract
Expanding the toolbox of the biology and electronics mutual conjunction is a primary aim of bioelectronics. The organic electrochemical transistor (OECT) has undeniably become a predominant device for mixed conduction materials, offering impressive transconduction properties alongside a relatively simple device architecture. In this review, we focus on the discussion of recent material developments in the area of mixed conductors for bioelectronic applications by means of thorough structure-property investigation and analysis of current challenges. Fundamental operation principles of the OECT are revisited, and characterization methods are highlighted. Current bioelectronic applications of organic mixed ionic-electronic conductors (OMIECs) are underlined. Challenges in the performance and operational stability of OECT channel materials as well as potential strategies for mitigating them, are discussed. This is further expanded to sketch a synopsis of the history of mixed conduction materials for both p- and n-type channel operation, detailing the synthetic challenges and milestones which have been overcome to frequently produce higher performing OECT devices. The cumulative work of multiple research groups is summarized, and synthetic design strategies are extracted to present a series of design principles that can be utilized to drive figure-of-merit performance values even further for future OMIEC materials.
Collapse
Affiliation(s)
- Nadzeya
A. Kukhta
- Materials
Science and Engineering Department, University
of Washington, Seattle, Washington 98195, United States
| | - Adam Marks
- Department
of Chemistry, University of Oxford, Oxford OX1 3TA, United Kingdom
| | - Christine K. Luscombe
- Materials
Science and Engineering Department, University
of Washington, Seattle, Washington 98195, United States
- Department
of Chemistry, University of Washington, Seattle, Washington 98195, United States
- Molecular
Engineering & Sciences Institute, University
of Washington, Seattle, Washington 98195, United States
| |
Collapse
|
37
|
Biosensors based on zinc oxide thin-film transistors using recyclable plastic substrates as an alternative for real-time pathogen detection. Talanta 2022; 237:122970. [PMID: 34736694 DOI: 10.1016/j.talanta.2021.122970] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 10/08/2021] [Accepted: 10/12/2021] [Indexed: 11/22/2022]
Abstract
The fabrication of biosensors has different future applications mainly from the perspective of eco-friendly technologies. Label-free strategies, recyclable materials and low-temperature processing are parameters to consider for the development of a new generation of biosensor devices. In this work, Zinc oxide (ZnO) Thin-film Transistors (TFTs) using recyclable plastic substrates were used for real-time enteropathogenic Escherichia coli detection as an approach for biosensing (bio-TFTs). Fourier Transform Infrared Spectroscopy was used to verify the characteristic absorption peaks at the different steps of the bio-TFT assembly process. The bio-TFTs are ready to observe the bacterial detection by electrical characterization. Finally, detection was validated by a coupled strategy that fuses the genomic DNA extraction from bacteria attached in situ over bio-TFTs surface and, the development of the Polymerase Chain Reaction to amplify specific genes from enteropathogenic Escherichia coli.
Collapse
|
38
|
Lin T, Xu Y, Zhao A, He W, Xiao F. Flexible electrochemical sensors integrated with nanomaterials for in situ determination of small molecules in biological samples: A review. Anal Chim Acta 2022; 1207:339461. [DOI: 10.1016/j.aca.2022.339461] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Revised: 01/05/2022] [Accepted: 01/06/2022] [Indexed: 12/15/2022]
|
39
|
Fadeev M, Ouyang Y, Davidson-Rozenfeld G, Willner I. Controlling electrocatalytic, photoelectrocatalytic, and load release processes using soft material-modified electrodes. J Electroanal Chem (Lausanne) 2022. [DOI: 10.1016/j.jelechem.2021.115926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
40
|
Melo Henrique J, Rocha Camargo J, Gabriel de Oliveira G, Santos Stefano J, Campos Janegitz B. Disposable electrochemical sensor based on shellac and graphite for sulfamethoxazole detection. Microchem J 2021. [DOI: 10.1016/j.microc.2021.106701] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
41
|
Gorle DB, Ponnada S, Kiai MS, Nair KK, Nowduri A, Swart HC, Ang EH, Nanda KK. Review on recent progress in metal-organic framework-based materials for fabricating electrochemical glucose sensors. J Mater Chem B 2021; 9:7927-7954. [PMID: 34612291 DOI: 10.1039/d1tb01403j] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Diabetes is a type of disease that threatens human health, which can be diagnosed based on the level of glucose in the blood. Recently, various MOF-based materials have been developed as efficient electrochemical glucose sensors because of their tunable pore channels, large specific surface area well dispersed metallic active sites, etc. In this review, the significance of glucose detection and the advantages of MOF-based materials for this application are primarily discussed. Then, the application of MOF-based materials can be categorized into two types of glucose sensors: enzymatic biosensors and non-enzymatic sensors. Finally, insights into the current research challenges and future breakthrough possibilities regarding electrochemical glucose sensors are considered.
Collapse
Affiliation(s)
- Demudu Babu Gorle
- Materials Research Centre, Indian Institute of Science, Bangalore-560012, India.
| | - Srikanth Ponnada
- Department of Engineering Chemistry, Andhra University College of Engineering, Andhra University, Visakhapatnam-530003, India
| | - Maryam Sadat Kiai
- Nano-Science and Nano-Engineering Program, Graduate School of Science, Engineering and Technology, Istanbul Technical University, Istanbul-34469, Turkey
| | - Kishore Kumar Nair
- Department of Physics, University of Free state, Bloemfontein-9300, South Africa
| | - Annapurna Nowduri
- Department of Engineering Chemistry, Andhra University College of Engineering, Andhra University, Visakhapatnam-530003, India
| | - Hendrik C Swart
- Department of Physics, University of Free state, Bloemfontein-9300, South Africa
| | - Edison Huixiang Ang
- Natural Sciences and Science Education, National Institute of Education Singapore, Nanyang Technological University Singapore, Nanyang Walk-637616, Singapore
| | - Karuna Kar Nanda
- Materials Research Centre, Indian Institute of Science, Bangalore-560012, India.
| |
Collapse
|
42
|
Lohcharoenkal W, Abbas Z, Rojanasakul Y. Advances in Nanotechnology-Based Biosensing of Immunoregulatory Cytokines. BIOSENSORS 2021; 11:364. [PMID: 34677320 PMCID: PMC8533878 DOI: 10.3390/bios11100364] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 09/22/2021] [Accepted: 09/26/2021] [Indexed: 12/13/2022]
Abstract
Cytokines are a large group of small proteins secreted by immune and non-immune cells in response to external stimuli. Much attention has been given to the application of cytokines' detection in early disease diagnosis/monitoring and therapeutic response assessment. To date, a wide range of assays are available for cytokines detection. However, in specific applications, multiplexed or continuous measurements of cytokines with wearable biosensing devices are highly desirable. For such efforts, various nanomaterials have been extensively investigated due to their extraordinary properties, such as high surface area and controllable particle size and shape, which leads to their tunable optical emission, electrical, and magnetic properties. Different types of nanomaterials such as noble metal, metal oxide, and carbon nanoparticles have been explored for various biosensing applications. Advances in nanomaterial synthesis and device development have led to significant progress in pushing the limit of cytokine detection. This article reviews currently used methods for cytokines detection and new nanotechnology-based biosensors for ultrasensitive cytokine detection.
Collapse
Affiliation(s)
| | - Zareen Abbas
- Department of Chemistry and Molecular Biology, University of Gothenburg, Kemigården 4, SE-412 96 Gothenburg, Sweden
| | - Yon Rojanasakul
- Department of Pharmaceutical Sciences, West Virginia University, Morgantown, WV 26505, USA
- West Virginia University Cancer Institute, West Virginia University, Morgantown, WV 26505, USA
| |
Collapse
|
43
|
Peng S, Yu Y, Wu S, Wang CH. Conductive Polymer Nanocomposites for Stretchable Electronics: Material Selection, Design, and Applications. ACS APPLIED MATERIALS & INTERFACES 2021; 13:43831-43854. [PMID: 34515471 DOI: 10.1021/acsami.1c15014] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Stretchable electronics that can elongate elastically as well as flex are crucial to a wide range of emerging technologies, such as wearable medical devices, electronic skin, and soft robotics. Critical to stretchable electronics is their ability to withstand large mechanical strain without failure while retaining their electrical conduction properties, a feat significantly beyond traditional metals and silicon-based semiconductors. Herein, we present a review of the recent advances in stretchable conductive polymer nanocomposites with exceptional stretchability and electrical properties, which have the potential to transform a wide range of applications, including wearable sensors for biophysical signals, stretchable conductors and electrodes, and deformable energy-harvesting and -storage devices. Critical to achieving these stretching properties are the judicious selection and hybridization of nanomaterials, novel microstructure designs, and facile fabrication processes, which are the focus of this Review. To highlight the potentials of conductive nanocomposites, a summary of some recent important applications is presented, including COVID-19 remote monitoring, connected health, electronic skin for augmented intelligence, and soft robotics. Finally, perspectives on future challenges and new research opportunities are also presented and discussed.
Collapse
Affiliation(s)
- Shuhua Peng
- School of Mechanical and Manufacturing Engineering, University of New South Wales, Sydney, New South Wales 2052, Australia
| | - Yuyan Yu
- School of Mechanical and Manufacturing Engineering, University of New South Wales, Sydney, New South Wales 2052, Australia
| | - Shuying Wu
- School of Engineering, Macquarie University, Sydney, New South Wales 2109, Australia
| | - Chun-Hui Wang
- School of Mechanical and Manufacturing Engineering, University of New South Wales, Sydney, New South Wales 2052, Australia
| |
Collapse
|
44
|
Saxena K, Chauhan N, Jain U. Advances in diagnosis of Helicobacter pylori through biosensors: Point of care devices. Anal Biochem 2021; 630:114325. [PMID: 34352253 DOI: 10.1016/j.ab.2021.114325] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 07/30/2021] [Accepted: 08/02/2021] [Indexed: 02/07/2023]
Abstract
Invasive as well as non-invasive conventional techniques for the detection of Helicobacter pylori (H. pylori) have several limitations that are being overcome by the development of novel, rapid and reliable biosensors. Herein, we describe several biosensors fabricated for the detection of H. pylori. This review aims to provide the principles of biosensors and their components including in the context to H. pylori detection. The major biorecognition elements in H. pylori detection include antigen/antibodies, oligonucleotides and enzymes. Furthermore, the review describes the transducers, such as electrochemical, optical and piezoelectric, also including microfluidics approaches. An overview of the biomarkers associated with H. pylori pathogenesis is also discussed. Finally, the prospects of advancement and commercialization of point-of-care tools are summarized.
Collapse
Affiliation(s)
- Kirti Saxena
- Amity Institute of Nanotechnology (AINT), Amity University Uttar Pradesh (AUUP), Noida, 201313, U.P, India
| | - Nidhi Chauhan
- Amity Institute of Nanotechnology (AINT), Amity University Uttar Pradesh (AUUP), Noida, 201313, U.P, India
| | - Utkarsh Jain
- Amity Institute of Nanotechnology (AINT), Amity University Uttar Pradesh (AUUP), Noida, 201313, U.P, India.
| |
Collapse
|
45
|
Xue R, Tao Y, Sun H, Liu W, Ge Z, Jiang T, Jiang H, Han F, Li Y, Ren Y. Small universal mechanical module driven by a liquid metal droplet. LAB ON A CHIP 2021; 21:2771-2780. [PMID: 34047740 DOI: 10.1039/d1lc00206f] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Gallium-based liquid metal droplets (LMDs) from micro-electromechanical systems (MEMS) have gained much attention due to their precise and sensitive controllability under an electric field. Considerable research progress has been made in the field of actuators by taking advantage of the continuous electrowetting (CEW) present within the solution. However, the motion generated is confined within the specific liquid environment and is lacking a way to transmit its motion outwardly, which undoubtedly serves as the greatest obstacle restricting any further development. Therefore, a driving module is proposed to generate rotational motion outside the solution for universality. Its performance can be easily tuned by adjusting the applied voltage. As an example of further application, the module is designed in the form of a pump that realizes the continuous/intermittent propulsion to mimic the veins/arteries of the human body without the problem in the previous LMD-based pumps. The feasibility of this pump in the on-chip in vitro analysis is proved by preparing a dynamic cell culture to simulate the movement of biofluids within human bodies. This study proposes an optional solution with an LMD-based motor for generating rotational motion and to expand current research on soft materials in actuators.
Collapse
Affiliation(s)
- Rui Xue
- State Key Laboratory of Robotics and System, Harbin Institute of Technology, West Da-zhi Street 92, Harbin, Heilongjiang 150001, People's Republic of China.
| | - Ye Tao
- School of Engineering and Applied Sciences and Department of Physics Harvard University, 9 Oxford Street, Cambridge, MA 02138, USA.
| | - Haoxiu Sun
- School of Life Sciences, Harbin Institute of Technology, No. 2 Yikuang Street, Harbin 150001, People's Republic of China.
| | - Weiyu Liu
- School of Electronics and Control Engineering, Chang'an University, Middle-Section of Nan'er Huan Road, Xi'an 710064, People's Republic of China
| | - Zhenyou Ge
- State Key Laboratory of Robotics and System, Harbin Institute of Technology, West Da-zhi Street 92, Harbin, Heilongjiang 150001, People's Republic of China.
| | - Tianyi Jiang
- School of Mechatronics Engineering, Harbin Institute of Technology, West Da-zhi Street 92, Harbin 150001, People's Republic of China
| | - Hongyuan Jiang
- School of Mechatronics Engineering, Harbin Institute of Technology, West Da-zhi Street 92, Harbin 150001, People's Republic of China
| | - Fang Han
- School of Life Sciences, Harbin Institute of Technology, No. 2 Yikuang Street, Harbin 150001, People's Republic of China.
| | - Yu Li
- School of Life Sciences, Harbin Institute of Technology, No. 2 Yikuang Street, Harbin 150001, People's Republic of China.
| | - Yukun Ren
- State Key Laboratory of Robotics and System, Harbin Institute of Technology, West Da-zhi Street 92, Harbin, Heilongjiang 150001, People's Republic of China.
| |
Collapse
|
46
|
Tran VV, Tran NHT, Hwang HS, Chang M. Development strategies of conducting polymer-based electrochemical biosensors for virus biomarkers: Potential for rapid COVID-19 detection. Biosens Bioelectron 2021; 182:113192. [PMID: 33819902 PMCID: PMC7992312 DOI: 10.1016/j.bios.2021.113192] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 03/16/2021] [Accepted: 03/18/2021] [Indexed: 12/24/2022]
Abstract
Rapid, accurate, portable, and large-scale diagnostic technologies for the detection of severe acute respiratory syndrome-coronavirus-2 (SARS-CoV-2) are crucial for controlling the coronavirus disease (COVID-19). The current standard technologies, i.e., reverse-transcription polymerase chain reaction, serological assays, and computed tomography (CT) exhibit practical limitations and challenges in case of massive and rapid testing. Biosensors, particularly electrochemical conducting polymer (CP)-based biosensors, are considered as potential alternatives owing to their large advantages such as high selectivity and sensitivity, rapid detection, low cost, simplicity, flexibility, long self-life, and ease of use. Therefore, CP-based biosensors can serve as multisensors, mobile biosensors, and wearable biosensors, facilitating the development of point-of-care (POC) systems and home-use biosensors for COVID-19 detection. However, the application of these biosensors for COVID-19 entails several challenges related to their degradation, low crystallinity, charge transport properties, and weak interaction with biomarkers. To overcome these problems, this study provides scientific evidence for the potential applications of CP-based electrochemical biosensors in COVID-19 detection based on their applications for the detection of various biomarkers such as DNA/RNA, proteins, whole viruses, and antigens. We then propose promising strategies for the development of CP-based electrochemical biosensors for COVID-19 detection.
Collapse
Affiliation(s)
- Vinh Van Tran
- Alan G. MacDiarmid Energy Research Institute, Chonnam National University, Gwangju 61186, South Korea
| | - Nhu Hoa Thi Tran
- Faculty of Materials Science and Technology, University of Science, HoChiMinh City 700000, Viet Nam; Vietnam National University, HoChiMinh City 700000, Viet Nam
| | - Hye Suk Hwang
- Alan G. MacDiarmid Energy Research Institute, Chonnam National University, Gwangju 61186, South Korea.
| | - Mincheol Chang
- Alan G. MacDiarmid Energy Research Institute, Chonnam National University, Gwangju 61186, South Korea; Department of Polymer Engineering, Graduate School, Chonnam National University, Gwangju 61186, South Korea; School of Polymer Science and Engineering, Chonnam National University, Gwangju 61186, South Korea.
| |
Collapse
|
47
|
Chelliah R, Wei S, Daliri EBM, Rubab M, Elahi F, Yeon SJ, Jo KH, Yan P, Liu S, Oh DH. Development of Nanosensors Based Intelligent Packaging Systems: Food Quality and Medicine. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:1515. [PMID: 34201071 PMCID: PMC8226856 DOI: 10.3390/nano11061515] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 06/01/2021] [Accepted: 06/02/2021] [Indexed: 12/02/2022]
Abstract
The issue of medication noncompliance has resulted in major risks to public safety and financial loss. The new omnipresent medicine enabled by the Internet of things offers fascinating new possibilities. Additionally, an in-home healthcare station (IHHS), it is necessary to meet the rapidly increasing need for routine nursing and on-site diagnosis and prognosis. This article proposes a universal and preventive strategy to drug management based on intelligent and interactive packaging (I2Pack) and IMedBox. The controlled delamination material (CDM) seals and regulates wireless technologies in novel medicine packaging. As such, wearable biomedical sensors may capture a variety of crucial parameters via wireless communication. On-site treatment and prediction of these critical factors are made possible by high-performance architecture. The user interface is also highlighted to make surgery easier for the elderly, disabled, and patients. Land testing incorporates and validates an approach for prototyping I2Pack and iMedBox. Additionally, sustainability, increased product safety, and quality standards are crucial throughout the life sciences. To achieve these standards, intelligent packaging is also used in the food and pharmaceutical industries. These technologies will continuously monitor the quality of a product and communicate with the user. Data carriers, indications, and sensors are the three most important groups. They are not widely used at the moment, although their potential is well understood. Intelligent packaging should be used in these sectors and the functionality of the systems and the values presented in this analysis.
Collapse
Affiliation(s)
- Ramachandran Chelliah
- Department of Food Science and Biotechnology, College of Agriculture and Life Science, Kangwon National University, Chuncheon 24341, Korea; (E.B.-M.D.); (F.E.); (S.-J.Y.); (K.h.J.); (P.Y.)
| | - Shuai Wei
- College of Food Science and Technology, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Products Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Marine Food, Key Laboratory of Advanced Processing of Aquatic Product of Guangdong Higher Education Institution, Zhanjiang 524088, China;
- Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, China
| | - Eric Banan-Mwine Daliri
- Department of Food Science and Biotechnology, College of Agriculture and Life Science, Kangwon National University, Chuncheon 24341, Korea; (E.B.-M.D.); (F.E.); (S.-J.Y.); (K.h.J.); (P.Y.)
| | - Momna Rubab
- School of Food and Agricultural Sciences, University of Management and Technology, Lahore 54770, Pakistan;
| | - Fazle Elahi
- Department of Food Science and Biotechnology, College of Agriculture and Life Science, Kangwon National University, Chuncheon 24341, Korea; (E.B.-M.D.); (F.E.); (S.-J.Y.); (K.h.J.); (P.Y.)
| | - Su-Jung Yeon
- Department of Food Science and Biotechnology, College of Agriculture and Life Science, Kangwon National University, Chuncheon 24341, Korea; (E.B.-M.D.); (F.E.); (S.-J.Y.); (K.h.J.); (P.Y.)
| | - Kyoung hee Jo
- Department of Food Science and Biotechnology, College of Agriculture and Life Science, Kangwon National University, Chuncheon 24341, Korea; (E.B.-M.D.); (F.E.); (S.-J.Y.); (K.h.J.); (P.Y.)
| | - Pianpian Yan
- Department of Food Science and Biotechnology, College of Agriculture and Life Science, Kangwon National University, Chuncheon 24341, Korea; (E.B.-M.D.); (F.E.); (S.-J.Y.); (K.h.J.); (P.Y.)
| | - Shucheng Liu
- College of Food Science and Technology, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Products Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Marine Food, Key Laboratory of Advanced Processing of Aquatic Product of Guangdong Higher Education Institution, Zhanjiang 524088, China;
- Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, China
| | - Deog Hwan Oh
- Department of Food Science and Biotechnology, College of Agriculture and Life Science, Kangwon National University, Chuncheon 24341, Korea; (E.B.-M.D.); (F.E.); (S.-J.Y.); (K.h.J.); (P.Y.)
| |
Collapse
|
48
|
Herrmann A, Haag R, Schedler U. Hydrogels and Their Role in Biosensing Applications. Adv Healthc Mater 2021; 10:e2100062. [PMID: 33939333 PMCID: PMC11468738 DOI: 10.1002/adhm.202100062] [Citation(s) in RCA: 100] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 04/12/2021] [Indexed: 12/16/2022]
Abstract
Hydrogels play an important role in the field of biomedical research and diagnostic medicine. They are emerging as a powerful tool in the context of bioanalytical assays and biosensing. In this context, this review gives an overview of different hydrogels and the role they adopt in a range of applications. Not only are hydrogels beneficial for the immobilization and embedding of biomolecules, but they are also used as responsive material, as wearable devices, or as functional material. In particular, the scientific and technical progress during the last decade is discussed. The newest hydrogel types, their synthesis, and many applications are presented. Advantages and performance improvements are described, along with their limitations.
Collapse
Affiliation(s)
- Anna Herrmann
- Department of Biology, Chemistry, PharmacyFreie Universität BerlinTakustr. 3Berlin14195Germany
| | - Rainer Haag
- Department of Biology, Chemistry, PharmacyFreie Universität BerlinTakustr. 3Berlin14195Germany
| | - Uwe Schedler
- PolyAn GmbHRudolf‐Baschant‐Straße 2Berlin13086Germany
| |
Collapse
|
49
|
Song J, Teng H, Xu Z, Liu N, Xu L, Liu L, Gao F, Luo X. Free-standing electrochemical biosensor for carcinoembryonic antigen detection based on highly stable and flexible conducting polypyrrole nanocomposite. Mikrochim Acta 2021; 188:217. [PMID: 34057597 DOI: 10.1007/s00604-021-04859-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2020] [Accepted: 05/13/2021] [Indexed: 01/02/2023]
Abstract
A flexible free-standing electrochemical biosensor to detect carcinoembryonic antigen (CEA) is described based on a conducting polypyrrole (PPy) nanocomposite film electrode. The conducting PPy composite was constructed by the sandwiched structure formed by PPy doped with pentaerythritol ethoxylate (PEE) and 2-naphthalene sulfonate (2-NS-PPy) separately via electropolymerization. Gold nanoparticles (AuNPs) were fixed on the PPy composite film by electrodeposition and then connected to CEA aptamer through self-assembly to construct a free-standing electrochemical biosensor breaking away from additional soft substrates and current collector. This PPy composite film-based electrochemical biosensor exhibits satisfying sensing performance for CEA detection, with a linear range from 10-10 g/mL to 10-6 g/mL and a detection limit of 0.033 ng/mL, good specificity and long-term sensing stability (96.8% of the original signal after 15 days). The biosensor also presents acceptable reproducibility with 1.7% relative standard deviation. Moreover, this electrochemical biosensor owns the deformation stability that could bear various deformations (twisting, folding, and knotting) without affecting device's sensing performance. It can even maintain 99.4% of the original signal under 25% strain deformation. Due to the superior sensing performance, high stability (mechanical deformation and long-term storage), and flexibility, this free-standing electrochemical biosensor proves huge potential in application of flexible and wearable electronics.
Collapse
Affiliation(s)
- Jingyao Song
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, Shandong Key Laboratory of Biochemical Analysis, Key Laboratory of Analytical Chemistry for Life Science in Universities of Shandong, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China
| | - He Teng
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, Shandong Key Laboratory of Biochemical Analysis, Key Laboratory of Analytical Chemistry for Life Science in Universities of Shandong, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China
| | - Zhenying Xu
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, Shandong Key Laboratory of Biochemical Analysis, Key Laboratory of Analytical Chemistry for Life Science in Universities of Shandong, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China
| | - Nianzu Liu
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, Shandong Key Laboratory of Biochemical Analysis, Key Laboratory of Analytical Chemistry for Life Science in Universities of Shandong, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China
| | - Liang Xu
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, Shandong Key Laboratory of Biochemical Analysis, Key Laboratory of Analytical Chemistry for Life Science in Universities of Shandong, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China
| | - Lu Liu
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, Shandong Key Laboratory of Biochemical Analysis, Key Laboratory of Analytical Chemistry for Life Science in Universities of Shandong, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China
| | - Fengxian Gao
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, Shandong Key Laboratory of Biochemical Analysis, Key Laboratory of Analytical Chemistry for Life Science in Universities of Shandong, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China.
| | - Xiliang Luo
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, Shandong Key Laboratory of Biochemical Analysis, Key Laboratory of Analytical Chemistry for Life Science in Universities of Shandong, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China.
| |
Collapse
|
50
|
Thirumalai D, Lee JU, Choi H, Kim M, Lee J, Kim S, Shin BS, Chang SC. In situ synthesis of copper-ruthenium bimetallic nanoparticles on laser-induced graphene as a peroxidase mimic. Chem Commun (Camb) 2021; 57:1947-1950. [PMID: 33501483 DOI: 10.1039/d0cc07518c] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A new type of disposable flexible sensor for hydrogen peroxide (H2O2) detection was developed by in situ synthesis of copper-ruthenium bimetallic nanoparticles on a laser-induced graphene surface (Cu-Ru/LIG). The approach produced Cu-Ru/LIG via a solid phase transfer mechanism which loaded the metal precursor onto LIG, followed by laser scribing without demanding chemical vapor deposition or solution-based reactions. Cu-Ru/LIG showed a high electrocatalytic response toward H2O2 reduction at -0.4 V vs. Ag/AgCl. The sensor also showed good selectivity and reproducibility. This method provides an alternative route to easily synthesize various catalysts on conductive substrates for sensor applications.
Collapse
Affiliation(s)
- Dinakaran Thirumalai
- Department of Cogno-Mechatronics Engineering, College of Nanoscience and Nanotechnology, Pusan National University, Busan 46241, Republic of Korea.
| | - Jun-Uk Lee
- Department of Cogno-Mechatronics Engineering, College of Nanoscience and Nanotechnology, Pusan National University, Busan 46241, Republic of Korea.
| | - Hyojeong Choi
- Department of Optics and Mechatronics Engineering, College of Nanoscience and Nanotechnology, Pusan National University, Busan 46241, Republic of Korea
| | - Minjeong Kim
- Department of Optics and Mechatronics Engineering, College of Nanoscience and Nanotechnology, Pusan National University, Busan 46241, Republic of Korea
| | - Jaewon Lee
- College of Pharmacy, Pusan National University, Busan 46241, Republic of Korea
| | - Suhkmann Kim
- Department of Chemistry, Pusan National University, Busan 46241, Republic of Korea
| | - Bo-Sung Shin
- Department of Cogno-Mechatronics Engineering, College of Nanoscience and Nanotechnology, Pusan National University, Busan 46241, Republic of Korea.
| | - Seung-Cheol Chang
- Department of Cogno-Mechatronics Engineering, College of Nanoscience and Nanotechnology, Pusan National University, Busan 46241, Republic of Korea.
| |
Collapse
|