1
|
Ly NH, Choo J, Gnanasekaran L, Aminabhavi TM, Vasseghian Y, Joo SW. Recent Plasmonic Gold- and Silver-Assisted Raman Spectra for Advanced SARS-CoV-2 Detection. ACS APPLIED BIO MATERIALS 2024. [PMID: 39665205 DOI: 10.1021/acsabm.4c01457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2024]
Abstract
COVID-19 has become one of the deadliest epidemics in the past years. In efforts to combat the deadly disease besides vaccines, drug therapies, and facemasks, significant focus has been on designing specific methods for the sensitive and accurate detection of SARS-CoV-2. Of these, surface-enhanced Raman scattering (SERS) is an attractive analytical tool for the identification of SARS-CoV-2. SERS is the phenomenon of enhancement of Raman intensity signals from molecular analytes anchored onto the surfaces of roughened plasmonic nanomaterials. This work gives an updated summary of plasmonic gold nanomaterials (AuNMs) and silver nanomaterials (AgNMs)-based SERS technologies to identify SARS-CoV-2. Due to extreme "hot spots" promoting higher electromagnetic fields on their surfaces, different shapes of AuNMs and AgNMs combined with Raman probes have been reviewed for enhancing Raman signals of probe molecules for quantifying the virus. It also reviews progress made recently in the design of certain specific Raman probe molecules capable of imparting characteristic SERS response/tags for SARS-CoV-2 detection.
Collapse
Affiliation(s)
- Nguyễn Hoàng Ly
- Department of Chemistry, Gachon University, Seongnam 13120, South Korea
| | - Jaebum Choo
- Department of Chemistry, Chung-Ang University, Seoul 06974, South Korea
| | | | - Tejraj Malleshappa Aminabhavi
- Center for Energy and Environment, School of Advanced Sciences, KLE Technological University, Hubballi, Karnataka 580031, India
- Korea University, Seoul 02841, South Korea
| | - Yasser Vasseghian
- Department of Chemistry, Soongsil University, Seoul 06978, South Korea
- Centre for Herbal Pharmacology and Environmental Sustainability, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, Kelambakkam 603103, Tamil Nadu, India
| | - Sang-Woo Joo
- Department of Chemistry, Soongsil University, Seoul 06978, South Korea
| |
Collapse
|
2
|
Yan X, Kanike C, Lu Q, Li Y, Wu H, Niestanak VD, Maeda N, Atta A, Unsworth LD, Zhang X. Streamlined Flow Synthesis of Plasmonic Nanoparticles and SERS Detection of Uremic Toxins with Trace-Level Liquid Volumes in a Microchamber. ACS APPLIED MATERIALS & INTERFACES 2024; 16:63268-63283. [PMID: 39512135 DOI: 10.1021/acsami.4c13893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2024]
Abstract
Rapid detection of uremic toxins is crucial due to their severe health risks, including oxidative stress, inflammation, neurotoxicity, cardiovascular complications, and progression of chronic kidney disease. Surface-enhanced Raman spectroscopy (SERS) may provide sensitive, fast, and clinical-grade real-time monitoring of these toxins, enabling effective management with timely dialysis treatments. This study introduces a 3D-printed microchamber that integrates the fabrication of plasmonic metal nanoparticles for the in-flow detection of biological toxins and pharmaceutical drugs using SERS, making it ideal for on-site diagnostics in clinical settings. The microchamber supports quantitative and highly reproducible detection with liquid volumes under 100 μL, which is crucial for trace-level biomarker detection and minimizing cross-contamination. It employs a tunable solvent exchange method for the in situ synthesis of silver nanoparticles (AgNPs) on flexible PDMS or rigid Si wafer substrates, avoiding costly nanofabrication techniques. Ultralow detection limits were achieved for two model compounds and three pharmaceutical drugs: 10-11 M for rhodamine 6G, 10-7 M for adenine, and 10-6 M for the pharmaceutical drugs. A total of 13 biological toxins, including three neurotransmitters, one neuromodulator, five amino acids, two polyamines, and two urea cycle metabolites, were detected with quantitative limits ranging from 10-3 to 10-6 M, all below permissible levels and aligning with physiological conditions. SERS detection within microchambers facilitates rapid on-site analysis, proving ideal for personalized health monitoring, point-of-care diagnostics, and environmental pollution assessment.
Collapse
Affiliation(s)
- Xiang Yan
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta T6G 1H9, Canada
- Department of Civil and Environmental Engineering, School of Mining and Petroleum Engineering, University of Alberta, Edmonton, Alberta T6G 1H9, Canada
| | - Chiranjeevi Kanike
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta T6G 1H9, Canada
- Department of Chemical Engineering, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal 721302, India
| | - Qiuyun Lu
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta T6G 1H9, Canada
| | - Yanan Li
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta T6G 1H9, Canada
| | - Hongyan Wu
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta T6G 1H9, Canada
| | - Vida Dehghan Niestanak
- Department of Biomedical Engineering, University of Alberta, Edmonton, Alberta T6G 2G4, Canada
| | - Nobuo Maeda
- Department of Civil and Environmental Engineering, School of Mining and Petroleum Engineering, University of Alberta, Edmonton, Alberta T6G 1H9, Canada
| | - Arnab Atta
- Department of Chemical Engineering, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal 721302, India
| | - Larry D Unsworth
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta T6G 1H9, Canada
| | - Xuehua Zhang
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta T6G 1H9, Canada
- Physics of Fluids Group, Max Planck Center Twente for Complex Fluid Dynamics, University of Twente, Enschede 7522 NB, The Netherlands
| |
Collapse
|
3
|
Lee H, Liao JD, Tsai HP, Wang H, Sitjar J. Focused ion beam-fabricated nanorod substrate for label-free surface-enhanced Raman spectroscopy and enabling dual virus detection. Talanta 2024; 278:126466. [PMID: 38944940 DOI: 10.1016/j.talanta.2024.126466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 05/27/2024] [Accepted: 06/22/2024] [Indexed: 07/02/2024]
Abstract
The COVID-19 pandemic presents global challenges, notably with co-infections in respiratory tract involving SARS-CoV-2 variants and influenza strains. Detecting multiple viruses simultaneously is crucial for accurate diagnosis, effective tracking infectious sources, and containment of the epidemic. This study uses a label-free surface-enhanced Raman spectroscopy (SERS) method using Au NPs/pZrO2 (250) and FIB-made Au NRs (100) to detect dual viruses, including SARS-CoV-2 Delta variant (D) and influenza A (A) or B (B) virus. Results demonstrate distinct peaks facilitating virus differentiation, especially between D and A or B, with clear disparities between substrates; specific peaks at 950 and 1337 cm-1 are pivotal for discerning viruses using Au NPs/pZrO2 (250), while those at 1050, 1394, and 1450 cm-1 and 1033, 1165, 1337, and 1378 cm-1 are key for validation using Au NRs (100). Differences in substrate surface morphology and spatial disposition of accommodating viruses significantly influence hotspot formation and Raman signal amplification efficiency, thereby affecting the ability to distinguish various viruses. Furthermore, both substrates offer insights, even in the presence of oxymetazoline hydrochloride (an interfering substance), with practical implications in viral diagnosis. The customized design and reproducibility underscore efficient Raman signal amplification, even in challenging environments, highlighting potential for widespread virus detection.
Collapse
Affiliation(s)
- Han Lee
- Laboratory of Engineered Materials for Biomedical Applications, Department of Materials Science and Engineering, National Cheng Kung University, 1 University Road, Tainan, 701, Taiwan.
| | - Jiunn-Der Liao
- Laboratory of Engineered Materials for Biomedical Applications, Department of Materials Science and Engineering, National Cheng Kung University, 1 University Road, Tainan, 701, Taiwan.
| | - Huey-Pin Tsai
- Department of Pathology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, 704, Taiwan; Department of Medical Laboratory Science and Biotechnology, College of Medicine, National Cheng Kung University, Tainan, 701, Taiwan.
| | - Hao Wang
- Laboratory of Engineered Materials for Biomedical Applications, Department of Materials Science and Engineering, National Cheng Kung University, 1 University Road, Tainan, 701, Taiwan.
| | - Jaya Sitjar
- Laboratory of Engineered Materials for Biomedical Applications, Department of Materials Science and Engineering, National Cheng Kung University, 1 University Road, Tainan, 701, Taiwan.
| |
Collapse
|
4
|
Wang R, Lu S, Deng F, Wu L, Yang G, Chong S, Liu Y. Enhancing the understanding of SARS-CoV-2 protein with structure and detection methods: An integrative review. Int J Biol Macromol 2024; 270:132237. [PMID: 38734351 DOI: 10.1016/j.ijbiomac.2024.132237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 05/07/2024] [Indexed: 05/13/2024]
Abstract
As the rapid and accurate screening of infectious diseases can provide meaningful information for outbreak prevention and control, as well as owing to the existing limitations of the polymerase chain reaction (PCR), it is imperative to have new and validated detection techniques for SARS-CoV-2. Therefore, the rationale for outlining the techniques used to detect SARS-CoV-2 proteins and performing a comprehensive comparison to serve as a practical benchmark for future identification of similar viral proteins is clear. This review highlights the urgent need to strengthen pandemic preparedness by emphasizing the importance of integrated measures. These include improved tools for pathogen characterization, optimized societal precautions, the establishment of early warning systems, and the deployment of highly sensitive diagnostics for effective surveillance, triage, and resource management. Additionally, with an improved understanding of the virus' protein structure, considerable advances in targeted detection, treatment, and prevention strategies are expected to greatly improve our ability to respond to future outbreaks.
Collapse
Affiliation(s)
- Ruiqi Wang
- Shenyang University of Chemical Technology, Shenyang 110142, China; National Institute of Metrology, Beijing 100029, China
| | - Song Lu
- National Institute of Metrology, Beijing 100029, China
| | - Fanyu Deng
- National Institute of Metrology, Beijing 100029, China; North University of China, Taiyuan 030051, China
| | - Liqing Wu
- National Institute of Metrology, Beijing 100029, China
| | - Guowu Yang
- Shenzhen Academy of Metrology and Quality Inspection, Shenzhen 518055, China
| | - Siying Chong
- Shenyang University of Chemical Technology, Shenyang 110142, China
| | - Yahui Liu
- National Institute of Metrology, Beijing 100029, China.
| |
Collapse
|
5
|
Feng R, Fu S, Liu H, Wang Y, Liu S, Wang K, Chen B, Zhang X, Hu L, Chen Q, Cai T, Han X, Wang C. Single-Atom Site SERS Chip for Rapid, Ultrasensitive, and Reproducible Direct-Monitoring of RNA Binding. Adv Healthc Mater 2024; 13:e2301146. [PMID: 38176000 DOI: 10.1002/adhm.202301146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 12/11/2023] [Indexed: 01/06/2024]
Abstract
Ribonucleic acids (RNA) play active roles within cells or viruses by catalyzing biological reactions, controlling gene expression, and communicating responses to cellular signals. Rapid monitoring RNA variation has become extremely important for appropriate clinical decisions and frontier biological research. However, the most widely used method for RNA detection, nucleic acid amplification, is restricted by a mandatory temperature cycling period of ≈1 h required to reach target detection criteria. Herein, a direct detection approach via single-atom site integrated surface-enhanced Raman scattering (SERS) monitoring nucleic acid pairing reaction, can be completed within 3 min and reaches high sensitivity and extreme reproducibility for COVID-19 and two other influenza viruses' detection. The mechanism is that a single-atom site on SERS chip, enabled by positioning a single-atom oxide coordinated with a specific complementary RNA probe on chip nanostructure hotspots, can effectively bind target RNA analytes to enrich them at designed sites so that the binding reaction can be detected through Raman signal variation. This ultrafast, sensitive, and reproducible single-atom site SERS chip approach paves the route for an alternative technique of immediate RNA detection. Moreover, single-atom site SERS is a novel surface enrichment strategy for SERS active sites for other analytes at ultralow concentrations.
Collapse
Affiliation(s)
- Ran Feng
- Ningbo Institute of Life and Health Industry, University of Chinese Academy of Sciences, Key Laboratory of Diagnosis and Treatment of Digestive System Tumors of Zhejiang Province, Ningbo No. 2 Hospital, Ningbo, 315012, China
- Beijing Key Laboratory of Microstructure and Properties of Solids, Faculty of Materials and Manufacturing, Beijing University of Technology, Beijing, 100124, China
| | - Shaohua Fu
- Key Laboratory of Luminescence and Optical Information, Ministry of Education, Institute of Optoelectronic Technology, Beijing Jiaotong University, Beijing, 100044, China
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, China
| | | | - Ying Wang
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P. R. China
| | - Simiao Liu
- Thorgene Co., Ltd, Beijing, 100176, China
| | - Kaiwen Wang
- Beijing Key Laboratory of Microstructure and Properties of Solids, Faculty of Materials and Manufacturing, Beijing University of Technology, Beijing, 100124, China
| | - Binbin Chen
- Beijing Key Laboratory of Microstructure and Properties of Solids, Faculty of Materials and Manufacturing, Beijing University of Technology, Beijing, 100124, China
| | - Xiaoxian Zhang
- Key Laboratory of Luminescence and Optical Information, Ministry of Education, Institute of Optoelectronic Technology, Beijing Jiaotong University, Beijing, 100044, China
| | - Liming Hu
- Beijing Key Laboratory of Microstructure and Properties of Solids, Faculty of Materials and Manufacturing, Beijing University of Technology, Beijing, 100124, China
| | - Qian Chen
- Thorgene Co., Ltd, Beijing, 100176, China
| | - Ting Cai
- Ningbo Institute of Life and Health Industry, University of Chinese Academy of Sciences, Key Laboratory of Diagnosis and Treatment of Digestive System Tumors of Zhejiang Province, Ningbo No. 2 Hospital, Ningbo, 315012, China
| | - Xiaodong Han
- Beijing Key Laboratory of Microstructure and Properties of Solids, Faculty of Materials and Manufacturing, Beijing University of Technology, Beijing, 100124, China
| | - Cong Wang
- Ningbo Institute of Life and Health Industry, University of Chinese Academy of Sciences, Key Laboratory of Diagnosis and Treatment of Digestive System Tumors of Zhejiang Province, Ningbo No. 2 Hospital, Ningbo, 315012, China
- Beijing Key Laboratory of Microstructure and Properties of Solids, Faculty of Materials and Manufacturing, Beijing University of Technology, Beijing, 100124, China
- Thorgene Co., Ltd, Beijing, 100176, China
| |
Collapse
|
6
|
Qin J, Tian X, Liu S, Yang Z, Shi D, Xu S, Zhang Y. Rapid classification of SARS-CoV-2 variant strains using machine learning-based label-free SERS strategy. Talanta 2024; 267:125080. [PMID: 37678002 DOI: 10.1016/j.talanta.2023.125080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 08/05/2023] [Accepted: 08/13/2023] [Indexed: 09/09/2023]
Abstract
The spread of COVID-19 over the past three years is largely due to the continuous mutation of the virus, which has significantly impeded global efforts to prevent and control this epidemic. Specifically, mutations in the amino acid sequence of the surface spike (S) protein of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) have directly impacted its biological functions, leading to enhanced transmission and triggering an immune escape effect. Therefore, prompt identification of these mutations is crucial for formulating targeted treatment plans and implementing precise prevention and control measures. In this study, the label-free surface-enhanced Raman scattering (SERS) technology combined with machine learning (ML) algorithms provide a potential solution for accurate identification of SARS-CoV-2 variants. We establish a SERS spectral database of SARS-CoV-2 variants and demonstrate that a diagnostic classifier using a logistic regression (LR) algorithm can provide accurate results within 10 min. Our classifier achieves 100% accuracy for Beta (B.1.351/501Y.V2), Delta (B.1.617), Wuhan (COVID-19) and Omicron (BA.1) variants. In addition, our method achieves 100% accuracy in blind tests of positive and negative human nasal swabs based on the LR model. This method enables detection and classification of variants in complex biological samples. Therefore, ML-based SERS technology is expected to accurately discriminate various SARS-CoV-2 variants and may be used for rapid diagnosis and therapeutic decision-making.
Collapse
Affiliation(s)
- Jingwang Qin
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, PR China; Department of Translational Medicine, Xiamen Institute of Rare Earth Materials, Haixi Institute, Chinese Academy of Sciences, Xiamen, 361021, PR China
| | - Xiangdong Tian
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, PR China; Department of Translational Medicine, Xiamen Institute of Rare Earth Materials, Haixi Institute, Chinese Academy of Sciences, Xiamen, 361021, PR China
| | - Siying Liu
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, PR China; Department of Translational Medicine, Xiamen Institute of Rare Earth Materials, Haixi Institute, Chinese Academy of Sciences, Xiamen, 361021, PR China; University of the Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhengxia Yang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, PR China; Department of Translational Medicine, Xiamen Institute of Rare Earth Materials, Haixi Institute, Chinese Academy of Sciences, Xiamen, 361021, PR China; University of the Chinese Academy of Sciences, Beijing, 100049, China
| | - Dawei Shi
- National Institutes for Food and Drug Control, Beijing, 100050, China.
| | - Sihong Xu
- National Institutes for Food and Drug Control, Beijing, 100050, China.
| | - Yun Zhang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, PR China; Department of Translational Medicine, Xiamen Institute of Rare Earth Materials, Haixi Institute, Chinese Academy of Sciences, Xiamen, 361021, PR China; University of the Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
7
|
Akdeniz M, Al-Shaebi Z, Altunbek M, Bayraktar C, Kayabolen A, Bagci-Onder T, Aydin O. Characterization and discrimination of spike protein in SARS-CoV-2 virus-like particles via surface-enhanced Raman spectroscopy. Biotechnol J 2024; 19:e2300191. [PMID: 37750467 DOI: 10.1002/biot.202300191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 09/11/2023] [Accepted: 09/22/2023] [Indexed: 09/27/2023]
Abstract
Non-infectious virus-like particles (VLPs) are excellent structures for development of many biomedical applications such as drug delivery systems, vaccine production platforms, and detection techniques for infectious diseases including SARS-CoV-2 VLPs. The characterization of biochemical and biophysical properties of purified VLPs is crucial for development of detection methods and therapeutics. The presence of spike (S) protein in their structure is especially important since S protein induces immunological response. In this study, development of a rapid, low-cost, and easy-to-use technique for both characterization and detection of S protein in the two VLPs, which are SARS-CoV-2 VLPs and HIV-based VLPs was achieved using surface-enhanced Raman spectroscopy (SERS). To analyze and classify datasets of SERS spectra obtained from the VLP groups, machine learning classification techniques including support vector machine (SVM), k-nearest neighbors (kNN), and random forest (RF) were utilized. Among them, the SVM classification algorithm demonstrated the best classification performance for SARS-CoV-2 VLPs and HIV-based VLPs groups with 87.5% and 92.5% accuracy, respectively. This study could be valuable for the rapid characterization of VLPs for the development of novel therapeutics or detection of structural proteins of viruses leading to a variety of infectious diseases.
Collapse
Affiliation(s)
- Munevver Akdeniz
- Department of Biomedical Engineering, Erciyes University, Kayseri, Turkey
- Nanothera Lab, Drug Application and Research Center (ERFARMA), Erciyes University, Kayseri, Turkey
| | - Zakarya Al-Shaebi
- Department of Biomedical Engineering, Erciyes University, Kayseri, Turkey
- Nanothera Lab, Drug Application and Research Center (ERFARMA), Erciyes University, Kayseri, Turkey
| | - Mine Altunbek
- Department of Chemical Engineering, University of Massachusetts, Lowell, Massachusetts, USA
| | - Canan Bayraktar
- Koç University Research Center for Translational Medicine (KUTTAM), Koç University, Istanbul, Turkey
| | - Alisan Kayabolen
- Koç University Research Center for Translational Medicine (KUTTAM), Koç University, Istanbul, Turkey
- McGovern Institute for Brain Research at MIT, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Tugba Bagci-Onder
- Koç University Research Center for Translational Medicine (KUTTAM), Koç University, Istanbul, Turkey
| | - Omer Aydin
- Department of Biomedical Engineering, Erciyes University, Kayseri, Turkey
- Nanothera Lab, Drug Application and Research Center (ERFARMA), Erciyes University, Kayseri, Turkey
- Clinical Engineering Research and Implementation Center (ERKAM), Erciyes University, Kayseri, Turkey
- Nanotechnology Research and Application Center (ERNAM), Erciyes University, Kayseri, Turkey
| |
Collapse
|
8
|
Sharma N, Chi CH, Dabur D, Tsai ACC, Wu HF. SnO 2-xN x based tpod nanostructure for SARS-CoV2 spike protein detection. ENVIRONMENTAL RESEARCH 2023; 234:116505. [PMID: 37406724 DOI: 10.1016/j.envres.2023.116505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 06/16/2023] [Accepted: 06/23/2023] [Indexed: 07/07/2023]
Abstract
The worldwide spreading of severe acute respiratory syndrome SARS-CoV2 pandemic, a massive setback to every human being. In response to strategies actions against Covid-19 spreading many detection, prevention, and post-measures are being studied in large capacities. Association of SARS-CoV2 with ACE2 is well acknowledged and used for developing point-of-care detection kits. Recently, cases and studies have surfaced showing relation of ACE I/D polymorphism with spreading of SARS-CoV2 and highlighted a slip section towards detection and these studies show specificity with older males, high diabetes, and hypertension. To address the raised concern, we report synthesis of unique SnO2-xNx tpod nanostructure, showing affirmative attachment to both ACE1 and ACE2 efficiently. The attachment is examined in different ratios and studied with μ-Raman spectroscopy. The tpod nanostructure has served with its signature raman signals and used as probe for detection of SARS-CoV2 spike protein (S1). The linearity response for tpod raman signal at 630.4 cm-1 shows R2 0.9705, comparatively peak 1219.13 cm-1 show R2 0.9865 and calculated limit of detection of 35 nM.
Collapse
Affiliation(s)
- Nallin Sharma
- Department of Chemistry, National Sun Yat-Sen University, 70, Lien-Hai Road, Kaohsiung, 80424, Taiwan; Jeenn Chwanq Enterprise Co. Ltd, No. 14, Dazhu Road, Kaohsiung, 833, Taiwan
| | - Chia-Hung Chi
- Department of Chemistry, National Sun Yat-Sen University, 70, Lien-Hai Road, Kaohsiung, 80424, Taiwan
| | - Deepak Dabur
- International PhD Program for Science, National Sun Yat-Sen University, Kaohsiung, 80424, Taiwan
| | | | - Hui-Fen Wu
- Department of Chemistry, National Sun Yat-Sen University, 70, Lien-Hai Road, Kaohsiung, 80424, Taiwan; Institute of Precision Medicine, National Sun Yat-Sen University, Kaohsiung, 80424, Taiwan; International PhD Program for Science, National Sun Yat-Sen University, Kaohsiung, 80424, Taiwan; Institute of Medical Science and Technology, National Sun Yat-Sen University, Kaohsiung, 80424, Taiwan.
| |
Collapse
|
9
|
Meshesha M, Sardar A, Supekar R, Bhattacharjee L, Chatterjee S, Halder N, Mohanta K, Bhattacharyya TK, Pal B. Development and Analytical Evaluation of a Point-of-Care Electrochemical Biosensor for Rapid and Accurate SARS-CoV-2 Detection. SENSORS (BASEL, SWITZERLAND) 2023; 23:8000. [PMID: 37766054 PMCID: PMC10534802 DOI: 10.3390/s23188000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 09/15/2023] [Accepted: 09/19/2023] [Indexed: 09/29/2023]
Abstract
The COVID-19 pandemic has underscored the critical need for rapid and accurate screening and diagnostic methods for potential respiratory viruses. Existing COVID-19 diagnostic approaches face limitations either in terms of turnaround time or accuracy. In this study, we present an electrochemical biosensor that offers nearly instantaneous and precise SARS-CoV-2 detection, suitable for point-of-care and environmental monitoring applications. The biosensor employs a stapled hACE-2 N-terminal alpha helix peptide to functionalize an in situ grown polypyrrole conductive polymer on a nitrocellulose membrane backbone through a chemical process. We assessed the biosensor's analytical performance using heat-inactivated omicron and delta variants of the SARS-CoV-2 virus in artificial saliva (AS) and nasal swab (NS) samples diluted in a strong ionic solution, as well as clinical specimens with known Ct values. Virus identification was achieved through electrochemical impedance spectroscopy (EIS) and frequency analyses. The assay demonstrated a limit of detection (LoD) of 40 TCID50/mL, with 95% sensitivity and 100% specificity. Notably, the biosensor exhibited no cross-reactivity when tested against the influenza virus. The entire testing process using the biosensor takes less than a minute. In summary, our biosensor exhibits promising potential in the battle against pandemic respiratory viruses, offering a platform for the development of rapid, compact, portable, and point-of-care devices capable of multiplexing various viruses. The biosensor has the capacity to significantly bolster our readiness and response to future viral outbreaks.
Collapse
Affiliation(s)
- Mesfin Meshesha
- Department of Virology, Opteev Technologies Inc., Baltimore, MD 21225, USA;
| | - Anik Sardar
- Research and Development Laboratory, Opteev Healthtech, GN-4, Sector-V, Kolkata 700091, India; (A.S.); (R.S.); (L.B.); (S.C.); (N.H.); (K.M.)
| | - Ruchi Supekar
- Research and Development Laboratory, Opteev Healthtech, GN-4, Sector-V, Kolkata 700091, India; (A.S.); (R.S.); (L.B.); (S.C.); (N.H.); (K.M.)
| | - Lopamudra Bhattacharjee
- Research and Development Laboratory, Opteev Healthtech, GN-4, Sector-V, Kolkata 700091, India; (A.S.); (R.S.); (L.B.); (S.C.); (N.H.); (K.M.)
| | - Soumyo Chatterjee
- Research and Development Laboratory, Opteev Healthtech, GN-4, Sector-V, Kolkata 700091, India; (A.S.); (R.S.); (L.B.); (S.C.); (N.H.); (K.M.)
| | - Nyancy Halder
- Research and Development Laboratory, Opteev Healthtech, GN-4, Sector-V, Kolkata 700091, India; (A.S.); (R.S.); (L.B.); (S.C.); (N.H.); (K.M.)
| | - Kallol Mohanta
- Research and Development Laboratory, Opteev Healthtech, GN-4, Sector-V, Kolkata 700091, India; (A.S.); (R.S.); (L.B.); (S.C.); (N.H.); (K.M.)
| | - Tarun Kanti Bhattacharyya
- Department of Electronics and Electrical Communication Engineering, Indian Institute of Technology, Kharagpur 721302, India;
| | - Biplab Pal
- Department of Virology, Opteev Technologies Inc., Baltimore, MD 21225, USA;
- Research and Development Laboratory, Opteev Healthtech, GN-4, Sector-V, Kolkata 700091, India; (A.S.); (R.S.); (L.B.); (S.C.); (N.H.); (K.M.)
| |
Collapse
|
10
|
Liu J, Pang S, Wang M, Yu H, Ma P, Dong T, Zheng Z, Jiao Y, Zhang Y, Liu A. An ultrasensitive ELISA to assay femtomolar level SARS-CoV-2 antigen based on specific peptide and tyramine signal amplification. SENSORS AND ACTUATORS. B, CHEMICAL 2023; 387:133746. [PMID: 37020533 PMCID: PMC10050199 DOI: 10.1016/j.snb.2023.133746] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 03/20/2023] [Accepted: 03/27/2023] [Indexed: 05/21/2023]
Abstract
The SARS-CoV-2 spreading rapidly has aroused catastrophic public healthcare issues and economy crisis worldwide. It plays predominant role to rapidly and accurately diagnose the virus for effective prevention and treatment. As an abundant transmembrane protein, spike protein (SP) is one of the most valuable antigenic biomarkers for diagnosis of COVID-19. Herein a phage expression of WNLDLSQWLPPM peptide specific to SARS-CoV-2 SP was screened. Molecular docking revealed that the isolated peptide binds to major antigenic epitope locating at S2 subunit with hydrogen bonding. Taking the specific peptide as antigen sensing probe and tyramine signal amplification (TSA), an ultrasensitive "peptide-antigen-antibody" ELISA (p-ELISA) was explored, by which the limit of detection (LOD) was 14 fM and 2.8 fM SARS-CoV-2 SP antigen for first TSA and secondary TSA, respectively. Compared with the LOD by the p-ELISA by direct mode, the sensitivity with 2nd TSA enhanced 100 times. Further, the proposed p-ELISA method can detect SARS-CoV-2 pseudoviruses down to 10 and 3 TCID50/mL spiked in healthy nasal swab sample with 1st TSA and 2nd TSA, separately. Thus, the proposed p-ELISA method with TSA is expected to be a promising ultrasensitive tool for rapidly detecting SARS-CoV-2 antigen to help control the infectious disease.
Collapse
Affiliation(s)
- Junchong Liu
- Institute for Chemical Biology & Biosensing, and College of Life Sciences, Qingdao University, 308 Ningxia Road, Qingdao 266071, China
| | - Shuang Pang
- Institute for Chemical Biology & Biosensing, and College of Life Sciences, Qingdao University, 308 Ningxia Road, Qingdao 266071, China
| | - Mingyang Wang
- Institute for Chemical Biology & Biosensing, and College of Life Sciences, Qingdao University, 308 Ningxia Road, Qingdao 266071, China
| | - Haipeng Yu
- Institute for Chemical Biology & Biosensing, and College of Life Sciences, Qingdao University, 308 Ningxia Road, Qingdao 266071, China
| | - Pengxin Ma
- Institute for Chemical Biology & Biosensing, and College of Life Sciences, Qingdao University, 308 Ningxia Road, Qingdao 266071, China
| | - Tao Dong
- Institute for Chemical Biology & Biosensing, and College of Life Sciences, Qingdao University, 308 Ningxia Road, Qingdao 266071, China
| | - Zongmei Zheng
- Institute for Chemical Biology & Biosensing, and College of Life Sciences, Qingdao University, 308 Ningxia Road, Qingdao 266071, China
| | - Yiming Jiao
- Institute for Chemical Biology & Biosensing, and College of Life Sciences, Qingdao University, 308 Ningxia Road, Qingdao 266071, China
| | - Yaru Zhang
- Institute for Chemical Biology & Biosensing, and College of Life Sciences, Qingdao University, 308 Ningxia Road, Qingdao 266071, China
| | - Aihua Liu
- Institute for Chemical Biology & Biosensing, and College of Life Sciences, Qingdao University, 308 Ningxia Road, Qingdao 266071, China
| |
Collapse
|
11
|
Ma P, Liu J, Pang S, Zhou W, Yu H, Wang M, Dong T, Wang Y, Wang Q, Liu A. Biopanning of specific peptide for SARS-CoV-2 nucleocapsid protein and enzyme-linked immunosorbent assay-based antigen assay. Anal Chim Acta 2023; 1264:341300. [PMID: 37230729 DOI: 10.1016/j.aca.2023.341300] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 04/28/2023] [Accepted: 04/28/2023] [Indexed: 05/27/2023]
Abstract
The ongoing severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has rapidly spread worldwide which triggered serious public health issues. The search for rapid and accurate diagnosis, effective prevention, and treatment is urgent. The nucleocapsid protein (NP) of SARS-CoV-2 is one of the main structural proteins expressed and most abundant in the virus, and is considered a diagnostic marker for the accurate and sensitive detection of SARS-CoV-2. Herein, we report the screening of specific peptides from the pIII phage library that bind to SARS-CoV-2 NP. The phage monoclone expressing cyclic peptide N1 (peptide sequence, ACGTKPTKFC, with C&C bridged by disulfide bonding) specifically recognizes SARS-CoV-2 NP. Molecular docking studies reveal that the identified peptide is bound to the "pocket" region on the SARS-CoV-2 NP N-terminal domain mainly by forming a hydrogen bonding network and through hydrophobic interaction. Peptide N1 with the C-terminal linker was synthesized as the capture probe for SARS-CoV-2 NP in ELISA. The peptide-based ELISA was capable of assaying SARS-CoV-2 NP at concentrations as low as 61 pg/mL (∼1.2 pM). Furthermore, the as-proposed method could detect the SARS-CoV-2 virus at limits as low as 50 TCID50 (median tissue culture infective dose)/mL. This study demonstrates that selected peptides are powerful biomolecular tools for SARS-CoV-2 detection, providing a new and inexpensive method of rapidly screening infections as well as rapidly diagnosing coronavirus disease 2019 patients.
Collapse
Affiliation(s)
- Pengxin Ma
- Institute for Chemical Biology & Biosensing, College of Life Sciences, Qingdao University, 308 Ningxia Rd, Qingdao, 266071, China
| | - Junchong Liu
- Institute for Chemical Biology & Biosensing, College of Life Sciences, Qingdao University, 308 Ningxia Rd, Qingdao, 266071, China
| | - Shuang Pang
- Institute for Chemical Biology & Biosensing, College of Life Sciences, Qingdao University, 308 Ningxia Rd, Qingdao, 266071, China
| | - Wenhao Zhou
- Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China
| | - Haipeng Yu
- Institute for Chemical Biology & Biosensing, College of Life Sciences, Qingdao University, 308 Ningxia Rd, Qingdao, 266071, China
| | - Mingyang Wang
- Institute for Chemical Biology & Biosensing, College of Life Sciences, Qingdao University, 308 Ningxia Rd, Qingdao, 266071, China
| | - Tao Dong
- Institute for Chemical Biology & Biosensing, College of Life Sciences, Qingdao University, 308 Ningxia Rd, Qingdao, 266071, China
| | - Yanbo Wang
- Institute for Chemical Biology & Biosensing, College of Life Sciences, Qingdao University, 308 Ningxia Rd, Qingdao, 266071, China
| | - Qiqin Wang
- Institute of Pharmaceutical Analysis, College of Pharmacy, Jinan University, Guangzhou, 510632, China.
| | - Aihua Liu
- Institute for Chemical Biology & Biosensing, College of Life Sciences, Qingdao University, 308 Ningxia Rd, Qingdao, 266071, China.
| |
Collapse
|
12
|
Pahlow S, Richard-Lacroix M, Hornung F, Köse-Vogel N, Mayerhöfer TG, Hniopek J, Ryabchykov O, Bocklitz T, Weber K, Ehricht R, Löffler B, Deinhardt-Emmer S, Popp J. Simple, Fast and Convenient Magnetic Bead-Based Sample Preparation for Detecting Viruses via Raman-Spectroscopy. BIOSENSORS 2023; 13:594. [PMID: 37366959 DOI: 10.3390/bios13060594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 05/22/2023] [Accepted: 05/26/2023] [Indexed: 06/28/2023]
Abstract
We introduce a magnetic bead-based sample preparation scheme for enabling the Raman spectroscopic differentiation of severe acute respiratory syndrome coronavirus type 2 (SARS-CoV-2)-positive and -negative samples. The beads were functionalized with the angiotensin-converting enzyme 2 (ACE2) receptor protein, which is used as a recognition element to selectively enrich SARS-CoV-2 on the surface of the magnetic beads. The subsequent Raman measurements directly enable discriminating SARS-CoV-2-positive and -negative samples. The proposed approach is also applicable for other virus species when the specific recognition element is exchanged. A series of Raman spectra were measured on three types of samples, namely SARS-CoV-2, Influenza A H1N1 virus and a negative control. For each sample type, eight independent replicates were considered. All of the spectra are dominated by the magnetic bead substrate and no obvious differences between the sample types are apparent. In order to address the subtle differences in the spectra, we calculated different correlation coefficients, namely the Pearson coefficient and the Normalized cross correlation coefficient. By comparing the correlation with the negative control, differentiating between SARS-CoV-2 and Influenza A virus is possible. This study provides a first step towards the detection and potential classification of different viruses with the use of conventional Raman spectroscopy.
Collapse
Affiliation(s)
- Susanne Pahlow
- Abbe Center of Photonics, Institute of Physical Chemistry, Friedrich Schiller University Jena, Helmholtzweg 4, 07743 Jena, Germany
- Center for Applied Research, InfectoGnostics Research Campus Jena, Philosophenweg 7, 07743 Jena, Germany
- Leibniz Centre for Photonics in Infection Research (LPI), Leibniz Institute of Photonic Technology, Albert-Einstein-Straße 9, 07745 Jena, Germany
| | - Marie Richard-Lacroix
- Leibniz Centre for Photonics in Infection Research (LPI), Leibniz Institute of Photonic Technology, Albert-Einstein-Straße 9, 07745 Jena, Germany
| | - Franziska Hornung
- Leibniz Centre for Photonics in Infection Research (LPI), Institute of Medical Microbiology, Jena University Hospital, Am Klinikum 1, 07747 Jena, Germany
| | - Nilay Köse-Vogel
- Leibniz Centre for Photonics in Infection Research (LPI), Institute of Medical Microbiology, Jena University Hospital, Am Klinikum 1, 07747 Jena, Germany
| | - Thomas G Mayerhöfer
- Abbe Center of Photonics, Institute of Physical Chemistry, Friedrich Schiller University Jena, Helmholtzweg 4, 07743 Jena, Germany
- Leibniz Centre for Photonics in Infection Research (LPI), Leibniz Institute of Photonic Technology, Albert-Einstein-Straße 9, 07745 Jena, Germany
| | - Julian Hniopek
- Abbe Center of Photonics, Institute of Physical Chemistry, Friedrich Schiller University Jena, Helmholtzweg 4, 07743 Jena, Germany
- Center for Applied Research, InfectoGnostics Research Campus Jena, Philosophenweg 7, 07743 Jena, Germany
- Leibniz Centre for Photonics in Infection Research (LPI), Leibniz Institute of Photonic Technology, Albert-Einstein-Straße 9, 07745 Jena, Germany
| | - Oleg Ryabchykov
- Abbe Center of Photonics, Institute of Physical Chemistry, Friedrich Schiller University Jena, Helmholtzweg 4, 07743 Jena, Germany
- Center for Applied Research, InfectoGnostics Research Campus Jena, Philosophenweg 7, 07743 Jena, Germany
- Leibniz Centre for Photonics in Infection Research (LPI), Leibniz Institute of Photonic Technology, Albert-Einstein-Straße 9, 07745 Jena, Germany
| | - Thomas Bocklitz
- Abbe Center of Photonics, Institute of Physical Chemistry, Friedrich Schiller University Jena, Helmholtzweg 4, 07743 Jena, Germany
- Center for Applied Research, InfectoGnostics Research Campus Jena, Philosophenweg 7, 07743 Jena, Germany
- Leibniz Centre for Photonics in Infection Research (LPI), Leibniz Institute of Photonic Technology, Albert-Einstein-Straße 9, 07745 Jena, Germany
- Physics & Computer Science, Faculty of Mathematics, Institute of Computer Science, University Bayreuth, Universitätsstraße 30, 95447 Bayreuth, Germany
| | - Karina Weber
- Abbe Center of Photonics, Institute of Physical Chemistry, Friedrich Schiller University Jena, Helmholtzweg 4, 07743 Jena, Germany
- Center for Applied Research, InfectoGnostics Research Campus Jena, Philosophenweg 7, 07743 Jena, Germany
- Leibniz Centre for Photonics in Infection Research (LPI), Leibniz Institute of Photonic Technology, Albert-Einstein-Straße 9, 07745 Jena, Germany
| | - Ralf Ehricht
- Abbe Center of Photonics, Institute of Physical Chemistry, Friedrich Schiller University Jena, Helmholtzweg 4, 07743 Jena, Germany
- Center for Applied Research, InfectoGnostics Research Campus Jena, Philosophenweg 7, 07743 Jena, Germany
- Leibniz Centre for Photonics in Infection Research (LPI), Leibniz Institute of Photonic Technology, Albert-Einstein-Straße 9, 07745 Jena, Germany
| | - Bettina Löffler
- Leibniz Centre for Photonics in Infection Research (LPI), Institute of Medical Microbiology, Jena University Hospital, Am Klinikum 1, 07747 Jena, Germany
| | - Stefanie Deinhardt-Emmer
- Leibniz Centre for Photonics in Infection Research (LPI), Institute of Medical Microbiology, Jena University Hospital, Am Klinikum 1, 07747 Jena, Germany
| | - Jürgen Popp
- Abbe Center of Photonics, Institute of Physical Chemistry, Friedrich Schiller University Jena, Helmholtzweg 4, 07743 Jena, Germany
- Center for Applied Research, InfectoGnostics Research Campus Jena, Philosophenweg 7, 07743 Jena, Germany
- Leibniz Centre for Photonics in Infection Research (LPI), Leibniz Institute of Photonic Technology, Albert-Einstein-Straße 9, 07745 Jena, Germany
| |
Collapse
|
13
|
Detection of live SARS-CoV-2 virus and its variants by specially designed SERS-active substrates and spectroscopic analyses. Anal Chim Acta 2023; 1256:341151. [PMID: 37037632 PMCID: PMC10060322 DOI: 10.1016/j.aca.2023.341151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 03/07/2023] [Accepted: 03/26/2023] [Indexed: 04/05/2023]
Abstract
A method using label-free surface enhanced Raman spectroscopy (SERS) based on substrate design is provided for an early detection and differentiation of spike glycoprotein mutation sites in live SARS-CoV-2 variants. Two SERS-active substrates, Au nanocavities (Au NCs) and Au NPs on porous ZrO2 (Au NPs/pZrO2), were used to identify specific peaks of A.3, Alpha, and Delta variants at different concentrations and demonstrated the ability to provide their SERS spectra with detection limits of 0.1–1.0% (or 104−5 copies/mL). Variant identification can be achieved by cross-examining reference spectra and analyzing the substrate-analyte relationship between the suitability of the analyte upon the hotspot(s) formed at high concentrations and the effective detection distance at low concentrations. Mutation sites on the S1 chain of the spike glycoprotein for each variant may be related and distinguishable. This method does not require sample preprocessing and therefore allows for fast screening, which is of high value for more comprehensive and specific studies to distinguish upcoming variants.
Collapse
|
14
|
GhaderiShekhiAbadi P, Irani M, Noorisepehr M, Maleki A. Magnetic biosensors for identification of SARS-CoV-2, Influenza, HIV, and Ebola viruses: a review. NANOTECHNOLOGY 2023; 34:272001. [PMID: 36996779 DOI: 10.1088/1361-6528/acc8da] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 03/29/2023] [Indexed: 06/19/2023]
Abstract
Infectious diseases such as novel coronavirus (SARS-CoV-2), Influenza, HIV, Ebola, etc kill many people around the world every year (SARS-CoV-2 in 2019, Ebola in 2013, HIV in 1980, Influenza in 1918). For example, SARS-CoV-2 has plagued higher than 317 000 000 people around the world from December 2019 to January 13, 2022. Some infectious diseases do not yet have not a proper vaccine, drug, therapeutic, and/or detection method, which makes rapid identification and definitive treatments the main challenges. Different device techniques have been used to detect infectious diseases. However, in recent years, magnetic materials have emerged as active sensors/biosensors for detecting viral, bacterial, and plasmids agents. In this review, the recent applications of magnetic materials in biosensors for infectious viruses detection have been discussed. Also, this work addresses the future trends and perspectives of magnetic biosensors.
Collapse
Affiliation(s)
| | - Mohammad Irani
- Department of Pharmaceutics, Faculty of Pharmacy, Alborz University of Medical Sciences, Karaj, Iran
| | - Mohammad Noorisepehr
- Environmental Health Engineering Research Center, Alborz University of Medical Sciences, Karaj, Iran
| | - Ali Maleki
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran 16846-13114, Iran
| |
Collapse
|
15
|
Lukose J, Barik AK, George SD, Murukeshan VM, Chidangil S. Raman spectroscopy for viral diagnostics. Biophys Rev 2023; 15:199-221. [PMID: 37113565 PMCID: PMC10088700 DOI: 10.1007/s12551-023-01059-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Accepted: 03/24/2023] [Indexed: 04/29/2023] Open
Abstract
Raman spectroscopy offers the potential for fingerprinting biological molecules at ultra-low concentration and therefore has potential for the detection of viruses. Here we review various Raman techniques employed for the investigation of viruses. Different Raman techniques are discussed including conventional Raman spectroscopy, surface-enhanced Raman spectroscopy, Raman tweezer, tip-enhanced Raman Spectroscopy, and coherent anti-Stokes Raman scattering. Surface-enhanced Raman scattering can play an essential role in viral detection by multiplexing nanotechnology, microfluidics, and machine learning for ensuring spectral reproducibility and efficient workflow in sample processing and detection. The application of these techniques to diagnose the SARS-CoV-2 virus is also reviewed. Graphical abstract Supplementary Information The online version contains supplementary material available at 10.1007/s12551-023-01059-4.
Collapse
Affiliation(s)
- Jijo Lukose
- Centre of Excellence for Biophotonics, Department of Atomic and Molecular Physics, Manipal Academy of Higher Education, 576104 Manipal, India
| | - Ajaya Kumar Barik
- Centre of Excellence for Biophotonics, Department of Atomic and Molecular Physics, Manipal Academy of Higher Education, 576104 Manipal, India
| | - Sajan D. George
- Centre for Applied Nanosciences, Department of Atomic and Molecular Physics, Manipal Academy of Higher Education, 576104 Manipal, India
| | - V. M. Murukeshan
- Centre for Optical and Laser Engineering, School of Mechanical and Aerospace Engineering, Nanyang Technological University, 50 Nanyang Avenue, 639798 Singapore, Singapore
| | - Santhosh Chidangil
- Centre of Excellence for Biophotonics, Department of Atomic and Molecular Physics, Manipal Academy of Higher Education, 576104 Manipal, India
| |
Collapse
|
16
|
Sun Y, Yang C, Jiang X, Zhang P, Chen S, Su F, Wang H, Liu W, He X, Chen L, Man B, Li Z. High-intensity vector signals for detecting SARS-CoV-2 RNA using CRISPR/Cas13a couple with stabilized graphene field-effect transistor. Biosens Bioelectron 2023; 222:114979. [PMID: 36463654 PMCID: PMC9710152 DOI: 10.1016/j.bios.2022.114979] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 11/25/2022] [Accepted: 11/29/2022] [Indexed: 12/03/2022]
Abstract
False detection of SARS-CoV-2 is detrimental to epidemic prevention and control. The scalar nature of the detected signal and the imperfect target recognition property of developed methods are the root causes of generating false signals. Here, we reported a collaborative system of CRISPR-Cas13a coupling with the stabilized graphene field-effect transistor, providing high-intensity vector signals for detecting SARS-CoV-2. In this collaborative system, SARS-CoV-2 RNA generates a "big subtraction" signal with a right-shifted feature, whereas any untargets cause the left-shifted characteristic signal. Thus, the false detection of SARS-CoV-2 is eliminated. High sensitivity with 0.15 copies/μL was obtained. In addition, the wide concerned instability of the graphene field-effect transistor for biosensing in solution environment was solved by the hydrophobic treatment to its substrate, which should be a milestone in advancing it's engineering application. This collaborative system characterized by the high-intensity vector signal and amazing stability significantly advances the accurate SARS-CoV-2 detection from the aspect of signal nature.
Collapse
Affiliation(s)
- Yang Sun
- Department of Chemistry and Biological Engineering, University of Science and Technology Beijing 30 Xueyuan Road, Haidian District, Beijing, 100083, PR China
| | - Cheng Yang
- Department of Physics and Electronics, Shandong Normal University 1 Daxue Road, Changqing District, Jinan, Shandong Province, 250014, PR China
| | - Xiaolin Jiang
- Shandong Provincial Key Laboratory of Communicable Disease Control and Prevention, Shandong Center for Disease Control and Prevention, 16992 Jingshi Road, Lixia District, Jinan, Shandong Province, 250014, PR China
| | - Pengbo Zhang
- Department of Chemistry and Biological Engineering, University of Science and Technology Beijing 30 Xueyuan Road, Haidian District, Beijing, 100083, PR China
| | - Shuo Chen
- Department of Physics and Electronics, Shandong Normal University 1 Daxue Road, Changqing District, Jinan, Shandong Province, 250014, PR China
| | - Fengxia Su
- Department of Chemistry and Biological Engineering, University of Science and Technology Beijing 30 Xueyuan Road, Haidian District, Beijing, 100083, PR China
| | - Hui Wang
- Department of Chemistry and Biological Engineering, University of Science and Technology Beijing 30 Xueyuan Road, Haidian District, Beijing, 100083, PR China
| | - Weiliang Liu
- Department of Chemistry and Biological Engineering, University of Science and Technology Beijing 30 Xueyuan Road, Haidian District, Beijing, 100083, PR China
| | - Xiaofei He
- Department of Chemistry and Biological Engineering, University of Science and Technology Beijing 30 Xueyuan Road, Haidian District, Beijing, 100083, PR China
| | - Lei Chen
- Department of of Life Sciences, Shandong Normal University 1 Daxue Road, Changqing District, Jinan, Shandong Province, 250014, PR China.
| | - Baoyuan Man
- Department of Physics and Electronics, Shandong Normal University 1 Daxue Road, Changqing District, Jinan, Shandong Province, 250014, PR China.
| | - Zhengping Li
- Department of Chemistry and Biological Engineering, University of Science and Technology Beijing 30 Xueyuan Road, Haidian District, Beijing, 100083, PR China.
| |
Collapse
|
17
|
Truong PL, Yin Y, Lee D, Ko SH. Advancement in COVID-19 detection using nanomaterial-based biosensors. EXPLORATION (BEIJING, CHINA) 2023; 3:20210232. [PMID: 37323622 PMCID: PMC10191025 DOI: 10.1002/exp.20210232] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 05/11/2022] [Indexed: 06/17/2023]
Abstract
Coronavirus disease 2019 (COVID-19) pandemic has exemplified how viral growth and transmission are a significant threat to global biosecurity. The early detection and treatment of viral infections is the top priority to prevent fresh waves and control the pandemic. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has been identified through several conventional molecular methodologies that are time-consuming and require high-skill labor, apparatus, and biochemical reagents but have a low detection accuracy. These bottlenecks hamper conventional methods from resolving the COVID-19 emergency. However, interdisciplinary advances in nanomaterials and biotechnology, such as nanomaterials-based biosensors, have opened new avenues for rapid and ultrasensitive detection of pathogens in the field of healthcare. Many updated nanomaterials-based biosensors, namely electrochemical, field-effect transistor, plasmonic, and colorimetric biosensors, employ nucleic acid and antigen-antibody interactions for SARS-CoV-2 detection in a highly efficient, reliable, sensitive, and rapid manner. This systematic review summarizes the mechanisms and characteristics of nanomaterials-based biosensors for SARS-CoV-2 detection. Moreover, continuing challenges and emerging trends in biosensor development are also discussed.
Collapse
Affiliation(s)
- Phuoc Loc Truong
- Laser and Thermal Engineering LabDepartment of Mechanical EngineeringGachon UniversitySeongnamKorea
| | - Yiming Yin
- New Materials InstituteDepartment of MechanicalMaterials and Manufacturing EngineeringUniversity of Nottingham Ningbo ChinaNingboChina
- Applied Nano and Thermal Science LabDepartment of Mechanical EngineeringSeoul National UniversityGwanak‐guSeoulKorea
| | - Daeho Lee
- Laser and Thermal Engineering LabDepartment of Mechanical EngineeringGachon UniversitySeongnamKorea
| | - Seung Hwan Ko
- Applied Nano and Thermal Science LabDepartment of Mechanical EngineeringSeoul National UniversityGwanak‐guSeoulKorea
- Institute of Advanced Machinery and Design (SNU‐IAMD)/Institute of Engineering ResearchSeoul National UniversityGwanak‐guSeoulKorea
| |
Collapse
|
18
|
Yang Y, Li H, Jones L, Murray J, Haverstick J, Naikare HK, Mosley YYC, Tripp RA, Ai B, Zhao Y. Rapid Detection of SARS-CoV-2 RNA in Human Nasopharyngeal Specimens Using Surface-Enhanced Raman Spectroscopy and Deep Learning Algorithms. ACS Sens 2023; 8:297-307. [PMID: 36563081 PMCID: PMC9797020 DOI: 10.1021/acssensors.2c02194] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Accepted: 12/14/2022] [Indexed: 12/24/2022]
Abstract
A rapid and cost-effective method to detect the infection of SARS-CoV-2 is fundamental to mitigating the current COVID-19 pandemic. Herein, a surface-enhanced Raman spectroscopy (SERS) sensor with a deep learning algorithm has been developed for the rapid detection of SARS-CoV-2 RNA in human nasopharyngeal swab (HNS) specimens. The SERS sensor was prepared using a silver nanorod array (AgNR) substrate by assembling DNA probes to capture SARS-CoV-2 RNA. The SERS spectra of HNS specimens were collected after RNA hybridization, and the corresponding SERS peaks were identified. The RNA detection range was determined to be 103-109 copies/mL in saline sodium citrate buffer. A recurrent neural network (RNN)-based deep learning model was developed to classify 40 positive and 120 negative specimens with an overall accuracy of 98.9%. For the blind test of 72 specimens, the RNN model gave a 97.2% accuracy prediction for positive specimens and a 100% accuracy for negative specimens. All the detections were performed in 25 min. These results suggest that the DNA-functionalized AgNR array SERS sensor combined with a deep learning algorithm could serve as a potential rapid point-of-care COVID-19 diagnostic platform.
Collapse
Affiliation(s)
- Yanjun Yang
- School of Electrical and Computer Engineering, College
of Engineering, The University of Georgia, Athens,
Georgia30602, United States
| | - Hao Li
- School of Microelectronics and Communication
Engineering, Chongqing Key Laboratory of Bio-perception & Intelligent Information
Processing, Chongqing University, Chongqing400044, P.
R. China
| | - Les Jones
- Department of Infectious Diseases, College of Veterinary
Medicine, The University of Georgia, Athens, Georgia30602,
United States
| | - Jackelyn Murray
- Department of Infectious Diseases, College of Veterinary
Medicine, The University of Georgia, Athens, Georgia30602,
United States
| | - James Haverstick
- Department of Physics and Astronomy, The
University of Georgia, Athens, Georgia30602, United
States
| | - Hemant K. Naikare
- Department of Infectious Diseases, College of Veterinary
Medicine, The University of Georgia, Athens, Georgia30602,
United States
- Tifton Veterinary Diagnostic and Investigational
Laboratory, The University of Georgia, Athens, Georgia30602,
United States
| | - Yung-Yi C. Mosley
- Department of Infectious Diseases, College of Veterinary
Medicine, The University of Georgia, Athens, Georgia30602,
United States
- Tifton Veterinary Diagnostic and Investigational
Laboratory, The University of Georgia, Athens, Georgia30602,
United States
| | - Ralph A. Tripp
- Department of Infectious Diseases, College of Veterinary
Medicine, The University of Georgia, Athens, Georgia30602,
United States
| | - Bin Ai
- School of Microelectronics and Communication
Engineering, Chongqing Key Laboratory of Bio-perception & Intelligent Information
Processing, Chongqing University, Chongqing400044, P.
R. China
| | - Yiping Zhao
- Department of Physics and Astronomy, The
University of Georgia, Athens, Georgia30602, United
States
| |
Collapse
|
19
|
Gu MM, Guan PC, Xu SS, Li HM, Kou YC, Lin XD, Kathiresan M, Song Y, Zhang YJ, Jin SZ, Li JF. Ultrasensitive detection of SARS-CoV-2 S protein with aptamers biosensor based on surface-enhanced Raman scattering. J Chem Phys 2023; 158:024203. [PMID: 36641419 DOI: 10.1063/5.0130011] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
A rapid and accurate diagnostic modality is essential to prevent the spread of SARS-CoV-2. In this study, we proposed a SARS-CoV-2 detection sensor based on surface-enhanced Raman scattering (SERS) to achieve rapid and ultrasensitive detection. The sensor utilized spike protein deoxyribonucleic acid aptamers with strong affinity as the recognition entity to achieve high specificity. The spherical cocktail aptamers-gold nanoparticles (SCAP) SERS substrate was used as the base and Au nanoparticles modified with the Raman reporter molecule that resonates with the excitation light and spike protein aptamers were used as the SERS nanoprobe. The SCAP substrate and SERS nanoprobes were used to target and capture the SARS-CoV-2 S protein to form a sandwich structure on the Au film substrate, which can generate ultra-strong "hot spots" to achieve ultrasensitive detection. Analysis of SARS-CoV-2 S protein was performed by monitoring changes in SERS peak intensity on a SCAP SERS substrate-based detection platform. This assay detects S protein with a LOD of less than 0.7 fg mL-1 and pseudovirus as low as 0.8 TU mL-1 in about 12 min. The results of the simulated oropharyngeal swab system in this study indicated the possibility of it being used for clinical detection, providing a potential option for rapid and accurate diagnosis and more effective control of SARS-CoV-2 transmission.
Collapse
Affiliation(s)
- Man-Man Gu
- Key Laboratory for Modern Measurement Technology and Instruments of Zhejiang Province, China Jiliang University, Hangzhou 310018, China
| | - Peng-Cheng Guan
- State Key Laboratory for Physical Chemistry of Solid Surfaces, iChEM, MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, College of Chemistry and Chemical Engineering, College of Energy, College of Materials, Xiamen University, Xiamen 361005, China
| | - Shan-Shan Xu
- State Key Laboratory for Physical Chemistry of Solid Surfaces, iChEM, MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, College of Chemistry and Chemical Engineering, College of Energy, College of Materials, Xiamen University, Xiamen 361005, China
| | - Hong-Mei Li
- State Key Laboratory for Physical Chemistry of Solid Surfaces, iChEM, MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, College of Chemistry and Chemical Engineering, College of Energy, College of Materials, Xiamen University, Xiamen 361005, China
| | - Yi-Chuan Kou
- State Key Laboratory for Physical Chemistry of Solid Surfaces, iChEM, MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, College of Chemistry and Chemical Engineering, College of Energy, College of Materials, Xiamen University, Xiamen 361005, China
| | - Xiao-Dong Lin
- State Key Laboratory for Physical Chemistry of Solid Surfaces, iChEM, MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, College of Chemistry and Chemical Engineering, College of Energy, College of Materials, Xiamen University, Xiamen 361005, China
| | - Murugavel Kathiresan
- Electro-Organic Division, CSIR-Central Electrochemical Research Institute, Karaikudi 630003, India
| | - Yanling Song
- State Key Laboratory for Physical Chemistry of Solid Surfaces, iChEM, MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, College of Chemistry and Chemical Engineering, College of Energy, College of Materials, Xiamen University, Xiamen 361005, China
| | - Yue-Jiao Zhang
- State Key Laboratory for Physical Chemistry of Solid Surfaces, iChEM, MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, College of Chemistry and Chemical Engineering, College of Energy, College of Materials, Xiamen University, Xiamen 361005, China
| | - Shang-Zhong Jin
- Key Laboratory for Modern Measurement Technology and Instruments of Zhejiang Province, China Jiliang University, Hangzhou 310018, China
| | - Jian-Feng Li
- Key Laboratory for Modern Measurement Technology and Instruments of Zhejiang Province, China Jiliang University, Hangzhou 310018, China
| |
Collapse
|
20
|
Ding Y, Sun Y, Liu C, Jiang Q, Chen F, Cao Y. SERS-Based Biosensors Combined with Machine Learning for Medical Application. ChemistryOpen 2023; 12:e202200192. [PMID: 36627171 PMCID: PMC9831797 DOI: 10.1002/open.202200192] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 12/09/2022] [Indexed: 01/12/2023] Open
Abstract
Surface-enhanced Raman spectroscopy (SERS) has shown strength in non-invasive, rapid, trace analysis and has been used in many fields in medicine. Machine learning (ML) is an algorithm that can imitate human learning styles and structure existing content with the knowledge to effectively improve learning efficiency. Integrating SERS and ML can have a promising future in the medical field. In this review, we summarize the applications of SERS combined with ML in recent years, such as the recognition of biological molecules, rapid diagnosis of diseases, developing of new immunoassay techniques, and enhancing SERS capabilities in semi-quantitative measurements. Ultimately, the possible opportunities and challenges of combining SERS with ML are addressed.
Collapse
Affiliation(s)
- Yan Ding
- Department of Forensic MedicineNanjing Medical UniversityNanjing211166P.R. China
| | - Yang Sun
- Department of Forensic MedicineNanjing Medical UniversityNanjing211166P.R. China
| | - Cheng Liu
- Department of Forensic MedicineNanjing Medical UniversityNanjing211166P.R. China
| | - Qiao‐Yan Jiang
- Department of Forensic MedicineNanjing Medical UniversityNanjing211166P.R. China
| | - Feng Chen
- Department of Forensic MedicineNanjing Medical UniversityNanjing211166P.R. China
| | - Yue Cao
- Department of Forensic MedicineNanjing Medical UniversityNanjing211166P.R. China
| |
Collapse
|
21
|
Guan PC, Zhang H, Li ZY, Xu SS, Sun M, Tian XM, Ma Z, Lin JS, Gu MM, Wen H, Zhang FL, Zhang YJ, Yu GJ, Yang C, Wang ZX, Song Y, Li JF. Rapid Point-of-Care Assay by SERS Detection of SARS-CoV-2 Virus and Its Variants. Anal Chem 2022; 94:17795-17802. [PMID: 36511436 PMCID: PMC9762416 DOI: 10.1021/acs.analchem.2c03437] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Accepted: 11/25/2022] [Indexed: 12/15/2022]
Abstract
Addressing the spread of coronavirus disease 2019 (COVID-19) has highlighted the need for rapid, accurate, and low-cost diagnostic methods that detect specific antigens for SARS-CoV-2 infection. Tests for COVID-19 are based on reverse transcription PCR (RT-PCR), which requires laboratory services and is time-consuming. Here, by targeting the SARS-CoV-2 spike protein, we present a point-of-care SERS detection platform that specifically detects SARS-CoV-2 antigen in one step by captureing substrates and detection probes based on aptamer-specific recognition. Using the pseudovirus, without any pretreatment, the SARS-CoV-2 virus and its variants were detected by a handheld Raman spectrometer within 5 min. The limit of detection (LoD) for the pseudovirus was 124 TU μL-1 (18 fM spike protein), with a linear range of 250-10,000 TU μL-1. Moreover, this assay can specifically recognize the SARS-CoV-2 antigen without cross reacting with specific antigens of other coronaviruses or influenza A. Therefore, the platform has great potential for application in rapid point-of-care diagnostic assays for SARS-CoV-2.
Collapse
Affiliation(s)
- Peng-Cheng Guan
- College
of Materials, State Key Laboratory for Physical Chemistry of Solid
Surfaces, iChEM, MOE Key Laboratory of Spectrochemical Analysis and
Instrumentation, College of Chemistry and Chemical Engineering, College
of Energy, The First Affiliated Hospital, Xiamen University, Xiamen 361005, China
| | - Hong Zhang
- Shanghai
Children’s Hospital, Shanghai Jiao
Tong University, Shanghai 200062, China
| | - Zhi-Yong Li
- College
of Materials, State Key Laboratory for Physical Chemistry of Solid
Surfaces, iChEM, MOE Key Laboratory of Spectrochemical Analysis and
Instrumentation, College of Chemistry and Chemical Engineering, College
of Energy, The First Affiliated Hospital, Xiamen University, Xiamen 361005, China
| | - Shan-Shan Xu
- College
of Materials, State Key Laboratory for Physical Chemistry of Solid
Surfaces, iChEM, MOE Key Laboratory of Spectrochemical Analysis and
Instrumentation, College of Chemistry and Chemical Engineering, College
of Energy, The First Affiliated Hospital, Xiamen University, Xiamen 361005, China
| | - Miao Sun
- College
of Materials, State Key Laboratory for Physical Chemistry of Solid
Surfaces, iChEM, MOE Key Laboratory of Spectrochemical Analysis and
Instrumentation, College of Chemistry and Chemical Engineering, College
of Energy, The First Affiliated Hospital, Xiamen University, Xiamen 361005, China
| | - Xian-Min Tian
- Shanghai
Children’s Hospital, Shanghai Jiao
Tong University, Shanghai 200062, China
| | - Zhan Ma
- Shanghai
Children’s Hospital, Shanghai Jiao
Tong University, Shanghai 200062, China
| | - Jia-Sheng Lin
- College
of Materials, State Key Laboratory for Physical Chemistry of Solid
Surfaces, iChEM, MOE Key Laboratory of Spectrochemical Analysis and
Instrumentation, College of Chemistry and Chemical Engineering, College
of Energy, The First Affiliated Hospital, Xiamen University, Xiamen 361005, China
| | - Man-Man Gu
- Department
of Optics and Electronic Technology, China
Jiliang University, Hangzhou 310018, China
| | - Huan Wen
- College
of Materials, State Key Laboratory for Physical Chemistry of Solid
Surfaces, iChEM, MOE Key Laboratory of Spectrochemical Analysis and
Instrumentation, College of Chemistry and Chemical Engineering, College
of Energy, The First Affiliated Hospital, Xiamen University, Xiamen 361005, China
| | - Fan-Li Zhang
- Department
of Optics and Electronic Technology, China
Jiliang University, Hangzhou 310018, China
| | - Yue-Jiao Zhang
- College
of Materials, State Key Laboratory for Physical Chemistry of Solid
Surfaces, iChEM, MOE Key Laboratory of Spectrochemical Analysis and
Instrumentation, College of Chemistry and Chemical Engineering, College
of Energy, The First Affiliated Hospital, Xiamen University, Xiamen 361005, China
| | - Guang-Jun Yu
- Shanghai
Children’s Hospital, Shanghai Jiao
Tong University, Shanghai 200062, China
| | - Chaoyong Yang
- College
of Materials, State Key Laboratory for Physical Chemistry of Solid
Surfaces, iChEM, MOE Key Laboratory of Spectrochemical Analysis and
Instrumentation, College of Chemistry and Chemical Engineering, College
of Energy, The First Affiliated Hospital, Xiamen University, Xiamen 361005, China
- Innovation
Laboratory for Sciences and Technologies of Energy Materials of Fujian
Province (IKKEM), Xiamen 361005, China
| | - Zhan-Xiang Wang
- College
of Materials, State Key Laboratory for Physical Chemistry of Solid
Surfaces, iChEM, MOE Key Laboratory of Spectrochemical Analysis and
Instrumentation, College of Chemistry and Chemical Engineering, College
of Energy, The First Affiliated Hospital, Xiamen University, Xiamen 361005, China
| | - Yanling Song
- College
of Materials, State Key Laboratory for Physical Chemistry of Solid
Surfaces, iChEM, MOE Key Laboratory of Spectrochemical Analysis and
Instrumentation, College of Chemistry and Chemical Engineering, College
of Energy, The First Affiliated Hospital, Xiamen University, Xiamen 361005, China
| | - Jian-Feng Li
- College
of Materials, State Key Laboratory for Physical Chemistry of Solid
Surfaces, iChEM, MOE Key Laboratory of Spectrochemical Analysis and
Instrumentation, College of Chemistry and Chemical Engineering, College
of Energy, The First Affiliated Hospital, Xiamen University, Xiamen 361005, China
- Innovation
Laboratory for Sciences and Technologies of Energy Materials of Fujian
Province (IKKEM), Xiamen 361005, China
- Department
of Optics and Electronic Technology, China
Jiliang University, Hangzhou 310018, China
| |
Collapse
|
22
|
Joung Y, Kim K, Lee S, Chun BS, Lee S, Hwang J, Choi S, Kang T, Lee MK, Chen L, Choo J. Rapid and Accurate On-Site Immunodiagnostics of Highly Contagious Severe Acute Respiratory Syndrome Coronavirus 2 Using Portable Surface-Enhanced Raman Scattering-Lateral Flow Assay Reader. ACS Sens 2022; 7:3470-3480. [PMID: 36374202 DOI: 10.1021/acssensors.2c01808] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
In early 2022, the number of people infected with the highly contagious mutant severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), called Omicron, was increasing worldwide. Therefore, several countries approved the lateral flow assay (LFA) strip as a diagnostic method for confirming SARS-CoV-2 instead of reverse transcription-polymerase chain reaction (RT-PCR), which takes a long time to generate the results. However, owing to the limitation of detection sensitivity, commercial LFA strips have high false-negative diagnosis rates for patients with low virus concentrations. Therefore, in this study, we developed a portable surface-enhanced Raman scattering (SERS)-LFA reader based on localized surface plasmon effects to solve the sensitivity problem of the commercial LFA strip. We tested 54 clinical samples using this portable SERS-LFA reader, which generated 49 positive and 5 negative results. Out of the 49 positive results, SERS-LFA classified only 2 as false negative, while the commercial LFA classified 21 as false negative. This confirmed that the false-negative rate had significantly improved compared to that of commercial LFA strips. We believe that the proposed SERS-LFA system can be utilized as a point-of-care diagnostic system to quickly and accurately determine a virus infection that could spread significantly within a short period.
Collapse
Affiliation(s)
- Younju Joung
- Department of Chemistry, Chung-Ang University, Seoul 06974, South Korea
| | - Kihyun Kim
- Department of Chemistry, Chung-Ang University, Seoul 06974, South Korea
| | - Seungwoo Lee
- Nanoscope Systems Inc., Daejeon 34016, South Korea
| | | | - Sangyeop Lee
- Department of Innovative Diagnostics, SG Medical Inc., Seoul 05548, South Korea
| | - Joonki Hwang
- Department of Innovative Diagnostics, SG Medical Inc., Seoul 05548, South Korea
| | - Suji Choi
- Department of Innovative Diagnostics, SG Medical Inc., Seoul 05548, South Korea
| | - Taejoon Kang
- Bionanotechnology, Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, South Korea.,School of Pharmacy, Sungkyunkwan University, Suwon 16419, South Korea
| | - Mi-Kyung Lee
- Department of Laboratory Medicine, College of Medicine, Chung-Ang University, Seoul 06973, South Korea
| | - Lingxin Chen
- Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China
| | - Jaebum Choo
- Department of Chemistry, Chung-Ang University, Seoul 06974, South Korea
| |
Collapse
|
23
|
Zhang X, Yang Y, Cao J, Qi Z, Li G. Point-of-care CRISPR/Cas biosensing technology: A promising tool for preventing the possible COVID-19 resurgence caused by contaminated cold-chain food and packaging. FOOD FRONTIERS 2022; 4:FFT2176. [PMID: 36712576 PMCID: PMC9874772 DOI: 10.1002/fft2.176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/1912] [Revised: 12/12/1912] [Accepted: 12/12/1912] [Indexed: 02/01/2023] Open
Abstract
The ongoing coronavirus disease 2019 (COVID-19) pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has caused great public health concern and has been a global threat due to its high transmissibility and morbidity. Although the SARS-CoV-2 transmission mainly relies on the person-to-person route through the respiratory droplets, the possible transmission through the contaminated cold-chain food and packaging to humans has raised widespread concerns. This review discussed the possibility of SARS-CoV-2 transmission via the contaminated cold-chain food and packaging by tracing the occurrence, the survival of SARS-CoV-2 in the contaminated cold-chain food and packaging, as well as the transmission and outbreaks related to the contaminated cold-chain food and packaging. Rapid, accurate, and reliable diagnostics of SARS-CoV-2 is of great importance for preventing and controlling the COVID-19 resurgence. Therefore, we summarized the recent advances on the emerging clustered regularly interspaced short palindromic repeats (CRISPR)/Cas system-based biosensing technology that is promising and powerful for preventing the possible COVID-19 resurgence caused by the contaminated cold-chain food and packaging during the COVID-19 pandemic, including CRISPR/Cas system-based biosensors and their integration with portable devices (e.g., smartphone, lateral flow assays, microfluidic chips, and nanopores). Impressively, this review not only provided an insight on the possibility of SARS-CoV-2 transmission through the food supply chain, but also proposed the future opportunities and challenges on the development of CRISPR/Cas system-based detection methods for the diagnosis of SARS-CoV-2.
Collapse
Affiliation(s)
- Xianlong Zhang
- Food safety and Quality Control Innovation team, Department of Food Science and EngineeringSchool of Food and Biological Engineering, Shaanxi University of Science and TechnologyXi'an710021China
| | - Yan Yang
- Food safety and Quality Control Innovation team, Department of Food Science and EngineeringSchool of Food and Biological Engineering, Shaanxi University of Science and TechnologyXi'an710021China
| | - Juanjuan Cao
- Food safety and Quality Control Innovation team, Department of Food Science and EngineeringSchool of Food and Biological Engineering, Shaanxi University of Science and TechnologyXi'an710021China
| | - Zihe Qi
- Food safety and Quality Control Innovation team, Department of Food Science and EngineeringSchool of Food and Biological Engineering, Shaanxi University of Science and TechnologyXi'an710021China
| | - Guoliang Li
- Food safety and Quality Control Innovation team, Department of Food Science and EngineeringSchool of Food and Biological Engineering, Shaanxi University of Science and TechnologyXi'an710021China
| |
Collapse
|
24
|
Xiong J, Dong C, Zhang J, Fang X, Ni J, Gan H, Li J, Song C. DNA walker-powered ratiometric SERS cytosensor of circulating tumor cells with single-cell sensitivity. Biosens Bioelectron 2022; 213:114442. [DOI: 10.1016/j.bios.2022.114442] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 05/15/2022] [Accepted: 05/29/2022] [Indexed: 12/30/2022]
|
25
|
Li Y, Lin C, Peng Y, He J, Yang Y. High-sensitivity and point-of-care detection of SARS-CoV-2 from nasal and throat swabs by magnetic SERS biosensor. SENSORS AND ACTUATORS. B, CHEMICAL 2022; 365:131974. [PMID: 35505925 PMCID: PMC9047405 DOI: 10.1016/j.snb.2022.131974] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 04/13/2022] [Accepted: 04/26/2022] [Indexed: 05/20/2023]
Abstract
The outbreak of COVID-19 caused by SARS-CoV-2 urges the development of rapidly and accurately diagnostic methods. Here, one high-sensitivity and point-of-care detection method based on magnetic SERS biosensor composed of Fe3O4-Au nanocomposite and Au nanoneedles array was developed to detect SARS-CoV-2 directly. Among, the magnetic Fe3O4-Au nanocomposite is applied to capture and separate virus from nasal and throat swabs and enhance the Raman signals of SARS-CoV-2. The magnetic SERS biosensor possessed high sensitivity by optimizing the Fe3O4-Au nanocomposite. More significantly, the on-site detection of inactivated SARS-CoV-2 virus was achieved based on the magnetic SERS biosensor with ultra-low limit of detection of 100 copies/mL during 15 mins. Furthermore, the contaminated nasal and throat swabs samples were identified by support vector machine, and the diagnostic accuracy of 100% was obtained. The magnetic SERS biosensor combined with support vector machine provides giant potential as the point-of-care detection tool for SARS-CoV-2.
Collapse
Affiliation(s)
- Yanyan Li
- State Key Laboratory of High-Performance Ceramics and Superfine Microstructures, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Dingxi Road, Shanghai 200050, People's Republic of China
- Graduate School of the Chinese Academy of Sciences, No.19(A) Yuquan Road, Beijing 100049, People's Republic of China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chenglong Lin
- State Key Laboratory of High-Performance Ceramics and Superfine Microstructures, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Dingxi Road, Shanghai 200050, People's Republic of China
- Graduate School of the Chinese Academy of Sciences, No.19(A) Yuquan Road, Beijing 100049, People's Republic of China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yusi Peng
- State Key Laboratory of High-Performance Ceramics and Superfine Microstructures, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Dingxi Road, Shanghai 200050, People's Republic of China
- Graduate School of the Chinese Academy of Sciences, No.19(A) Yuquan Road, Beijing 100049, People's Republic of China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jun He
- Anhui Provincial Center for Disease Control and Prevention, Hefei 12560, Anhui, People's Republic of China
- Public Health Research Institute of Anhui Province, Hefei 12560, Anhui, People's Republic of China
| | - Yong Yang
- State Key Laboratory of High-Performance Ceramics and Superfine Microstructures, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Dingxi Road, Shanghai 200050, People's Republic of China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
26
|
Salehi H, Ramoji A, Mougari S, Merida P, Neyret A, Popp J, Horvat B, Muriaux D, Cuisinier F. Specific intracellular signature of SARS-CoV-2 infection using confocal Raman microscopy. Commun Chem 2022; 5:85. [PMID: 35911504 PMCID: PMC9311350 DOI: 10.1038/s42004-022-00702-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 07/01/2022] [Indexed: 01/27/2023] Open
Abstract
SARS-CoV-2 infection remains spread worldwide and requires a better understanding of virus-host interactions. Here, we analyzed biochemical modifications due to SARS-CoV-2 infection in cells by confocal Raman microscopy. Obtained results were compared with the infection with another RNA virus, the measles virus. Our results have demonstrated a virus-specific Raman molecular signature, reflecting intracellular modification during each infection. Advanced data analysis has been used to distinguish non-infected versus infected cells for two RNA viruses. Further, classification between non-infected and SARS-CoV-2 and measles virus-infected cells yielded an accuracy of 98.9 and 97.2 respectively, with a significant increase of the essential amino-acid tryptophan in SARS-CoV-2-infected cells. These results present proof of concept for the application of Raman spectroscopy to study virus-host interaction and to identify factors that contribute to the efficient SARS-CoV-2 infection and may thus provide novel insights on viral pathogenesis, targets of therapeutic intervention and development of new COVID-19 biomarkers.
Collapse
Affiliation(s)
| | - Anuradha Ramoji
- Friedrich-Schiller-University Jena, Institute of Physical Chemistry and Abbe Center of Photonics (IPC), Helmholtzweg 4, D-07743 Jena, Germany
- Leibniz Institute of Photonic Technology (IPHT), Member of Leibniz Health Technologies, Albert-Einstein-Straße 9, D-07745 Jena, Germany
- Jena University Hospital, Center for Sepsis Control and Care (CSCC), Friedrich-Schiller-University Jena, Am Klinikum 1, 07747 Jena, Germany
| | - Said Mougari
- CIRI, International Center for Infectiology Research, INSERM U1111, CNRS UMR5308, Université de Lyon, Université Claude Bernard Lyon, École Normale Supérieure de Lyon, Lyon, France
| | - Peggy Merida
- Institute of Research in Infectiology of Montpellier (IRIM), University of Montpellier, UMR9004 CNRS Montpellier, France
| | - Aymeric Neyret
- CEMIPAI, University of Montpellier, UMS3725 CNRS Montpellier, France
| | - Jurgen Popp
- Friedrich-Schiller-University Jena, Institute of Physical Chemistry and Abbe Center of Photonics (IPC), Helmholtzweg 4, D-07743 Jena, Germany
- Leibniz Institute of Photonic Technology (IPHT), Member of Leibniz Health Technologies, Albert-Einstein-Straße 9, D-07745 Jena, Germany
- Jena University Hospital, Center for Sepsis Control and Care (CSCC), Friedrich-Schiller-University Jena, Am Klinikum 1, 07747 Jena, Germany
| | - Branka Horvat
- CIRI, International Center for Infectiology Research, INSERM U1111, CNRS UMR5308, Université de Lyon, Université Claude Bernard Lyon, École Normale Supérieure de Lyon, Lyon, France
| | - Delphine Muriaux
- Institute of Research in Infectiology of Montpellier (IRIM), University of Montpellier, UMR9004 CNRS Montpellier, France
- CEMIPAI, University of Montpellier, UMS3725 CNRS Montpellier, France
| | | |
Collapse
|
27
|
Mousavi SM, Hashemi SA, Rahmanian V, Kalashgrani MY, Gholami A, Omidifar N, Chiang WH. Highly Sensitive Flexible SERS-Based Sensing Platform for Detection of COVID-19. BIOSENSORS 2022; 12:bios12070466. [PMID: 35884269 PMCID: PMC9312648 DOI: 10.3390/bios12070466] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 06/20/2022] [Accepted: 06/21/2022] [Indexed: 05/26/2023]
Abstract
COVID-19 continues to spread and has been declared a global emergency. Individuals with current or past infection should be identified as soon as possible to prevent the spread of disease. Surface-enhanced Raman spectroscopy (SERS) is an analytical technique that has the potential to be used to detect viruses at the site of therapy. In this context, SERS is an exciting technique because it provides a fingerprint for any material. It has been used with many COVID-19 virus subtypes, including Deltacron and Omicron, a novel coronavirus. Moreover, flexible SERS substrates, due to their unique advantages of sensitivity and flexibility, have recently attracted growing research interest in real-world applications such as medicine. Reviewing the latest flexible SERS-substrate developments is crucial for the further development of quality detection platforms. This article discusses the ultra-responsive detection methods used by flexible SERS substrate. Multiplex assays that combine ultra-responsive detection methods with their unique biomarkers and/or biomarkers for secondary diseases triggered by the development of infection are critical, according to this study. In addition, we discuss how flexible SERS-substrate-based ultrasensitive detection methods could transform disease diagnosis, control, and surveillance in the future. This study is believed to help researchers design and manufacture flexible SERS substrates with higher performance and lower cost, and ultimately better understand practical applications.
Collapse
Affiliation(s)
- Seyyed Mojtaba Mousavi
- Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei City 106335, Taiwan;
| | - Seyyed Alireza Hashemi
- Nanomaterials and Polymer Nanocomposites Laboratory, School of Engineering, University of British Columbia, Kelowna, BC V1V 1V7, Canada;
| | - Vahid Rahmanian
- Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, Sienkiewicza 112, 90-363 Lodz, Poland;
| | | | - Ahmad Gholami
- Biotechnology Research Center, Shiraz University of Medical Science, Shiraz 71468-64685, Iran;
| | - Navid Omidifar
- Department of Pathology, School of Medicine, Shiraz University of Medical Sciences, Shiraz 71468-64685, Iran;
| | - Wei-Hung Chiang
- Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei City 106335, Taiwan;
| |
Collapse
|
28
|
Wu Q, Wu W, Chen F, Ren P. Highly sensitive and selective surface plasmon resonance biosensor for the detection of SARS-CoV-2 spike S1 protein. Analyst 2022; 147:2809-2818. [PMID: 35616214 DOI: 10.1039/d2an00426g] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The reality that the coronavirus disease 2019 (COVID-19) is still raging around the world and making a comeback with a strong presence has highlighted the need for rapid and sensitive quantitative detection methods of viral RNA, antibody and antigen for widespread tracking and screening applications. Surface plasmon resonance (SPR) detection technology has achieved rapid development and become a standard measurement method in the fields of biosensing, biomedicine, biochemistry and biopharmaceuticals due to its advantages of high sensitivity, fast response and no need for labelling. Here, we report a sandwiched structure-based SPR biosensor for detecting a specific viral antigen, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spike S1 protein. The sensor combines a Ti3C2-MXene nanosheet modified sensing platform and polydopamine (PDA)-Ag nanoparticle (AgNP)/anti-SARS-CoV-2 spike S1 protein nanoconjugate signal enhancers, exhibiting a wide linear range of 0.0001 to 1000 ng mL-1 with a low detection limit of 12 fg mL-1 (S/N = 3). In the analysis of artificial saliva and human serum samples, the proposed SPR biosensor exhibits good reproducibility and high specificity, which indicates its potential for application in complex bodily fluids. The exploitation of the MXene-based SPR biochip for recognizing the SARS-CoV-2 antigen provides an accessible and rapid way for COVID-19 diagnosis, and promotes the application of 2D nanomaterial-based sensing chips in clinical diagnosis and disease screening. Significantly, the proposed method possesses general applicability that can be reprogrammed to detect any protein antigen if a corresponding specific nanobody is available.
Collapse
Affiliation(s)
- Qiong Wu
- Nanomedicine Translational Research Center, China-Japan Union Hospital of Jilin University, 126 Sendai Street, Changchun 130033, Jilin, China
| | - Wen Wu
- Nanomedicine Translational Research Center, China-Japan Union Hospital of Jilin University, 126 Sendai Street, Changchun 130033, Jilin, China
| | - Fangfang Chen
- Nanomedicine Translational Research Center, China-Japan Union Hospital of Jilin University, 126 Sendai Street, Changchun 130033, Jilin, China
| | - Ping Ren
- Department of Thoracic Surgery, The First Hospital of Jilin University, 71 Xinmin Street, Changchun 130021, Jilin, China.
| |
Collapse
|
29
|
Azimi S, Docoslis A. Recent Advances in the Use of Surface-Enhanced Raman Scattering for Illicit Drug Detection. SENSORS (BASEL, SWITZERLAND) 2022; 22:3877. [PMID: 35632286 PMCID: PMC9143835 DOI: 10.3390/s22103877] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 05/10/2022] [Accepted: 05/16/2022] [Indexed: 02/07/2023]
Abstract
The rapid increase in illicit drug use and its adverse health effects and socio-economic consequences have reached alarming proportions in recent years. Surface-enhanced Raman scattering (SERS) has emerged as a highly sensitive analytical tool for the detection of low dosages of drugs in liquid and solid samples. In the present article, we review the state-of-the-art use of SERS for chemical analysis of illicit drugs in aqueous and complex biological samples, including saliva, urine, and blood. We also include a review of the types of SERS substrates used for this purpose, pointing out recent advancements in substrate fabrication towards quantitative and qualitative detection of illicit drugs. Finally, we conclude by providing our perspective on the field of SERS-based drug detection, including presently faced challenges. Overall, our review provides evidence of the strong potential of SERS to establish itself as both a laboratory and in situ analytical method for fast and sensitive drug detection and identification.
Collapse
Affiliation(s)
| | - Aristides Docoslis
- Department of Chemical Engineering, Queen’s University, Kingston, ON K7L 3N6, Canada;
| |
Collapse
|
30
|
Sitjar J, Xu HZ, Liu CY, Wang JR, Liao JD, Tsai HP, Lee H, Liu BH, Chang CW. Synergistic surface-enhanced Raman scattering effect to distinguish live SARS-CoV-2 S pseudovirus. Anal Chim Acta 2022; 1193:339406. [PMID: 35058004 PMCID: PMC8711038 DOI: 10.1016/j.aca.2021.339406] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 12/17/2021] [Accepted: 12/24/2021] [Indexed: 12/15/2022]
Abstract
The COVID-19 pandemic negatively affected the economy and health security on a global scale, causing a drastic change on lifestyle, calling a need to mitigate further transmission of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) virus. Surface-enhanced Raman spectroscopy (SERS) has shown great potential in the sensitive and rapid detection of various molecules including viruses, through the identification of characteristic peaks of their outer membrane proteins. Accurate detection can be developed through the synergistic integration effect among SERS-active substrate, the appropriate laser wavelength, and the target analyte. In this study, gold nanocavities (Au NC) and Au nanoparticles upon ZrO2 nano-bowls (Au NPs/pZrO2) were tested and used as SERS-active substrates in detecting SARS-CoV-2 pseudovirus containing S protein as a surface capsid glycoprotein (SARS-CoV-2 S pseudovirus) and vesicular stomatitis virus G (VSV-G) pseudo-type lentivirus (VSV-G pseudovirus) to demonstrate their virus detection capability. The optimized Au NCs and Au NPs/pZrO2 substrates were then verified by examining the repetition of measurement, reproducibility, and detection limit. Due to the difference in geometry and composition of the substrates, the characteristic peak-positions of live SARS-CoV-2 S and VSV-G pseudoviruses in the obtained Raman spectra vary, which were also compared with those of inactivated ones. Based on the experimental results, SERS mechanism of each substrate to detect virus is proposed. The formation of hot spots brought by the synergistic integration effect among substrate, analyte, and laser induction may result differences in the obtained SERS spectra.
Collapse
Affiliation(s)
- Jaya Sitjar
- Engineered Materials for Biomedical Applications Laboratory, Department of Materials Science and Engineering, National Cheng Kung University, Tainan, 701, Taiwan.
| | - Hong-Zheng Xu
- Engineered Materials for Biomedical Applications Laboratory, Department of Materials Science and Engineering, National Cheng Kung University, Tainan, 701, Taiwan.
| | - Chih-Yun Liu
- Engineered Materials for Biomedical Applications Laboratory, Department of Materials Science and Engineering, National Cheng Kung University, Tainan, 701, Taiwan.
| | - Jen-Ren Wang
- Department of Medical Laboratory Science and Biotechnology, College of Medicine, National Cheng Kung University, Tainan, 701, Taiwan; Department of Pathology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, 704, Taiwan.
| | - Jiunn-Der Liao
- Engineered Materials for Biomedical Applications Laboratory, Department of Materials Science and Engineering, National Cheng Kung University, Tainan, 701, Taiwan.
| | - Huey-Pin Tsai
- Department of Medical Laboratory Science and Biotechnology, College of Medicine, National Cheng Kung University, Tainan, 701, Taiwan; Department of Pathology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, 704, Taiwan.
| | - Han Lee
- Engineered Materials for Biomedical Applications Laboratory, Department of Materials Science and Engineering, National Cheng Kung University, Tainan, 701, Taiwan.
| | - Bernard Haochih Liu
- Laboratory for Micro/Nanofabrication and Nanoanalysis, Department of Materials Science and Engineering, National Cheng Kung University, Tainan, 701, Taiwan.
| | - Chia-Wei Chang
- MAN Technology Co. Ltd, 1F, No. 97, Yunong 3rd St., Tainan, 701, Taiwan.
| |
Collapse
|
31
|
Wu Y, Dang H, Park SG, Chen L, Choo J. SERS-PCR assays of SARS-CoV-2 target genes using Au nanoparticles-internalized Au nanodimple substrates. Biosens Bioelectron 2022; 197:113736. [PMID: 34741957 PMCID: PMC8557946 DOI: 10.1016/j.bios.2021.113736] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 09/23/2021] [Accepted: 10/25/2021] [Indexed: 12/15/2022]
Abstract
The reverse transcription-polymerase chain reaction (RT-PCR) method has been adopted worldwide to diagnose severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Although this method has good sensitivity and specificity, there is a need to develop a more rapid diagnostic technology, given the virus's rapid spread. However, the RT-PCR method takes a long time to diagnose SARS-CoV-2 because of the required thermocycling steps. Therefore, we developed a surface-enhanced Raman scattering (SERS)-PCR detection method using an AuNP-internalized Au nanodimple substrate (AuNDS) to shorten the diagnosis time by reducing the number of thermocycling steps needed to amplify the DNA. For the representative target markers, namely, the envelope protein (E) and RNA-dependent RNA polymerase (RdRp) genes of SARS-CoV-2, 25 RT-PCR thermocycles are required to reach a detectable threshold value, while 15 cycles are needed for magnetic bead-based SERS-PCR when the initial DNA concentration was 1.00× 105 copies/μL. However, only 8 cycles are needed for the AuNDS-based SERS-PCR. The corresponding detectable target DNA concentrations were 3.36 × 1012, 3.28 × 109, and 2.56 × 107 copies/μL, respectively. Therefore, AuNDS-based SERS-PCR is seen as being a new molecular diagnostic platform that can shorten the time required for the thermocycling steps relative to the conventional RT-PCR.
Collapse
Affiliation(s)
- Yixuan Wu
- Department of Chemistry, Chung-Ang University, Seoul, 06974, South Korea
| | - Hajun Dang
- Department of Chemistry, Chung-Ang University, Seoul, 06974, South Korea
| | - Sung-Gyu Park
- Nano-Bio Convergence Department, Korea Institute of Materials Science KIMS, Changwon, 51508, South Korea
| | - Lingxin Chen
- Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003, China.
| | - Jaebum Choo
- Department of Chemistry, Chung-Ang University, Seoul, 06974, South Korea.
| |
Collapse
|
32
|
Han H, Wang C, Yang X, Zheng S, Cheng X, Liu Z, Zhao B, Xiao R. Rapid field determination of SARS-CoV-2 by a colorimetric and fluorescent dual-functional lateral flow immunoassay biosensor. SENSORS AND ACTUATORS. B, CHEMICAL 2022; 351:130897. [PMID: 34658530 PMCID: PMC8500848 DOI: 10.1016/j.snb.2021.130897] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2021] [Revised: 09/12/2021] [Accepted: 10/07/2021] [Indexed: 05/06/2023]
Abstract
The rapid and accurate diagnosis of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) at the early stage of virus infection can effectively prevent the spread of the virus and control the epidemic. Here, a colorimetric and fluorescent dual-functional lateral flow immunoassay (LFIA) biosensor was developed for the rapid and sensitive detection of spike 1 (S1) protein of SARS-CoV-2. A novel dual-functional immune label was fabricated by coating a single-layer shell formed by mixing 20 nm Au nanoparticles (Au NPs) and quantum dots (QDs) on SiO2 core to produce strong colorimetric and fluorescence signals and ensure good monodispersity and high stability. The colorimetric signal was used for visual detection and rapid screening of suspected SARS-CoV-2 infection on sites. The fluorescence signal was utilized for sensitive and quantitative detection of virus infection at the early stage. The detection limits of detecting S1 protein via colorimetric and fluorescence functions of the biosensor were 1 and 0.033 ng/mL, respectively. Furthermore, we evaluated the performance of the biosensor for analyzing real samples. The novel biosensor developed herein had good repeatability, specificity and accuracy, which showed great potential as a tool for rapidly detecting SARS-CoV-2.
Collapse
Affiliation(s)
- Han Han
- College of Life Science, Hebei Normal University, Shijiazhuang 050024, PR China
- Beijing Institute of Radiation Medicine, Beijing 100850, PR China
| | - Chongwen Wang
- Beijing Institute of Radiation Medicine, Beijing 100850, PR China
- College of Life Sciences, Anhui Agricultural University, Hefei 230036, PR China
| | - Xingsheng Yang
- Beijing Institute of Radiation Medicine, Beijing 100850, PR China
| | - Shuai Zheng
- Beijing Institute of Radiation Medicine, Beijing 100850, PR China
- College of Life Sciences, Anhui Agricultural University, Hefei 230036, PR China
| | - Xiaodan Cheng
- Beijing Institute of Radiation Medicine, Beijing 100850, PR China
- College of Life Sciences, Anhui Agricultural University, Hefei 230036, PR China
| | - Zhenzhen Liu
- Beijing Institute of Radiation Medicine, Beijing 100850, PR China
| | - Baohua Zhao
- College of Life Science, Hebei Normal University, Shijiazhuang 050024, PR China
| | - Rui Xiao
- Beijing Institute of Radiation Medicine, Beijing 100850, PR China
| |
Collapse
|
33
|
Ramoji A, Pahlow S, Pistiki A, Rueger J, Shaik TA, Shen H, Wichmann C, Krafft C, Popp J. Understanding Viruses and Viral Infections by Biophotonic Methods. TRANSLATIONAL BIOPHOTONICS 2022. [DOI: 10.1002/tbio.202100008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Affiliation(s)
- Anuradha Ramoji
- Institute of Physical Chemistry and Abbe Center of Photonics, Friedrich Schiller University, Helmholtzweg 4 Jena Germany
- Leibniz Institute of Photonic Technology Jena (a member of Leibniz Health Technologies) , Albert‐Einstein Str. 9 Jena Germany
- Center for Sepsis Control and Care Jena University Hospital, Am Klinikum 1, 07747 Jena Germany
| | - Susanne Pahlow
- Institute of Physical Chemistry and Abbe Center of Photonics, Friedrich Schiller University, Helmholtzweg 4 Jena Germany
- Leibniz Institute of Photonic Technology Jena (a member of Leibniz Health Technologies) , Albert‐Einstein Str. 9 Jena Germany
- InfectoGnostics Research Campus Jena, Philosophenweg 7, 07743 Jena Germany
| | - Aikaterini Pistiki
- Institute of Physical Chemistry and Abbe Center of Photonics, Friedrich Schiller University, Helmholtzweg 4 Jena Germany
- Leibniz Institute of Photonic Technology Jena (a member of Leibniz Health Technologies) , Albert‐Einstein Str. 9 Jena Germany
| | - Jan Rueger
- Leibniz Institute of Photonic Technology Jena (a member of Leibniz Health Technologies) , Albert‐Einstein Str. 9 Jena Germany
| | - Tanveer Ahmed Shaik
- Leibniz Institute of Photonic Technology Jena (a member of Leibniz Health Technologies) , Albert‐Einstein Str. 9 Jena Germany
| | - Haodong Shen
- Institute of Physical Chemistry and Abbe Center of Photonics, Friedrich Schiller University, Helmholtzweg 4 Jena Germany
- Leibniz Institute of Photonic Technology Jena (a member of Leibniz Health Technologies) , Albert‐Einstein Str. 9 Jena Germany
- InfectoGnostics Research Campus Jena, Philosophenweg 7, 07743 Jena Germany
| | - Christina Wichmann
- Institute of Physical Chemistry and Abbe Center of Photonics, Friedrich Schiller University, Helmholtzweg 4 Jena Germany
- Leibniz Institute of Photonic Technology Jena (a member of Leibniz Health Technologies) , Albert‐Einstein Str. 9 Jena Germany
- InfectoGnostics Research Campus Jena, Philosophenweg 7, 07743 Jena Germany
| | - Christoph Krafft
- Leibniz Institute of Photonic Technology Jena (a member of Leibniz Health Technologies) , Albert‐Einstein Str. 9 Jena Germany
| | - Juergen Popp
- Institute of Physical Chemistry and Abbe Center of Photonics, Friedrich Schiller University, Helmholtzweg 4 Jena Germany
- Leibniz Institute of Photonic Technology Jena (a member of Leibniz Health Technologies) , Albert‐Einstein Str. 9 Jena Germany
- Center for Sepsis Control and Care Jena University Hospital, Am Klinikum 1, 07747 Jena Germany
- InfectoGnostics Research Campus Jena, Philosophenweg 7, 07743 Jena Germany
| |
Collapse
|
34
|
Aydın EB, Aydın M, Sezgintürk MK. Label-free and reagent-less electrochemical detection of nucleocapsid protein of SARS-CoV-2: an ultrasensitive and disposable biosensor. NEW J CHEM 2022. [DOI: 10.1039/d2nj00046f] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
SARS-CoV-2 biosensor fabrication steps.
Collapse
Affiliation(s)
- Elif Burcu Aydın
- Namık Kemal University, Scientific and Technological Research Center, Tekirdağ, Turkey
| | - Muhammet Aydın
- Namık Kemal University, Scientific and Technological Research Center, Tekirdağ, Turkey
| | - Mustafa Kemal Sezgintürk
- Çanakkale Onsekiz Mart University, Faculty of Engineering, Bioengineering Department, Çanakkale, Turkey
| |
Collapse
|
35
|
Zhao X, Wang Z, Yang B, Li Z, Tong Y, Bi Y, Li Z, Xia X, Chen X, Zhang L, Wang W, Tan GY. Integrating PCR-free amplification and synergistic sensing for ultrasensitive and rapid CRISPR/Cas12a-based SARS-CoV-2 antigen detection. Synth Syst Biotechnol 2021; 6:283-291. [PMID: 34541346 PMCID: PMC8440162 DOI: 10.1016/j.synbio.2021.09.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 09/05/2021] [Accepted: 09/13/2021] [Indexed: 12/26/2022] Open
Abstract
Antigen detection provides particularly valuable information for medical diagnoses; however, the current detection methods are less sensitive and accurate than nucleic acid analysis. The combination of CRISPR/Cas12a and aptamers provides a new detection paradigm, but sensitive sensing and stable amplification in antigen detection remain challenging. Here, we present a PCR-free multiple trigger dsDNA tandem-based signal amplification strategy and a de novo designed dual aptamer synergistic sensing strategy. Integration of these two strategies endowed the CRISPR/Cas12a and aptamer-based method with ultra-sensitive, fast, and stable antigen detection. In a demonstration of this method, the limit of detection was at the single virus level (0.17 fM, approximately two copies/μL) in SARS-CoV-2 antigen nucleocapsid protein analysis of saliva or serum samples. The entire procedure required only 20 min. Given our system's simplicity and modular setup, we believe that it could be adapted reasonably easily for general applications in CRISPR/Cas12a-aptamer-based detection.
Collapse
Affiliation(s)
- Xiangxiang Zhao
- State Key Laboratory of Bioreactor Engineering, and School of Biotechnology, East China University of Science and Technology (ECUST), Shanghai, 200237, China
| | - Zhengduo Wang
- State Key Laboratory of Bioreactor Engineering, and School of Biotechnology, East China University of Science and Technology (ECUST), Shanghai, 200237, China
| | - Bowen Yang
- State Key Laboratory of Bioreactor Engineering, and School of Biotechnology, East China University of Science and Technology (ECUST), Shanghai, 200237, China
| | - Zilong Li
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Yaojun Tong
- State Key Laboratory of Microbial Metabolism, and School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Yuhai Bi
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Center for Influenza Research and Early-warning (CASCIRE), CAS-TWAS Center of Excellence for Emerging Infectious Diseases (CEEID), Chinese Academy of Sciences, Beijing, 100101, China
| | - Zhenghong Li
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Xuekui Xia
- Key Biosensor Laboratory of Shandong Province, Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250013, China
| | - Xiangyin Chen
- State Key Laboratory of Bioreactor Engineering, and School of Biotechnology, East China University of Science and Technology (ECUST), Shanghai, 200237, China
| | - Lixin Zhang
- State Key Laboratory of Bioreactor Engineering, and School of Biotechnology, East China University of Science and Technology (ECUST), Shanghai, 200237, China
| | - Weishan Wang
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Gao-Yi Tan
- State Key Laboratory of Bioreactor Engineering, and School of Biotechnology, East China University of Science and Technology (ECUST), Shanghai, 200237, China
| |
Collapse
|
36
|
Goulart ACC, Zângaro RA, Carvalho HC, Silveira L. Diagnosing COVID-19 in human sera with detected immunoglobulins IgM and IgG by means of Raman spectroscopy. JOURNAL OF RAMAN SPECTROSCOPY : JRS 2021; 52:2671-2682. [PMID: 34518728 PMCID: PMC8427108 DOI: 10.1002/jrs.6235] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 07/30/2021] [Accepted: 07/31/2021] [Indexed: 05/05/2023]
Abstract
The severe COVID-19 pandemic requires the development of novel, rapid, accurate, and label-free techniques that facilitate the detection and discrimination of SARS-CoV-2 infected subjects. Raman spectroscopy has been used to diagnose COVID-19 in serum samples of suspected patients without clinical symptoms of COVID-19 but presented positive immunoglobulins M and G (IgM and IgG) assays versus Control (negative IgM and IgG). A dispersive Raman spectrometer (830 nm, 350 mW) was employed, and triplicate spectra were obtained. A total of 278 spectra were used from 94 serum samples (54 Control and 40 COVID-19). The main spectral differences between the positive IgM and IgG versus Control, evaluated by principal component analysis (PCA), were features assigned to proteins including albumin (lower in the group COVID-19 and in the group IgM/IgG and IgG positive) and features assigned to lipids, phospholipids, and carotenoids (higher the group COVID-19 and in the group IgM/IgG positive). Features referred to nucleic acids, tryptophan, and immunoglobulins were also seen (higher the group COVID-19). A discriminant model based on partial least squares regression (PLS-DA) found sensitivity of 84.0%, specificity of 95.0%, and accuracy of 90.3% for discriminating positive Ig groups versus Control. When considering individual Ig group versus Control, it was found sensitivity of 77.3%, specificity of 97.5%, and accuracy of 88.8%. The higher classification error was found for the IgM group (no success classification). Raman spectroscopy may become a technique of choice for rapid serological evaluation aiming COVID-19 diagnosis, mainly detecting the presence of IgM/IgG and IgG after COVID-19 infection.
Collapse
Affiliation(s)
| | - Renato Amaro Zângaro
- Biomedical Engineering ProgramUniversidade Anhembi Morumbi – UAMSão PauloState of São PauloBrazil
- Laboratory of Vibrational SpectroscopyCenter for Innovation, Technology and Education – CITÉSão José dos CamposState of São PauloBrazil
| | - Henrique Cunha Carvalho
- Laboratory of Vibrational SpectroscopyCenter for Innovation, Technology and Education – CITÉSão José dos CamposState of São PauloBrazil
| | - Landulfo Silveira
- Biomedical Engineering ProgramUniversidade Anhembi Morumbi – UAMSão PauloState of São PauloBrazil
- Laboratory of Vibrational SpectroscopyCenter for Innovation, Technology and Education – CITÉSão José dos CamposState of São PauloBrazil
| |
Collapse
|
37
|
Daoudi K, Ramachandran K, Alawadhi H, Boukherroub R, Dogheche E, Khakani MAE, Gaidi M. Ultra-sensitive and fast optical detection of the spike protein of the SARS-CoV-2 using AgNPs/SiNWs nanohybrid based sensors. SURFACES AND INTERFACES 2021; 27:101454. [PMID: 34957346 PMCID: PMC8440322 DOI: 10.1016/j.surfin.2021.101454] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 08/29/2021] [Accepted: 08/31/2021] [Indexed: 05/18/2023]
Abstract
Severe acute respiratory syndrome SARS-CoV-2 virus led to notable challenges amongst researchers in view of development of new and fast detecting techniques. In this regard, surface-enhanced Raman spectroscopy (SERS) technique, providing a fingerprint characteristic for each material, would be an interesting approach. The current study encompasses the fabrication of a SERS sensor to study the SARS-CoV-2 S1 (RBD) spike protein of the SARS-CoV-2 virus family. The SERS sensor consists of a silicon nanowires (SiNWs) substrate decorated with plasmonic silver nanoparticles (AgNPs). Both SiNWs fabrication and AgNPs decoration were achieved by a relatively simple wet chemical processing method. The study deliberately projects the factors that influence the growth of silicon nanowires, uniform decoration of AgNPs onto the SiNWs matrix along with detection of Rhodamine-6G (R6G) to optimize the best conditions for enhanced sensing of the spike protein. Increasing the time period of etching process resulted in enhanced SiNWs' length from 0.55 to 7.34 µm. Furthermore, the variation of the immersion time in the decoration process of AgNPs onto SiNWs ensued the optimum time period for the enhancement in the sensitivity of detection. Tremendous increase in sensitivity of R6G detection was perceived on SiNWs etched for 2 min (length=0.90 µm), followed by 30s of immersion time for their optimal decoration by AgNPs. These SiNWs/AgNPs SERS-based sensors were able to detect the spike protein at a concentration down to 9.3 × 10-12 M. Strong and dominant peaks at 1280, 1404, 1495, 1541 and 1609 cm-1 were spotted at a fraction of a minute. Moreover, direct, ultra-fast, facile, and affordable optoelectronic SiNWs/AgNPs sensors tuned to function as a biosensor for detecting the spike protein even at a trace level (pico molar concentration). The current findings hold great promise for the utilization of SERS as an innovative approach in the diagnosis domain of infections at very early stages.
Collapse
Affiliation(s)
- Kais Daoudi
- Centre for Advanced Materials Research, Research Institute of Sciences and Engineering, University of Sharjah, Sharjah 27272, United Arab Emirates
- Department of Applied Physics and Astronomy, University of Sharjah, Sharjah 27272, United Arab Emirates
- Laboratory of Nanomaterials, Nanotechnology and Energy, Department of Physics, Faculty of Sciences of Tunis, University of Tunis, El Manar, El Manar, Tunis 2092, Tunisia
| | - Krithikadevi Ramachandran
- Department of Applied Physics and Astronomy, University of Sharjah, Sharjah 27272, United Arab Emirates
| | - Hussain Alawadhi
- Centre for Advanced Materials Research, Research Institute of Sciences and Engineering, University of Sharjah, Sharjah 27272, United Arab Emirates
- Department of Applied Physics and Astronomy, University of Sharjah, Sharjah 27272, United Arab Emirates
| | - Rabah Boukherroub
- CNRS, Centrale Lille, Univ. Polytechnique Hauts-de-France, UMR 8520, IEMN, University of Lille, Lille 59000, France
| | - Elhadj Dogheche
- Université Polytechnique Hauts de France, IEMN DOAE CNRS, Campus Le Mont Houy, Valenciennes Cedex 59309, France
| | - My Ali El Khakani
- Institut National de la Recherche Scientifique, INRS-Énergie, Matériaux et Télécommunications, 1650, Blvd. Lionel-Boulet, Varennes, QC J3X-1S2, Canada
| | - Mounir Gaidi
- Centre for Advanced Materials Research, Research Institute of Sciences and Engineering, University of Sharjah, Sharjah 27272, United Arab Emirates
- Department of Applied Physics and Astronomy, University of Sharjah, Sharjah 27272, United Arab Emirates
- Laboratoire de Photovoltaïque Centre de Recherches et des Technologies de l'Energie, Technopole de Borj-Cédria, BP 95, Hammam-Lif 2050, Tunisia
| |
Collapse
|
38
|
Ji Z, Zhang C, Ye Y, Ji J, Dong H, Forsberg E, Cheng X, He S. Magnetically Enhanced Liquid SERS for Ultrasensitive Analysis of Bacterial and SARS-CoV-2 Biomarkers. Front Bioeng Biotechnol 2021; 9:735711. [PMID: 34660557 PMCID: PMC8511622 DOI: 10.3389/fbioe.2021.735711] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2021] [Accepted: 08/17/2021] [Indexed: 01/16/2023] Open
Abstract
In this work, it is shown that surface-enhanced Raman scattering (SERS) measurements can be performed using liquid platforms to perform bioanalysis at sub-pM concentrations. Using magnetic enrichment with gold-coated magnetic nanoparticles, the high sensitivity was verified with nucleic acid and protein targets. The former was performed with a DNA fragment associated with the bacteria Staphylococcus aureus, and the latter using IgG antibody, a biomarker for COVID-19 screening. It is anticipated that this work will inspire studies on ultrasensitive SERS analyzers suitable for large-scale applications, which is particularly important for in vitro diagnostics and environmental studies.
Collapse
Affiliation(s)
- Zhang Ji
- National Engineering Research Center for Optical Instruments, College of Optical Science and Engineering, Zhejiang University, Hangzhou, China
| | - Chuan Zhang
- National Engineering Research Center for Optical Instruments, College of Optical Science and Engineering, Zhejiang University, Hangzhou, China
| | - Yang Ye
- National Engineering Research Center for Optical Instruments, College of Optical Science and Engineering, Zhejiang University, Hangzhou, China.,Ningbo Research Institute, Ningbo, China.,ZJU-TU/e Joint Research Institute of Design, Optoelectronic and Sensing, Hangzhou, China
| | - Jiali Ji
- National Engineering Research Center for Optical Instruments, College of Optical Science and Engineering, Zhejiang University, Hangzhou, China
| | - Hongguang Dong
- National Engineering Research Center for Optical Instruments, College of Optical Science and Engineering, Zhejiang University, Hangzhou, China
| | - Erik Forsberg
- National Engineering Research Center for Optical Instruments, College of Optical Science and Engineering, Zhejiang University, Hangzhou, China
| | - Xiaoyu Cheng
- National Engineering Research Center for Optical Instruments, College of Optical Science and Engineering, Zhejiang University, Hangzhou, China.,Ningbo Research Institute, Ningbo, China.,ZJU-TU/e Joint Research Institute of Design, Optoelectronic and Sensing, Hangzhou, China
| | - Sailing He
- National Engineering Research Center for Optical Instruments, College of Optical Science and Engineering, Zhejiang University, Hangzhou, China.,Ningbo Research Institute, Ningbo, China.,ZJU-TU/e Joint Research Institute of Design, Optoelectronic and Sensing, Hangzhou, China
| |
Collapse
|
39
|
Clinical Application of the Novel Cell-Based Biosensor for the Ultra-Rapid Detection of the SARS-CoV-2 S1 Spike Protein Antigen: A Practical Approach. BIOSENSORS 2021; 11:bios11070224. [PMID: 34356695 PMCID: PMC8301797 DOI: 10.3390/bios11070224] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 07/01/2021] [Accepted: 07/03/2021] [Indexed: 12/13/2022]
Abstract
The availability of antigen tests for SARS-CoV-2 represents a major step for the mass surveillance of the incidence of infection, especially regarding COVID-19 asymptomatic and/or early-stage patients. Recently, we reported the development of a Bioelectric Recognition Assay-based biosensor able to detect the SARS-CoV-2 S1 spike protein expressed on the surface of the virus in just three minutes, with high sensitivity and selectivity. The working principle was established by measuring the change of the electric potential of membrane-engineered mammalian cells bearing the human chimeric spike S1 antibody after attachment of the respective viral protein. In the present study, we applied the novel biosensor to patient-derived nasopharyngeal samples in a clinical set-up, with absolutely no sample pretreatment. More importantly, membrane-engineered cells were pre-immobilized in a proprietary biomatrix, thus enabling their long-term preservation prior to use as well as significantly increasing their ease-of-handle as test consumables. The plug-and-apply novel biosensor was able to detect the virus in positive samples with a 92.8% success rate compared to RT-PCR. No false negative results were recorded. These findings demonstrate the potential applicability of the biosensor for the early, routine mass screening of SARS-CoV-2 on a scale not yet realized.
Collapse
|
40
|
Detection of COVID-19 Virus on Surfaces Using Photonics: Challenges and Perspectives. Diagnostics (Basel) 2021. [PMID: 34205401 DOI: 10.3390/diagnostics11061119.(] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2023] Open
Abstract
The propagation of viruses has become a global threat as proven through the coronavirus disease (COVID-19) pandemic. Therefore, the quick detection of viral diseases and infections could be necessary. This study aims to develop a framework for virus diagnoses based on integrating photonics technology with artificial intelligence to enhance healthcare in public areas, marketplaces, hospitals, and airfields due to the distinct spectral signatures from lasers' effectiveness in the classification and monitoring of viruses. However, providing insights into the technical aspect also helps researchers identify the possibilities and difficulties in this field. The contents of this study were collected from six authoritative databases: Web of Science, IEEE Xplore, Science Direct, Scopus, PubMed Central, and Google Scholar. This review includes an analysis and summary of laser techniques to diagnose COVID-19 such as fluorescence methods, surface-enhanced Raman scattering, surface plasmon resonance, and integration of Raman scattering with SPR techniques. Finally, we select the best strategies that could potentially be the most effective methods of reducing epidemic spreading and improving healthcare in the environment.
Collapse
|
41
|
Taha BA, Al Mashhadany Y, Bachok NN, Ashrif A Bakar A, Hafiz Mokhtar MH, Dzulkefly Bin Zan MS, Arsad N. Detection of COVID-19 Virus on Surfaces Using Photonics: Challenges and Perspectives. Diagnostics (Basel) 2021; 11:1119. [PMID: 34205401 PMCID: PMC8234865 DOI: 10.3390/diagnostics11061119] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 06/18/2021] [Accepted: 06/18/2021] [Indexed: 02/07/2023] Open
Abstract
The propagation of viruses has become a global threat as proven through the coronavirus disease (COVID-19) pandemic. Therefore, the quick detection of viral diseases and infections could be necessary. This study aims to develop a framework for virus diagnoses based on integrating photonics technology with artificial intelligence to enhance healthcare in public areas, marketplaces, hospitals, and airfields due to the distinct spectral signatures from lasers' effectiveness in the classification and monitoring of viruses. However, providing insights into the technical aspect also helps researchers identify the possibilities and difficulties in this field. The contents of this study were collected from six authoritative databases: Web of Science, IEEE Xplore, Science Direct, Scopus, PubMed Central, and Google Scholar. This review includes an analysis and summary of laser techniques to diagnose COVID-19 such as fluorescence methods, surface-enhanced Raman scattering, surface plasmon resonance, and integration of Raman scattering with SPR techniques. Finally, we select the best strategies that could potentially be the most effective methods of reducing epidemic spreading and improving healthcare in the environment.
Collapse
Affiliation(s)
- Bakr Ahmed Taha
- UKM—Department of Electrical, Electronic and Systems Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, UKM Bangi 43600, Malaysia; (B.A.T.); (N.N.B.); (A.A.A.B.); (M.H.H.M.); (M.S.D.B.Z.)
| | - Yousif Al Mashhadany
- Department of Electrical Engineering, College of Engineering, University of Anbar, Anbar 00964, Iraq;
| | - Nur Nadia Bachok
- UKM—Department of Electrical, Electronic and Systems Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, UKM Bangi 43600, Malaysia; (B.A.T.); (N.N.B.); (A.A.A.B.); (M.H.H.M.); (M.S.D.B.Z.)
| | - Ahmad Ashrif A Bakar
- UKM—Department of Electrical, Electronic and Systems Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, UKM Bangi 43600, Malaysia; (B.A.T.); (N.N.B.); (A.A.A.B.); (M.H.H.M.); (M.S.D.B.Z.)
| | - Mohd Hadri Hafiz Mokhtar
- UKM—Department of Electrical, Electronic and Systems Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, UKM Bangi 43600, Malaysia; (B.A.T.); (N.N.B.); (A.A.A.B.); (M.H.H.M.); (M.S.D.B.Z.)
| | - Mohd Saiful Dzulkefly Bin Zan
- UKM—Department of Electrical, Electronic and Systems Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, UKM Bangi 43600, Malaysia; (B.A.T.); (N.N.B.); (A.A.A.B.); (M.H.H.M.); (M.S.D.B.Z.)
| | - Norhana Arsad
- UKM—Department of Electrical, Electronic and Systems Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, UKM Bangi 43600, Malaysia; (B.A.T.); (N.N.B.); (A.A.A.B.); (M.H.H.M.); (M.S.D.B.Z.)
| |
Collapse
|