1
|
Velasco LG, Rocha DS, de Campos RPS, Coltro WKT. Integration of paper-based analytical devices with digital microfluidics for colorimetric detection of creatinine. Analyst 2024. [PMID: 39417394 DOI: 10.1039/d4an00688g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
Digital microfluidics (DMF) is a platform that enables the automated manipulation of individual droplets of sizes ranging from nanoliter to microliter and can be coupled with numerous techniques, including colorimetry. However, although the DMF electrode architecture is highly versatile, its integration with different analytical methods often requires either changes in sample access, top plate design, or the integration of supplementary equipment into the system. As an alternative to overcome these challenges, this study proposes a simple integration between paper-based analytical devices (PADs) and DMF for automated and eco-friendly sample processing aiming at the colorimetric detection of creatinine (CR, an important biomarker for kidney disease) in artificial urine. An optimized and selective Jaffé reaction was performed on the device, and the reaction products were delivered to the PAD, which was subsequently analyzed with a bench scanner. The optimal operational parameters on the DMF platform were a reaction time of 45 s with circular mixing and image capture after 5 min. Under optimized conditions, a linear behavior was obtained for creatinine concentrations ranging from 2 to 32 mg dL-1, with limits of detection and quantitation equal to 1.4 mg dL-1 and 2.0 mg dL-1, respectively. For the concentration range tested, the relative standard deviation varied from 2.5 to 11.0%, considering four measurements per concentration. CR-spiked synthetic urine samples were subjected to analysis via DMF-PAD and the spectrophotometric reference method. The concentrations of CR determined using both analytical techniques were close to the theoretical values, with the resultant standard deviations of 2-9% and 1-4% for DMF-PADs and spectrophotometry, respectively. Furthermore, the recovery values were within the acceptable range, with DMF-PADs yielding 96-108% and spectrophotometry producing 95-102%. Finally, the greenness of the DMF-PAD and spectrophotometry methods was evaluated using the Analytical Greenness (AGREE) metric software, in which 0.71 and 0.51 scores were obtained, respectively. This indicates that the proposed method presents a higher greenness level, mainly due to its miniaturized characteristics using a smaller volume of reagent and sample and the possibility of automation, thus reducing user exposure to potentially toxic substances. Therefore, the DMF-PADs demonstrated great potential for application in the clinical analysis of creatinine, aiding in routine tests by introducing an automated, simple, and environmentally friendly process.
Collapse
Affiliation(s)
- Larissa G Velasco
- Instituto de Química, Universidade Federal de Goiás - UFG, 74690-900, Goiânia, GO, Brazil
| | - Danielly S Rocha
- Instituto de Química, Universidade Federal de Goiás - UFG, 74690-900, Goiânia, GO, Brazil
| | - Richard P S de Campos
- Nanotechnology Research Centre, National Research Council of Canada, Edmonton, AB, Canada
| | - Wendell K T Coltro
- Instituto de Química, Universidade Federal de Goiás - UFG, 74690-900, Goiânia, GO, Brazil
- Instituto Nacional de Ciência e Tecnologia de Bioanalítica, 13084-971, Campinas, SP, Brazil.
| |
Collapse
|
2
|
Lu Y, Wang SM, He SS, Huang Q, Zhao CD, Yu S, Jiang W, Yao H, Wang LL, Yang LP. An endo-functionalized molecular cage for selective potentiometric determination of creatinine. Chem Sci 2024:d4sc04950k. [PMID: 39184288 PMCID: PMC11342131 DOI: 10.1039/d4sc04950k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Accepted: 08/14/2024] [Indexed: 08/27/2024] Open
Abstract
Potentiometric ion-selective electrodes (ISEs), which rely on selective and lipophilic ionophores, are commonly employed in clinical diagnostics. However, there are very limited specific ionophores for the detection of creatinine, a critical biomarker for renal function assessment. In the present research, we designed and synthesized an endo-functionalized cage, which is able to selectively bind the creatininium cation (K a = 8.6 × 105 M-1) through the formation of multiple C-H⋯O and N-H⋯N hydrogen bonds and cation⋯π interactions. ISEs prepared with this host show a Nernstian response to creatinine and exhibit excellent selectivity and a low detection limit of 0.95 μM. In addition, the creatinine levels in urine or plasma samples determined by our sensor are consistent with those analyzed using enzymatic assay on a Cobas c702. The method is simple, fast and accurate, and amenable to clinical detection of creatinine levels.
Collapse
Affiliation(s)
- Yu Lu
- School of Pharmaceutical Science, Hengyang Medical School, University of South China Hengyang Hunan 421001 China
| | - Song-Meng Wang
- Department of Chemistry, Southern University of Science and Technology Xueyuan Blvd 1088 Shenzhen 518055 China
| | - Sui-Sui He
- School of Pharmaceutical Science, Hengyang Medical School, University of South China Hengyang Hunan 421001 China
| | - Qicheng Huang
- Department of Chemistry, Southern University of Science and Technology Xueyuan Blvd 1088 Shenzhen 518055 China
| | - Cheng-Da Zhao
- School of Pharmaceutical Science, Hengyang Medical School, University of South China Hengyang Hunan 421001 China
- The Affiliated Nanhua Hospital, University of South China Hengyang Hunan 421001 China
| | - Shan Yu
- The Affiliated Nanhua Hospital, University of South China Hengyang Hunan 421001 China
| | - Wei Jiang
- Department of Chemistry, Southern University of Science and Technology Xueyuan Blvd 1088 Shenzhen 518055 China
| | - Huan Yao
- School of Pharmaceutical Science, Hengyang Medical School, University of South China Hengyang Hunan 421001 China
| | - Li-Li Wang
- School of Pharmaceutical Science, Hengyang Medical School, University of South China Hengyang Hunan 421001 China
| | - Liu-Pan Yang
- School of Pharmaceutical Science, Hengyang Medical School, University of South China Hengyang Hunan 421001 China
| |
Collapse
|
3
|
Hou H, Liu Y, Li X, Liu W, Gong X. Rapid electrodeposition of Cu nanoparticle film on Ni foam as an integrated 3D free-standing electrode for non-invasive and non-enzymatic creatinine sensing. Analyst 2024; 149:2905-2914. [PMID: 38572989 DOI: 10.1039/d4an00162a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2024]
Abstract
High cost, inherent destabilization, and intricate fixing of enzyme molecules are the main drawbacks of enzyme-based creatinine sensors. The design of a low-cost, stabilizable, and enzyme-free creatinine sensing probe is essential to address these limitations. In this work, an integrated three-dimensional (3D) free-standing electrode was designed to serve as a non-enzymatic creatinine sensing platform and was fabricated by rapid electrodeposition of a dense copper nanoparticle film on nickel foam (Cu NP film/NF). This low-cost, stable, easy-to-fabricate, and binder-free Cu NP film/NF electrode has abundant active sites and excellent electrochemical performance. Cyclic voltammetry measurements show a wide linear range (0.25-24 mM), low detection limit (0.17 mM), and high sensitivity (306 μA mM-1 cm-2). The developed sensor shows high recovery of creatinine concentration in real urine. Besides, it has better specificity, reproducibility, and robustness in detecting creatinine. These excellent results suggest that a non-enzymatic creatinine sensor based on an integrated 3D free-standing Cu NP film/NF electrode has good potential for non-invasive detection of urinary creatinine.
Collapse
Affiliation(s)
- Hongming Hou
- School of Mechanical Engineering, Sichuan University, Chengdu 610065, China.
- Innovation Method and Creative Design Key Laboratory of Sichuan Province, Chengdu 610065, China
| | - Yifan Liu
- School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Xianglong Li
- School of Mechanical Engineering, Sichuan University, Chengdu 610065, China.
- Innovation Method and Creative Design Key Laboratory of Sichuan Province, Chengdu 610065, China
| | - Wenbo Liu
- School of Mechanical Engineering, Sichuan University, Chengdu 610065, China.
| | - Xiaoli Gong
- School of Materials Science and Engineering, Sichuan University, Chengdu 610065, China
| |
Collapse
|
4
|
Bereyhi M, Zare-Dorabei R. High-Sensitivity Creatinine Detection via a Dual-Emission Ratiometric Fluorescence Probe Incorporating Amino-MIL-53@Mo/ZIF-8 and Rhodamine B. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:5890-5899. [PMID: 38452371 DOI: 10.1021/acs.langmuir.3c03793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/09/2024]
Abstract
Quantifying creatinine (Cn) in biological fluids is crucial for clinically assessing renal insufficiency, thyroid irregularities, and muscle damage. Therefore, it is crucial for human health to have a simple, quick, and accurate Cn analysis technique. In this study, we have successfully synthesized a 3D ratiometric dual-metal-organic framework, namely, the amino-MIL-53@Mo/ZIF-8 and rhodamie B heterostructure, using an internal strategy for sustained growth. The dual-MOF functions as an adsorbent and preconcentrates Cn. The pH, reaction time, and volume ratio of amino-MIL-53@Mo/ZIF-8/rhodamie B were optimized using the one-variable-at-a-time technique in this study. The quantitative study of the Cn concentration for this RF biosensor was obtained under ideal conditions (R2 = 0.9962, n = 3), encompassing the linear range of 0.35-11.1 μM. The detection and quantitation limits were 0.18 and 0.54 nM, respectively. Both intra- and interday reproducibility showed high repeatability of the RF biosensor, UV-vis, and ZETA potential studies, and the Stern-Volmer relationship was used to clarify the fluorescence quenching process. These superior sensing capabilities and the benefits of simple manufacturing, acceptable stability, and practicality make the RF biosensor intriguing for ultrasensitive Cn detection in practical applications.
Collapse
Affiliation(s)
- Mohammad Bereyhi
- Research Laboratory of Spectrometry & Micro and Nano Extraction, Department of Chemistry, Iran University of Science and Technology, Tehran 16846-13114, Iran
| | - Rouholah Zare-Dorabei
- Research Laboratory of Spectrometry & Micro and Nano Extraction, Department of Chemistry, Iran University of Science and Technology, Tehran 16846-13114, Iran
| |
Collapse
|
5
|
Hezer B, Massey EK, Reinders ME, Tielen M, van de Wetering J, Hesselink DA, van den Hoogen MW. Telemedicine for Kidney Transplant Recipients: Current State, Advantages, and Barriers. Transplantation 2024; 108:409-420. [PMID: 37264512 PMCID: PMC10798592 DOI: 10.1097/tp.0000000000004660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Revised: 04/02/2023] [Accepted: 04/04/2023] [Indexed: 06/03/2023]
Abstract
Telemedicine is defined as the use of electronic information and communication technologies to provide and support healthcare at a distance. In kidney transplantation, telemedicine is limited but is expected to grow markedly in the coming y. Current experience shows that it is possible to provide transplant care at a distance, with benefits for patients like reduced travel time and costs, better adherence to medication and appointment visits, more self-sufficiency, and more reliable blood pressure values. However, multiple barriers in different areas need to be overcome for successful implementation, such as recipients' preferences, willingness, skills, and digital literacy. Moreover, in many countries, limited digital infrastructure, legislation, local policy, costs, and reimbursement issues could be barriers to the implementation of telemedicine. Finally, telemedicine changes the way transplant professionals provide care, and this transition needs time, training, willingness, and acceptance. This review discusses the current state and benefits of telemedicine in kidney transplantation, with the aforementioned barriers, and provides an overview of future directions on telemedicine in kidney transplantation.
Collapse
Affiliation(s)
- Bartu Hezer
- Erasmus MC Transplant Institute, University Medical Center Rotterdam, Department of Internal Medicine, Rotterdam, the Netherlands
| | - Emma K. Massey
- Erasmus MC Transplant Institute, University Medical Center Rotterdam, Department of Internal Medicine, Rotterdam, the Netherlands
| | - Marlies E.J. Reinders
- Erasmus MC Transplant Institute, University Medical Center Rotterdam, Department of Internal Medicine, Rotterdam, the Netherlands
| | - Mirjam Tielen
- Erasmus MC Transplant Institute, University Medical Center Rotterdam, Department of Internal Medicine, Rotterdam, the Netherlands
| | - Jacqueline van de Wetering
- Erasmus MC Transplant Institute, University Medical Center Rotterdam, Department of Internal Medicine, Rotterdam, the Netherlands
| | - Dennis A. Hesselink
- Erasmus MC Transplant Institute, University Medical Center Rotterdam, Department of Internal Medicine, Rotterdam, the Netherlands
| | - Martijn W.F. van den Hoogen
- Erasmus MC Transplant Institute, University Medical Center Rotterdam, Department of Internal Medicine, Rotterdam, the Netherlands
| |
Collapse
|
6
|
Li Y, Wong KY, Howard AG, Gordon-Larsen P, Highland HM, Graff M, North KE, Downie CG, Avery CL, Yu B, Young KL, Buchanan VL, Kaplan R, Hou L, Joyce BT, Qi Q, Sofer T, Moon JY, Lin DY. Mendelian randomization with incomplete measurements on the exposure in the Hispanic Community Health Study/Study of Latinos. HGG ADVANCES 2024; 5:100245. [PMID: 37817410 PMCID: PMC10628889 DOI: 10.1016/j.xhgg.2023.100245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 10/02/2023] [Accepted: 10/02/2023] [Indexed: 10/12/2023] Open
Abstract
Mendelian randomization has been widely used to assess the causal effect of a heritable exposure variable on an outcome of interest, using genetic variants as instrumental variables. In practice, data on the exposure variable can be incomplete due to high cost of measurement and technical limits of detection. In this paper, we propose a valid and efficient method to handle both unmeasured and undetectable values of the exposure variable in one-sample Mendelian randomization analysis with individual-level data. We estimate the causal effect of the exposure variable on the outcome using maximum likelihood estimation and develop an expectation maximization algorithm for the computation of the estimator. Simulation studies show that the proposed method performs well in making inference on the causal effect. We apply our method to the Hispanic Community Health Study/Study of Latinos, a community-based prospective cohort study, and estimate the causal effect of several metabolites on phenotypes of interest.
Collapse
Affiliation(s)
- Yilun Li
- Department of Biostatistics, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Kin Yau Wong
- Department of Applied Mathematics, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong
| | - Annie Green Howard
- Department of Biostatistics, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Carolina Population Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Penny Gordon-Larsen
- Carolina Population Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Department of Nutrition, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Heather M Highland
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Mariaelisa Graff
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Kari E North
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Carolina G Downie
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Christy L Avery
- Carolina Population Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Bing Yu
- Department of Epidemiology, Human Genetics and Environmental Sciences, School of Public Health, University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Kristin L Young
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Victoria L Buchanan
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Robert Kaplan
- Department of Epidemiology and Population Health, Albert Einstein College of Medicine, Bronx, NY 10461, USA; Public Health Sciences Division, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
| | - Lifang Hou
- Department of Preventive Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Brian Thomas Joyce
- Department of Preventive Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Qibin Qi
- Department of Epidemiology and Population Health, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Tamar Sofer
- Department of Medicine, Harvard Medical School, Boston, MA 02115, USA
| | - Jee-Young Moon
- Department of Epidemiology and Population Health, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Dan-Yu Lin
- Department of Biostatistics, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
| |
Collapse
|
7
|
Lu Y, Shen N, Xi Y, Zhu T, Peng H, Zhong L, Li F. Bioenzyme-free colorimetric assay for creatinine determination based on Mn 3O 4 nanoparticles catalyzed oxidation of 3,3',5,5'-tetramethylbenzidine. Mikrochim Acta 2023; 191:44. [PMID: 38114756 DOI: 10.1007/s00604-023-06129-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 11/28/2023] [Indexed: 12/21/2023]
Abstract
Mn3O4 nanozyme with good oxidase-like activity was successfully synthesized. The prepared Mn3O4 nanozyme can directly and effectively catalyze the oxidation of 3,3',5,5'-tetramethylbenzidine (TMB) to generate green-blue-colored ox-TMB. Creatinine exhibits distinct inhibition effect on Mn3O4 nanozyme-catalyzed TMB colorimetric reaction system, leading to obvious color fading and absorbance intensity decrease of the reaction system. Furthermore, interference from uric acid can be effectively eliminated by regulating the pH of TMB-Mn3O4 colorimetric reaction system to pH 2.0. Then, a simple and bioenzyme-free colorimetric assay for the determination of creatinine was developed based on TMB-Mn3O4 colorimetric reaction. The linear detection range is from 100 to 800 μM and from 1 to 20 mM. The lowest limit of detection is 35.3 μM. Satisfied results are obtained for the determination of creatinine in real urine and sweat samples. This work provides the synthesis of a good oxidase-like nanozyme Mn3O4 and presents the fabrication of an effective nanozyme-based bioenzyme-free colorimetric assay for the determination of creatinine.
Collapse
Affiliation(s)
- Yuyang Lu
- Anhui Province Key Laboratory of Advanced Catalytic Materials and Reaction Engineering, School of Chemistry and Chemical Engineering, Hefei University of Technology, Hefei, Anhui, 230009, People's Republic of China
| | - Nuotong Shen
- Anhui Province Key Laboratory of Advanced Catalytic Materials and Reaction Engineering, School of Chemistry and Chemical Engineering, Hefei University of Technology, Hefei, Anhui, 230009, People's Republic of China
| | - Yachao Xi
- Anhui Province Key Laboratory of Advanced Catalytic Materials and Reaction Engineering, School of Chemistry and Chemical Engineering, Hefei University of Technology, Hefei, Anhui, 230009, People's Republic of China
| | - Tao Zhu
- Anhui Province Key Laboratory of Advanced Catalytic Materials and Reaction Engineering, School of Chemistry and Chemical Engineering, Hefei University of Technology, Hefei, Anhui, 230009, People's Republic of China
| | - Hao Peng
- Anhui Province Key Laboratory of Advanced Catalytic Materials and Reaction Engineering, School of Chemistry and Chemical Engineering, Hefei University of Technology, Hefei, Anhui, 230009, People's Republic of China
| | - Lihao Zhong
- Anhui Province Key Laboratory of Advanced Catalytic Materials and Reaction Engineering, School of Chemistry and Chemical Engineering, Hefei University of Technology, Hefei, Anhui, 230009, People's Republic of China
| | - Fang Li
- Anhui Province Key Laboratory of Advanced Catalytic Materials and Reaction Engineering, School of Chemistry and Chemical Engineering, Hefei University of Technology, Hefei, Anhui, 230009, People's Republic of China.
| |
Collapse
|
8
|
Cheng J, Guo J, Guo J. A Low-cost Creatinine Biosensor by Differential Optical Signal Readout for the Whole Blood Analysis. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2023; 2023:1-4. [PMID: 38083605 DOI: 10.1109/embc40787.2023.10341195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2023]
Abstract
This study developed a low-cost paper-based biosensor for point-of-care (POC) detection of blood creatinine by using differential optical signal readout. Dual-channel photochemical paper-based test strips were fabricated with stackable multilayer films containing pre-immobilized enzymes and reagents for the identification and conversion of creatinine and creatine. Enzyme-linked reactions generated hydrogen peroxide (H2O2), which formed a blue oxidized condensate with aniline derivatives. The color depth was quantified via the differential optical signal of the two channels and positively correlated with the concentration of the analyte. This method was first proposed to address the issue of endogenous interferences in the enzymatic assay of creatinine, greatly improving the detection accuracy. The proposed biosensor was calibrated with spiked blood samples, and achieved a wide detection range of 31-1483 μmol/L, showing superior detection performance to general enzymatic methods, especially in the low concentration range. Creatine interference testing demonstrated that the biosensor could resist the interference of ≤ 300 μmol/L endogenous creatine. It is believed that the proposed optical differential biosensor for blood creatinine could enable to pave the way for a daily monitoring system for renal diseases.Clinical Relevance- This stackable multilayer paper-based biosensor provides an enzymatic colorimetric assay of creatinine in whole blood, which can be read out by the differential optical signal to exclude interference from endogenous creatine.
Collapse
|
9
|
Cheng J, Guo J, Li X, Guo J. A smartphone-connected point-of-care photochemical biosensor for the determination of whole blood creatinine by differential optical signal readout. Biosens Bioelectron 2023; 235:115410. [PMID: 37236011 DOI: 10.1016/j.bios.2023.115410] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 04/16/2023] [Accepted: 05/18/2023] [Indexed: 05/28/2023]
Abstract
The level of creatinine in the human body has clinical implications with regard to a potential association with kidney, muscle, and thyroid dysfunction, hence necessitating fast and accurate detection, especially at the point-of-care (POC) level. This paper presents the design, fabrication, and feasibility of a compact, low-cost and reliable POC photochemical biosensor connected to a smartphone for the determination of whole blood creatinine by differential optical signal readout. Disposable, dual-channel paper-based test strips were fabricated using stackable multilayer films pre-immobilized with enzymes and reagents for the identification and conversion of creatinine and creatine, resulting in dramatic colorimetric signals. A handheld optical reader was integrated with dual-channel differential optical readout to address endogenous interferences in the enzymatic assay of creatinine. We demonstrated this differential concept with spiked blood samples, obtaining a wide detection range of 20-1483 μmol/L and a low detection limit of 0.03 μmol/L. Further interference experiments displayed the differential measuring system's excellent performance against endogenous interference. Furthermore, the sensor's high reliability was confirmed through comparison with the laboratory method, with the results of 43 clinical tests consistent with the bulky automatic biochemical analyzer, with its correlation coefficient R2 = 0.9782. Additionally, the designed optical reader is Bluetooth-enabled and can connect to a cloud-based smartphone to transmit test data, enabling active health management or remote monitoring. We believe the biosensor has the potential to be an alternative to the current creatinine analysis conducted in hospitals and clinical laboratories, and it has promising prospects for contributing to the development of POC devices.
Collapse
Affiliation(s)
- Jie Cheng
- School of Sensing Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China; School of Information and Communication Engineering, University of Electronic Science and Technology of China, Chengdu, 611731, China
| | - Jiuchuan Guo
- School of Automation Engineering, University of Electronic Science and Technology of China, Chengdu, 611731, China
| | - Xiaosong Li
- Clinical Molecular Medicine Testing Center, The First Affiliated Hospital of Chongqing Medical University, College of Laboratory Medicine, Chongqing Medical University, China.
| | - Jinhong Guo
- School of Sensing Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China; School of Information and Communication Engineering, University of Electronic Science and Technology of China, Chengdu, 611731, China; The M.O.E. Key Laboratory of Laboratory Medical Diagnostics, The College of Laboratory Medicine, Chongqing Medical University, Chongqing, 400016, China.
| |
Collapse
|
10
|
Saldanha DJ, Cai A, Dorval Courchesne NM. The Evolving Role of Proteins in Wearable Sweat Biosensors. ACS Biomater Sci Eng 2023; 9:2020-2047. [PMID: 34491052 DOI: 10.1021/acsbiomaterials.1c00699] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Sweat is an increasingly popular biological medium for fitness monitoring and clinical diagnostics. It contains an abundance of biological information and is available continuously and noninvasively. Sweat-sensing devices often employ proteins in various capacities to create skin-friendly matrices that accurately extract valuable and time-sensitive information from sweat. Proteins were first used in sensors as biorecognition elements in the form of enzymes and antibodies, which are now being tuned to operate at ranges relevant for sweat. In addition, a range of structural proteins, sometimes assembled in conjunction with polymers, can provide flexible and compatible matrices for skin sensors. Other proteins also naturally possess a range of functionalities─as adhesives, charge conductors, fluorescence emitters, and power generators─that can make them useful components in wearable devices. Here, we examine the four main components of wearable sweat sensors─the biorecognition element, the transducer, the scaffold, and the adhesive─and the roles that proteins have played so far, or promise to play in the future, in each component. On a case-by-case basis, we analyze the performance characteristics of existing protein-based devices, their applicable ranges of detection, their transduction mechanism and their mechanical properties. Thereby, we review and compare proteins that can readily be used in sweat sensors and others that will require further efforts to overcome design, stability or scalability challenges. Incorporating proteins in one or multiple components of sweat sensors could lead to the development and deployment of tunable, greener, and safer biosourced devices.
Collapse
Affiliation(s)
- Dalia Jane Saldanha
- Department of Chemical Engineering, McGill University, Montréal, Québec, Canada H3A 0C5
| | - Anqi Cai
- Department of Chemical Engineering, McGill University, Montréal, Québec, Canada H3A 0C5
| | | |
Collapse
|
11
|
Álvarez Menéndez G, Amor-Gutiérrez O, Costa García A, Funes-Menéndez M, Prado C, Miguel D, Rodríguez-González P, González-Gago A, Ignacio García Alonso J. Development and evaluation of an electrochemical biosensor for creatinine quantification in a drop of whole human blood. Clin Chim Acta 2023; 543:117300. [PMID: 36948239 DOI: 10.1016/j.cca.2023.117300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 03/15/2023] [Accepted: 03/15/2023] [Indexed: 03/24/2023]
Abstract
An electrochemical biosensor for creatinine determination in a drop of whole human blood was developed and applied to the determination of creatinine in real clinical samples. It is based on the modification of a dual carbon working electrode with a combination of three enzymes: creatinine amidohydrolase (CNN), creatine amidinohydrolase (CRN) and sarcosine oxidase (SOX). Electrochemical transduction is performed using horseradish peroxidase (HRP) and potassium hexacyanoferrate(II) as mediator. A drop of human blood is enough to carry out the measurements by differential chronoamperometry where one carbon electrode detects creatine and the other both creatine and creatinine. The integrated differential signal obtained in the biosensor is linear with the concentration of creatinine in blood in the range 0.5-15 mg/dL and the enzyme-modified electrodes are stable for at least 3 months at 4°C. The biosensor was lined to a reference method based on Isotope Dilution Mass Spectrometry (IDMS) with 50 real human blood samples and the results compared with those obtained by alternative routine techniques based on Jaffé method and an enzymatic method (Cobas 8000 Roche®, Crep2 Roche®). There were no significant differences between the creatinine concentrations found by the routine techniques and the developed biosensor.
Collapse
Affiliation(s)
- Gabriel Álvarez Menéndez
- Healthsens S.L, Vivarium Ciencias de la Salud, calle Colegio Santo Domingo de Guzmán s/n, 33011 Oviedo, Spain
| | - Olaya Amor-Gutiérrez
- Healthsens S.L, Vivarium Ciencias de la Salud, calle Colegio Santo Domingo de Guzmán s/n, 33011 Oviedo, Spain
| | - Agustín Costa García
- Healthsens S.L, Vivarium Ciencias de la Salud, calle Colegio Santo Domingo de Guzmán s/n, 33011 Oviedo, Spain; Department of Physical and Analytical Chemistry, Faculty of Chemistry, University of Oviedo, Julián Clavería 8, 33006 Oviedo, Spain
| | - María Funes-Menéndez
- Healthsens S.L, Vivarium Ciencias de la Salud, calle Colegio Santo Domingo de Guzmán s/n, 33011 Oviedo, Spain
| | - Catuxa Prado
- Healthsens S.L, Vivarium Ciencias de la Salud, calle Colegio Santo Domingo de Guzmán s/n, 33011 Oviedo, Spain
| | - Diego Miguel
- Servicio de Bioquímica Clínica, HUCA, Oviedo, Spain
| | - Pablo Rodríguez-González
- Department of Physical and Analytical Chemistry, Faculty of Chemistry, University of Oviedo, Julián Clavería 8, 33006 Oviedo, Spain
| | - Adriana González-Gago
- Department of Physical and Analytical Chemistry, Faculty of Chemistry, University of Oviedo, Julián Clavería 8, 33006 Oviedo, Spain
| | - J Ignacio García Alonso
- Department of Physical and Analytical Chemistry, Faculty of Chemistry, University of Oviedo, Julián Clavería 8, 33006 Oviedo, Spain
| |
Collapse
|
12
|
Nagarajan A, Sethuraman V, Sasikumar R. Non-enzymatic electrochemical detection of creatinine based on a glassy carbon electrode modified with a Pd/Cu 2O decorated polypyrrole (PPy) nanocomposite: an analytical approach. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2023; 15:1410-1421. [PMID: 36826445 DOI: 10.1039/d3ay00110e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
The major constraints of standard enzymatic biosensors are poor long-term storage stability and high cost. Hence, there is extensive research towards fabrication of reliable enzymeless biosensors based on nanomaterials. In this paper, we present the development of an enzymeless electrochemical biosensor for highly precise detection of creatinine. This involves the use of a simple yet effective alternative to the commonly utilized Pd/Cu2O/PPy nanocomposite, which was characterized by different analytical methods. The present electrochemical sensor provides a wide detection range (0.1 to 150 μM), low detection limit (0.05 μM) and high sensitivity (0.207 μA), and is capable of detecting the creatinine level in human urine samples, which are inexpensive. The results are reproducible, and the sensor is stable. The sensor demonstrates good electrocatalytic activity and selectivity towards the detection of creatinine in the presence of various other similar biological entities. When compared to other existing counterparts, the electrocatalytic behaviour of the present sensor is comparable, if not better. So, the present electrochemical sensor for creatinine might be employed as a long-term diagnostic alternative.
Collapse
Affiliation(s)
- A Nagarajan
- Department of Physical Chemistry, University of Madras, Guindy Campus, Chennai-600025, Tamil Nadu, India.
| | - V Sethuraman
- Research and Development, New Energy Storage Technology, Lithium-ion Division, Amara Raja Battery Ltd, Karakambadi-517520, Tirupati, Andhra Pradesh, India
| | - R Sasikumar
- Department of Physical Chemistry, University of Madras, Guindy Campus, Chennai-600025, Tamil Nadu, India.
| |
Collapse
|
13
|
Thomas MM, Babu A, Chandran PR, S ST, Pillai S. Colloidal Photonic Crystal-Enhanced Fluorescence of Gold Nanoclusters: A Highly Sensitive Solid-state Fluorescent Probe for Creatinine. Chem Asian J 2023; 18:e202201035. [PMID: 36519438 DOI: 10.1002/asia.202201035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 12/04/2022] [Accepted: 12/12/2022] [Indexed: 12/23/2022]
Abstract
Gold nanoclusters (AuNCs) are an intensely pursued class of fluorophores with excellent biocompatibility, high water solubility, and ease of further conjugation. However, their low quantum yield limits their applications, such as ultra-sensitive chemical or molecular sensing. To address this problem, various strategies have been adopted for augmenting their fluorescence intensity. Herein, we report a facile and scalable approach for the fluorescence enhancement of bovine serum albumin (BSA) capped AuNCs (BSA-AuNCs) using periodic, close-packed polystyrene colloidal photonic crystals (CPCs). The slow photon effect at the bandgap edges is utilized for the increased light-matter interactions and thereby enhancing the fluorescence intensity of the BSA-AuNCs. Compared to the planar polystyrene control sample, the CPC film yielded a 14-fold enhancement in fluorescence intensity. Further, we demonstrated the as-prepared BSA-AuNCs-CPC as a solid-state platform for the highly sensitive and selective fluorescence turn-off detection of creatinine at nanomolar level.
Collapse
Affiliation(s)
- Meghana Mary Thomas
- Materials Science and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (NIIST), Thiruvananthapuram, 695019, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Aswathy Babu
- Materials Science and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (NIIST), Thiruvananthapuram, 695019, India.,Nanotechnology and Bio-Engineering Research Group, Department of Environmental Science, Faculty of Science, Atlantic Technological University ATU, Sligo, F91 YW50, Ireland
| | - Parvathy R Chandran
- Materials Science and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (NIIST), Thiruvananthapuram, 695019, India
| | - Silpa T S
- Materials Science and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (NIIST), Thiruvananthapuram, 695019, India
| | - Saju Pillai
- Materials Science and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (NIIST), Thiruvananthapuram, 695019, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| |
Collapse
|
14
|
Li LZ, Wang XM, Feng XJ, Liu K, Li B, Zhu LJ, Xu WF, Zheng X, Dong YJ, He XL, Guan HR, Ding YY, Wu HS, Zhou CJ, Ye SY, Zhang BB, Lv GY, Chen SH. Effects of a Macroporous Resin Extract of Dendrobium officinale Leaves in Rats with Hyperuricemia Induced by Anthropomorphic Unhealthy Lifestyle. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2023; 2023:9990843. [PMID: 36644440 PMCID: PMC9839412 DOI: 10.1155/2023/9990843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 10/19/2022] [Accepted: 10/20/2022] [Indexed: 01/09/2023]
Abstract
Aim Hyperuricemia (HUA) has received increased attention in the last few decades due to its global prevalence. Our previous study found that administration of a macroporous resin extract of Dendrobium officinale leaves (DoMRE) to rats with HUA that was induced by exposure to potassium oxazine combined with fructose and a high-purine diet led to a significant reduction in serum uric acid (SUA) levels. The aim of this study was to explore the effects of DoMRE on hyperuricemia induced by anthropomorphic unhealthy lifestyle and to elucidate its possible mechanisms of action. Methods Dosages (5.0 and 10.0 g/kg/day) of DoMRE were administered to rats daily after induction of HUA by anthropomorphic unhealthy lifestyle for 12 weeks. The levels of UA in the serum, urine, and feces; the levels of creatinine (Cr) in the serum and urine; and the levels of aspartate aminotransferase (AST) and alanine aminotransferase (ALT) in serum were all measured using an automatic biochemical analyzer. The activities of xanthine oxidase (XOD) and adenosine deaminase (ADA) in the serum, liver, and intestine tissue supernatant were measured using appropriate kits for each biological target. The expressions levels of UA transporters (ABCG2 and GLUT9), tight junction (TJ) proteins (ZO-1 and occludin), and inflammatory factors (IL-6, IL-8, and TNF-α) in the intestine were assayed by immunohistochemical (IHC) staining. Hematoxylin and eosin (H&E) staining was used to assess histological changes in the renal and intestinal tissues. Results DoMRE treatment significantly reduced SUA levels and concomitantly increased fecal UA (FUA) levels and the fractional excretion of UA (FEUA) in HUA rats. Furthermore, DoMRE significantly reduced both the XOD activity in the serum, liver, and intestine and the ADA activity in the liver and intestine. DoMRE also effectively regulated the expression of GLUT9 and ABCG2 in the intestine, and it significantly upregulated the expression of the intestinal TJ proteins ZO-1 and occludin. Therefore, DoMRE reduced the damage to the intestinal barrier function caused by the increased production of inflammatory factors due to HUA to ensure normal intestinal UA excretion. Conclusion DoMRE demonstrated anti-HUA effects in the HUA rat model induced by an anthropomorphic unhealthy lifestyle, and the molecular mechanism appeared to involve the regulation of urate transport-related transporters (ABCG2 and GLUT9) in the intestine, protection of the intestinal barrier function to promote UA excretion, and inhibition of XOD and ADA activity in the liver and intestine to inhibit UA production in the HUA-induced rats.
Collapse
Affiliation(s)
- Lin-Zi Li
- Zhejiang Provincial Key Laboratory of TCM for Innovative R & D and Digital Intelligent Manufacturing of TCM Great Health Products, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, China
| | - Xi-Ming Wang
- Zhejiang Provincial Key Laboratory of TCM for Innovative R & D and Digital Intelligent Manufacturing of TCM Great Health Products, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, China
| | - Xiao-Jie Feng
- Zhejiang Provincial Key Laboratory of TCM for Innovative R & D and Digital Intelligent Manufacturing of TCM Great Health Products, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, China
| | - Kun Liu
- Zhejiang Provincial Key Laboratory of TCM for Innovative R & D and Digital Intelligent Manufacturing of TCM Great Health Products, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, China
| | - Bo Li
- Zhejiang Provincial Key Laboratory of TCM for Innovative R & D and Digital Intelligent Manufacturing of TCM Great Health Products, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, China
| | - Li-Jie Zhu
- Zhejiang Provincial Key Laboratory of TCM for Innovative R & D and Digital Intelligent Manufacturing of TCM Great Health Products, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, China
| | - Wan-Feng Xu
- Zhejiang Provincial Key Laboratory of TCM for Innovative R & D and Digital Intelligent Manufacturing of TCM Great Health Products, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, China
| | - Xiang Zheng
- Zhejiang Provincial Key Laboratory of TCM for Innovative R & D and Digital Intelligent Manufacturing of TCM Great Health Products, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, China
| | - Ying-Jie Dong
- Zhejiang Provincial Key Laboratory of TCM for Innovative R & D and Digital Intelligent Manufacturing of TCM Great Health Products, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, China
| | - Xing-Lishang He
- Zhejiang Provincial Key Laboratory of TCM for Innovative R & D and Digital Intelligent Manufacturing of TCM Great Health Products, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, China
| | - Hao-Ru Guan
- Zhejiang Provincial Key Laboratory of TCM for Innovative R & D and Digital Intelligent Manufacturing of TCM Great Health Products, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, China
| | - Yan-Yan Ding
- Zhejiang Provincial Key Laboratory of TCM for Innovative R & D and Digital Intelligent Manufacturing of TCM Great Health Products, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, China
| | - Han-Song Wu
- Zhejiang Provincial Key Laboratory of TCM for Innovative R & D and Digital Intelligent Manufacturing of TCM Great Health Products, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, China
| | - Chuan-Jie Zhou
- Zhejiang Provincial Key Laboratory of TCM for Innovative R & D and Digital Intelligent Manufacturing of TCM Great Health Products, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, China
| | - Sen-Yu Ye
- Zhejiang Senyu Co., Ltd., Yiwu, Zhejiang 322099, China
| | - Bei-Bei Zhang
- Center for Food Evaluation, State Administration for Market Regulation, No. 188 Western Road of South Fourth Ring Road, Fengtai District, Beijing 100070, China
| | - Gui-Yuan Lv
- College of Pharmaceutical Science, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, China
| | - Su-Hong Chen
- Zhejiang Provincial Key Laboratory of TCM for Innovative R & D and Digital Intelligent Manufacturing of TCM Great Health Products, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, China
| |
Collapse
|
15
|
Nanoparticle-antibody conjugate-based immunoassays for detection of CKD-associated biomarkers. Trends Analyt Chem 2022. [DOI: 10.1016/j.trac.2022.116857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
|
16
|
Yamaguchi H, Miyazaki M. Enzyme-immobilized microfluidic devices for biomolecule detection. Trends Analyt Chem 2022. [DOI: 10.1016/j.trac.2022.116908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
17
|
Gonzalez-Gallardo CL, Arjona N, Álvarez-Contreras L, Guerra-Balcázar M. Electrochemical creatinine detection for advanced point-of-care sensing devices: a review. RSC Adv 2022; 12:30785-30802. [PMID: 36349154 PMCID: PMC9606732 DOI: 10.1039/d2ra04479j] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Accepted: 10/16/2022] [Indexed: 11/05/2022] Open
Abstract
Creatinine is an amino acid derived from creatine catabolism at different steps of the body's organs, and its detection is significant because levels out of normal values are linked to some diseases like kidney failure. Normal concentration levels of creatinine in blood are from 45 to 110 μM, while in urine, typical concentrations range between 3.3 to 27 mM, and in saliva from 8.8 and 26.5 μM. Nowadays, the creatinine detection is carried through different spectroscopic-colorimetric methods; however, the resulting values present errors due to high interferences, delayed analysis, and poor stability. Electrochemical sensors have been an alternative to creatinine detection, and the electrochemical methods have been adapted to detect in enzymatic and non-enzymatic sensors, the latter being more relevant in recent years. Nanomaterials have made creatinine sensors more stable, sensitive, and selective. This review presents recent advances in creatinine electrochemical sensors for advances in point-of-care (POC) sensing devices, comprising both a materials point of view and prototypes for advanced sensing. The effect of the metal, particle size, shape and other morphological and electronic characteristics of nanomaterials are discussed in terms of their impact on the effective detection of creatinine. In addition, the application of nanomaterials in POC devices is revised pointing to practical applications and looking for more straightforward and less expensive devices to manufacture.
Collapse
Affiliation(s)
- Carlos Luis Gonzalez-Gallardo
- Facultad de Ingeniería, División de Investigación y Posgrado, Universidad Autónoma de Querétaro Querétaro C. P. 76010 Mexico
| | - Noé Arjona
- Centro de Investigación y Desarrollo Tecnológico en Electroquímica S. C. Sanfandila, Pedro Escobedo Querétaro C. P. 76703 Mexico
| | - Lorena Álvarez-Contreras
- Centro de Investigación en Materiales Avanzados S. C. Complejo Industrial Chihuahua Chihuahua C. P. 31136 Mexico
| | - Minerva Guerra-Balcázar
- Facultad de Ingeniería, División de Investigación y Posgrado, Universidad Autónoma de Querétaro Querétaro C. P. 76010 Mexico
| |
Collapse
|
18
|
Liu F, Liu Y, Peng Q, Wang G, Tan Q, Ou Z, Xu Q, Liu C, Zuo D, Zhao J. Creatinine accelerates APAP-induced liver damage by increasing oxidative stress through ROS/JNK signaling pathway. Front Pharmacol 2022; 13:959497. [PMID: 36091804 PMCID: PMC9449354 DOI: 10.3389/fphar.2022.959497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Accepted: 07/29/2022] [Indexed: 11/13/2022] Open
Abstract
Serum creatinine is an endogenous biomarker to estimate glomerular filtration rate (GFR) and is commonly used to assess renal function in clinical practice. Acetaminophen (APAP), the most available analgesic and antipyretic medication, is recommended as the drug of choice for pain control in patients with renal diseases. However, an overdose of APAP can lead to severe acute liver injury, which is also the most common cause of acute liver failure in western countries. The role of creatinine in APAP-induced liver injury is unclear and should be further explored. Herein, clinical data on patients with drug-induced liver injury revealed that the creatinine concentration between 82-442 μmol/L for female and 98–442 μmol/L for male is positively correlated with alanine aminotransferase (ALT), aspartate aminotransferase (AST). While there was no correlation between creatinine and ALT and AST when creatinine concentration is over 442 μmol/L. In addition, mice were administrated with creatinine intraperitoneally for 1 week before APAP injection to investigated the pathophysiological role of creatinine in APAP-induced acute liver injury. The results showed that creatinine administration aggravated hepatic necrosis and elevated serum lactate dehydrogenase (LDH) and ALT levels in mice upon APAP injection. The mechanism study demonstrated that creatinine could increase the production of reactive oxygen activation (ROS) and the activation of c-Jun N-terminal kinase (JNK). Furthermore, the liver injury was alleviated and the difference between APAP-treated mice and APAP combined with creatinine-treated mice was blunted after using specific ROS and JNK inhibitors. Significantly, creatinine stimulation aggravates APAP-induced cell death in HepaRG cells with the same mechanism. In summary, this study proposed that creatinine is closely related with liver function of drug-induced liver injury and exacerbates APAP-induced hepatocyte death by promoting ROS production and JNK activation, thus providing new insight into the usage of APAP in patients with kidney problems.
Collapse
Affiliation(s)
- Fang Liu
- Division of Vascular and Interventional Radiology, Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
- Department of Medical Laboratory, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, Guangdong, China
| | - Yan Liu
- Syndrome Laboratory of Integrated Chinese and Western Medicine, School of Chinese Medicine, Southern Medical University, Guangzhou, Guangdong, China
| | - Qifeng Peng
- Division of Vascular and Interventional Radiology, Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Guodong Wang
- Department of Oncology, Liuzhou Workers Hospital, Liuzhou, China
| | - Qing Tan
- Division of Vascular and Interventional Radiology, Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Zhongyue Ou
- Division of Vascular and Interventional Radiology, Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Qishan Xu
- Department of Medical Laboratory, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, Guangdong, China
| | - Chixiang Liu
- Department of Blood Transfusion, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
- Department of Immunology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China
- Correspondence: Chixiang Liu, ; Daming Zuo, ; Jianbo Zhao,
| | - Daming Zuo
- Department of Medical Laboratory, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, Guangdong, China
- Correspondence: Chixiang Liu, ; Daming Zuo, ; Jianbo Zhao,
| | - Jianbo Zhao
- Division of Vascular and Interventional Radiology, Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
- Correspondence: Chixiang Liu, ; Daming Zuo, ; Jianbo Zhao,
| |
Collapse
|
19
|
Anselmo S, De Luca G, Ferrara V, Pignataro B, Sancataldo G, Vetri V. Insight into mechanisms of creatinine optical sensing using fluorescein-gold complex. Methods Appl Fluoresc 2022; 10. [PMID: 35901805 DOI: 10.1088/2050-6120/ac8524] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 07/28/2022] [Indexed: 11/12/2022]
Abstract
Creatinine level in biological fluids is a clinically relevant parameter to monitor vital functions and it is well assessed that measuring creatinine levels in the human body can be of great utility to evaluate renal, muscular, or thyroid dysfunctions. The accurate detection of creatinine levels may have a critical role in providing information on health status and represents a tool for the early diagnosis of severe pathologies. Among different methods for creatinine detection that have been introduced and that are evolving with increasing speed, fluorescence-based and colorimetric sensors represent one of the best alternatives, thanks to their affordability, sensitivity and easy readability. In this work, we demonstrate that the fluorescein-Au3+ complex provides a rapid, selective, and sensitive tool for the quantification of creatinine concentrations in ranges typical of sweat and urine. UV-visible absorption, diffuse reflectance spectroscopy, steady state and time resolved fluorescence spectroscopy were used to shed light on the molecular mechanisms involved in the changes of optical properties, which underlie the multiplexed sensor analytical reply. Interestingly, sensing can be performed in solution or on solid nylon support accessing different physiological concentrations from micromolar to millimolar range. As a proof-of-concept, the nylon-based platform was used to demonstrate its effectiveness in creatinine detection on a solid and flexible substrate, showing its analytical colorimetric properties as an easy and disposable creatinine point-of-care test.
Collapse
Affiliation(s)
- Sara Anselmo
- Dipartimento di Fisica e Chimica, Università degli Studi di Palermo, viale delle Scienze ed. 18, Palermo, 90128, ITALY
| | - Giuseppe De Luca
- Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche, Università degli Studi di Palermo, viale delle Scienze ed. 16, Palermo, 90128, ITALY
| | - Vittorio Ferrara
- Dipartimento di Fisica e Chimica, Università degli Studi di Palermo, viale delle Scienze ed. 18, Palermo, 90128, ITALY
| | - Bruno Pignataro
- Dipartimento di Fisica e Chimica, University of Palermo, viale delle Scienze ed. 18, Palermo, Sicilia, 90128, ITALY
| | - Giuseppe Sancataldo
- Dipartimento di Fisica e Chimica, Università degli Studi di Palermo, viale delle Scienze ed. 18, Palermo, 90128, ITALY
| | - Valeria Vetri
- Dipartimento di Fisica e Chimica, Università degli Studi di Palermo, viale delle Scienze ed. 18, Palermo, 90128, ITALY
| |
Collapse
|
20
|
Chalifoux NV, Rizzo K, Stefanovski D, Weinstein NM, Silverstein DC. Clinical application of the StatSensor and StatSensor Xpress point-of-care creatinine measurement devices in dogs. Vet Clin Pathol 2022; 51:533-542. [PMID: 35729751 DOI: 10.1111/vcp.13147] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 03/16/2022] [Accepted: 04/18/2022] [Indexed: 11/30/2022]
Abstract
BACKGROUND Creatinine is a universally important blood parameter used to detect and monitor acute and chronic kidney disease. Reliable measurements at the bedside remain a challenge in human and veterinary medicine. Despite its potential, a trustworthy point-of-care creatinine biosensor has yet to be established. OBJECTIVES We aimed to determine the precision and accuracy of the StatSensor (SS) and StatSensor Xpress (SSX) handheld creatinine measurement devices in dogs. METHODS Paired creatinine samples from dogs with normal (creatinine ≤159 μmol/L), moderate (159-354 μmol/L), and marked (>354 μmol/L) azotemia were compared with a commercial enzymatic analyzer. Within-day precision and linearity studies were performed prior to method comparison studies. Method comparison was evaluated using Bland-Altman, concordance correlation coefficient, Deming, and Passing-Bablok regression analysis. RESULTS Seventy-eight dogs were enrolled in the study, including 28 (35%), 25 (32%), and 26 (33%) with normal, moderate, and marked azotemia. Total error surpassed recommendations for all devices, and linearity deviated from identity for the SS1 and SS2. The concordance correlation coefficients of the SS1, SS2, SSXI, and SSX2, were 0.69, 0.59, 0.82, and 0.44, respectively. Bland-Altman analyses showed a high variation in the differences, and relationships showed high heteroskedasticity with negative systemic bias among high creatinine concentrations. CONCLUSIONS Neither the SS and SSX are considered acceptable for clinical applications in dogs. Further research is indicated for the development of a reliable, cost-effective, point-of-care creatinine analyzer to improve the rapid detection and monitoring human and veterinary patients.
Collapse
Affiliation(s)
- Nolan V Chalifoux
- Department of Clinical Sciences and Advanced Medicine, University of Pennsylvania, School of Veterinary Medicine, Philadelphia, Pennsylvania, USA
| | - Kaila Rizzo
- Veterinary Specialty Hospital Sorrento Valley, San Diego, California, USA
| | - Darko Stefanovski
- Department of Clinical Studies New Bolton Center, University of Pennsylvania, School of Veterinary Medicine, Philadelphia, Pennsylvania, USA
| | - Nicole M Weinstein
- Department of Pathobiology, University of Pennsylvania, School of Veterinary Medicine, Philadelphia, Pennsylvania, USA
| | - Deborah C Silverstein
- Department of Clinical Sciences and Advanced Medicine, University of Pennsylvania, School of Veterinary Medicine, Philadelphia, Pennsylvania, USA
| |
Collapse
|
21
|
Tzianni ΕI, Moutsios I, Moschovas D, Avgeropoulos A, Govaris K, Panagiotidis L, Prodromidis MI. Smartphone paired SIM card-type integrated creatinine biosensor. Biosens Bioelectron 2022; 207:114204. [PMID: 35366578 DOI: 10.1016/j.bios.2022.114204] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 03/17/2022] [Accepted: 03/18/2022] [Indexed: 01/12/2023]
Abstract
Medical diagnostic sector is relying on affordable, handheld devices integrating smart biosensing and transducing interfaces that enable clinical analysis with minimal end-user intervention and resource requirements. In response, we propose here, a SIM card-type pH responsive polymer-modified paper-based biosensing device, coupled to a smartphone, for the determination of urinary creatinine. A vertical microfluidic channel was fabricated on a paper strip by wax printing. The hydrophilic area was coated by a poly(methylmethacrylate)/poly(methacrylic acid) random copolymer, PMMA-co-PMAA, and on top of it, creatinine deiminase (CD) was immobilized. Data demonstrated, on the one hand, zero vertical flow of urine through the enzyme-free PMMA-co-PMAA-modified paper strip, i.e., a high selectivity against the components of the matrix, and on the other hand, in the presence of CD, a creatinine -concentration dependent commence of sample's downward flow due to the selective, creatinine-triggered degradation of the copolymer by the enzymatically produced ammonia. This CD/PMMA-co-PMAA paper-based biosensing smart assembly is coupled with three conductive strips, which enable the automatic on/off (sample addition/measurement end) measurement of the copolymer degradation time, through electric resistance measurements. It also features an in-built sample well and wireless communication support through the integration of a Bluetooth® microprocessor incorporated with time and resistance measuring circuits. Using newly synthesized pH responsive PMMA-co-PMAA at different molecular weights and volume fraction ratios offering tunable dissolution properties, the detection range was adjusted over 3-30 mM creatinine to overspread the normal range of creatinine in urine. The device was successfully applied to the determination of urinary creatinine.
Collapse
Affiliation(s)
- Εleni I Tzianni
- Laboratory of Analytical Chemistry, University of Ioannina (UoI), 45 110, Ioannina, Greece
| | | | | | | | | | | | - Mamas I Prodromidis
- Laboratory of Analytical Chemistry, University of Ioannina (UoI), 45 110, Ioannina, Greece; Institute of Materials Science and Computing, University Research Center of Ioannina (URCI), Ioannina, Greece.
| |
Collapse
|
22
|
Zhao T, Fu Y, Sun C, Zhao X, Jiao C, Du A, Wang Q, Mao Y, Liu B. Wearable biosensors for real-time sweat analysis and body motion capture based on stretchable fiber-based triboelectric nanogenerators. Biosens Bioelectron 2022; 205:114115. [PMID: 35219020 DOI: 10.1016/j.bios.2022.114115] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 01/13/2022] [Accepted: 02/17/2022] [Indexed: 12/13/2022]
Abstract
Carbon neutrality is a global green energy revolution meaning that the carbon dioxide can make ends meet. However, with the mushroom of the fifth generation wireless systems (5G) and the Internet of Things (IoT), it is a great challenge for powering the ubiquitous distributed devices, because the battery production and high overhead maintenance may bring more carbon emissions. Here, we present wearable biosensors for real-time sweat analysis and body motion capture based on stretchable fiber-based triboelectric nanogenerators (F-TENG). The F-TENG is made of stretchable conductive fiber (Ecoflex coating with polyaniline (PANI)) and varnished wires. Based on the coupling effect of triboelectric effect and enzymatic reaction (surface-triboelectric coupling effect), the wearable biosensors can not only precisely sense the motion states, but also detect glucose, creatinine and lactate acid in sweat in real-time. Importantly, the wearable devices can self-drive without any external power source and the response against glucose, creatinine and lactate acid can be up to 103%, 125% and 38%, respectively. On this basis, applications in biosensing and wireless communication have been demonstrated. This work exhibits a prospective potential application of F-TENG in IoT for diverse use.
Collapse
Affiliation(s)
- Tianming Zhao
- College of Sciences, Northeastern University, Shenyang, 110819, China
| | - Yongming Fu
- School of Physics and Electronic Engineering, Institute of Laser Spectroscopy, State Key Laboratory of Quantum Optics and Quantum Optics Devices, Shanxi University, Taiyuan, 030006, China
| | - Chuxiao Sun
- College of Sciences, Northeastern University, Shenyang, 110819, China
| | - Xishan Zhao
- College of Sciences, Northeastern University, Shenyang, 110819, China
| | - Chunxiao Jiao
- College of Sciences, Northeastern University, Shenyang, 110819, China
| | - An Du
- College of Sciences, Northeastern University, Shenyang, 110819, China.
| | - Qi Wang
- College of Sciences, Northeastern University, Shenyang, 110819, China.
| | - Yupeng Mao
- Physical Education Department, Northeastern University, Shenyang, 110819, China.
| | - Baodan Liu
- School of Material Science and Engineering, Northeastern University, Shenyang, 110819, China; Foshan Graduate School of Northeastern University, Foshan, 528300, China.
| |
Collapse
|
23
|
Krämer J, Kang R, Grimm LM, De Cola L, Picchetti P, Biedermann F. Molecular Probes, Chemosensors, and Nanosensors for Optical Detection of Biorelevant Molecules and Ions in Aqueous Media and Biofluids. Chem Rev 2022; 122:3459-3636. [PMID: 34995461 PMCID: PMC8832467 DOI: 10.1021/acs.chemrev.1c00746] [Citation(s) in RCA: 131] [Impact Index Per Article: 65.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Indexed: 02/08/2023]
Abstract
Synthetic molecular probes, chemosensors, and nanosensors used in combination with innovative assay protocols hold great potential for the development of robust, low-cost, and fast-responding sensors that are applicable in biofluids (urine, blood, and saliva). Particularly, the development of sensors for metabolites, neurotransmitters, drugs, and inorganic ions is highly desirable due to a lack of suitable biosensors. In addition, the monitoring and analysis of metabolic and signaling networks in cells and organisms by optical probes and chemosensors is becoming increasingly important in molecular biology and medicine. Thus, new perspectives for personalized diagnostics, theranostics, and biochemical/medical research will be unlocked when standing limitations of artificial binders and receptors are overcome. In this review, we survey synthetic sensing systems that have promising (future) application potential for the detection of small molecules, cations, and anions in aqueous media and biofluids. Special attention was given to sensing systems that provide a readily measurable optical signal through dynamic covalent chemistry, supramolecular host-guest interactions, or nanoparticles featuring plasmonic effects. This review shall also enable the reader to evaluate the current performance of molecular probes, chemosensors, and nanosensors in terms of sensitivity and selectivity with respect to practical requirement, and thereby inspiring new ideas for the development of further advanced systems.
Collapse
Affiliation(s)
- Joana Krämer
- Institute
of Nanotechnology, Karlsruhe Institute of
Technology (KIT), Hermann-von-Helmholtz Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
| | - Rui Kang
- Institute
of Nanotechnology, Karlsruhe Institute of
Technology (KIT), Hermann-von-Helmholtz Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
| | - Laura M. Grimm
- Institute
of Nanotechnology, Karlsruhe Institute of
Technology (KIT), Hermann-von-Helmholtz Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
| | - Luisa De Cola
- Institute
of Nanotechnology, Karlsruhe Institute of
Technology (KIT), Hermann-von-Helmholtz Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
- Dipartimento
DISFARM, University of Milano, via Camillo Golgi 19, 20133 Milano, Italy
- Department
of Molecular Biochemistry and Pharmacology, Instituto di Ricerche Farmacologiche Mario Negri, IRCCS, 20156 Milano, Italy
| | - Pierre Picchetti
- Institute
of Nanotechnology, Karlsruhe Institute of
Technology (KIT), Hermann-von-Helmholtz Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
| | - Frank Biedermann
- Institute
of Nanotechnology, Karlsruhe Institute of
Technology (KIT), Hermann-von-Helmholtz Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
| |
Collapse
|
24
|
Kukkar D, Zhang D, Jeon B, Kim KH. Recent advances in wearable biosensors for non-invasive monitoring of specific metabolites and electrolytes associated with chronic kidney disease: Performance evaluation and future challenges. Trends Analyt Chem 2022. [DOI: 10.1016/j.trac.2022.116570] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
25
|
Amperometric biosensors for L-arginine and creatinine assay based on recombinant deiminases and ammonium-sensitive Cu/Zn(Hg)S nanoparticles. Talanta 2022; 238:122996. [PMID: 34857329 DOI: 10.1016/j.talanta.2021.122996] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 10/11/2021] [Accepted: 10/21/2021] [Indexed: 12/13/2022]
Abstract
There are limited data on amperometric biosensors (ABSs) based on deiminases that produce ammonium as a byproduct of enzymatic reaction. The most frequently proposed biosensors utilizing such a mode are based on potentiometric transducers, which contain at least two enzymes in the bioselective layer; this complicates the procedure and increases the cost of analysis. Thus, the construction of a one-enzyme ABS is a practical problem. In our manuscript ABSs for the direct measurement of creatinine (Crn) and l-arginine (Arg), based on the recombinant bacterial creatinine deiminase (CDI) and arginine deiminase (ADI), are described. To choose the best chemosensor on ammonium ions, a number of nanoparticles (NPs) were synthesized and characterized using cyclic voltammetry. Hybrid Cu/Zn(Hg)S-NPs, having a good selectivity and an extremely high sensitivities towards ammonium ions (5660 A M-1 m-2 at +170 mV and 1870 A M-1 m-2 at -300 mV, respectively), was selected for the development of deiminase-based ABSs. The novel biosensors exhibited very high sensitivities (2660 A M-1 m-2 to Crn for CDI-ABS; 1570 A M-1 m-2 to Arg for ADI-ABS), broad linear ranges, low limits of detection, satisfactory storage stabilities and good selectivities towards natural substrates. The constructed CDI-ABS and ADI-ABS were tested on real samples of biological fluids and juices for Crn and Arg assay, respectively. High correlations of the obtained results with the reference methods were demonstrated for the target analytes.
Collapse
|
26
|
Chakraborty T, Das M, Lin CY, Su Y, Yuan B, Kao CH. ZIF-8 Nanoparticles Based Electrochemical Sensor for Non-Enzymatic Creatinine Detection. MEMBRANES 2022; 12:159. [PMID: 35207080 PMCID: PMC8878344 DOI: 10.3390/membranes12020159] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 01/22/2022] [Accepted: 01/24/2022] [Indexed: 02/05/2023]
Abstract
There is a consistent demand for developing highly sensitive, stable, cost-effective, and easy-to-fabricate creatinine sensors as creatinine is a reliable indicator of kidney and muscle-related disorders. Herein, we reported a highly sensitive and selective non-enzymatic electrochemical creatinine sensor via modifying poly(3,4 ethylenedioxythiophene) polystyrene sulfonate (PEDOT:PSS) coated indium tin oxide (ITO) substrate by zeolitic imidazolate framework-8 nanoparticles (ZIF-8 NPs). The topography, crystallinity, and composition of the sensing electrode were characterized by field emission scanning electron microscopy (FESEM), atomic force microscopy (AFM), X-ray diffraction (XRD), and X-ray photoelectron spectroscopy (XPS). The peroxidase-like activity of ZIF-8 nanoparticles enabled it to detect creatinine forming a zinc-creatinine composite. The electrochemical behavior and sensing performance were evaluated by amperometric and impedimetric analysis. The sensor obtained a sufficiently low limit of detection (LOD) of 30 µM in a clinically acceptable linear range (0.05 mM-2.5 mM). The interference study demonstrated high selectivity of the sensor for creatinine concerning other similar biomolecules. The sensing performance of the creatinine sensor was verified in the actual human serum, which showed excellent recovery rates. Hence, the magnificent performance of ZIF-8 based non-enzymatic creatinine sensor validated it as a responsible entity for other complicated renal markers detection.
Collapse
Affiliation(s)
- Titisha Chakraborty
- Department of Electronic Engineering, Chang Gung University, 259 Wenhwa 1st Road, Guishan District, Taoyuan 33302, Taiwan; (T.C.); (M.D.); (Y.S.); (B.Y.)
| | - Munmun Das
- Department of Electronic Engineering, Chang Gung University, 259 Wenhwa 1st Road, Guishan District, Taoyuan 33302, Taiwan; (T.C.); (M.D.); (Y.S.); (B.Y.)
| | - Chan-Yu Lin
- Kidney Research Center, Department of Nephrology, Chang Gung Memorial Hospital, No.5, Fuxing St., Guishan District, Taoyuan 33302, Taiwan;
| | - Yen Su
- Department of Electronic Engineering, Chang Gung University, 259 Wenhwa 1st Road, Guishan District, Taoyuan 33302, Taiwan; (T.C.); (M.D.); (Y.S.); (B.Y.)
| | - Bing Yuan
- Department of Electronic Engineering, Chang Gung University, 259 Wenhwa 1st Road, Guishan District, Taoyuan 33302, Taiwan; (T.C.); (M.D.); (Y.S.); (B.Y.)
| | - Chyuan-Haur Kao
- Department of Electronic Engineering, Chang Gung University, 259 Wenhwa 1st Road, Guishan District, Taoyuan 33302, Taiwan; (T.C.); (M.D.); (Y.S.); (B.Y.)
- Kidney Research Center, Department of Nephrology, Chang Gung Memorial Hospital, No.5, Fuxing St., Guishan District, Taoyuan 33302, Taiwan;
- Department of Electronic Engineering, Ming Chi University of Technology, 284 Gungjuan Rd., Taishan District, New Taipei City 24301, Taiwan
- Center for Green Technology, Chang Gung University, 259 Wenhwa 1st Road, Guishan District, Taoyuan 33302, Taiwan
| |
Collapse
|
27
|
Malicka I, Lewińska I, Tymecki Ł. On-line 'protein shaker': A multicommutated flow analysis system for fluorometric creatinine determination in deproteinized serum. Anal Chim Acta 2022; 1191:339246. [PMID: 35033258 DOI: 10.1016/j.aca.2021.339246] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 10/27/2021] [Accepted: 11/01/2021] [Indexed: 11/26/2022]
Abstract
A fully mechanized multicommutated flow analysis (MCFA) system for fluorometric determination of creatinine in serum samples is introduced in this paper. The flow system was constructed with microsolenoid pumps and valves and with a 3D-printed flow cell. Fluorometric assay relied on creatinine reaction with 3,5-dinitrobenzoic acid and hydrogen peroxide in an alkaline environment. To overcome significant interference from protein, a flow reactor for serum deproteinization was designed and implemented in the flow system. The deproteinization was carried out by precipitation with trichloroacetic acid and the addition of sodium chloride facilitated the precipitate sedimentation. The supernatant representative sample was pumped out and subjected to fluorometric creatinine assay. The obtained linear range was from 1.6 to 500 μmol L-1 and the precision, expressed as RSD, was below 3%. The proposed MCFA system was used to determine creatinine concentration in control serum samples. The results obtained with flow deproteinization correlated well with results obtained with conventional deproteinization (y = (0.91 ± 0.09) x + (37 ± 28)) with Pearson's r 0.979.
Collapse
Affiliation(s)
- Iga Malicka
- University of Warsaw, Faculty of Chemistry, Pasteura 1, 02-093, Warsaw, Poland
| | - Izabela Lewińska
- University of Warsaw, Faculty of Chemistry, Pasteura 1, 02-093, Warsaw, Poland.
| | - Łukasz Tymecki
- University of Warsaw, Faculty of Chemistry, Pasteura 1, 02-093, Warsaw, Poland
| |
Collapse
|
28
|
Williams RJ, Crapnell RD, Dempsey NC, Peeters M, Banks CE. Nano-molecularly imprinted polymers for serum creatinine sensing using the Heat Transfer Method. TALANTA OPEN 2022. [DOI: 10.1016/j.talo.2022.100087] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
|
29
|
Liu S, Wang C, Yang Y, Cai H, Zhang M, Si L, Zhang S, Xu Y, Zhu J, Yu Y. Brain structure and perfusion in relation to serum renal function indexes in healthy young adults. Brain Imaging Behav 2021; 16:1014-1025. [PMID: 34709557 DOI: 10.1007/s11682-021-00565-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/25/2021] [Indexed: 11/30/2022]
Abstract
Prior neuroimaging studies of the relationship between the kidney and the brain have been limited to clinical populations and have largely relied on a single modality. We sought to examine the kidney-brain associations in healthy subjects using a combined analysis of multi-modal imaging data. Structural, diffusion, and perfusion magnetic resonance imaging (MRI) scans were performed to measure cortical thickness, white matter integrity, and cerebral blood flow in 157 healthy young adults. Peripheral venous blood samples were collected to measure serum renal function indexes. Correlation analyses were performed to investigate the relations between brain MRI measures and renal function indexes. Results showed that higher serum uric acid level was associated with increased cortical thickness in the transverse temporal gyrus. We also found that decreased serum creatinine level was linked to lower white matter integrity in the sagittal stratum, anterior corona radiata, superior corona radiata, and external capsule. Furthermore, we observed that increased serum uric acid level was related to hyperperfusion in the opercular and triangular parts of inferior frontal gyrus and supramarginal gyrus, and hypoperfusion in the calcarine sulcus, cuneus and lingual gyrus. More importantly, mediation analysis revealed that the relationship between serum uric acid and working memory performance was mediated by perfusion in the supramarginal gyrus and lingual gyrus. These findings not only may extend current knowledge regarding the relationship between the kidney and the brain, but also may inform real-world clinical practice by identification of potential brain regions vulnerable to renal dysfunction.
Collapse
Affiliation(s)
- Siyu Liu
- Department of Radiology, The First Affiliated Hospital of Anhui Medical University, No. 218, Jixi Road, Shushan District, Hefei, 230022, China
| | - Chunli Wang
- Department of Clinical Laboratory, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China
| | - Ying Yang
- Department of Radiology, The First Affiliated Hospital of Anhui Medical University, No. 218, Jixi Road, Shushan District, Hefei, 230022, China
| | - Huanhuan Cai
- Medical Imaging Center, The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, 230031, China
| | - Min Zhang
- Department of Clinical Laboratory, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China
| | - Li Si
- Department of Clinical Laboratory, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China
| | - Shujun Zhang
- Department of Radiology, The First Affiliated Hospital of Anhui Medical University, No. 218, Jixi Road, Shushan District, Hefei, 230022, China
| | - Yuanhong Xu
- Department of Clinical Laboratory, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China
| | - Jiajia Zhu
- Department of Radiology, The First Affiliated Hospital of Anhui Medical University, No. 218, Jixi Road, Shushan District, Hefei, 230022, China.
| | - Yongqiang Yu
- Department of Radiology, The First Affiliated Hospital of Anhui Medical University, No. 218, Jixi Road, Shushan District, Hefei, 230022, China.
| |
Collapse
|
30
|
Rakesh Kumar RK, Shaikh MO, Chuang CH. A review of recent advances in non-enzymatic electrochemical creatinine biosensing. Anal Chim Acta 2021; 1183:338748. [PMID: 34627521 DOI: 10.1016/j.aca.2021.338748] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 06/05/2021] [Accepted: 06/07/2021] [Indexed: 01/28/2023]
Abstract
Creatinine biosensing is a rapidly developing field owing to the clinical relevance of creatinine as a vital biomarker for several diseases associated with renal, thyroidal, and muscular dysfunctions. Over the years, we have observed numerous creatinine biosensing strategies, including the most widely studied enzymatic creatinine biosensors. Though the enzymatic approach provides excellent selectivity and reliability, it has certain drawbacks, which include high fabrication cost and poor storage stability (that is inherent to every enzyme-based biosensors). This has led to the development of non-enzymatic creatinine biosensors, of which electrochemical sensors are the most promising for point-of-care applications. However, only a limited number of studies have been conducted and there is a lack of reviews addressing the recent advances in this research area. Herein, we present for the first time, a review with a prime focus on the various strategies implemented in non-enzymatic electrochemical creatinine biosensing. We aim to offer a comprehensive context on the achievements and limitations of currently available non-enzymatic electrochemical creatinine biosensors and address the underlying factors pertaining to the interplay of modification/fabrication techniques with the sensitivity, selectivity, interferences, and long-term storage stability of the biosensor. We hope that this work shall prove to be seminal in the conception and advancement of future non-enzymatic electrochemical creatinine biosensors.
Collapse
Affiliation(s)
- R K Rakesh Kumar
- Institute of Medical Science and Technology, National Sun Yat-sen University, Taiwan
| | | | - Cheng-Hsin Chuang
- Institute of Medical Science and Technology, National Sun Yat-sen University, Taiwan.
| |
Collapse
|
31
|
Li J, Li Z, Dou Y, Su J, Shi J, Zhou Y, Wang L, Song S, Fan C. A nano-integrated microfluidic biochip for enzyme-based point-of-care detection of creatinine. Chem Commun (Camb) 2021; 57:4726-4729. [PMID: 33977964 DOI: 10.1039/d1cc00825k] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
A nano-integrated portable enzymatic microfluidic electrochemical biochip was developed for single-step point-of-care testing of creatinine. The biochip could automatically eliminate a lot of interferences from practical biological samples and enzymatic intermediate products. Gold nanostructure- and carbon nanotube-based screen-printed carbon electrodes were integrated into microfluidic structures to improve the detection performance for creatinine. The microfluidic electrochemical biochip holds promise to become a practical device for medical diagnosis, especially POCT.
Collapse
Affiliation(s)
- Jianyong Li
- Division of Physical Biology, CAS Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, P. R. China. and University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Zhenhua Li
- Division of Physical Biology, CAS Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, P. R. China. and University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Yanzhi Dou
- Division of Physical Biology, CAS Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, P. R. China. and University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Jing Su
- State Key Laboratory of Oncogenes and Related Genes, Institute for Personalized Medicine, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200030, P. R. China
| | | | - Yi Zhou
- Chengdu University of Traditional Chinese Medicine, Chengdu 611137, P. R. China
| | - Lihua Wang
- Division of Physical Biology, CAS Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, P. R. China. and University of Chinese Academy of Sciences, Beijing 100049, P. R. China and The Interdisciplinary Research Center, Shanghai Synchrotron Radiation Facility, Zhangjiang Laboratory, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, P. R. China
| | - Shiping Song
- Division of Physical Biology, CAS Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, P. R. China. and University of Chinese Academy of Sciences, Beijing 100049, P. R. China and The Interdisciplinary Research Center, Shanghai Synchrotron Radiation Facility, Zhangjiang Laboratory, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, P. R. China
| | - Chunhai Fan
- Division of Physical Biology, CAS Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, P. R. China. and University of Chinese Academy of Sciences, Beijing 100049, P. R. China and Institute of Molecular Medicine, Renji Hospital, School of Medicine and School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, Shanghai 200127, P. R. China
| |
Collapse
|
32
|
Label-Free Creatinine Optical Sensing Using Molecularly Imprinted Titanium Dioxide-Polycarboxylic Acid Hybrid Thin Films: A Preliminary Study for Urine Sample Analysis. CHEMOSENSORS 2021. [DOI: 10.3390/chemosensors9070185] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Creatinine (CR) is a representative metabolic byproduct of muscles, and its sensitive and selective detection has become critical in the diagnosis of kidney diseases. In this study, poly(acrylic acid) (PAA)-assisted molecularly imprinted (MI) TiO2 nanothin films fabricated via liquid phase deposition (LPD) were employed for CR detection. The molecular recognition properties of the fabricated films were evaluated using fiber optic long period grating (LPG) and quartz crystal microbalance sensors. Imprinting effects were examined compared with nonimprinted (NI) pure TiO2 and PAA-assisted TiO2 films fabricated similarly without a template. In addition, the surface modification of the optical fiber section containing the LPG with a mesoporous base coating of silica nanoparticles, which was conducted before LPD-based TiO2 film deposition, contributed to the improvement of the sensitivity of the MI LPG sensor. The sensitivity and selectivity of LPGs coated with MI films were tested using CR solutions dissolved in different pH waters and artificial urine (near pH 7). The CR binding constants of the MI and NI films, which were calculated from the Benesi–Hildebrand plots of the wavelength shifts of the second LPG band recorded in water at pH 4.6, were estimated to be 67 and 7.8 M–1, respectively, showing an almost ninefold higher sensitivity in the MI film. The mechanism of the interaction between the template and the TiO2 matrix and the film composition was investigated via ultraviolet–visible and attenuated total reflectance Fourier-transform infrared spectroscopy along with X-ray photoelectron spectroscopy analysis. In addition, morphological studies using a scanning electron microscope and atomic force microscope were conducted. The proposed system has the potential for practical use to determine CR levels in urine samples. This LPG-based label-free CR biosensor is innovative and expected to be a new tool to identify complex biomolecules in terms of its easy fabrication and simplicity in methodology.
Collapse
|
33
|
Lertvachirapaiboon C, Baba A, Shinbo K, Kato K. Colorimetric Detection Based on Localized Surface Plasmon Resonance for Determination of Chemicals in Urine. ANAL SCI 2021; 37:929-940. [PMID: 33132235 DOI: 10.2116/analsci.20r005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Colorimetric sensors based on localized surface plasmon resonance (LSPR) have attracted much attention for biosensor and chemical sensor applications. The unique optical effect of LSPR is based on the nanostructure of noble metals (e.g., Au, Ag, and Al) and the refractive index of the environment surrounding these metal nanomaterials. When either the structure or the environment of these nanomaterials is changed, their optical properties change and can be observed by spectroscopic techniques or the naked eye. Colorimetric-probe-based LSPR provides a simple, rapid, real-time, nonlabelled, sensitive biochemical detection and can be used for point-of-care testing as well as rapid screening for the diagnosis of various diseases. Gold and silver nanoparticles, which are the two most widely used plasmonic nanomaterials, demonstrate strong and sensitive LSPR signals that can be used for the selective detection of several chemicals in biochemical compounds provided by the human body (e.g., urine and blood). This information can be used for the diagnosis of several human health conditions. This paper provides information regarding colorimetric probes based on LSPR for the detection of three major chemicals in human urine: creatinine, albumin, and glucose. In addition, the mechanisms of selective detection and quantitative analysis of these chemicals using metal nanoparticles are discussed along with colorimetric-detection-based LSPR for many other specific chemicals that can be detected in urine, such as catecholamine neurotransmitters, thymine, and various medicines. Furthermore, issues regarding the use of portable platforms for health monitoring with colorimetric detection based on LSPR are discussed.
Collapse
Affiliation(s)
| | - Akira Baba
- Graduate School of Science and Technology, Niigata University
| | - Kazunari Shinbo
- Graduate School of Science and Technology, Niigata University
| | - Keizo Kato
- Graduate School of Science and Technology, Niigata University
| |
Collapse
|
34
|
Narimani R, Esmaeili M, Rasta SH, Khosroshahi HT, Mobed A. Trend in creatinine determining methods: Conventional methods to molecular‐based methods. ANALYTICAL SCIENCE ADVANCES 2021; 2:308-325. [DOI: 10.1002/ansa.202000074] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Accepted: 09/28/2020] [Indexed: 10/07/2023]
Abstract
AbstractRenal failure (RF) disease is ranked as one of the most prevalent diseases with severe morbidity and mortality. Early diagnosis of RF leads to subsequent control of disease to reduce the poor prognosis. The level of sera creatinine is considered as a significant biomarker for kidney biofunction, which is routinely detected by the Jaffe reaction. The normal range for creatinine in the blood may be 0.84‐1.21 mg/dL. Low accuracy, insufficient sensitivity, explosive and toxicity of picric acid, and pseudo‐interaction with nonspecific elements such as ammonium ions in the Jaffe method lead to the development of various techniques for precise detection of creatinine such as spectroscopic, electrochemical, and chromatography approaches and sensors based on enzymes, molecular imprinted polymer and nanoparticles, etc. Based on previously established results, they are trying to construct sensors with high accuracy, optimum sensitivity, acceptable linear/calibration range, and limit of detection, which are small in size and applicable by the patient him/herself (point‐of‐care testing). By comparing the results of research, a molecularly imprinted electrochemiluminescence‐based sensor with linear/calibration range of 5‐1 mMconcentration of creatinine and the detection limit of 0.5 nM has the best detectable resolution with 2 million measurable points. In this paper, we will review the recently developed methods for measuring creatinine concentration and renal biofunction.
Collapse
Affiliation(s)
- Ramin Narimani
- Medical Bioengineering Department, School of Advanced Medical Sciences Tabriz University of Medical Sciences Tabriz Iran
- Molecular Medicine Research Center Tabriz University of Medical Sciences Tabriz Iran
| | - Mahdad Esmaeili
- Medical Bioengineering Department, School of Advanced Medical Sciences Tabriz University of Medical Sciences Tabriz Iran
| | - Seyed Hossein Rasta
- Medical Bioengineering Department, School of Advanced Medical Sciences Tabriz University of Medical Sciences Tabriz Iran
- Department of Medical Physics, School of Medicine Tabriz University of Medical Sciences Tabriz Iran
- Department of Biomedical Physics, School of Medical Sciences University of Aberdeen Aberdeen UK
| | - Hamid Tayebi Khosroshahi
- Center for Chronic Kidney Disease Tabriz University of Medical Sciences Tabriz Iran
- Department of Internal Medicine, Imam Reza Hospital Tabriz University of Medical Sciences Tabriz Iran
- Biotechnology Research Center Tabriz University of Medical Sciences Tabriz Iran
| | - Ahmad Mobed
- Aging Research Institute Tabriz University of Medical Sciences Tabriz Iran
| |
Collapse
|
35
|
SATO N, TAKEDA K, NAKAMURA N. Development of a Copper-electrodeposited Gold Electrode for an Amperometric Creatinine Sensor to Detect Creatinine in Urine without Pretreatment. ELECTROCHEMISTRY 2021. [DOI: 10.5796/electrochemistry.21-00016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Affiliation(s)
- Naoko SATO
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology
| | - Kouta TAKEDA
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology
| | - Nobuhumi NAKAMURA
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology
| |
Collapse
|
36
|
Annese VF, Patil SB, Hu C, Giagkoulovits C, Al-Rawhani MA, Grant J, Macleod M, Clayton DJ, Heaney LM, Daly R, Accarino C, Shah YD, Cheah BC, Beeley J, Evans TRJ, Jones R, Barrett MP, Cumming DRS. A monolithic single-chip point-of-care platform for metabolomic prostate cancer detection. MICROSYSTEMS & NANOENGINEERING 2021; 7:21. [PMID: 34567735 PMCID: PMC8433377 DOI: 10.1038/s41378-021-00243-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 11/05/2020] [Accepted: 12/15/2020] [Indexed: 05/18/2023]
Abstract
There is a global unmet need for rapid and cost-effective prognostic and diagnostic tools that can be used at the bedside or in the doctor's office to reduce the impact of serious disease. Many cancers are diagnosed late, leading to costly treatment and reduced life expectancy. With prostate cancer, the absence of a reliable test has inhibited the adoption of screening programs. We report a microelectronic point-of-care metabolite biomarker measurement platform and use it for prostate cancer detection. The platform, using an array of photodetectors configured to operate with targeted, multiplexed, colorimetric assays confined in monolithically integrated passive microfluidic channels, completes a combined assay of 4 metabolites in a drop of human plasma in under 2 min. A preliminary clinical study using l-amino acids, glutamate, choline, and sarcosine was used to train a cross-validated random forest algorithm. The system demonstrated sensitivity to prostate cancer of 94% with a specificity of 70% and an area under the curve of 0.78. The technology can implement many similar assay panels and hence has the potential to revolutionize low-cost, rapid, point-of-care testing.
Collapse
Affiliation(s)
- Valerio F. Annese
- Electronics and Nanoscale Engineering, James Watt School of Engineering, University of Glasgow, Glasgow, G12 8QQ UK
| | - Samadhan B. Patil
- Electronics and Nanoscale Engineering, James Watt School of Engineering, University of Glasgow, Glasgow, G12 8QQ UK
| | - Chunxiao Hu
- Electronics and Nanoscale Engineering, James Watt School of Engineering, University of Glasgow, Glasgow, G12 8QQ UK
| | - Christos Giagkoulovits
- Electronics and Nanoscale Engineering, James Watt School of Engineering, University of Glasgow, Glasgow, G12 8QQ UK
| | - Mohammed A. Al-Rawhani
- Electronics and Nanoscale Engineering, James Watt School of Engineering, University of Glasgow, Glasgow, G12 8QQ UK
| | - James Grant
- Electronics and Nanoscale Engineering, James Watt School of Engineering, University of Glasgow, Glasgow, G12 8QQ UK
| | - Martin Macleod
- Beatson West of Scotland Cancer Centre, Glasgow, G12 0YN UK
| | - David J. Clayton
- School of Science and Technology, Nottingham Trent University, Nottingham, NG11 8NF UK
| | - Liam M. Heaney
- School of Sport, Exercise & Health Sciences, Loughborough University, Loughborough, LE11 3TU UK
| | - Ronan Daly
- Glasgow Polyomics, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, G61 1BD UK
| | - Claudio Accarino
- Electronics and Nanoscale Engineering, James Watt School of Engineering, University of Glasgow, Glasgow, G12 8QQ UK
| | - Yash D. Shah
- Electronics and Nanoscale Engineering, James Watt School of Engineering, University of Glasgow, Glasgow, G12 8QQ UK
| | - Boon C. Cheah
- Electronics and Nanoscale Engineering, James Watt School of Engineering, University of Glasgow, Glasgow, G12 8QQ UK
| | - James Beeley
- Electronics and Nanoscale Engineering, James Watt School of Engineering, University of Glasgow, Glasgow, G12 8QQ UK
| | - Thomas R. Jeffry Evans
- Institute of Cancer Sciences, Beatson West of Scotland Cancer Centre, University of Glasgow, Glasgow, G12 0YN UK
| | - Robert Jones
- Institute of Cancer Sciences, Beatson West of Scotland Cancer Centre, University of Glasgow, Glasgow, G12 0YN UK
| | - Michael P. Barrett
- Glasgow Polyomics, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, G61 1BD UK
- Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, G12 8TA UK
| | - David R. S. Cumming
- Electronics and Nanoscale Engineering, James Watt School of Engineering, University of Glasgow, Glasgow, G12 8QQ UK
| |
Collapse
|
37
|
Martín-Rodríguez F, López-Izquierdo R, Portillo Rubiales RM, Fadrique Millán LN, Carbajosa Rodríguez V, Sanz-García A, Ortega Rabbione G, Polonio-López B, Villamor MÁC, Martín-Conty JL. Blood Biomarkers for Assessing Headaches in Healthcare Workers after Wearing Biological Personal Protective Equipment in a COVID-19 Field Hospital. J Pers Med 2021. [PMID: 33406767 DOI: 10.21203/rs.3.rs-55229/v1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/22/2023] Open
Abstract
The coronavirus disease 2019 (COVID-19) has led to a pandemic, which among other things, has highlighted biosafety as a key cornerstone in the management of disease transmission. The aim of this work was to analyze the role played by different blood biomarkers in predicting the appearance of headaches in healthcare workers wearing personal protective equipment (PPE) in a COVID-19 treatment unit. A prospective cohort study of 38 healthcare workers was performed during April 2020. Blood analysis, performed just before the start of a 4 hour shift, was carried out on all volunteers equipped with PPE. At the end of their shifts and after decontamination, they were asked if they had suffered from headache in order to obtain a binary outcome. The baseline creatinine value reflected a specific odds ratio of 241.36 (95% CI: 2.50-23,295.43; p = 0.019) and an area under the curve (AUC) value of 0.737 (95%CI: 0.57-0.90; p < 0.01). Blood creatinine is a good candidate for predicting the appearance of a de novo headache in healthcare workers after wearing PPE for four hours in a COVID-19 unit.
Collapse
Affiliation(s)
- Francisco Martín-Rodríguez
- Advanced Clinical Simulation Centre, Faculty of Medicine, Universidad de Valladolid, Advanced Life Support Unit, Emergency Medical Services, 47005 Valladolid, Spain
| | - Raúl López-Izquierdo
- Emergency Department, Hospital Universitario Rio Hortega de Valladolid, Gerencia Regional de Salud de Castilla y León (SACYL), c/ Dulzaina, 2, 47012 Valladolid, Spain
| | - Raquel M Portillo Rubiales
- C.S. de Tordesillas, Gerencia de Atención Primaria de Valladolid Oeste, Gerencia Regional de Salud de Castilla y León (SACYL), Crta. de Valladolid s/n, 47100 Tordesillas, Valladolid, Spain
| | - Laura N Fadrique Millán
- Emergency Department, Hospital Universitario Rio Hortega de Valladolid, Gerencia Regional de Salud de Castilla y León (SACYL), c/ Dulzaina, 2, 47012 Valladolid, Spain
| | - Virginia Carbajosa Rodríguez
- Emergency Department, Hospital Universitario Rio Hortega de Valladolid, Gerencia Regional de Salud de Castilla y León (SACYL), c/ Dulzaina, 2, 47012 Valladolid, Spain
| | - Ancor Sanz-García
- Data Analysis Unit, Health Research Institute, Hospital de la Princesa, Madrid (IIS-IP), C/ Diego de León 62, 28006 Madrid, Spain
| | - Guillermo Ortega Rabbione
- Data Analysis Unit, Health Research Institute, Hospital de la Princesa, Madrid (IIS-IP), C/ Diego de León 62, 28006 Madrid, Spain
| | - Begoña Polonio-López
- Faculty of Health Sciences, Universidad de Castilla la Mancha, 45600 Talavera de la Reina, Spain
| | - Miguel Ángel Castro Villamor
- C.S. Delicias I Gerencia de Atención Primaria de Valladolid Oeste, Gerencia Regional de Salud de Castilla y León (SACYL), Pª Juan Carlos I, 18, 47013 Valladolid, Spain
| | - José L Martín-Conty
- Faculty of Health Sciences, Universidad de Castilla la Mancha, 45600 Talavera de la Reina, Spain
| |
Collapse
|
38
|
Martín-Rodríguez F, López-Izquierdo R, Portillo Rubiales RM, Fadrique Millán LN, Carbajosa Rodríguez V, Sanz-García A, Ortega Rabbione G, Polonio-López B, Castro Villamor MÁ, Martín-Conty JL. Blood Biomarkers for Assessing Headaches in Healthcare Workers after Wearing Biological Personal Protective Equipment in a COVID-19 Field Hospital. J Pers Med 2021; 11:27. [PMID: 33406767 PMCID: PMC7823801 DOI: 10.3390/jpm11010027] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Revised: 12/22/2020] [Accepted: 12/30/2020] [Indexed: 01/10/2023] Open
Abstract
The coronavirus disease 2019 (COVID-19) has led to a pandemic, which among other things, has highlighted biosafety as a key cornerstone in the management of disease transmission. The aim of this work was to analyze the role played by different blood biomarkers in predicting the appearance of headaches in healthcare workers wearing personal protective equipment (PPE) in a COVID-19 treatment unit. A prospective cohort study of 38 healthcare workers was performed during April 2020. Blood analysis, performed just before the start of a 4 hour shift, was carried out on all volunteers equipped with PPE. At the end of their shifts and after decontamination, they were asked if they had suffered from headache in order to obtain a binary outcome. The baseline creatinine value reflected a specific odds ratio of 241.36 (95% CI: 2.50-23,295.43; p = 0.019) and an area under the curve (AUC) value of 0.737 (95%CI: 0.57-0.90; p < 0.01). Blood creatinine is a good candidate for predicting the appearance of a de novo headache in healthcare workers after wearing PPE for four hours in a COVID-19 unit.
Collapse
Affiliation(s)
- Francisco Martín-Rodríguez
- Advanced Clinical Simulation Centre, Advanced Life Support Unit, Emergency Medical Services, Faculty of Medicine, Universidad de Valladolid, 47005 Valladolid, Spain;
| | - Raúl López-Izquierdo
- Emergency Department, Hospital Universitario Rio Hortega de Valladolid, Gerencia Regional de Salud de Castilla y León (SACYL), c/Dulzaina, 2, 47012 Valladolid, Spain; (L.N.F.M.); (V.C.R.)
| | - Raquel M. Portillo Rubiales
- C.S. de Tordesillas, Gerencia de Atención Primaria de Valladolid Oeste, Gerencia Regional de Salud de Castilla y León (SACYL), Crta. de Valladolid s/n, 47100 Tordesillas, Valladolid, Spain;
| | - Laura N. Fadrique Millán
- Emergency Department, Hospital Universitario Rio Hortega de Valladolid, Gerencia Regional de Salud de Castilla y León (SACYL), c/Dulzaina, 2, 47012 Valladolid, Spain; (L.N.F.M.); (V.C.R.)
| | - Virginia Carbajosa Rodríguez
- Emergency Department, Hospital Universitario Rio Hortega de Valladolid, Gerencia Regional de Salud de Castilla y León (SACYL), c/Dulzaina, 2, 47012 Valladolid, Spain; (L.N.F.M.); (V.C.R.)
| | - Ancor Sanz-García
- Data Analysis Unit, Health Research Institute, Hospital de la Princesa, Madrid (IIS-IP), C/Diego de León, 62, 28006 Madrid, Spain; (A.S.-G.); (G.O.R.)
| | - Guillermo Ortega Rabbione
- Data Analysis Unit, Health Research Institute, Hospital de la Princesa, Madrid (IIS-IP), C/Diego de León, 62, 28006 Madrid, Spain; (A.S.-G.); (G.O.R.)
| | - Begoña Polonio-López
- Faculty of Health Sciences, Universidad de Castilla la Mancha, 45600 Talavera de la Reina, Spain; (B.P.-L.); (J.L.M.-C.)
| | - Miguel Ángel Castro Villamor
- C.S. Delicias I Gerencia de Atención Primaria de Valladolid Oeste, Gerencia Regional de Salud de Castilla y León (SACYL), Pª Juan Carlos I, 18, 47013 Valladolid, Spain;
| | - José L. Martín-Conty
- Faculty of Health Sciences, Universidad de Castilla la Mancha, 45600 Talavera de la Reina, Spain; (B.P.-L.); (J.L.M.-C.)
| |
Collapse
|
39
|
Fe2O3/polyaniline supramolecular nanocomposite: A receptor free sensor platform for the quantitative determination of serum creatinine. Anal Chim Acta 2020; 1137:103-114. [DOI: 10.1016/j.aca.2020.09.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 08/31/2020] [Accepted: 09/02/2020] [Indexed: 11/24/2022]
|
40
|
Point-of-Care Diagnostics: Molecularly Imprinted Polymers and Nanomaterials for Enhanced Biosensor Selectivity and Transduction. EUROBIOTECH JOURNAL 2020. [DOI: 10.2478/ebtj-2020-0023] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Abstract
Significant healthcare disparities resulting from personal wealth, circumstances of birth, education level, and more are internationally prevalent. As such, advances in biomedical science overwhelmingly benefit a minority of the global population. Point-of-Care Testing (POCT) can contribute to societal equilibrium by making medical diagnostics affordable, convenient, and fast. Unfortunately, conventional POCT appears stagnant in terms of achieving significant advances. This is attributed to the high cost and instability associated with conventional biorecognition: primarily antibodies, but nucleic acids, cells, enzymes, and aptamers have also been used. Instead, state-of-the-art biosensor researchers are increasingly leveraging molecularly imprinted polymers (MIPs) for their high selectivity, excellent stability, and amenability to a variety of physical and chemical manipulations. Besides the elimination of conventional bioreceptors, the incorporation of nanomaterials has further improved the sensitivity of biosensors. Herein, modern nanobiosensors employing MIPs for selectivity and nanomaterials for improved transduction are systematically reviewed. First, a brief synopsis of fabrication and wide-spread challenges with selectivity demonstration are presented. Afterward, the discussion turns to an analysis of relevant case studies published in the last five years. The analysis is given through two lenses: MIP-based biosensors employing specific nanomaterials and those adopting particular transduction strategies. Finally, conclusions are presented along with a look to the future through recommendations for advancing the field. It is hoped that this work will accelerate successful efforts in the field, orient new researchers, and contribute to equitable health care for all.
Collapse
|
41
|
From the bottom of an old jar: A fluorometric method for the determination of creatinine in human serum. Anal Chim Acta 2020; 1135:116-122. [DOI: 10.1016/j.aca.2020.08.017] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 08/08/2020] [Accepted: 08/11/2020] [Indexed: 01/11/2023]
|
42
|
Alginate Hydrogel-Embedded Capillary Sensor for Quantitative Immunoassay with Naked Eye. SENSORS 2020; 20:s20174831. [PMID: 32867021 PMCID: PMC7506732 DOI: 10.3390/s20174831] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 08/14/2020] [Accepted: 08/19/2020] [Indexed: 12/13/2022]
Abstract
We have developed an alginate hydrogel-embedded capillary sensor (AHCS) for naked eye-based quantification of immunoassay. Alkaline phosphatase (ALP) can modulate gel-sol transformation to increase the permeability of Cu2+-cross-linked alginate hydrogel film in the AHCS, followed by solution exchange into the capillary. Through measuring the length of the liquid phase of the microfluidics in the capillary at a given time, the concentration of the ALP could be quantified with the naked eye. Since ALP is widely applied as a signal reporter for immunoassays, the AHCS could easily accommodate conventional immune sensing platforms. We justify the practicality of AHCS with hepatitis B virus surface antigen (HBsAg) in serum samples and got comparable results with commercialized immunoassay. This AHCS is easy to make and use, effective in cost, and robust in quantification with the naked eye, showing great promise for next generation point-of-care testing.
Collapse
|
43
|
Lertvachirapaiboon C, Baba A, Shinbo K, Kato K. Colorimetric Determination of Urinary Creatinine in Proteinuria Patients by Chromaticity Analysis of Gold Nanoparticle Colloidal Solutions. ANAL SCI 2020; 36:1495-1500. [PMID: 32801288 DOI: 10.2116/analsci.20p235] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Several scientific works have reported the use of colloidal gold nanoparticle (AuNP) solutions as a colorimetric probe for creatinine detection. Nonetheless, urinary protein is one of the primary chemical components that can interfere with creatinine detection. In this work, we developed a colorimetric probe using AuNP colloidal solution to detect creatinine in the urine of proteinuria patients. A microchamber array was prepared to minimize the sample volume and was used to simultaneously perform spectral recording and image acquisition of several samples. The analyzed volume for each sample was 15 μL. A camera coupled with liquid crystal tunable filters was used to record hyperspectral images, and the signals were then converted to localized surface plasmon resonance (LSPR) spectra. Color changes in the AuNP colloidal solution in the presence of varying concentrations of creatinine and human serum albumin (HSA) indicated different features and could be detected by a hyperspectral imaging technique. The relevant concentration ranges of creatinine and HSA were 5 - 200 and 50 - 250 mg dL-1, respectively. Furthermore, a smartphone camera was adopted to record a color mapping image of the AuNP colloidal solution in the presence of creatinine and HSA at these concentration ranges. Contour plots of red and blue chromaticity levels from color mappings were produced, and 2D fitting equations obtained from these contour plots were adopted to determine the creatinine concentration in the urine of proteinuria patients. This practical technique can be used for screening and can be further developed as a household biosensing device for urinalysis.
Collapse
Affiliation(s)
| | - Akira Baba
- Graduate School of Science and Technology, Niigata University
| | - Kazunari Shinbo
- Graduate School of Science and Technology, Niigata University
| | - Keizo Kato
- Graduate School of Science and Technology, Niigata University
| |
Collapse
|
44
|
Pérez-Ràfols C, Liu Y, Wang Q, Cuartero M, Crespo GA. Why Not Glycine Electrochemical Biosensors? SENSORS (BASEL, SWITZERLAND) 2020; 20:E4049. [PMID: 32708149 PMCID: PMC7411573 DOI: 10.3390/s20144049] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 07/14/2020] [Accepted: 07/16/2020] [Indexed: 01/26/2023]
Abstract
Glycine monitoring is gaining importance as a biomarker in clinical analysis due to its involvement in multiple physiological functions, which results in glycine being one of the most analyzed biomolecules for diagnostics. This growing demand requires faster and more reliable, while affordable, analytical methods that can replace the current gold standard for glycine detection, which is based on sample extraction with subsequent use of liquid chromatography or fluorometric kits for its quantification in centralized laboratories. This work discusses electrochemical sensors and biosensors as an alternative option, focusing on their potential application for glycine determination in blood, urine, and cerebrospinal fluid, the three most widely used matrices for glycine analysis with clinical meaning. For electrochemical sensors, voltammetry/amperometry is the preferred readout (10 of the 13 papers collected in this review) and metal-based redox mediator modification is the predominant approach for electrode fabrication (11 of the 13 papers). However, none of the reported electrochemical sensors fulfill the requirements for direct analysis of biological fluids, most of them lacking appropriate selectivity, linear range of response, and/or capability of measuring at physiological conditions. Enhanced selectivity has been recently reported using biosensors (with an enzyme element in the electrode design), although this is still a very incipient approach. Currently, despite the benefits of electrochemistry, only optical biosensors have been successfully reported for glycine detection and, from all the inspected works, it is clear that bioengineering efforts will play a key role in the embellishment of selectivity and storage stability of the sensing element in the sensor.
Collapse
Affiliation(s)
| | | | | | | | - Gastón A. Crespo
- Department of Chemistry, School of Engineering Science in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, Teknikringen 30, SE-100 44 Stockholm, Sweden; (C.P.-R.); (Y.L.); (Q.W.); (M.C.)
| |
Collapse
|
45
|
Reddy KK, Bandal H, Satyanarayana M, Goud KY, Gobi KV, Jayaramudu T, Amalraj J, Kim H. Recent Trends in Electrochemical Sensors for Vital Biomedical Markers Using Hybrid Nanostructured Materials. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2020; 7:1902980. [PMID: 32670744 PMCID: PMC7341105 DOI: 10.1002/advs.201902980] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Revised: 03/12/2020] [Indexed: 05/09/2023]
Abstract
This work provides a succinct insight into the recent developments in electrochemical quantification of vital biomedical markers using hybrid metallic composite nanostructures. After a brief introduction to the biomarkers, five types of crucial biomarkers, which require timely and periodical monitoring, are shortlisted, namely, cancer, cardiac, inflammatory, diabetic and renal biomarkers. This review emphasizes the usage and advantages of hybrid nanostructured materials as the recognition matrices toward the detection of vital biomarkers. Different transduction methods (fluorescence, electrophoresis, chemiluminescence, electrochemiluminescence, surface plasmon resonance, surface-enhanced Raman spectroscopy) reported for the biomarkers are discussed comprehensively to present an overview of the current research works. Recent advancements in the electrochemical (amperometric, voltammetric, and impedimetric) sensor systems constructed with metal nanoparticle-derived hybrid composite nanostructures toward the selective detection of chosen vital biomarkers are specifically analyzed. It describes the challenges involved and the strategies reported for the development of selective, sensitive, and disposable electrochemical biosensors with the details of fabrication, functionalization, and applications of hybrid metallic composite nanostructures.
Collapse
Affiliation(s)
- K. Koteshwara Reddy
- Smart Living Innovation Technology CentreDepartment of Energy Science and TechnologyMyongji UniversityYonginGyeonggi‐do17058Republic of Korea
- Laboratory of Materials ScienceInstituto de Química de Recursos NaturalesUniversidad de TalcaP.O. Box 747Talca3460000Chile
| | - Harshad Bandal
- Smart Living Innovation Technology CentreDepartment of Energy Science and TechnologyMyongji UniversityYonginGyeonggi‐do17058Republic of Korea
| | - Moru Satyanarayana
- Department of ChemistryNational Institute of Technology WarangalWarangalTelangana506004India
| | - Kotagiri Yugender Goud
- Department of ChemistryNational Institute of Technology WarangalWarangalTelangana506004India
| | | | - Tippabattini Jayaramudu
- Laboratory of Materials ScienceInstituto de Química de Recursos NaturalesUniversidad de TalcaP.O. Box 747Talca3460000Chile
| | - John Amalraj
- Laboratory of Materials ScienceInstituto de Química de Recursos NaturalesUniversidad de TalcaP.O. Box 747Talca3460000Chile
| | - Hern Kim
- Smart Living Innovation Technology CentreDepartment of Energy Science and TechnologyMyongji UniversityYonginGyeonggi‐do17058Republic of Korea
| |
Collapse
|
46
|
Abstract
PURPOSE OF REVIEW Hypertension (HTN) and chronic kidney disease (CKD) are significant problems. With recent advances in technologies, biosensors have shown a great potential to provide better home monitoring in hypertension (HTN), medication compliance, diagnostic device for kidney disease, CKD/end-stage renal disease (ESRD) care, and post kidney transplant management. RECENT FINDINGS Multiple devices/biosensors have been developed related to HTN, kidney function including real-time glomerular filtration rate, CKD/end-stage renal disease, and transplant care. In recent advances in wearable biosensors, point of care monitoring system could provide more integrated care to the patients via telenephrology. SUMMARY This review focuses on the recent advances in biosensors which may be useful for HTN and nephrology. We will discuss future potential clinical implication of these biosensors.
Collapse
|
47
|
Sierra AF, Hernández-Alonso D, Romero MA, González-Delgado JA, Pischel U, Ballester P. Optical Supramolecular Sensing of Creatinine. J Am Chem Soc 2020; 142:4276-4284. [PMID: 32045249 DOI: 10.1021/jacs.9b12071] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Calix[4]pyrrole phosphonate-cavitands were used as receptors for the design of supramolecular sensors for creatinine and its lipophilic derivative hexylcreatinine. The sensing principle is based on indicator displacement assays of an inherently fluorescent guest dye or a black-hole quencher from the receptor's cavity by means of competition with the creatinine analytes. The systems were thermodynamically and kinetically characterized regarding their 1:1 binding properties by means of nuclear magnetic resonance spectroscopy (1H and 31P NMR), isothermal titration calorimetry, and optical spectroscopies (UV/vis absorption and fluorescence). For the use of the black-hole indicator dye, the calix[4]pyrrole was modified with a dansyl chromophore as a signaling unit that engages in Förster resonance energy transfer with the indicator dye. The 1:1 binding constants of the indicator dyes are in the range of 107 M-1, while hexylcreatinine showed values around (2-4) × 105 M-1. The competitive displacement of the indicators by hexylcreatinine produced supramolecular fluorescence turn-on sensors that work at micromolar analyte concentrations that are compatible with those observed for healthy as well as sick patients. The limit of detection for one of the systems reached submicromolar ranges (110 nM).
Collapse
Affiliation(s)
- Andrés F Sierra
- Institute of Chemical Research of Catalonia (ICIQ), The Barcelona Institute of Science and Technology (BIST), Avgda. Països Catalans 16, 43007 Tarragona, Spain.,Universitat Rovira i Virgili (URV), Departament de Quı́mica Analı́tica i Quı́mica Orgànica, c/Marcel·lí Domingo, 1, 43007 Tarragona, Spain
| | - Daniel Hernández-Alonso
- Institute of Chemical Research of Catalonia (ICIQ), The Barcelona Institute of Science and Technology (BIST), Avgda. Països Catalans 16, 43007 Tarragona, Spain
| | - Miguel A Romero
- CIQSO - Center for Research in Sustainable Chemistry and Department of Chemistry, University of Huelva, Campus de El Carmen s/n, E-21071 Huelva, Spain
| | - José A González-Delgado
- CIQSO - Center for Research in Sustainable Chemistry and Department of Chemistry, University of Huelva, Campus de El Carmen s/n, E-21071 Huelva, Spain
| | - Uwe Pischel
- CIQSO - Center for Research in Sustainable Chemistry and Department of Chemistry, University of Huelva, Campus de El Carmen s/n, E-21071 Huelva, Spain
| | - Pablo Ballester
- Institute of Chemical Research of Catalonia (ICIQ), The Barcelona Institute of Science and Technology (BIST), Avgda. Països Catalans 16, 43007 Tarragona, Spain.,Catalan Institution of Research and Advanced Studies (ICREA), Passeig Lluís Companys 23, 08018 Barcelona, Spain
| |
Collapse
|
48
|
Liu Y, Cánovas R, Crespo GA, Cuartero M. Thin-Layer Potentiometry for Creatinine Detection in Undiluted Human Urine Using Ion-Exchange Membranes as Barriers for Charged Interferences. Anal Chem 2020; 92:3315-3323. [PMID: 31971373 DOI: 10.1021/acs.analchem.9b05231] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Herein, thin-layer potentiometry combined with ion-exchange membranes as barriers for charged interferences is demonstrated for the analytical detection of creatinine (CRE) in undiluted human urine. Briefly, CRE diffuses through an anion-exchange membrane (AEM) from a sample contained in one fluidic compartment to a second reservoir, containing the enzyme CRE deiminase. There, CRE reacts with the enzyme, and the formation of ammonium is dynamically monitored by potentiometric ammonium-selective electrodes. This analytical concept is integrated into a lab-on-a-chip microfluidic cell that allows for a high sample throughput and the operation under stop-flow mode, which allows CRE to passively diffuse across the AEM. Conveniently, positively charged species (i.e., potassium, sodium, and ammonium, among others) are repelled by the AEM and never reach the ammonium-selective electrodes; thus, possible interference in the response can be avoided. As a result, the dynamic potential response of the electrodes is entirely ascribed to the stoichiometric formation of ammonium. The new CRE biosensor exhibits a Nernstian slope, within a linear range of response from 1 to 50 mM CRE concentration. As expected, the response time (15-60 min) primarily depends on the CRE diffusion across the AEM. CRE analysis in urine samples displayed excellent results, without requiring sample pretreatment (before the introduction of the sample in the microfluidic chip) and with high compatibility with development into a potential point-of-care clinical tool. In an attempt to decrease the analysis time, the presented analytical methodology for CRE detection is translated into an all-solid-state platform, in which the enzyme is immobilized on the surface of the ammonium-selective electrode and with the AEM on top. While more work is necessary in this direction, the CRE sensor appears to be promising for CRE analysis in both urine and blood.
Collapse
Affiliation(s)
- Yujie Liu
- Department of Chemistry, School of Engineering Sciences in Chemistry, Biotechnology and Health , KTH Royal Institute of Technology , 10044 Stockholm , Sweden
| | - Rocío Cánovas
- Department of Chemistry, School of Engineering Sciences in Chemistry, Biotechnology and Health , KTH Royal Institute of Technology , 10044 Stockholm , Sweden
| | - Gastón A Crespo
- Department of Chemistry, School of Engineering Sciences in Chemistry, Biotechnology and Health , KTH Royal Institute of Technology , 10044 Stockholm , Sweden
| | - María Cuartero
- Department of Chemistry, School of Engineering Sciences in Chemistry, Biotechnology and Health , KTH Royal Institute of Technology , 10044 Stockholm , Sweden
| |
Collapse
|
49
|
Dasgupta P, Kumar V, Krishnaswamy PR, Bhat N. Biochemical assay for serum creatinine detection through a 1-methylhydantoin and cobalt complex. RSC Adv 2020; 10:39092-39101. [PMID: 35518446 PMCID: PMC9057362 DOI: 10.1039/d0ra06470j] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2020] [Accepted: 10/11/2020] [Indexed: 11/29/2022] Open
Abstract
Creatinine is a reliable indicator of renal function and degradation of muscular metabolism. Current analytical techniques for its measurement are limited by their cost and requirement of sophisticated instruments. In this work, we report a highly sensitive amperometric biosensor for creatinine by utilizing the one-step selective conversion of creatinine by creatinine deiminase. The novelty of the proposed sensor relies on the measurement of N-methylhydantoin produced in the reaction. The sensing chemistry comprises of creatinine deiminase as the receptor for creatinine, cobalt chloride as the electrochemically active recognition element, and methylene blue as the redox mediator. The sensing chemistry is immobilized on the glassy carbon electrode surface by physisorption. We have been able to provide a standalone device that reliably quantifies creatinine in serum and even whole blood, without any sample pre-processing. It is possible to measure creatinine in the clinically relevant range from 0.8 to 4 mg dL−1 with this approach. A highly sensitive amperometric biosensor has been developed for creatinine estimation using the mono-enzymatic conversion of creatinine by creatinine deiminase.![]()
Collapse
Affiliation(s)
- Pallavi Dasgupta
- Centre for Nanoscience and Engineering
- Indian Institute of Science
- Bengaluru
- India
| | | | | | - Navakanta Bhat
- Centre for Nanoscience and Engineering
- Indian Institute of Science
- Bengaluru
- India
| |
Collapse
|
50
|
Sheta SM, Akl MA, Saad HE, El-Gharkawy ESRH. A novel cerium(iii)–isatin Schiff base complex: spectrofluorometric and DFT studies and application as a kidney biomarker for ultrasensitive detection of human creatinine. RSC Adv 2020; 10:5853-5863. [PMID: 35497461 PMCID: PMC9049238 DOI: 10.1039/c9ra10133k] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Accepted: 01/20/2020] [Indexed: 12/17/2022] Open
Abstract
A novel and promising Schiff base and Ce(iii)-complex were synthesized and fully characterized. A novel creatinine optical biosensor based on Ce(iii)-complex and could be a promising analytical tool and as a promising kidney biomarker.
Collapse
Affiliation(s)
- Sheta M. Sheta
- Inorganic Chemistry Department
- National Research Centre
- Giza
- Egypt
| | - Magda A. Akl
- Chemistry Department
- Faculty of Science
- Mansoura University
- Mansoura
- Egypt
| | - Heba E. Saad
- Chemistry Department
- Faculty of Science
- Mansoura University
- Mansoura
- Egypt
| | | |
Collapse
|