1
|
Sonkar K, Singh A. Metabolic and physiological functions of Patatin-like phospholipase-A in plants. Int J Biol Macromol 2024; 287:138474. [PMID: 39645102 DOI: 10.1016/j.ijbiomac.2024.138474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Revised: 11/24/2024] [Accepted: 12/04/2024] [Indexed: 12/09/2024]
Abstract
Patatin-like phospholipase-A (pPLA) is a class of lipid acyl hydrolase enzymes found in both, the animal and plant kingdoms. Plant pPLAs are related to the potato tuber storage protein patatin in solanaceous plants. Despite extensive investigation of pPLA functions in the animal system, the mechanistic functional details and regulatory roles of pPLA are poorly understood in plants. In recent years, research pertaining to pPLAs has gain some momentum as some of the key members of pPLA family have been characterized functionally. These findings have provided key insights into the structural features, biochemical activities, and functional roles of plant pPLAs. In this review, we are presenting a holistic overview of pPLAs in plants and providing the latest updates on pPLA research. We have highlighted the genomic diversity and structural features of pPLAs in plants. Importantly, we have discussed the role of pPLAs in lipid metabolism, including sphingolipid metabolism, lignin and cellulose accumulation, lipid breakdown and seed oil content enhancement. Moreover, regulatory roles of pPLAs in physiological processes, such as plant stress response, plant-pathogen interactions and plant development have been discussed. This information will be critical in the biotechnological programs for crop improvement.
Collapse
Affiliation(s)
- Kamankshi Sonkar
- National Institute of Plant genome Research, New Delhi 110067, India
| | - Amarjeet Singh
- National Institute of Plant genome Research, New Delhi 110067, India.
| |
Collapse
|
2
|
Singh C, Yadav S, Khare V, Gupta V, Kamble UR, Gupta OP, Kumar R, Saini P, Bairwa RK, Khobra R, Sheoran S, Kumar S, Kurhade AK, Mishra CN, Gupta A, Tyagi BS, Ahlawat OP, Singh G, Tiwari R. Unraveling the Secrets of Early-Maturity and Short-Duration Bread Wheat in Unpredictable Environments. PLANTS (BASEL, SWITZERLAND) 2024; 13:2855. [PMID: 39458802 PMCID: PMC11511103 DOI: 10.3390/plants13202855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 09/16/2024] [Accepted: 10/03/2024] [Indexed: 10/28/2024]
Abstract
In response to the escalating challenges posed by unpredictable environmental conditions, the pursuit of early maturation in bread wheat has emerged as a paramount research endeavor. This comprehensive review delves into the multifaceted landscape of strategies and implications surrounding the unlocking of early maturation in bread wheat varieties. Drawing upon a synthesis of cutting-edge research in genetics, physiology, and environmental science, this review elucidates the intricate mechanisms underlying early maturation and its potential ramifications for wheat cultivation in dynamic environments. By meticulously analyzing the genetic determinants, physiological processes, and environmental interactions shaping early maturation, this review offers valuable insights into the complexities of this trait and its relevance in contemporary wheat breeding programs. Furthermore, this review critically evaluates the trade-offs inherent in pursuing early maturation, navigating the delicate balance between accelerated development and optimal yield potential. Through a meticulous examination of both challenges and opportunities, this review provides a comprehensive framework for researchers, breeders, and agricultural stakeholders to advance our understanding and utilization of early maturation in bread wheat cultivars, ultimately fostering resilience and sustainability in wheat production systems worldwide.
Collapse
Affiliation(s)
- Charan Singh
- ICAR—Indian Institute of Wheat and Barley Research, Karnal 132001, India
| | - Sapna Yadav
- ICAR—Indian Institute of Wheat and Barley Research, Karnal 132001, India
| | - Vikrant Khare
- Nuclear Agriculture and Biotechnology Division, Bhabha Atomic Research Centre, Mumbai 400085, India
| | - Vikas Gupta
- ICAR—Indian Institute of Wheat and Barley Research, Karnal 132001, India
| | - Umesh R. Kamble
- ICAR—Indian Institute of Wheat and Barley Research, Karnal 132001, India
| | - Om P. Gupta
- ICAR—Indian Institute of Wheat and Barley Research, Karnal 132001, India
| | - Ravindra Kumar
- ICAR—Indian Institute of Wheat and Barley Research, Karnal 132001, India
| | - Pawan Saini
- Central Sericultural Research and Training Institute, Pampore 192121, India
| | - Rakesh K. Bairwa
- ICAR—Indian Institute of Wheat and Barley Research, Karnal 132001, India
| | - Rinki Khobra
- ICAR—Indian Institute of Wheat and Barley Research, Karnal 132001, India
| | - Sonia Sheoran
- ICAR—Indian Institute of Wheat and Barley Research, Karnal 132001, India
| | - Satish Kumar
- ICAR—Indian Institute of Wheat and Barley Research, Karnal 132001, India
| | - Ankita K. Kurhade
- ICAR—Indian Institute of Wheat and Barley Research, Karnal 132001, India
| | - Chandra N. Mishra
- ICAR—Indian Institute of Wheat and Barley Research, Karnal 132001, India
| | - Arun Gupta
- ICAR—Indian Institute of Wheat and Barley Research, Karnal 132001, India
| | - Bhudeva S. Tyagi
- ICAR—Indian Institute of Wheat and Barley Research, Karnal 132001, India
| | - Om P. Ahlawat
- ICAR—Indian Institute of Wheat and Barley Research, Karnal 132001, India
| | - Gyanendra Singh
- ICAR—Indian Institute of Wheat and Barley Research, Karnal 132001, India
| | - Ratan Tiwari
- ICAR—Indian Institute of Wheat and Barley Research, Karnal 132001, India
| |
Collapse
|
3
|
Xie Y, Wang M, Mo B, Liang C. Plant kinetochore complex: composition, function, and regulation. FRONTIERS IN PLANT SCIENCE 2024; 15:1467236. [PMID: 39464281 PMCID: PMC11503545 DOI: 10.3389/fpls.2024.1467236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Accepted: 09/25/2024] [Indexed: 10/29/2024]
Abstract
The kinetochore complex, an important protein assembly situated on the centromere, plays a pivotal role in chromosome segregation during cell division. Like in animals and fungi, the plant kinetochore complex is important for maintaining chromosome stability, regulating microtubule attachment, executing error correction mechanisms, and participating in signaling pathways to ensure accurate chromosome segregation. This review summarizes the composition, function, and regulation of the plant kinetochore complex, emphasizing the interactions of kinetochore proteins with centromeric DNAs (cenDNAs) and RNAs (cenRNAs). Additionally, the applications of the centromeric histone H3 variant (the core kinetochore protein CENH3, first identified as CENP-A in mammals) in the generation of ploidy-variable plants and synthesis of plant artificial chromosomes (PACs) are discussed. The review serves as a comprehensive roadmap for researchers delving into plant kinetochore exploration, highlighting the potential of kinetochore proteins in driving technological innovations in synthetic genomics and plant biotechnology.
Collapse
Affiliation(s)
- Yuqian Xie
- Guangdong Provincial Key Laboratory for Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China
| | - Mingliang Wang
- Guangdong Provincial Key Laboratory for Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China
| | - Beixin Mo
- Guangdong Provincial Key Laboratory for Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China
- Synthetic Biology Research Center, Shenzhen University, Shenzhen, China
| | - Chao Liang
- Guangdong Provincial Key Laboratory for Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China
- Synthetic Biology Research Center, Shenzhen University, Shenzhen, China
| |
Collapse
|
4
|
Sandhu N, Singh J, Pruthi G, Verma VK, Raigar OP, Bains NS, Chhuneja P, Kumar A. SpeedyPaddy: a revolutionized cost-effective protocol for large scale offseason advancement of rice germplasm. PLANT METHODS 2024; 20:109. [PMID: 39033149 PMCID: PMC11264910 DOI: 10.1186/s13007-024-01235-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 07/08/2024] [Indexed: 07/23/2024]
Abstract
BACKGROUND Improving the rate of genetic gain of cereal crop will rely on the accelerated crop breeding pipelines to allow rapid delivery of improved crop varieties. The laborious, time-consuming traditional breeding cycle, and the seasonal variations are the key factor restricting the breeder to develop new varieties. To address these issues, a revolutionized cost-effective speed breeding protocol for large-scale rice germplasm advancement is presented in the present study. The protocol emphasises on optimizing potting material, balancing the double-edged sword of limited nutritional dose, mode and stage of application, plant density, temperature, humidity, light spectrum, intensity, photoperiod, and hormonal regulation to accelerate rice growth and development. RESULTS The plant density of 700 plants/m2, cost-effective halogen tubes (B:G:R:FR-7.0:27.6:65.4:89.2) with an intensity of ∼ 750-800 µmol/m2/s and photoperiod of 13 h light and 11 h dark during seedling and vegetative stage and 8 h light and 16 h dark during reproductive stage had a significant effect (P < 0.05) on reducing the mean plant height, tillering, and inducing early flowering. Our results confirmed that one generation can be achieved within 68-75 days using the cost-effective SpeedyPaddy protocol resulting in 4-5 generations per year across different duration of rice varieties. The other applications include hybridization, trait-based phenotyping, and mapping of QTL/genes. The estimated cost to run one breeding cycle with plant capacity of 15,680 plants in SpeedyPaddy was $2941 including one-time miscellaneous cost which is much lower than the advanced controlled environment speed breeding facilities. CONCLUSION The protocol offers a promising cost-effective solution with average saving of 2.0 to 2.6 months per breeding cycle with an integration of genomics-assisted selection, trait-based phenotyping, mapping of QTL/genes, marker development may accelerate the varietal development and release. This outstanding cost-effective break-through marks a significant leap in rice breeding addressing climate change and food security.
Collapse
Affiliation(s)
- Nitika Sandhu
- Punjab Agricultural University, Ludhiana, Punjab, 141004, India.
| | - Jasneet Singh
- Punjab Agricultural University, Ludhiana, Punjab, 141004, India
| | - Gomsie Pruthi
- Punjab Agricultural University, Ludhiana, Punjab, 141004, India
| | | | | | | | | | - Arvind Kumar
- Delta Agrigenetics, Plot No. 99 & 100 Green Park Avenue, Village, Jeedimetla, Secunderabad, Telangana, 500055, India
| |
Collapse
|
5
|
Manape TK, Satheesh V, Somasundaram S, Soumia PS, Khade YP, Mainkar P, Mahajan V, Singh M, Anandhan S. RNAi-mediated downregulation of AcCENH3 can induce in vivo haploids in onion (Allium cepa L.). Sci Rep 2024; 14:14481. [PMID: 38914600 PMCID: PMC11196721 DOI: 10.1038/s41598-024-64432-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 06/10/2024] [Indexed: 06/26/2024] Open
Abstract
Haploid induction (HI) holds great promise in expediting the breeding process in onion, a biennial cross-pollinated crop. We used the CENH3-based genome elimination technique in producing a HI line in onion. Here, we downregulated AcCENH3 using the RNAi approach without complementation in five independent lines. Out of five events, only three could produce seeds upon selfing. The progenies showed poor seed set and segregation distortion, and we were unable to recover homozygous knockdown lines. The knockdown lines showed a decrease in accumulation of AcCENH3 transcript and protein in leaf tissue. The decrease in protein content in transgenic plants was correlated with poor seed set. When the heterozygous knockdown lines were crossed with wild-type plants, progenies showed HI by genome elimination of the parental chromosomes from AcCENH3 knockdown lines. The HI efficiency observed was between 0 and 4.63% in the three events, and it was the highest (4.63%) when E1 line was crossed with wildtype. Given the importance of doubled haploids in breeding programmes, the findings from our study are poised to significantly impact onion breeding.
Collapse
Affiliation(s)
- Tushar K Manape
- ICAR-Directorate of Onion and Garlic Research, Rajgurunagar, Pune, Maharashtra, 410505, India
| | - Viswanathan Satheesh
- ICAR-National Institute of Plant Biotechnology, Pusa Campus, New Delhi, 110012, India
- Genome Informatics Facility, Office of Biotechnology, Iowa State University, Ames, IA, 50010, USA
| | - Saravanakumar Somasundaram
- ICAR-Directorate of Onion and Garlic Research, Rajgurunagar, Pune, Maharashtra, 410505, India
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, 06466, Seeland, Germany
| | - Parakkattu S Soumia
- ICAR-Directorate of Onion and Garlic Research, Rajgurunagar, Pune, Maharashtra, 410505, India
| | - Yogesh P Khade
- ICAR-Directorate of Onion and Garlic Research, Rajgurunagar, Pune, Maharashtra, 410505, India
| | - Pawan Mainkar
- ICAR-Directorate of Onion and Garlic Research, Rajgurunagar, Pune, Maharashtra, 410505, India
| | - Vijay Mahajan
- ICAR-Directorate of Onion and Garlic Research, Rajgurunagar, Pune, Maharashtra, 410505, India
| | - Major Singh
- ICAR-Directorate of Onion and Garlic Research, Rajgurunagar, Pune, Maharashtra, 410505, India
| | - Sivalingam Anandhan
- ICAR-Directorate of Onion and Garlic Research, Rajgurunagar, Pune, Maharashtra, 410505, India.
| |
Collapse
|
6
|
Gastelbondo M, Nicholls U, Chen S, Chambers A, Wu X. First Gynogenesis of Vanilla planifolia for Haploid Production and Ploidy Verification Protocol. PLANTS (BASEL, SWITZERLAND) 2024; 13:1733. [PMID: 38999575 PMCID: PMC11243312 DOI: 10.3390/plants13131733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 06/19/2024] [Accepted: 06/20/2024] [Indexed: 07/14/2024]
Abstract
Vanilla orchids are members of the Vanilloideae orchid subfamily, and they hold significant economic value as a spice crop in tropical regions. Despite the presence of 180 known species within this subfamily, commercial production focuses on only three species (Vanilla planifolia, V. odorata, and V. pompona) and one hybrid (V. × tahitensis), prized for their aromatic qualities and bioactive compounds. Limited modern breeding initiatives have been undertaken with vanilla orchids, although recent advancements in genomic research are shedding light on this crop's potential. The protracted breeding cycle of vanilla, coupled with increasing demand for germplasm, underscores the importance of research and breeding efforts in vanilla. This paper outlines a protocol for haploid production in V. planifolia using unfertilized ovaries in tissue culture conditions. Additionally, we present a methodology to confirm the haploid nature of putative haploid lines through stomatal size comparison, chromosome counting, and flow cytometry analysis, proving the successful development of haploid vanilla plants. These findings contribute to the advancement of breeding programs and genetic improvement strategies for the vanilla industry.
Collapse
Affiliation(s)
- Manuel Gastelbondo
- Plant Breeding Graduate Program, Tropical Research and Education Center, University of Florida, 18905 S.W. 280 Street, Homestead, FL 33031, USA; (M.G.); (S.C.)
| | - Ursula Nicholls
- Horticulture Department, Tropical Research and Education Center, University of Florida, 18905 S.W. 280 Street, Homestead, FL 33031, USA; (U.N.); (A.C.)
| | - Sisi Chen
- Plant Breeding Graduate Program, Tropical Research and Education Center, University of Florida, 18905 S.W. 280 Street, Homestead, FL 33031, USA; (M.G.); (S.C.)
| | - Alan Chambers
- Horticulture Department, Tropical Research and Education Center, University of Florida, 18905 S.W. 280 Street, Homestead, FL 33031, USA; (U.N.); (A.C.)
| | - Xingbo Wu
- Plant Breeding Graduate Program, Tropical Research and Education Center, University of Florida, 18905 S.W. 280 Street, Homestead, FL 33031, USA; (M.G.); (S.C.)
- Environmental Horticulture Department, Tropical Research and Education Center, University of Florida, 18905 S.W. 280 Street, Homestead, FL 33031, USA
| |
Collapse
|
7
|
Gao R, Zong Y, Zhang S, Guo G, Zhang W, Chen Z, Lu R, Liu C, Wang Y, Li Y. Efficient isolated microspore culture protocol for callus induction and plantlet regeneration in japonica rice (Oryza sativa L.). PLANT METHODS 2024; 20:76. [PMID: 38790046 PMCID: PMC11127448 DOI: 10.1186/s13007-024-01189-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 04/18/2024] [Indexed: 05/26/2024]
Abstract
BACKGROUND Isolated microspore culture is a useful biotechnological technique applied in modern plant breeding programs as it can produce doubled haploid (DH) plants and accelerate the development of new varieties. Furthermore, as a single-cell culture technique, the isolated microspore culture provides an excellent platform for studying microspore embryogenesis. However, the reports on isolated microspore culture are rather limited in rice due to the low callus induction rate, poor regeneration capability, and high genotypic dependency. The present study developed an effective isolated microspore culture protocol for high-frequency androgenesis in four japonica rice genotypes. Several factors affecting the isolated microspore culture were studied to evaluate their effects on callus induction and plantlet regeneration. RESULTS Low-temperature pre-treatment at 4 ℃ for 10-15 days could effectively promote microspore embryogenesis in japonica rice. A simple and efficient method was proposed for identifying the microspore developmental stage. The anthers in yellow-green florets located on the second type of primary branch on the rice panicle were found to be the optimal stage for isolated microspore culture. The most effective induction media for callus induction were IM2 and IM3, depending on the genotype. The optimal concentration of 2, 4-D in the medium for callus induction was 1 mg/L. Callus induction was negatively affected by a high concentration of KT over 1.5 mg/L. The differentiation medium suitable for japonica rice microspore callus comprised 1/2 MS, 2 mg/L 6-BA, 0.5 mg/L NAA, 30 g/L sucrose, and 6 g/L agar. The regeneration frequency of the four genotypes ranged from 61-211 green plantlets per 100 mg calli, with Chongxiangjing showing the highest regeneration frequency. CONCLUSIONS This study presented an efficient protocol for improved callus induction and green plantlet regeneration in japonica rice via isolated microspore culture, which could provide valuable support for rice breeding and genetic research.
Collapse
Affiliation(s)
- Runhong Gao
- Shanghai Key Laboratory of Agricultural Genetics and Breeding, Biotechnology Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai, 201106, China
| | - Yingjie Zong
- Shanghai Key Laboratory of Agricultural Genetics and Breeding, Biotechnology Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai, 201106, China
| | - Shuwei Zhang
- Shanghai Key Laboratory of Agricultural Genetics and Breeding, Biotechnology Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai, 201106, China
| | - Guimei Guo
- Shanghai Key Laboratory of Agricultural Genetics and Breeding, Biotechnology Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai, 201106, China
| | - Wenqi Zhang
- Shanghai Key Laboratory of Agricultural Genetics and Breeding, Biotechnology Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai, 201106, China
| | - Zhiwei Chen
- Shanghai Key Laboratory of Agricultural Genetics and Breeding, Biotechnology Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai, 201106, China
| | - Ruiju Lu
- Shanghai Key Laboratory of Agricultural Genetics and Breeding, Biotechnology Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai, 201106, China
| | - Chenghong Liu
- Shanghai Key Laboratory of Agricultural Genetics and Breeding, Biotechnology Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai, 201106, China
| | - Yifei Wang
- Shanghai Key Laboratory of Agricultural Genetics and Breeding, Biotechnology Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai, 201106, China.
| | - Yingbo Li
- Shanghai Key Laboratory of Agricultural Genetics and Breeding, Biotechnology Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai, 201106, China.
| |
Collapse
|
8
|
Dubey R, Zustovi R, Landschoot S, Dewitte K, Verlinden G, Haesaert G, Maenhout S. Harnessing monocrop breeding strategies for intercrops. FRONTIERS IN PLANT SCIENCE 2024; 15:1394413. [PMID: 38799097 PMCID: PMC11119317 DOI: 10.3389/fpls.2024.1394413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Accepted: 04/22/2024] [Indexed: 05/29/2024]
Abstract
Intercropping is considered advantageous for many reasons, including increased yield stability, nutritional value and the provision of various regulating ecosystem services. However, intercropping also introduces diverse competition effects between the mixing partners, which can negatively impact their agronomic performance. Therefore, selecting complementary intercropping partners is the key to realizing a well-mixed crop production. Several specialized intercrop breeding concepts have been proposed to support the development of complementary varieties, but their practical implementation still needs to be improved. To lower this adoption threshold, we explore the potential of introducing minor adaptations to commonly used monocrop breeding strategies as an initial stepping stone towards implementing dedicated intercrop breeding schemes. While we acknowledge that recurrent selection for reciprocal mixing abilities is likely a more effective breeding paradigm to obtain genetic progress for intercrops, a well-considered adaptation of monoculture breeding strategies is far less intrusive concerning the design of the breeding programme and allows for balancing genetic gain for both monocrop and intercrop performance. The main idea is to develop compatible variety combinations by improving the monocrop performance in the two breeding pools in parallel and testing for intercrop performance in the later stages of selection. We show that the optimal stage for switching from monocrop to intercrop testing should be adapted to the specificity of the crop and the heritability of the traits involved. However, the genetic correlation between the monocrop and intercrop trait performance is the primary driver of the intercrop breeding scheme optimization process.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Steven Maenhout
- Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| |
Collapse
|
9
|
Dermail A, Mitchell M, Foster T, Fakude M, Chen YR, Suriharn K, Frei UK, Lübberstedt T. Haploid identification in maize. FRONTIERS IN PLANT SCIENCE 2024; 15:1378421. [PMID: 38708398 PMCID: PMC11067884 DOI: 10.3389/fpls.2024.1378421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 04/08/2024] [Indexed: 05/07/2024]
Abstract
Doubled haploid (DH) line production through in vivo maternal haploid induction is widely adopted in maize breeding programs. The established protocol for DH production includes four steps namely in vivo maternal haploid induction, haploid identification, genome doubling of haploid, and self-fertilization of doubled haploids. Since modern haploid inducers still produce relatively small portion of haploids among undesirable hybrid kernels, haploid identification is typically laborious, costly, and time-consuming, making this step the second foremost in the DH technique. This manuscript reviews numerous methods for haploid identification from different approaches including the innate differences in haploids and diploids, biomarkers integrated in haploid inducers, and automated seed sorting. The phenotypic differentiation, genetic basis, advantages, and limitations of each biomarker system are highlighted. Several approaches of automated seed sorting from different research groups are also discussed regarding the platform or instrument used, sorting time, accuracy, advantages, limitations, and challenges before they go through commercialization. The past haploid selection was focusing on finding the distinguishable marker systems with the key to effectiveness. The current haploid selection is adopting multiple reliable biomarker systems with the key to efficiency while seeking the possibility for automation. Fully automated high-throughput haploid sorting would be promising in near future with the key to robustness with retaining the feasible level of accuracy. The system that can meet between three major constraints (time, workforce, and budget) and the sorting scale would be the best option.
Collapse
Affiliation(s)
- Abil Dermail
- Department of Agronomy, Faculty of Agriculture, Khon Kaen University, Khon Kaen, Thailand
| | - Mariah Mitchell
- Department of Agronomy, Iowa State University, Ames, IA, United States
| | - Tyler Foster
- Department of Agronomy, Iowa State University, Ames, IA, United States
| | - Mercy Fakude
- Department of Agronomy, Iowa State University, Ames, IA, United States
| | - Yu-Ru Chen
- Department of Agronomy, Iowa State University, Ames, IA, United States
| | - Khundej Suriharn
- Department of Agronomy, Faculty of Agriculture, Khon Kaen University, Khon Kaen, Thailand
- Plant Breeding Research Center for Sustainable Agriculture, Faculty of Agriculture, Khon Kaen University, Khon Kaen, Thailand
| | | | | |
Collapse
|
10
|
Baliyan N, Srivastava A, Rao M, Mishra AK, Bharti H, Khar A, Mangal M. Correlation of stages of microsporogenesis with bud and anther morphology in pepper genotypes through DAPI staining with different levels of mordant in cytological fixative. PROTOPLASMA 2024; 261:367-376. [PMID: 37910230 DOI: 10.1007/s00709-023-01903-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 10/16/2023] [Indexed: 11/03/2023]
Abstract
The haploid and doubled haploid plants serve as valuable tools for breeders due to their ability to expedite the mapping of genes of agronomic importance, as well as accelerate the breeding cycle for generation of novel hybrids and improved homogenous varieties. Successful anther/microspore culture largely depends on the use of microspores at appropriate developmental stages at the time of culture, which can be specific for each plant species and genotype. In the present study, we described the visible morphological characteristics of flower buds and anthers at different developmental stages to identify the optimal microspore stage within the anther/buds of two pepper hybrids, Indra and Lakshmi. This information enabled us to predict the suitable microspore stage for successful haploid production. To enhance the visualization of nuclei in the pepper microspores, different concentrations of FeCl3 were employed as a mordant to Carnoy's fixative I, followed by DAPI staining. A clear and distinct nucleus was observed using DAPI staining procedures in the pepper microspores when fixed in Carnoy's solution containing ferric chloride (40-90 µl) as mordant. The use of mordant thus facilitated the efficient cytological analysis of the pepper microspores. Present results indicate that, to achieve efficient haploid production, flower buds with an average length of 4.4 to 5.02 mm for the hybrid Indra and 5.15 to 5.40 mm for the hybrid Lakshmi should be utilized. Additionally, these buds should have a calyx covering approximately 80-90% of the total bud length. We observed that in such buds, microspores are in the late-uninucleate and early binucleate stage which has been reported to be the most conducive stage for androgenesis induction in pepper.
Collapse
Affiliation(s)
- Nikita Baliyan
- Division of Vegetable Science, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Arpita Srivastava
- Division of Vegetable Science, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Mahesh Rao
- ICAR-National Institute for Plant Biotechnology, New Delhi, India
| | - Ajay Kumar Mishra
- Centre for Protected Cultivation Technology, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Hemlata Bharti
- Centre for Protected Cultivation Technology, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Anil Khar
- Division of Vegetable Science, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Manisha Mangal
- Division of Vegetable Science, ICAR-Indian Agricultural Research Institute, New Delhi, India.
| |
Collapse
|
11
|
Sahana KP, Srivastava A, Khar A, Jain N, Jain PK, Bharti H, Harun M, Mangal M. Anther-derived microspore embryogenesis in pepper hybrids orobelle and Bomby. BOTANICAL STUDIES 2024; 65:1. [PMID: 38175359 PMCID: PMC10766580 DOI: 10.1186/s40529-023-00408-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Accepted: 12/19/2023] [Indexed: 01/05/2024]
Abstract
BACKGROUND Traditional breeding methods have long been employed worldwide for the evaluation and development of pepper cultivars. However, these methods necessitate multiple generations of screening, line development, evaluation, recognition, and crossing to obtain highly homozygous lines. In contrast, in vitro anther-derived microspore culture represents a rapid method to generate homozygous lines within a single generation. In the present study, we have optimized a protocol for microspore embryogenesis from anther cultures of pepper hybrids Orobelle and Bomby. RESULTS We achieved early and successful embryo formation from both genotypes by subjecting the buds to a cold pretreatment at 4 °C for 4 days. Our optimized culture medium, comprised of MS medium supplemented with 4 mg/L NAA, 1 mg/L BAP, 0.25% activated charcoal, 2.6 g/L gelrite, 30 g/L sucrose, and 15 mg/L silver nitrate, exhibited the highest efficiency in embryo formation (1.85% and 1.46%) for Orobelle and Bomby, respectively. Furthermore, successful plant regeneration from the anther derived microspore embryos was accomplished using half-strength MS medium fortified with 2% sucrose and 0.1 mg/L 6-benzylaminopurine (BA), solidified with 2.6 g/L gelrite. The ploidy status of the microspore-derived plantlets was analyzed using flow cytometry technique. Notably, the haploid plants exhibited distinct characteristics such as reduced plant height, leaf length, leaf width, and shorter internode length when compared to their diploid counterparts derived from seeds. CONCLUSION Our findings highlight the potential of anther culture and microspore embryogenesis as an advanced method for accelerating pepper breeding programs, enabling the rapid production of superior homozygous lines.
Collapse
Affiliation(s)
- K P Sahana
- Division of Vegetable Science, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Arpita Srivastava
- Division of Vegetable Science, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Anil Khar
- Division of Vegetable Science, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Neelu Jain
- Division of Genetics, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - P K Jain
- ICAR - National Institute for Plant Biotechnology, New Delhi, India
| | - Hemlata Bharti
- Centre for Protected Cultivation Technology, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Mohd Harun
- Division of Design and Experiments, ICAR-IASRI, Indian Agricultural Research Institute, New Delhi, India
| | - Manisha Mangal
- Division of Vegetable Science, ICAR-Indian Agricultural Research Institute, New Delhi, India.
| |
Collapse
|
12
|
Ghalagi C, Namratha MR, Kotyal K, Prakash S, Raju BM. A novel visual marker to distinguish haploids from doubled haploids in rice (Oryza sativa, L) at early growth stages. PLANT METHODS 2023; 19:137. [PMID: 38041143 PMCID: PMC10691067 DOI: 10.1186/s13007-023-01085-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Accepted: 09/28/2023] [Indexed: 12/03/2023]
Abstract
Doubled haploid technology, which enables the generation of homozygous lines in a single step, is one of the modern tools being employed for accelerating breeding processes in different crops. In rice, a globally important staple food crop, doubled haploid production through androgenesis is increasingly being employed in breeding programs. Amongst the androgenic rice lines, doubled haploids are formed spontaneously at about 50-60%, while the remaining 40-50% of plants remain as haploids. As haploids cannot be easily identified, it is routine to grow all the rice androgenic lines till maturity and harvest the seeds from the fertile doubled haploids. Therefore, the methods that facilitate easy identification of haploids at an early developmental stage in rice would enable treatment of such haploid lines with colchicine, to increase the efficiency of doubled haploid production. Further, it would also help in eliminating the operational cost involved in maintaining them till maturity. In the above context, a systematic study to identify easily observable physiological and morphological differences between haploid and doubled haploid rice lines was undertaken. Rice haploids were found to be noticeably different from doubled haploids in photosynthetic rate, transpiration rate, stomatal conductance, and morphology of lodicules, stigma and style, features which have not been reported before. Most importantly, rice haploids invariably have acute leaf apex which is easily distinguishable from the doubled haploids that have attenuated leaf apex shape. Very high per cent accuracy in the prediction of ploidy level was observed when haploids were identified at an early developmental stage based on leaf apex shape, and the results verified with flow cytometry perfectly matches with leaf apex shape. The study establishes 'acute leaf apex' shape as an accurate visual marker to rapidly identify haploid rice lines at an early developmental stage in a cost-effective manner.
Collapse
Affiliation(s)
- Chaitanya Ghalagi
- Department of Crop Physiology, University of Agricultural Sciences, GKVK, Bangalore, 560065, India
| | | | - Kavita Kotyal
- Department of Crop Physiology, University of Agricultural Sciences, GKVK, Bangalore, 560065, India
| | - Shiva Prakash
- Department of Crop Physiology, University of Agricultural Sciences, GKVK, Bangalore, 560065, India
| | - Basavaiah Mohan Raju
- Department of Crop Physiology, University of Agricultural Sciences, GKVK, Bangalore, 560065, India.
| |
Collapse
|
13
|
Xu H, Halford NG, Guo G, Chen Z, Li Y, Zhou L, Liu C, Xu R. Transcriptomic and Metabolomic Analyses Reveal the Importance of Lipid Metabolism and Photosynthesis Regulation in High Salinity Tolerance in Barley ( Hordeum vulgare L.) Leaves Derived from Mutagenesis Combined with Microspore Culture. Int J Mol Sci 2023; 24:16757. [PMID: 38069082 PMCID: PMC10705989 DOI: 10.3390/ijms242316757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 11/23/2023] [Accepted: 11/23/2023] [Indexed: 12/18/2023] Open
Abstract
Barley is the most salt-tolerant cereal crop. However, little attention has been paid to the salt-tolerant doubled haploids of barley derived from mutagenesis combined with isolated microspore culture. In the present study, barley doubled haploid (DH) line 20, which was produced by mutagenesis combined with isolated microspore culture, showed stably and heritably better salt tolerance than the wild type H30 in terms of fresh shoot weight, dry shoot weight, K+/Na+ ratio and photosynthetic characteristics. Transcriptome and metabolome analyses were performed to compare the changes in gene expression and metabolites between DH20 and H30. A total of 462 differentially expressed genes (DEGs) and 152 differentially accumulated metabolites (DAMs) were identified in DH20 compared to H30 under salt stress. Among the DAMs, fatty acids were the most accumulated in DH20 under salt stress. The integration of transcriptome and metabolome analyses revealed that nine key biomarkers, including two metabolites and seven genes, could distinguish DH20 and H30 when exposed to high salt. The pathways of linoleic acid metabolism, alpha-linolenic acid metabolism, glycerolipid metabolism, photosynthesis, and alanine, aspartate and glutamate metabolism were significantly enriched in DH20 with DEGs and DAMs in response to salt stress. These results suggest that DH20 may enhance resilience by promoting lipid metabolism, maintaining energy metabolism and decreasing amino acids metabolism. The study provided novel insights for the rapid generation of homozygous mutant plants by mutagenesis combined with microspore culture technology and also identified candidate genes and metabolites that may enable the mutant plants to cope with salt stress.
Collapse
Affiliation(s)
- Hongwei Xu
- Key Laboratory of Plant Functional Genomics of the Ministry of Education/Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops/Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
- Shanghai Key Laboratory of Agricultural Genetics and Breeding, Biotechnology Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai 201106, China
| | | | - Guimei Guo
- Shanghai Key Laboratory of Agricultural Genetics and Breeding, Biotechnology Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai 201106, China
| | - Zhiwei Chen
- Shanghai Key Laboratory of Agricultural Genetics and Breeding, Biotechnology Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai 201106, China
| | - Yingbo Li
- Shanghai Key Laboratory of Agricultural Genetics and Breeding, Biotechnology Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai 201106, China
| | - Longhua Zhou
- Shanghai Key Laboratory of Agricultural Genetics and Breeding, Biotechnology Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai 201106, China
| | - Chenghong Liu
- Shanghai Key Laboratory of Agricultural Genetics and Breeding, Biotechnology Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai 201106, China
| | - Rugen Xu
- Key Laboratory of Plant Functional Genomics of the Ministry of Education/Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops/Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
| |
Collapse
|
14
|
Tang Q, Wang X, Jin X, Peng J, Zhang H, Wang Y. CRISPR/Cas Technology Revolutionizes Crop Breeding. PLANTS (BASEL, SWITZERLAND) 2023; 12:3119. [PMID: 37687368 PMCID: PMC10489799 DOI: 10.3390/plants12173119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Revised: 08/24/2023] [Accepted: 08/27/2023] [Indexed: 09/10/2023]
Abstract
Crop breeding is an important global strategy to meet sustainable food demand. CRISPR/Cas is a most promising gene-editing technology for rapid and precise generation of novel germplasm and promoting the development of a series of new breeding techniques, which will certainly lead to the transformation of agricultural innovation. In this review, we summarize recent advances of CRISPR/Cas technology in gene function analyses and the generation of new germplasms with increased yield, improved product quality, and enhanced resistance to biotic and abiotic stress. We highlight their applications and breakthroughs in agriculture, including crop de novo domestication, decoupling the gene pleiotropy tradeoff, crop hybrid seed conventional production, hybrid rice asexual reproduction, and double haploid breeding; the continuous development and application of these technologies will undoubtedly usher in a new era for crop breeding. Moreover, the challenges and development of CRISPR/Cas technology in crops are also discussed.
Collapse
Affiliation(s)
- Qiaoling Tang
- National Nanfan Research Institute (Sanya), Chinese Academy of Agricultural Sciences, Sanya 572024, China;
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China;
| | - Xujing Wang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China;
| | - Xi Jin
- Hebei Technology Innovation Center for Green Management of Soi-Borne Diseases, Baoding University, Baoding 071000, China;
| | - Jun Peng
- National Nanfan Research Institute (Sanya), Chinese Academy of Agricultural Sciences, Sanya 572024, China;
| | - Haiwen Zhang
- National Nanfan Research Institute (Sanya), Chinese Academy of Agricultural Sciences, Sanya 572024, China;
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China;
| | - Youhua Wang
- National Nanfan Research Institute (Sanya), Chinese Academy of Agricultural Sciences, Sanya 572024, China;
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China;
| |
Collapse
|
15
|
Bekalu ZE, Panting M, Bæksted Holme I, Brinch-Pedersen H. Opportunities and Challenges of In Vitro Tissue Culture Systems in the Era of Crop Genome Editing. Int J Mol Sci 2023; 24:11920. [PMID: 37569295 PMCID: PMC10419073 DOI: 10.3390/ijms241511920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 07/17/2023] [Accepted: 07/21/2023] [Indexed: 08/13/2023] Open
Abstract
Currently, the development of genome editing (GE) tools has provided a wide platform for targeted modification of plant genomes. However, the lack of versatile DNA delivery systems for a large variety of crop species has been the main bottleneck for improving crops with beneficial traits. Currently, the generation of plants with heritable mutations induced by GE tools mostly goes through tissue culture. Unfortunately, current tissue culture systems restrict successful results to only a limited number of plant species and genotypes. In order to release the full potential of the GE tools, procedures need to be species and genotype independent. This review provides an in-depth summary and insights into the various in vitro tissue culture systems used for GE in the economically important crops barley, wheat, rice, sorghum, soybean, maize, potatoes, cassava, and millet and uncovers new opportunities and challenges of already-established tissue culture platforms for GE in the crops.
Collapse
|
16
|
Tang H, Wang K, Zhang S, Han Z, Chang Y, Qiu Y, Yu M, Du L, Ye X. A fast technique for visual screening of wheat haploids generated from TaMTL-edited mutants carrying anthocyanin markers. PLANT COMMUNICATIONS 2023; 4:100569. [PMID: 36864725 DOI: 10.1016/j.xplc.2023.100569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Revised: 02/21/2023] [Accepted: 02/28/2023] [Indexed: 05/11/2023]
Affiliation(s)
- Huali Tang
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Ke Wang
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Shuangxi Zhang
- Crop Research Institute, Ningxia Academy of Agriculture and Forestry Sciences, Yinchuan 750002, China
| | - Zhiyang Han
- College of Agronomy, Ningxia University, Yinchuan 750021, China
| | - Yanan Chang
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Yuliang Qiu
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Mei Yu
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Lipu Du
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Xingguo Ye
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| |
Collapse
|
17
|
Mabuza LM, Mchunu NP, Crampton BG, Swanevelder DZH. Accelerated Breeding for Helianthus annuus (Sunflower) through Doubled Haploidy: An Insight on Past and Future Prospects in the Era of Genome Editing. PLANTS (BASEL, SWITZERLAND) 2023; 12:485. [PMID: 36771570 PMCID: PMC9921946 DOI: 10.3390/plants12030485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 01/11/2023] [Accepted: 01/18/2023] [Indexed: 06/18/2023]
Abstract
The aim of any breeding process is to fully express the targeted, superior/desirable parent characteristic in the progeny. Hybrids are often used in this dynamic, and complex process for which homozygous parents-which may require up to eight generations of back crossing and selection-are required. Doubled haploid (DH) technologies can facilitate the production of true breeding lines faster and in a more efficient manner than the traditional back crossing and selection strategies. Sunflower is the third most important oilseed crop in the world and has no available double haploid induction procedure/technique that can be efficiently used in breeding programs. A reproducible and efficient doubled haploid induction method would be a valuable tool in accelerating the breeding of new elite sunflower varieties. Although several attempts have been made, the establishment of a sunflower doubled haploid induction protocol has remained a challenge owing recalcitrance to in vitro culture regeneration. Approaches for haploid development in other crops are often cultivar specific, difficult to reproduce, and rely on available tissue culture protocols-which on their own are also cultivar and/or species specific. As an out-crossing crop, the lack of a double haploid system limits sunflower breeding and associated improvement processes, thereby delaying new hybrid and trait developments. Significant molecular advances targeting genes, such as the centromeric histone 3 (CenH3) and Matrilineal (MTL) gene with CRISPR/Cas9, and the successful use of viral vectors for the delivery of CRISPR/Cas9 components into plant cells eliminating the in vitro culture bottleneck, have the potential to improve double haploid technology in sunflower. In this review, the different strategies, their challenges, and opportunities for achieving doubled haploids in sunflower are explored.
Collapse
Affiliation(s)
- Londiwe M. Mabuza
- Biotechnology Platform, Agricultural Research Council, Onderstepoort Campus, Onderstepoort, Pretoria 0110, South Africa
- Department of Plant Sciences, Faculty of Natural and Agricultural Sciences, University of Pretoria, Private Bag X20, Pretoria 0028, South Africa
| | - Nokuthula P. Mchunu
- Biotechnology Platform, Agricultural Research Council, Onderstepoort Campus, Onderstepoort, Pretoria 0110, South Africa
- Strategy, Planning and Partnerships, National Research Foundation, Pretoria 0184, South Africa
| | - Bridget G. Crampton
- Department of Plant Sciences, Faculty of Natural and Agricultural Sciences, University of Pretoria, Private Bag X20, Pretoria 0028, South Africa
| | - Dirk Z. H. Swanevelder
- Biotechnology Platform, Agricultural Research Council, Onderstepoort Campus, Onderstepoort, Pretoria 0110, South Africa
| |
Collapse
|
18
|
Shen K, Qu M, Zhao P. The Roads to Haploid Embryogenesis. PLANTS (BASEL, SWITZERLAND) 2023; 12:243. [PMID: 36678955 PMCID: PMC9865920 DOI: 10.3390/plants12020243] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 12/19/2022] [Accepted: 12/30/2022] [Indexed: 05/31/2023]
Abstract
Although zygotic embryogenesis is usually studied in the field of seed biology, great attention has been paid to the methods used to generate haploid embryos due to their applications in crop breeding. These mainly include two methods for haploid embryogenesis: in vitro microspore embryogenesis and in vivo haploid embryogenesis. Although microspore culture systems and maize haploid induction systems were discovered in the 1960s, little is known about the molecular mechanisms underlying haploid formation. In recent years, major breakthroughs have been made in in vivo haploid induction systems, and several key factors, such as the matrilineal (MTL), baby boom (BBM), domain of unknown function 679 membrane protein (DMP), and egg cell-specific (ECS) that trigger in vivo haploid embryo production in both the crops and Arabidopsis models have been identified. The discovery of these haploid inducers indicates that haploid embryogenesis is highly related to gamete development, fertilization, and genome stability in ealry embryos. Here, based on recent efforts to identify key players in haploid embryogenesis and to understand its molecular mechanisms, we summarize the different paths to haploid embryogenesis, and we discuss the mechanisms of haploid generation and its potential applications in crop breeding. Although these haploid-inducing factors could assist egg cells in bypassing fertilization to initiate embryogenesis or trigger genome elimination in zygotes after fertilization to form haploid embryos, the fertilization of central cells to form endosperms is a prerequisite step for haploid formation. Deciphering the molecular and cellular mechanisms for haploid embryogenesis, increasing the haploid induction efficiency, and establishing haploid induction systems in other crops are critical for promoting the application of haploid technology in crop breeding, and these should be addressed in further studies.
Collapse
Affiliation(s)
- Kun Shen
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Mengxue Qu
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Peng Zhao
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, China
- Hubei Hongshan Laboratory, Wuhan 430070, China
| |
Collapse
|
19
|
Wang S, Ouyang K. Rapid creation of CENH3-mediated haploid induction lines using a cytosine base editor (CBE). PLANT BIOLOGY (STUTTGART, GERMANY) 2023; 25:226-230. [PMID: 36285668 DOI: 10.1111/plb.13482] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 10/20/2022] [Indexed: 06/16/2023]
Abstract
Haploid induction (HI) can create true-breeding lines in a single generation, which can significantly accelerates the breeding process. In recent years, scientists have developed a variety of new techniques to induce haploids through manipulation of CENH3, a variant of the centromere-specific histone H3. One alternative approach is based on CENH3 point mutations derived from EMS/TILLING, which is not lethal and yet is responsible for inducing haploids. However, most residues have been obtained by EMS mutagenesis over a long period of time. Recently, a new approach called 'base editing' was developed for plants. Here, we report a new method that uses a cytosine base editor (CBE) to create a point mutation of CENH3 as a haploid induction line, which substitutes adenine (A) for guanine (G). As proof of the extreme simplicity of this approach to create haploid-induced lines, we identified an L130F substitution within the histone fold domain in Arabidopsis thaliana. Subsequently, we tested the haploid-inducing potential of homozygous L130F plants by pollinating them with Col-0, and obtained 2.9% paternal haploid plants. In brief, our innovative technology provides a new perspective for the promotion of CENH3-mediated haploid induction in crops, and also provides a variety of options for breeders. Such conserved point mutations as L130F could be developed into a general instrument for haploid induction in a wide range of plant species. Extending these systems would represent a major advance over haploid production.
Collapse
Affiliation(s)
- S Wang
- Lushan Botanical Garden, Chinese Academy of Sciences, Jiujiang, China
- Key Laboratory of Genetics, Breeding, and Multiple Utilization of Crops, Ministry of Education, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Center for Genomics and Biotechnology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - K Ouyang
- Key Laboratory of Genetics, Breeding, and Multiple Utilization of Crops, Ministry of Education, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Center for Genomics and Biotechnology, Fujian Agriculture and Forestry University, Fuzhou, China
| |
Collapse
|
20
|
Richter F, Chen M, Schaub P, Wüst F, Zhang D, Schneider S, Groß GA, Mäder P, Dovzhenko O, Palme K, Köhler JM, Cao J. Induction of embryogenic development in haploid microspore stem cells in droplet-based microfluidics. LAB ON A CHIP 2022; 22:4292-4305. [PMID: 36196753 DOI: 10.1039/d2lc00788f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
This work presents the application of droplet-based microfluidics for the cultivation of microspores from Brassica napus using the doubled haploid technology. Under stress conditions (e.g. heat shock) or by chemical induction a certain fraction of the microspores can be reprogrammed and androgenesis can be induced. This process is an important approach for plant breeding because desired plant properties can be anchored in the germline on a genetic level. However, the reprogramming rate of the microspores is generally very low, increasing it by specific stimulation is, therefore, both a necessary and challenging task. In order to accelerate the optimisation and development process, the application of droplet-based microfluidics can be a promising tool. Here, we used a tube-based microfluidic system for the generation and cultivation of microspores inside nL-droplets. Different factors like cell density, tube material and heat shock conditions were investigated to improve the yield of vital plant organoids. Evaluation and analysis of the stimuli response were done on an image base aided by an artificial intelligence cell detection algorithm. Droplet-based microfluidics allowed us to apply large concentration programs in small test volumes and to screen the best conditions for reprogramming cells by the histone deacetylase inhibitor trichostatin A and for enhancing the yield of vital microspores in droplets. An enhanced reprogramming rate was found under the heat shock conditions at 32 °C for about 3 to 6 days. In addition, the comparative experiment with MTP showed that droplet cultivation with lower cell density (<10 cells per droplet) or adding media after 3 or 6 days significantly positively affects the microspore growth and embryo rate inside 120 nL droplets. Finally, the developed embryos could be removed from the droplets and further grown into mature plants. Overall, we demonstrated that the droplet-based tube system is suitable for implementation in an automated, miniaturized system to achieve the induction of embryogenic development in haploid microspore stem cells of Brassica napus.
Collapse
Affiliation(s)
- Felix Richter
- Institute for Chemistry and Biotechnologies, Dept. Physical Chemistry and Microreaction Technologies, Technische Universität Ilmenau, 98693 Ilmenau, Germany.
| | - Minqian Chen
- Technische Universität Ilmenau, Institute for Computer and Systems Engineering, Dept. Software Engineering for Safety-Critical Systems, 98693 Ilmenau, Germany
| | | | - Florian Wüst
- Institute of Biology II, Faculty of Biology, Albert-Ludwigs-University of Freiburg, 79104 Freiburg, Germany
| | - Di Zhang
- Institute of Biology II, Faculty of Biology, Albert-Ludwigs-University of Freiburg, 79104 Freiburg, Germany
| | - Steffen Schneider
- Institute for Chemistry and Biotechnologies, Dept. Physical Chemistry and Microreaction Technologies, Technische Universität Ilmenau, 98693 Ilmenau, Germany.
| | - G Alexander Groß
- Institute for Chemistry and Biotechnologies, Dept. Physical Chemistry and Microreaction Technologies, Technische Universität Ilmenau, 98693 Ilmenau, Germany.
| | - Patrick Mäder
- Technische Universität Ilmenau, Institute for Computer and Systems Engineering, Dept. Software Engineering for Safety-Critical Systems, 98693 Ilmenau, Germany
| | | | - Klaus Palme
- ScreenSYS GmbH, 79104 Freiburg, Germany
- Institute of Biology II, Faculty of Biology, Albert-Ludwigs-University of Freiburg, 79104 Freiburg, Germany
- BIOSS Centre of Biological Signalling Studies, Albert-Ludwigs-University of Freiburg, 79104 Freiburg, Germany
- Sino-German Joint Research Center on Agricultural Biology, College of Life Sciences, Shandong Agricultural University, Daizong Street 61, Tai'an, 271018, China
| | - J Michael Köhler
- Institute for Chemistry and Biotechnologies, Dept. Physical Chemistry and Microreaction Technologies, Technische Universität Ilmenau, 98693 Ilmenau, Germany.
| | - Jialan Cao
- Institute for Chemistry and Biotechnologies, Dept. Physical Chemistry and Microreaction Technologies, Technische Universität Ilmenau, 98693 Ilmenau, Germany.
| |
Collapse
|
21
|
Transcriptome and proteome associated analysis of flavonoid metabolism in haploid Ginkgo biloba. Int J Biol Macromol 2022; 224:306-318. [DOI: 10.1016/j.ijbiomac.2022.10.125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 10/12/2022] [Accepted: 10/13/2022] [Indexed: 11/05/2022]
|
22
|
Wijerathna-Yapa A, Ramtekey V, Ranawaka B, Basnet BR. Applications of In Vitro Tissue Culture Technologies in Breeding and Genetic Improvement of Wheat. PLANTS (BASEL, SWITZERLAND) 2022; 11:2273. [PMID: 36079653 PMCID: PMC9459818 DOI: 10.3390/plants11172273] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 08/13/2022] [Accepted: 08/29/2022] [Indexed: 12/20/2022]
Abstract
Sources of new genetic variability have been limited to existing germplasm in the past. Wheat has been studied extensively for various agronomic traits located throughout the genome. The large size of the chromosomes and the ability of its polyploid genome to tolerate the addition or loss of chromosomes facilitated rapid progress in the early study of wheat genetics using cytogenetic techniques. At the same time, its large genome size has limited the progress in genetic characterization studies focused on diploid species, with a small genome and genetic engineering procedures already developed. Today, the genetic transformation and gene editing procedures offer attractive alternatives to conventional techniques for breeding wheat because they allow one or more of the genes to be introduced or altered into an elite cultivar without affecting its genetic background. Recently, significant advances have been made in regenerating various plant tissues, providing the essential basis for regenerating transgenic plants. In addition, Agrobacterium-mediated, biolistic, and in planta particle bombardment (iPB) gene delivery procedures have been developed for wheat transformation and advanced transgenic wheat development. As a result, several useful genes are now available that have been transferred or would be helpful to be transferred to wheat in addition to the current traditional effort to improve trait values, such as resistance to abiotic and biotic factors, grain quality, and plant architecture. Furthermore, the in planta genome editing method will significantly contribute to the social implementation of genome-edited crops to innovate the breeding pipeline and leverage unique climate adaptations.
Collapse
Affiliation(s)
- Akila Wijerathna-Yapa
- ARC Centre of Excellence for Plant Success in Nature and Agriculture, St Lucia, QLD 4072, Australia
- School of Biological Sciences, The University of Queensland, St Lucia, QLD 4072, Australia
| | - Vinita Ramtekey
- ICAR-Indian Institute of Seed Science, Kushmaur, Mau, Uttar Pradesh 275103, India
| | - Buddhini Ranawaka
- ARC Centre of Excellence for Plant Success in Nature and Agriculture, St Lucia, QLD 4072, Australia
- Centre for Agriculture and the Bioeconomy, Institute for Future Environments, Queensland University of Technology (QUT), 2 George Street, Brisbane, QLD 4000, Australia
| | - Bhoja Raj Basnet
- Global Wheat Program, International Maize and Wheat Improvement Center (CIMMYT), El Batán 56237, Mexico
| |
Collapse
|
23
|
Hu Y, Šmarda P, Liu G, Wang B, Gao X, Guo Q. High-Depth Transcriptome Reveals Differences in Natural Haploid Ginkgo biloba L. Due to the Effect of Reduced Gene Dosage. Int J Mol Sci 2022; 23:8958. [PMID: 36012222 PMCID: PMC9409250 DOI: 10.3390/ijms23168958] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 07/31/2022] [Accepted: 08/10/2022] [Indexed: 12/13/2022] Open
Abstract
As a representative of gymnosperms, the discovery of natural haploids of Ginkgo biloba L. has opened a new door for its research. Haploid germplasm has always been a research material of interest to researchers because of its special characteristics. However, we do not yet know the special features and mechanisms of haploid ginkgo following this significant discovery. In this study, we conducted a homogenous garden experiment on haploid and diploid ginkgo to explore the differences in growth, physiology and biochemistry between the two. Additionally, a high-depth transcriptome database of both was established to reveal their transcriptional differences. The results showed that haploid ginkgo exhibited weaker growth potential, lower photosynthesis and flavonoid accumulation capacity. Although the up-regulated expression of DEGs in haploid ginkgo reached 46.7% of the total DEGs in the whole transcriptome data, the gene sets of photosynthesis metabolic, glycolysis/gluconeogenesis and flavonoid biosynthesis pathways, which were significantly related to these differences, were found to show a significant down-regulated expression trend by gene set enrichment analysis (GSEA). We further found that the major metabolic pathways in the haploid ginkgo transcriptional database were down-regulated in expression compared to the diploid. This study reveals for the first time the phenotypic, growth and physiological differences in haploid ginkgos, and demonstrates their transcriptional patterns based on high-depth transcriptomic data, laying the foundation for subsequent in-depth studies of haploid ginkgos.
Collapse
Affiliation(s)
- Yaping Hu
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China
- Department of Botany and Zoology, Masaryk University, Koltlářská 2, 61137 Brno, Czech Republic
| | - Petr Šmarda
- Department of Botany and Zoology, Masaryk University, Koltlářská 2, 61137 Brno, Czech Republic
| | - Ganping Liu
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China
| | - Beibei Wang
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China
| | - Xiaoge Gao
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China
| | - Qirong Guo
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China
| |
Collapse
|
24
|
Zenda T, Wang N, Dong A, Zhou Y, Duan H. Reproductive-Stage Heat Stress in Cereals: Impact, Plant Responses and Strategies for Tolerance Improvement. Int J Mol Sci 2022; 23:6929. [PMID: 35805930 PMCID: PMC9266455 DOI: 10.3390/ijms23136929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 06/18/2022] [Accepted: 06/20/2022] [Indexed: 02/04/2023] Open
Abstract
Reproductive-stage heat stress (RSHS) poses a major constraint to cereal crop production by damaging main plant reproductive structures and hampering reproductive processes, including pollen and stigma viability, pollination, fertilization, grain setting and grain filling. Despite this well-recognized fact, research on crop heat stress (HS) is relatively recent compared to other abiotic stresses, such as drought and salinity, and in particular, RSHS studies in cereals are considerably few in comparison with seedling-stage and vegetative-stage-centered studies. Meanwhile, climate change-exacerbated HS, independently or synergistically with drought, will have huge implications on crop performance and future global food security. Fortunately, due to their sedentary nature, crop plants have evolved complex and diverse transient and long-term mechanisms to perceive, transduce, respond and adapt to HS at the molecular, cell, physiological and whole plant levels. Therefore, uncovering the molecular and physiological mechanisms governing plant response and tolerance to RSHS facilitates the designing of effective strategies to improve HS tolerance in cereal crops. In this review, we update our understanding of several aspects of RSHS in cereals, particularly impacts on physiological processes and yield; HS signal perception and transduction; and transcriptional regulation by heat shock factors and heat stress-responsive genes. We also discuss the epigenetic, post-translational modification and HS memory mechanisms modulating plant HS tolerance. Moreover, we offer a critical set of strategies (encompassing genomics and plant breeding, transgenesis, omics and agronomy) that could accelerate the development of RSHS-resilient cereal crop cultivars. We underline that a judicious combination of all of these strategies offers the best foot forward in RSHS tolerance improvement in cereals. Further, we highlight critical shortcomings to RSHS tolerance investigations in cereals and propositions for their circumvention, as well as some knowledge gaps, which should guide future research priorities. Overall, our review furthers our understanding of HS tolerance in plants and supports the rational designing of RSHS-tolerant cereal crop cultivars for the warming climate.
Collapse
Affiliation(s)
- Tinashe Zenda
- State Key Laboratory of North China Crop Improvement and Regulation, Hebei Agricultural University, Baoding 071001, China; (T.Z.); (N.W.); (A.D.)
- Department of Crop Genetics and Breeding, College o Agronomy, Hebei Agricultural University, Baoding 071001, China
| | - Nan Wang
- State Key Laboratory of North China Crop Improvement and Regulation, Hebei Agricultural University, Baoding 071001, China; (T.Z.); (N.W.); (A.D.)
- Department of Crop Genetics and Breeding, College o Agronomy, Hebei Agricultural University, Baoding 071001, China
| | - Anyi Dong
- State Key Laboratory of North China Crop Improvement and Regulation, Hebei Agricultural University, Baoding 071001, China; (T.Z.); (N.W.); (A.D.)
- Department of Crop Genetics and Breeding, College o Agronomy, Hebei Agricultural University, Baoding 071001, China
| | - Yuzhi Zhou
- Library Department, Hebei Agricultural University, Baoding 071001, China;
| | - Huijun Duan
- State Key Laboratory of North China Crop Improvement and Regulation, Hebei Agricultural University, Baoding 071001, China; (T.Z.); (N.W.); (A.D.)
- Department of Crop Genetics and Breeding, College o Agronomy, Hebei Agricultural University, Baoding 071001, China
| |
Collapse
|
25
|
Eliby S, Bekkuzhina S, Kishchenko O, Iskakova G, Kylyshbayeva G, Jatayev S, Soole K, Langridge P, Borisjuk N, Shavrukov Y. Developments and prospects for doubled haploid wheat. Biotechnol Adv 2022; 60:108007. [PMID: 35732257 DOI: 10.1016/j.biotechadv.2022.108007] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 05/28/2022] [Accepted: 06/15/2022] [Indexed: 11/02/2022]
Abstract
Doubled haploid production is a valuable biotechnology that can accelerate the breeding of new wheat varieties by several years through the one-step creation of 100% homozygous plants. The technology also plays important role in studying the genetic control of traits in wheat, in marker-assisted selection, in genomics and in genetic engineering. In this paper, recent advances in androgenesis and gynogenesis techniques, emphasizing predominantly the in vitro culture phase, as well as the emerging innovative approaches in researching and producing wheat doubled haploids are reviewed. Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)-based genome editing, that allows targeted mutagenesis and gene targeting, is being tested extensively as a powerful and precise tool to induce doubled haploids in wheat. The review provides the reader with recent examples of gene modifications in wheat to induce haploidy.
Collapse
Affiliation(s)
- Serik Eliby
- University of Adelaide, Urrbrae, SA, Australia
| | - Sara Bekkuzhina
- Faculty of Agronomy, S.Seifullin Kazakh AgroTechnical University, Nur-Sultan, Kazakhstan
| | - Olena Kishchenko
- Jiangsu Key Laboratory for Eco-Agricultural Biotechnology around Hongze Lake, School of Life Sciences, Huaiyin Normal University, Huai'an, China; Institute of Cell Biology and Genetic Engineering, National Academy of Science of Ukraine, Kyiv, Ukraine
| | - Gulnur Iskakova
- Kazakh Agrarian National University, Almaty, Kazakhstan; Institute of Molecular Biology and Biochemistry, Almaty, Kazakhstan
| | | | - Satyvaldy Jatayev
- Faculty of Agronomy, S.Seifullin Kazakh AgroTechnical University, Nur-Sultan, Kazakhstan
| | - Kathleen Soole
- College of Science and Engineering, Biological Sciences, Flinders University, SA, Australia
| | - Peter Langridge
- University of Adelaide, Urrbrae, SA, Australia; Wheat Initiative, Julius-Kühn-Institute, Berlin, Germany
| | - Nikolai Borisjuk
- Jiangsu Key Laboratory for Eco-Agricultural Biotechnology around Hongze Lake, School of Life Sciences, Huaiyin Normal University, Huai'an, China
| | - Yuri Shavrukov
- College of Science and Engineering, Biological Sciences, Flinders University, SA, Australia.
| |
Collapse
|
26
|
Shamuyarira KW, Shimelis H, Figlan S, Chaplot V. Path Coefficient and Principal Component Analyses for Biomass Allocation, Drought Tolerance and Carbon Sequestration Potential in Wheat. PLANTS (BASEL, SWITZERLAND) 2022; 11:1407. [PMID: 35684180 PMCID: PMC9182935 DOI: 10.3390/plants11111407] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 05/20/2022] [Accepted: 05/23/2022] [Indexed: 06/15/2023]
Abstract
Increased root biomass allocation could serve as a proxy trait for selecting crop ideotypes with drought tolerance and carbon sequestration potential in agricultural soils. The objective of this study was to assess the magnitude of the relationship between root biomass and yield components and to identify influential traits so as to optimise genotype selection for enhanced biomass allocation, drought tolerance and carbon sequestration potential in bread wheat (Triticum aestivum L.). One-hundred wheat genotypes consisting of 10 parents and 90 derived F2 families were evaluated under drought-stressed and non-stressed conditions at two different sites. Data were collected for days to heading (DTH), days to maturity (DTM), plant height, productive tiller number (TN), spike length, spikelets per spike (SPS), kernels per spike (KPS), thousand kernel weight (TKW), shoot biomass, root biomass, total plant biomass (PB), root-to-shoot ratio (RS) and grain yield. There was significant (p < 0.05) genetic variation in most assessed traits, TN and RS being exceptions. Root biomass had significant positive correlations with grain yield under drought-stressed (r = 0.28) and non-stressed (r = 0.41) conditions, but a non-significant correlation was recorded for RS and grain yield. Notably, both root biomass and shoot biomass had significant positive correlations under both water regimes, revealing the potential of increasing both traits with minimal biomass trade-offs. The highest positive direct effects on grain yield were found for KPS and PB under both water regimes. The present study demonstrated that selection based on KPS and PB rather than RS will be more effective in ideotype selection of segregating populations for drought tolerance and carbon sequestration potential.
Collapse
Affiliation(s)
- Kwame W. Shamuyarira
- School of Agricultural, Earth and Environmental Sciences, University of KwaZulu-Natal, Pietermaritzburg 3201, South Africa; (H.S.); (V.C.)
| | - Hussein Shimelis
- School of Agricultural, Earth and Environmental Sciences, University of KwaZulu-Natal, Pietermaritzburg 3201, South Africa; (H.S.); (V.C.)
| | - Sandiswa Figlan
- Department of Agriculture and Animal Health, University of South Africa, Florida 1709, South Africa;
| | - Vincent Chaplot
- School of Agricultural, Earth and Environmental Sciences, University of KwaZulu-Natal, Pietermaritzburg 3201, South Africa; (H.S.); (V.C.)
- Laboratory of Oceanography and Climate, Experiments and Numerical Approaches (LOCEAN), UMR 7159, IRD/C NRS/UPMC/MNHN, IPSL, 75005 Paris, France
| |
Collapse
|
27
|
Zhang X, Zhang L, Zhang J, Jia M, Cao L, Yu J, Zhao D. Haploid induction in allotetraploid tobacco using DMPs mutation. PLANTA 2022; 255:98. [PMID: 35380264 DOI: 10.1007/s00425-022-03877-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Accepted: 03/16/2022] [Indexed: 06/14/2023]
Abstract
MAIN CONCLUSION dmp1dmp2dmp3 mutants created by CRISPR/Cas9 could trigger maternal haploids in the allotetraploid model plant Nicotiana tabacum L. Double haploid (DH) technology is becoming increasingly important because it can significantly accelerate the breeding process. Haploid induction plays a fundamental role in the production of DH lines. Haploid induction has been realized and applied in diploid plants using DMP genes. However, it has yet to be elucidated whether haploid induction could be established in polyploid plants. In the current study, three homologues of the DMP genes (NtDMP1, 2, and 3) were identified in the allotetraploid plant Nicotiana tabacum, and the encoded proteins localized in the endoplasmic reticulum. Loss-of-function mutations in all three genes triggered maternal haploids with an induction rate of 1.52-1.75%. Compared with wild-type tobacco, the created haploid inducer exhibited differences in pollen vigor and seed germination rate. Furthermore, to rapidly and easily screen haploids, a visible haploid identification system was established based on a powdery mildew resistance phenotype. Findings from this study lay the foundation for the potential application of haploid inducers in allotetraploid plants such as tobacco.
Collapse
Affiliation(s)
- Xiaolian Zhang
- Key Laboratory of Plant Resources Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), Guizhou Key Laboratory of Agro-Bioengineering, Institute of Agro-Bioengineering/College of Life Sciences, Guizhou University, Guiyang, 550025, China
- Molecular Genetics Key Laboratory of China Tobacco, Guizhou Academy of Tobacco Science, Guiyang, 550081, China
| | - Lili Zhang
- Molecular Genetics Key Laboratory of China Tobacco, Guizhou Academy of Tobacco Science, Guiyang, 550081, China
| | - Jishun Zhang
- Key Laboratory of Plant Resources Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), Guizhou Key Laboratory of Agro-Bioengineering, Institute of Agro-Bioengineering/College of Life Sciences, Guizhou University, Guiyang, 550025, China
- Molecular Genetics Key Laboratory of China Tobacco, Guizhou Academy of Tobacco Science, Guiyang, 550081, China
| | - Mengao Jia
- Molecular Genetics Key Laboratory of China Tobacco, Guizhou Academy of Tobacco Science, Guiyang, 550081, China
| | - Linggai Cao
- Molecular Genetics Key Laboratory of China Tobacco, Guizhou Academy of Tobacco Science, Guiyang, 550081, China
| | - Jing Yu
- Key Laboratory of Plant Resources Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), Guizhou Key Laboratory of Agro-Bioengineering, Institute of Agro-Bioengineering/College of Life Sciences, Guizhou University, Guiyang, 550025, China
- Molecular Genetics Key Laboratory of China Tobacco, Guizhou Academy of Tobacco Science, Guiyang, 550081, China
| | - Degang Zhao
- Key Laboratory of Plant Resources Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), Guizhou Key Laboratory of Agro-Bioengineering, Institute of Agro-Bioengineering/College of Life Sciences, Guizhou University, Guiyang, 550025, China.
- Guizhou Plant Conservation Technology Center, Guizhou Key Laboratory of Agricultural Biotechnology, Guizhou Academy of Agricultural Sciences, Guiyang, 550006, China.
| |
Collapse
|
28
|
Hale B, Ferrie AMR, Chellamma S, Samuel JP, Phillips GC. Androgenesis-Based Doubled Haploidy: Past, Present, and Future Perspectives. FRONTIERS IN PLANT SCIENCE 2022; 12:751230. [PMID: 35069615 PMCID: PMC8777211 DOI: 10.3389/fpls.2021.751230] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Accepted: 11/22/2021] [Indexed: 05/03/2023]
Abstract
Androgenesis, which entails cell fate redirection within the microgametophyte, is employed widely for genetic gain in plant breeding programs. Moreover, androgenesis-responsive species provide tractable systems for studying cell cycle regulation, meiotic recombination, and apozygotic embryogenesis within plant cells. Past research on androgenesis has focused on protocol development with emphasis on temperature pretreatments of donor plants or floral buds, and tissue culture optimization because androgenesis has different nutritional requirements than somatic embryogenesis. Protocol development for new species and genotypes within responsive species continues to the present day, but slowly. There is more focus presently on understanding how protocols work in order to extend them to additional genotypes and species. Transcriptomic and epigenetic analyses of induced microspores have revealed some of the cellular and molecular responses required for or associated with androgenesis. For example, microRNAs appear to regulate early microspore responses to external stimuli; trichostatin-A, a histone deacetylase inhibitor, acts as an epigenetic additive; ά-phytosulfokine, a five amino acid sulfated peptide, promotes androgenesis in some species. Additionally, present work on gene transfer and genome editing in microspores suggest that future endeavors will likely incorporate greater precision with the genetic composition of microspores used in doubled haploid breeding, thus likely to realize a greater impact on crop improvement. In this review, we evaluate basic breeding applications of androgenesis, explore the utility of genomics and gene editing technologies for protocol development, and provide considerations to overcome genotype specificity and morphogenic recalcitrance in non-model plant systems.
Collapse
Affiliation(s)
- Brett Hale
- Molecular Biosciences Graduate Program, Arkansas State University, Jonesboro, AR, United States
- Arkansas Biosciences Institute, Arkansas State University, Jonesboro, AR, United States
| | | | | | | | - Gregory C. Phillips
- Arkansas Biosciences Institute, Arkansas State University, Jonesboro, AR, United States
- College of Agriculture, Arkansas State University, Jonesboro, AR, United States
- Agricultural Experiment Station, University of Arkansas System Division of Agriculture, Jonesboro, AR, United States
| |
Collapse
|
29
|
Dubas E, Castillo AM, Żur I, Krzewska M, Vallés MP. Microtubule organization changes severely after mannitol and n-butanol treatments inducing microspore embryogenesis in bread wheat. BMC PLANT BIOLOGY 2021; 21:586. [PMID: 34886809 PMCID: PMC8656030 DOI: 10.1186/s12870-021-03345-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Accepted: 11/08/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND A mannitol stress treatment and a subsequent application of n-butanol, known as a microtubule-disrupting agent, enhance microspore embryogenesis (ME) induction and plant regeneration in bread wheat. To characterize changes in cortical (CMT) and endoplasmic (EMT) microtubules organization and dynamics, associated with ME induction treatments, immunocytochemistry studies complemented by confocal laser scanning microscopy (CLSM) were accomplished. This technique has allowed us to perform advanced 3- and 4D studies of MT architecture. The degree of MT fragmentation was examined by the relative fluorescence intensity quantification. RESULTS In uni-nucleated mannitol-treated microspores, severe CMT and EMT fragmentation occurs, although a complex network of short EMT bundles protected the nucleus. Additional treatment with n-butanol resulted in further depolymerization of both CMT and EMT, simultaneously with the formation of MT aggregates in the perinuclear region. Some aggregates resembled a preprophase band. In addition, a portion of the microspores progressed to the first mitotic division during the treatments. Bi-nucleate pollen-like structures showed a high MT depolymerization after mannitol treatment and numerous EMT bundles around the vegetative and generative nuclei after n-butanol. Interestingly, bi-nucleate symmetric structures showed prominent stabilization of EMT. CONCLUSIONS Fragmentation and stabilization of microtubules induced by mannitol- and n-butanol lead to new configurations essential for the induction of microspore embryogenesis in bread wheat. These results provide robust insight into MT dynamics during EM induction and open avenues to address newly targeted treatments to induce ME in recalcitrant species.
Collapse
Affiliation(s)
- E Dubas
- The Franciszek Górski Institute of Plant Physiology, Polish Academy of Sciences, Niezapominajek 21, 30-239, Kraków, Poland.
| | - A M Castillo
- Estación Experimental de Aula Dei, Consejo Superior de Investigaciones Científicas (EEAD-CSIC), Avda Montañana 1005, 50059, Zaragoza, Spain
| | - I Żur
- The Franciszek Górski Institute of Plant Physiology, Polish Academy of Sciences, Niezapominajek 21, 30-239, Kraków, Poland
| | - M Krzewska
- The Franciszek Górski Institute of Plant Physiology, Polish Academy of Sciences, Niezapominajek 21, 30-239, Kraków, Poland
| | - M P Vallés
- Estación Experimental de Aula Dei, Consejo Superior de Investigaciones Científicas (EEAD-CSIC), Avda Montañana 1005, 50059, Zaragoza, Spain.
| |
Collapse
|
30
|
Berenguer E, Carneros E, Pérez-Pérez Y, Gil C, Martínez A, Testillano PS. Small molecule inhibitors of mammalian GSK-3β promote in vitro plant cell reprogramming and somatic embryogenesis in crop and forest species. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:7808-7825. [PMID: 34338766 PMCID: PMC8664590 DOI: 10.1093/jxb/erab365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Accepted: 07/30/2021] [Indexed: 05/10/2023]
Abstract
Plant in vitro regeneration systems, such as somatic embryogenesis, are essential in breeding; they permit propagation of elite genotypes, production of doubled-haploids, and regeneration of whole plants from gene editing or transformation events. However, in many crop and forest species, somatic embryogenesis is highly inefficient. We report a new strategy to improve in vitro embryogenesis using synthetic small molecule inhibitors of mammalian glycogen synthase kinase 3β (GSK-3β), never used in plants. These inhibitors increased in vitro embryo production in three different systems and species, microspore embryogenesis of Brassica napus and Hordeum vulgare, and somatic embryogenesis of Quercus suber. TDZD-8, a representative compound of the molecules tested, inhibited GSK-3 activity in microspore cultures, and increased expression of embryogenesis genes FUS3, LEC2, and AGL15. Plant GSK-3 kinase BIN2 is a master regulator of brassinosteroid (BR) signalling. During microspore embryogenesis, BR biosynthesis and signalling genes CPD, GSK-3-BIN2, BES1, and BZR1 were up-regulated and the BAS1 catabolic gene was repressed, indicating activation of the BR pathway. TDZD-8 increased expression of BR signalling elements, mimicking BR effects. The findings support that the small molecule inhibitors promoted somatic embryogenesis by activating the BR pathway, opening up the way for new strategies using GSK-3β inhibitors that could be extended to other species.
Collapse
Affiliation(s)
- Eduardo Berenguer
- Pollen Biotechnology of Crop Plants group, Margarita Salas Center of Biological Research, CIB-CSIC, Ramiro de Maeztu 9, 28040 Madrid, Spain
| | - Elena Carneros
- Pollen Biotechnology of Crop Plants group, Margarita Salas Center of Biological Research, CIB-CSIC, Ramiro de Maeztu 9, 28040 Madrid, Spain
| | - Yolanda Pérez-Pérez
- Pollen Biotechnology of Crop Plants group, Margarita Salas Center of Biological Research, CIB-CSIC, Ramiro de Maeztu 9, 28040 Madrid, Spain
| | - Carmen Gil
- Translational Medicinal and Biological Chemistry group, Margarita Salas Center of Biological Research, CIB-CSIC, Ramiro de Maeztu 9, 28040 Madrid, Spain
| | - Ana Martínez
- Translational Medicinal and Biological Chemistry group, Margarita Salas Center of Biological Research, CIB-CSIC, Ramiro de Maeztu 9, 28040 Madrid, Spain
| | - Pilar S Testillano
- Pollen Biotechnology of Crop Plants group, Margarita Salas Center of Biological Research, CIB-CSIC, Ramiro de Maeztu 9, 28040 Madrid, Spain
- Correspondence:
| |
Collapse
|
31
|
Singh M, Nara U, Kumar A, Choudhary A, Singh H, Thapa S. Salinity tolerance mechanisms and their breeding implications. J Genet Eng Biotechnol 2021; 19:173. [PMID: 34751850 PMCID: PMC8578521 DOI: 10.1186/s43141-021-00274-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Accepted: 10/26/2021] [Indexed: 11/19/2022]
Abstract
BACKGROUND The era of first green revolution brought about by the application of chemical fertilizers surely led to the explosion of food grains, but left behind the notable problem of salinity. Continuous application of these fertilizers coupled with fertilizer-responsive crops make the country self-reliant, but continuous deposition of these led to altered the water potential and thus negatively affecting the proper plant functioning from germination to seed setting. MAIN BODY Increased concentration of anion and cations and their accumulation and distribution cause cellular toxicity and ionic imbalance. Plants respond to salinity stress by any one of two mechanisms, viz., escape or tolerate, by either limiting their entry via root system or controlling their distribution and storage. However, the understanding of tolerance mechanism at the physiological, biochemical, and molecular levels will provide an insight for the identification of related genes and their introgression to make the crop more resilient against salinity stress. SHORT CONCLUSION Novel emerging approaches of plant breeding and biotechnologies such as genome-wide association studies, mutational breeding, marker-assisted breeding, double haploid production, hyperspectral imaging, and CRISPR/Cas serve as engineering tools for dissecting the in-depth physiological mechanisms. These techniques have well-established implications to understand plants' adaptions to develop more tolerant varieties and lower the energy expenditure in response to stress and, constitutively fulfill the void that would have led to growth resistance and yield penalty.
Collapse
Affiliation(s)
- Mandeep Singh
- Department of Plant Breeding and Genetics, Punjab Agricultural University, Ludhiana, Punjab, 141004, India.
| | - Usha Nara
- Department of Plant Breeding and Genetics, Punjab Agricultural University, Ludhiana, Punjab, 141004, India
| | - Antul Kumar
- Department of Botany, Punjab Agricultural University, Ludhiana, Punjab, 141004, India
| | - Anuj Choudhary
- Department of Botany, Punjab Agricultural University, Ludhiana, Punjab, 141004, India
| | - Hardeep Singh
- Department of Agronomy, Punjab Agricultural University, Ludhiana, Punjab, 141004, India
| | - Sittal Thapa
- Department of Plant Breeding and Genetics, Punjab Agricultural University, Ludhiana, Punjab, 141004, India
| |
Collapse
|
32
|
Dubas E, Żur I, Moravčiková J, Fodor J, Krzewska M, Surówka E, Nowicka A, Gerši Z. Proteins, Small Peptides and Other Signaling Molecules Identified as Inconspicuous but Possibly Important Players in Microspores Reprogramming Toward Embryogenesis. FRONTIERS IN SUSTAINABLE FOOD SYSTEMS 2021. [DOI: 10.3389/fsufs.2021.745865] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
In this review, we describe and integrate the latest knowledge on the signaling role of proteins and peptides in the stress-induced microspore embryogenesis (ME) in some crop plants with agricultural importance (i.e., oilseed rape, tobacco, barley, wheat, rice, triticale, rye). Based on the results received from the most advanced omix analyses, we have selected some inconspicuous but possibly important players in microspores reprogramming toward embryogenic development. We provide an overview of the roles and downstream effect of stress-related proteins (e.g., β-1,3-glucanases, chitinases) and small signaling peptides, especially cysteine—(e.g., glutathione, γ-thionins, rapid alkalinization factor, lipid transfer, phytosulfokine) and glycine-rich peptides and other proteins (e.g., fasciclin-like arabinogalactan protein) on acclimation ability of microspores and the cell wall reconstruction in a context of ME induction and haploids/doubled haploids (DHs) production. Application of these molecules, stimulating the induction and proper development of embryo-like structures and green plant regeneration, brings significant improvement of the effectiveness of DHs procedures and could result in its wider incorporation on a commercial scale. Recent advances in the design and construction of synthetic peptides–mainly cysteine-rich peptides and their derivatives–have accelerated the development of new DNA-free genome-editing techniques. These new systems are evolving incredibly fast and soon will find application in many areas of plant science and breeding.
Collapse
|
33
|
Abstract
Manifold and diverse applications of doubled haploid (DH) plants have emerged in academy and in the plant breeding industry since the first discovery of a haploid mutant in the Jimson Weed (Datura stramonium), followed by the first reports about anther culture in the same species, maternal haploids by wide crosses in tobacco (Nicotiana tabacum L.) and barley (Hordeum vulgare L.), interspecific hybridization, ovary culture (gynogenesis), isolated microspore culture, and more recently the CENH3 approach in thale cress (Arabidopsis thaliana L.) and other species. Research and development efforts were and are still significant in both user groups. Luckily, often academic and industrial partners cooperate in challenging and sometimes voluminous projects worldwide. Not only to develop innovative DH protocols and technologies per se, but also to exploit the advantages of DH plants in a huge variety of research and development experiments. This review concentrates not on the DH technologies per se, but on the application of DHs in plant-related research and development projects.
Collapse
|
34
|
Doubled Haploid Production in High- and Low-Response Genotypes of Rapeseed (Brassica napus) Through Isolated Microspore Culture. Methods Mol Biol 2021; 2288:129-144. [PMID: 34270009 DOI: 10.1007/978-1-0716-1335-1_8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/12/2023]
Abstract
Rapeseed (Brassica napus) is one of the most important oilseed crops worldwide. It is also a model system to study the process of microspore embryogenesis, due to the high response of some B. napus lines, and to the refinements of the protocols. This chapter presents a protocol for the induction of haploid and DH embryos in B. napus through isolated microspore culture in two specific backgrounds widely used in DH research, the high response DH4079 line and the low response DH12075 line. We also present methods to identify the best phenological window to identify buds with microspores/pollen at the right developmental stage to induce this process. Methods to determine microspore/pollen viability and to check the ploidy by flow cytometry are also described.
Collapse
|
35
|
Protocol for the Production of Doubled Haploid Plants of Brassica carinata. Methods Mol Biol 2021. [PMID: 34270011 DOI: 10.1007/978-1-0716-1335-1_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
Brassica carinata, also known as Ethiopian or Abyssinian mustard, is a drought- and heat-tolerant oilseed with great potential as a dedicated industrial feedstock crop for use in biofuel and other bio-based applications. Doubled haploid technology, a system that allows for the rapid development of doubled haploid, completely homozygous plants through microspore embryogenesis, has been applied routinely in both B. carinata breeding and basic research. Here, we present a comprehensive isolated microspore culture protocol detailing the various steps involved in doubled haploid plant production for this species, from growing donor plants over harvesting flower buds and isolating, culturing and inducing microspores to regenerating doubled haploid embryos and plantlets.
Collapse
|
36
|
Rapid Generation and Analysis of a Barley Doubled Haploid Line with Higher Nitrogen Use Efficiency Than Parental Lines by F1 Microspore Embryogenesis. PLANTS 2021; 10:plants10081588. [PMID: 34451633 PMCID: PMC8401716 DOI: 10.3390/plants10081588] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/03/2021] [Revised: 07/27/2021] [Accepted: 07/28/2021] [Indexed: 12/03/2022]
Abstract
Creating varieties with high nitrogen use efficiency (NUE) is crucial for sustainable agriculture development. In this study, a superior barley doubled haploid line (named DH45) with improved NUE was produced via F1 microspore embryogenesis with three rounds of screening in different nitrogen levels by hydroponic and field experiments. The molecular mechanisms responsible for the NUE of DH45 surpassing that of its parents were investigated by RNA-seq analysis. A total of 1027 differentially expressed genes (DEGs) were identified that were up- or down-regulated in DH45 under low nitrogen conditions but showed no significant differences in the parents. GO analysis indicated that genes involved in nitrogen compound metabolic processes were significantly enriched in DH45 compared with the parents. KEGG analysis showed the MAPK signaling pathway plant to be highly enriched in DH45 relative to its parents, as well as genes involved in alanine, aspartate and glutamate metabolism, and arginine biosynthesis. In conclusion, our study revealed the potential to fix trait superiority in a line by combining crossing with F1 microspore culture technologies in future crop breeding and also identified several candidate genes that are expressed in shoots and may enable barley to cope with low-nitrogen stress.
Collapse
|
37
|
Zenda T, Liu S, Dong A, Duan H. Advances in Cereal Crop Genomics for Resilience under Climate Change. Life (Basel) 2021; 11:502. [PMID: 34072447 PMCID: PMC8228855 DOI: 10.3390/life11060502] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 05/21/2021] [Accepted: 05/25/2021] [Indexed: 12/12/2022] Open
Abstract
Adapting to climate change, providing sufficient human food and nutritional needs, and securing sufficient energy supplies will call for a radical transformation from the current conventional adaptation approaches to more broad-based and transformative alternatives. This entails diversifying the agricultural system and boosting productivity of major cereal crops through development of climate-resilient cultivars that can sustainably maintain higher yields under climate change conditions, expanding our focus to crop wild relatives, and better exploitation of underutilized crop species. This is facilitated by the recent developments in plant genomics, such as advances in genome sequencing, assembly, and annotation, as well as gene editing technologies, which have increased the availability of high-quality reference genomes for various model and non-model plant species. This has necessitated genomics-assisted breeding of crops, including underutilized species, consequently broadening genetic variation of the available germplasm; improving the discovery of novel alleles controlling important agronomic traits; and enhancing creation of new crop cultivars with improved tolerance to biotic and abiotic stresses and superior nutritive quality. Here, therefore, we summarize these recent developments in plant genomics and their application, with particular reference to cereal crops (including underutilized species). Particularly, we discuss genome sequencing approaches, quantitative trait loci (QTL) mapping and genome-wide association (GWAS) studies, directed mutagenesis, plant non-coding RNAs, precise gene editing technologies such as CRISPR-Cas9, and complementation of crop genotyping by crop phenotyping. We then conclude by providing an outlook that, as we step into the future, high-throughput phenotyping, pan-genomics, transposable elements analysis, and machine learning hold much promise for crop improvements related to climate resilience and nutritional superiority.
Collapse
Affiliation(s)
- Tinashe Zenda
- State Key Laboratory of North China Crop Improvement and Regulation, Hebei Agricultural University, Baoding 071001, China; (S.L.); (A.D.)
- North China Key Laboratory for Crop Germplasm Resources of the Education Ministry, Hebei Agricultural University, Baoding 071001, China
- Department of Crop Genetics and Breeding, College of Agronomy, Hebei Agricultural University, Baoding 071001, China
- Department of Crop Science, Faculty of Agriculture and Environmental Science, Bindura University of Science Education, Bindura P. Bag 1020, Zimbabwe
| | - Songtao Liu
- State Key Laboratory of North China Crop Improvement and Regulation, Hebei Agricultural University, Baoding 071001, China; (S.L.); (A.D.)
- North China Key Laboratory for Crop Germplasm Resources of the Education Ministry, Hebei Agricultural University, Baoding 071001, China
- Department of Crop Genetics and Breeding, College of Agronomy, Hebei Agricultural University, Baoding 071001, China
| | - Anyi Dong
- State Key Laboratory of North China Crop Improvement and Regulation, Hebei Agricultural University, Baoding 071001, China; (S.L.); (A.D.)
- North China Key Laboratory for Crop Germplasm Resources of the Education Ministry, Hebei Agricultural University, Baoding 071001, China
- Department of Crop Genetics and Breeding, College of Agronomy, Hebei Agricultural University, Baoding 071001, China
| | - Huijun Duan
- State Key Laboratory of North China Crop Improvement and Regulation, Hebei Agricultural University, Baoding 071001, China; (S.L.); (A.D.)
- North China Key Laboratory for Crop Germplasm Resources of the Education Ministry, Hebei Agricultural University, Baoding 071001, China
- Department of Crop Genetics and Breeding, College of Agronomy, Hebei Agricultural University, Baoding 071001, China
| |
Collapse
|
38
|
Galán-Ávila A, García-Fortea E, Prohens J, Herraiz FJ. Microgametophyte Development in Cannabis sativa L. and First Androgenesis Induction Through Microspore Embryogenesis. FRONTIERS IN PLANT SCIENCE 2021; 12:669424. [PMID: 34113367 PMCID: PMC8186446 DOI: 10.3389/fpls.2021.669424] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Accepted: 04/21/2021] [Indexed: 06/12/2023]
Abstract
Development of double haploids is an elusive current breeding objective in Cannabis sativa L. We have studied the whole process of anther and pollen grain formation during meiosis, microsporogenesis, and microgametogenesis and correlated the different microgametophyte developmental stages with bud length in plants from varieties USO31 and Finola. We also studied microspore and pollen amyloplast content and studied the effect of a cold pretreatment to excised buds prior to microspore in vitro culture. Up to 476,903 microspores and pollen grains per male flower, with in vivo microspore viability rates from 53.71 to 70.88% were found. A high uniformity in the developmental stage of microspores and pollen grains contained in anthers was observed, and this allowed the identification of bud length intervals containing mostly vacuolate microspores and young bi-cellular pollen grains. The starch presence in C. sativa microspores and pollen grains follows a similar pattern to that observed in species recalcitrant to androgenesis. Although at a low frequency, cold-shock pretreatment applied on buds can deviate the naturally occurring gametophytic pathway toward an embryogenic development. This represents the first report concerning androgenesis induction in C. sativa, which lays the foundations for double haploid research in this species.
Collapse
Affiliation(s)
- Alberto Galán-Ávila
- Ploidy and Genomics S.L., Centro Europeo de Empresas Innovadoras de Valencia, Parc Tecnològic, Valencia, Spain
| | - Edgar García-Fortea
- Instituto Universitario de Conservación y Mejora de la Agrodiversidad Valenciana, Universitat Politècnica de València, Valencia, Spain
| | - Jaime Prohens
- Instituto Universitario de Conservación y Mejora de la Agrodiversidad Valenciana, Universitat Politècnica de València, Valencia, Spain
| | - Francisco Javier Herraiz
- Instituto Universitario de Conservación y Mejora de la Agrodiversidad Valenciana, Universitat Politècnica de València, Valencia, Spain
| |
Collapse
|
39
|
Fanelli V, Ngo KJ, Thompson VL, Silva BR, Tsai H, Sabetta W, Montemurro C, Comai L, Harmer SL. A TILLING by sequencing approach to identify induced mutations in sunflower genes. Sci Rep 2021; 11:9885. [PMID: 33972605 PMCID: PMC8110748 DOI: 10.1038/s41598-021-89237-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Accepted: 04/15/2021] [Indexed: 02/03/2023] Open
Abstract
The Targeting Induced Local Lesions in Genomes (TILLING) technology is a reverse genetic strategy broadly applicable to every kind of genome and represents an attractive tool for functional genomic and agronomic applications. It consists of chemical random mutagenesis followed by high-throughput screening of point mutations in targeted genomic regions. Although multiple methods for mutation discovery in amplicons have been described, next-generation sequencing (NGS) is the tool of choice for mutation detection because it quickly allows for the analysis of a large number of amplicons. The aim of the present work was to screen a previously generated sunflower TILLING population and identify alterations in genes involved in several important and complex physiological processes. Twenty-one candidate sunflower genes were chosen as targets for the screening. The TILLING by sequencing strategy allowed us to identify multiple mutations in selected genes and we subsequently validated 16 mutations in 11 different genes through Sanger sequencing. In addition to addressing challenges posed by outcrossing, our detection and validation of mutations in multiple regulatory loci highlights the importance of this sunflower population as a genetic resource.
Collapse
Affiliation(s)
- Valentina Fanelli
- grid.7644.10000 0001 0120 3326Department of Soil, Plant and Food Sciences (DiSSPA), University of Bari Aldo Moro, 70124 Bari, Italy ,grid.27860.3b0000 0004 1936 9684Department of Plant Biology, University of California, Davis, CA 95616 USA
| | - Kathie J. Ngo
- grid.27860.3b0000 0004 1936 9684Department of Plant Biology, University of California, Davis, CA 95616 USA
| | - Veronica L. Thompson
- grid.27860.3b0000 0004 1936 9684Department of Plant Biology, University of California, Davis, CA 95616 USA
| | - Brennan R. Silva
- grid.27860.3b0000 0004 1936 9684Department of Plant Biology, University of California, Davis, CA 95616 USA
| | - Helen Tsai
- grid.27860.3b0000 0004 1936 9684Department of Plant Biology, University of California, Davis, CA 95616 USA
| | - Wilma Sabetta
- grid.5326.20000 0001 1940 4177National Research Council, Institute of Bioscience and BioResources-IBBR, 70124 Bari, Italy
| | - Cinzia Montemurro
- grid.7644.10000 0001 0120 3326Department of Soil, Plant and Food Sciences (DiSSPA), University of Bari Aldo Moro, 70124 Bari, Italy
| | - Luca Comai
- grid.27860.3b0000 0004 1936 9684Department of Plant Biology, University of California, Davis, CA 95616 USA
| | - Stacey L. Harmer
- grid.27860.3b0000 0004 1936 9684Department of Plant Biology, University of California, Davis, CA 95616 USA
| |
Collapse
|
40
|
Improved Anther Culture Media for Enhanced Callus Formation and Plant Regeneration in Rice ( Oryza sativa L.). PLANTS 2021; 10:plants10050839. [PMID: 33921954 PMCID: PMC8143452 DOI: 10.3390/plants10050839] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 04/09/2021] [Accepted: 04/16/2021] [Indexed: 11/17/2022]
Abstract
Anther culture technique is the most viable and efficient method of producing homozygous doubled haploid plants within a short period. However, the practical application of this technology in rice improvement is still limited by various factors that influence culture efficiency. The present study was conducted to determine the effects of two improved anther culture media, Ali-1 (A1) and Ali-2 (A2), a modified N6 medium, to enhance the callus formation and plant regeneration of japonica, indica, and hybrids of indica and japonica cross. The current study demonstrated that genotype and media had a significant impact (p < 0.001) on both callus induction frequency and green plantlet regeneration efficiency. The use of the A1 and A2 medium significantly enhanced callus induction frequency of japonica rice type, Nipponbare, and the hybrids of indica × japonica cross (CXY6, CXY24, and Y2) but not the indica rice type, NSIC Rc480. However, the A1 medium is found superior to the N6 medium as it significantly improved the green plantlet regeneration efficiency of CXY6, CXY24, and Y2 by almost 36%, 118%, and 277%, respectively. Furthermore, it substantially reduced the albino plantlet regeneration of the induced callus in two hybrids (CXY6 and Y2). Therefore, the improved anther culture medium A1 can produce doubled haploid rice plants for indica × japonica, which can be useful in different breeding programs that will enable the speedy development of rice varieties for resource-poor farmers.
Collapse
|
41
|
Alotaibi F, Alharbi S, Alotaibi M, Al Mosallam M, Motawei M, Alrajhi A. Wheat omics: Classical breeding to new breeding technologies. Saudi J Biol Sci 2021; 28:1433-1444. [PMID: 33613071 PMCID: PMC7878716 DOI: 10.1016/j.sjbs.2020.11.083] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 11/26/2020] [Accepted: 11/29/2020] [Indexed: 12/26/2022] Open
Abstract
Wheat is an important cereal crop, and its significance is more due to compete for dietary products in the world. Many constraints facing by the wheat crop due to environmental hazardous, biotic, abiotic stress and heavy matters factors, as a result, decrease the yield. Understanding the molecular mechanism related to these factors is significant to figure out genes regulate under specific conditions. Classical breeding using hybridization has been used to increase the yield but not prospered at the desired level. With the development of newly emerging technologies in biological sciences i.e., marker assisted breeding (MAB), QTLs mapping, mutation breeding, proteomics, metabolomics, next-generation sequencing (NGS), RNA_sequencing, transcriptomics, differential expression genes (DEGs), computational resources and genome editing techniques i.e. (CRISPR cas9; Cas13) advances in the field of omics. Application of new breeding technologies develops huge data; considerable development is needed in bioinformatics science to interpret the data. However, combined omics application to address physiological questions linked with genetics is still a challenge. Moreover, viroid discovery opens the new direction for research, economics, and target specification. Comparative genomics important to figure gene of interest processes are further discussed about considering the identification of genes, genomic loci, and biochemical pathways linked with stress resilience in wheat. Furthermore, this review extensively discussed the omics approaches and their effective use. Integrated plant omics technologies have been used viroid genomes associated with CRISPR and CRISPR-associated Cas13a proteins system used for engineering of viroid interference along with high-performance multidimensional phenotyping as a significant limiting factor for increasing stress resistance in wheat.
Collapse
Affiliation(s)
- Fahad Alotaibi
- King Abdulaziz City for Science and Technology (KACST), Riyadh, Saudi Arabia
| | - Saif Alharbi
- King Abdulaziz City for Science and Technology (KACST), Riyadh, Saudi Arabia
| | - Majed Alotaibi
- King Abdulaziz City for Science and Technology (KACST), Riyadh, Saudi Arabia
| | - Mobarak Al Mosallam
- King Abdulaziz City for Science and Technology (KACST), Riyadh, Saudi Arabia
| | | | - Abdullah Alrajhi
- King Abdulaziz City for Science and Technology (KACST), Riyadh, Saudi Arabia
| |
Collapse
|
42
|
Gajecka M, Marzec M, Chmielewska B, Jelonek J, Zbieszczyk J, Szarejko I. Changes in plastid biogenesis leading to the formation of albino regenerants in barley microspore culture. BMC PLANT BIOLOGY 2021; 21:22. [PMID: 33413097 PMCID: PMC7792217 DOI: 10.1186/s12870-020-02755-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Accepted: 11/24/2020] [Indexed: 06/06/2023]
Abstract
BACKGROUND Microspore embryogenesis is potentially the most effective method of obtaining doubled haploids (DH) which are utilized in breeding programs to accelerate production of new cultivars. However, the regeneration of albino plants significantly limits the exploitation of androgenesis for DH production in cereals. Despite many efforts, the precise mechanisms leading to development of albino regenerants have not yet been elucidated. The objective of this study was to reveal the genotype-dependent molecular differences in chloroplast differentiation that lead to the formation of green and albino regenerants in microspore culture of barley. RESULTS We performed a detailed analysis of plastid differentiation at successive stages of androgenesis in two barley cultivars, 'Jersey' and 'Mercada' that differed in their ability to produce green regenerants. We demonstrated the lack of transition from the NEP-dependent to PEP-dependent transcription in plastids of cv. 'Mercada' that produced mostly albino regenerants in microspore culture. The failed NEP-to-PEP transition was associated with the lack of activity of Sig2 gene encoding a sigma factor necessary for transcription of plastid rRNA genes. A very low level of 16S and 23S rRNA transcripts and impaired plastid translation machinery resulted in the inhibition of photomorphogenesis in regenerating embryos and albino regenerants. Furthermore, the plastids present in differentiating 'Mercada' embryos contained a low number of plastome copies whose replication was not always completed. Contrary to 'Mercada', cv. 'Jersey' that produced 90% green regenerants, showed the high activity of PEP polymerase, the highly increased expression of Sig2, plastid rRNAs and tRNAGlu, which indicated the NEP inhibition. The increased expression of GLKs genes encoding transcription factors required for induction of photomorphogenesis was also observed in 'Jersey' regenerants. CONCLUSIONS Proplastids present in microspore-derived embryos of albino-producing genotypes did not pass the early checkpoints of their development that are required for induction of further light-dependent differentiation of chloroplasts. The failed activation of plastid-encoded RNA polymerase during differentiation of embryos was associated with the genotype-dependent inability to regenerate green plants in barley microspore culture. The better understanding of molecular mechanisms underlying formation of albino regenerants may be helpful in overcoming the problem of albinism in cereal androgenesis.
Collapse
Affiliation(s)
- Monika Gajecka
- Faculty of Natural Sciences, Institute of Biology, Biotechnology and Environmental Protection, University of Silesia, Jagiellonska 28, Katowice, 40-032, Poland
| | - Marek Marzec
- Faculty of Natural Sciences, Institute of Biology, Biotechnology and Environmental Protection, University of Silesia, Jagiellonska 28, Katowice, 40-032, Poland
| | - Beata Chmielewska
- Faculty of Natural Sciences, Institute of Biology, Biotechnology and Environmental Protection, University of Silesia, Jagiellonska 28, Katowice, 40-032, Poland
| | - Janusz Jelonek
- Faculty of Natural Sciences, Institute of Biology, Biotechnology and Environmental Protection, University of Silesia, Jagiellonska 28, Katowice, 40-032, Poland
| | - Justyna Zbieszczyk
- Faculty of Natural Sciences, Institute of Biology, Biotechnology and Environmental Protection, University of Silesia, Jagiellonska 28, Katowice, 40-032, Poland
| | - Iwona Szarejko
- Faculty of Natural Sciences, Institute of Biology, Biotechnology and Environmental Protection, University of Silesia, Jagiellonska 28, Katowice, 40-032, Poland.
| |
Collapse
|
43
|
Gurel S, Pazuki A, Aflaki F, Gurel E. Production of Doubled Haploid Sugar Beet (Beta vulgaris L.) Plants Through Gynogenesis. Methods Mol Biol 2021; 2289:313-323. [PMID: 34270080 DOI: 10.1007/978-1-0716-1331-3_21] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Haploid and doubled haploid plant production through unpollinated ovule culture, with diverse benefits and applications, is considered among the most effective and advantageous breeding method for sugar beet (Beta vulgaris L.). It is known that sugar beet is not responsive to androgenesis, which is widely used for most plant species. Sugar beet is a recalcitrant plant in vitro due to the very low spontaneous chromosome doubling and low gynogenesis rate. Thus, a steadily increasing gynogenesis efficiency has always been an important target for an efficient sugar beet breeding program. Given the scarcity of published papers focusing on gynogenesis in sugar beet, this chapter describes haploid and doubled haploid production through ovule culture of unfertilized flowers as a practical method.
Collapse
Affiliation(s)
- Songul Gurel
- Faculty of Science and Arts, Department of Biology, Bolu Abant Izzet Baysal University, Bolu, Turkey
| | - Arman Pazuki
- Faculty of Science and Arts, Department of Biology, Bolu Abant Izzet Baysal University, Bolu, Turkey
| | - Fatemeh Aflaki
- Faculty of Science and Arts, Department of Biology, Bolu Abant Izzet Baysal University, Bolu, Turkey
| | - Ekrem Gurel
- Faculty of Science and Arts, Department of Biology, Bolu Abant Izzet Baysal University, Bolu, Turkey.
| |
Collapse
|
44
|
Karimi-Ashtiyani R. Centromere Engineering as an Emerging Tool for Haploid Plant Production: Advances and Challenges. Methods Mol Biol 2021; 2289:3-22. [PMID: 34270060 DOI: 10.1007/978-1-0716-1331-3_1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Haploid production is of great importance in plant breeding programs. Doubled haploid technology accelerates the generation of inbred lines with homozygosity in all loci in a single year. Haploids can be induced in vitro via cultivating the haploid gametes or in vivo through inter- and intraspecific hybridization. Haploid induction through centromere engineering is a novel system that is theoretically applicable to many plant species. The present review chapter discusses the proposed molecular mechanisms of selective chromosome elimination in early embryogenesis and the effects of kinetochore component modifications on proper chromosome segregation. Finally, the advantages and limitations of the CENH3-mediated haploidization approach and its applications are highlighted.
Collapse
|
45
|
Abstract
The completely homozygous genetic background of doubled haploids (DHs) has many applications in breeding programs and research studies. Haploid induction and chromosome doubling of induced haploids are the two main steps of doubled haploid creation. Both steps have their own complexities. Chromosome doubling of induced haploids may happen spontaneously, although usually at a low rate. Therefore, artificial/induced chromosome doubling of haploid cells/plantlets is necessary to produce DHs at an acceptable level. The most common method is using some mitotic spindle poisons that target the organization of the microtubule system. Colchicine is a well-known and widely used antimitotic. However, there are substances alternative to colchicine in terms of efficiency, toxicity, safety, and genetic stability, which can be applied in in vitro and in vivo pathways. Both pathways have their own advantages and disadvantages. However, in vitro-induced chromosome doubling has been much preferred in recent years, maybe because of the dual effect of antimitotic agents (haploid induction and chromosome doubling) in just one step, and the reduced generation of chimeras. Plant genotype, the developmental stage of initial haploids, and type-concentration-duration of application of antimitotic agents, are top influential parameters on chromosome doubling efficiency. In this review, we highlight different aspects related to antimitotic agents and to plant parameters for successful chromosome doubling and high DH yield.
Collapse
Affiliation(s)
- Mehran E Shariatpanahi
- Department of Tissue and Cell Culture, Agricultural Biotechnology Research Institute of Iran (ABRII), Agricultural Research, Education and Extension Organization (AREEO), Karaj, Iran.
| | - Mohsen Niazian
- Field and Horticultural Crops Research Department, Kurdistan Agricultural and Natural Resources Research and Education Center, Agricultural Research, Education and Extension Organization (AREEO), Sanandaj, Iran
| | - Behzad Ahmadi
- Department of Maize and Forage Crops Research, Agricultural Research, Education and Extension Organization (AREEO), Seed and Plant Improvement Institute (SPII), Karaj, Iran
| |
Collapse
|
46
|
Chen G, Zhou Y, Kishchenko O, Stepanenko A, Jatayev S, Zhang D, Borisjuk N. Gene editing to facilitate hybrid crop production. Biotechnol Adv 2020; 46:107676. [PMID: 33285253 DOI: 10.1016/j.biotechadv.2020.107676] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2020] [Revised: 11/23/2020] [Accepted: 11/28/2020] [Indexed: 11/18/2022]
Abstract
Capturing heterosis (hybrid vigor) is a promising way to increase productivity in many crops; hybrid crops often have superior yields, disease resistance, and stress tolerance compared with their parental inbred lines. The full utilization of heterosis faces a number of technical problems related to the specifics of crop reproductive biology, such as difficulties with generating and maintaining male-sterile lines and the low efficiency of natural cross-pollination for some genetic combinations. Innovative technologies, such as development of artificial in vitro systems for hybrid production and apomixis-based systems for maintenance of the resulting heterotic progeny, may substantially facilitate the production of hybrids. Genome editing using specifically targeted nucleases, such as clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated nuclease 9 (CRISPR/Cas9) systems, which recognize targets by RNA:DNA complementarity, has recently become an integral part of research and development in life science. In this review, we summarize the progress of genome editing technologies for facilitating the generation of mutant male sterile lines, applications of haploids for hybrid production, and the use of apomixis for the clonal propagation of elite hybrid lines.
Collapse
Affiliation(s)
- Guimin Chen
- Jiangsu Key Laboratory for Eco-Agricultural Biotechnology around Hongze Lake, School of Life Sciences, Huaiyin Normal University, Huai'an, China; Jiangsu Collaborative Innovation Centre of Regional Modern Agriculture & Environmental Protection, Huaiyin Normal University, Huai'an, China
| | - Yuzhen Zhou
- Jiangsu Key Laboratory for Eco-Agricultural Biotechnology around Hongze Lake, School of Life Sciences, Huaiyin Normal University, Huai'an, China; Jiangsu Collaborative Innovation Centre of Regional Modern Agriculture & Environmental Protection, Huaiyin Normal University, Huai'an, China.
| | - Olena Kishchenko
- Jiangsu Key Laboratory for Eco-Agricultural Biotechnology around Hongze Lake, School of Life Sciences, Huaiyin Normal University, Huai'an, China; Jiangsu Collaborative Innovation Centre of Regional Modern Agriculture & Environmental Protection, Huaiyin Normal University, Huai'an, China; Institute of Cell Biology & Genetic Engineering, National Academy of Science of Ukraine, Kyiv, Ukraine.
| | - Anton Stepanenko
- Jiangsu Key Laboratory for Eco-Agricultural Biotechnology around Hongze Lake, School of Life Sciences, Huaiyin Normal University, Huai'an, China; Jiangsu Collaborative Innovation Centre of Regional Modern Agriculture & Environmental Protection, Huaiyin Normal University, Huai'an, China; Institute of Cell Biology & Genetic Engineering, National Academy of Science of Ukraine, Kyiv, Ukraine.
| | - Satyvaldy Jatayev
- Faculty of Agronomy, S. Seifullin Kazakh AgroTechnical University, Nur-Sultan, Kazakhstan
| | - Dabing Zhang
- Joint International Research Laboratory of Metabolic & Developmental Sciences, Shanghai Jiao Tong University-University of Adelaide Joint Centre for Agriculture and Health, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China; School of Agriculture, Food and Wine, University of Adelaide, Glen Osmond, SA, Australia.
| | - Nikolai Borisjuk
- Jiangsu Key Laboratory for Eco-Agricultural Biotechnology around Hongze Lake, School of Life Sciences, Huaiyin Normal University, Huai'an, China; Jiangsu Collaborative Innovation Centre of Regional Modern Agriculture & Environmental Protection, Huaiyin Normal University, Huai'an, China.
| |
Collapse
|
47
|
Canonge J, Philippot M, Leblanc C, Potin P, Bodin M. Impedance flow cytometry allows the early prediction of embryo yields in wheat (Triticum aestivum L.) microspore cultures. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2020; 300:110586. [PMID: 33180700 DOI: 10.1016/j.plantsci.2020.110586] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 06/24/2020] [Accepted: 06/27/2020] [Indexed: 05/12/2023]
Abstract
Haplomethods are key biotechnological tools that make it possible to rapidly produce perfectly homozygous lines, speeding up plant breeding programs. Under specific stress conditions, microspores are reprogrammed toward sporophytic pathways, leading to embryo formation. Various endogenous and exogenous factors affect embryo yield in androgenesis, so the improvement of androgenesis efficiency requires the development of early, reliable and robust reactivity markers. During the last decade, numerous cytological, cellular and biochemical approaches were carried out to finely characterize microspore development and fate during androgenesis. However, the different available markers are often species-dependent, and their development and application are time-consuming and cumbersome. In this study, we show the suitable use of impedance flow cytometry (IFC) to develop new robust, reliable and strong markers of androgenesis reactivity in wheat, leading to: (i) routine monitoring of the viability of heterogeneous cell cultures; (ii) quick and simple evaluation of stress treatment efficiency; and (iii) early prediction of embryo yields from microspore suspensions. IFC can therefore provide the fine characterization of all of the microspore developmental pathways that occur in a cell suspension, for embryogenic microspores as well as pollen-like microspores. IFC technology has become a very useful tool to track and characterize wheat microspores in androgenesis, but can also be adapted to other species and other in vitro cell culture systems.
Collapse
Affiliation(s)
- Julie Canonge
- Vegenov, Pen ar Prat, 29250 Saint-Pol-de-Léon, France
| | | | - Catherine Leblanc
- CNRS, Sorbonne Université Sciences, UMR 8227, Integrative Biology of Marine Models, Station Biologique de Roscoff, CS 90074, 29688 Roscoff, France
| | - Philippe Potin
- CNRS, Sorbonne Université Sciences, UMR 8227, Integrative Biology of Marine Models, Station Biologique de Roscoff, CS 90074, 29688 Roscoff, France
| | | |
Collapse
|
48
|
Dissanayake L, Perera P, Attanayaka T, Heberle E, Jayawardhana M. Early Development of Direct Embryos in the Cultured Anthers of Manihot esculenta Crantz. PLANTS (BASEL, SWITZERLAND) 2020; 9:E1315. [PMID: 33036131 PMCID: PMC7650799 DOI: 10.3390/plants9101315] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/13/2020] [Revised: 09/30/2020] [Accepted: 10/04/2020] [Indexed: 11/23/2022]
Abstract
Cassava is one of the most important sources of energy. To meet the growing demand, genetic improvement is of utmost importance. Its cross-pollinating nature limits the opportunity of exploitation of hybrid vigor and demands the development of homozygous lines through doubled-haploid technologies. The problems in callus-mediated embryogenesis, such as longer processing time and genetically unstable nature, can be overcome by direct embryogenesis. Conditions to produce embryos directly from microspores in cultured anthers were optimized. The optimum stress pretreatment condition was 40 °C for 6 h after culturing the anthers into the induction medium. For proembryo formation, 2% sucrose and 5 mg/l 2,4-dichlorophenoxyacetic acid (2,4-D) or 1 mg/l 1-naphthaleneacetic acid were optimum. Globular embryos were formed by subculturing proembryos into the medium with 0.5 mg/l 2,4-D and 5 mg/l 6-benzylaminopurine after two weeks of culturing. Light microscopy of cultured anthers demonstrated the formation of multicellular structures and their further development into proembryos. Microscopic studies showed proembryos emerging through the damaged anther wall. Monoallelic banding in simple sequence repeat (SSR) analysis indicated homozygous or haploid states in some of the originated embryos. The conditions optimized in this study were effective in the early development of direct embryos after two weeks of culture initiation. This is the first report of the formation of direct embryos in cultured anthers of cassava.
Collapse
Affiliation(s)
- Lakmali Dissanayake
- Faculty of Agriculture and Plantation Management, Wayamba University of Sri Lanka, Makandura, Gonawila, 60170 (NWP), Sri Lanka; (L.D.); (T.A.); (M.J.)
| | - Prasanthi Perera
- Faculty of Agriculture and Plantation Management, Wayamba University of Sri Lanka, Makandura, Gonawila, 60170 (NWP), Sri Lanka; (L.D.); (T.A.); (M.J.)
| | - Thilak Attanayaka
- Faculty of Agriculture and Plantation Management, Wayamba University of Sri Lanka, Makandura, Gonawila, 60170 (NWP), Sri Lanka; (L.D.); (T.A.); (M.J.)
| | - Erwin Heberle
- Institute of Microbiology and Genetics, Max-Perutz-Laboratories, University of Vienna, Dr. Bohrgasse 9, A-1030 Vienna, Austria;
| | - Manosha Jayawardhana
- Faculty of Agriculture and Plantation Management, Wayamba University of Sri Lanka, Makandura, Gonawila, 60170 (NWP), Sri Lanka; (L.D.); (T.A.); (M.J.)
| |
Collapse
|
49
|
Kuppu S, Ron M, Marimuthu MP, Li G, Huddleson A, Siddeek MH, Terry J, Buchner R, Shabek N, Comai L, Britt AB. A variety of changes, including CRISPR/Cas9-mediated deletions, in CENH3 lead to haploid induction on outcrossing. PLANT BIOTECHNOLOGY JOURNAL 2020; 18:2068-2080. [PMID: 32096293 PMCID: PMC7540420 DOI: 10.1111/pbi.13365] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Revised: 02/03/2020] [Accepted: 02/13/2020] [Indexed: 05/03/2023]
Abstract
Creating true-breeding lines is a critical step in plant breeding. Novel, completely homozygous true-breeding lines can be generated by doubled haploid technology in single generation. Haploid induction through modification of the centromere-specific histone 3 variant (CENH3), including chimeric proteins, expression of non-native CENH3 and single amino acid substitutions, has been shown to induce, on outcrossing to wild type, haploid progeny possessing only the genome of the wild-type parent, in Arabidopsis thaliana. Here, we report the characterization of 31 additional EMS-inducible amino acid substitutions in CENH3 for their ability to complement a knockout in the endogenous CENH3 gene and induce haploid progeny when pollinated by the wild type. We also tested the effect of double amino acid changes, which might be generated through a second round of EMS mutagenesis. Finally, we report on the effects of CRISPR/Cas9-mediated in-frame deletions in the αN helix of the CENH3 histone fold domain. Remarkably, we found that complete deletion of the αN helix, which is conserved throughout angiosperms, results in plants which exhibit normal growth and fertility while acting as excellent haploid inducers when pollinated by wild-type pollen. Both of these technologies, CRISPR mutagenesis and EMS mutagenesis, represent non-transgenic approaches to the generation of haploid inducers.
Collapse
Affiliation(s)
- Sundaram Kuppu
- Department of Plant BiologyUniversity of CaliforniaDavisCAUSA
| | - Mily Ron
- Department of Plant BiologyUniversity of CaliforniaDavisCAUSA
| | - Mohan P.A. Marimuthu
- Department of Plant BiologyUniversity of CaliforniaDavisCAUSA
- UC Davis Genome CenterUniversity of CaliforniaDavisCAUSA
| | - Glenda Li
- Department of Plant BiologyUniversity of CaliforniaDavisCAUSA
| | - Amy Huddleson
- Department of Plant BiologyUniversity of CaliforniaDavisCAUSA
| | | | - Joshua Terry
- Department of Plant BiologyUniversity of CaliforniaDavisCAUSA
| | - Ryan Buchner
- Department of Plant BiologyUniversity of CaliforniaDavisCAUSA
| | - Nitzan Shabek
- Department of Plant BiologyUniversity of CaliforniaDavisCAUSA
| | - Luca Comai
- Department of Plant BiologyUniversity of CaliforniaDavisCAUSA
- UC Davis Genome CenterUniversity of CaliforniaDavisCAUSA
| | - Anne B. Britt
- Department of Plant BiologyUniversity of CaliforniaDavisCAUSA
| |
Collapse
|
50
|
Ohnoutková L, Vlčko T. Homozygous Transgenic Barley ( Hordeum vulgare L.) Plants by Anther Culture. PLANTS 2020; 9:plants9070918. [PMID: 32698526 PMCID: PMC7412030 DOI: 10.3390/plants9070918] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 07/13/2020] [Accepted: 07/16/2020] [Indexed: 11/23/2022]
Abstract
Production of homozygous lines derived from transgenic plants is one of the important steps for phenotyping and genotyping transgenic progeny. The selection of homozygous plants is a tedious process that can be significantly shortened by androgenesis, cultivation of anthers, or isolated microspores. Doubled haploid (DH) production achieves complete homozygosity in one generation. We obtained transgenic homozygous DH lines from six different transgenic events by using anther culture. Anthers were isolated from T0 transgenic primary regenerants and cultivated in vitro. The ploidy level was determined in green regenerants. At least half of the 2n green plants were transgenic, and their progeny were shown to carry the transgene. The process of dihaploidization did not affect the expression of the transgene. Embryo cultures were used to reduce the time to seed of the next generation. The application of these methods enables rapid evaluation of transgenic lines for gene function studies and trait evaluation.
Collapse
|