1
|
Pinheiro MG, Alves GGO, Conde MER, Costa SL, Sant’Anna RCS, Antunes IMF, Carneiro MC, Ronzei FS, Scaffo JC, Pinheiro FR, Andre LS, Povoa HC, Baltar VT, Giordani F, Hemerly ES, Alexandre GC, de Paula KC, Watanabe M, Nóbrega ACLD, Lobato JCP, Aguiar-Alves F. Serological surveillance for SARS-CoV-2 antibodies among students, faculty and staff within a large university system during the pandemic. World J Virol 2025; 14:100338. [DOI: 10.5501/wjv.v14.i1.100338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 09/30/2024] [Accepted: 11/01/2024] [Indexed: 11/28/2024] Open
Abstract
BACKGROUND At the end of December 2019, the world faced severe acute respiratory syndrome-coronavirus 2 (SARS-CoV-2), which led to the outbreak of coronavirus disease 2019 (COVID-19), associated with respiratory issues. This virus has shown significant challenges, especially for senior citizens, patients with other underlying illnesses, or those with a sedentary lifestyle. Serological tests conducted early on have helped identify how the virus is transmitted and how to curb its spread. The study hypothesis was that the rapid serological test for SARS-CoV-2 antibodies could indicate the immunoreactive profile during the COVID-19 pandemic in a university population.
AIM To conduct active surveillance for serological expression of anti-SARS-CoV-2 antibodies in individuals within a university setting during the COVID-19 pandemic.
METHODS This sectional study by convenience sampling was conducted in a large university in Niteroi-RJ, Brazil, from March 2021 to July 2021. The study population consisted of students, faculty, and administrative staff employed by the university. A total of 3433 faculty members, 60703 students, and 3812 administrative staff were invited to participate. Data were gathered through rapid serological tests to detect immunoglobulin (Ig) M and IgG against SARS-CoV-2. The χ² or Fisher's exact test was used to conduct statistical analysis. A 0.20 significance level was adopted for variable selection in a multiple logistic regression model to evaluate associations.
RESULTS A total of 1648 individuals were enrolled in the study. The proportion of COVID-19 positivity was 164/1648 (9.8%). The adjusted logistic model indicate a positive association between the expression of IgM or IgG and age [odds ratio (OR) = 1.16, 95%CI: 1.02-1.31] (P < 0.0024), individuals who had been in contact with a COVID-19-positive case (OR = 3.49, 95%CI: 2.34-5.37) (P < 0.001), those who had received the COVID-19 vaccine (OR = 2.33, 95%CI: 1.61-3.35) (P < 0.001) and social isolation (OR = 0.59, 95%CI: 0.41-0.84) (P < 0.004). The likelihood of showing a positive result increased by 16% with every ten-year increment. Conversely, adherence to social distancing measures decreased the likelihood by 41%.
CONCLUSION These findings evidenced that the population became more exposed to the virus as individuals discontinued social distancing practices, thereby increasing the risk of infection for themselves.
Collapse
Affiliation(s)
- Marcos G Pinheiro
- Laboratory of Molecular Epidemiology and Biotechnology, Rodolpho Albino University Laboratory, Fluminense Federal University, Niterói 24241000, Rio de Janeiro, Brazil
- Estácio de Sá University, Nova Friburgo 28611135, Rio de Janeiro, Brazil
- Pathology Program, Medicine school, Fluminense Federal University, Niterói 24070090, Rio de Janeiro, Brazil
| | - Gabriela G O Alves
- Laboratory of Molecular Epidemiology and Biotechnology, Rodolpho Albino University Laboratory, Fluminense Federal University, Niterói 24241000, Rio de Janeiro, Brazil
- Department of Pharmaceutical Sciences, Lloyd L. Gregory School of Pharmacy, Palm Beach Atlantic University, West Palm Beach, FL 33401, United States
| | - Maria Eduarda R Conde
- Laboratory of Molecular Epidemiology and Biotechnology, Rodolpho Albino University Laboratory, Fluminense Federal University, Niterói 24241000, Rio de Janeiro, Brazil
| | - Sofia L Costa
- Laboratory of Molecular Epidemiology and Biotechnology, Rodolpho Albino University Laboratory, Fluminense Federal University, Niterói 24241000, Rio de Janeiro, Brazil
| | - Regina C S Sant’Anna
- Laboratory of Molecular Epidemiology and Biotechnology, Rodolpho Albino University Laboratory, Fluminense Federal University, Niterói 24241000, Rio de Janeiro, Brazil
| | - Isa M F Antunes
- Laboratory of Molecular Epidemiology and Biotechnology, Rodolpho Albino University Laboratory, Fluminense Federal University, Niterói 24241000, Rio de Janeiro, Brazil
| | - Mônica C Carneiro
- Estácio de Sá University, Nova Friburgo 28611135, Rio de Janeiro, Brazil
| | - Fabio S Ronzei
- Estácio de Sá University, Nova Friburgo 28611135, Rio de Janeiro, Brazil
| | - Julia C Scaffo
- Laboratory of Molecular Epidemiology and Biotechnology, Rodolpho Albino University Laboratory, Fluminense Federal University, Niterói 24241000, Rio de Janeiro, Brazil
| | - Felipe R Pinheiro
- Laboratory of Molecular Epidemiology and Biotechnology, Rodolpho Albino University Laboratory, Fluminense Federal University, Niterói 24241000, Rio de Janeiro, Brazil
- Pathology Program, Medicine school, Fluminense Federal University, Niterói 24070090, Rio de Janeiro, Brazil
| | - Lialyz S Andre
- Laboratory of Molecular Epidemiology and Biotechnology, Rodolpho Albino University Laboratory, Fluminense Federal University, Niterói 24241000, Rio de Janeiro, Brazil
- Pathology Program, Medicine school, Fluminense Federal University, Niterói 24070090, Rio de Janeiro, Brazil
| | - Helvecio C Povoa
- Health Institute of Nova Friburgo, Fluminense Federal University, Nova Friburgo 28613001, Rio de Janeiro, Brazil
| | - Valéria T Baltar
- Department of Epidemiology and Biostatistics, Institute of Collective Health (ISC), Fluminense Federal University, Niterói 24033900, Rio de Janeiro, Brazil
| | - Fabíola Giordani
- Health Institute of Nova Friburgo, Fluminense Federal University, Nova Friburgo 28613001, Rio de Janeiro, Brazil
| | - Eduarda S Hemerly
- Department of Epidemiology and Biostatistics, Institute of Collective Health (ISC), Fluminense Federal University, Niterói 24033900, Rio de Janeiro, Brazil
| | - Gisele C Alexandre
- Department of Epidemiology and Biostatistics, Institute of Collective Health (ISC), Fluminense Federal University, Niterói 24033900, Rio de Janeiro, Brazil
| | - Karla C de Paula
- Institute of Physical Education, Fluminense Federal University, Niterói 24020005, Rio de Janeiro, Brazil
| | - Márcio Watanabe
- Department of Statistics, Fluminense Federal University, Niterói 24210200, Rio de Janeiro, Brazil
| | - Antonio Claudio L da Nóbrega
- Department of Physiology and Pharmacology, Fluminense Federal University, Niterói 24210130, Rio de Janeiro, Brazil
| | - Jackeline Christiane P Lobato
- Department of Epidemiology and Biostatistics, Institute of Collective Health (ISC), Fluminense Federal University, Niterói 24033900, Rio de Janeiro, Brazil
| | - Fabio Aguiar-Alves
- Pathology Program, Medicine school, Fluminense Federal University, Niterói 24070090, Rio de Janeiro, Brazil
- Department of Pharmaceutical Sciences, Lloyd L. Gregory School of Pharmacy, Palm Beach Atlantic University, West Palm Beach, FL 33401, United States
| |
Collapse
|
2
|
Yin W, Hu K, Yang Y, Zhuang J, Zou Z, Suo Y, Xia L, Li J, Gui Y, Mei H, Yin J, Zhang T, Mu Y. A Propidium Monoazide-Assisted Digital CRISPR/Cas12a Assay for Selective Detection of Live Bacteria in Sample. Anal Chem 2024; 96:17941-17949. [PMID: 39482821 DOI: 10.1021/acs.analchem.4c02204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2024]
Abstract
Escherichia coli O157:H7 (E. coli O157:H7) is a prominent pathogenic bacterium that poses serious risks to food safety and public health. Rapid and accurate detection of live E. coli O157:H7 is of great importance in food quality monitoring and clinical diagnosis. Here, we report a propidium monoazide-assisted nonamplification digital CRISPR/Cas12a assay for sensitive and rapid detection of live E. coli O157:H7. The incorporation of propidium monoazide into the method enables the selective detection of live bacteria by eliminating 98% of interference from the dead bacterial nucleic acid. Implemented on microfluidic digital chips, this method can achieve absolute quantification of nonamplified nucleic acid. The entire detection process of live bacteria can be completed within 120 min without the need for establishing a standard curve, and the sensitivity of the method reaches 1.2 × 103 CFU/mL. The method was validated using various samples, yielding results consistent with the plate counting method (Pearson's r = 0.9490). Consequently, this method holds significant potential for applications in fields requiring live bacterial detection.
Collapse
Affiliation(s)
- Weihong Yin
- Research Centre for Analytical Instrumentation, Institute of Cyber-Systems and Control, State Key Laboratory of Industrial Control Technology, Zhejiang University, Hangzhou, Zhejiang 310027, P. R. China
| | - Kai Hu
- Research Centre for Analytical Instrumentation, Institute of Cyber-Systems and Control, State Key Laboratory of Industrial Control Technology, Zhejiang University, Hangzhou, Zhejiang 310027, P. R. China
| | - Yunxing Yang
- Department of Clinical Pharmacology, Key Laboratory of Clinical Cancer Pharmacology and Toxicology Research of Zhejiang Province, Affiliated Hangzhou First People's Hospital, School of Medicine, Westlake University, Hangzhou, Zhejiang 310006, P. R. China
| | - Jianjian Zhuang
- Department of Clinical Pharmacology, Key Laboratory of Clinical Cancer Pharmacology and Toxicology Research of Zhejiang Province, Affiliated Hangzhou First People's Hospital, School of Medicine, Westlake University, Hangzhou, Zhejiang 310006, P. R. China
| | - Zheyu Zou
- Institute of Translational Medicine, Zhejiang Shuren University, Hangzhou, Zhejiang 310015, P. R. China
| | - Yuanjie Suo
- Research Centre for Analytical Instrumentation, Institute of Cyber-Systems and Control, State Key Laboratory of Industrial Control Technology, Zhejiang University, Hangzhou, Zhejiang 310027, P. R. China
| | - Liping Xia
- Research Centre for Analytical Instrumentation, Institute of Cyber-Systems and Control, State Key Laboratory of Industrial Control Technology, Zhejiang University, Hangzhou, Zhejiang 310027, P. R. China
| | - Jiale Li
- Research Centre for Analytical Instrumentation, Institute of Cyber-Systems and Control, State Key Laboratory of Industrial Control Technology, Zhejiang University, Hangzhou, Zhejiang 310027, P. R. China
| | - Yehong Gui
- Research Centre for Analytical Instrumentation, Institute of Cyber-Systems and Control, State Key Laboratory of Industrial Control Technology, Zhejiang University, Hangzhou, Zhejiang 310027, P. R. China
| | - Haohua Mei
- Research Centre for Analytical Instrumentation, Institute of Cyber-Systems and Control, State Key Laboratory of Industrial Control Technology, Zhejiang University, Hangzhou, Zhejiang 310027, P. R. China
| | - Juxin Yin
- Research Centre for Analytical Instrumentation, Institute of Cyber-Systems and Control, State Key Laboratory of Industrial Control Technology, Zhejiang University, Hangzhou, Zhejiang 310027, P. R. China
- School of information and Electrical Engineering, Hangzhou City University, Hangzhou, Zhejiang 310015, P. R. China
| | - Tao Zhang
- Research Centre for Analytical Instrumentation, Institute of Cyber-Systems and Control, State Key Laboratory of Industrial Control Technology, Zhejiang University, Hangzhou, Zhejiang 310027, P. R. China
| | - Ying Mu
- Research Centre for Analytical Instrumentation, Institute of Cyber-Systems and Control, State Key Laboratory of Industrial Control Technology, Zhejiang University, Hangzhou, Zhejiang 310027, P. R. China
| |
Collapse
|
3
|
Wu T, Liu Y, Zhou S, Li J, Sun G, Gu B, Wang C. Wheat Germ Agglutinin-Modified "Three-in-One" Multifunctional Probe Driven Broad-Spectrum and Flexible Immunochromatographic Diagnosis of viruses With High Sensitivity. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024:e2406053. [PMID: 39439187 DOI: 10.1002/smll.202406053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 10/09/2024] [Indexed: 10/25/2024]
Abstract
The conventional lateral flow assay (LFA) fails to the demands for the accurate screening of viruses as a result of its low sensitivity of colorimetric signal output and poor universality limited by antibody pairs. Here, a magnetically assisted dual-signal output LFA platform is developed for the ultrasensitive, universal, and flexible detection of viruses. A "three-in-one" multifunctional probe (MAuDQD) is prepared using a 180 nm Fe3O4 core to load numerous Au nanoparticles (NPs) and two layers of QDs, which can substantially improve the sensitivity of LFA through coupling with the effects of magnetic enrichment and colorimetric/fluorescent enhancement. Wheat germ agglutinin (WGA)-modified MAuDQD attained the broad-spectrum capture viral membrane proteins and the colorimetric/fluorescent dual-mode detection of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and monkeypox virus (MPXV) on the LFA strip. In the colorimetric mode, the target viruses detected directly, with the visual sensitivity reaching 0.1-0.5 ng mL-1 and the fluorescent mode supported quantitative analysis of SARS-CoV-2/MPXV with limits of detection decreasing to pg mL-1 level. Practicability of the MAuDQD@WGA-LFA is verified through the detection of 33 real clinical samples, showing the proposed assay has a great potential to become a sensitive, accurate, and universal tool for on-site monitoring of viral infections.
Collapse
Affiliation(s)
- Ting Wu
- Beijing Key Laboratory of Environmental and Viral Oncology, College of Chemistry and Life Science, Beijing University of Technology, Beijing, 100124, China
- Department of Clinical Laboratory Medicine, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, 510000, China
| | - Yun Liu
- Beijing Key Laboratory of Environmental and Viral Oncology, College of Chemistry and Life Science, Beijing University of Technology, Beijing, 100124, China
- Department of Clinical Laboratory Medicine, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, 510000, China
| | - Sihai Zhou
- Department of Clinical Laboratory Medicine, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, 510000, China
| | - Jiaxuan Li
- Department of Clinical Laboratory Medicine, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, 510000, China
| | - Guohui Sun
- Beijing Key Laboratory of Environmental and Viral Oncology, College of Chemistry and Life Science, Beijing University of Technology, Beijing, 100124, China
| | - Bing Gu
- Department of Clinical Laboratory Medicine, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, 510000, China
| | - Chongwen Wang
- Beijing Key Laboratory of Environmental and Viral Oncology, College of Chemistry and Life Science, Beijing University of Technology, Beijing, 100124, China
- Department of Clinical Laboratory Medicine, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, 510000, China
| |
Collapse
|
4
|
Feng H, Min S, Xuan S, Gan Z, Sun Z, Gao Y, Yang S, Li WD, Chen Y. Gradient nanoplasmonic imaging metasurface for rapid and label-free detection of SARS-CoV-2 sequences. Talanta 2024; 278:126533. [PMID: 39029327 DOI: 10.1016/j.talanta.2024.126533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 07/03/2024] [Accepted: 07/08/2024] [Indexed: 07/21/2024]
Abstract
Compact and user-friendly nucleic acid biosensors play a crucial role in advancing infectious disease research, particularly for coronavirus (COVID-19). While nanophotonic metasurface sensors hold promise for high-performance sensing, they face challenges due to their complexity and bulky readout instruments. In this study, we propose a gradient nanoplasmonic imaging (GNI) metasurface that incorporates the concept of an optical potential well, enabling label-free single-step detection of SARS-CoV-2 sequences. The metasurface sensor consists of nanopillars with continuous variations, forming an optical potential well that results in a centimeter-scale dark ring. This dynamic well exhibits high sensitivity to refractive index changes, recorded by a CCD. To further enhance the visualized sensing performance, plasmonic coupling of gold nanoparticles with the gold nanostructure is employed. Our metasurface-based biosensor achieves rapid single-step detection of SARS-CoV-2 sequences, with a low detection limit of 77.2 pM and a detection range of 0.1-100 nM. This biosensor not only demonstrates exceptional reproducibility and outstanding detection performance, but also maintains remarkable specificity in differentiating SARS-CoV-2 from other diseases with similar symptoms. This simple and spectrometer-free refractometric sensing scheme enables the construction of a compact and cost-efficient prototype. Our imaging-based metasurface biosensing strategy demonstrates valuable merits for rapid, sensitive, and quantitative detection, showcasing its potential as a valuable on-site nucleic acid diagnostic tool.
Collapse
Affiliation(s)
- Hongtao Feng
- Department of Mechanical Engineering, The University of Hong Kong, Pokfulam, Hong Kong, 999077, China; Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Siyi Min
- Department of Mechanical Engineering, The University of Hong Kong, Pokfulam, Hong Kong, 999077, China
| | - Shuguang Xuan
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Zhuofei Gan
- Department of Mechanical Engineering, The University of Hong Kong, Pokfulam, Hong Kong, 999077, China
| | - Zhao Sun
- Department of Mechanical Engineering, The University of Hong Kong, Pokfulam, Hong Kong, 999077, China
| | - Yu Gao
- Center for Clinical Mass Spectrometry, School of Pharmaceutical Sciences, Soochow University, Jiangsu, 215123, China
| | - Shuang Yang
- Center for Clinical Mass Spectrometry, School of Pharmaceutical Sciences, Soochow University, Jiangsu, 215123, China
| | - Wen-Di Li
- Department of Mechanical Engineering, The University of Hong Kong, Pokfulam, Hong Kong, 999077, China.
| | - Yan Chen
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China.
| |
Collapse
|
5
|
Alvandi M, Shaghaghi Z, Fatehi Z, Naghshtabrizi B, Mohammadi T, Nikzad S. Exploring the impact of recent COVID-19 infection on perfusion and functional parameters derived from gated myocardial perfusion imaging in patients undergoing evaluation for coronary artery disease. Ann Nucl Med 2024; 38:789-794. [PMID: 38806866 DOI: 10.1007/s12149-024-01946-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 05/19/2024] [Indexed: 05/30/2024]
Abstract
OBJECTIVE This study seeks to evaluate how recent COVID-19 infection affects myocardial perfusion and functional parameters derived from gated myocardial perfusion imaging in patients undergoing evaluation for coronary artery disease. The goal is to enhance our understanding of COVID-19's influence on the cardiovascular system. METHOD Conducted at Farshchian Heart Hospital from 2022 to 2023, this case-control study enrolled patients suspected of coronary artery disease, stratified into two groups: those with confirmed COVID-19 infection within the past 6 months (study group) and those without prior COVID-19 infection (control group). Employing a 2-day protocol, stress testing and gated SPECT MPI were performed. Statistical analysis included descriptive statistics, Chi-square test, Student's t test, and Mann-Whitney U test. RESULT Among the 86 patients included, 43 were in each group. Significantly higher summed stress core and summed difference score values were observed in the study group compared to the control group (p < 0.05). In addition, the study group exhibited significantly altered global left ventricular ejection fraction, end-diastolic volume, and end-systolic volume (p < 0.05). Non-perfusion findings, including transient ischemic dilation and transient right ventricular visualization, were more prevalent in the study group. CONCLUSION Recent COVID-19 infection is associated with impaired myocardial perfusion and altered functional parameters as detected by MPI. These findings underscore the intricate interplay between COVID-19 and cardiovascular health, emphasizing the importance of comprehensive evaluation and management strategies to address cardiac complications in affected individuals. Further research is warranted to elucidate the underlying mechanisms and optimize patient care in the context of COVID-19-associated cardiovascular manifestations.
Collapse
Affiliation(s)
- Maryam Alvandi
- Cardiovascular Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
- Department of Nuclear Medicine and Molecular Imaging, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Zahra Shaghaghi
- Cancer Research Center, Hamadan University of Medical Sciences, Hamadan, Iran.
| | - Zhino Fatehi
- Student Research Committee, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Behshad Naghshtabrizi
- Clinical Research Development Unit of Farshchian Heart Hospital, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Tayeb Mohammadi
- Department of Biostatistics, School of Public Health, Hamadan University of Medical Sciences, Hamadan, Iran
- Research Center for Health Sciences, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Safoora Nikzad
- Department of Medical Physics, Faculty of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| |
Collapse
|
6
|
Kamalrathne T, Amaratunga D, Haigh R, Kodituwakku L, Rupasinghe C. Epidemic and Pandemic Preparedness and Response in a Multi-Hazard Context: COVID-19 Pandemic as a Point of Reference. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2024; 21:1238. [PMID: 39338121 PMCID: PMC11431425 DOI: 10.3390/ijerph21091238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 09/12/2024] [Accepted: 09/14/2024] [Indexed: 09/30/2024]
Abstract
Infectious diseases manifesting in the form of epidemics or pandemics do not only cause devastating impacts on public health systems but also disrupt the functioning of the socio-economic structure. Further, risks associated with pandemics and epidemics become exacerbated with coincident compound hazards. This study aims to develop a framework that captures key elements and components of epidemic and pandemic preparedness and response systems, focusing on a multi-hazard context. A systematic literature review was used to collect data through peer-reviewed journal articles using three electronic databases, and 17 experts were involved in the validation. Epidemiological surveillance and early detection, risk and vulnerability assessments, preparedness, prediction and decision making, alerts and early warning, preventive strategies, control and mitigation, response, and elimination were identified as key elements associated with epidemic and pandemic preparedness and response systems in a multi-hazard context. All elements appear integrated within three interventional phases: upstream, interface, and downstream. A holistic approach focusing on all interventional phases is required for preparedness and response to pandemics and epidemics to counter their cascading and systemic effects. Further, a paradigm shift in the preparedness for multi-hazards during an epidemic or pandemic is essential due to the multiple challenges posed by concurrent hazards.
Collapse
Affiliation(s)
- Thushara Kamalrathne
- Global Disaster Resilience Centre, School of Applied Sciences, University of Huddersfield, Queensgate, Huddersfield HD1 3DH, UK
| | - Dilanthi Amaratunga
- Global Disaster Resilience Centre, School of Applied Sciences, University of Huddersfield, Queensgate, Huddersfield HD1 3DH, UK
| | - Richard Haigh
- Global Disaster Resilience Centre, School of Applied Sciences, University of Huddersfield, Queensgate, Huddersfield HD1 3DH, UK
| | | | | |
Collapse
|
7
|
Liang R, Fan A, Wang F, Niu Y. Optical lateral flow assays in early diagnosis of SARS-CoV-2 infection. ANAL SCI 2024; 40:1571-1591. [PMID: 38758251 DOI: 10.1007/s44211-024-00596-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 05/08/2024] [Indexed: 05/18/2024]
Abstract
So far, the 2019 novel coronavirus (COVID-19) is spreading widely worldwide. The early diagnosis of infection by the severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) is essential to provide timely treatment and prevent its further spread. Lateral flow assays (LFAs) have the advantages of rapid detection, simple operation, low cost, ease of mass production, and no need for special devices and professional operators, which make them suitable for self-testing at home. This review focuses on the early diagnosis of SARS-CoV-2 infection based on optical LFAs including colorimetric, fluorescent (FL), chemiluminescent (CL), and surface-enhanced Raman scattering (SERS) LFAs for the detection of SARS-CoV-2 antigens and nucleic acids. The types of recognition components, detection modes used for antigen detection, labels employed in different optical LFAs, and strategies to improve the detection sensitivity of LFAs were reviewed. Meanwhile, LFAs coupled with different nucleic acid amplification techniques and CRISPR-Cas systems for the detection of SARS-CoV-2 nucleic acids were summarized. We hope this review provides research mentalities for developing highly sensitive LFAs that can be used in home self-testing for the early diagnosis of SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Rushi Liang
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, 300072, People's Republic of China
| | - Aiping Fan
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, 300072, People's Republic of China.
| | - Feiqian Wang
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, 300072, People's Republic of China
| | - Yajing Niu
- Beijing Pharma and Biotech Center, Beijing, 100035, People's Republic of China.
| |
Collapse
|
8
|
Liu Y, Yu G, Liang H, Sun W, Zhang L, Mauk MG, Li H, Chen L. Detection and identification of SARS-CoV-2 and influenza a based on microfluidic technology. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2024; 16:4582-4589. [PMID: 38919038 DOI: 10.1039/d4ay00847b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/27/2024]
Abstract
As of now, the global COVID-19 pandemic caused by SARS-CoV-2, which began in 2019, has been effectively controlled. However, the symptoms of influenza A virus infection were similar to those of SARS-CoV-2 infection, but they required different treatment approaches. To make the detection more accurate and the treatment more targeted. We developed a system that integrates RPA and CRISPR assays, allowing for the rapid, highly specific, and sensitive detection and differentiation of SARS-CoV-2, H1N1, and H3N2. Under isothermal amplification conditions, the RPA-CRISPR Cas12a detection system achieved a detection limit as low as 5 copies per μL, demonstrating excellent specificity. The measurement time was approximately 30 minutes. The RPA-CRISPR Cas12a detection system combined with the microfluidic chip we designed to simultaneously detect three viruses, providing a potential solution for efficient and reliable diagnosis.
Collapse
Affiliation(s)
- Yujie Liu
- Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Sciences, Shandong Normal University, Jinan Shandong, China.
| | - Guanliu Yu
- Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Sciences, Shandong Normal University, Jinan Shandong, China.
| | - Hongkun Liang
- Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Sciences, Shandong Normal University, Jinan Shandong, China.
| | - Wenbo Sun
- Shandong Key Laboratory of Animal Disease Control and Breeding, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan Shandong, China
| | - Lulu Zhang
- College of Information Science and Technology, Beijing University of Chemical Technology, Beijing, China
| | - Michael G Mauk
- Department of Mechanical Engineering and Applied Mechanics, University of Pennsylvania, Philadelphia, Pennsylvania, 19104, USA
| | - Hua Li
- Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Sciences, Shandong Normal University, Jinan Shandong, China.
| | - Lei Chen
- Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Sciences, Shandong Normal University, Jinan Shandong, China.
| |
Collapse
|
9
|
Wang C, Yu Q, Zheng S, Shen W, Li J, Xu C, Gu B. Phenylboronic Acid-Modified Membrane-Like Magnetic Quantum Dots Enable the Ultrasensitive and Broad-Spectrum Detection of Viruses by Lateral Flow Immunoassay. ACS NANO 2024; 18:16752-16765. [PMID: 38901038 DOI: 10.1021/acsnano.4c01824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/22/2024]
Abstract
Although lateral flow immunochromatographic assay (LFIA) is an effective point-of-care testing technology, it still cannot achieve broad-spectrum and ultrasensitive detection of viruses. Herein, we propose a multiplex LFIA platform using a two-dimensional graphene oxide (GO)-based magnetic fluorescent nanofilm (GF@DQD) as a multifunctional probe and 4-aminophenylboronic acid (APBA) as a broad-spectrum recognition molecule for viral glycoprotein detection. GF@DQD-APBA with enhanced magnetic/fluorescence properties and universal capture ability for multiple viruses was easily prepared through the electrostatic adsorption of one layer of density-controlled Fe3O4 nanoparticles (NPs) and thousands of small CdSe/ZnS-MPA quantum dots (QDs) on a monolayer GO sheet followed by chemical coupling with APBA on the QD surface. The GF@DQD-APBA probe enabled the universal capture and specific determination of different target viruses on the test strip through an arbitrary combination with the antibody-modified LFIA strip, thus greatly improving detection efficiency and reducing the cost and difficulty of multiplex LFIA for viruses. The proposed technique can simultaneously and sensitively diagnose three newly emerged viruses within 20 min with detection limits down to the pg/mL level. The excellent practicability of GF@DQD-APBA-LFIA was also demonstrated in the detection of 34 clinical specimens positive for SARS-CoV-2, revealing its potential for epidemic control and on-site viral detection.
Collapse
Affiliation(s)
- Chongwen Wang
- Department of Clinical Laboratory Medicine, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong 510000, China
| | - Qing Yu
- Department of Clinical Laboratory Medicine, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong 510000, China
| | - Shuai Zheng
- Department of Clinical Laboratory Medicine, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong 510000, China
| | - Wanzhu Shen
- Department of Clinical Laboratory Medicine, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong 510000, China
| | - Jiaxuan Li
- Department of Clinical Laboratory Medicine, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong 510000, China
| | - Changyue Xu
- Department of Clinical Laboratory Medicine, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong 510000, China
| | - Bing Gu
- Department of Clinical Laboratory Medicine, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong 510000, China
| |
Collapse
|
10
|
Hou M, Hou W, Qin M, Wang Q, Zhou L. Photo-sensitive peptide inducing targeted cross-linking in a one-step and reagent-, enzyme- and antibody-free detection of SARS-Cov-2 marker protein. Bioelectrochemistry 2024; 157:108672. [PMID: 38428185 DOI: 10.1016/j.bioelechem.2024.108672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 02/17/2024] [Accepted: 02/21/2024] [Indexed: 03/03/2024]
Abstract
Modern biosensing technology plays a crucial role in combating the spread of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2). However, the associated assays remain costly, considering their extensive daily use. In response, we developed a simplified one-step SARS-CoV-2 protease assay that reduces both time and financial expenses. This approach eliminates the need for extra reagents, enzymes, or antibodies. The simplification involves a photo-sensitive Bengal red-tagged substrate peptide, allowing specific cross-linking upon protease-substrate recognition. This process forms a di-tyrosine product with a distinctive fluorescence signal readout, enabling the detection of SARS-CoV-2 in patient serum samples. This method anticipates a major reduction in assay costs in the near future.
Collapse
Affiliation(s)
- Meihui Hou
- School of Biological Science and Technology, University of Jinan, 336 West Road of Nan Xinzhuang, Jinan 250022, China
| | - Wenmin Hou
- School of Biological Science and Technology, University of Jinan, 336 West Road of Nan Xinzhuang, Jinan 250022, China
| | - Mingyu Qin
- Medical College, Soochow University, 333 East Road of Ganjiang, Suzhou 215026, China
| | - Qun Wang
- Yuhuangding Hospital, 20 East Road of Yuhuangding, Yantai 264000, China
| | - Lei Zhou
- School of Biological Science and Technology, University of Jinan, 336 West Road of Nan Xinzhuang, Jinan 250022, China.
| |
Collapse
|
11
|
Mo L, Yuan R, Hong Y, Yang C, Lin W. Accelerated diagnosis: a crosslinking catalytic hairpin assembly system for rapid and sensitive SARS-CoV-2 RNA detection. Mikrochim Acta 2024; 191:333. [PMID: 38753167 DOI: 10.1007/s00604-024-06396-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 04/28/2024] [Indexed: 05/18/2024]
Abstract
The COVID-19 pandemic has underscored the urgent need for rapid and reliable strategies for early detection of SARS-CoV-2. In this study, we propose a DNA nanosphere-based crosslinking catalytic hairpin assembly (CCHA) system for the rapid and sensitive SARS-CoV-2 RNA detection. The CCHA system employs two DNA nanospheres functionalized with catalytic hairpin assembly (CHA) hairpins. The presence of target SARS-CoV-2 RNA initiated the crosslinking of DNA nanospheres via CHA process, leading to the amplification of fluorescence signals. As a result, the speed of SARS-CoV-2 diagnosis was enhanced by significantly increasing the local concentration of the reagents in a crosslinked DNA product, leading to a detection limit of 363 fM within 5 min. The robustness of this system has been validated in complex environments, such as fetal bovine serum and saliva. Hence, the proposed CCHA system offers an efficient and simple approach for rapid detection of SARS-CoV-2 RNA, holding substantial promise for enhancing COVID-19 diagnosis.
Collapse
Affiliation(s)
- Liuting Mo
- Institute of Optical Materials and Chemical Biology, Guangxi Key Laboratory of Electrochemical Energy Materials, College of Chemistry and Chemical Engineering, Guangxi University, Nanning, Guangxi, 530004, People's Republic of China
| | - Rongzheng Yuan
- Institute of Optical Materials and Chemical Biology, Guangxi Key Laboratory of Electrochemical Energy Materials, College of Chemistry and Chemical Engineering, Guangxi University, Nanning, Guangxi, 530004, People's Republic of China
| | - Yan Hong
- Institute of Optical Materials and Chemical Biology, Guangxi Key Laboratory of Electrochemical Energy Materials, College of Chemistry and Chemical Engineering, Guangxi University, Nanning, Guangxi, 530004, People's Republic of China
| | - Chan Yang
- Institute of Optical Materials and Chemical Biology, Guangxi Key Laboratory of Electrochemical Energy Materials, College of Chemistry and Chemical Engineering, Guangxi University, Nanning, Guangxi, 530004, People's Republic of China
| | - Weiying Lin
- Institute of Optical Materials and Chemical Biology, Guangxi Key Laboratory of Electrochemical Energy Materials, College of Chemistry and Chemical Engineering, Guangxi University, Nanning, Guangxi, 530004, People's Republic of China.
| |
Collapse
|
12
|
Shen Y, Yang CT, Li W, Zhou X. Single-virus-sensitive barcode qPCR mediated by the aggregation of gold nanoparticle probes. Analyst 2024; 149:2556-2560. [PMID: 38587837 DOI: 10.1039/d4an00121d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/09/2024]
Abstract
Herein, we developed a gold nanoparticle (GNP)-mediated barcode qPCR strategy with a sensitivity for a single virus particle per reaction for the detection of influenza virus H3N2. The analysis of the results for pure virus and real virus samples show that GNP-mediated barcode qPCR is ∼16 times more sensitive than conventional qPCR, demonstrating the potential to reduce false negatives and improve early diagnosis of viral infections.
Collapse
Affiliation(s)
- Yuanzhao Shen
- College of Veterinary Medicine, Institute of Comparative Medicine, Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, China.
| | - Chih-Tsung Yang
- Future Industries Institute, University of South Australia, Mawson Lakes Blvd, Mawson Lakes, South Australia 5095, Australia
| | - Weiwei Li
- Institute of Pediatrics, Children's Hospital of Fudan University, Fudan University, Shanghai 201102, China.
| | - Xin Zhou
- College of Veterinary Medicine, Institute of Comparative Medicine, Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, China.
| |
Collapse
|
13
|
Armani Khatibi E, Farshbaf Moghimi N, Rahimpour E. COVID-19: An overview on possible transmission ways, sampling matrices and diagnosis. BIOIMPACTS : BI 2024; 14:29968. [PMID: 39493896 PMCID: PMC11530968 DOI: 10.34172/bi.2024.29968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 09/17/2023] [Accepted: 10/25/2023] [Indexed: 11/05/2024]
Abstract
COVID-19 is an RNA virus belonging to the SARS family of viruses and includes a wide range of symptoms along with effects on other body organs in addition to the respiratory system. The high speed of transmission, severe complications, and high death rate caused scientists to focus on this disease. Today, many different investigation types are performed on COVID-19 from various points of view in the literature. This review summarizes most of them to provide a useful guideline for researchers in this field. After a general introduction, this review is divided into three parts. In the first one, various transmission ways COVID-19 are classified and explained in detail. The second part reviews the used biological samples for the detection of virus and the final section describes the various methods reported for the diagnosis of COVID-19 in various biological matrices.
Collapse
Affiliation(s)
- Elina Armani Khatibi
- Department of Pharmaceutics, School of Pharmacy, Ardabil University of Medical Science, Ardabil, Iran
| | - Nastaran Farshbaf Moghimi
- Department of Pharmaceutics, School of Pharmacy, Ardabil University of Medical Science, Ardabil, Iran
| | - Elaheh Rahimpour
- Pharmaceutical Analysis Research Center and Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
14
|
Sun R, Zhou Y, Fang Y, Qin Y, Zheng Y, Jiang L. DNA aptamer-linked sandwich structure enhanced SPRi sensor for rapid, sensitive, and quantitative detection of SARS-CoV-2 spike protein. Anal Bioanal Chem 2024; 416:1667-1677. [PMID: 38342787 DOI: 10.1007/s00216-024-05172-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 01/23/2024] [Accepted: 01/24/2024] [Indexed: 02/13/2024]
Abstract
The harm and impact of the COVID-19 pandemic have highlighted the importance of fast, sensitive, and cost-effective virus detection methods. In this study, we developed a DNA aptamer sensor using nanoparticle-enhanced surface plasmon resonance imaging (SPRi) technology to achieve efficient labeling-free detection of SARS-CoV-2 S protein. We used the same DNA aptamer to modify the surface of the SPRi sensor chip and gold nanoparticles (AuNPs), respectively, for capturing target analytes and amplifying signals, achieving ideal results while greatly reducing costs and simplifying the preparation process. The SPRi sensing method exhibits a good linear relationship (R2 = 0.9926) in the concentration range of 1-20 nM before adding AuNPs to amplify the signal, with a limit of detection (LOD) of 0.32 nM. After amplifying the signal, there is a good linear relationship (R2 = 0.9829) between the concentration range of 25-1000 pM, with a LOD of 5.99 pM. The simulation results also verified the effectiveness of AuNPs in improving SPRi signal response. The SPRi sensor has the advantage of short detection time and can complete the detection within 10 min. In addition, the specificity and repeatability of this method can achieve excellent results. This is the first study to simultaneously capture a viral marker protein and amplify the signal using polyadenylic acid (polyA)-modified DNA aptamers on the SPR platform. This scheme can be used as a fast and inexpensive detection method for diagnosis at the point of care (POC) to combat current and future epidemics caused by the virus.
Collapse
Affiliation(s)
- Rengang Sun
- College of Optical and Electronic Technology, China Jiliang University, Hangzhou, 310018, China
| | - Yadong Zhou
- College of Optical and Electronic Technology, China Jiliang University, Hangzhou, 310018, China.
| | - Yunzhu Fang
- College of Optical and Electronic Technology, China Jiliang University, Hangzhou, 310018, China
| | - Yirui Qin
- College of Optical and Electronic Technology, China Jiliang University, Hangzhou, 310018, China
| | - Yekai Zheng
- College of Optical and Electronic Technology, China Jiliang University, Hangzhou, 310018, China
| | - Li Jiang
- College of Optical and Electronic Technology, China Jiliang University, Hangzhou, 310018, China.
| |
Collapse
|
15
|
Feng R, Fu S, Liu H, Wang Y, Liu S, Wang K, Chen B, Zhang X, Hu L, Chen Q, Cai T, Han X, Wang C. Single-Atom Site SERS Chip for Rapid, Ultrasensitive, and Reproducible Direct-Monitoring of RNA Binding. Adv Healthc Mater 2024; 13:e2301146. [PMID: 38176000 DOI: 10.1002/adhm.202301146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 12/11/2023] [Indexed: 01/06/2024]
Abstract
Ribonucleic acids (RNA) play active roles within cells or viruses by catalyzing biological reactions, controlling gene expression, and communicating responses to cellular signals. Rapid monitoring RNA variation has become extremely important for appropriate clinical decisions and frontier biological research. However, the most widely used method for RNA detection, nucleic acid amplification, is restricted by a mandatory temperature cycling period of ≈1 h required to reach target detection criteria. Herein, a direct detection approach via single-atom site integrated surface-enhanced Raman scattering (SERS) monitoring nucleic acid pairing reaction, can be completed within 3 min and reaches high sensitivity and extreme reproducibility for COVID-19 and two other influenza viruses' detection. The mechanism is that a single-atom site on SERS chip, enabled by positioning a single-atom oxide coordinated with a specific complementary RNA probe on chip nanostructure hotspots, can effectively bind target RNA analytes to enrich them at designed sites so that the binding reaction can be detected through Raman signal variation. This ultrafast, sensitive, and reproducible single-atom site SERS chip approach paves the route for an alternative technique of immediate RNA detection. Moreover, single-atom site SERS is a novel surface enrichment strategy for SERS active sites for other analytes at ultralow concentrations.
Collapse
Affiliation(s)
- Ran Feng
- Ningbo Institute of Life and Health Industry, University of Chinese Academy of Sciences, Key Laboratory of Diagnosis and Treatment of Digestive System Tumors of Zhejiang Province, Ningbo No. 2 Hospital, Ningbo, 315012, China
- Beijing Key Laboratory of Microstructure and Properties of Solids, Faculty of Materials and Manufacturing, Beijing University of Technology, Beijing, 100124, China
| | - Shaohua Fu
- Key Laboratory of Luminescence and Optical Information, Ministry of Education, Institute of Optoelectronic Technology, Beijing Jiaotong University, Beijing, 100044, China
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, China
| | | | - Ying Wang
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P. R. China
| | - Simiao Liu
- Thorgene Co., Ltd, Beijing, 100176, China
| | - Kaiwen Wang
- Beijing Key Laboratory of Microstructure and Properties of Solids, Faculty of Materials and Manufacturing, Beijing University of Technology, Beijing, 100124, China
| | - Binbin Chen
- Beijing Key Laboratory of Microstructure and Properties of Solids, Faculty of Materials and Manufacturing, Beijing University of Technology, Beijing, 100124, China
| | - Xiaoxian Zhang
- Key Laboratory of Luminescence and Optical Information, Ministry of Education, Institute of Optoelectronic Technology, Beijing Jiaotong University, Beijing, 100044, China
| | - Liming Hu
- Beijing Key Laboratory of Microstructure and Properties of Solids, Faculty of Materials and Manufacturing, Beijing University of Technology, Beijing, 100124, China
| | - Qian Chen
- Thorgene Co., Ltd, Beijing, 100176, China
| | - Ting Cai
- Ningbo Institute of Life and Health Industry, University of Chinese Academy of Sciences, Key Laboratory of Diagnosis and Treatment of Digestive System Tumors of Zhejiang Province, Ningbo No. 2 Hospital, Ningbo, 315012, China
| | - Xiaodong Han
- Beijing Key Laboratory of Microstructure and Properties of Solids, Faculty of Materials and Manufacturing, Beijing University of Technology, Beijing, 100124, China
| | - Cong Wang
- Ningbo Institute of Life and Health Industry, University of Chinese Academy of Sciences, Key Laboratory of Diagnosis and Treatment of Digestive System Tumors of Zhejiang Province, Ningbo No. 2 Hospital, Ningbo, 315012, China
- Beijing Key Laboratory of Microstructure and Properties of Solids, Faculty of Materials and Manufacturing, Beijing University of Technology, Beijing, 100124, China
- Thorgene Co., Ltd, Beijing, 100176, China
| |
Collapse
|
16
|
Han S, An HJ, Kwak T, Kim M, Kim D, Lee LP, Choi I. Plasmonic Optical Wells-Based Enhanced Rate PCR. NANO LETTERS 2024; 24:1738-1745. [PMID: 38286020 DOI: 10.1021/acs.nanolett.3c04615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2024]
Abstract
Rapid, sensitive, inexpensive point-of-care molecular diagnostics are crucial for the efficient control of spreading viral diseases and biosecurity of global health. However, the gold standard, polymerase chain reaction (PCR) is time-consuming and expensive and needs specialized testing laboratories. Here, we report a low-cost yet fast, selective, and sensitive Plasmonic Optical Wells-Based Enhanced Rate PCR: POWER-PCR. We optimized the efficient optofluidic design of 3D plasmonic optical wells via the computational simulation of light-to-heat conversion and thermophoretic convection in a self-created plasmonic cavity. The POWER-PCR chamber with a self-passivation layer can concentrate incident light to accumulate molecules, generate rapid heat transfer and thermophoretic flow, and minimize the quenching effect on the naked Au surface. Notably, we achieved swift photothermal cycling of nucleic acid amplification in POWER-PCR on-a-chip in 4 min 24 s. The POWER-PCR will provide an excellent solution for affordable and sensitive molecular diagnostics for precision medicine and preventive global healthcare.
Collapse
Affiliation(s)
- Seungyeon Han
- Department of Life Science, University of Seoul, Seoul, 02504, Republic of Korea
| | - Hyun Ji An
- Department of Life Science, University of Seoul, Seoul, 02504, Republic of Korea
- Harvard Medical School, Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts 02115, United States
| | - Taejin Kwak
- Department of Mechanical Engineering, Sogang University, Seoul, 04107, Republic of Korea
| | - Miseol Kim
- Department of Life Science, University of Seoul, Seoul, 02504, Republic of Korea
| | - Dongchoul Kim
- Department of Mechanical Engineering, Sogang University, Seoul, 04107, Republic of Korea
| | - Luke P Lee
- Harvard Medical School, Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts 02115, United States
- Department of Bioengineering, University of California, Berkeley, California 94720, United States
- Department of Electrical Engineering and Computer Science, University of California, Berkeley, California 94720, United States
- Institute of Quantum Biophysics, Department of Biophysics, Sungkyunkwan University, Suwon, 16419, Republic of Korea
- Department of Chemistry & Nanoscience, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Inhee Choi
- Department of Life Science, University of Seoul, Seoul, 02504, Republic of Korea
- Department of Applied Chemistry, University of Seoul, Seoul, 02504, Republic of Korea
| |
Collapse
|
17
|
Tang J, Zhu J, Wang J, Qian H, Liu Z, Wang R, Cai Q, Fang Y, Huang W. Development and clinical application of loop-mediated isothermal amplification combined with lateral flow assay for rapid diagnosis of SARS-CoV-2. BMC Infect Dis 2024; 24:81. [PMID: 38225546 PMCID: PMC10788970 DOI: 10.1186/s12879-023-08924-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Accepted: 12/17/2023] [Indexed: 01/17/2024] Open
Abstract
BACKGROUND The diagnostic assay leveraging multiple reverse transcription loop-mediated isothermal amplification (RT-LAMP) could meet the requirements for rapid nucleic acid detection of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). METHODS The devised assay merged the lateral flow assay with the RT-LAMP technology and designed specific primers for the simultaneous detection of the target and human-derived internal reference genes within a single reaction. An inquiry into the assay's limit of detection (LOD), sensitivity, and specificity was carried out. The effectiveness of this assay was validated using 498 clinical specimens. RESULTS This LOD of the assay was determined to be 500 copies/mL, and there was no observed cross-reaction with other respiratory pathogens. The detection results derived from clinical specimens showed substantial concordance with those from real-time reverse transcription-polymerase chain reaction (RT-qPCR) (Cohen's kappa, 0.876; 95% CI: 0.833-0.919; p<0.005). The diagnostic sensitivity and specificity were 87.1% and 100%, respectively. CONCLUSION The RT-LAMP assay, paired with a straightforward and disposable lateral immunochromatographic strip, achieves visual detection of dual targets for SARS-CoV-2 immediatly. Moreover, the entire procedure abstains from nucleic acids extraction. The samples are lysed at room temperature and subsequently proceed directly to the RT-LAMP reaction, which can be executed within 30 minutes at a constant temperature of 60-65°C. Then, the RT-LAMP amplification products are visualized using colloidal gold test strips. TRIAL REGISTRATION This study was registered at the Chinese Clinical Trial Registry (Registration number: ChiCTR2200060495, Date of registration 2022-06-03).
Collapse
Affiliation(s)
- Jin Tang
- Department of Clinical Laboratory, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - Jie Zhu
- Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
- Shanghai Jiao Tong University affiliated the Eighth People's Hospital, Shanghai, 200235, China
| | - Jie Wang
- Shanghai Fengxian District Central Hospital, Shanghai, 201406, China
- Shanghai Fengxian District Guhua Hospital, Shanghai, 201499, China
| | - Haiyong Qian
- Department of Intensive Care Medicine, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - Zengxin Liu
- Genoxor Medical Science and Technology Inc., No 555 Wangfang Road, Minhang District, Shanghai, 201112, China
| | - Ru Wang
- Genoxor Medical Science and Technology Inc., No 555 Wangfang Road, Minhang District, Shanghai, 201112, China
| | - Qingqing Cai
- Genoxor Medical Science and Technology Inc., No 555 Wangfang Road, Minhang District, Shanghai, 201112, China
| | - Yuan Fang
- Genoxor Medical Science and Technology Inc., No 555 Wangfang Road, Minhang District, Shanghai, 201112, China.
| | - Weifeng Huang
- Department of Intensive Care Medicine, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China.
| |
Collapse
|
18
|
Yu Q, Wu T, Tian B, Li J, Liu Y, Wu Z, Jin X, Wang C, Wang C, Gu B. Recent advances in SERS-based immunochromatographic assay for pathogenic microorganism diagnosis: A review. Anal Chim Acta 2024; 1286:341931. [PMID: 38049231 DOI: 10.1016/j.aca.2023.341931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 10/02/2023] [Accepted: 10/17/2023] [Indexed: 12/06/2023]
Abstract
Infectious diseases caused by bacteria, viruses, fungi, and other pathogenic microorganisms are among the most harmful public health problems in the world, causing tens of millions of deaths and incalculable economic losses every year. The establishment of rapid, simple, and highly sensitive diagnostic methods for pathogenic microorganisms is important for the prevention and control of infectious diseases, guidance of timely treatment, and the reduction of public safety risks. Lateral flow immunoassay (LFA) based on the colorimetric signal of colloidal gold is the most popular point-of-care testing technology at present, but it is limited by poor sensitivity and low throughput and hardly meets the needs of the highly sensitive screening of pathogenic microorganisms. In recent years, the combination of surface-enhanced Raman scattering (SERS) and LFA technology has developed into a novel analytical platform with high sensitivity and multiple detection capabilities and has shown great advantages in the detection of pathogenic microorganisms and infectious diseases. This review summarizes the working principle, design ideas, and application of the existing SERS-based LFA methods in pathogenic microorganism detection and further introduces the effect of new technologies such as Raman signal encoding, magnetic enrichment, novel membrane nanotags, and integrated Raman reading equipment on the performance of SERS-LFA. Finally, the main challenges and the future direction of development in this field of SERS-LFA are discussed.
Collapse
Affiliation(s)
- Qing Yu
- Department of Clinical Laboratory Medicine, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, 510000, China; College of Life Sciences, Anhui Agricultural University, Hefei, 230036, China
| | - Ting Wu
- Department of Clinical Laboratory Medicine, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, 510000, China
| | - Benshun Tian
- Department of Clinical Laboratory Medicine, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, 510000, China
| | - Jiaxuan Li
- Department of Clinical Laboratory Medicine, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, 510000, China
| | - Yun Liu
- Department of Clinical Laboratory Medicine, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, 510000, China
| | - Zelan Wu
- Guangzhou Labway Clinical Laboratory Co., Ltd, Guangdong, 510000, China
| | - Xiong Jin
- Guangzhou Labway Clinical Laboratory Co., Ltd, Guangdong, 510000, China
| | - Chaoguang Wang
- College of Intelligence Science and Technology, National University of Defense Technology, Changsha, 410073, China.
| | - Chongwen Wang
- Department of Clinical Laboratory Medicine, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, 510000, China; College of Life Sciences, Anhui Agricultural University, Hefei, 230036, China.
| | - Bing Gu
- Department of Clinical Laboratory Medicine, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, 510000, China.
| |
Collapse
|
19
|
Sun J, Song JH, Danielson MK, Colley ND, Thomas A, Hambly D, Barnes JC, Gross ML. Development of a High-Throughput Mass Spectrometry-Based SARS-CoV-2 Immunoassay. Anal Chem 2024; 96:12-17. [PMID: 38109790 PMCID: PMC10909588 DOI: 10.1021/acs.analchem.3c02421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2023]
Abstract
The serious impact of the Covid-19 pandemic underscores the need for rapid, reliable, and high-throughput diagnosis methods for infection. Current analytical methods, either point-of-care or centralized detection, are not able to satisfy the requirements of patient-friendly testing, high demand, and reliability of results. Here, we propose a two-point separation on-demand diagnostic strategy that uses laser desorption/ionization time-of-flight mass spectrometry (LDI-TOF MS) and adopts a stable yet cleavable ionic probe as a mass reporter. The use of this reporter enables ultrasensitive, interruptible, storable, restorable, and high-throughput on-demand detection. We describe a demonstration of the concept whereby we (i) design and synthesize a laser-cleavable reporter (DTPA), (ii) conjugate the reporter onto an antibody and verify the function of the conjugate, (iii) detect with good turnaround and high sensitivity the conjugated reporter, (iv) analyze quantitatively by using a laser-cleavable internal standard, and (v) identify negative and positive samples containing the spike protein. The protocol has excellent sensitivity (amol for the SARS-CoV-2 Spike S1 subunit antibody) without any amplification. This strategy is also applicable for the detection of other disease antigens besides SARS-CoV-2.
Collapse
Affiliation(s)
- Jie Sun
- Department of Chemistry, Washington University in St. Louis, St. Louis, MO, 63130, USA
| | - Jong Hee Song
- Department of Chemistry, Washington University in St. Louis, St. Louis, MO, 63130, USA
| | - Mary K. Danielson
- Department of Chemistry, Washington University in St. Louis, St. Louis, MO, 63130, USA
| | - Nathan D. Colley
- Department of Chemistry, Washington University in St. Louis, St. Louis, MO, 63130, USA
| | - Alia Thomas
- Department of Chemistry, Washington University in St. Louis, St. Louis, MO, 63130, USA
| | - David Hambly
- Advanced Therapy Product Consulting, Inc., Oak Park, CA, 91377, USA
| | - Jonathan C. Barnes
- Department of Chemistry, Washington University in St. Louis, St. Louis, MO, 63130, USA
| | - Michael L. Gross
- Department of Chemistry, Washington University in St. Louis, St. Louis, MO, 63130, USA
| |
Collapse
|
20
|
Moreira NS, Baldo TA, Duarte LC, Lopes-Luz L, Oliveira KA, Estrela PFN, Simões AM, Bührer-Sékula S, Duarte GRM, Coltro WKT. Direct immunoassay on a polyester microwell plate for colorimetric detection of the spike protein in swab and saliva samples. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2023; 16:74-82. [PMID: 38073521 DOI: 10.1039/d3ay01755a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2023]
Abstract
This study presents the development of a polyester microplate for detecting the S-protein of the SARS-CoV-2 virus in saliva and nasopharyngeal swab samples using direct enzyme-linked immunosorbent assay (ELISA) technology. The polyester microplate was designed to contain 96 zones with a 3 mm diameter each, and a volume of 2-3 μL. The experimental conditions including reagent concentration and reaction time were optimized. The microplate image was digitized and analyzed using graphical software. The linear range obtained between protein S concentrations and pixel intensity was 0-10 μg mL-1, with a correlation coefficient of 0.99 and a limit of detection of 0.44 μg mL-1. The developed methodology showed satisfactory intraplate and interplate repeatability with RSD values lower than 7.8%. The results achieved through immunoassay performed on polyester microplates were consistent with those of the RT-PCR method and showed a sensitivity of 100% and 90% and specificity of 85.71% and 100% for saliva and nasopharyngeal samples, respectively. The proposed direct immunoassay on polyester microplates emerges as an alternative to conventional immunoassays performed on commercial polystyrene plates, given the low cost of the device, low consumption of samples and reagents, lower waste generation, and shorter analysis time. Moreover, the immunoassay has shown great potential for diagnosing COVID-19 with precision and accuracy.
Collapse
Affiliation(s)
- Nikaele S Moreira
- Instituto de Química, Universidade Federal de Goiás, 74690-900, Goiânia, GO, Brazil.
| | - Thaisa A Baldo
- Instituto de Química, Universidade Federal de Goiás, 74690-900, Goiânia, GO, Brazil.
| | - Lucas C Duarte
- Instituto de Química, Universidade Federal de Goiás, 74690-900, Goiânia, GO, Brazil.
- Instituto Federal de Educação, Ciência e Tecnologia de Goiás - Campus Inhumas, 75402-556, Inhumas, GO, Brazil
| | - Leonardo Lopes-Luz
- Instituto de Patologia Tropical e Saúde Pública, Centro Multiusuário de Bioinsumos e Tecnologias em Saúde, Universidade Federal de Goiás, 74605-050, Goiânia, GO, Brazil
- Innovation Hub in Point-of-Care Technologies, 74690-900, Goiânia, GO, Brazil
| | - Karoliny A Oliveira
- Instituto de Química, Universidade Federal de Goiás, 74690-900, Goiânia, GO, Brazil.
| | - Paulo F N Estrela
- Instituto de Química, Universidade Federal de Goiás, 74690-900, Goiânia, GO, Brazil.
| | - Amanda M Simões
- Instituto de Química, Universidade Federal de Goiás, 74690-900, Goiânia, GO, Brazil.
| | - Samira Bührer-Sékula
- Instituto de Patologia Tropical e Saúde Pública, Centro Multiusuário de Bioinsumos e Tecnologias em Saúde, Universidade Federal de Goiás, 74605-050, Goiânia, GO, Brazil
- Innovation Hub in Point-of-Care Technologies, 74690-900, Goiânia, GO, Brazil
| | - Gabriela R M Duarte
- Instituto de Química, Universidade Federal de Goiás, 74690-900, Goiânia, GO, Brazil.
- Innovation Hub in Point-of-Care Technologies, 74690-900, Goiânia, GO, Brazil
| | - Wendell K T Coltro
- Instituto de Química, Universidade Federal de Goiás, 74690-900, Goiânia, GO, Brazil.
- Innovation Hub in Point-of-Care Technologies, 74690-900, Goiânia, GO, Brazil
- Instituto Nacional de Ciência e Tecnologia de Bioanalítica, 13084-971, Campinas, SP, Brazil
| |
Collapse
|
21
|
Abrha FH, Wondimu TH, Kahsay MH, Fufa Bakare F, Andoshe DM, Kim JY. Graphene-based biosensors for detecting coronavirus: a brief review. NANOSCALE 2023; 15:18184-18197. [PMID: 37927083 DOI: 10.1039/d3nr04583h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/07/2023]
Abstract
The coronavirus (SARS-CoV-2) disease has affected the globe with 770 437 327 confirmed cases, including about 6 956 900 deaths, according to the World Health Organization (WHO) as of September 2023. Hence, it is imperative to develop diagnostic technologies, such as a rapid cost-effective SARS-CoV-2 detection method. A typical biosensor enables biomolecule detection with an appropriate transducer by generating a measurable signal from the sample. Graphene can be employed as a component for ultrasensitive and selective biosensors based on its physical, optical, and electrochemical properties. Herein, we briefly review graphene-based electrochemical, field-effect transistor (FET), and surface plasmon biosensors for detecting the SARS-CoV-2 target. In addition, details on the surface modification, immobilization, sensitivity and limit of detection (LOD) of all three sensors with regard to SARS-CoV-2 were reported. Finally, the point-of-care (POC) detection of SARS-CoV-2 using a portable smartphone and a wearable watch is a current topic of interest.
Collapse
Affiliation(s)
- Filimon Hadish Abrha
- Department of Chemistry, College of Natural and Computational Sciences, Aksum University, Aksum 1010, Ethiopia
- Department of Materials Science and Engineering, Adama Science and Technology University, Adama 1888, Ethiopia.
| | - Tadele Hunde Wondimu
- Department of Materials Science and Engineering, Adama Science and Technology University, Adama 1888, Ethiopia.
- Center of Advanced Materials Science and Engineering, Adama Science and Technology University, Adama 1888, Ethiopia
| | - Mebrahtu Hagos Kahsay
- Department of Applied Chemistry, College of Natural and Computational Sciences, Mekelle University, Mekelle 231, Ethiopia
- Department of Applied Chemistry, Adama Science and Technology University, Adama 1888, Ethiopia
| | - Fetene Fufa Bakare
- Department of Materials Science and Engineering, Adama Science and Technology University, Adama 1888, Ethiopia.
- Center of Advanced Materials Science and Engineering, Adama Science and Technology University, Adama 1888, Ethiopia
| | - Dinsefa Mensur Andoshe
- Department of Materials Science and Engineering, Adama Science and Technology University, Adama 1888, Ethiopia.
| | - Jung Yong Kim
- Department of Materials Science and Engineering, Adama Science and Technology University, Adama 1888, Ethiopia.
- Center of Advanced Materials Science and Engineering, Adama Science and Technology University, Adama 1888, Ethiopia
| |
Collapse
|
22
|
Misko VR, Makasali RJ, Briet M, Legein F, Levecke B, De Malsche W. Enhancing the Yield of a Lab-on-a-Disk-Based Single-Image Parasite Quantification Device. MICROMACHINES 2023; 14:2087. [PMID: 38004944 PMCID: PMC10672913 DOI: 10.3390/mi14112087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 11/03/2023] [Accepted: 11/09/2023] [Indexed: 11/26/2023]
Abstract
The recently proposed single-image parasite quantification (SIMPAQ) platform based on a Lab-on-a-Disc (LOD) device was previously successfully tested in field conditions, demonstrating its efficiency in soil-transmitted helminth (STH) egg detection and analysis on the level delivered by the current state-of-the-art methods. Furthermore, the SIMPAQ provides relatively quick diagnostics and requires small amounts of sample and materials. On the other hand, in a recent related study, it was revealed that the performance of the SIMPAQ method can be limited due to the action of the tangential Euler and Coriolis forces, and the interaction of the moving eggs with the walls of the LOD chamber. Here, we propose a new improved design that allows us to overcome these limitations and enhance the yield of the SIMPAQ LOD device, as demonstrated in experiments with a synthetic particle model system and real parasite eggs. Despite the simplicity, the proposed design modification is demonstrated to allow a substantial improvement in the yield of the SIMPAQ device, i.e., above 90% of parasite eggs and 98% of synthetic model particles were transported to the field of view. The new design proposed here will be further examined in the new generation of SIMPAQ devices within ongoing research on STH egg detection in field conditions.
Collapse
Affiliation(s)
- Vyacheslav R. Misko
- µFlow Group, Department of Chemical Engineering, Vrije Universiteit Brussel, 1050 Brussels, Belgium; (V.R.M.); (R.J.M.); (M.B.); (F.L.)
| | - Ramadhani Juma Makasali
- µFlow Group, Department of Chemical Engineering, Vrije Universiteit Brussel, 1050 Brussels, Belgium; (V.R.M.); (R.J.M.); (M.B.); (F.L.)
| | - Matthieu Briet
- µFlow Group, Department of Chemical Engineering, Vrije Universiteit Brussel, 1050 Brussels, Belgium; (V.R.M.); (R.J.M.); (M.B.); (F.L.)
| | - Filip Legein
- µFlow Group, Department of Chemical Engineering, Vrije Universiteit Brussel, 1050 Brussels, Belgium; (V.R.M.); (R.J.M.); (M.B.); (F.L.)
| | - Bruno Levecke
- Department of Translational Physiology, Infectiology and Public Health, Ghent University, 9820 Merelbeke, Belgium;
| | - Wim De Malsche
- µFlow Group, Department of Chemical Engineering, Vrije Universiteit Brussel, 1050 Brussels, Belgium; (V.R.M.); (R.J.M.); (M.B.); (F.L.)
- Department of Bioengineering Sciences, Vrije Universiteit Brussel, 1050 Brussels, Belgium
| |
Collapse
|
23
|
Uzunoglu A, Gunes Altuntas E, Huseyin Ipekci H, Ozoglu O. Two-Dimensional (2D) materials in the detection of SARS-CoV-2. Microchem J 2023; 193:108970. [PMID: 37342763 PMCID: PMC10265934 DOI: 10.1016/j.microc.2023.108970] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 06/10/2023] [Accepted: 06/10/2023] [Indexed: 06/23/2023]
Abstract
The SARS-CoV-2 pandemic has resulted in a devastating effect on human health in the last three years. While tremendous effort has been devoted to the development of effective treatment and vaccines against SARS-CoV-2 and controlling the spread of it, collective health challenges have been encountered along with the concurrent serious economic impacts. Since the beginning of the pandemic, various detection methods like PCR-based methods, isothermal nucleic acid amplification-based (INAA) methods, serological methods or antibody tests, and evaluation of X-ray chest results have been exploited to diagnose SARS-CoV-2. PCR-based detection methods in these are considered gold standards in the current stage despite their drawbacks, including being high-cost and time-consuming procedures. Furthermore, the results obtained from the PCR tests are susceptible to sample collection methods and time. When the sample is not collected properly, obtaining a false result may be likely. The use of specialized lab equipment and the need for trained people for the experiments pose additional challenges in PCR-based testing methods. Also, similar problems are observed in other molecular and serological methods. Therefore, biosensor technologies are becoming advantageous with their quick response, high specificity and precision, and low-cost characteristics for SARS-CoV-2 detection. In this paper, we critically review the advances in the development of sensors for the detection of SARS-CoV-2 using two-dimensional (2D) materials. Since 2D materials including graphene and graphene-related materials, transition metal carbides, carbonitrides, and nitrides (MXenes), and transition metal dichalcogenides (TMDs) play key roles in the development of novel and high-performance electrochemical (bio)sensors, this review pushes the sensor technologies against SARS-CoV-2 detection forward and highlights the current trends. First, the basics of SARS-CoV-2 detection are described. Then the structure and the physicochemical properties of the 2D materials are explained, which is followed by the development of SARS-CoV-2 sensors by exploiting the exceptional properties of the 2D materials. This critical review covers most of the published papers in detail from the beginning of the outbreak.
Collapse
Affiliation(s)
- Aytekin Uzunoglu
- Faculty of Engineering, Metallurgical & Materials Engineering, Necmettin Erbakan University, Konya 42090, Turkey
| | - Evrim Gunes Altuntas
- Ankara University, Biotechnology Institute, Gumusdere Campus, 06135, Ankara, Turkey
| | - Hasan Huseyin Ipekci
- Faculty of Engineering, Metallurgical & Materials Engineering, Necmettin Erbakan University, Konya 42090, Turkey
| | - Ozum Ozoglu
- Department of Food Engineering, Faculty of Agriculture, Bursa Uludag University, 16059 Bursa, Turkey
| |
Collapse
|
24
|
Meshesha M, Sardar A, Supekar R, Bhattacharjee L, Chatterjee S, Halder N, Mohanta K, Bhattacharyya TK, Pal B. Development and Analytical Evaluation of a Point-of-Care Electrochemical Biosensor for Rapid and Accurate SARS-CoV-2 Detection. SENSORS (BASEL, SWITZERLAND) 2023; 23:8000. [PMID: 37766054 PMCID: PMC10534802 DOI: 10.3390/s23188000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 09/15/2023] [Accepted: 09/19/2023] [Indexed: 09/29/2023]
Abstract
The COVID-19 pandemic has underscored the critical need for rapid and accurate screening and diagnostic methods for potential respiratory viruses. Existing COVID-19 diagnostic approaches face limitations either in terms of turnaround time or accuracy. In this study, we present an electrochemical biosensor that offers nearly instantaneous and precise SARS-CoV-2 detection, suitable for point-of-care and environmental monitoring applications. The biosensor employs a stapled hACE-2 N-terminal alpha helix peptide to functionalize an in situ grown polypyrrole conductive polymer on a nitrocellulose membrane backbone through a chemical process. We assessed the biosensor's analytical performance using heat-inactivated omicron and delta variants of the SARS-CoV-2 virus in artificial saliva (AS) and nasal swab (NS) samples diluted in a strong ionic solution, as well as clinical specimens with known Ct values. Virus identification was achieved through electrochemical impedance spectroscopy (EIS) and frequency analyses. The assay demonstrated a limit of detection (LoD) of 40 TCID50/mL, with 95% sensitivity and 100% specificity. Notably, the biosensor exhibited no cross-reactivity when tested against the influenza virus. The entire testing process using the biosensor takes less than a minute. In summary, our biosensor exhibits promising potential in the battle against pandemic respiratory viruses, offering a platform for the development of rapid, compact, portable, and point-of-care devices capable of multiplexing various viruses. The biosensor has the capacity to significantly bolster our readiness and response to future viral outbreaks.
Collapse
Affiliation(s)
- Mesfin Meshesha
- Department of Virology, Opteev Technologies Inc., Baltimore, MD 21225, USA;
| | - Anik Sardar
- Research and Development Laboratory, Opteev Healthtech, GN-4, Sector-V, Kolkata 700091, India; (A.S.); (R.S.); (L.B.); (S.C.); (N.H.); (K.M.)
| | - Ruchi Supekar
- Research and Development Laboratory, Opteev Healthtech, GN-4, Sector-V, Kolkata 700091, India; (A.S.); (R.S.); (L.B.); (S.C.); (N.H.); (K.M.)
| | - Lopamudra Bhattacharjee
- Research and Development Laboratory, Opteev Healthtech, GN-4, Sector-V, Kolkata 700091, India; (A.S.); (R.S.); (L.B.); (S.C.); (N.H.); (K.M.)
| | - Soumyo Chatterjee
- Research and Development Laboratory, Opteev Healthtech, GN-4, Sector-V, Kolkata 700091, India; (A.S.); (R.S.); (L.B.); (S.C.); (N.H.); (K.M.)
| | - Nyancy Halder
- Research and Development Laboratory, Opteev Healthtech, GN-4, Sector-V, Kolkata 700091, India; (A.S.); (R.S.); (L.B.); (S.C.); (N.H.); (K.M.)
| | - Kallol Mohanta
- Research and Development Laboratory, Opteev Healthtech, GN-4, Sector-V, Kolkata 700091, India; (A.S.); (R.S.); (L.B.); (S.C.); (N.H.); (K.M.)
| | - Tarun Kanti Bhattacharyya
- Department of Electronics and Electrical Communication Engineering, Indian Institute of Technology, Kharagpur 721302, India;
| | - Biplab Pal
- Department of Virology, Opteev Technologies Inc., Baltimore, MD 21225, USA;
- Research and Development Laboratory, Opteev Healthtech, GN-4, Sector-V, Kolkata 700091, India; (A.S.); (R.S.); (L.B.); (S.C.); (N.H.); (K.M.)
| |
Collapse
|
25
|
Tsounidi D, Angelopoulou M, Petrou P, Raptis I, Kakabakos S. Simultaneous Detection of SARS-CoV-2 Nucleoprotein and Receptor Binding Domain by a Multi-Area Reflectance Spectroscopy Sensor. BIOSENSORS 2023; 13:865. [PMID: 37754099 PMCID: PMC10526254 DOI: 10.3390/bios13090865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 08/22/2023] [Accepted: 08/30/2023] [Indexed: 09/28/2023]
Abstract
The COVID-19 pandemic has emphasized the urgent need for point-of-care methods suitable for the rapid and reliable diagnosis of viral infections. To address this demand, we report the rapid, label-free simultaneous determination of two SARS-CoV-2 proteins, namely, the nucleoprotein and the receptor binding domain peptide of S1 protein, by implementing a bioanalytical device based on Multi Area Reflectance Spectroscopy. Simultaneous detection of these two proteins is achieved by using silicon chips with adjacent areas of different silicon dioxide thickness on top, each of which is modified with an antibody specific to either the nucleoprotein or the receptor binding domain of SARS-CoV-2. Both areas were illuminated by a single probe that also collected the reflected light, directing it to a spectrometer. The online conversion of the combined reflection spectra from the two silicon dioxide areas into the respective adlayer thickness enabled real-time monitoring of immunoreactions taking place on the two areas. Several antibodies have been tested to define the pair, providing the higher specific signal following a non-competitive immunoassay format. Biotinylated secondary antibodies and streptavidin were used to enhance the specific signal. Both proteins were detected in less than 12 min, with detection limits of 1.0 ng/mL. The assays demonstrated high repeatability with intra- and inter-assay coefficients of variation lower than 10%. Moreover, the recovery of both proteins from spiked samples prepared in extraction buffer from a commercial self-test kit for SARS-CoV-2 collection from nasopharyngeal swabs ranged from 90.0 to 110%. The short assay duration in combination with the excellent analytical performance and the compact instrument size render the proposed device and assay suitable for point-of-care applications.
Collapse
Affiliation(s)
- Dimitra Tsounidi
- Immunoassays-Immunosensors Lab, Institute of Nuclear and Radiological Sciences and Technology, Energy and Safety, NCSR “Demokritos”, 15341 Aghia Paraskevi, Greece; (D.T.); (M.A.); (P.P.)
| | - Michailia Angelopoulou
- Immunoassays-Immunosensors Lab, Institute of Nuclear and Radiological Sciences and Technology, Energy and Safety, NCSR “Demokritos”, 15341 Aghia Paraskevi, Greece; (D.T.); (M.A.); (P.P.)
| | - Panagiota Petrou
- Immunoassays-Immunosensors Lab, Institute of Nuclear and Radiological Sciences and Technology, Energy and Safety, NCSR “Demokritos”, 15341 Aghia Paraskevi, Greece; (D.T.); (M.A.); (P.P.)
| | - Ioannis Raptis
- Institute of Nanoscience and Nanotechnology, NCSR “Demokritos”, 15341 Aghia Paraskevi, Greece;
| | - Sotirios Kakabakos
- Immunoassays-Immunosensors Lab, Institute of Nuclear and Radiological Sciences and Technology, Energy and Safety, NCSR “Demokritos”, 15341 Aghia Paraskevi, Greece; (D.T.); (M.A.); (P.P.)
| |
Collapse
|
26
|
Naorungroj S, Srisomwat C, Khamcharoen W, Jampasa S, Pasomsub E, Shin K, Vilaivan T, Chailapakul O. Sequential Flow Controllable Microfluidic Device for G-Quadruplex DNAzyme-Based Electrochemical Detection of SARS-CoV-2 Using a Pyrrolidinyl Peptide Nucleic Acid. Anal Chem 2023; 95:12794-12801. [PMID: 37590190 DOI: 10.1021/acs.analchem.3c01758] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/19/2023]
Abstract
The coronavirus disease 2019 (COVID-19) pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has been a significant health issue globally. Point-of-care (POC) testing that can offer a rapid and accurate diagnosis of SARS-CoV-2 at the early stage of infection is highly desirable to constrain this outbreak, especially in resource-limited settings. Herein, we present a G-quadruplex DNAzyme-based electrochemical assay that is integrated with a sequential flow controllable microfluidic device for the detection of SARS-CoV-2 cDNA. According to the detection principle, a pyrrolidinyl peptide nucleic acid probe is immobilized on a screen-printed graphene electrode for capturing SARS-CoV-2 DNA. The captured DNA subsequently hybridizes with another DNA probe that carries a G-quadruplex DNAzyme as the signaling unit. The G-quadruplex DNAzyme catalyzes the H2O2-mediated oxidation of hydroquinone to benzoquinone that can be detected using square-wave voltammetry to give a signal that corresponds to the target DNA concentration. The assay exhibited high selectivity for SARS-CoV-2 DNA and showed a good experimental detection limit at 30 pM. To enable automation, the DNAzyme-based assay was combined with a capillary-driven microfluidic device featuring a burst valve technology to allow sequential sample and reagent delivery as well as the DNA target hybridization and enzymatic reaction to be operated in a precisely controlled fashion. The developed microfluidic device was successfully applied for the detection of SARS-CoV-2 from nasopharyngeal swab samples. The results were in good agreement with the standard RT-PCR method and could be performed within 20 min. Thus, this platform offers desirable characteristics that make it an alternative POC tool for COVID-19 diagnosis.
Collapse
Affiliation(s)
- Sarida Naorungroj
- Electrochemistry and Optical Spectroscopy Center of Excellence (EOSCE), Department of Chemistry, Faculty of Science, Chulalongkorn University, Phayathai Road, Pathumwan, Bangkok 10330, Thailand
| | - Chawin Srisomwat
- Department of Chemistry, Faculty of Science and Technology, Thammasat University, Pathumthani 12121, Thailand
| | - Wisarut Khamcharoen
- Electrochemistry and Optical Spectroscopy Center of Excellence (EOSCE), Department of Chemistry, Faculty of Science, Chulalongkorn University, Phayathai Road, Pathumwan, Bangkok 10330, Thailand
| | - Sakda Jampasa
- Electrochemistry and Optical Spectroscopy Center of Excellence (EOSCE), Department of Chemistry, Faculty of Science, Chulalongkorn University, Phayathai Road, Pathumwan, Bangkok 10330, Thailand
| | - Ekawat Pasomsub
- Department of Pathology, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok 10400, Thailand
| | - Kwanwoo Shin
- Department of Chemistry and Institute of Biological Interfaces, Sogang University, Seoul 04107, Republic of Korea
| | - Tirayut Vilaivan
- Organic Synthesis Research Unit, Department of Chemistry, Faculty of Science, Chulalongkorn University, Phayathai Road, Patumwan, Bangkok 10330, Thailand
| | - Orawon Chailapakul
- Electrochemistry and Optical Spectroscopy Center of Excellence (EOSCE), Department of Chemistry, Faculty of Science, Chulalongkorn University, Phayathai Road, Pathumwan, Bangkok 10330, Thailand
| |
Collapse
|
27
|
Li Y, Chen J, Wei J, Liu X, Yu L, Yu L, Ding D, Yang Y. Metallic nanoplatforms for COVID-19 diagnostics: versatile applications in the pandemic and post-pandemic era. J Nanobiotechnology 2023; 21:255. [PMID: 37542245 PMCID: PMC10403867 DOI: 10.1186/s12951-023-01981-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Accepted: 07/03/2023] [Indexed: 08/06/2023] Open
Abstract
The COVID-19 pandemic, which originated in Hubei, China, in December 2019, has had a profound impact on global public health. With the elucidation of the SARS-CoV-2 virus structure, genome type, and routes of infection, a variety of diagnostic methods have been developed for COVID-19 detection and surveillance. Although the pandemic has been declared over, we are still significantly affected by it in our daily lives in the post-pandemic era. Among the various diagnostic methods, nanomaterials, especially metallic nanomaterials, have shown great potential in the field of bioanalysis due to their unique physical and chemical properties. This review highlights the important role of metallic nanosensors in achieving accurate and efficient detection of COVID-19 during the pandemic outbreak and spread. The sensing mechanisms of each diagnostic device capable of analyzing a range of targets, including viral nucleic acids and various proteins, are described. Since SARS-CoV-2 is constantly mutating, strategies for dealing with new variants are also suggested. In addition, we discuss the analytical tools needed to detect SARS-CoV-2 variants in the current post-pandemic era, with a focus on achieving rapid and accurate detection. Finally, we address the challenges and future directions of metallic nanomaterial-based COVID-19 detection, which may inspire researchers to develop advanced biosensors for COVID-19 monitoring and rapid response to other virus-induced pandemics based on our current achievements.
Collapse
Affiliation(s)
- Yuqing Li
- Institute of Molecular Medicine (IMM), School of Medicine, Renji Hospital, Shanghai Jiao Tong University, Shanghai, 200127, China
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Mate-Rials & Devices, Soochow University, Suzhou, 215123, China
| | - Jingqi Chen
- Institute of Molecular Medicine (IMM), School of Medicine, Renji Hospital, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Jinchao Wei
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, China
| | - Xueliang Liu
- Institute of Molecular Medicine (IMM), School of Medicine, Renji Hospital, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Lu Yu
- Institute of Molecular Medicine (IMM), School of Medicine, Renji Hospital, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Linqi Yu
- Department of Immunization Program, Jing'an District Center for Disease Control and Prevention, Shanghai, 200072, China.
| | - Ding Ding
- Institute of Molecular Medicine (IMM), School of Medicine, Renji Hospital, Shanghai Jiao Tong University, Shanghai, 200127, China.
| | - Yu Yang
- Institute of Molecular Medicine (IMM), School of Medicine, Renji Hospital, Shanghai Jiao Tong University, Shanghai, 200127, China.
| |
Collapse
|
28
|
Zhao L, Song Q, Mai W, Deng M, Lei Y, Chen L, Kong W, Zhang L, Zhang L, Li Y, Ye H, Qin Y, Zhang T, Hu Y, Ji T, Wei W. Engineering highly efficient NIR-II FRET platform for Background-Free homogeneous detection of SARS-CoV-2 neutralizing antibodies in whole blood. CHEMICAL ENGINEERING JOURNAL (LAUSANNE, SWITZERLAND : 1996) 2023; 468:143616. [PMID: 37251501 PMCID: PMC10195770 DOI: 10.1016/j.cej.2023.143616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Revised: 04/10/2023] [Accepted: 05/16/2023] [Indexed: 05/31/2023]
Abstract
Förster or fluorescence resonance energy transfer (FRET) enables to probe biomolecular interactions, thus playing a vital role in bioassays. However, conventional FRET platforms suffer from limited sensitivity due to the low FRET efficiency and poor anti-interference of existing FRET pairs. Here we report a NIR-II (1000-1700 nm) FRET platform with extremely high FRET efficiency and exceptional anti-interference capability. This NIR-II FRET platform is established based on a pair of lanthanides downshifting nanoparticles (DSNPs) by employing Nd3+ doped DSNPs as an energy donor and Yb3+ doped DSNPs as an energy acceptor. The maximum FRET efficiency of this well-engineered NIR-II FRET platform reaches up to 92.2%, which is much higher than most commonly used ones. Owing to the all-NIR advantage (λex = 808 nm, λem = 1064 nm), this highly efficient NIR-II FRET platform exhibits extraordinary anti-interference in whole blood, and thus enabling background-free homogeneous detection of SARS-CoV-2 neutralizing antibodies in clinical whole blood sample with high sensitivity (limit of detection = 0.5 μg/mL) and specificity. This work opens up new opportunities for realizing highly sensitive detection of various biomarkers in biological samples with severe background interference.
Collapse
Affiliation(s)
- Lei Zhao
- MOE & Guangdong Provincial Key Laboratory of Laser Life Science, Guangzhou Key Laboratory of Spectral Analysis and Functional Probes, College of Biophotonics, South China Normal University, Guangzhou, China
| | - Qingwei Song
- MOE & Guangdong Provincial Key Laboratory of Laser Life Science, Guangzhou Key Laboratory of Spectral Analysis and Functional Probes, College of Biophotonics, South China Normal University, Guangzhou, China
| | - Weikang Mai
- Clinical Laboratory Medicine Department, the Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Min Deng
- Clinical Laboratory Medicine Department, the Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Yu Lei
- Clinical Laboratory Medicine Department, the Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Lu Chen
- Clinical Laboratory Medicine Department, the Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Weiya Kong
- Clinical Laboratory Medicine Department, the Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Lei Zhang
- Kidney Transplant Department, the Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Lin Zhang
- MOE & Guangdong Provincial Key Laboratory of Laser Life Science, Guangzhou Key Laboratory of Spectral Analysis and Functional Probes, College of Biophotonics, South China Normal University, Guangzhou, China
| | - Yantao Li
- MOE & Guangdong Provincial Key Laboratory of Laser Life Science, Guangzhou Key Laboratory of Spectral Analysis and Functional Probes, College of Biophotonics, South China Normal University, Guangzhou, China
| | - Huiru Ye
- MOE & Guangdong Provincial Key Laboratory of Laser Life Science, Guangzhou Key Laboratory of Spectral Analysis and Functional Probes, College of Biophotonics, South China Normal University, Guangzhou, China
| | - Yiru Qin
- Guangdong Provincial Key Laboratory of Occupational Disease Prevention and Treatment, Guangdong Province Hospital for Occupational Disease Prevention and Treatment, Guangzhou, China
| | - Tao Zhang
- MOE & Guangdong Provincial Key Laboratory of Laser Life Science, Guangzhou Key Laboratory of Spectral Analysis and Functional Probes, College of Biophotonics, South China Normal University, Guangzhou, China
| | - Yongjun Hu
- MOE & Guangdong Provincial Key Laboratory of Laser Life Science, Guangzhou Key Laboratory of Spectral Analysis and Functional Probes, College of Biophotonics, South China Normal University, Guangzhou, China
| | - Tianxing Ji
- Clinical Laboratory Medicine Department, the Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Wei Wei
- MOE & Guangdong Provincial Key Laboratory of Laser Life Science, Guangzhou Key Laboratory of Spectral Analysis and Functional Probes, College of Biophotonics, South China Normal University, Guangzhou, China
| |
Collapse
|
29
|
de Sousa KAF, Nonaka CKV, Khouri R, Gurgel Rocha CA, Regis-Silva CG, de Freitas Souza BS. Rapid Detection of SARS-CoV-2 Based on the LAMP Assay Associated with the CRISPRCas12a System. Diagnostics (Basel) 2023; 13:2233. [PMID: 37443626 DOI: 10.3390/diagnostics13132233] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 06/09/2023] [Accepted: 06/13/2023] [Indexed: 07/15/2023] Open
Abstract
BACKGROUND The global public health system has been severely tested by the COVID-19 pandemic. Mass testing was essential in controlling the transmission of the SARS-CoV-2; however, its implementation has encountered challenges, particularly in low-income countries. The urgent need for rapid and accurate tests for SARS-CoV-2 has proven to be extremely important. Point-of-care tests using the CRISPR system for COVID-19 have shown promise, with a reported high sensitivity and rapid detection. The performance of a CRISPR-based SARS-CoV-2 testing system was reported in this study. METHODS A total of 29 nasopharyngeal samples were evaluated, including 23 samples from individuals suspected of COVID-19, and six samples positive for H3N2 or respiratory syncytial virus. Two reference samples with known concentrations of SARS-CoV-2 RNA (3000 RNA copies/mL) or viral titer determined by plaque assay (105 PFU/mL) were also evaluated. The LAMP technique was employed to amplify the ORF1ab gene and the results were analyzed using a Gemini XPS fluorescence reader. RESULTS The RT-LAMP-CRISPR/Cas12 assay showed 100% concordance compared to RT-PCR. The RT-PCR presented a detection limit of 0.01 PFU/mL and the CRISPR/Cas12 system showed a limit of 15.6 PFU/mL. The RT-PCR sensitivity was approximately 8 RNA copies/µL and CRISPR/Cas12 at 84 RNA copies/µL. CONCLUSION The RT-LAMP-CRISPR/Cas12a assay offered a promising alternative for the detection of SARS-CoV-2 and reinforces that CRISPR-based diagnostic techniques can be an alternative for fast and accurate assays.
Collapse
Affiliation(s)
- Karoline Almeida Felix de Sousa
- Gonçalo Moniz Institute, Oswaldo Cruz Foundation (FIOCRUZ), Salvador 40296-710, Brazil
- Center for Biotechnology and Cell Therapy, D'Or Institute for Research and Education (IDOR), Salvador 41253-190, Brazil
| | - Carolina Kymie Vasques Nonaka
- Center for Biotechnology and Cell Therapy, D'Or Institute for Research and Education (IDOR), Salvador 41253-190, Brazil
- São Rafael Hospital, Salvador 41253-190, Brazil
| | - Ricardo Khouri
- Gonçalo Moniz Institute, Oswaldo Cruz Foundation (FIOCRUZ), Salvador 40296-710, Brazil
- Faculty of Medicine, Federal University of Bahia, Salvador 40210-630, Brazil
| | - Clarissa Araújo Gurgel Rocha
- Gonçalo Moniz Institute, Oswaldo Cruz Foundation (FIOCRUZ), Salvador 40296-710, Brazil
- Center for Biotechnology and Cell Therapy, D'Or Institute for Research and Education (IDOR), Salvador 41253-190, Brazil
- Faculty of Medicine, Federal University of Bahia, Salvador 40210-630, Brazil
- Faculty of Dentistry, Federal University of Bahia, Salvador 40210-630, Brazil
| | | | - Bruno Solano de Freitas Souza
- Gonçalo Moniz Institute, Oswaldo Cruz Foundation (FIOCRUZ), Salvador 40296-710, Brazil
- Center for Biotechnology and Cell Therapy, D'Or Institute for Research and Education (IDOR), Salvador 41253-190, Brazil
- São Rafael Hospital, Salvador 41253-190, Brazil
| |
Collapse
|
30
|
Kim HE, Schuck A, Park H, Huh HJ, Kang M, Kim YS. Gold nanostructures modified carbon-based electrode enhanced with methylene blue for point-of-care COVID-19 tests using isothermal amplification. Talanta 2023; 265:124841. [PMID: 37390671 PMCID: PMC10290770 DOI: 10.1016/j.talanta.2023.124841] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 04/20/2023] [Accepted: 06/19/2023] [Indexed: 07/02/2023]
Abstract
The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) envelope (E) and RNA-dependent RNA polymerase (RdRP) genes were detected via electrochemical measurements using a screen-printed carbon electrode (SPCE) (3-electrode system) coupled with a battery-operated thin-film heater based on the loop-mediated isothermal amplification (LAMP) technique. The working electrodes of the SPCE sensor were decorated with synthesized gold nanostars (AuNSs) to obtain a large surface area and improve sensitivity. The LAMP assay was enhanced using a real-time amplification reaction system to detect the optimal target genes (E and RdRP) of SARS-CoV-2. The optimized LAMP assay was performed with diluted concentrations (from 0 to 109 copies) of the target DNA using 30 μM of methylene blue as a redox indicator. Target DNA amplification was conducted for 30 min at a constant temperature using a thin-film heater, and the final amplicon electrical signals were detected based on cyclic voltammetry curves. Our electrochemical LAMP analysis of SARS-CoV-2 clinical samples showed an excellent correlation with the Ct value of real-time reverse transcriptase-polymerase chain reaction, indicating successful validation of results. A linear relationship between the peak current response and the amplified DNA was observed for both genes. The AuNS-decorated SPCE sensor with the optimized LAMP primer enabled accurate analysis of both SARS-CoV-2-positive and -negative clinical samples. Therefore, the developed device is suitable for use as a point-of-care test DNA-based sensor for the diagnosis of SARS-CoV-2.
Collapse
Affiliation(s)
- Hyo Eun Kim
- Department of Electrical and Computer Engineering, Sungkyunkwan University, Suwon, Republic of Korea
| | - Ariadna Schuck
- Department of Electrical and Computer Engineering, Sungkyunkwan University, Suwon, Republic of Korea
| | - Hyeonseek Park
- Biomedical Engineering Research Center, Smart Healthcare Research Institute, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea; Department of Medical Device Management and Research, SAIHST (Samsung Advanced Institute for Health Sciences & Technology), Sungkyunkwan University, Seoul, Republic of Korea
| | - Hee Jae Huh
- Department of Laboratory Medicine and Genetics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 06351, South Korea
| | - Minhee Kang
- Biomedical Engineering Research Center, Smart Healthcare Research Institute, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea; Department of Medical Device Management and Research, SAIHST (Samsung Advanced Institute for Health Sciences & Technology), Sungkyunkwan University, Seoul, Republic of Korea.
| | - Yong-Sang Kim
- Department of Electrical and Computer Engineering, Sungkyunkwan University, Suwon, Republic of Korea.
| |
Collapse
|
31
|
García-Sorribes S, Lara-Hernández F, Manzano-Blasco I, Abadía-Otero J, Albert E, Mulet A, Briongos-Figuero LS, Gabella-Martín M, Torres I, Signes-Costa J, Navarro D, Martín-Escudero JC, García-García AB, Chaves FJ. Sample Treatment with Trypsin for RT-LAMP COVID-19 Diagnosis. BIOLOGY 2023; 12:900. [PMID: 37508333 PMCID: PMC10376771 DOI: 10.3390/biology12070900] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 06/16/2023] [Accepted: 06/21/2023] [Indexed: 07/30/2023]
Abstract
The SARS-CoV-2 coronavirus is responsible for the COVID-19 pandemic resulting in a global health emergency. Given its rapid spread and high number of infected individuals, a diagnostic tool for a rapid, simple, and cost-effective detection was essential. In this work, we developed a COVID-19 diagnostic test, that incorporates a human internal control, based on the Reverse Transcription Loop-Mediated Isothermal Amplification (RT-LAMP). When working with synthetic SARS-CoV-2 RNA, the optimized RT-LAMP assay has a sensitivity of 10 viral copies and can be detected by fluorescence in less than 15 min or by the naked eye in 25 min using colorimetric RT-LAMP. To avoid the RNA extraction step, a pre-treatment of the sample was optimized. Subsequently, a validation was performed on 268 trypsin treated samples (including nasopharyngeal, buccal, and nasal exudates) and amplified with colorimetric RT-LAMP to evaluate its sensitivity and specificity in comparison with RT-qPCR of extracted samples. The validation results showed a sensitivity and specificity of 100% for samples with Ct ≤ 30. The rapid, simple, and inexpensive RT-LAMP SARS-CoV-2 extraction-free procedure developed may be an alternative test that could be applied for the detection of SARS-CoV-2 or adapted to detect other viruses present in saliva or nasopharyngeal samples with higher sensitivity and specificity of the antibody test.
Collapse
Affiliation(s)
| | | | - Iris Manzano-Blasco
- Genomic and Diabetes Unit, INCLIVA Biomedical Research Institute, 46010 Valencia, Spain
| | - Jessica Abadía-Otero
- Internal Medicine Service, Rio Hortega University Hospital, 47012 Valladolid, Spain
| | - Eliseo Albert
- Microbiology Service, University Clinic Hospital, INCLIVA, 46010 Valencia, Spain
| | - Alba Mulet
- Pulmonary Department, University Clinic Hospital, INCLIVA, 46010 Valencia, Spain
| | | | | | - Ignacio Torres
- Microbiology Service, University Clinic Hospital, INCLIVA, 46010 Valencia, Spain
| | - Jaime Signes-Costa
- Pulmonary Department, University Clinic Hospital, INCLIVA, 46010 Valencia, Spain
| | - David Navarro
- Microbiology Service, University Clinic Hospital, INCLIVA, 46010 Valencia, Spain
| | - Juan-Carlos Martín-Escudero
- Internal Medicine Service, Rio Hortega University Hospital, 47012 Valladolid, Spain
- Medicine Department, Valladolid University, 47002 Valladolid, Spain
| | - Ana-Bárbara García-García
- Genomic and Diabetes Unit, INCLIVA Biomedical Research Institute, 46010 Valencia, Spain
- CIBERDEM, ISCIII, 28029 Madrid, Spain
| | - Felipe Javier Chaves
- Genomic and Diabetes Unit, INCLIVA Biomedical Research Institute, 46010 Valencia, Spain
- CIBERDEM, ISCIII, 28029 Madrid, Spain
| |
Collapse
|
32
|
Wei J, Song Z, Cui J, Gong Y, Tang Q, Zhang K, Song X, Liao X. Entropy-driven assisted T7 RNA polymerase amplification-activated CRISPR/Cas13a activity for SARS-CoV-2 detection in human pharyngeal swabs and environment by an electrochemiluminescence biosensor. JOURNAL OF HAZARDOUS MATERIALS 2023; 452:131268. [PMID: 36965355 DOI: 10.1016/j.jhazmat.2023.131268] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 03/20/2023] [Accepted: 03/21/2023] [Indexed: 05/03/2023]
Abstract
In this study, we introduce an electrochemiluminescence (ECL) sensing platform based on the "Entropy-driven triggered T7 amplification-CRISPR/Cas13a system" (EDT-Cas). This platform combines a programmable entropy-driven cycling strategy, T7 RNA polymerase, and the CRISPR/Cas13a system to amplify the determination of the SARS-CoV-2 RdRp gene. The Ti3C2Tx-compliant ECL signaling molecule offers unique benefits when used with the ECL sensing platform to increase the assay sensitivity and the electrode surface modifiability. To obtain the T7 promoter, the SARS-CoV-2 RdRp gene may first initiate an entropy-driven cyclic amplification response. Then, after recognizing the T7 promoter sequence on the newly created dsDNA, T7 RNA polymerase starts transcription, resulting in the production of many single-stranded RNAs (ssRNAs), which in turn trigger the action of CRISPR/Cas13a. Finally, Cas13a/crRNA identifies the transcribed ssRNA. When it cleaves the ssRNA, many DNA reporter probes carrying -U-U- are cleaved on the electrode surface, increasing the ECL signal and allowing for the rapid and highly sensitive detection of SARS-CoV-2. With a detection limit of 7.39 aM, our method enables us to locate the SARS-CoV-2 RdRp gene in clinical samples. The detection method also demonstrates excellent repeatability and stability. The SARS-CoV-2 RdRp gene was discovered using the "Entropy-driven triggered T7 amplification-CRISPR/Cas13a system" (EDT-Cas). The developed ECL test had excellent recoveries in pharyngeal swabs and environmental samples. It is anticipated to offer an early clinical diagnosis of SARS-CoV-2 and further control the spread of the pandemic.
Collapse
Affiliation(s)
- Jihua Wei
- Guangxi Key Laboratory of Basic and Translational Research of Bone and Joint Degenerative Disease, The Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, Guangxi 533000, China
| | - Zichun Song
- West Guangxi Key Laboratory for Prevention and Treatment of High-incidence Diseases, Youjiang Medical University for Nationalities, Baise, Guangxi 533000, China
| | - Jiuying Cui
- West Guangxi Key Laboratory for Prevention and Treatment of High-incidence Diseases, Youjiang Medical University for Nationalities, Baise, Guangxi 533000, China
| | - Yuanxun Gong
- Guangxi Key Laboratory of Basic and Translational Research of Bone and Joint Degenerative Disease, The Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, Guangxi 533000, China
| | - Qianli Tang
- Guangxi Key Laboratory of Basic and Translational Research of Bone and Joint Degenerative Disease, The Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, Guangxi 533000, China
| | - Kai Zhang
- NHC Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi, Jiangsu 214063, China.
| | - Xinlei Song
- Maternity & Child Care Center of Dezhou, Dezhou 253000, China.
| | - Xianjiu Liao
- West Guangxi Key Laboratory for Prevention and Treatment of High-incidence Diseases, Youjiang Medical University for Nationalities, Baise, Guangxi 533000, China.
| |
Collapse
|
33
|
Neff CP, Cikara M, Geiss BJ, Thomas Caltagirone G, Liao A, Atif SM, Macdonald B, Schaden R. Nucleocapsid protein binding DNA aptamers for detection of SARS-COV-2. CURRENT RESEARCH IN BIOTECHNOLOGY 2023; 5:100132. [PMID: 37275459 PMCID: PMC10223630 DOI: 10.1016/j.crbiot.2023.100132] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 05/22/2023] [Accepted: 05/23/2023] [Indexed: 06/07/2023] Open
Abstract
The severe acute respiratory syndrome coronavirus (SARS-CoV-2) has infected millions of individuals and continues to be a major health concern worldwide. While reverse transcription-polymerase chain reaction remains a reliable method for detecting infections, limitations of this technology, particularly cost and the requirement of a dedicated laboratory, prevent rapid viral monitoring. Antigen tests filled this need to some extent but with limitations including sensitivity and specificity, particularly against emerging variants of concern. Here, we developed aptamers against the SARS-CoV-2 Nucleocapsid protein to complement or replace antibodies in antigen detection assays. As detection reagents in ELISA-like assays, our DNA aptamers were able to detect as low as 150 pg/mL of the protein and under 150 k copies of inactivated SARS-CoV-2 Wuhan Alpha strain in viral transport medium with little cross-reactivity to other human coronaviruses (HCoVs). Further, our aptamers were reselected against the SARS-CoV-2 Omicron variant of concern, and we found two sequences that had a more than two-fold increase in signal compared to our original aptamers when used as detection reagents against protein from the Omicron strain. These findings illustrate the use of aptamers as promising alternative detection reagents that may translate for use in current tests and our findings validate the method for the reselection of aptamers against emerging viral strains.
Collapse
Affiliation(s)
- Charles P Neff
- Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Mile Cikara
- Precision Medicine Architects, LLC, PO Box 148, Wellington, CO 80549, United States
| | - Brian J Geiss
- Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, CO 80523, USA
| | | | - Albert Liao
- Aptagen, LLC, 250 North Main Street, Jacobus, PA 17407, USA
| | - Shaikh M Atif
- Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Bradley Macdonald
- Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Richard Schaden
- Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| |
Collapse
|
34
|
Haroun AE, Obtel M, El Hilali S, Zeghari Z, Oulachguer N, Idrissi KS, Razine R. COVID-19 in Morocco's region: Observational study of prevalence in symptomatic adults using the PANBIOS® rapid antigen test September 2021. Influenza Other Respir Viruses 2023; 17:e13142. [PMID: 37180839 PMCID: PMC10173048 DOI: 10.1111/irv.13142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 04/16/2023] [Accepted: 04/20/2023] [Indexed: 05/16/2023] Open
Abstract
Background Rapid antigen tests have emerged to deal with the COVID-19 pandemic. Rapid diagnosis of SARS-CoV-2 infection is essential to reduce the spread of the disease. The aim of this study was to estimate the prevalence of COVID-19 infection and test the sensitivity and specificity in Temara-Skhirat in symptomatic adults through PANBIOS® test. Methods A prospective observational study was conducted in mid-September 2021. Two investigators conducted data collection from symptomatic adult patients. The diagnostic performance of the PANBIOS®, and the PCR was assessed to calculate sensitivity and the specificity. Results Among 206 symptomatic participants, the mean age was 38 ± 12 years, and the majority were women (59%). In our population, 80% had benefited from the anti-COVID vaccine. The median duration of symptoms was 4 days; the most common symptoms were fatigue (62%), headache (52%), fever (48%), cough (34%), loss of smell (25%), loss of taste (24%), and sore throat (22%). Results revealed 23% of cases tested positive with PANBIOS® test versus 30% with the PCR test. The calculated medical decision between PCR versus PANBIOS® test showed high specificity of 95.7% and a sensitivity of 69.4%. There was concordance between the PANBIOS® test and the PCR. Conclusion The prevalence tested remain high, and the sensitivity and specificity of the PANBIOS® versus PCR test are similar to other literatures and close to value described in WHO recommendations. PANBIOS® is a useful test for controlling the spread of COVID-19 allowing identification of active infection.
Collapse
Affiliation(s)
- Abbas Ermilo Haroun
- Laboratory of Biostatistic, Clinical and Epidemiological Research, Department of Public Health, Faculty of Medicine and PharmacyMohammed V UniversityRabatMorocco
- Laboratory of Community Health (Public Health, Preventive Medicine and Hygiene), Department of Public Health, Faculty of Medicine and PharmacyMohammed V UniversityRabatMorocco
| | - Majdouline Obtel
- Laboratory of Biostatistic, Clinical and Epidemiological Research, Department of Public Health, Faculty of Medicine and PharmacyMohammed V UniversityRabatMorocco
- Laboratory of Community Health (Public Health, Preventive Medicine and Hygiene), Department of Public Health, Faculty of Medicine and PharmacyMohammed V UniversityRabatMorocco
| | - Samia El Hilali
- Laboratory of Biostatistic, Clinical and Epidemiological Research, Department of Public Health, Faculty of Medicine and PharmacyMohammed V UniversityRabatMorocco
- Laboratory of Community Health (Public Health, Preventive Medicine and Hygiene), Department of Public Health, Faculty of Medicine and PharmacyMohammed V UniversityRabatMorocco
| | - Zhor Zeghari
- Laboratory of Biostatistic, Clinical and Epidemiological Research, Department of Public Health, Faculty of Medicine and PharmacyMohammed V UniversityRabatMorocco
| | - Najat Oulachguer
- Municipal Hygiene OfficeMinistry of Health and Social ProtectionRabatMorocco
| | - Karim Sbai Idrissi
- Laboratory of Biostatistic, Clinical and Epidemiological Research, Department of Public Health, Faculty of Medicine and PharmacyMohammed V UniversityRabatMorocco
| | - Rachid Razine
- Laboratory of Biostatistic, Clinical and Epidemiological Research, Department of Public Health, Faculty of Medicine and PharmacyMohammed V UniversityRabatMorocco
- Laboratory of Community Health (Public Health, Preventive Medicine and Hygiene), Department of Public Health, Faculty of Medicine and PharmacyMohammed V UniversityRabatMorocco
| |
Collapse
|
35
|
Fang L, Yang L, Han M, Xu H, Ding W, Dong X. CRISPR-cas technology: A key approach for SARS-CoV-2 detection. Front Bioeng Biotechnol 2023; 11:1158672. [PMID: 37214290 PMCID: PMC10198440 DOI: 10.3389/fbioe.2023.1158672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 03/31/2023] [Indexed: 05/24/2023] Open
Abstract
The CRISPR (Clustered Regularly Spaced Short Palindromic Repeats) system was first discovered in prokaryotes as a unique immune mechanism to clear foreign nucleic acids. It has been rapidly and extensively used in basic and applied research owing to its strong ability of gene editing, regulation and detection in eukaryotes. Hererin in this article, we reviewed the biology, mechanisms and relevance of CRISPR-Cas technology and its applications in severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) diagnosis. CRISPR-Cas nucleic acid detection tools include CRISPR-Cas9, CRISPR-Cas12, CRISPR-Cas13, CRISPR-Cas14, CRISPR nucleic acid amplification detection technology, and CRISPR colorimetric readout detection system. The above CRISPR technologies have been applied to the nucleic acid detection, including SARS-CoV-2 detection. Common nucleic acid detection based on CRISPR derivation technology include SHERLOCK, DETECTR, and STOPCovid. CRISPR-Cas biosensing technology has been widely applied to point-of-care testing (POCT) by targeting recognition of both DNA molecules and RNA Molecules.
Collapse
Affiliation(s)
- Lijuan Fang
- Department of Laboratory Medicine, Hangzhou Ninth People’s Hospital, Hangzhou, Zhejiang Province, China
| | - Lusen Yang
- Department of Laboratory Medicine, Hangzhou Ninth People’s Hospital, Hangzhou, Zhejiang Province, China
| | - Mingyue Han
- Department of Laboratory Medicine, Hangzhou Ninth People’s Hospital, Hangzhou, Zhejiang Province, China
| | - Huimei Xu
- Department of Laboratory Medicine, Hangzhou Ninth People’s Hospital, Hangzhou, Zhejiang Province, China
| | - Wenshuai Ding
- Department of Laboratory Medicine, Hangzhou Ninth People’s Hospital, Hangzhou, Zhejiang Province, China
| | - Xuejun Dong
- Medical Laboratory, Zhejiang University Shaoxing Hospital, Shaoxing, China
| |
Collapse
|
36
|
Yang J, Phan VM, Heo CK, Nguyen HV, Lim WH, Cho EW, Poo H, Seo TS. Development of nucleocapsid-specific monoclonal antibodies for SARS-CoV-2 and their ELISA diagnostics on an automatic microfluidic device. SENSORS AND ACTUATORS. B, CHEMICAL 2023; 380:133331. [PMID: 36644652 PMCID: PMC9826540 DOI: 10.1016/j.snb.2023.133331] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Revised: 01/04/2023] [Accepted: 01/06/2023] [Indexed: 06/17/2023]
Abstract
Coronavirus disease 2019 (COVID-19) pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection has threatened public health globally, and the emergence of viral variants has exacerbated an already precarious situation. To prevent further spread of the virus and determine government action required for virus control, accurate and rapid immunoassays for SARS-CoV-2 diagnosis are urgently needed. In this study, we generated monoclonal antibodies (mAbs) against the SARS-CoV-2 nucleocapsid protein (NP), compared their reactivity using an enzyme-linked immunosorbent assay (ELISA), and selected four mAbs designated 1G6, 3E10, 3F10, and 5B6 which have higher reactivity to NP and viral lysates of SARS-CoV-2 than other mAbs. Using an epitope mapping assay, we identified that 1G6 detected the C-terminal domain of SARS-CoV-2 NP (residues 248-364), while 3E10 and 3F10 bound to the N-terminal domain (residues 47-174) and 3F10 detected the N-arm region (residues 1-46) of SARS-CoV-2 NP. Based on the epitope study and sandwich ELISA, we selected the 1G6 and 3E10 Abs as an optimal Ab pair and applied them for a microfluidics-based point-of-care (POC) ELISA assay to detect the NPs of SARS-CoV-2 and its variants. The integrated and automatic microfluidic system could operate the serial injection of the sample, the washing solution, the HRP-conjugate antibody, and the TMB substrate solution simply by controlling air purge via a single syringe. The proposed Ab pair-equipped microsystem effectively detected the NPs of SARS-CoV-2 variants as well as in clinical samples. Collectively, our proposed platform provides an advanced protein-based diagnostic tool for detecting SARS-CoV-2.
Collapse
Affiliation(s)
- Jihyun Yang
- Infectious Disease Research Center, Korea Research Institute of Bioscience and Biotechnology, 125 Gwahak-ro, Yuseong-gu, Daejeon 34141, South Korea
| | - Vu Minh Phan
- Department of Chemical Engineering (BK21 FOUR Integrated Engineering Program), Kyung Hee University, Yongin 17104, South Korea
| | - Chang-Kyu Heo
- Infectious Disease Research Center, Korea Research Institute of Bioscience and Biotechnology, 125 Gwahak-ro, Yuseong-gu, Daejeon 34141, South Korea
| | - Hau Van Nguyen
- Department of Chemical Engineering (BK21 FOUR Integrated Engineering Program), Kyung Hee University, Yongin 17104, South Korea
| | - Won-Hee Lim
- Rare Disease Research Center, Korea Research Institute of Bioscience and Biotechnology, 125 Gwahak-ro, Yuseong-gu, Daejeon 34141, South Korea
| | - Eun-Wie Cho
- Rare Disease Research Center, Korea Research Institute of Bioscience and Biotechnology, 125 Gwahak-ro, Yuseong-gu, Daejeon 34141, South Korea
| | - Haryoung Poo
- Infectious Disease Research Center, Korea Research Institute of Bioscience and Biotechnology, 125 Gwahak-ro, Yuseong-gu, Daejeon 34141, South Korea
| | - Tae Seok Seo
- Department of Chemical Engineering (BK21 FOUR Integrated Engineering Program), Kyung Hee University, Yongin 17104, South Korea
| |
Collapse
|
37
|
Presti D, Bergier J, Ripoll L, Borio C, Torchia GA, Bilen M. Point-of-care real-time DNA detection device for SARS-CoV-2 from clinical samples. JOURNAL OF THE OPTICAL SOCIETY OF AMERICA. A, OPTICS, IMAGE SCIENCE, AND VISION 2023; 40:C1-C7. [PMID: 37132945 DOI: 10.1364/josaa.479058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Since the global pandemic of SARS-CoV-2, people's health and the economic support of their countries have been seriously affected. It was necessary to develop a low-cost and faster diagnostic tool that allows the evaluation of symptomatic patients. Point-of-care testing and point-of-need testing systems have been recently developed to solve these drawbacks, providing accurate and rapid diagnostics at field level or at the site of outbreaks. In this work, a bio-photonic device has been developed for the diagnosis of COVID-19. The device is used with an isothermal system (Easy Loop Amplification based) for the detection of SARS-CoV-2. The performance of the device was evaluated in the detection of a SARS-CoV-2 RNA sample panel, showing an analytical sensitivity comparable to the reference method of quantitative reverse transcription polymerase chain reaction used commercially. In addition, the device was mainly built with simple and low-cost components; therefore, it is possible to obtain a high-efficiency and low-cost instrument. The device excites the sample to be analyzed with a semiconductor laser with a specific wavelength, thus triggering spontaneous emission of the fluorophore bound to the specific probe. The emitted fluorescence is suitably managed by using interferential filters. Under these conditions, a signal is registered and, depending on this level, defines the case as positive or negative. All the analysis is done autonomously inside the developed device through an integrated control system, and it is connected to a portable device to show the results wirelessly.
Collapse
|
38
|
Nahar K, Begum MN, Tony SR, Jubair M, Hossain MA, Karim Y, Faisal AA, Hossain ME, Rahman MZ, Rahman M. Nasal swab as an alternative specimen for the detection of severe acute respiratory syndrome coronavirus 2. Health Sci Rep 2023; 6:e1213. [PMID: 37077182 PMCID: PMC10106929 DOI: 10.1002/hsr2.1213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 04/06/2023] [Accepted: 04/06/2023] [Indexed: 04/21/2023] Open
Abstract
Background and Aims The coronavirus disease 2019 (COVID-19) has brought serious threats to public health worldwide. Nasopharyngeal, nasal swabs, and saliva specimens are used to detect severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). However, limited data are available on the performance of less invasive nasal swab for testing COVID-19. This study aimed to compare the diagnostic performance of nasal swabs with nasopharyngeal swabs using real-time reverse transcription polymerase chain reaction (RT-PCR) considering viral load, onset of symptoms, and disease severity. Methods A total of 449 suspected COVIDCOVID-19 individuals were recruited. Both nasopharyngeal and nasal swabs were collected from the same individual. Viral RNA was extracted and tested by real-time RT-PCR. Metadata were collected using structured questionnaire and analyzed by SPSS and MedCalc software. Results The overall sensitivity of the nasopharyngeal swab was 96.6%, and the nasal swab was 83.4%. The sensitivity of nasal swabs was more than 97.7% for low and moderate C t values. Moreover, the performance of nasal swab was very high (>87%) for hospitalized patients and at the later stage >7 days of onset of symptoms. Conclusion Less invasive nasal swab sampling with adequate sensitivity can be used as an alternative to nasopharyngeal swabs for the detection of SARS-CoV-2 by real-time RT-PCR.
Collapse
Affiliation(s)
- Kamrun Nahar
- Virology LaboratoryInfectious Diseases Division, icddr,b: International Centre for Diarrhoeal Disease Research, BangladeshMohakhaliDhaka1212Bangladesh
| | - Mst. Noorjahan Begum
- Virology LaboratoryInfectious Diseases Division, icddr,b: International Centre for Diarrhoeal Disease Research, BangladeshMohakhaliDhaka1212Bangladesh
| | - Selim R. Tony
- Virology LaboratoryInfectious Diseases Division, icddr,b: International Centre for Diarrhoeal Disease Research, BangladeshMohakhaliDhaka1212Bangladesh
| | - Mohammad Jubair
- Virology LaboratoryInfectious Diseases Division, icddr,b: International Centre for Diarrhoeal Disease Research, BangladeshMohakhaliDhaka1212Bangladesh
| | - Md. Abir Hossain
- Virology LaboratoryInfectious Diseases Division, icddr,b: International Centre for Diarrhoeal Disease Research, BangladeshMohakhaliDhaka1212Bangladesh
| | - Yeasir Karim
- Virology LaboratoryInfectious Diseases Division, icddr,b: International Centre for Diarrhoeal Disease Research, BangladeshMohakhaliDhaka1212Bangladesh
| | - Abdullah Al. Faisal
- Virology LaboratoryInfectious Diseases Division, icddr,b: International Centre for Diarrhoeal Disease Research, BangladeshMohakhaliDhaka1212Bangladesh
| | - Mohammad Enayet Hossain
- Virology LaboratoryInfectious Diseases Division, icddr,b: International Centre for Diarrhoeal Disease Research, BangladeshMohakhaliDhaka1212Bangladesh
| | - Mohammed Ziaur Rahman
- Virology LaboratoryInfectious Diseases Division, icddr,b: International Centre for Diarrhoeal Disease Research, BangladeshMohakhaliDhaka1212Bangladesh
| | - Mustafizur Rahman
- Virology LaboratoryInfectious Diseases Division, icddr,b: International Centre for Diarrhoeal Disease Research, BangladeshMohakhaliDhaka1212Bangladesh
| |
Collapse
|
39
|
Yang Y, Li Y. Perspective Chapter: Novel Diagnostics Methods for SARS-CoV-2. Infect Dis (Lond) 2023. [DOI: 10.5772/intechopen.105912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/30/2023] Open
Abstract
A novel coronavirus of zoonotic origin (SARS-CoV-2) has recently been recognized in patients with acute respiratory disease. COVID-19 causative agent is structurally and genetically similar to SARS and bat SARS-like coronaviruses. The drastic increase in the number of coronavirus and its genome sequence has given us an unprecedented opportunity to perform bioinformatics and genomics analysis on this class of viruses. Clinical tests such as PCR and ELISA for rapid detection of this virus are urgently needed for early identification of infected patients. However, these techniques are expensive and not readily available for point-of-care (POC) applications. Currently, lack of any rapid, available, and reliable POC detection method gives rise to the progression of COVID-19 as a horrible global problem. To solve the negative features of clinical investigation, we provide a brief introduction of the various novel diagnostics methods including SERS, SPR, electrochemical, magnetic detection of SARS-CoV-2. All sensing and biosensing methods based on nanotechnology developed for the determination of various classes of coronaviruses are useful to recognize the newly immerged coronavirus, i.e., SARS-CoV-2. Also, the introduction of sensing and biosensing methods sheds light on the way of designing a proper screening system.
Collapse
|
40
|
A triple-target reverse transcription loop-mediated isothermal amplification (RT-LAMP) for rapid and accurate detection of SARS-CoV-2 virus. Anal Chim Acta 2023; 1255:341146. [PMID: 37032059 PMCID: PMC10039734 DOI: 10.1016/j.aca.2023.341146] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 03/22/2023] [Accepted: 03/24/2023] [Indexed: 03/29/2023]
Abstract
The spreading of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) across the world has impacted people's health and lives worldwide in recent years. Rapid and accurate diagnosis is crucial for curbing the pandemic of coronavirus disease 2019 (COVID-19). Reverse transcription loop-mediated isothermal amplification (RT-LAMP) has great potential for SARS-CoV-2 detection but fails to completely replace conventional PCR due to the high false-positive rate (FPR). We proposed a triple-target RT-LAMP method for dual-signal, sensitive, and simultaneous detection of conserved genes of SARS-CoV-2. Multiple LAMP primer sets were designed for N, E, and M genes and their amplification efficacy were screened. Then, using artificial plasmids and RNA, the optimal primer set for each gene was examined on specificity, sensitivity, and detection range. The RT-LAMP initiated by these primer sets exhibited better specificity and sensitivity than that of RT-qPCR, and the triple-target RT-LAMP could determine different variants of SARS-CoV-2. By testing 78 artificial RNA samples, the total FPR of triple-target RT-LAMP was eliminated compared with that of mono-target RT-LAMP. The triple-target RT-LAMP method precisely identified throat swab specimens through colorimetry and fluorescent signals within 60 min, and the limit of detection (LOD) was as low as 187 copies/reaction. In the future, the triple-target RT-LAMP can be applied to in-field and on-site diagnosis of symptomatic and asymptomatic virus carriers.
Collapse
|
41
|
Fan J, Parr S, Kang S, Gupta M. Point-of-care (POC) SARS-CoV-2 antigen detection using functionalized aerosol jet-printed organic electrochemical transistors (OECTs). NANOSCALE 2023; 15:5476-5485. [PMID: 36852643 DOI: 10.1039/d2nr06485e] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
The continuous spread of coronavirus disease 2019 (COVID-19) has highlighted the need for simple and reliable diagnostic technologies for point-of-care (POC) virus detection applications. Here, we report a COVID-19 diagnostic platform based on aerosol jet-printed antibody-functionalized organic electrochemical transistors (OECTs) for rapidly identifying severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) antigens. Selective sensing of SARS-CoV-2 spike S1 protein is achieved in phosphate-buffered saline (PBS) with a detectable range of 1 fg mL-1 to 1 μg mL-1. We used the sensors to detect the antigens in unprocessed patient nasopharyngeal swab samples in universal transport medium (UTM) and achieved an overall accuracy of 70%. In addition, these patient sample tests clearly demonstrate that our OECT threshold voltage shift is correlated with the sample SARS-CoV-2 viral load. Hence, we have demonstrated an accurate POC biosensor for detecting SARS-CoV-2 antigens, which holds great promise towards developing on-site and at-home rapid SARS-CoV-2 infection screening and COVID-19 prognosis.
Collapse
Affiliation(s)
- Jiaxin Fan
- Department of Electrical and Computer Engineering, University of Alberta, Edmonton, Alberta, T6G 1H9, Canada.
| | - Sheldon Parr
- Department of Electrical and Computer Engineering, University of Alberta, Edmonton, Alberta, T6G 1H9, Canada.
| | - Seongdae Kang
- Department of Chemical and Materials, University of Alberta, Edmonton, Alberta, T6G 1H9, Canada
| | - Manisha Gupta
- Department of Electrical and Computer Engineering, University of Alberta, Edmonton, Alberta, T6G 1H9, Canada.
| |
Collapse
|
42
|
Xia L, Yin J, Zhuang J, Yin W, Zou Z, Mu Y. Adsorption-Free Self-Priming Direct Digital Dual-crRNA CRISPR/Cas12a-Assisted Chip for Ultrasensitive Detection of Pathogens. Anal Chem 2023; 95:4744-4752. [PMID: 36867551 DOI: 10.1021/acs.analchem.2c05560] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/04/2023]
Abstract
Rapid and sensitive pathogen detection methods are critical for disease diagnosis and treatment. RPA-CRISPR/Cas12 systems have displayed remarkable potential in pathogen detection. A self-priming digital PCR chip is a powerful and attractive tool for nucleic detection. However, the application of the RPA-CRISPR/Cas12 system to the self-priming chip still has great challenges due to the problems of protein adsorption and two-step detection mode of RPA-CRISPR/Cas12. In this study, an adsorption-free self-priming digital chip was developed and a direct digital dual-crRNAs (3D) assay was established based on the chip for ultrasensitive detection of pathogens. This 3D assay combined the advantages of rapid amplification of RPA, specific cleavage of Cas12a, accurate quantification of digital PCR, and point-of-care testing (POCT) of microfluidics, enabling accurate and reliable digital absolute quantification of Salmonella in POCT. Our method can provide a good linear relationship of Salmonella detection in the range from 2.58 × 101 to 2.58 × 104 cells/mL with a limit of detection ∼0.2 cells/mL within 30 min in a digital chip by targeting the invA gene of Salmonella. Moreover, the assay could directly detect Salmonella in milk without nucleic acid extraction. Therefore, the 3D assay has the significant potential to provide accurate and rapid pathogen detection in POCT. This study provides a powerful nucleic detection platform and facilitates the application of CRISPR/Cas-assisted detection and microfluidic chips.
Collapse
Affiliation(s)
- Liping Xia
- School of Information and Electrical Engineering, Zhejiang University City College, Hangzhou, Zhejiang Province 310015, China.,Research Centre for Analytical Instrumentation, Institute of Cyber-Systems and Control, State Key Laboratory of Industrial Control Technology, Zhejiang University, Hangzhou, Zhejiang Province 310027, China
| | - Juxin Yin
- School of Information and Electrical Engineering, Zhejiang University City College, Hangzhou, Zhejiang Province 310015, China.,Research Centre for Analytical Instrumentation, Institute of Cyber-Systems and Control, State Key Laboratory of Industrial Control Technology, Zhejiang University, Hangzhou, Zhejiang Province 310027, China
| | - Jianjian Zhuang
- Department of Clinical Pharmacology, Key Laboratory of Clinical Cancer Pharmacology and Toxicology Research of Zhejiang Province, Affiliated Hangzhou First People's Hospital, Cancer Center, Zhejiang University School of Medicine, Hangzhou 310006, China
| | - Weihong Yin
- Research Centre for Analytical Instrumentation, Institute of Cyber-Systems and Control, State Key Laboratory of Industrial Control Technology, Zhejiang University, Hangzhou, Zhejiang Province 310027, China
| | - Zheyu Zou
- Research Centre for Analytical Instrumentation, Institute of Cyber-Systems and Control, State Key Laboratory of Industrial Control Technology, Zhejiang University, Hangzhou, Zhejiang Province 310027, China
| | - Ying Mu
- Research Centre for Analytical Instrumentation, Institute of Cyber-Systems and Control, State Key Laboratory of Industrial Control Technology, Zhejiang University, Hangzhou, Zhejiang Province 310027, China.,Huzhou Institute of Zhejiang University, Huzhou 313002, China
| |
Collapse
|
43
|
Yang X, Yu Q, Cheng X, Wei H, Zhang X, Rong Z, Wang C, Wang S. Introduction of Multilayered Dual-Signal Nanotags into a Colorimetric-Fluorescent Coenhanced Immunochromatographic Assay for Ultrasensitive and Flexible Monitoring of SARS-CoV-2. ACS APPLIED MATERIALS & INTERFACES 2023; 15:12327-12338. [PMID: 36808937 PMCID: PMC9969889 DOI: 10.1021/acsami.2c21042] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Accepted: 02/01/2023] [Indexed: 06/18/2023]
Abstract
Timely, accurate, and rapid diagnosis of SARS-CoV-2 is a key factor in controlling the spread of the epidemic and guiding treatments. Herein, a flexible and ultrasensitive immunochromatographic assay (ICA) was proposed based on a colorimetric/fluorescent dual-signal enhancement strategy. We first fabricated a highly stable dual-signal nanocomposite (SADQD) by continuously coating one layer of 20 nm AuNPs and two layers of quantum dots onto a 200 nm SiO2 nanosphere to provide strong colorimetric signals and enhanced fluorescence signals. Two kinds of SADQD with red and green fluorescence were conjugated with spike (S) antibody and nucleocapsid (N) antibody, respectively, and used as dual-fluorescence/colorimetric tags for the simultaneous detection of S and N proteins on one test line of ICA strip, which can not only greatly reduce the background interference and improve the detection accuracy but also achieve a higher colorimetric sensitivity. The detection limits of the method for target antigens via colorimetric and fluorescence modes were as low as 50 and 2.2 pg/mL, respectively, which were 5 and 113 times more sensitive than those from the standard AuNP-ICA strips, respectively. This biosensor will provide a more accurate and convenient way to diagnose COVID-19 in different application scenarios.
Collapse
Affiliation(s)
- Xingsheng Yang
- Bioinformatics Center of
AMMS, Beijing 100850, P. R. China
- Beijing Key Laboratory of New Molecular
Diagnosis Technologies for Infectious Diseases, Beijing 100850,
P. R. China
| | - Qing Yu
- Bioinformatics Center of
AMMS, Beijing 100850, P. R. China
- Beijing Key Laboratory of New Molecular
Diagnosis Technologies for Infectious Diseases, Beijing 100850,
P. R. China
| | - Xiaodan Cheng
- Bioinformatics Center of
AMMS, Beijing 100850, P. R. China
- Beijing Key Laboratory of New Molecular
Diagnosis Technologies for Infectious Diseases, Beijing 100850,
P. R. China
| | - Hongjuan Wei
- Bioinformatics Center of
AMMS, Beijing 100850, P. R. China
- Beijing Key Laboratory of New Molecular
Diagnosis Technologies for Infectious Diseases, Beijing 100850,
P. R. China
| | - Xiaochang Zhang
- Bioinformatics Center of
AMMS, Beijing 100850, P. R. China
- Beijing Key Laboratory of New Molecular
Diagnosis Technologies for Infectious Diseases, Beijing 100850,
P. R. China
| | - Zhen Rong
- Bioinformatics Center of
AMMS, Beijing 100850, P. R. China
- Beijing Key Laboratory of New Molecular
Diagnosis Technologies for Infectious Diseases, Beijing 100850,
P. R. China
| | - Chongwen Wang
- Bioinformatics Center of
AMMS, Beijing 100850, P. R. China
- Beijing Key Laboratory of New Molecular
Diagnosis Technologies for Infectious Diseases, Beijing 100850,
P. R. China
- Laboratory Medicine, Guangdong Provincial
People’s Hospital, Guangdong Academy of Medical
Sciences, Guangzhou 510000, P. R. China
| | - Shengqi Wang
- Bioinformatics Center of
AMMS, Beijing 100850, P. R. China
- Beijing Key Laboratory of New Molecular
Diagnosis Technologies for Infectious Diseases, Beijing 100850,
P. R. China
| |
Collapse
|
44
|
Liu Z, Cao C, Tong H, You M. Polydopamine Nanoparticles-Based Three-Line Lateral Flow Immunoassay for COVID-19 Detection. BIOSENSORS 2023; 13:352. [PMID: 36979563 PMCID: PMC10046468 DOI: 10.3390/bios13030352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Revised: 03/04/2023] [Accepted: 03/04/2023] [Indexed: 06/18/2023]
Abstract
Currently, the global trend of several hundred thousand new confirmed COVID-19 patients per day has not abated significantly. Serological antibody detection has become an important tool for the self-screening of people. While the most commonly used colorimetric lateral flow immunoassay (LFIA) methods for the detection of COVID-19 antibodies are limited by low sensitivity and a lack of quantification ability. This leads to poor accuracy in the screening of early COVID-19 patients. Therefore, it is necessary to develop an accurate and sensitive autonomous antibody detection technique that will effectively reduce the COVID-19 infection rate. Here, we developed a three-line LFIA immunoassay based on polydopamine (PDA) nanoparticles for COVID-19 IgG and IgM antibodies detection to determine the degree of infection. The PDA-based three-line LFIA has a detection limit of 1.51 and 2.34 ng/mL for IgM and IgG, respectively. This assay reveals a good linearity for both IgM and IgG antibodies detection and is also able to achieve quantitative detection by measuring the optical density of test lines. In comparison, the commercial AuNP-based LFIA showed worse quantification results than the developed PDA-based LFIA for low-concentration COVID-19 antibody samples, making it difficult to distinguish between negative and positive samples. Therefore, the developed PDA-based three-line LFIA platform has the accurate quantitative capability and high sensitivity, which could be a powerful tool for the large-scale self-screening of people.
Collapse
Affiliation(s)
- Zhe Liu
- Department of Rehabilitation Medicine, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an 710061, China
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi’an Jiaotong University, Xi’an 710049, China
- Bioinspired Engineering and Biomechanics Center (BEBC), Xi’an Jiaotong University, Xi’an 710049, China
| | - Chaoyu Cao
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi’an Jiaotong University, Xi’an 710049, China
- Bioinspired Engineering and Biomechanics Center (BEBC), Xi’an Jiaotong University, Xi’an 710049, China
| | - Haoyang Tong
- Bioinspired Engineering and Biomechanics Center (BEBC), Xi’an Jiaotong University, Xi’an 710049, China
- Department of Mechanical Engineering, Hongkong University, Hongkong 999077, China
| | - Minli You
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi’an Jiaotong University, Xi’an 710049, China
- Bioinspired Engineering and Biomechanics Center (BEBC), Xi’an Jiaotong University, Xi’an 710049, China
| |
Collapse
|
45
|
Jin X, Xue L, Ye S, Cheng W, Hou JJ, Hou L, Marsh JH, Sun M, Liu X, Xiong J, Ni B. Asymmetric parameter enhancement in the split-ring cavity array for virus-like particle sensing. BIOMEDICAL OPTICS EXPRESS 2023; 14:1216-1227. [PMID: 36950230 PMCID: PMC10026587 DOI: 10.1364/boe.483831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 01/28/2023] [Accepted: 02/10/2023] [Indexed: 06/18/2023]
Abstract
Quantitative detection of virus-like particles under a low concentration is of vital importance for early infection diagnosis and water pollution analysis. In this paper, a novel virus detection method is proposed using indirect polarization parametric imaging method combined with a plasmonic split-ring nanocavity array coated with an Au film and a quantitative algorithm is implemented based on the extended Laplace operator. The attachment of viruses to the split-ring cavity breaks the structural symmetry, and such asymmetry can be enhanced by depositing a thin gold film on the sample, which allows an asymmetrical plasmon mode with a large shift of resonance peak generated under transverse polarization. Correspondingly, the far-field scattering state distribution encoded by the attached virus exhibits a specific asymmetric pattern that is highly correlated to the structural feature of the virus. By utilizing the parametric image sinδ to collect information on the spatial photon state distribution and far-field asymmetry with a sub-wavelength resolution, the appearance of viruses can be detected. To further reduce the background noise and enhance the asymmetric signals, an extended Laplace operator method which divides the detection area into topological units and then calculates the asymmetric parameter is applied, enabling easier determination of virus appearance. Experimental results show that the developed method can provide a detection limit as low as 56 vp/150µL on a large scale, which has great potential in early virus screening and other applications.
Collapse
Affiliation(s)
- Xiao Jin
- School of Electronic and Optical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
- Co-first authors
| | - Lu Xue
- School of Electronic and Optical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
- Co-first authors
| | - Shengwei Ye
- James Watt School of Engineering, University of Glasgow, Glasgow, G12 8QQ, UK
| | - Weiqing Cheng
- James Watt School of Engineering, University of Glasgow, Glasgow, G12 8QQ, UK
| | - Jamie Jiangmin Hou
- Department of Medicine, University of Cambridge, Hills Road, Cambridge, CB2 0QQ, UK
| | - Lianping Hou
- James Watt School of Engineering, University of Glasgow, Glasgow, G12 8QQ, UK
| | - John H. Marsh
- James Watt School of Engineering, University of Glasgow, Glasgow, G12 8QQ, UK
| | - Ming Sun
- School of Electronic and Optical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Xuefeng Liu
- School of Electronic and Optical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Jichuan Xiong
- School of Electronic and Optical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
- Co-last authors
| | - Bin Ni
- School of Electronic and Optical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
- Co-last authors
| |
Collapse
|
46
|
Electrical biosensing system utilizing ion-producing enzymes conjugated with aptamers for the sensing of severe acute respiratory syndrome coronavirus 2. SENSING AND BIO-SENSING RESEARCH 2023; 39:100549. [PMID: 36686588 PMCID: PMC9847365 DOI: 10.1016/j.sbsr.2023.100549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 12/28/2022] [Accepted: 01/17/2023] [Indexed: 01/19/2023] Open
Abstract
Viral outbreaks, which include the ongoing coronavirus disease 2019 (COVID-19) pandemic provoked by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), are a major global crisis that enormously threaten human health and social activities worldwide. Consequently, the rapid and repeated treatment and isolation of these viruses to control their spread are crucial to address the COVID-19 pandemic and future epidemics of novel emerging viruses. The application of cost-efficient, rapid, and easy-to-operate detection devices with miniaturized footprints as a substitute for the conventional optic-based polymerase chain reaction (PCR) and immunoassay tests is critical. In this context, semiconductor-based electrical biosensors are attractive sensing platforms for signal readout. Therefore, this study aimed to examine the electrical sensing of patient-derived SARS-CoV-2 samples by harnessing the activity of DNA aptamers directed against spike proteins on viral surfaces. We obtained rapid and sensitive virus detection beyond the Debye length limitation by exploiting aptamers coupled with alkaline phosphatases, which catalytically generate free hydrogen ions which can readily be measured on pH meters or ion-sensitive field-effect transistors. Furthermore, we demonstrated the detection of the viruses of approximately 100 copies/μL in 10 min, surpassing the capability of typical immunochromatographic assays. Therefore, our newly developed technology has great potential for point-of-care testing not only for SARS-CoV-2, but also for other types of pathogens and biomolecules.
Collapse
|
47
|
Zhu Z, Liang A, Haotian R, Tang S, Liu M, Xie B, Luo A. Application of Biosensors in the Detection of SARS-CoV-2. ACTA CHIMICA SINICA 2023. [DOI: 10.6023/a22120483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/03/2023]
|
48
|
Bolaños-Suaréz V, Villalobos-Osnaya A, García-García JA, De León-Hernández A, Sánchez-Pérez C, Espinosa-García AM. Validation of 3D-Printed Swabs for Sampling in SARS-CoV-2 Detection: A Pilot Study. Ann Biomed Eng 2023; 51:527-537. [PMID: 36094762 PMCID: PMC9466338 DOI: 10.1007/s10439-022-03057-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Accepted: 08/15/2022] [Indexed: 11/29/2022]
Abstract
In this pilot study, we characterize and evaluate 3D-printed swabs for the collection of nasopharyngeal and oropharyngeal secretion samples for the SARS-CoV-2 detection. Swabs are made with the fused deposition modeling technique using the biopolymer polylactic acid (PLA) which is a medical-grade, biodegradable and low-cost material. We evaluated six swabs with mechanical tests in a laboratory and in an Adult Human Simulator performed by healthcare professionals. We proved the adequacy of the PLA swab to be used in the gold standard reverse transcriptase-polymerase chain reaction (qRT-PCR) for viral RNA detection. Then, we did in vitro validation for cell collection using the 3D-printed swabs and RNA extraction for samples from 10 healthy volunteers. The 3D-printed swabs showed good flexibility and maneuverability for sampling and at the same time robustness to pass into the posterior nasopharynx. The PLA did not interfere with the RNA extraction process and qRT-PCR test. When we evaluated the expression of the reference gene (RNase P) used in the SARS-CoV-2 detection, the 3D-printed swabs showed good reproducibility in the threshold cycle values (Ct = 23.5, range 19-26) that is comparable to control swabs (Ct = 24.7, range 20.8-32.6) with p value = 0.47. The 3D-printed swabs demonstrated to be a reliable, and an economical alternative for mass use in the detection of SARS-CoV-2.
Collapse
Affiliation(s)
- Verónica Bolaños-Suaréz
- Hospital General de México, “Dr. Eduardo Liceaga”, Servicio de Farmacología Clínica, 06720 Ciudad de Mexico, Mexico
| | - Alma Villalobos-Osnaya
- Hospital General de México, “Dr. Eduardo Liceaga”, Servicio de Farmacología Clínica, 06720 Ciudad de Mexico, Mexico
| | - José Antonio García-García
- Hospital General de México, “Dr. Eduardo Liceaga”, Dirección de Educación y Capacitación en Salud, 06720 Ciudad de Mexico, Mexico
| | - Alma De León-Hernández
- Instituto de Ciencias Aplicadas y Tecnología (ICAT), Universidad Nacional Autónoma de México (UNAM), AP 70-186, 04510 Ciudad de Mexico, Mexico
| | - Celia Sánchez-Pérez
- Instituto de Ciencias Aplicadas y Tecnología (ICAT), Universidad Nacional Autónoma de México (UNAM), AP 70-186, 04510 Ciudad de Mexico, Mexico
| | - Ana María Espinosa-García
- Hospital General de México, "Dr. Eduardo Liceaga", Servicio de Farmacología Clínica, 06720, Ciudad de Mexico, Mexico.
| |
Collapse
|
49
|
Szczerska M, Wityk P, Listewnik P. The SARS-CoV-2 specific IgG antibodies biophotonic sensor. JOURNAL OF BIOPHOTONICS 2023; 16:e202200172. [PMID: 36222282 PMCID: PMC9874777 DOI: 10.1002/jbio.202200172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 09/23/2022] [Accepted: 09/28/2022] [Indexed: 06/16/2023]
Abstract
In this paper, we present the design and the principle of operation of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) specific immunoglobulin G (IgG) biophotonic sensor, which is based on the single-mode telecommunication fiber. We fabricated the sensor head at the face of the single mode fiber-28. Due to the process of bio-functionalization, our sensor has the ability to selectively detect the SARS-CoV-2 specific IgG antibodies. The results of preliminary tests allowed us to correctly determine the presence of antibodies in less than 1 min in 5 μl in a volume sample of concentration of 10 μg/ml, which according to studies, corresponds to the concentration of IgG antibodies in human serum. Additionally, the tested sample can be smaller than 5 μl in volume.
Collapse
Affiliation(s)
- Małgorzata Szczerska
- Department of Metrology and Optoelectronics, Faculty of Electronics, Telecommunications and InformaticsGdańsk University of TechnologyGdańskPoland
| | - Paweł Wityk
- Department of Biopharmaceutics and PharmacodynamicsMedical University of GdańskGdańskPoland
| | - Paulina Listewnik
- Department of Metrology and Optoelectronics, Faculty of Electronics, Telecommunications and InformaticsGdańsk University of TechnologyGdańskPoland
| |
Collapse
|
50
|
Clark K, Schenkel MS, Pittman TW, Samper IC, Anderson LBR, Khamcharoen W, Elmegerhi S, Perera R, Siangproh W, Kennan AJ, Geiss BJ, Dandy DS, Henry CS. Electrochemical Capillary Driven Immunoassay for Detection of SARS-CoV-2. ACS MEASUREMENT SCIENCE AU 2022; 2:584-594. [PMID: 36570470 PMCID: PMC9469961 DOI: 10.1021/acsmeasuresciau.2c00037] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 08/09/2022] [Accepted: 08/16/2022] [Indexed: 05/28/2023]
Abstract
The COVID-19 pandemic focused attention on a pressing need for fast, accurate, and low-cost diagnostic tests. This work presents an electrochemical capillary driven immunoassay (eCaDI) developed to detect SARS-CoV-2 nucleocapsid (N) protein. The low-cost flow device is made of polyethylene terephthalate (PET) and adhesive films. Upon addition of a sample, reagents and washes are sequentially delivered to an integrated screen-printed carbon electrode for detection, thus automating a full sandwich immunoassay with a single end-user step. The modified electrodes are sensitive and selective for SARS-CoV-2 N protein and stable for over 7 weeks. The eCaDI was tested with influenza A and Sindbis virus and proved to be selective. The eCaDI was also successfully applied to detect nine different SARS-CoV-2 variants, including Omicron.
Collapse
Affiliation(s)
- Kaylee
M. Clark
- Department
of Chemistry, Colorado State University, Fort Collins, Colorado 80523, United States
| | - Melissa S. Schenkel
- Department
of Chemistry, Colorado State University, Fort Collins, Colorado 80523, United States
| | - Trey W. Pittman
- Department
of Chemistry, Colorado State University, Fort Collins, Colorado 80523, United States
| | - Isabelle C. Samper
- Department
of Chemistry, Colorado State University, Fort Collins, Colorado 80523, United States
- Department
of Chemical and Biological Engineering, Colorado State University, Fort Collins, Colorado 80523, United States
| | - Loran B. R. Anderson
- Department
of Microbiology, Immunology, and Pathology, Colorado State University, Fort
Collins, Colorado 80523, United States
| | - Wisarut Khamcharoen
- Department
of Chemistry, Faculty of Science, Srinakharinwirot
University, Bangkok 10110, Thailand
| | - Suad Elmegerhi
- Department
of Microbiology, Immunology, and Pathology, Colorado State University, Fort
Collins, Colorado 80523, United States
| | - Rushika Perera
- Department
of Microbiology, Immunology, and Pathology, Colorado State University, Fort
Collins, Colorado 80523, United States
| | - Weena Siangproh
- Department
of Chemistry, Faculty of Science, Srinakharinwirot
University, Bangkok 10110, Thailand
| | - Alan J. Kennan
- Department
of Chemistry, Colorado State University, Fort Collins, Colorado 80523, United States
| | - Brian J. Geiss
- Department
of Microbiology, Immunology, and Pathology, Colorado State University, Fort
Collins, Colorado 80523, United States
- School
of Biomedical Engineering, Colorado State
University, Fort Collins, Colorado 80523, United States
| | - David S. Dandy
- Department
of Chemical and Biological Engineering, Colorado State University, Fort Collins, Colorado 80523, United States
- School
of Biomedical Engineering, Colorado State
University, Fort Collins, Colorado 80523, United States
| | - Charles S. Henry
- Department
of Chemistry, Colorado State University, Fort Collins, Colorado 80523, United States
- Department
of Chemical and Biological Engineering, Colorado State University, Fort Collins, Colorado 80523, United States
- School
of Biomedical Engineering, Colorado State
University, Fort Collins, Colorado 80523, United States
| |
Collapse
|