1
|
Zhang Z, Lu Y, Liu W, Huang Y. Nanomaterial-assisted delivery of CpG oligodeoxynucleotides for boosting cancer immunotherapy. J Control Release 2024; 376:184-199. [PMID: 39368710 DOI: 10.1016/j.jconrel.2024.09.044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 08/03/2024] [Accepted: 09/26/2024] [Indexed: 10/07/2024]
Abstract
Cancer immunotherapy aims to improve immunity to not only eliminate the primary tumor but also inhibit metastasis and recurrence. It is considered an extremely promising therapeutic approach that breaks free from the traditional paradigm of oncological treatment. As the medical community learns more about the immune system's mechanisms that "turn off the brake" and "step on the throttle", there is increasingly successful research on immunomodulators. However, there are still more restrictions than countermeasures with immunotherapy related to immunomodulators, such as low responsiveness and immune-related adverse events that cause multiple adverse reactions. Therefore, medical experts and materials scientists attempted to the efficacy of immunomodulatory treatments through various methods, especially nanomaterial-assisted strategies. CpG oligodeoxynucleotides (CpG) not only act as an adjuvant to promote immune responses, but also induce autophagy. In this review, the enhancement of immunotherapy using nanomaterial-based CpG formulations is systematically elaborated, with a focus on the delivery, protection, synergistic promotion of CpG efficacy by nanomaterials, and selection of the timing of treatment. In addition, we also discuss and prospect the existing problems and future directions of research on nanomaterials in auxiliary CpG therapy.
Collapse
Affiliation(s)
- Zhiyu Zhang
- Department of Pharmacology, Beijing Chest Hospital, Capital Medical University/Beijing Key Laboratory of Drug Resistance Tuberculosis Research, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing, China
| | - Yu Lu
- Department of Pharmacology, Beijing Chest Hospital, Capital Medical University/Beijing Key Laboratory of Drug Resistance Tuberculosis Research, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing, China.
| | - Wenjing Liu
- Department of Pharmacology, Beijing Chest Hospital, Capital Medical University/Beijing Key Laboratory of Drug Resistance Tuberculosis Research, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing, China.
| | - Yuanyu Huang
- School of Life Science, Advanced Research Institute of Multidisciplinary Science, Key Laboratory of Molecular Medicine and Biotherapy, Beijing Institute of Technology, Beijing 100081, China
| |
Collapse
|
2
|
Longobardi G, Moore TL, Conte C, Ungaro F, Satchi‐Fainaro R, Quaglia F. Polyester nanoparticles delivering chemotherapeutics: Learning from the past and looking to the future to enhance their clinical impact in tumor therapy. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2024; 16:e1990. [PMID: 39217459 PMCID: PMC11670051 DOI: 10.1002/wnan.1990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 07/20/2024] [Accepted: 07/23/2024] [Indexed: 09/04/2024]
Abstract
Polymeric nanoparticles (NPs), specifically those comprised of biodegradable and biocompatible polyesters, have been heralded as a game-changing drug delivery platform. In fact, poly(α-hydroxy acids) such as polylactide (PLA), poly(lactide-co-glycolide) (PLGA), and poly(ε-caprolactone) (PCL) have been heavily researched in the past three decades as the material basis of polymeric NPs for drug delivery applications. As materials, these polymers have found success in resorbable sutures, biodegradable implants, and even monolithic, biodegradable platforms for sustained release of therapeutics (e.g., proteins and small molecules) and diagnostics. Few fields have gained more attention in drug delivery through polymeric NPs than cancer therapy. However, the clinical translational of polymeric nanomedicines for treating solid tumors has not been congruent with the fervor or funding in this particular field of research. Here, we attempt to provide a comprehensive snapshot of polyester NPs in the context of chemotherapeutic delivery. This includes a preliminary exploration of the polymeric nanomedicine in the cancer research space. We examine the various processes for producing polyester NPs, including methods for surface-functionalization, and related challenges. After a detailed overview of the multiple factors involved with the delivery of NPs to solid tumors, the crosstalk between particle design and interactions with biological systems is discussed. Finally, we report state-of-the-art approaches toward effective delivery of NPs to tumors, aiming at identifying new research areas and re-evaluating the reasons why some research avenues have underdelivered. We hope our effort will contribute to a better understanding of the gap to fill and delineate the future research work needed to bring polyester-based NPs closer to clinical application. This article is categorized under: Therapeutic Approaches and Drug Discovery > Nanomedicine for Oncologic Disease Nanotechnology Approaches to Biology > Nanoscale Systems in Biology Therapeutic Approaches and Drug Discovery > Emerging Technologies.
Collapse
Affiliation(s)
| | - Thomas Lee Moore
- Department of PharmacyUniversity of Naples Federico IINaplesItaly
| | - Claudia Conte
- Department of PharmacyUniversity of Naples Federico IINaplesItaly
| | - Francesca Ungaro
- Department of PharmacyUniversity of Naples Federico IINaplesItaly
| | - Ronit Satchi‐Fainaro
- Department of Physiology and Pharmacology, Faculty of MedicineTel Aviv UniversityTel AvivIsrael
- Sagol School of NeurosciencesTel Aviv UniversityTel AvivIsrael
| | - Fabiana Quaglia
- Department of PharmacyUniversity of Naples Federico IINaplesItaly
| |
Collapse
|
3
|
Day NB, Orear CR, Velazquez-Albino AC, Good HJ, Melnyk A, Rinaldi-Ramos CM, Shields CW. Magnetic Cellular Backpacks for Spatial Targeting, Imaging, and Immunotherapy. ACS APPLIED BIO MATERIALS 2024; 7:4843-4855. [PMID: 38048258 PMCID: PMC11147956 DOI: 10.1021/acsabm.3c00720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/06/2023]
Abstract
Adoptive cell transfer (ACT) therapies are growing in popularity due to their ability to interact with diseased tissues in a specific manner. Disc-shaped particles, or "backpacks", that bind to cellular surfaces show promise for augmenting the therapeutic potential of adoptively transferred cells by resisting phagocytosis and locally releasing drugs to maintain cellular activity over time. However, many ACTs suffer from limited tumor infiltration and retention and lack a method for real-time spatial analysis. Therefore, we have designed biodegradable backpacks loaded with superparamagnetic iron oxide nanoparticles (SPIONs) to improve upon current ACT strategies by (i) controlling the localization of cell-backpack complexes using gradient magnetic fields and (ii) enabling magnetic particle imaging (MPI) to track complexes after injection. We show that magnetic backpacks bound to macrophages and loaded with a proinflammatory drug, resiquimod, maintain anticancer phenotypes of carrier macrophages for 5 days and create cytokine "factories" that continuously release IL-12. Furthermore, we establish that forces generated by gradient magnet fields are sufficient to displace cell-backpack complexes in physiological settings. Finally, we demonstrate that MPI can be used to visualize cell-backpack complexes in mouse tumors, enabling a potential strategy to track the biodistribution of ACTs in real time.
Collapse
Affiliation(s)
- Nicole B. Day
- Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder CO 80303, United States
| | - Christopher R. Orear
- Biomedical Engineering Program, University of Colorado Boulder, Boulder CO 80303, United States
| | | | - Hayden J. Good
- Department of Chemical Engineering, University of Florida, Gainesville FL 32611, United States
| | - Andrii Melnyk
- Department of Chemical Engineering, University of Florida, Gainesville FL 32611, United States
| | - Carlos M. Rinaldi-Ramos
- Department of Chemical Engineering, University of Florida, Gainesville FL 32611, United States
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville FL 32611, United States
| | - C. Wyatt Shields
- Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder CO 80303, United States
- Biomedical Engineering Program, University of Colorado Boulder, Boulder CO 80303, United States
| |
Collapse
|
4
|
Wang T, Fang H, Yalikun S, Li J, Pan Y, Zhang K, Yin J, Cui H. Pluronic F127-Lipoic Acid Adhesive Nanohydrogel Combining with Ce 3+/Tannic Acid/Ulinastatin Nanoparticles for Promoting Wound Healing. Biomacromolecules 2024; 25:924-940. [PMID: 38156632 DOI: 10.1021/acs.biomac.3c01060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2024]
Abstract
Developing strong anti-inflammatory wound dressings is of great significance for protecting inflammatory cutaneous wounds and promoting wound healing. The present study develops a nanocomposite Pluronic F127 (F127)-based hydrogel dressing with injectable, tissue adhesive, and anti-inflammatory performance. Briefly, Ce3+/tannic acid/ulinastatin nanoparticles (Ce3+/TA/UTI NPs) are fabricated. Meanwhile, α-lipoic acid is bonded to the ends of F127 to prepare F127-lipoic acid (F127LA) and its nanomicelles. Due to the gradual viscosity change instead of mutation during phase transition, the mixed Ce3+/TA/UTI NPs and F127LA nanomicelles show well-performed injectability at 37 °C and can form a semisolid composite nanohydrogel that can tightly attach to the skin at 37 °C. Furthermore, ultraviolet (UV) irradiation without a photoinitiator transforms the semisolid hydrogel into a solid hydrogel with well-performed elasticity and toughness. The UV-cured composite nanohydrogel acts as a bioadhesive that can firmly adhere to tissues. Due to the limited swelling property, the hydrogel can firmly adhere to tissues in a wet environment, which can seal wounds and provide a reliable physical barrier for the wounds. Ce3+/TA/UTI NPs in the hydrogel exhibit lipopolysaccharide (LPS)-scavenging ability and reactive oxygen species (ROS)-scavenging ability and significantly reduce the expression of inflammatory factors in wounds at the early stage, accelerating LPS-induced wound healing.
Collapse
Affiliation(s)
- Tao Wang
- Department of Plastic and Cosmetic Surgery, Tongji Hospital, School of Medicine, Tongji University, Shanghai 200092, P. R. China
| | - Haowei Fang
- Department of Polymer Materials, School of Materials Science and Engineering, Shanghai University, Shanghai 200444, P. R. China
| | - Subate Yalikun
- Department of Polymer Materials, School of Materials Science and Engineering, Shanghai University, Shanghai 200444, P. R. China
| | - Jinyan Li
- Department of Polymer Materials, School of Materials Science and Engineering, Shanghai University, Shanghai 200444, P. R. China
| | - Yuqing Pan
- Department of Polymer Materials, School of Materials Science and Engineering, Shanghai University, Shanghai 200444, P. R. China
| | - Kunxi Zhang
- Department of Plastic and Cosmetic Surgery, Tongji Hospital, School of Medicine, Tongji University, Shanghai 200092, P. R. China
- Department of Polymer Materials, School of Materials Science and Engineering, Shanghai University, Shanghai 200444, P. R. China
| | - Jingbo Yin
- Department of Polymer Materials, School of Materials Science and Engineering, Shanghai University, Shanghai 200444, P. R. China
| | - Haiyan Cui
- Department of Plastic and Cosmetic Surgery, Tongji Hospital, School of Medicine, Tongji University, Shanghai 200092, P. R. China
| |
Collapse
|
5
|
Huang HL, Lai CH, Tsai WH, Chen KW, Peng SL, Lin JH, Lin YH. Nanoparticle-enhanced postbiotics: Revolutionizing cancer therapy through effective delivery. Life Sci 2024; 337:122379. [PMID: 38145711 DOI: 10.1016/j.lfs.2023.122379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 12/18/2023] [Accepted: 12/19/2023] [Indexed: 12/27/2023]
Abstract
AIM Gastric cancer contributes to cancer-related fatalities. Conventional chemotherapy faces challenges due to severe adverse effects, prompting recent research to focus on postbiotics, which are safer biomolecules derived from nonviable probiotics. Despite promising in vitro results, efficient in vivo delivery systems remain a challenge. This study aimed to design a potential nanoparticle (NP) formulation encapsulating the Lacticaseibacillus paracasei GMNL-133 (SGMNL-133) isolate to enhance its therapeutic efficacy in treating gastric cancer. MAIN METHODS We successfully isolated GMNL-133 (SGMNL-133) by optimizing the lysate extraction and column elution processes for L. paracasei GMNL-133, resulting in substantial enhancement of its capacity to inhibit the proliferation of gastric cancer cells. Additionally, we developed a potential NP utilizing arginine-chitosan and fucoidan encapsulating SGMNL-133. KEY FINDINGS This innovative approach protected the SGMNL-133 from degradation by gastric acid, facilitated its penetration through the mucus layer, and enabled interaction with gastric cancer cells. Furthermore, in vivo experiments demonstrated that the encapsulation of SGMNL-133 in NPs significantly enhanced its efficacy in the treatment of orthotopic gastric tumors while simultaneously reducing tissue inflammation levels. SIGNIFICANCE Recent research highlights postbiotics as a safe alternative, but in vivo delivery remains a challenge. Our study optimized the extraction of the lysate and column elution of GMNL-133, yielding SGMNL-133. We also developed NPs to protect SGMNL-133 from gastric acid, enhance mucus penetration, and improve the interaction with gastric cancer cells. This combination significantly enhanced drug delivery and anti-gastric tumor activity.
Collapse
Affiliation(s)
- Hau-Lun Huang
- Department of Pharmacy, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Chih-Ho Lai
- Department of Microbiology and Immunology, Molecular Infectious Disease Research Center, Chang Gung University and Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Wan-Hua Tsai
- Research and Development Department, GenMont Biotech Incorporation, Tainan, Taiwan
| | - Kuo-Wei Chen
- Division of Hematology and Oncology, Cheng Hsin General Hospital, Taipei, Taiwan
| | - Shin-Lei Peng
- Department of Biomedical Imaging and Radiological Science, China Medical University, Taichung, Taiwan
| | | | - Yu-Hsin Lin
- Department of Pharmacy, National Yang Ming Chiao Tung University, Taipei, Taiwan; Medical Device Innovation and Translation Center, National Yang Ming Chiao Tung University, Taipei, Taiwan; Department of Medical Research, China Medical University Hospital, China Medical University, Taichung, Taiwan.
| |
Collapse
|
6
|
Tayebi L, Rahimi R, Akbarzadeh AR, Maleki A. A reliable QSPR model for predicting drug release rate from metal-organic frameworks: a simple and robust drug delivery approach. RSC Adv 2023; 13:24617-24627. [PMID: 37601598 PMCID: PMC10432896 DOI: 10.1039/d3ra00070b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Accepted: 06/05/2023] [Indexed: 08/22/2023] Open
Abstract
During the drug release process, the drug is transferred from the starting point in the drug delivery system to the surface, and then to the release medium. Metal-organic frameworks (MOFs) potentially have unique features to be utilized as promising carriers for drug delivery, due to their suitable pore size, high surface area, and structural flexibility. The loading and release of various therapeutic drugs through the MOFs are effectively accomplished due to their tunable inorganic clusters and organic ligands. Since the drug release rate percentage (RES%) is a significant concern, a quantitative structure-property relationship (QSPR) method was applied to achieve an accurate model predicting the drug release rate from MOFs. Structure-based descriptors, including the number of nitrogen and oxygen atoms, along with two other adjusted descriptors, were applied for obtaining the best multilinear regression (BMLR) model. Drug release rates from 67 MOFs were applied to provide a precise model. The coefficients of determination (R2) for the training and test sets obtained were both 0.9999. The root mean square error for prediction (RMSEP) of the RES% values for the training and test sets were 0.006 and 0.005, respectively. To examine the precision of the model, external validation was performed through a set of new observations, which demonstrated that the model works to a satisfactory degree.
Collapse
Affiliation(s)
- Leila Tayebi
- Department of Chemistry, Iran University of Science and Technology P. O. Box: 16846-13114 Tehran Islamic Republic of Iran
| | - Rahmatollah Rahimi
- Department of Chemistry, Iran University of Science and Technology P. O. Box: 16846-13114 Tehran Islamic Republic of Iran
| | - Ali Reza Akbarzadeh
- Department of Chemistry, Iran University of Science and Technology P. O. Box: 16846-13114 Tehran Islamic Republic of Iran
| | - Ali Maleki
- Department of Chemistry, Iran University of Science and Technology P. O. Box: 16846-13114 Tehran Islamic Republic of Iran
| |
Collapse
|
7
|
Zhao Z, Wang D, Li Y. Versatile biomimetic nanomedicine for treating cancer and inflammation disease. MEDICAL REVIEW (2021) 2023; 3:123-151. [PMID: 37724085 PMCID: PMC10471090 DOI: 10.1515/mr-2022-0046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 02/11/2023] [Indexed: 09/20/2023]
Abstract
Nanosized drug delivery systems (NDDSs) have emerged as a powerful tool to optimize drug delivery in complex diseases, including cancer and inflammation. However, the therapeutic effect of NDDSs is still far from satisfactory due to their poor circulation time, low delivery efficiency, and innate toxicity. Fortunately, biomimetic approaches offer new opportunities to develop nanomedicine, which is derived from a variety of native biomolecules including cells, exosomes, bacteria, and so on. Since inheriting the superior biocompatibility and versatile functions of natural materials, biomimetic nanomedicine can mimic biological processes, prolong blood circulation, and lower immunogenicity, serving as a desired platform for precise drug delivery for treating cancer and inflammatory disease. In this review, we outline recent advances in biomimetic NDDSs, which consist of two concepts: biomimetic exterior camouflage and bioidentical molecule construction. We summarize engineering strategies that further functionalized current biomimetic NDDSs. A series of functional biomimetic NDDSs created by our group are introduced. We conclude with an outlook on remaining challenges and possible directions for biomimetic NDDSs. We hope that better technologies can be inspired and invented to advance drug delivery systems for cancer and inflammation therapy.
Collapse
Affiliation(s)
- Zhiwen Zhao
- State Key Laboratory of Drug Research & Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Dangge Wang
- State Key Laboratory of Drug Research & Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
- Yantai Key Laboratory of Nanomedicine & Advanced Preparations, Yantai Institute of Materia Medica, Yantai, China
| | - Yaping Li
- State Key Laboratory of Drug Research & Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
- Shandong Laboratory of Yantai Drug Discovery, Bohai Rim Advanced Research Institute for Drug Discovery, Yantai, China
| |
Collapse
|
8
|
Wei W, Zhang Y, Lin Z, Wu X, Fan W, Chen J. Advances, challenge and prospects in cell-mediated nanodrug delivery for cancer therapy: a review. J Drug Target 2023; 31:1-13. [PMID: 35857432 DOI: 10.1080/1061186x.2022.2104299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Nanomedicine offers considerable opportunities to improve drugability and reduce toxicity for tumour therapy. However, the application of nanomedicine has achieved little success in clinical trials due to multiple physiological barriers to drug delivery. Circulating cells are expected to improve the physical distribution of drugs and enhance the therapeutic effect by overcoming various biological barriers in collaboration with nano-drug delivery systems owing to excellent biocompatibility, low immunogenicity and a long-circulation time and strong binding specificity. Nonetheless, we have noticed some limitations in implementing tthe strategy. In this article, we intend to introduce the latest progress in research and application of circulating cell-mediated nano-drug delivery systems, describe the main cell-related drug delivery modes, sum up the relevant points of the transport systems in the process of loading, transport and release, and lastly discuss the advantages, challenges and future development trends in cell-mediated nano-drug delivery.
Collapse
Affiliation(s)
- Wuhao Wei
- Department of Pharmacy, Fujian University of Traditional Chinese Medicine Fuzhou, Fujian, China
| | | | | | - Xin Wu
- Department of Pharmacy, Fujian University of Traditional Chinese Medicine Fuzhou, Fujian, China.,Shanghai Wei Er Lab, Shanghai, China
| | - Wei Fan
- Seventh People's Hospital of Shanghai University of Traditional Chinese, Shanghai, China
| | - Jianming Chen
- Department of Pharmacy, Fujian University of Traditional Chinese Medicine Fuzhou, Fujian, China
| |
Collapse
|
9
|
Yang GJ, Liu YJ, Ding LJ, Tao F, Zhu MH, Shi ZY, Wen JM, Niu MY, Li X, Xu ZS, Qin WJ, Fei CJ, Chen J. A state-of-the-art review on LSD1 and its inhibitors in breast cancer: Molecular mechanisms and therapeutic significance. Front Pharmacol 2022; 13:989575. [PMID: 36188536 PMCID: PMC9523086 DOI: 10.3389/fphar.2022.989575] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Accepted: 08/15/2022] [Indexed: 11/13/2022] Open
Abstract
Breast cancer (BC) is a kind of malignant cancer in women, and it has become the most diagnosed cancer worldwide since 2020. Histone methylation is a common biological epigenetic modification mediating varieties of physiological and pathological processes. Lysine-specific demethylase 1 (LSD1), a first identified histone demethylase, mediates the removal of methyl groups from histones H3K4me1/2 and H3K9me1/2 and plays a crucial role in varieties of cancer progression. It is also specifically amplified in breast cancer and contributes to BC tumorigenesis and drug resistance via both demethylase and non-demethylase manners. This review will provide insight into the overview structure of LSD1, summarize its action mechanisms in BC, describe the therapeutic potential of LSD1 inhibitors in BC, and prospect the current opportunities and challenges of targeting LSD1 for BC therapy.
Collapse
Affiliation(s)
- Guan-Jun Yang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, Zhejiang, China
- Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo, China
- Key Laboratory of Aquacultural Biotechnology Ministry of Education, Ningbo University, Ningbo, China
| | - Yan-Jun Liu
- Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo, China
| | - Li-Jian Ding
- Li Dak Sum Yip Yio Chin Kenneth Li Marine Biopharmaceutical Research Center, Department of Marine Pharmacy, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, China
| | - Fan Tao
- Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo, China
| | - Ming-Hui Zhu
- Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo, China
| | - Zhen-Yuan Shi
- Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo, China
| | - Juan-Ming Wen
- Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo, China
| | - Meng-Yao Niu
- Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo, China
| | - Xiang Li
- Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo, China
| | - Zhan-Song Xu
- Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo, China
| | - Wan-Jia Qin
- Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo, China
| | - Chen-Jie Fei
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, Zhejiang, China
- Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo, China
- Key Laboratory of Aquacultural Biotechnology Ministry of Education, Ningbo University, Ningbo, China
| | - Jiong Chen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, Zhejiang, China
- Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo, China
- Key Laboratory of Aquacultural Biotechnology Ministry of Education, Ningbo University, Ningbo, China
| |
Collapse
|
10
|
López CL, Brempelis KJ, Matthaei JF, Montgomery KS, Srinivasan S, Roy D, Huang F, Kreuser SA, Gardell JL, Blumenthal I, Chiefari J, Jensen MC, Crane CA, Stayton PS. Arming Immune Cell Therapeutics with Polymeric Prodrugs. Adv Healthc Mater 2022; 11:e2101944. [PMID: 34889072 PMCID: PMC9847575 DOI: 10.1002/adhm.202101944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 11/16/2021] [Indexed: 01/21/2023]
Abstract
Engineered immune cells are an exciting therapeutic modality, which survey and attack tumors. Backpacking strategies exploit cell targeting capabilities for delivery of drugs to combat tumors and their immune-suppressive environments. Here, a new platform for arming cell therapeutics through dual receptor and polymeric prodrug engineering is developed. Macrophage and T cell therapeutics are engineered to express a bioorthogonal single chain variable fragment receptor. The receptor binds a fluorescein ligand that directs cell loading with ligand-tagged polymeric prodrugs, termed "drugamers." The fluorescein ligand facilitates stable binding of drugamer to engineered macrophages over 10 days with 80% surface retention. Drugamers also incorporate prodrug monomers of the phosphoinositide-3-kinase inhibitor, PI-103. The extended release of PI-103 from the drugamer sustains antiproliferative activity against a glioblastoma cell line compared to the parent drug. The versatility and modularity of this cell arming system is demonstrated by loading T cells with a second fluorescein-drugamer. This drugamer incorporates a small molecule estrogen analog, CMP8, which stabilizes a degron-tagged transgene to provide temporal regulation of protein activity in engineered T cells. These results demonstrate that this bioorthogonal receptor and drugamer system can be used to arm multiple immune cell classes with both antitumor and transgene-activating small molecule prodrugs.
Collapse
Affiliation(s)
- Ciana L López
- Department of Bioengineering, University of Washington, Seattle WA 98195, USA,Ben Towne Center for Childhood Cancer Research, Seattle Children’s Research Institute, Seattle, WA 98101, USA
| | - Katherine J Brempelis
- Ben Towne Center for Childhood Cancer Research, Seattle Children’s Research Institute, Seattle, WA 98101, USA
| | - James F Matthaei
- Seattle Children’s Therapeutics, Seattle Children’s Research Institute, Seattle, WA 98101, USA
| | - Kate S Montgomery
- Department of Bioengineering, University of Washington, Seattle WA 98195, USA
| | - Selvi Srinivasan
- Department of Bioengineering, University of Washington, Seattle WA 98195, USA
| | - Debashish Roy
- Department of Bioengineering, University of Washington, Seattle WA 98195, USA
| | - Fei Huang
- CSIRO Manufacturing, Bag 10, Bayview Avenue, Clayton, VIC. 3168, Australia
| | - Shannon A Kreuser
- Ben Towne Center for Childhood Cancer Research, Seattle Children’s Research Institute, Seattle, WA 98101, USA
| | - Jennifer L Gardell
- Ben Towne Center for Childhood Cancer Research, Seattle Children’s Research Institute, Seattle, WA 98101, USA
| | - Ian Blumenthal
- Department of Bioengineering, University of Washington, Seattle WA 98195, USA,Seattle Children’s Therapeutics, Seattle Children’s Research Institute, Seattle, WA 98101, USA
| | - John Chiefari
- CSIRO Manufacturing, Bag 10, Bayview Avenue, Clayton, VIC. 3168, Australia
| | - Michael C Jensen
- Department of Bioengineering, University of Washington, Seattle WA 98195, USA,Seattle Children’s Therapeutics, Seattle Children’s Research Institute, Seattle, WA 98101, USA,Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Courtney A Crane
- Ben Towne Center for Childhood Cancer Research, Seattle Children’s Research Institute, Seattle, WA 98101, USA,Department of Neurological Surgery, University of Washington, Seattle WA 98195, USA
| | - Patrick S Stayton
- Department of Bioengineering, University of Washington, Seattle WA 98195, USA
| |
Collapse
|
11
|
Fukuta T, Kogure K. Biomimetic Nanoparticle Drug Delivery Systems to Overcome Biological Barriers for Therapeutic Applications. Chem Pharm Bull (Tokyo) 2022; 70:334-340. [DOI: 10.1248/cpb.c21-00961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Tatsuya Fukuta
- Department of Physical Pharmaceutics, School of Pharmaceutical Sciences, Wakayama Medical University
| | - Kentaro Kogure
- Department of Pharmaceutical Health Chemistry, Graduate School of Biomedical Sciences, Tokushima University
| |
Collapse
|
12
|
Fukuta T, Oku N, Kogure K. Application and Utility of Liposomal Neuroprotective Agents and Biomimetic Nanoparticles for the Treatment of Ischemic Stroke. Pharmaceutics 2022; 14:pharmaceutics14020361. [PMID: 35214092 PMCID: PMC8877231 DOI: 10.3390/pharmaceutics14020361] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 01/27/2022] [Accepted: 02/02/2022] [Indexed: 12/04/2022] Open
Abstract
Ischemic stroke is still one of the leading causes of high mortality and severe disability worldwide. Therapeutic options for ischemic stroke and subsequent cerebral ischemia/reperfusion injury remain limited due to challenges associated with drug permeability through the blood-brain barrier (BBB). Neuroprotectant delivery with nanoparticles, including liposomes, offers a promising solution to address this problem, as BBB disruption following ischemic stroke allows nanoparticles to pass through the intercellular gaps between endothelial cells. To ameliorate ischemic brain damage, a number of nanotherapeutics encapsulating neuroprotective agents, as well as surface-modified nanoparticles with specific ligands targeting the injured brain regions, have been developed. Combination therapy with nanoparticles encapsulating neuroprotectants and tissue plasminogen activator (t-PA), a globally approved thrombolytic agent, has been demonstrated to extend the narrow therapeutic time window of t-PA. In addition, the design of biomimetic drug delivery systems (DDS) employing circulating cells (e.g., leukocytes, platelets) with unique properties has recently been investigated to overcome the injured BBB, utilizing these cells’ inherent capability to penetrate the ischemic brain. Herein, we review recent findings on the application and utility of nanoparticle DDS, particularly liposomes, and various approaches to developing biomimetic DDS functionalized with cellular membranes/membrane proteins for the treatment of ischemic stroke.
Collapse
Affiliation(s)
- Tatsuya Fukuta
- Department of Physical Pharmaceutics, School of Pharmaceutical Sciences, Wakayama Medical University, 25-1 Shichiban-cho, Wakayama 640-8156, Japan
| | - Naoto Oku
- Faculty of Pharma-Science, Teikyo University, 2-11-1 Kaga, Itabashi-ku, Tokyo 173-8605, Japan
- Department of Medical Biochemistry, School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan
| | - Kentaro Kogure
- Department of Pharmaceutical Health Chemistry, Graduate School of Biomedical Sciences, Tokushima University, Shomachi 1, Tokushima 770-8505, Japan
| |
Collapse
|
13
|
Niknam MR, Attari F. The Potential Applications of Stem Cells for Cancer Treatment. Curr Stem Cell Res Ther 2022; 17:26-42. [PMID: 35048802 DOI: 10.2174/1574888x16666210810100858] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Revised: 05/26/2021] [Accepted: 06/01/2021] [Indexed: 01/10/2023]
Abstract
:
Scientists encounter many obstacles in traditional cancer therapies, including the side effects
on the healthy cells, drug resistance, tumor relapse, the short half-life of employed drugs in
the blood circulation, and the improper delivery of drugs toward the tumor site. The unique traits of
stem cells (SCs) such as self-renewal, differentiation, tumor tropism, the release of bioactive
molecules, and immunosuppression have opened a new window for utilizing SCs as a novel tool in
cancer treatment. In this regard, engineered SCs can secrete anti-cancer proteins or express enzymes
used in suicide gene therapy which locally induce apoptosis in neoplastic cells via the bystander
effect. These cells also stand as proper candidates to serve as careers for drug-loaded nanoparticles
or to play suitable hosts for oncolytic viruses. Moreover, they harbor great potential to be
employed in immunotherapy and combination therapy. However, tactful strategies should be devised
to allow easier transplantation and protection of SCs from in vivo immune responses. In spite
of the great hope concerning SCs application in cancer therapy, there are shortcomings and challenges
to be addressed. This review tends to elaborate on recent advances on the various applications
of SCs in cancer therapy and existing challenges in this regard.
Collapse
Affiliation(s)
- Malikeh Rad Niknam
- Department of Animal Biology, School of Biology, College of Science, University of Tehran, Tehran, Iran
| | - Farnoosh Attari
- Department of Animal Biology, School of Biology, College of Science, University of Tehran, Tehran, Iran
| |
Collapse
|
14
|
Ukidve A, Cu K, Kumbhojkar N, Lahann J, Mitragotri S. Overcoming biological barriers to improve solid tumor immunotherapy. Drug Deliv Transl Res 2021; 11:2276-2301. [PMID: 33611770 DOI: 10.1007/s13346-021-00923-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/21/2021] [Indexed: 02/06/2023]
Abstract
Cancer immunotherapy has been at the forefront of therapeutic interventions for many different tumor types over the last decade. While the discovery of immunotherapeutics continues to occur at an accelerated rate, their translation is often hindered by a lack of strategies to deliver them specifically into solid tumors. Accordingly, significant scientific efforts have been dedicated to understanding the underlying mechanisms that govern their delivery into tumors and the subsequent immune modulation. In this review, we aim to summarize the efforts focused on overcoming tumor-associated biological barriers and enhancing the potency of immunotherapy. We summarize the current understanding of biological barriers that limit the entry of intravascularly administered immunotherapies into the tumors, in vitro techniques developed to investigate the underlying transport processes, and delivery strategies developed to overcome the barriers. Overall, we aim to provide the reader with a framework that guides the rational development of technologies for improved solid tumor immunotherapy.
Collapse
Affiliation(s)
- Anvay Ukidve
- John A Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, 02138, USA
- Wyss Institute of Biologically Inspired Engineering at Harvard University, Boston, MA, 02115, USA
| | - Katharina Cu
- John A Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, 02138, USA
- Wyss Institute of Biologically Inspired Engineering at Harvard University, Boston, MA, 02115, USA
| | - Ninad Kumbhojkar
- John A Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, 02138, USA
- Wyss Institute of Biologically Inspired Engineering at Harvard University, Boston, MA, 02115, USA
| | - Joerg Lahann
- Department of Chemical Engineering, Department of Material Science & Engineering, Department of Macromolecular Science & Engineering, Department of Biomedical Engineering, and Biointerfaces Institute, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Samir Mitragotri
- John A Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, 02138, USA.
- Wyss Institute of Biologically Inspired Engineering at Harvard University, Boston, MA, 02115, USA.
| |
Collapse
|
15
|
Didamson OC, Abrahamse H. Targeted Photodynamic Diagnosis and Therapy for Esophageal Cancer: Potential Role of Functionalized Nanomedicine. Pharmaceutics 2021; 13:1943. [PMID: 34834358 PMCID: PMC8625244 DOI: 10.3390/pharmaceutics13111943] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 10/26/2021] [Accepted: 10/31/2021] [Indexed: 12/11/2022] Open
Abstract
Esophageal cancer is often diagnosed at the late stage when cancer has already spread and is characterized by a poor prognosis. Therefore, early diagnosis is vital for a better and efficient treatment outcome. Upper endoscopy with biopsy is the standard diagnostic tool for esophageal cancer but is challenging to diagnose at its premalignant stage, while conventional treatments such as surgery, chemotherapy, and irradiation therapy, are challenging to eliminate the tumor. Photodynamic diagnosis (PDD) and therapy (PDT) modalities that employ photosensitizers (PSs) are emerging diagnostic and therapeutic strategies for esophageal cancer. However, some flaws associated with the classic PSs have limited their clinical applications. Functionalized nanomedicine has emerged as a potential drug delivery system to enhance PS drug biodistribution and cellular internalization. The conjugation of PSs with functionalized nanomedicine enables increased localization within esophageal cancer cells due to improved solubility and stability in blood circulation. This review highlights PS drugs used for PDD and PDT for esophageal cancer. In addition, it focuses on the various functionalized nanomedicine explored for esophageal cancer and their role in targeted PDD and PDT for diagnosis and treatment.
Collapse
Affiliation(s)
| | - Heidi Abrahamse
- Laser Research Centre, Faculty of Health Sciences, University of Johannesburg, P.O. Box 17011, Doornfontein, Johannesburg 2028, South Africa;
| |
Collapse
|
16
|
Nano-engineered immune cells as "guided missiles" for cancer therapy. J Control Release 2021; 341:60-79. [PMID: 34785315 DOI: 10.1016/j.jconrel.2021.11.016] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 11/06/2021] [Accepted: 11/09/2021] [Indexed: 12/11/2022]
Abstract
Immune cells can actively regulate tumors or inflammatory sites and have good biocompatibility and safety. Currently, they are one of the most promising candidates for drug delivery systems. Moreover, immune cells can significantly extend the circulation time of nanoparticles and have broad-spectrum tumor-targeting properties. This article first introduces the immune cell types most commonly used in recent years, analyzes their advantages and disadvantages, and elucidates their application in anti-tumor therapy. Next, the various ways of loading nanoparticles on immune cells that have been used in recent years are summarized and simply divided into two categories: backpacks and Trojan horses. Finally, the two "mountains" that stand in front of us when using immune cells as cell carriers, off-target problems and effective release strategies, are discussed.
Collapse
|
17
|
Battistella C, Liang Y, Gianneschi NC. Innovations in Disease State Responsive Soft Materials for Targeting Extracellular Stimuli Associated with Cancer, Cardiovascular Disease, Diabetes, and Beyond. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2007504. [PMID: 34145625 PMCID: PMC9836048 DOI: 10.1002/adma.202007504] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 01/20/2021] [Indexed: 05/10/2023]
Abstract
Recent advances in polymer chemistry, materials sciences, and biotechnology have allowed the preclinical development of sophisticated programmable nanomedicines and materials that are able to precisely respond to specific disease-associated triggers and microenvironments. These stimuli, endogenous to the targeted diseases, include pH, redox-state, small molecules, and protein upregulation. Herein, recent advances and innovative approaches in programmable soft materials capable of sensing the aforementioned disease-associated stimuli and responding via a range of dynamic processes including morphological and size transitions, changes in mobility and retention, as well as disassembly are described. In this field generally, the majority of ongoing and past research effort has focused on oncology. Given this interest, examples of the latest innovative approaches to chemo- and immunotherapy treatment strategies for cancer are presented. Moreover, as the field broadens its attention, applications of programmable materials in other diseases are highlighted, with a special focus on cardiovascular disease and diabetes mellitus, where limited attention is paid by the field, but where many promising avenues exist with high potential impact.
Collapse
Affiliation(s)
- Claudia Battistella
- Department of Chemistry, International Institute for Nanotechnology, Simpson-Querrey Institute, Chemistry of Life Processes Institute, Northwestern University, Evanston, IL, 60208, USA
- Department of Materials Science and Engineering, Department of Biomedical Engineering, Department of Pharmacology, Northwestern University, Evanston, IL, 60208, USA
| | - Yifei Liang
- Department of Chemistry, International Institute for Nanotechnology, Simpson-Querrey Institute, Chemistry of Life Processes Institute, Northwestern University, Evanston, IL, 60208, USA
| | - Nathan C Gianneschi
- Department of Chemistry, International Institute for Nanotechnology, Simpson-Querrey Institute, Chemistry of Life Processes Institute, Northwestern University, Evanston, IL, 60208, USA
- Department of Materials Science and Engineering, Department of Biomedical Engineering, Department of Pharmacology, Northwestern University, Evanston, IL, 60208, USA
| |
Collapse
|
18
|
Dapkute D, Pleckaitis M, Bulotiene D, Daunoravicius D, Rotomskis R, Karabanovas V. Hitchhiking Nanoparticles: Mesenchymal Stem Cell-Mediated Delivery of Theranostic Nanoparticles. ACS APPLIED MATERIALS & INTERFACES 2021; 13:43937-43951. [PMID: 34499462 DOI: 10.1021/acsami.1c10445] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Nanotechnology has emerged as a promising solution to permanent elimination of cancer. However, nanoparticles themselves lack specificity to tumors. Due to enhanced migration to tumors, mesenchymal stem cells (MSCs) were suggested as cell-mediated delivery vehicles of nanoparticles. In this study, we have constructed a complex composed of photoluminescent quantum dots (QDs) and a photosensitizer chlorin e6 (Ce6) to obtain multifunctional nanoparticles, combining cancer diagnostic and therapeutic properties. QDs serve as energy donors-excited QDs transfer energy to the attached Ce6 via Förster resonance energy transfer, which in turn generates reactive oxygen species. Here, the physicochemical properties of the QD-Ce6 complex and singlet oxygen generation were measured, and the stability in protein-rich media was evaluated, showing that the complex remains the most stable in protein-free medium. In vitro studies on MSC and cancer cell response to the QD-Ce6 complex revealed the complex-loaded MSCs' potential to transport theranostic nanoparticles and induce cancer cell death. In vivo studies proved the therapeutic efficacy, as the survival of tumor-bearing mice was statistically significantly increased, while tumor progression and metastases were slowed down.
Collapse
Affiliation(s)
- Dominyka Dapkute
- Biomedical Physics Laboratory, National Cancer Institute, P. Baublio 3B, 08406 Vilnius, Lithuania
- Life Sciences Center, Vilnius University, Sauletekio Ave. 7, 10223 Vilnius, Lithuania
| | - Marijus Pleckaitis
- Biomedical Physics Laboratory, National Cancer Institute, P. Baublio 3B, 08406 Vilnius, Lithuania
- Life Sciences Center, Vilnius University, Sauletekio Ave. 7, 10223 Vilnius, Lithuania
| | - Danute Bulotiene
- Biomedical Physics Laboratory, National Cancer Institute, P. Baublio 3B, 08406 Vilnius, Lithuania
| | - Dainius Daunoravicius
- Department of Pathology, Forensic Medicine and Pharmacology, Faculty of Medicine, Vilnius University, M. K. Ciurlionio 21/27, 03101 Vilnius, Lithuania
| | - Ricardas Rotomskis
- Biomedical Physics Laboratory, National Cancer Institute, P. Baublio 3B, 08406 Vilnius, Lithuania
- Biophotonics Group, Laser Research Centre, Vilnius University, Sauletekio Ave. 10, 10223 Vilnius, Lithuania
| | - Vitalijus Karabanovas
- Biomedical Physics Laboratory, National Cancer Institute, P. Baublio 3B, 08406 Vilnius, Lithuania
- Department of Chemistry and Bioengineering, Vilnius Gediminas Technical University, Sauletekio Ave. 11, 10221 Vilnius, Lithuania
| |
Collapse
|
19
|
Engineered macrophages as near-infrared light activated drug vectors for chemo-photodynamic therapy of primary and bone metastatic breast cancer. Nat Commun 2021; 12:4310. [PMID: 34262026 PMCID: PMC8280231 DOI: 10.1038/s41467-021-24564-0] [Citation(s) in RCA: 90] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Accepted: 06/17/2021] [Indexed: 02/06/2023] Open
Abstract
Patients with primary and bone metastatic breast cancer have significantly reduced survival and life quality. Due to the poor drug delivery efficiency of anti-metastasis therapy and the limited response rate of immunotherapy for breast cancer, effective treatment remains a formidable challenge. In this work, engineered macrophages (Oxa(IV)@ZnPc@M) carrying nanomedicine containing oxaliplatin prodrug and photosensitizer are designed as near-infrared (NIR) light-activated drug vectors, aiming to achieve enhanced chemo/photo/immunotherapy of primary and bone metastatic tumors. Oxa(IV)@ZnPc@M exhibits an anti-tumor M1 phenotype polarization and can efficiently home to primary and bone metastatic tumors. Additionally, therapeutics inside Oxa(IV)@ZnPc@M undergo NIR triggered release, which can kill primary tumors via combined chemo-photodynamic therapy and induce immunogenic cell death simultaneously. Oxa(IV)@ZnPc@M combined with anti-PD-L1 can eliminate primary and bone metastatic tumors, activate tumor-specific antitumor immune response, and improve overall survival with limited systemic toxicity. Therefore, this all-in-one macrophage provides a treatment platform for effective therapy of primary and bone metastatic tumors.
Collapse
|
20
|
Thomsen T, Reissmann R, Kaba E, Engelhardt B, Klok HA. Covalent and Noncovalent Conjugation of Degradable Polymer Nanoparticles to T Lymphocytes. Biomacromolecules 2021; 22:3416-3430. [PMID: 34170107 DOI: 10.1021/acs.biomac.1c00488] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Cells are attractive as carriers that can help to enhance control over the biodistribution of polymer nanomedicines. One strategy to use cells as carriers is based on the cell surface immobilization of the nanoparticle cargo. While a range of strategies can be used to immobilize nanoparticles on cell surfaces, only limited effort has been made to investigate the effect of these surface modification chemistries on cell viability and functional properties. This study has explored seven different approaches for the immobilization of poly(lactic acid) (PLA) nanoparticles on the surface of two different T lymphocyte cell lines. The cell lines used were human Jurkat T cells and CD4+ TEM cells. The latter cells possess blood-brain barrier (BBB) migratory properties and are attractive for the development of cell-based delivery systems to the central nervous system (CNS). PLA nanoparticles were immobilized either via covalent active ester-amine, azide-alkyne cycloaddition, and thiol-maleimide coupling, or via noncovalent approaches that use lectin-carbohydrate, electrostatic, or biotin-NeutrAvidin interactions. The cell surface immobilization of the nanoparticles was monitored with flow cytometry and confocal microscopy. By tuning the initial nanoparticle/cell ratio, T cells can be decorated with up to ∼185 nanoparticles/cell as determined by confocal microscopy. The functional properties of the nanoparticle-decorated cells were assessed by evaluating their binding to ICAM-1, a key protein involved in the adhesion of CD4+ TEM cells to the BBB endothelium, as well as in a two-chamber model in vitro BBB migration assay. It was found that the migratory behavior of CD4+ TEM cells carrying carboxylic acid-, biotin-, or Wheat germ agglutinin (WGA)-functionalized nanoparticles was not affected by the presence of the nanoparticle payload. In contrast, however, for cells decorated with maleimide-functionalized nanoparticles, a reduction in the number of migratory cells compared to the nonmodified control cells was observed. Investigating and understanding the impact of nanoparticle-cell surface conjugation chemistries on the viability and properties of cells is important to further improve the design of cell-based nanoparticle delivery systems. The results of this study present a first step in this direction and provide first guidelines for the surface modification of T cells, in particular in view of their possible use for drug delivery to the CNS.
Collapse
Affiliation(s)
- Tanja Thomsen
- École Polytechnique Fédérale de Lausanne (EPFL), Institut des Matériaux and Institut des Sciences et Ingénierie Chimiques, Laboratoire des Polymères, Bâtiment MXD, Station 12, CH-1015 Lausanne, Switzerland
| | - Regina Reissmann
- University of Bern, Theodor Kocher Institute,Freiestrasse 1, CH-3000 Bern, Switzerland
| | - Elisa Kaba
- University of Bern, Theodor Kocher Institute,Freiestrasse 1, CH-3000 Bern, Switzerland
| | - Britta Engelhardt
- University of Bern, Theodor Kocher Institute,Freiestrasse 1, CH-3000 Bern, Switzerland
| | - Harm-Anton Klok
- École Polytechnique Fédérale de Lausanne (EPFL), Institut des Matériaux and Institut des Sciences et Ingénierie Chimiques, Laboratoire des Polymères, Bâtiment MXD, Station 12, CH-1015 Lausanne, Switzerland
| |
Collapse
|
21
|
Jahromi LP, Shahbazi M, Maleki A, Azadi A, Santos HA. Chemically Engineered Immune Cell-Derived Microrobots and Biomimetic Nanoparticles: Emerging Biodiagnostic and Therapeutic Tools. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:2002499. [PMID: 33898169 PMCID: PMC8061401 DOI: 10.1002/advs.202002499] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 11/26/2020] [Indexed: 05/16/2023]
Abstract
Over the past decades, considerable attention has been dedicated to the exploitation of diverse immune cells as therapeutic and/or diagnostic cell-based microrobots for hard-to-treat disorders. To date, a plethora of therapeutics based on alive immune cells, surface-engineered immune cells, immunocytes' cell membranes, leukocyte-derived extracellular vesicles or exosomes, and artificial immune cells have been investigated and a few have been introduced into the market. These systems take advantage of the unique characteristics and functions of immune cells, including their presence in circulating blood and various tissues, complex crosstalk properties, high affinity to different self and foreign markers, unique potential of their on-demand navigation and activity, production of a variety of chemokines/cytokines, as well as being cytotoxic in particular conditions. Here, the latest progress in the development of engineered therapeutics and diagnostics inspired by immune cells to ameliorate cancer, inflammatory conditions, autoimmune diseases, neurodegenerative disorders, cardiovascular complications, and infectious diseases is reviewed, and finally, the perspective for their clinical application is delineated.
Collapse
Affiliation(s)
- Leila Pourtalebi Jahromi
- Drug Research ProgramDivision of Pharmaceutical Chemistry and TechnologyFaculty of PharmacyUniversity of HelsinkiHelsinkiFI‐00014Finland
- Pharmaceutical Sciences Research CenterShiraz University of Medical SciencesShiraz71468‐64685Iran
- Present address:
Helmholtz Institute for Pharmaceutical Research SaarlandHelmholtz Centre for Infection ResearchBiogenic Nanotherapeutics GroupCampus E8.1Saarbrücken66123Germany
| | - Mohammad‐Ali Shahbazi
- Drug Research ProgramDivision of Pharmaceutical Chemistry and TechnologyFaculty of PharmacyUniversity of HelsinkiHelsinkiFI‐00014Finland
- Zanjan Pharmaceutical Nanotechnology Research Center (ZPNRC)Zanjan University of Medical SciencesZanjan45139‐56184Iran
| | - Aziz Maleki
- Zanjan Pharmaceutical Nanotechnology Research Center (ZPNRC)Zanjan University of Medical SciencesZanjan45139‐56184Iran
| | - Amir Azadi
- Pharmaceutical Sciences Research CenterShiraz University of Medical SciencesShiraz71468‐64685Iran
- Department of PharmaceuticsSchool of PharmacyShiraz University of Medical SciencesShiraz71468‐64685Iran
| | - Hélder A. Santos
- Drug Research ProgramDivision of Pharmaceutical Chemistry and TechnologyFaculty of PharmacyUniversity of HelsinkiHelsinkiFI‐00014Finland
- Helsinki Institute of Life Science (HiLIFE)University of HelsinkiHelsinkiFI‐00014Finland
| |
Collapse
|
22
|
Liu Y, Guo F, Guo W, Wang Y, Song W, Fu T. Ferroptosis-related genes are potential prognostic molecular markers for patients with colorectal cancer. Clin Exp Med 2021; 21:467-477. [PMID: 33674956 DOI: 10.1007/s10238-021-00697-w] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Accepted: 02/12/2021] [Indexed: 12/11/2022]
Abstract
Ferroptosis is a newly discovered programmed cell death that plays a vital role in the occurrence and development of tumors. However, little is known about its prognostic value of ferroptosis-related genes (FRGs) in colorectal cancer (CRC). This study was to investigate the clinical significance of FRGs on overall survival (OS) of patients with CRC. The mRNA expression profiles and corresponding clinical data of CRC patients were downloaded from public databases. Least absolute shrinkage and selection operator (LASSO) Cox regression was applied to identify hub FRGs and establish a novel ferroptosis-related gene signature in predicting OS in training cohort, and assessed in the validation cohort. Then, the genomic-clinicopathologic nomogram integrating risk scores and clinicopathological features were established. Thirteen FRGs were identified to be most significantly related to the OS of CRC patients. Based on the LASSO Cox regression algorithm, we selected 10 genes from 13 FRGs to establish a prognostic risk signature. The log-rank test and Kaplan-Meier analysis confirmed the predictive value of the risk scores for OS in CRC patients. The time-dependent receiver operating characteristic (tdROC) of signature indicates the showed powerful prediction ability in both training cohort and validation cohort. Then, a genomic-clinicopathologic nomogram integrating age, stage, and risk scores was established and demonstrated high predictive accuracy and clinical value, which was validated through tdROC and calibration curves. The ferroptosis-related gene signature and genomic-clinicopathologic nomogram could be used to predict the prognosis of CRC patients and might also be potential therapeutic targets.
Collapse
Affiliation(s)
- Yanliang Liu
- Department of Gastrointestinal Surgery II, Key Laboratory of Hubei Province for Digestive System Disease, Renmin Hospital, Wuhan University, Wuhan, Hubei Province, China
| | - Fengqin Guo
- Department of Gastrointestinal Surgery II, Key Laboratory of Hubei Province for Digestive System Disease, Renmin Hospital, Wuhan University, Wuhan, Hubei Province, China
| | - Wenyi Guo
- Department of Gastrointestinal Surgery II, Key Laboratory of Hubei Province for Digestive System Disease, Renmin Hospital, Wuhan University, Wuhan, Hubei Province, China
| | - Yatao Wang
- Department of Gastrointestinal Surgery II, Key Laboratory of Hubei Province for Digestive System Disease, Renmin Hospital, Wuhan University, Wuhan, Hubei Province, China
| | - Wei Song
- Department of Gastrointestinal Surgery II, Key Laboratory of Hubei Province for Digestive System Disease, Renmin Hospital, Wuhan University, Wuhan, Hubei Province, China
| | - Tao Fu
- Department of Gastrointestinal Surgery II, Key Laboratory of Hubei Province for Digestive System Disease, Renmin Hospital, Wuhan University, Wuhan, Hubei Province, China.
| |
Collapse
|
23
|
Ayer M, Burri O, Guiet R, Seitz A, Kaba E, Engelhardt B, Klok HA. Biotin-NeutrAvidin Mediated Immobilization of Polymer Micro- and Nanoparticles on T Lymphocytes. Bioconjug Chem 2021; 32:541-552. [PMID: 33621057 DOI: 10.1021/acs.bioconjchem.1c00026] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Cells are powerful carriers that can help to improve the delivery of nanomedicines. One approach to use cells as carriers is to immobilize the nanoparticulate cargo on the cell surface. While a plethora of chemical conjugation strategies are available to bind nanoparticles to cell surfaces, only relatively little is known about the effects of particle size and cell type on the surface immobilization of nanoparticles. This study investigates the biotin-NeutrAvidin mediated immobilization of model polymer nanoparticles with sizes ranging from 40 nm to 1 μm on two different T cell lines, viz., human Jurkat cells as well as mouse SJL/PLP7 T cells, which are of potential interest for drug delivery across the blood-brain barrier. The nanoparticle cell surface immobilization and the particle surface concentration and distribution were analyzed by flow cytometry and confocal microscopy. The functional properties of nanoparticle-modified SJL/PLP7 T cells were assessed in an ICAM-1 binding assay as well as in a two-chamber setup in which the migration of the particle-modified T cells across an in vitro model of the blood-brain barrier was studied. The results of these experiments highlight the effects of particle size and cell line on the surface immobilization of nanoparticles on living cells.
Collapse
Affiliation(s)
- Maxime Ayer
- École Polytechnique Fédérale de Lausanne (EPFL), Institut des Matériaux and Institut des Sciences et Ingénierie Chimiques, Laboratoire des Polymères, Bâtiment MXD, Station 12, CH-1015 Lausanne, Switzerland
| | - Olivier Burri
- École Polytechnique Fédérale de Lausanne (EPFL), Faculté des Sciences de la Vie, Bioimaging and Optics Platform, Bâtiment AI, Station 15, CH-1015 Lausanne, Switzerland
| | - Romain Guiet
- École Polytechnique Fédérale de Lausanne (EPFL), Faculté des Sciences de la Vie, Bioimaging and Optics Platform, Bâtiment AI, Station 15, CH-1015 Lausanne, Switzerland
| | - Arne Seitz
- École Polytechnique Fédérale de Lausanne (EPFL), Faculté des Sciences de la Vie, Bioimaging and Optics Platform, Bâtiment AI, Station 15, CH-1015 Lausanne, Switzerland
| | - Elisa Kaba
- Theodor Kocher Institute, University of Bern, Freiestrasse 1, CH-3012 Bern, Switzerland
| | - Britta Engelhardt
- Theodor Kocher Institute, University of Bern, Freiestrasse 1, CH-3012 Bern, Switzerland
| | - Harm-Anton Klok
- École Polytechnique Fédérale de Lausanne (EPFL), Institut des Matériaux and Institut des Sciences et Ingénierie Chimiques, Laboratoire des Polymères, Bâtiment MXD, Station 12, CH-1015 Lausanne, Switzerland
| |
Collapse
|
24
|
Elliott RO, He M. Unlocking the Power of Exosomes for Crossing Biological Barriers in Drug Delivery. Pharmaceutics 2021; 13:pharmaceutics13010122. [PMID: 33477972 PMCID: PMC7835896 DOI: 10.3390/pharmaceutics13010122] [Citation(s) in RCA: 126] [Impact Index Per Article: 31.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 01/12/2021] [Accepted: 01/14/2021] [Indexed: 12/25/2022] Open
Abstract
Since the 2013 Nobel Prize was awarded for the discovery of vesicle trafficking, a subgroup of nanovesicles called exosomes has been driving the research field to a new regime for understanding cellular communication. This exosome-dominated traffic control system has increased understanding of many diseases, including cancer metastasis, diabetes, and HIV. In addition to the important diagnostic role, exosomes are particularly attractive for drug delivery, due to their distinctive properties in cellular information transfer and uptake. Compared to viral and non-viral synthetic systems, the natural, cell-derived exosomes exhibit intrinsic payload and bioavailability. Most importantly, exosomes easily cross biological barriers, obstacles that continue to challenge other drug delivery nanoparticle systems. Recent emerging studies have shown numerous critical roles of exosomes in many biological barriers, including the blood–brain barrier (BBB), blood–cerebrospinal fluid barrier (BCSFB), blood–lymph barrier (BlyB), blood–air barrier (BAB), stromal barrier (SB), blood–labyrinth barrier (BLaB), blood–retinal barrier (BRB), and placental barrier (PB), which opens exciting new possibilities for using exosomes as the delivery platform. However, the systematic reviews summarizing such discoveries are still limited. This review covers state-of-the-art exosome research on crossing several important biological barriers with a focus on the current, accepted models used to explain the mechanisms of barrier crossing, including tight junctions. The potential to design and engineer exosomes to enhance delivery efficacy, leading to future applications in precision medicine and immunotherapy, is discussed.
Collapse
Affiliation(s)
- Rebekah Omarkhail Elliott
- Department of Chemical and Petroleum Engineering, Bioengineering Program, University of Kansas, Lawrence, KS 66045, USA;
| | - Mei He
- Department of Chemical and Petroleum Engineering, Bioengineering Program, University of Kansas, Lawrence, KS 66045, USA;
- Department of Chemistry, University of Kansas, Lawrence, KS 66045, USA
- Department of Pharmaceutics, College of Pharmacy, University of Florida, Gainesville, FL 32610, USA
- Correspondence:
| |
Collapse
|
25
|
Ahmad R, Srivastava S, Ghosh S, Khare SK. Phytochemical delivery through nanocarriers: a review. Colloids Surf B Biointerfaces 2021; 197:111389. [PMID: 33075659 DOI: 10.1016/j.colsurfb.2020.111389] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2020] [Revised: 07/17/2020] [Accepted: 09/24/2020] [Indexed: 01/18/2023]
Abstract
In recent times, phytochemicals encapsulated or conjugated with nanocarriers for delivery to the specific sites have gained considerable research interest. Phytochemicals are mostly plant secondary metabolites which reported to be beneficial for human health and in disease theraphy. However, these compound are large size and polar nature of these compounds, make it difficult to cross the blood-brain barrier (BBB), endothelial lining of blood vessels, gastrointestinal tract and mucosa. Moreover, they are enzymatically degraded in the gastrointestinal tract. Therefore, encapsulation or conjugation of these compounds with nanocrriers could be an alternate way to enhance their bioefficacy by influencing their gastrointestinal stability, rate of absorption and dispersion. This review presents an overview of nanocarriers alternatives which improves therapeutic value and avoid toxicity, by releasing bioactive compounds specifically at target tissues with enhanced stability and bioavailability. Future investigations may emphasize on deciphering the structural changes in nanocarriers during digestion and absorption, the difference between in-vitro and in-vivo digestion simulations, and impact of nanocarriers on the metabolism of phytochemicals.
Collapse
Affiliation(s)
- Razi Ahmad
- Enzyme and Microbial Biochemistry Laboratory, Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi, 110016, India
| | - Sukriti Srivastava
- Enzyme and Microbial Biochemistry Laboratory, Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi, 110016, India
| | - Shubhrima Ghosh
- Enzyme and Microbial Biochemistry Laboratory, Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi, 110016, India
| | - Sunil Kumar Khare
- Enzyme and Microbial Biochemistry Laboratory, Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi, 110016, India.
| |
Collapse
|
26
|
Thomsen T, Ayoub AB, Psaltis D, Klok HA. Fluorescence-Based and Fluorescent Label-Free Characterization of Polymer Nanoparticle Decorated T Cells. Biomacromolecules 2020; 22:190-200. [PMID: 32869972 DOI: 10.1021/acs.biomac.0c00969] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Cells are attractive carriers for the transport and delivery of nanoparticulate cargo. The use of cell-based carriers allows one to enhance control over the biodistribution of drug-loaded polymers and polymer nanoparticles. One key element in the development of cell-based delivery systems is the loading of the cell-based carrier with the nanoparticle cargo, which can be achieved either by internalization of the payload or by immobilization on the cell surface. The surface modification of cells with nanoparticles or the internalization of nanoparticles by cells is usually monitored with fluorescence-based techniques, such as flow cytometry and confocal microscopy. In spite of the widespread use of these techniques, the use of fluorescent labels also poses some risks and has several drawbacks. Fluorescent dyes may bleach, or leach from, the nanoparticles or alter the physicochemical properties of nanoparticles and their interactions with and uptake by cells. Using poly(d,l-lactic acid) nanoparticles that are loaded with Coumarin 6, BODIPY 493/503, or DiO dyes as a model system, this paper demonstrates that the use of physically entrapped fluorescent labels can lead to false negative or erroneous results. The use of nanoparticles that contain covalently tethered fluorescent dyes instead was found to provide a robust approach to monitor cell surface conjugation reactions and to quantitatively analyze nanoparticle-decorated cells. Finally, it is shown that optical diffraction tomography is an attractive, alternative technique for the characterization of nanoparticle-decorated cells, which obviates the need for fluorescent labels.
Collapse
Affiliation(s)
- Tanja Thomsen
- Institut des Matériaux and Institut des Sciences et Ingénierie Chimiques, Laboratoire des Polymères, École Polytechnique Fédérale de Lausanne (EPFL), Bâtiment MXD, Station 12, CH-1015 Lausanne, Switzerland
| | - Ahmed B Ayoub
- Institute of Microengineering, Optics Laboratory, École Polytechnique Fédérale de Lausanne (EPFL), Bâtiment BM, Station 17, CH-1015 Lausanne, Switzerland
| | - Demetri Psaltis
- Institute of Microengineering, Optics Laboratory, École Polytechnique Fédérale de Lausanne (EPFL), Bâtiment BM, Station 17, CH-1015 Lausanne, Switzerland
| | - Harm-Anton Klok
- Institut des Matériaux and Institut des Sciences et Ingénierie Chimiques, Laboratoire des Polymères, École Polytechnique Fédérale de Lausanne (EPFL), Bâtiment MXD, Station 12, CH-1015 Lausanne, Switzerland
| |
Collapse
|
27
|
Ren J, Feng J, Song W, Wang C, Ge Y, Fu T. Development and validation of a metabolic gene signature for predicting overall survival in patients with colon cancer. Clin Exp Med 2020; 20:535-544. [PMID: 32772211 DOI: 10.1007/s10238-020-00652-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Accepted: 08/01/2020] [Indexed: 12/24/2022]
Abstract
The reprogramming of cellular metabolism is a hallmark of tumorigenesis. However, the prognostic value of metabolism-related genes in colon cancer remains unclear. This study aimed to identify a metabolic gene signature to categorize colon cancer patients into high- and low-risk groups and predict prognosis. Samples from the Gene Expression Omnibus database were used as the training cohort, while samples from The Cancer Genome Atlas database were used as the validation cohort. A metabolic gene signature was established to investigate a robust risk stratification for colon cancer. Subsequently, a prognostic nomogram was established combining the metabolism-related risk score and clinicopathological characteristics of patients. A total of 351 differentially expressed metabolism-related genes were identified in colon cancer. After univariate analysis and least absolute shrinkage and selection operator-penalized regression analysis, an eight-gene metabolic signature (MTR, NANS, HADH, IMPA2, AGPAT1, GGT5, CYP2J2, and ASL) was identified to classify patients into high- and low-risk groups. High-risk patients had significantly shorter overall survival than low-risk patients in both the training and validation cohorts. A high-risk score was positively correlated with proximal colon cancer (P = 0.012), BRAF mutation (P = 0.049), and advanced stage (P = 0.027). We established a prognostic nomogram based on metabolism-related gene risk score and clinicopathologic factors. The areas under the curve and calibration curves indicated that the established nomogram showed a good accuracy of prediction. We have established a novel metabolic gene signature that could predict overall survival in colon cancer patients and serve as a biomarker for colon cancer.
Collapse
Affiliation(s)
- Jun Ren
- Department of Gastrointestinal Surgery II, Renmin Hospital of Wuhan University, No. 238, Jiefang Road, Wuhan, 430060, Hubei, China
| | - Juan Feng
- Department of Breast Surgery, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei, China
| | - Wei Song
- Department of Gastrointestinal Surgery II, Renmin Hospital of Wuhan University, No. 238, Jiefang Road, Wuhan, 430060, Hubei, China
| | - Chuntao Wang
- Department of Gastrointestinal Surgery II, Renmin Hospital of Wuhan University, No. 238, Jiefang Road, Wuhan, 430060, Hubei, China
| | - Yuhang Ge
- Department of Gastrointestinal Surgery II, Renmin Hospital of Wuhan University, No. 238, Jiefang Road, Wuhan, 430060, Hubei, China
| | - Tao Fu
- Department of Gastrointestinal Surgery II, Renmin Hospital of Wuhan University, No. 238, Jiefang Road, Wuhan, 430060, Hubei, China.
| |
Collapse
|
28
|
Jakšić Z, Jakšić O. Biomimetic Nanomembranes: An Overview. Biomimetics (Basel) 2020; 5:E24. [PMID: 32485897 PMCID: PMC7345464 DOI: 10.3390/biomimetics5020024] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 05/26/2020] [Accepted: 05/27/2020] [Indexed: 11/30/2022] Open
Abstract
Nanomembranes are the principal building block of basically all living organisms, and without them life as we know it would not be possible. Yet in spite of their ubiquity, for a long time their artificial counterparts have mostly been overlooked in mainstream microsystem and nanosystem technologies, being a niche topic at best, instead of holding their rightful position as one of the basic structures in such systems. Synthetic biomimetic nanomembranes are essential in a vast number of seemingly disparate fields, including separation science and technology, sensing technology, environmental protection, renewable energy, process industry, life sciences and biomedicine. In this study, we review the possibilities for the synthesis of inorganic, organic and hybrid nanomembranes mimicking and in some way surpassing living structures, consider their main properties of interest, give a short overview of possible pathways for their enhancement through multifunctionalization, and summarize some of their numerous applications reported to date, with a focus on recent findings. It is our aim to stress the role of functionalized synthetic biomimetic nanomembranes within the context of modern nanoscience and nanotechnologies. We hope to highlight the importance of the topic, as well as to stress its great applicability potentials in many facets of human life.
Collapse
Affiliation(s)
- Zoran Jakšić
- Center of Microelectronic Technologies, Institute of Chemistry, Technology and Metallurgy, University of Belgrade, 11000 Belgrade, Serbia;
| | | |
Collapse
|
29
|
Peng Q, Yang JY, Zhou G. Emerging functions and clinical applications of exosomes in human oral diseases. Cell Biosci 2020; 10:68. [PMID: 32489584 PMCID: PMC7245751 DOI: 10.1186/s13578-020-00424-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Accepted: 04/25/2020] [Indexed: 02/07/2023] Open
Abstract
Exosomes are cell-derived membranous vesicles of endosomal origin secreted by all type of cells and present in various body fluids. Exosomes are enriched in peptides, lipids, and nucleic acids, emerging as vital modulators in intercellular communication. Exosomes are increasingly being evaluated as biomarkers for diagnosis and prognosis of diseases, because the constituents of exosomes could be reprogrammed depending on the states of diseases. These features also make exosomes a research hotspot in oral diseases in recent years. In this review, we outlined the characteristics of exosomes, focused on the differential expressions and altered biological functions of exosomes in oral diseases, including oral squamous cell carcinoma, oral leukoplakia, periodontitis, primary Sjögren's syndrome, oral lichen planus, as well as hand foot and mouth disease. Besides, accumulated evidence documents that it is implementable to consider the natural nanostructured exosomes as a new strategy for disease treatment. Herein, we highlighted the therapeutic potential of exosomes in oral tissue regeneration, oncotherapy, wound healing, and their superiority as therapeutic drug delivery vehicles.
Collapse
Affiliation(s)
- Qiao Peng
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Jing-ya Yang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Gang Zhou
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, China
- Department of Oral Medicine, School and Hospital of Stomatology, Wuhan University, Luoyu Road 237, Wuhan, China
| |
Collapse
|
30
|
Rad AH, Aghebati-Maleki L, Kafil HS, Abbasi A. Molecular mechanisms of postbiotics in colorectal cancer prevention and treatment. Crit Rev Food Sci Nutr 2020; 61:1787-1803. [PMID: 32410512 DOI: 10.1080/10408398.2020.1765310] [Citation(s) in RCA: 73] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The occurrence of colorectal cancer (CRC) has been rising expeditiously and anticipated that 2.4 million new occasions of CRC will be detected yearly around the world until the year 2035. Due to some side-effects and complications of conventional CRC therapies, bioactive components such as microbial-derived biomolecules (postbiotics) have been attaining great significance by researchers for adjuvant therapy in CRC patients. The term 'postbiotics' encompasses an extensive range of complex micro- and macro-molecules (<50, 50-100, and 100< kDa) such as inactivated microbial cells, cell fractions or metabolites, which confer various physiological health benefits to the host when administered in adequate amounts. Postbiotics modulate the composition of the gut microbiota and the functionality of the immune system, as well as promote the CRC treatment effectiveness and reduces its side-effects in CRC patients due to possessing anti-oxidant, anti-proliferative, anti-inflammatory, and anti-cancer activities. Presently scientific literature confirms that postbiotics with their unique characteristics in terms of clinical (safe origin), technological (stability), and economic (low production costs) aspects can be used as promising tools for both prevent and adjuvant treat strategies in CRC patients without any serious undesirable side-effects. This review provides an overview of the concept and safety issues regarding postbiotics, with emphasis on their biological role in the prevention and treatment of CRC.
Collapse
Affiliation(s)
- Aziz Homayouni Rad
- Department of Food Science and Technology, Faculty of Nutrition & Food Sciences, Nutrition Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Hossein Samadi Kafil
- Drug Applied Research Center, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Amin Abbasi
- Department of Food Science and Technology, Faculty of Nutrition & Food Sciences, Nutrition Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Student's research committee, Faculty of Nutrition and Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
31
|
Habibi N, Quevedo DF, Gregory JV, Lahann J. Emerging methods in therapeutics using multifunctional nanoparticles. WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY 2020; 12:e1625. [DOI: 10.1002/wnan.1625] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Revised: 12/16/2019] [Accepted: 02/04/2020] [Indexed: 01/12/2023]
Affiliation(s)
- Nahal Habibi
- Biointerfaces Institute, Department of Chemical Engineering University of Michigan Ann Arbor Michigan USA
| | - Daniel F. Quevedo
- Biointerfaces Institute, Department of Biomedical Engineering University of Michigan Ann Arbor Michigan USA
| | - Jason V. Gregory
- Biointerfaces Institute, Department of Chemical Engineering University of Michigan Ann Arbor Michigan USA
| | - Joerg Lahann
- Biointerfaces Institute, Department of Chemical Engineering University of Michigan Ann Arbor Michigan USA
- Biointerfaces Institute, Department of Biomedical Engineering University of Michigan Ann Arbor Michigan USA
- Biointerfaces Institute, Department of Materials Science and Engineering University of Michigan Ann Arbor Michigan USA
- Biointerfaces Institute, Department of Macromolecular Science and Engineering University of Michigan Ann Arbor Michigan USA
| |
Collapse
|
32
|
Zheng Y, Li Z, Chen H, Gao Y. Nanoparticle-based drug delivery systems for controllable photodynamic cancer therapy. Eur J Pharm Sci 2020; 144:105213. [PMID: 31926941 DOI: 10.1016/j.ejps.2020.105213] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Revised: 01/08/2020] [Accepted: 01/08/2020] [Indexed: 01/10/2023]
Abstract
Compared with the traditional treatment, photodynamic therapy (PDT) in the treatment of malignant tumors has the advantages of less damage to normal tissues, quick therapeutic effect, and ability to repeat treatments to the same site. However, most of the traditional photosensitizers (PSs) have severe skin photosensitization, poor tumor targeting, and low therapeutic effect in hypoxic tumor environment, which limit the application of PDT. Nanoparticle-based drug delivery systems can improve the targeting of PSs and release drugs with controllable photoactivity at predetermined locations, so as to achieve desired therapeutic effects with minimal side-effects. The present review summarizes the current nanoparticle platforms for PDT, and offers the description of different strategies including tumor-targeted delivery, controlled-release of PSs and the triggered photoactivity to achieve controllable PDT by nanoparticle-based drug delivery systems. The challenges and prospects for further development of intelligent PSs for PDT are also discussed.
Collapse
Affiliation(s)
- Yilin Zheng
- Cancer Metastasis Alert and Prevention Center, College of Chemistry, Fuzhou University, 2 Xueyuan Road, Yangguang Building, 6FL., Fuzhou, Fujian 350108, China; Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, Fuzhou University, 2 Xueyuan Road, Yangguang Building, 6FL., Fuzhou, Fujian 350108, China
| | - Ziying Li
- Cancer Metastasis Alert and Prevention Center, College of Chemistry, Fuzhou University, 2 Xueyuan Road, Yangguang Building, 6FL., Fuzhou, Fujian 350108, China; Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, Fuzhou University, 2 Xueyuan Road, Yangguang Building, 6FL., Fuzhou, Fujian 350108, China
| | - Haijun Chen
- Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, Fuzhou University, 2 Xueyuan Road, Yangguang Building, 6FL., Fuzhou, Fujian 350108, China
| | - Yu Gao
- Cancer Metastasis Alert and Prevention Center, College of Chemistry, Fuzhou University, 2 Xueyuan Road, Yangguang Building, 6FL., Fuzhou, Fujian 350108, China; Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, Fuzhou University, 2 Xueyuan Road, Yangguang Building, 6FL., Fuzhou, Fujian 350108, China.
| |
Collapse
|
33
|
He L, Wang H, Han Y, Wang K, Dong H, Li Y, Shi D, Li Y. Remodeling of Cellular Surfaces via Fast Disulfide-Thiol Exchange To Regulate Cell Behaviors. ACS APPLIED MATERIALS & INTERFACES 2019; 11:47750-47761. [PMID: 31773939 DOI: 10.1021/acsami.9b17550] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Remodeling of cellular surfaces is shown highly effective in the manipulation and control of cell behaviors via nonbiological means. By 5-thio-2-nitrobenzoate-mediated, fast, and reversible disulfide-thiol exchange, a sequential layer by layer assembly process was developed to grow albumin protein shells on cellular surfaces fixed by a disulfide-linked network, in a cytocompatible manner. The artificial shells, accomplished by a double-assembly process, were sustainable up to >1 day, and thereafter gradually bioabsorbed with unaffected cell viability. The surface engineering process enabled dynamic remodeling of cellular surfaces that effectively controlled cell behaviors including regulated cell proliferation, enhanced uptake efficiency of dextran-fluorescein isothiocyanate that is known for cell-impermeability, and targeted imaging. This unique approach was well-validated on tumor cells (B16), immune cells (DC2.4), and neutrophils, showing its potential universality for most of the cells that are rich in thiols. The new strategy will show promise in cell manipulation and targeted imaging.
Collapse
Affiliation(s)
- Lianghua He
- Shanghai Tenth People's Hospital, The Institute for Biomedical Engineering & Nano Science , Tongji University School of Medicine , Shanghai 200092 , China
| | - Huaiji Wang
- Shanghai Tenth People's Hospital, The Institute for Biomedical Engineering & Nano Science , Tongji University School of Medicine , Shanghai 200092 , China
| | - Yi Han
- Shanghai Tenth People's Hospital, The Institute for Biomedical Engineering & Nano Science , Tongji University School of Medicine , Shanghai 200092 , China
| | - Kun Wang
- School of Materials Science and Engineering , Tongji University , 4800 Caoan Road , Shanghai 201804 , China
| | - Haiqing Dong
- Shanghai Tenth People's Hospital, The Institute for Biomedical Engineering & Nano Science , Tongji University School of Medicine , Shanghai 200092 , China
| | - Yan Li
- Shanghai Tenth People's Hospital, The Institute for Biomedical Engineering & Nano Science , Tongji University School of Medicine , Shanghai 200092 , China
| | - Donglu Shi
- The Materials Science & Engineering Program, Department of Mechanical & Materials Engineering, College of Engineering & Applied Science , University of Cincinnati , Cincinnati , Ohio 45221 , United States
| | - Yongyong Li
- Shanghai Tenth People's Hospital, The Institute for Biomedical Engineering & Nano Science , Tongji University School of Medicine , Shanghai 200092 , China
| |
Collapse
|
34
|
Tran PH, Duan W, Tran TT. Recent developments of nanoparticle-delivered dosage forms for buccal delivery. Int J Pharm 2019; 571:118697. [DOI: 10.1016/j.ijpharm.2019.118697] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Revised: 09/13/2019] [Accepted: 09/13/2019] [Indexed: 12/23/2022]
|
35
|
Auría-Soro C, Nesma T, Juanes-Velasco P, Landeira-Viñuela A, Fidalgo-Gomez H, Acebes-Fernandez V, Gongora R, Almendral Parra MJ, Manzano-Roman R, Fuentes M. Interactions of Nanoparticles and Biosystems: Microenvironment of Nanoparticles and Biomolecules in Nanomedicine. NANOMATERIALS (BASEL, SWITZERLAND) 2019; 9:E1365. [PMID: 31554176 PMCID: PMC6835394 DOI: 10.3390/nano9101365] [Citation(s) in RCA: 121] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Revised: 09/17/2019] [Accepted: 09/18/2019] [Indexed: 12/12/2022]
Abstract
Nanotechnology is a multidisciplinary science covering matters involving the nanoscale level that is being developed for a great variety of applications. Nanomedicine is one of these attractive and challenging uses focused on the employment of nanomaterials in medical applications such as drug delivery. However, handling these nanometric systems require defining specific parameters to establish the possible advantages and disadvantages in specific applications. This review presents the fundamental factors of nanoparticles and its microenvironment that must be considered to make an appropriate design for medical applications, mainly: (i) Interactions between nanoparticles and their biological environment, (ii) the interaction mechanisms, (iii) and the physicochemical properties of nanoparticles. On the other hand, the repercussions of the control, alter and modify these parameters in the biomedical applications. Additionally, we briefly report the implications of nanoparticles in nanomedicine and precision medicine, and provide perspectives in immunotherapy, which is opening novel applications as immune-oncology.
Collapse
Affiliation(s)
- Carlota Auría-Soro
- Department of Medicine and General Cytometry Service-Nucleus, Cancer Research Centre (IBMCC/CSIC/USAL/IBSAL), 37007 Salamanca, Spain.
- Department of Analytical Chemistry, Nutrition and Food Science, Faculty of Chemistry, University of Salamanca, 37008 Salamanca, Spain.
| | - Tabata Nesma
- Department of Medicine and General Cytometry Service-Nucleus, Cancer Research Centre (IBMCC/CSIC/USAL/IBSAL), 37007 Salamanca, Spain.
| | - Pablo Juanes-Velasco
- Department of Medicine and General Cytometry Service-Nucleus, Cancer Research Centre (IBMCC/CSIC/USAL/IBSAL), 37007 Salamanca, Spain.
| | - Alicia Landeira-Viñuela
- Department of Medicine and General Cytometry Service-Nucleus, Cancer Research Centre (IBMCC/CSIC/USAL/IBSAL), 37007 Salamanca, Spain.
| | - Helena Fidalgo-Gomez
- Department of Medicine and General Cytometry Service-Nucleus, Cancer Research Centre (IBMCC/CSIC/USAL/IBSAL), 37007 Salamanca, Spain.
| | - Vanessa Acebes-Fernandez
- Department of Medicine and General Cytometry Service-Nucleus, Cancer Research Centre (IBMCC/CSIC/USAL/IBSAL), 37007 Salamanca, Spain.
| | - Rafael Gongora
- Department of Medicine and General Cytometry Service-Nucleus, Cancer Research Centre (IBMCC/CSIC/USAL/IBSAL), 37007 Salamanca, Spain.
| | - María Jesus Almendral Parra
- Department of Analytical Chemistry, Nutrition and Food Science, Faculty of Chemistry, University of Salamanca, 37008 Salamanca, Spain.
| | - Raúl Manzano-Roman
- Proteomics Unit. Cancer Research Centre (IBMCC/CSIC/USAL/IBSAL), 37007 Salamanca, Spain.
| | - Manuel Fuentes
- Department of Medicine and General Cytometry Service-Nucleus, Cancer Research Centre (IBMCC/CSIC/USAL/IBSAL), 37007 Salamanca, Spain.
- Proteomics Unit. Cancer Research Centre (IBMCC/CSIC/USAL/IBSAL), 37007 Salamanca, Spain.
| |
Collapse
|
36
|
Sandra F, Khaliq NU, Sunna A, Care A. Developing Protein-Based Nanoparticles as Versatile Delivery Systems for Cancer Therapy and Imaging. NANOMATERIALS (BASEL, SWITZERLAND) 2019; 9:E1329. [PMID: 31527483 PMCID: PMC6781024 DOI: 10.3390/nano9091329] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Revised: 09/04/2019] [Accepted: 09/12/2019] [Indexed: 02/06/2023]
Abstract
In recent years, it has become apparent that cancer nanomedicine's reliance on synthetic nanoparticles as drug delivery systems has resulted in limited clinical outcomes. This is mostly due to a poor understanding of their "bio-nano" interactions. Protein-based nanoparticles (PNPs) are rapidly emerging as versatile vehicles for the delivery of therapeutic and diagnostic agents, offering a potential alternative to synthetic nanoparticles. PNPs are abundant in nature, genetically and chemically modifiable, monodisperse, biocompatible, and biodegradable. To harness their full clinical potential, it is important for PNPs to be accurately designed and engineered. In this review, we outline the recent advancements and applications of PNPs in cancer nanomedicine. We also discuss the future directions for PNP research and what challenges must be overcome to ensure their translation into the clinic.
Collapse
Affiliation(s)
- Febrina Sandra
- Department of Molecular Sciences, Macquarie University, Sydney 2109, Australia.
| | - Nisar Ul Khaliq
- College of Pharmacy, Korea University, 2511 Sejong-ro, Sejong 30019, Korea.
| | - Anwar Sunna
- Department of Molecular Sciences, Macquarie University, Sydney 2109, Australia.
- Australian Research Council Centre of Excellence for Nanoscale BioPhotonics, Macquarie University, Sydney, NSW 2109, Australia.
| | - Andrew Care
- Department of Molecular Sciences, Macquarie University, Sydney 2109, Australia.
- Australian Research Council Centre of Excellence for Nanoscale BioPhotonics, Macquarie University, Sydney, NSW 2109, Australia.
| |
Collapse
|