1
|
Yiwei X, Xupeng J, Sennan Y, Mengrui C, Baoshan H, Wenjie R, Zhiguang S. An aptasensor with colorimetric and electrochemical dual-outputs for malathion detection utilizing peroxidase-like activity of Fe-MOF. Food Chem X 2024; 24:101835. [PMID: 39347499 PMCID: PMC11437954 DOI: 10.1016/j.fochx.2024.101835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 09/11/2024] [Accepted: 09/11/2024] [Indexed: 10/01/2024] Open
Abstract
An aptasensor with dual-outputs was developed for malathion detection. Fe-MOF was synthesized to design favorable signal probes for catalytic amplification. Owing to the excellent peroxidase-like activity of Fe-MOF, the redox reaction was catalyzed to produce the dual-outputs of colorimetric and electrochemical. In this sensing strategy, malathion was captured by the aptamer on sensing interface, leading to the release of signal probe. Thanks to the catalytic amplification of Fe-MOF and the high capture effect of aptamer, the aptasensor produced a sensitive response for malathion. Based on the dual-signals of absorbance and current, the detection method for malathion was developed ranging from 10 ng/mL to 500 ng/mL. The detection limit of malathion was 5.8 ng/mL for colorimetric output and 4.6 ng/mL for electrochemical output. Furthermore, the aptasensor exhibited high specificity and good repeatability in malathion detection. Finally, the aptasensor was applied to detect malathion in fruit and vegetable samples with satisfactory recovery.
Collapse
Affiliation(s)
- Xu Yiwei
- National Engineering Laboratory/Key Laboratory of Henan province, School of Food Science and Technology, Henan University of Technology, Zhengzhou 450001, China
| | - Jia Xupeng
- National Engineering Laboratory/Key Laboratory of Henan province, School of Food Science and Technology, Henan University of Technology, Zhengzhou 450001, China
| | - Yang Sennan
- Henan Institute of Food and Salt Industry Inspection Technology, Zhengzhou 450003, China
| | - Cao Mengrui
- National Engineering Laboratory/Key Laboratory of Henan province, School of Food Science and Technology, Henan University of Technology, Zhengzhou 450001, China
| | - He Baoshan
- National Engineering Laboratory/Key Laboratory of Henan province, School of Food Science and Technology, Henan University of Technology, Zhengzhou 450001, China
| | - Ren Wenjie
- National Engineering Laboratory/Key Laboratory of Henan province, School of Food Science and Technology, Henan University of Technology, Zhengzhou 450001, China
| | - Suo Zhiguang
- National Engineering Laboratory/Key Laboratory of Henan province, School of Food Science and Technology, Henan University of Technology, Zhengzhou 450001, China
| |
Collapse
|
2
|
Saputra HA, Chung JH, Sahin MAZ, Park DS, Shim YB. Dual-signal output biosensor for the detection of program death-ligand 1 and therapy progress monitoring of cancer. Biosens Bioelectron 2024; 262:116565. [PMID: 39003918 DOI: 10.1016/j.bios.2024.116565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Revised: 06/20/2024] [Accepted: 07/10/2024] [Indexed: 07/16/2024]
Abstract
A disposable dual-output biosensor to detect program death-ligand 1 (PD-L1) was developed for immunotherapy progress monitoring and early cancer detection in a single experimental setup. The aptamer probe was assembled on rGO composited with carboxylated terthiophene polymer (rGO-pTBA) to specifically capture PD-L1 protein labeled with a new redox mediator, ortho-amino phenol para sulphonic acid, for amperometric detection. Each sensing layer was characterized through electrochemical and surface analysis experiments, then confirmed the sensing performance. The calibration plots for the standard PD-L1 protein detection revealed two dynamic ranges of 0.5-100.0 pM and 100.0-500.0 pM, where the detection limit was 0.20 ± 0.001 pM (RSD ≤5.2%) by amperometry. The sensor reliability was evaluated by detecting A549 lung cancer cell-secreted PD-L1 and clinically relevant serum levels of soluble PD-L1 (sPD-L1) using both detection methods. In addition, therapeutic trials were studied through the quantification of sPD-L1 levels for a small cohort of lung cancer patients. A significantly higher level of sPD-L1 was observed for patients (221.6-240.4 pM) compared to healthy individuals (16.2-19.6 pM). After immunotherapy, the patients' PD-L1 level decreased to the range of 126.7-141.2 pM. The results indicated that therapy monitoring was successfully done using both the proposed methods. Additionally, based on a comparative study on immune checkpoint-related proteins, PD-L1 is a more effective biomarker than granzyme B and interferon-gamma.
Collapse
Affiliation(s)
- Heru Agung Saputra
- Department of Chemistry and Chemistry Institute for Functional Materials, Pusan National University, Busan, 46241, South Korea
| | - Jae Heun Chung
- Department of Internal Medicine, Pusan National University Yangsan Hospital, Yangsan, 626-770, South Korea
| | - Md Ali Zaber Sahin
- Department of Chemistry and Chemistry Institute for Functional Materials, Pusan National University, Busan, 46241, South Korea
| | - Deog-Su Park
- Department of Chemistry and Chemistry Institute for Functional Materials, Pusan National University, Busan, 46241, South Korea
| | - Yoon-Bo Shim
- Department of Chemistry and Chemistry Institute for Functional Materials, Pusan National University, Busan, 46241, South Korea.
| |
Collapse
|
3
|
Zhao T, Jin B. A label-free electrochemical biosensor based on a bimetallic organic framework for the detection of carbohydrate antigen 19-9. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2024; 16:6173-6182. [PMID: 39189647 DOI: 10.1039/d4ay01432d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/28/2024]
Abstract
Carbohydrate antigen 19-9 (CA19-9) is an important marker for pancreatic cancer, ovarian cancer and other tumors, and its rapid and stable detection is the basis for early diagnosis and treatment. In this paper, a label-free electrochemical immunosensor for the sensitive detection of CA19-9 has been developed. First, the synthesis of two novel core-shell bimetallic nanomaterials, namely Ce-MOF-on-Fe-MOF and Fe-MOF-on-Ce-MOF, was accomplished using the MOF-on-MOF approach. The poor electrical conductivity of MOF materials was addressed by incorporating polyethylenimide (PEI) functionalized rGO with Ce-MOF-on-Fe-MOF and Fe-MOF-on-Ce-MOF nanomaterials. Simultaneously, toluidine blue (Tb) was employed as a redox probe and physically adsorbed onto the synthesized materials, resulting in the formation of two nanomaterials: rGO@Ce-MOF-on-Fe-MOF@Tb and rGO@Fe-MOF-on-Ce-MOF@Tb. The fundamental characterization reveals that the sensing performance of the rGO@Ce-MOF-on-Fe-MOF@TB-based immune sensor surpasses that of the rGO@Fe-MOF-on-Ce-MOF@TB-based immune sensor, which is attributed to the fact that, unlike the interlayer-constrained structure of Fe-MOF-on-Ce-MOF, in Ce-MOF-on-Fe-MOF, Ce-MOF penetrates into Fe-MOF to form a heterogeneous structure due to the relatively large pore size of Fe-MOF, which better combines the excellent biocompatibility and strong anchoring effect of Fe MOFs on antibodies, as well as the high electrochemical activity and conductivity of Ce-MOF, to enhance sensing performance. The proposed label-free immunosensor based on rGO@Ce-MOF-on-Fe-MOF@Tb has a wide linear range (1-100 000 mU mL-1), a low detection limit (0.34 mU mL-1), good stability, reproducibility, and repeatability, and satisfactory applicability, which provides a potential platform for clinical applications.
Collapse
Affiliation(s)
- Tongxiao Zhao
- Department of Chemistry, Anhui University, Hefei 230601, China.
| | - Baokang Jin
- Department of Chemistry, Anhui University, Hefei 230601, China.
| |
Collapse
|
4
|
Liu Y, Lai H, Ming P, Chen P, Wang S, Zhai H. A ratiomectic aptasensor with enhanced signals based on peroxidase-like enzymes and NH 2-MIL-101@MoS 2 for trace detection of deoxynivalenol in traditional Chinese herbs. Food Chem 2024; 441:138381. [PMID: 38218150 DOI: 10.1016/j.foodchem.2024.138381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 01/04/2024] [Accepted: 01/04/2024] [Indexed: 01/15/2024]
Abstract
The accumulation of the deoxynivalenol (DON) in the human body poses a significant health risk that is often overlooked, and we urgently need an ultra-sensitive rapid detection platform. Due to the porosity of NH2-MIL-101@MoS2, an increased loading of toluidine blue (TB) serves to create a signal reference. Cobalt@carbon (CoC) derived from metal organic frameworks was combined with NH2-MIL-101(NH2-MIL-101@CoC) to form an enzyme-free Nanoprobe (Apt-pro) with significant catalytic properties. The ratio (IBQ /ITB) was changed by varying the electrochemical signal of benzoquinone (BQ) (IBQ) and the amount of TB deposition (ITB). This aptasensor was successfully applied to detect DON in malt and peach seed, which exhibited a great linear range from 1 fg/mL to 10 ng/mL and low detection limit of 0.31 fg/mL for DON.
Collapse
Affiliation(s)
- Yongxin Liu
- College of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Haohong Lai
- College of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Pingtao Ming
- College of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Pengsheng Chen
- College of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Shumei Wang
- Key Laboratory of Digital Quality Evaluation of Chinese Materia Medica of State Administration of TCM, Guangdong Pharmaceutical University, Guangzhou 510006, China.
| | - Haiyun Zhai
- College of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China; Guangdong Provincial Key Laboratory of Advanced Drug Delivery, Guangdong Provincial Engineering Center of Topical Precise Drug Delivery System, Guangdong Pharmaceutical University, Guangzhou 510006, China.
| |
Collapse
|
5
|
Ahmadian-Alam L, Andrade A, Song E. Electrochemical detection of glutamate and histamine using redox-labeled stimuli-responsive polymer as a synthetic target receptor. ACS APPLIED POLYMER MATERIALS 2024; 6:5630-5641. [PMID: 39444408 PMCID: PMC11498899 DOI: 10.1021/acsapm.4c00121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2024]
Abstract
Glutamate (Glu) and histamine (His) are two major neurotransmitters that play many critical roles in brain physiological functions and neurological disorders. Therefore, specific and sensitive monitoring of Glu and His is essential in the diagnosis and treatment of various mental health and neurodegenerative disorders. Both being non-electroactive species, direct electrochemical detection of Glu and His has been challenging. Herein, we report a stimuli-responsive polymer-based biosensor for the electrochemical detection of Glu and His. The polymer-based target receptors consist of a linear chain stimuli-responsive templated polymer hybrid that is labeled with an osmium-based redox-active reporter molecules to elicit conformation-dependent electrochemical responses. The polymers are then attached to a gold electrode to implement an electrochemical sensor. The cyclic voltammetry (CV) and square-wave voltammetry (SWV) results confirmed the polymers' conformational changes due to the specific target (i.e., Glu and His) recognition and the corresponding electrochemical detection capabilities. The voltammetry results indicate that this biosensor can be used as a 'signal-on' and 'signal-off' sensors for the detection of Glu and His concentrations, respectively. The developed biosensor also showed excellent regeneration capability by fully recovering the initial current signal after rinsing with deionized water. To further validate the polymer's utility as a target bioreceptor, the surface plasmon resonance (SPR) technique was used to characterize the binding affinity between the designed polymers and the target chemical. The SPR results exhibited the equilibrium dissociation constants (KD) of 2.40 μM and 1.54 μM for the polymer-Glu and polymer-His interactions, respectively. The results obtained this work strongly suggest that the proposed sensing technology could potentially be used as a platform for monitoring non-electroactive neurochemicals from animal models.
Collapse
Affiliation(s)
- Leila Ahmadian-Alam
- Department of Electrical & Computer Engineering, University of New Hampshire, Durham, NH 03824, United States
| | - Arturo Andrade
- Department of Neuroscience, Brown University, Providence, RI 02912, United States
- Robert J. & Nancy D. Carney Institute for Brain Science, Brown University, Providence, RI 02912, United States
| | - Edward Song
- Department of Electrical & Computer Engineering, University of New Hampshire, Durham, NH 03824, United States
| |
Collapse
|
6
|
Huang Y, Zhao Z, Yi G, Zhang M. Importance of DNA nanotechnology for DNA methyltransferases in biosensing assays. J Mater Chem B 2024; 12:4063-4079. [PMID: 38572575 DOI: 10.1039/d3tb02947f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2024]
Abstract
DNA methylation is the process by which specific bases on a DNA sequence acquire methyl groups under the catalytic action of DNA methyltransferases (DNMT). Abnormal changes in the function of DNMT are important markers for cancers and other diseases; therefore, the detection of DNMT and the selection of its inhibitors are critical to biomedical research and clinical practice. DNA molecules can undergo intermolecular assembly to produce functional aggregates because of their inherently stable physical and chemical properties and unique structures. Conventional DNMT detection methods are cumbersome and complicated processes; therefore, it is necessary to develop biosensing technology based on the assembly of DNA nanostructures to achieve rapid analysis, simple operation, and high sensitivity. The design of the relevant program has been employed in life science, anticancer drug screening, and clinical diagnostics. In this review, we explore how DNA assembly, including 2D techniques like hybridization chain reaction (HCR), rolling circle amplification (RCA), catalytic hairpin assembly (CHA), and exponential isothermal amplified strand displacement reaction (EXPAR), as well as 3D structures such as DNA tetrahedra, G-quadruplexes, DNA hydrogels, and DNA origami, enhances DNMT detection. We highlight the benefits of these DNA nanostructure-based biosensing technologies for clinical use and critically examine the challenges of standardizing these methods. We aim to provide reference values for the application of these techniques in DNMT analysis and early cancer diagnosis and treatment, and to alert researchers to challenges in clinical application.
Collapse
Affiliation(s)
- Yuqi Huang
- Clinical Laboratory, Chongqing Jiulongpo District People's Hospital, Chongqing 400050, China.
| | - Zixin Zhao
- Key Laboratory of Medical Diagnostics of Ministry of Education, Department of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, P. R. China.
| | - Gang Yi
- Key Laboratory of Medical Diagnostics of Ministry of Education, Department of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, P. R. China.
| | - Mingjun Zhang
- Clinical Laboratory, Chongqing Jiulongpo District People's Hospital, Chongqing 400050, China.
| |
Collapse
|
7
|
Xu J, Zhang Y, Zhu X, Ling G, Zhang P. Two-mode sensing strategies based on tunable cobalt metal organic framework active sites to detect Hg 2. JOURNAL OF HAZARDOUS MATERIALS 2024; 465:133424. [PMID: 38185088 DOI: 10.1016/j.jhazmat.2024.133424] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 12/20/2023] [Accepted: 01/01/2024] [Indexed: 01/09/2024]
Abstract
Heavy metal pollution poses a major threat to human health, and developing a user-deliverable heavy metal detection strategy remains a major challenge. In this work, two-mode Hg2+ sensing platforms based on the tunable cobalt metal-organic framework (Co-MOF) active site strategy are constructed, including a colorimetric, and an electrochemical assay using a personal glucose meter (PGM) as the terminal device. Specifically, thymine (T), a single, adaptable nucleotide, is chosen to replace typical T-rich DNA aptamers. The catalytic sites of Co-MOF are tuned competitively by the specific binding of T-Hg2+-T, and different signal output platforms are developed based on the different enzyme-like activities of Co-MOF. DFT calculations are utilized to analyze the interaction mechanism between T and Co-MOF with defect structure. Notably, the two-mode sensing platforms exhibit outstanding detection performance, with LOD values as low as 0.5 nM (colorimetric) and 3.69 nM (PGM), respectively, superior to recently reported nanozyme-based Hg2+ sensors. In real samples of tap water and lake water, this approach demonstrates an effective recovery rate and outstanding selectivity. Surprisingly, the method is potentially versatile and, by exchanging out T-Hg2+-T, can also detect Ag+. This simple, portable, and user-friendly Hg2+ detection approach shows plenty of promise for application in the future.
Collapse
Affiliation(s)
- Jiaqi Xu
- Wuya College of Innovation, Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang 110016, China
| | - Yuanke Zhang
- Wuya College of Innovation, Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang 110016, China
| | - Xiaoguang Zhu
- Wuya College of Innovation, Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang 110016, China
| | - Guixia Ling
- Wuya College of Innovation, Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang 110016, China.
| | - Peng Zhang
- Wuya College of Innovation, Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang 110016, China.
| |
Collapse
|
8
|
Qian X, Zhang H, Zheng M, Li C, Wang J, Huang H, Deng K. A dual-mode strategy based on β-galactosidase and target-induced DNA polymerase protection for transcription factor detection using colorimetry and a glucose meter. Analyst 2023; 148:6078-6086. [PMID: 37909394 DOI: 10.1039/d3an01414b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2023]
Abstract
In this work, we report a novel dual-mode method for the highly specific and sensitive detection of transcription factors (TFs) via the integration of Klenow polymerase protection induced by target-specific recognition, cascade-signal amplification using the hybridization chain reaction (HCR) and CRISPR/Cas12a system, and dual-signal transduction mediated by β-galactosidase (β-gal) and two substrates. A dual-mode signal-sensing interface was constructed by immobilizing the oligo DNA probe (P1) tethered β-gal in a 96-well plate. A hairpin H1 with the ability to initiate HCRs was designed to contain the TF binding site. The binding between the TF and H1 protected the H1 from being extended by the Klenow fragment. After thermal denaturation, the reserved H1 launched the HCR and the HCR products activated CRISPR/Cas12a to cleave P1 and reduce the β-gal on the sensing interface, and thus the contents of the TFs and the corresponding signals mediated by the catalysis of β-gal showed a correlation. This work was the first attempt at utilizing β-gal for dual-signal transduction. It is a pioneering study to utilize the HCR-CRISPR/Cas12a system for dual-mode TF sensors. It revealed that DNA polymerase protection through the binding of TF and DNA could be applied as a new pattern to develop TF sensors.
Collapse
Affiliation(s)
- Xinmei Qian
- Key Laboratory of Theoretical Organic Chemistry and Function Molecule, Ministry of Education, Hunan University of Science and Technology, Xiangtan 411201, China.
- Hunan Provincial Key Laboratory of Controllable Preparation and Functional Application of Fine Polymers, Hunan Provincial Key Laboratory of Advanced Materials for New Energy Storage and Conversion, School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan 411201, China
| | - Heng Zhang
- Hunan Provincial Key Laboratory of Controllable Preparation and Functional Application of Fine Polymers, Hunan Provincial Key Laboratory of Advanced Materials for New Energy Storage and Conversion, School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan 411201, China
| | - Mingyu Zheng
- Key Laboratory of Theoretical Organic Chemistry and Function Molecule, Ministry of Education, Hunan University of Science and Technology, Xiangtan 411201, China.
| | - Chunxiang Li
- Hunan Provincial Key Laboratory of Controllable Preparation and Functional Application of Fine Polymers, Hunan Provincial Key Laboratory of Advanced Materials for New Energy Storage and Conversion, School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan 411201, China
| | - Jinglun Wang
- Hunan Provincial Key Laboratory of Controllable Preparation and Functional Application of Fine Polymers, Hunan Provincial Key Laboratory of Advanced Materials for New Energy Storage and Conversion, School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan 411201, China
| | - Haowen Huang
- Key Laboratory of Theoretical Organic Chemistry and Function Molecule, Ministry of Education, Hunan University of Science and Technology, Xiangtan 411201, China.
| | - Keqin Deng
- Key Laboratory of Theoretical Organic Chemistry and Function Molecule, Ministry of Education, Hunan University of Science and Technology, Xiangtan 411201, China.
| |
Collapse
|
9
|
Shi K, Chen J, Li Y, Li Q, Song J, Yi Z, Li D, Zhang J. Hg 2+-triggered cascade strand displacement assisted CRISPR-Cas12a for Hg 2+ quantitative detection using a portable glucose meter. Anal Chim Acta 2023; 1278:341756. [PMID: 37709481 DOI: 10.1016/j.aca.2023.341756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Revised: 08/23/2023] [Accepted: 08/24/2023] [Indexed: 09/16/2023]
Abstract
CRISPR-Cas12a is a powerful and programmable tool that has revolutionized the field of biosensing. However, the construction of a CRISPR-Cas12a-mediated portable system for on-site and quantitative detection of mercury ion (Hg2+) has yet to be explored. By integrating a target-triggered cascade toehold-mediated strand displacement reaction (TSDR) and CRISPR-Cas12a, we herein construct a portable on-site biosensor for the quantitative, sensitive, and selective detection of Hg2+ with a glucose meter. The Hg2+ initiates two cascade TSDRs through the T-Hg2+-T interaction to produce multiple double-stranded DNAs that can activate Cas12a's trans-cleavage activity. The Cas12a cleaves the sucrase-modified DNA on the electrode, resulting in the liberation of sucrase into the solution. The freed sucrase can catalyze sucrose to generate glucose, which can be quantitatively monitored by a glucometer. The developed portable biosensor provides a dynamic range of 5 orders of magnitude with a detection limit of 40 fM. This biosensor also displays excellent selectivity and stability for detecting Hg2+. Moreover, environmental water samples are utilized to further verify the robustness and effectiveness of the developed biosensor, highlighting its potential application in environmental monitoring and food safety analysis.
Collapse
Affiliation(s)
- Kai Shi
- College of New Energy Materials and Chemistry, Leshan Normal University, Leshan, Sichuan, 614000, PR China.
| | - Jiaxuan Chen
- College of New Energy Materials and Chemistry, Leshan Normal University, Leshan, Sichuan, 614000, PR China
| | - Yuhao Li
- College of Pharmacy and Biological Engineering, Chongqing University of Technology, Chongqing, 400054, PR China
| | - Qiong Li
- College of New Energy Materials and Chemistry, Leshan Normal University, Leshan, Sichuan, 614000, PR China
| | - Jiuhua Song
- College of New Energy Materials and Chemistry, Leshan Normal University, Leshan, Sichuan, 614000, PR China
| | - Zhigang Yi
- College of New Energy Materials and Chemistry, Leshan Normal University, Leshan, Sichuan, 614000, PR China
| | - Daxiu Li
- College of Pharmacy and Biological Engineering, Chongqing University of Technology, Chongqing, 400054, PR China.
| | - Jiaheng Zhang
- College of Chemistry, Zhengzhou University, Zhengzhou, 450001, PR China.
| |
Collapse
|
10
|
Liu S, Su J, Xie X, Huang R, Li H, Luo R, Li J, Liu X, He J, Huang Y, Wu P. Detection of methyltransferase activity and inhibitor screening based on rGO-mediated silver enhancement signal amplification strategy. Anal Biochem 2023:115207. [PMID: 37290576 DOI: 10.1016/j.ab.2023.115207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 05/20/2023] [Accepted: 06/04/2023] [Indexed: 06/10/2023]
Abstract
DNA methylation refers to the chemical modification process of obtaining a methyl group by the covalent bonding of a specific base in DNA sequence with S-adenosyl methionine (SAM) as a methyl donor under the catalysis of methyltransferase (MTase), which is related to the occurrence of multiple diseases. Therefore, the detection of MTase activity is of great significance for disease diagnosis and drug screening. Because reduced graphene oxide (rGO) has a unique planar structure and remarkable catalytic performance, it is not clear whether rGO can rapidly catalyze silver deposition as an effective way of signal amplification. However, in this study, we were pleasantly surprised to find that using H2O2 as a reducing agent, rGO can rapidly catalyze silver deposition, and its catalytic efficiency of silver deposition is significantly better than that of GO. Therefore, based on further verifying the mechanism of catalytic properties of rGO, we constructed a novel electrochemical biosensor (rGO/silver biosensor) for the detection of dam MTase activity, which has high selectivity and sensitivity to MTase in the range of 0.1 U/mL to 10.0 U/mL, and the detection limit is as low as 0.07 U/mL. Besides, this study also used Gentamicin and 5-Fluorouracil as inhibitor models, confirming that the biosensor has a good application prospect in the high-throughput screening of dam MTase inhibitors.
Collapse
Affiliation(s)
- Shuyan Liu
- Center for Medical Genetics & Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan, 410008, China; State Key Laboratory of Targeting Oncology, National Center for International Research of Biotargeting Theranostics, Guangxi Key Laboratory of Biotargeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning, Guangxi, 530021, China
| | - Jing Su
- State Key Laboratory of Targeting Oncology, National Center for International Research of Biotargeting Theranostics, Guangxi Key Laboratory of Biotargeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning, Guangxi, 530021, China; College of Chemistry & Chemical Engineering, Jiangxi Science & Technology Normal University, Nanchang, 330013, China
| | - Xixiang Xie
- State Key Laboratory of Targeting Oncology, National Center for International Research of Biotargeting Theranostics, Guangxi Key Laboratory of Biotargeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning, Guangxi, 530021, China
| | - Rongping Huang
- State Key Laboratory of Targeting Oncology, National Center for International Research of Biotargeting Theranostics, Guangxi Key Laboratory of Biotargeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning, Guangxi, 530021, China
| | - Haiping Li
- State Key Laboratory of Targeting Oncology, National Center for International Research of Biotargeting Theranostics, Guangxi Key Laboratory of Biotargeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning, Guangxi, 530021, China
| | - Ruiyu Luo
- State Key Laboratory of Targeting Oncology, National Center for International Research of Biotargeting Theranostics, Guangxi Key Laboratory of Biotargeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning, Guangxi, 530021, China
| | - Jinghua Li
- State Key Laboratory of Targeting Oncology, National Center for International Research of Biotargeting Theranostics, Guangxi Key Laboratory of Biotargeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning, Guangxi, 530021, China
| | - Xiyu Liu
- State Key Laboratory of Targeting Oncology, National Center for International Research of Biotargeting Theranostics, Guangxi Key Laboratory of Biotargeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning, Guangxi, 530021, China
| | - Jian He
- State Key Laboratory of Targeting Oncology, National Center for International Research of Biotargeting Theranostics, Guangxi Key Laboratory of Biotargeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning, Guangxi, 530021, China.
| | - Yong Huang
- State Key Laboratory of Targeting Oncology, National Center for International Research of Biotargeting Theranostics, Guangxi Key Laboratory of Biotargeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning, Guangxi, 530021, China.
| | - Pan Wu
- State Key Laboratory of Targeting Oncology, National Center for International Research of Biotargeting Theranostics, Guangxi Key Laboratory of Biotargeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning, Guangxi, 530021, China.
| |
Collapse
|
11
|
Chen Y, Chen Y, Yi HC, Gu HW, Yin XL, Xiang DL, Zou P. An electrochemical and colorimetric dual-mode aptasensor for Staphylococcus aureus based on a multifunctional MOF and magnetic separation technique. Microchem J 2023. [DOI: 10.1016/j.microc.2023.108681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
|
12
|
Sun H, Zhou S, Liu Y, Lu P, Qi N, Wang G, Yang M, Huo D, Hou C. A fluorescent biosensor based on exponential amplification reaction-initiated CRISPR/Cas12a (EIC) strategy for ultrasensitive DNA methyltransferase detection. Anal Chim Acta 2023; 1239:340732. [PMID: 36628729 DOI: 10.1016/j.aca.2022.340732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 12/09/2022] [Accepted: 12/17/2022] [Indexed: 12/24/2022]
Abstract
DNA methyltransferase (DNA MTase) catalyzes the process of DNA methylation, and the aberrant DNA MTase activity is closely associated with cancer incidence and progression. Inspired by the exponential amplification reaction (EXPAR) characteristics, we developed an EXPAR-initiated CRISPR/Cas12a (EIC) strategy for sensitively detecting DNA MTase activity. A hairpin probe (HP) was designed with a palindromic sequence in the stem as substrate and NH2-modified 3' end to prevent nonspecific amplification. HP could be methylated by DNA adenine methyltransferase (Dam MTase) and then digested by DpnI to generate an oligonucleotide that can serve as an EXPAR primer. With the assistance of Nt.BstNBI nicking enzyme and Vent(exo-) polymerase, this primer bound to template and induced EXPAR. Interestingly, the product of Cycle 1 in EXPAR can function as primer to initiate Cycle 2. Both EXPAR products can further activate the collateral cleavage of CRISPR/Cas12a-crRNA, resulting in the fragmentation of fluorescence reporters and fluorescence recovery. Due to the highly efficient amplification (about 5 times signal-to-noise of SDA) and the robust trans-cleavage of CRISPR/Cas12a, the EIC system owned an extreme limit of detection (LOD) of 2 × 10-4 U/mL and a broad detection range from 2 × 10-4 to 10 U/mL for Dam MTase. In addition, this method has succeeded in inhibitor screening and evaluation, showing magnificent promise in drug discovery and cancer therapy.
Collapse
Affiliation(s)
- Human Sun
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, Bioengineering College, Chongqing University, Chongqing, 400044, PR China.
| | - Shiying Zhou
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, Bioengineering College, Chongqing University, Chongqing, 400044, PR China
| | - Yin Liu
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, Bioengineering College, Chongqing University, Chongqing, 400044, PR China
| | - Peng Lu
- Chongqing University Three Gorges Hospital, Chongqing, 404000, PR China
| | - Na Qi
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, Bioengineering College, Chongqing University, Chongqing, 400044, PR China
| | - Guixue Wang
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, Bioengineering College, Chongqing University, Chongqing, 400044, PR China
| | - Mei Yang
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, Bioengineering College, Chongqing University, Chongqing, 400044, PR China.
| | - Danqun Huo
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, Bioengineering College, Chongqing University, Chongqing, 400044, PR China; Chongqing Key Laboratory of Bio-perception & Intelligent Information Processing, School of Microelectronics and Communication Engineering, Chongqing University, Chongqing, 400044, PR China.
| | - Changjun Hou
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, Bioengineering College, Chongqing University, Chongqing, 400044, PR China; National Facility for Translational Medicine, Shanghai Jiao Tong University, Shanghai, 200240, PR China.
| |
Collapse
|
13
|
Gupta R, Rahi Alhachami F, Khalid I, Majdi HS, Nisar N, Mohamed Hasan Y, Sivaraman R, Romero Parra RM, Al Mashhadani ZI, Fakri Mustafa Y. Recent Progress in Aptamer-Functionalized Metal-Organic Frameworks-Based Optical and Electrochemical Sensors for Detection of Mycotoxins. Crit Rev Anal Chem 2022; 54:1707-1728. [PMID: 36197710 DOI: 10.1080/10408347.2022.2128634] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/10/2022]
Abstract
Mycotoxin contamination in foodstuffs and agricultural products has posed a serious hazard to human health and raised international concern. The progress of cost-effective, facile, rapid and reliable analytical tools for mycotoxin determination is in urgent need. In this regard, the potential utility of metal-organic frameworks (MOFs) as a class of crystalline porous materials has sparked immense attention due to their large specific surface area, adjustable pore size, nanoscale framework structure and good chemical stability. The amalgamation of MOFs with high-affinity aptamers has resulted in the progress of advanced aptasensing methods for clinical and food/water safety diagnosis. Aptamers have many advantages over classical approaches as exceptional molecular recognition constituents for versatile bioassays tools. The excellent sensitivity and selectivity of the MOF-aptamer biocomposite nominate them as efficient lab-on-chip tools for portable, label-free, cost-effective and real-time screening of mycotoxins. Current breakthroughs in the concept, progress and biosensing applications of aptamer functionalized MOFs-derived electrochemical and optical sensors for mycotoxins have been discussed in this study. We first highlighted an overview part, which provides some insights into the functionalization mechanisms of MOFs with aptamers, offering a foundation to create MOFs-based aptasensors. Then, we discuss various strategies to design high-performance MOFs-based aptamer scaffolds, which serve as either signal nanoprobe carriers or signal nanoprobes and their applications. We perceived that applications of optical aptamers are in their infancy in comparison with electrochemical MOFs-derived aptasensors. Finally, current challenges and prospective trends of MOFs-aptamer sensors are discussed.
Collapse
Affiliation(s)
- Reena Gupta
- Institute of Pharmaceutical Research, GLA University, Mathura, India
| | - Firas Rahi Alhachami
- Radiology Department, College of Health and Medical Technololgy, Al-Ayen University, Thi-Qar, Iraq
| | - Imran Khalid
- Department of Agriculture Extension Education, The Islamia University of Bahawalpur, Pakistan
| | - Hasan Sh Majdi
- Department of Chemical Engineering and Petroleum Industries, Al-Mustaqbal University College, Hilla, Iraq
| | - Nazima Nisar
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, Abha, Saudi Arabia
| | | | - R Sivaraman
- Dwaraka Doss Goverdhan Doss Vaishnav College, University of Madras Chennai, Arumbakkam, India
| | | | | | - Yasser Fakri Mustafa
- Department of Pharmaceutical Chemistry, College of Pharmacy, University of Mosul, Mosul, Iraq
| |
Collapse
|
14
|
Chang Y, Lou J, Yang L, Liu M, Xia N, Liu L. Design and Application of Electrochemical Sensors with Metal-Organic Frameworks as the Electrode Materials or Signal Tags. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:nano12183248. [PMID: 36145036 PMCID: PMC9506444 DOI: 10.3390/nano12183248] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 09/13/2022] [Accepted: 09/15/2022] [Indexed: 06/01/2023]
Abstract
Metal-organic frameworks (MOFs) with fascinating chemical and physical properties have attracted immense interest from researchers regarding the construction of electrochemical sensors. In this work, we review the most recent advancements of MOF-based electrochemical sensors for the detection of electroactive small molecules and biological macromolecules (e.g., DNA, proteins, and enzymes). The types and functions of MOF-based nanomaterials in terms of the design of electrochemical sensors are also discussed. Furthermore, the limitations and challenges of MOF-based electrochemical sensing devices are explored. This work should be invaluable for the development of MOF-based advanced sensing platforms.
Collapse
Affiliation(s)
- Yong Chang
- College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang 455000, China
- School of Chemistry and Materials Engineering, Jiangnan University, Wuxi 214122, China
| | - Jiaxin Lou
- College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang 455000, China
| | - Luyao Yang
- College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang 455000, China
| | - Miaomiao Liu
- College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang 455000, China
| | - Ning Xia
- College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang 455000, China
| | - Lin Liu
- College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang 455000, China
| |
Collapse
|
15
|
Inverse conductance signal outputs of solid-state AgCl electrochemistry dependent on counteranions of Ag-MOFs. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2022.140688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
16
|
Tian T, Zhang H, Yang FQ. Ascorbate oxidase enabling glucometer readout for portable detection of hydrogen peroxide. Enzyme Microb Technol 2022; 160:110096. [PMID: 35839591 DOI: 10.1016/j.enzmictec.2022.110096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 06/13/2022] [Accepted: 07/04/2022] [Indexed: 11/03/2022]
Abstract
A rapid, portable, and cost-effective method using personal glucose meter (PGM) for quantitative analysis of hydrogen peroxide (H2O2) was established based on ascorbate oxidase (AAO)-catalyzed reaction for the first time. Ascorbic acid (AA) can rapidly reduce ferricyanide (K3[Fe(CN)6]) to ferrocyanide (K4[Fe(CN)6]) in the glucose test strip and transfer electron to the electrode to generating a PGM detectable signal. Thus, the concentration of AA can be directly determined by the PGM as simple as measuring the blood glucose. On the other hand, AAO can catalyze the reduction of H2O2 and produce an enzyme-peroxide complex, which decreases the yields of dehydroascorbic acid formed by the oxidation of AA, resulting in the increase in PGM detectable signal of residual ascorbic acid (re-AA). Therefore, the concentration of H2O2 is proportional to the concentration of re-AA. After optimization of the experimental conditions, the developed method can be used to detect H2O2 at linear range of 2.5-5 × 103 μM with the quantification limit of 2.5 μM. In addition, the satisfactory spiked recoveries (95.3-108.9 %) of real samples (i.e., tap water, contact lens solution, medical hydrogen peroxide, and normal human serum) confirm its feasibility for practical applications. In short, this study provides a feasible PGM-based method for H2O2 detection with simple operations.
Collapse
Affiliation(s)
- Tao Tian
- Chongqing Key Laboratory of High Active Traditional Chinese Drug Delivery System, Chongqing Medical and Pharmaceutical College, Chongqing 401331, China; School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 401331, China
| | - Hao Zhang
- Chongqing Key Laboratory of High Active Traditional Chinese Drug Delivery System, Chongqing Medical and Pharmaceutical College, Chongqing 401331, China.
| | - Feng-Qing Yang
- School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 401331, China.
| |
Collapse
|
17
|
Annamalai J, Murugan P, Ganapathy D, Nallaswamy D, Atchudan R, Arya S, Khosla A, Barathi S, Sundramoorthy AK. Synthesis of various dimensional metal organic frameworks (MOFs) and their hybrid composites for emerging applications - A review. CHEMOSPHERE 2022; 298:134184. [PMID: 35271904 DOI: 10.1016/j.chemosphere.2022.134184] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Revised: 02/20/2022] [Accepted: 02/28/2022] [Indexed: 06/14/2023]
Abstract
Metal organic frameworks (MOFs) represent the organic and inorganic hybrid porous materials. MOFs are low dense and highly porous materials which in turn provide large surface area that can accumulate and store numerous molecules within the pores. The pore size may also act as a mesh to separate molecules. The porous nature of MOFs is beneficial for altering the intrinsic properties of the materials. Over the past decade, different types of hybrid MOFs have been reported in combination with polymers, carbon materials, metal nanoparticles, metal oxides, and biomolecules for various applications. MOFs have also been used in the fabrication of electronic devices, sensors, energy storage, gas separation, supercapacitors, drug delivery and environmental clean-up. In this review, the unique structural orientation, exceptional properties and recent applications of MOFs have been discussed in the first section along with their porosity, stability and other influencing factors. In addition, various methods and techniques involved in the synthesis and designing of MOFs such as solvothermal, electrochemical, mechanochemical, ultrasonication and microwave methods are highlighted. In order to understand the scientific feasibility of MOFs in developing new products, various strategies have been applied to obtain different dimensional MOFs (0D, 1D, 2D and 3D) and their composite materials are also been conferred. Finally, the future prospects of MOFs, remaining challenges, research gaps and possible solutions that need to be addressed by advanced experimental design, computational models, simulation techniques and theoretical concepts have been deliberated.
Collapse
Affiliation(s)
- Jayshree Annamalai
- Department of Biotechnology, SRM Institute of Science and Technology, Kattankulathur, 603 203, Tamil Nadu, India
| | - Preethika Murugan
- Department of Chemistry, SRM Institute of Science and Technology, Kattankulathur, 603 203, Tamil Nadu, India
| | - Dhanraj Ganapathy
- Department of Prosthodontics, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Poonamallee High Road, Velappanchavadi, Chennai, 600 077, Tamil Nadu, India
| | - Deepak Nallaswamy
- Department of Prosthodontics, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Poonamallee High Road, Velappanchavadi, Chennai, 600 077, Tamil Nadu, India
| | - Raji Atchudan
- School of Chemical Engineering, Yeungnam University, Gyeongsan, 38541, Republic of Korea
| | - Sandeep Arya
- Department of Physics, University of Jammu, Jammu and Kashmir, 180006, India
| | - Ajit Khosla
- Department of Mechanical System Engineering, Graduate School of Science and Engineering, Yamagata University, Jonan 4-3-16, Yonezawa, Yamagata, 992-8510, Japan
| | - Seetharaman Barathi
- Department of Biotechnology, SRM Institute of Science and Technology, Kattankulathur, 603 203, Tamil Nadu, India
| | - Ashok K Sundramoorthy
- Department of Prosthodontics, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Poonamallee High Road, Velappanchavadi, Chennai, 600 077, Tamil Nadu, India.
| |
Collapse
|
18
|
Hu J, Li G. Recent Progress in Fluorescent Chemosensors for Protein Kinases. Chem Asian J 2022; 17:e202200182. [PMID: 35486328 DOI: 10.1002/asia.202200182] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 04/21/2022] [Indexed: 11/10/2022]
Abstract
Protein kinases are involved in almost all biological activities. The activities of different kinases reflect the normal or abnormal status of the human body. Therefore, detecting the activities of different kinases is important for disease diagnosis and drug discovery. Fluorescent probes offer opportunities for studying kinase behaviors at different times and spatial locations. In this review, we summarize different kinds of fluorescent chemosensors that have been used to detect the activities of many different kinases.
Collapse
Affiliation(s)
- Jun Hu
- Fujian Agriculture and Forestry University, College of Life Sciences, No.15 Shangxiadian Road, Cangshan District, 350002, Fuzhou, CHINA
| | - Gao Li
- Minjiang University, College of Material and Chemical Engineering, CHINA
| |
Collapse
|
19
|
Dourandish Z, Tajik S, Beitollahi H, Jahani PM, Nejad FG, Sheikhshoaie I, Di Bartolomeo A. A Comprehensive Review of Metal-Organic Framework: Synthesis, Characterization, and Investigation of Their Application in Electrochemical Biosensors for Biomedical Analysis. SENSORS (BASEL, SWITZERLAND) 2022; 22:2238. [PMID: 35336408 PMCID: PMC8953394 DOI: 10.3390/s22062238] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 03/09/2022] [Accepted: 03/10/2022] [Indexed: 06/01/2023]
Abstract
Many studies have addressed electrochemical biosensors because of their simple synthesis process, adjustability, simplification, manipulation of materials' compositions and features, and wide ranges of detection of different kinds of biomedical analytes. Performant electrochemical biosensors can be achieved by selecting materials that enable faster electron transfer, larger surface areas, very good electrocatalytic activities, and numerous sites for bioconjugation. Several studies have been conducted on the metal-organic frameworks (MOFs) as electrode modifiers for electrochemical biosensing applications because of their respective acceptable properties and effectiveness. Nonetheless, researchers face challenges in designing and preparing MOFs that exhibit higher stability, sensitivity, and selectivity to detect biomedical analytes. The present review explains the synthesis and description of MOFs, and their relative uses as biosensors in the healthcare sector by dealing with the biosensors for drugs, biomolecules, as well as biomarkers with smaller molecular weight, proteins, and infectious disease.
Collapse
Affiliation(s)
- Zahra Dourandish
- Department of Chemistry, Faculty of Science, Shahid Bahonar University of Kerman, Kerman 7616913439, Iran; (Z.D.); (F.G.N.); (I.S.)
| | - Somayeh Tajik
- Research Center of Tropical and Infectious Diseases, Kerman University of Medical Sciences, Kerman 7616913555, Iran;
| | - Hadi Beitollahi
- Environment Department, Institute of Science and High Technology and Environmental Sciences, Graduate University of Advanced Technology, Kerman 7631885356, Iran
| | | | - Fariba Garkani Nejad
- Department of Chemistry, Faculty of Science, Shahid Bahonar University of Kerman, Kerman 7616913439, Iran; (Z.D.); (F.G.N.); (I.S.)
| | - Iran Sheikhshoaie
- Department of Chemistry, Faculty of Science, Shahid Bahonar University of Kerman, Kerman 7616913439, Iran; (Z.D.); (F.G.N.); (I.S.)
| | - Antonio Di Bartolomeo
- Dipartimento di Fisica “E.R. Caianiello”, Università di Salerno, 84084 Fisciano, SA, Italy
| |
Collapse
|
20
|
A Comprehensive Review on the Use of Metal–Organic Frameworks (MOFs) Coupled with Enzymes as Biosensors. ELECTROCHEM 2022. [DOI: 10.3390/electrochem3010006] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Several studies have shown the development of electrochemical biosensors based on enzymes immobilized in metal–organic frameworks (MOFs). Although enzymes have unique properties, such as efficiency, selectivity, and environmental sustainability, when immobilized, these properties are improved, presenting significant potential for several biotechnological applications. Using MOFs as matrices for enzyme immobilization has been considered a promising strategy due to their many advantages compared to other supporting materials, such as larger surface areas, higher porosity rates, and better stability. Biosensors are analytical tools that use a bioactive element and a transducer for the detection/quantification of biochemical substances in the most varied applications and areas, in particular, food, agriculture, pharmaceutical, and medical. This review will present novel insights on the construction of biosensors with materials based on MOFs. Herein, we have been highlighted the use of MOF for biosensing for biomedical, food safety, and environmental monitoring areas. Additionally, different methods by which immobilizations are performed in MOFs and their main advantages and disadvantages are presented.
Collapse
|
21
|
Xue Y, Wang Y, Feng S, Yan M, Huang J, Yang X. A dual-amplification mode and Cu-based metal-organic frameworks mediated electrochemical biosensor for sensitive detection of microRNA. Biosens Bioelectron 2022; 202:113992. [PMID: 35033827 DOI: 10.1016/j.bios.2022.113992] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 01/06/2022] [Accepted: 01/08/2022] [Indexed: 12/17/2022]
Abstract
In this work, we developed a novel label-free and highly sensitive electrochemical (EC) biosensor for detection of microRNA (miRNA), which was based on the target-triggered and the Cu-based metal-organic frameworks (Cu-MOFs) mediated CHA-HCR dual-amplification process. Initially, the target miRNA triggered the catalytic hairpin assembly (CHA) process of hairpin DNA 1 (H1) and hairpin DNA 2 (H2) to produce massive double-stranded DNA (H1/H2) which could hybridize with the single-stranded DNA 1 (P1) to form capture probe (P1/H1/H2) on electrode surface, realizing the first amplification of input signals. Subsequently, hybridization chain reaction (HCR) between signal probe (H3-AuNPs/Cu-MOFs) and hairpin DNA 4 (H4) was activated by above capture probe (P1/H1/H2), leading to the second amplification of input signals. After the HCR process, numerous Cu-MOFs were immobilized on the electrode surface, which brought out the enhancement of electrochemical signals generating by Cu-MOFs. Herein, Cu-MOFs not only offered the lager surface area to decorate with gold nanoparticles (AuNPs) and hairpin DNA 3 (H3), but also served as the signal probe (H3-AuNPs/Cu-MOFs) to produce electrochemical signals by hybridizing with the capture probe on electrode surface. Therefore, the ingenious design of CHA-HCR-Cu-MOFs scheme enables the sensitive analysis of microRNA-21 (miR-21) with a broad linear range from 0.1 fM to 100 pM and a lower LOD of 0.02 fM. In addition, the outstanding specificity of this sensing strategy allows it successfully to be applied for determining miR-21 in real biological samples.
Collapse
Affiliation(s)
- Yu Xue
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Science, Changchun, Jilin, 130022, China; University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Yu Wang
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Science, Changchun, Jilin, 130022, China; University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Sinuo Feng
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Science, Changchun, Jilin, 130022, China; University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Mengxia Yan
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Science, Changchun, Jilin, 130022, China; University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Jianshe Huang
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Science, Changchun, Jilin, 130022, China.
| | - Xiurong Yang
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Science, Changchun, Jilin, 130022, China; University of Science and Technology of China, Hefei, Anhui, 230026, China.
| |
Collapse
|
22
|
Huang Y, Zhang W, Zhao S, Xie Z, Chen S, Yi G. Ultra-sensitive detection of DNA N6-adenine methyltransferase based on a 3D tetrahedral fluorescence scaffold assisted by symmetrical double-ring dumbbells. Anal Chim Acta 2021; 1184:339018. [PMID: 34625260 DOI: 10.1016/j.aca.2021.339018] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2021] [Revised: 07/13/2021] [Accepted: 08/31/2021] [Indexed: 12/11/2022]
Abstract
DNA methylation is an epigenetic modification that plays a vital role in X chromosome inactivation, genome imprinting, and gene expression. DNA methyltransferase establishes and maintains a stable methylation state in genomic DNA. Efficient and specific DNA methyltransferase testing is essential for the early diagnosis and treatment of cancer. In this study, we designed an ultra-sensitive fluorescent biosensor, based on a 3D tetrahedral fluorescent scaffold assisted by symmetrical double-ring dumbbells, for the detection of DNA-[N 6-adenine]-methyltransferase (Dam MTase). Double-stranded DNA was methylated by Dam MTase and then digested by DpnI to form two identical dumbbell rings. The 3D tetrahedral fluorescent scaffold was synthesized from four oligonucleotide chains containing hairpins. When the sheared dumbbells reacted with the 3D tetrahedral fluorescent scaffold, the hairpins opened and a fluorescence signal could be detected. The strategy was successful over a wide detection range, from 0.002 to 100 U mL-1 Dam MTase, and the lowest detection limit was 0.00036 U mL-1. Control experiments with M.SssI methyltransferase and HpaII methylation restriction endonuclease confirmed the specificity of the method. Experiments with spiked human serum and the 5-fluorouracil inhibitor proved the suitability of the method for early cancer diagnosis.
Collapse
Affiliation(s)
- Yuqi Huang
- Key Laboratory of Medical Diagnostics, Ministry of Education, Department of Laboratory Medicine, Chongqing Medical University, Chongqing, 400016, PR China
| | - Wenxiu Zhang
- Key Laboratory of Medical Diagnostics, Ministry of Education, Department of Laboratory Medicine, Chongqing Medical University, Chongqing, 400016, PR China
| | - Shuhui Zhao
- Key Laboratory of Medical Diagnostics, Ministry of Education, Department of Laboratory Medicine, Chongqing Medical University, Chongqing, 400016, PR China
| | - Zuowei Xie
- Key Laboratory of Medical Diagnostics, Ministry of Education, Department of Laboratory Medicine, Chongqing Medical University, Chongqing, 400016, PR China
| | - Siyi Chen
- Key Laboratory of Medical Diagnostics, Ministry of Education, Department of Laboratory Medicine, Chongqing Medical University, Chongqing, 400016, PR China
| | - Gang Yi
- Key Laboratory of Medical Diagnostics, Ministry of Education, Department of Laboratory Medicine, Chongqing Medical University, Chongqing, 400016, PR China.
| |
Collapse
|
23
|
Metal–organic frameworks (MOFs) based electrochemical biosensors for early cancer diagnosis in vitro. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2021.213948] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
24
|
DNA-functionalized biosensor for amplifying signal detection of DNA methyltransferase activity. J Electroanal Chem (Lausanne) 2021. [DOI: 10.1016/j.jelechem.2021.115260] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
25
|
He YQ, Gao Y, Gu HW, Meng XZ, Yi HC, Chen Y, Sun WY. Target-induced activation of DNAzyme for sensitive detection of bleomycin by using a simple MOF-modified electrode. Biosens Bioelectron 2021; 178:113034. [DOI: 10.1016/j.bios.2021.113034] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 12/28/2020] [Accepted: 01/20/2021] [Indexed: 12/26/2022]
|
26
|
Tao G, Xu X, Li RS, Liu F, Li N. Nonamplification Multiplexed Assay of Endonucleases and DNA Methyltransferases by Colocalized Particle Counting. ACS Sens 2021; 6:1321-1329. [PMID: 33496573 DOI: 10.1021/acssensors.0c02665] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Restriction endonucleases (ENases) and DNA methyltransferases (MTases) are important enzymes in biological processes, and detection of ENases/MTases activity is significant for biological and pharmaceutical studies. However, available nonamplification methods with a versatile design, desirable sensitivity, and signal production mode of unbiased quantification toward multiple nucleases are rare. By combining deliberately designed hairpin DNA probes with the colocalized particle counting technique, we present a nonamplification, separation-free method for multiplexed detection of ENases and MTases. In the presence of target ENases, the hairpin DNA is cleaved and the resulting DNA sequence forms a sandwich structure to tie two different-colored fluorescent microbeads together to generate a colocalization signal that can be easily detected using a standard fluorescence microscope. The multiplexed assay is realized via different color combinations. For the assay of methyltransferase, methylation by MTases prevents cleavage of the hairpin by the corresponding ENase, leading to decreased colocalization events. Three ENases can be simultaneously detected with high selectivity, minimal cross-talk, and detection limits of (4.1-6.4) × 10-4 U/mL, and the corresponding MTase activity can be measured without a change of the probe design. The potential for practical application is evaluated with human serum samples and different ENase and MTase inhibitors with satisfactory results. The proposed method is separation-free, unbiased toward multiple targets, and easy to implement, and the strategy has the potential to be extended to other targets.
Collapse
Affiliation(s)
- Guangyu Tao
- Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, Institute of Analytical Chemistry, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Xiao Xu
- Environmental Metrology Center, National Institute of Metrology, Beijing 100029, China
| | - Rong Sheng Li
- Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, Institute of Analytical Chemistry, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Feng Liu
- Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, Institute of Analytical Chemistry, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Na Li
- Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, Institute of Analytical Chemistry, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| |
Collapse
|
27
|
Liu S, Lai C, Liu X, Li B, Zhang C, Qin L, Huang D, Yi H, Zhang M, Li L, Wang W, Zhou X, Chen L. Metal-organic frameworks and their derivatives as signal amplification elements for electrochemical sensing. Coord Chem Rev 2020. [DOI: 10.1016/j.ccr.2020.213520] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
28
|
Lin X, Lian X, Luo B, Huang XC. A highly sensitive and stable electrochemical HBV DNA biosensor based on ErGO-supported Cu-MOF. INORG CHEM COMMUN 2020. [DOI: 10.1016/j.inoche.2020.108095] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
29
|
Meng X, Gu H, Yi H, He Y, Chen Y, Sun W. Sensitive detection of streptomycin in milk using a hybrid signal enhancement strategy of MOF-based bio-bar code and target recycling. Anal Chim Acta 2020; 1125:1-7. [PMID: 32674756 DOI: 10.1016/j.aca.2020.05.041] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2020] [Revised: 04/30/2020] [Accepted: 05/18/2020] [Indexed: 11/18/2022]
Abstract
A MOF-based bio-bar code material was synthesized and firstly applied to develop an electrochemical streptomycin (STR) aptasensor. By using MOF-based bio-bar code and enzyme-assisted target recycling for dual-signal amplification, highly sensitive detection of STR was achieved. The sensing surface was simply fabricated by immobilizing a mixed monolayer of thiolated cDNA/aptamer duplexes (dsDNA) and 6-mercapto-1-hexanol (MCH) on the gold nanoparticle modified screen printed carbon electrode (Au/SPCE). The presence of target STR caused highly efficient removal of the aptamers from dsDNA assisted by Exo I enzyme. Then MOF-based bio-bar codes were backfilled to achieve the adsorption of electroactive Ru(NH3)63+ (RuHex) on electrode surface. The electrochemical signal of the surface-confined RuHex was used for quantitation. The analytical performance for STR was satisfactory with a wide linear range of 0.005-150 ng mL-1, a low detection limit of 2.6 pg mL-1 and a good selectivity towards other three antibiotics. Moreover, the application of this aptasensor for determination of STR in real milk samples was also realized. With these merits, this dual-signal amplification assay might provide one of the effective ways for food safety monitoring.
Collapse
Affiliation(s)
- XianZhu Meng
- College of Chemistry and Environmental Engineering, Yangtze University, Jingzhou, 434023, PR China
| | - HuiWen Gu
- College of Chemistry and Environmental Engineering, Yangtze University, Jingzhou, 434023, PR China
| | - HongChao Yi
- College of Chemistry and Environmental Engineering, Yangtze University, Jingzhou, 434023, PR China
| | - YongQiang He
- College of Chemistry and Environmental Engineering, Yangtze University, Jingzhou, 434023, PR China
| | - Ying Chen
- College of Chemistry and Environmental Engineering, Yangtze University, Jingzhou, 434023, PR China.
| | - WeiYin Sun
- College of Chemistry and Environmental Engineering, Yangtze University, Jingzhou, 434023, PR China; Coordination Chemistry Institute, State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing National Laboratory of Microstructures, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210023, PR China.
| |
Collapse
|
30
|
Heterogeneous surface architectured metal-organic frameworks for cancer therapy, imaging, and biosensing: A state-of-the-art review. Coord Chem Rev 2020. [DOI: 10.1016/j.ccr.2020.213212] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
31
|
Yang XX, Feng P, Cao J, Liu W, Tang Y. Composition-Engineered Metal-Organic Framework-Based Microneedles for Glucose-Mediated Transdermal Insulin Delivery. ACS APPLIED MATERIALS & INTERFACES 2020; 12:13613-13621. [PMID: 32138507 DOI: 10.1021/acsami.9b20774] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Elaborately designed glucose-responsive insulin-delivery systems are highly desirable for the treatment of diabetes because it can secrete insulin depending on blood glucose levels. Herein, mimic multi-enzyme metal-organic framework (MOF)-based (insulin and glucose oxidase-loaded cobalt-doped ZIF-8, abbreviated as Ins/GOx@Co-ZIF-8) stimuli-responsive microneedles (MNs) were designed for painless glucose-mediated transdermal administration. In this work, GOx and Co2+ ions were engineered into MOFs to construct a mimic multi-enzyme vehicle. GOx in the MOF, as the glucose-responsive factor, could catalyze glucose into gluconic acid with the formation of H2O2 as the byproduct. The gluconic acid formed decreases the local pH in MOFs, resulting in the degradation of MOFs and thus preloaded insulin would be released. Meanwhile, catalyzed by Co2+ ions in the MOF, the byproduct H2O2 was decomposed. Possible free Co2+ ions would be chelated by EDTA-SiO2 nanoparticles in MNs and removed by peeling MNs off. The as-obtained mimic multi-enzyme MOF-based MNs showed good dependence on glucose concentration without divulging H2O2 and Co2+ ions and enough stiffness to penetrate into skin. This study offers a new strategy, using facilely synthesized MOFs as depots to integrate with MNs, for designing stimuli-responsive transdermal drug-delivery systems.
Collapse
Affiliation(s)
- Xiao-Xi Yang
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P. R. China
| | - Pengfei Feng
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P. R. China
| | - Jing Cao
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P. R. China
| | - Weisheng Liu
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P. R. China
| | - Yu Tang
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P. R. China
| |
Collapse
|
32
|
Dadmehr M, Karimi MA, Korouzhdehi B. A signal-on fluorescence based biosensing platform for highly sensitive detection of DNA methyltransferase enzyme activity and inhibition. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2020; 228:117731. [PMID: 31753656 DOI: 10.1016/j.saa.2019.117731] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Revised: 10/25/2019] [Accepted: 10/28/2019] [Indexed: 06/10/2023]
Abstract
DNA methylation mediated by DNA methyltransferase (MTase) enzyme is internal cell mechanism which regulate the expression or suppression of crucial genes involve in cancer early diagnosis. Herein, highly sensitive fluorescence biosensing platform was developed for monitoring of DNA Dam MTase enzyme activity and inhibition based on fluorescence signal on mechanism. The specific Au NP functionalized oligonucleotide probe with overhang end as a template for the synthesis of fluorescent silver nanoclusters (Ag NCs) was designed to provide the FRET occurrence. Following, methylation and cleavage processes by Dam MTAse and DpnI enzymes respectively at specific probe recognition site could resulted to release of AgNCs synthesizer DNA fragment and returned the platform to fluorescence signal-on state through interrupting in FRET. Subsequently, amplified fluorescence emission signals of Ag NCs showed increasing linear relationship with amount of Dam MTase enzyme at the range of 0.1-20 U/mL and the detection limit was estimated at 0.05 U/mL. Superior selectivity of experiment was illustrated among other tested MTase and restriction enzymes due to the specific recognition of MTase toward its substrate. Furthermore, the inhibition effect of applied Dam MTase drug inhibitors screened and evaluated with satisfactory results which would be helpful for discovery of antimicrobial drugs. The real sample assay also showed the applicability of proposed method in human serum condition. This novel strategy presented an efficient and cost effective platform for sensitive monitoring of DNA MTase activity and inhibition which illustrated its great potential for further application in medical diagnosis and drug discovery.
Collapse
Affiliation(s)
- Mehdi Dadmehr
- Department of Biology, Payame Noor University, Tehran, Iran.
| | | | | |
Collapse
|
33
|
Zhang J, Lan T, Lu Y. Translating in vitro diagnostics from centralized laboratories to point-of-care locations using commercially-available handheld meters. Trends Analyt Chem 2020; 124:115782. [PMID: 32194293 PMCID: PMC7081941 DOI: 10.1016/j.trac.2019.115782] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
There is a growing demand for high-performance point-of-care (POC) diagnostic technologies where in vitro diagnostics (IVD) is fundamental for prevention, identification, and treatment of many diseases. Over the past decade, a shift of IVDs from the centralized laboratories to POC settings is emerging. In this review, we summarize recent progress in translating IVDs from centralized labs to POC settings using commercially available handheld meters. After introducing typical workflows for IVDs and highlight innovative technologies in this area, we discuss advantages of using commercially available handheld meters for translating IVDs from centralized labs to POC settings. We then provide comprehensive coverage of different signal transduction strategies to repurpose the commercially-available handheld meters, including personal glucose meter, pH meter, thermometer and pressure meter, for detecting a wide range of targets by integrating biochemical assays with the meters for POC testing. Finally, we identify remaining challenges and offer future outlook in this area.
Collapse
Affiliation(s)
- JingJing Zhang
- State Key Laboratory of Analytical Chemistry for Life
Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing
210023, China
| | - Tian Lan
- GlucoSentient, Inc., 2100 S. Oak Street, Suite 101,
Champaign, IL 61820, USA
| | - Yi Lu
- Department of Chemistry, University of Illinois at
Urbana–Champaign, Urbana, Illinois 61801, United States
| |
Collapse
|
34
|
Afreen S, He Z, Xiao Y, Zhu JJ. Nanoscale metal-organic frameworks in detecting cancer biomarkers. J Mater Chem B 2020; 8:1338-1349. [PMID: 31999289 DOI: 10.1039/c9tb02579k] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Following the efficient performance of metal-organic frameworks (MOFs) as recognition elements in gas sensors, biosensors based on MOFs are now being investigated to capture and quantify potential cancer biomarkers, such as circulating tumor cells (CTCs), nucleic acids and proteins. The current status of MOF-based biosensors in the detection of early stages of cancer is in its infancy, although it has significantly emerged since the beginning of this decade. That said, salient research has been conducted in the past five years to utilize the distinctive porous crystalline structure of MOFs for highly sensitive and selective detection of cancer biomarkers. In this pursual, MOFs designed with bimetallic assembly, doped with magnetic nanoparticles, coated with polymers, and even conjugated with peptides or oligonucleotides have shown promising outcomes in detecting CTCs, nucleic acids and proteins. In particular, aptamer-conjugated MOFs are able to perform at a lower limit of detection down to the femtomolar, implying their efficacy for the point of care testing in clinical trials. In this way, aptasensors based on aptamer-conjugated MOFs present a newer sub-branch, to be coined as a MOFTA sensor in the current review. Considering the emerging progress and promising outcomes of MOFTA sensors as well as a variety of MOF-based techniques of detecting cancer biomarkers, this review will highlight their significant advances and related aspects in the recent five years on the context of detecting CTCs, nucleic acids and proteins for the early-stage detection of cancer.
Collapse
Affiliation(s)
- Sadia Afreen
- State Key Laboratory of Analytical Chemistry for Life Science School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P. R. China.
| | | | | | | |
Collapse
|
35
|
Fu Y, Ding F, Chen J, Liu M, Zhang X, Du C, Si S. Label-free and near-zero-background-noise photoelectrochemical assay of methyltransferase activity based on a Bi2S3/Ti3C2 Schottky junction. Chem Commun (Camb) 2020; 56:5799-5802. [DOI: 10.1039/d0cc01835j] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Based on Bi2S3/Ti3C2 nanosheets, a label-free photoelectrochemical sensing platform with near-zero background noise was developed for M.SssI methyltransferase activity assay.
Collapse
Affiliation(s)
- Yamin Fu
- State Key Laboratory of Chemo/Biosensing and Chemometrics
- College of Chemistry and Chemical Engineering
- Hunan University
- Changsha
- P. R. China
| | - Feng Ding
- State Key Laboratory of Chemo/Biosensing and Chemometrics
- College of Chemistry and Chemical Engineering
- Hunan University
- Changsha
- P. R. China
| | - Jinhua Chen
- State Key Laboratory of Chemo/Biosensing and Chemometrics
- College of Chemistry and Chemical Engineering
- Hunan University
- Changsha
- P. R. China
| | - Mengyue Liu
- State Key Laboratory of Chemo/Biosensing and Chemometrics
- College of Chemistry and Chemical Engineering
- Hunan University
- Changsha
- P. R. China
| | - Xiaohua Zhang
- State Key Laboratory of Chemo/Biosensing and Chemometrics
- College of Chemistry and Chemical Engineering
- Hunan University
- Changsha
- P. R. China
| | - Cuicui Du
- State Key Laboratory of Chemo/Biosensing and Chemometrics
- College of Chemistry and Chemical Engineering
- Hunan University
- Changsha
- P. R. China
| | - Shihui Si
- College of Chemistry and Chemical Engineering, Central South University
- Changsha 410083
- P. R. China
| |
Collapse
|
36
|
Li Y, Sun S, Tian X, Qiu JG, Jiang B, Zhang CY. A dumbbell probe-based dual signal amplification strategy for sensitive detection of multiple DNA methyltransferases. Chem Commun (Camb) 2020; 56:13627-13630. [DOI: 10.1039/d0cc05991a] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Integration of a dumbbell probe with dual signal amplification enables simultaneously sensitive detection of multiple DNA methyltransferases.
Collapse
Affiliation(s)
- Yueying Li
- College of Chemistry, Chemical Engineering and Materials Science
- Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong
- Key Laboratory of Molecular and Nano Probes
- Ministry of Education
- Shandong Provincial Key Laboratory of Clean Production of Fine Chemicals
| | - Shuli Sun
- College of Chemistry, Chemical Engineering and Materials Science
- Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong
- Key Laboratory of Molecular and Nano Probes
- Ministry of Education
- Shandong Provincial Key Laboratory of Clean Production of Fine Chemicals
| | - Xiaorui Tian
- College of Chemistry, Chemical Engineering and Materials Science
- Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong
- Key Laboratory of Molecular and Nano Probes
- Ministry of Education
- Shandong Provincial Key Laboratory of Clean Production of Fine Chemicals
| | - Jian-Ge Qiu
- Academy of Medical Sciences
- Zhengzhou University
- Zhengzhou 450000
- China
| | - BingHua Jiang
- Academy of Medical Sciences
- Zhengzhou University
- Zhengzhou 450000
- China
| | - Chun-yang Zhang
- College of Chemistry, Chemical Engineering and Materials Science
- Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong
- Key Laboratory of Molecular and Nano Probes
- Ministry of Education
- Shandong Provincial Key Laboratory of Clean Production of Fine Chemicals
| |
Collapse
|
37
|
Bai J, Liu L, Jia C, Liu Z, Gao S, Han Y, Yan H. Fluorescence Method for the Detection of Protein Kinase Activity by Using a Zirconium-Based Metal-Organic Framework as an Affinity Probe. ACS APPLIED BIO MATERIALS 2019; 2:6021-6028. [PMID: 35021523 DOI: 10.1021/acsabm.9b00978] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
In cell-signaling pathways, protein kinases are critical and ubiquitous regulators. Abnormal kinase activity leads to many major diseases; therefore, simple and efficient methods for detecting protein kinases are in high demand. This study proposed a simple, rapid fluorescence-based sensor for protein kinase activity analysis, using the zirconium-based metal organic framework UiO-66 as a highly efficient affinity probe. UiO-66 has a large specific surface area, good stability, and a large number of Zr defect sites, which can efficiently identify phosphorylation sites. UiO-66 is an ideal nanoreactor that can efficiently enrich phosphorylated peptides. Under optimal experimental conditions, the increased fluorescence intensity was directly proportional to the protein kinase activity. The lower limit of detection was 0.00005 U·μL-1. The assay could also be used for the screening of protein kinase inhibitors, could determine the activity of other kinds of kinases, and was universally applicable. This method was used for protein kinase activity detection in drug-stimulated MCF-7 cell lysates and demonstrated its potential applicability in kinase-related research.
Collapse
Affiliation(s)
- Jie Bai
- Key Laboratory of Medicinal Chemistry and Molecular Diagnosis, Ministry of Education, Chemistry and Environmental Science, Hebei University, Baoding 071002, China.,Medical Comprehensive Experimental Center, College of Public Health, Hebei University, Baoding 071002, China
| | - Liyan Liu
- Medical Comprehensive Experimental Center, College of Public Health, Hebei University, Baoding 071002, China
| | - Congcong Jia
- Key Laboratory of Medicinal Chemistry and Molecular Diagnosis, Ministry of Education, Chemistry and Environmental Science, Hebei University, Baoding 071002, China
| | - Zeping Liu
- Medical Comprehensive Experimental Center, College of Public Health, Hebei University, Baoding 071002, China
| | - Shutao Gao
- Key Laboratory of Medicinal Chemistry and Molecular Diagnosis, Ministry of Education, Chemistry and Environmental Science, Hebei University, Baoding 071002, China.,Hebei Key Laboratory of Bioinorganic Chemistry, College of Sciences, Agricultural University of Hebei, Baoding 071001, China
| | - Yanmei Han
- Medical Comprehensive Experimental Center, College of Public Health, Hebei University, Baoding 071002, China
| | - Hongyuan Yan
- Key Laboratory of Medicinal Chemistry and Molecular Diagnosis, Ministry of Education, Chemistry and Environmental Science, Hebei University, Baoding 071002, China.,Medical Comprehensive Experimental Center, College of Public Health, Hebei University, Baoding 071002, China
| |
Collapse
|
38
|
Du YC, Wang SY, Li XY, Wang YX, Tang AN, Kong DM. Terminal deoxynucleotidyl transferase-activated nicking enzyme amplification reaction for specific and sensitive detection of DNA methyltransferase and polynucleotide kinase. Biosens Bioelectron 2019; 145:111700. [DOI: 10.1016/j.bios.2019.111700] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Revised: 08/28/2019] [Accepted: 09/11/2019] [Indexed: 12/19/2022]
|
39
|
Li Y, Wang L, Ding C, Luo X. Highly selective ratiometric electrogenerated chemiluminescence assay of DNA methyltransferase activity via polyaniline and anti-fouling peptide modified electrode. Biosens Bioelectron 2019; 142:111553. [DOI: 10.1016/j.bios.2019.111553] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2019] [Revised: 07/25/2019] [Accepted: 07/29/2019] [Indexed: 10/26/2022]
|
40
|
Xue H, Chen K, Zhou Q, Pan D, Zhang Y, Shen Y. Antimony selenide/graphene oxide composite for sensitive photoelectrochemical detection of DNA methyltransferase activity. J Mater Chem B 2019; 7:6789-6795. [DOI: 10.1039/c9tb01541h] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
An Sb2Se3/graphene oxide composite was applied as both the photoelectrochemical probe and substrate for biomolecule conjugation for the construction of a “signal-off” sandwich-type biosensor for DNA methyltransferase activity detection.
Collapse
Affiliation(s)
- Huaijia Xue
- Medical School, School of Chemistry and Chemical Engineering, Southeast University
- Nanjing 210009
- China
| | - Kaiyang Chen
- Medical School, School of Chemistry and Chemical Engineering, Southeast University
- Nanjing 210009
- China
| | - Qing Zhou
- Medical School, School of Chemistry and Chemical Engineering, Southeast University
- Nanjing 210009
- China
| | - Deng Pan
- Medical School, School of Chemistry and Chemical Engineering, Southeast University
- Nanjing 210009
- China
| | - Yuanjian Zhang
- Medical School, School of Chemistry and Chemical Engineering, Southeast University
- Nanjing 210009
- China
| | - Yanfei Shen
- Medical School, School of Chemistry and Chemical Engineering, Southeast University
- Nanjing 210009
- China
| |
Collapse
|