1
|
Garg P, Verma N, Valsan A, Sarohi V, Basak T, Gupta T, Kaur P, Ralmilay S, Singh S, De A, Premkumar M, Taneja S, Duseja A, Singh V, Bajaj JS. Proteomics-guided Biomarker Discovery, Validation, and Pathway Perturbation in Infection-related Acute Decompensation of Cirrhosis. Clin Gastroenterol Hepatol 2025:S1542-3565(25)00084-9. [PMID: 39924007 DOI: 10.1016/j.cgh.2025.01.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 12/27/2024] [Accepted: 01/09/2025] [Indexed: 02/11/2025]
Abstract
BACKGROUND & AIMS Inappropriate treatment of infections fuels drug resistance, organ failures, and costs in cirrhosis. We explored proteomics to improve infection diagnosis and management in acutely decompensated (AD) cirrhosis. METHODS We enrolled 391 patients with AD cirrhosis (92% males, median-age: 41 years), 84 in the discovery cohort (54 infected, 30 non-infected), 147 in the validation cohort I (106 infected, 41 non-infected), and 160 in the validation cohort II (108 infected, 52 non-infected). High-throughput proteomics identified biomarkers in the discovery cohort, validated through enzyme-linked immunoassay in subsequent cohorts. A model for infection was evaluated through discrimination, calibration, and decision curves and was externally validated. RESULTS Infected patients exhibited higher leucocyte counts, procalcitonin, organ failures, Model for End-stage Liver Disease scores, and 30-day mortality (P < .001 each). Proteomics identified 516 proteins, 27 upregulated and 38 downregulated, in infections. LGALS3BP, PLTP, CFP, and GPX3 were independently linked to infections (adjusting for severity and systemic inflammatory response syndrome), with composite area under the receiver operating characteristic curve (AUC) of 0.854 (95% confidence interval [CI], 0.787-0.922) in validation cohort I. A PACIFY model (LGALS3BP + procalcitonin + CLIF-COF + lactate) predicted infections with AUC of 0.965 (95% CI, 0.933-0.997) and 0.906 (95% CI, 0.860-0.952) in validation cohorts I and II, outperforming procalcitonin, systemic inflammatory response syndrome, white blood cell, neutrophil-to-lymphocyte ratio, neutrophil %, and composite models (P < .001). The model demonstrated fair calibration, with decision curves indicating a net benefit of the model in treating infections and reducing unnecessary antimicrobial use. Consistent findings were observed on external validation (AUC, 0.949; 95% CI, 0.916-0.982), re-enforcing the accuracy and clinical utility of the model. A deployable app was developed for infection risk estimation, enhancing practical applicability. Impaired phagocytosis, complement functions, hypocoagulation, hypofibrinolysis, dysregulated carbohydrate metabolism, autophagy, heightened cell death, and proteolysis were key perturbed pathways in infections. CONCLUSION The study identifies novel protein signatures and pathways linked with infections in AD cirrhosis. A biomarker-guided treatment of infections can limit unnecessary antimicrobial use and the burden of drug resistance in cirrhosis.
Collapse
Affiliation(s)
- Pratibha Garg
- Department of Hepatology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Nipun Verma
- Department of Hepatology, Postgraduate Institute of Medical Education and Research, Chandigarh, India.
| | - Arun Valsan
- Department of Hepatology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Vivek Sarohi
- School of Biosciences and Bioengineering (SBB), Indian Institute of Technology, Mandi, Himachal Pradesh, India
| | - Trayambak Basak
- School of Biosciences and Bioengineering (SBB), Indian Institute of Technology, Mandi, Himachal Pradesh, India
| | - Tarana Gupta
- Department of Medicine, Pandit Bhagwat Dayal Sharma Post Graduate Institute of Medical Sciences (PGIMS), Rohtak, India
| | - Parminder Kaur
- Department of Hepatology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Samonee Ralmilay
- Department of Hepatology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Shreya Singh
- Department of Medical Microbiology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Arka De
- Department of Hepatology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Madhumita Premkumar
- Department of Hepatology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Sunil Taneja
- Department of Hepatology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Ajay Duseja
- Department of Hepatology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Virendra Singh
- Department of Hepatology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Jasmohan S Bajaj
- Department of Medicine, Virginia Commonwealth University, Central Virginia Veterans Healthcare System, Richmond, Virginia
| |
Collapse
|
2
|
Mehdi SF, Qureshi MH, Pervaiz S, Kumari K, Saji E, Shah M, Abdullah A, Zahoor K, Qadeer HA, Katari DK, Metz C, Mishra L, LeRoith D, Tracey K, Brownstein MJ, Roth J. Endocrine and metabolic alterations in response to systemic inflammation and sepsis: a review article. Mol Med 2025; 31:16. [PMID: 39838305 PMCID: PMC11752782 DOI: 10.1186/s10020-025-01074-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Accepted: 01/09/2025] [Indexed: 01/23/2025] Open
Abstract
Severe sepsis is cognate with life threatening multi-organ dysfunction. There is a disturbance in endocrine functions with alterations in several hormonal pathways. It has frequently been linked with dysfunction in the hypothalamic pituitary-adrenal axis (HPA). Increased cortisol or cortisolemia is evident throughout the acute phase, along with changes in the hypothalamic pituitary thyroid (HPT) axis, growth hormone-IGF-1 axis, insulin-glucose axis, leptin, catecholamines, renin angiotensin aldosterone axis, ghrelin, glucagon, hypothalamic pituitary gonadal (HGA) axis, and fibroblast growth factor-21. These changes and metabolic alterations constitute the overall response to infection in sepsis. Further research is essential to look into the hormonal changes that occur during sepsis, not only to understand their potential relevance in therapy but also because they may serve as prognostic indicators.
Collapse
Affiliation(s)
- Syed Faizan Mehdi
- The Feinstein Institutes for Medical Research/Northwell Health, Manhasset, NY, USA
| | | | - Salman Pervaiz
- The Feinstein Institutes for Medical Research/Northwell Health, Manhasset, NY, USA
| | - Karishma Kumari
- The Feinstein Institutes for Medical Research/Northwell Health, Manhasset, NY, USA
| | - Edwin Saji
- The Feinstein Institutes for Medical Research/Northwell Health, Manhasset, NY, USA
| | - Mahnoor Shah
- The Feinstein Institutes for Medical Research/Northwell Health, Manhasset, NY, USA
| | - Ahmad Abdullah
- The Feinstein Institutes for Medical Research/Northwell Health, Manhasset, NY, USA
| | - Kamran Zahoor
- The Feinstein Institutes for Medical Research/Northwell Health, Manhasset, NY, USA
| | - Hafiza Amna Qadeer
- The Feinstein Institutes for Medical Research/Northwell Health, Manhasset, NY, USA
| | - Disha Kumari Katari
- The Feinstein Institutes for Medical Research/Northwell Health, Manhasset, NY, USA
| | - Christine Metz
- The Feinstein Institutes for Medical Research/Northwell Health, Manhasset, NY, USA
| | - Lopa Mishra
- The Feinstein Institutes for Medical Research/Northwell Health, Manhasset, NY, USA
| | - Derek LeRoith
- Division of Endocrinology, Diabetes & Bone Disease, Icahn School of Medicine at Mt. Sinai, New York, NY, USA
| | - Kevin Tracey
- The Feinstein Institutes for Medical Research/Northwell Health, Manhasset, NY, USA
| | | | - Jesse Roth
- The Feinstein Institutes for Medical Research/Northwell Health, Manhasset, NY, USA.
| |
Collapse
|
3
|
Coutinho D, Freitas TR, Silva Batista AC, Quezado
de Magalhães MT, Sabino ADP. Clinical Peptidomics in Acute Leukemias: Current Advances and Future Perspectives. J Proteome Res 2024; 23:5263-5273. [PMID: 39556650 PMCID: PMC11629390 DOI: 10.1021/acs.jproteome.4c00807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 11/10/2024] [Accepted: 11/13/2024] [Indexed: 11/20/2024]
Abstract
The study of circulating peptides in the blood offers significant opportunities for diagnosing, stratifying, and managing various diseases. With recent technological advances and the ongoing need to understand complex diseases such as acute leukemias (AL), peptidomic analysis of peripheral blood, especially serum and plasma, has become increasingly important for studying human biology and pathophysiology. Here, we provide insights and perspectives on technological developments and potential clinical applications using widely used peptidomic analysis methods. We discuss examples where peptidomics using serum or plasma has contributed to the understanding of AL. Specifically, we highlight the scarcity of peptidomic studies applied to AL and emphasize the importance of exploring this area, as the few published studies present promising results that can significantly contribute to precision medicine.
Collapse
Affiliation(s)
- Danila
Felix Coutinho
- Department
of Clinical and Toxicological Analyses, Faculty of Pharmacy, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais 31270-901, Brazil
| | - Túlio Resende Freitas
- Department
of Clinical and Toxicological Analyses, Faculty of Pharmacy, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais 31270-901, Brazil
| | - Ana Carolina Silva Batista
- Department
of Biochemistry and Immunology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais 31270-901, Brazil
| | - Mariana Torquato Quezado
de Magalhães
- Department
of Biochemistry and Immunology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais 31270-901, Brazil
| | - Adriano de Paula Sabino
- Department
of Clinical and Toxicological Analyses, Faculty of Pharmacy, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais 31270-901, Brazil
| |
Collapse
|
4
|
Xu D, Shan Y, Liu Q, Liang P, Hao X, Zhang J, Yu Z, Li W, Gao F, Tao X, Gu Q, Ma Y, Chen W. Effectiveness of ulinastatin in critical care patients in real world: a retrospective multi-center study. Expert Rev Clin Pharmacol 2024:1-8. [PMID: 39351759 DOI: 10.1080/17512433.2024.2402433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Accepted: 09/05/2024] [Indexed: 10/04/2024]
Abstract
OBJECTIVES Ulinastatin has been applied in various diseases associated with inflammation, but its effectiveness lacks real-world evidence. We aimed to evaluate the effectiveness of ulinastatin based on a real-world database in the intensive care unit (ICU) patients. METHODS This was a retrospective cohort study. ICU patient data from multi-centers in China were collected. Propensity score matching (PSM) was applied. The effectiveness of ulinastatin was evaluated by mortality, length of stay in the ICU and mechanical ventilation duration. Kaplan-Meier method was used to estimate the hazard ratio and plot the survival curve. RESULTS A total of 2036 patients were analyzed after PSM. Mortality was significantly lower in the ulinastatin group than in the non-ulinastatin group (hazard ratio for death: 0.77; 95% confidence interval: 0.62-0.96; p = 0.018). Ulinastatin significantly reduced mortality at 28 days (10.0% vs. 13.6%), 60 days (13.9% vs. 18.2%) and 90 days (14.7% vs. 18.5%), length of stay in the ICU (median 8.0 d vs. 13.0 d), and mechanical ventilation duration (median 24.0 h vs. 25.0 h; p < 0.05). CONCLUSIONS Ulinastatin was beneficial for patients in the ICU, mainly by reducing mortality, length of ICU stay, and mechanical ventilation duration. This study provides evidence of the clinical effectiveness of ulinastatin.
Collapse
Affiliation(s)
- Deduo Xu
- Department of Pharmacy, Second Affiliated Hospital of Naval Medical University, Shanghai, China
| | - Yi Shan
- Department of Emergency and Critical Care Medicine, Second Affiliated Hospital of Naval Medical University, Shanghai, China
| | - Qinghua Liu
- Department of Pulmonary and Critical Care Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Pei Liang
- Department of Pharmacy, Nanjing Drum Tower Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Xin Hao
- Dalian Medicinovo Technology Co. Ltd, Beijing, China
| | - Jinyuan Zhang
- Beijing Medicinovo Technology Co. Ltd, Beijing, China
| | - Ze Yu
- Beijing Medicinovo Technology Co. Ltd, Beijing, China
| | - Wenfang Li
- Department of Emergency and Critical Care Medicine, Second Affiliated Hospital of Naval Medical University, Shanghai, China
| | - Fei Gao
- Beijing Medicinovo Technology Co. Ltd, Beijing, China
| | - Xia Tao
- Department of Pharmacy, Second Affiliated Hospital of Naval Medical University, Shanghai, China
| | - Qin Gu
- Department of Critical Care Medicine, Nanjing Drum Tower Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Yabin Ma
- Department of Pharmacy, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Wansheng Chen
- Department of Pharmacy, Second Affiliated Hospital of Naval Medical University, Shanghai, China
- The SATCM Key Laboratory for New Resources & Quality Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
5
|
Maffioli E, Nonnis S, Negri A, Fontana M, Frabetti F, Rossi AR, Tedeschi G, Toni M. Environmental Temperature Variation Affects Brain Lipid Composition in Adult Zebrafish ( Danio rerio). Int J Mol Sci 2024; 25:9629. [PMID: 39273578 PMCID: PMC11394874 DOI: 10.3390/ijms25179629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 08/15/2024] [Accepted: 08/22/2024] [Indexed: 09/15/2024] Open
Abstract
This study delves deeper into the impact of environmental temperature variations on the nervous system in teleost fish. Previous research has demonstrated that exposing adult zebrafish (Danio rerio) to 18 °C and 34 °C for 4 or 21 days induces behavioural changes compared to fish kept at a control temperature of 26 °C, suggesting alterations in the nervous system. Subsequent studies revealed that these temperature conditions also modify brain protein expression, indicating potential neurotoxic effects. The primary aim of this work was to investigate the effects of prolonged exposure (21 days) to 18 °C or 34 °C on the brain lipidomes of adult zebrafish compared to a control temperature. Analysis of the brain lipidome highlighted significant alteration in the relative abundances of specific lipid molecules at 18 °C and 34 °C, confirming distinct effects induced by both tested temperatures. Exposure to 18 °C resulted in an increase in levels of phospholipids, such as phosphatidylethanolamine, alongside a general reduction in levels of sphingolipids, including sphingomyelin. Conversely, exposure to 34 °C produced more pronounced effects, with increases in levels of phosphatidylethanolamine and those of various sphingolipids such as ceramide, gangliosides, and sphingomyelin, alongside a reduction in levels of ether phospholipids, including lysophosphatidylethanolamine ether, phosphatidylethanolamine ether, and phosphatidylglycerol ether, as well as levels of glycolipids like monogalactosyldiacylglycerol. These results, when integrated with existing proteomic and behavioural data, offer new insights into the effects of thermal variations on the nervous system in teleost fish. Specifically, our proteomic and lipidomic findings suggest that elevated temperatures may disrupt mitochondrial function, increase neuronal susceptibility to oxidative stress and cytotoxicity, alter axonal myelination, impair nerve impulse transmission, hinder synapse function and neurotransmitter release, and potentially lead to increased neuronal death. These findings are particularly relevant in the fields of cell biology, neurobiology, and ecotoxicology, especially in the context of global warming.
Collapse
Affiliation(s)
- Elisa Maffioli
- Department of Veterinary Medicine and Animal Science (DIVAS), Università degli Studi di Milano, Via dell'Università 6, 26900 Lodi, Italy
| | - Simona Nonnis
- Department of Veterinary Medicine and Animal Science (DIVAS), Università degli Studi di Milano, Via dell'Università 6, 26900 Lodi, Italy
- CRC "Innovation for Well-Being and Environment" (I-WE), Università degli Studi di Milano, 20126 Milano, Italy
| | - Armando Negri
- Department of Veterinary Medicine and Animal Science (DIVAS), Università degli Studi di Milano, Via dell'Università 6, 26900 Lodi, Italy
| | - Manuela Fontana
- Unitech OMICs, Università degli Studi di Milano, 20139 Milan, Italy
| | - Flavia Frabetti
- Department of Medical and Surgical Sciences-DIMEC, University of Bologna, 40126 Bologna, Italy
| | - Anna Rita Rossi
- Department of Biology and Biotechnologies "Charles Darwin", Sapienza University, 00185 Rome, Italy
| | - Gabriella Tedeschi
- Department of Veterinary Medicine and Animal Science (DIVAS), Università degli Studi di Milano, Via dell'Università 6, 26900 Lodi, Italy
- CRC "Innovation for Well-Being and Environment" (I-WE), Università degli Studi di Milano, 20126 Milano, Italy
| | - Mattia Toni
- Department of Biology and Biotechnologies "Charles Darwin", Sapienza University, 00185 Rome, Italy
| |
Collapse
|
6
|
Hartman E, Forsberg F, Kjellström S, Petrlova J, Luo C, Scott A, Puthia M, Malmström J, Schmidtchen A. Peptide clustering enhances large-scale analyses and reveals proteolytic signatures in mass spectrometry data. Nat Commun 2024; 15:7128. [PMID: 39164298 PMCID: PMC11336174 DOI: 10.1038/s41467-024-51589-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 08/13/2024] [Indexed: 08/22/2024] Open
Abstract
Recent advances in mass spectrometry-based peptidomics have catalyzed the identification and quantification of thousands of endogenous peptides across diverse biological systems. However, the vast peptidomic landscape generated by proteolytic processing poses several challenges for downstream analyses and limits the comparability of clinical samples. Here, we present an algorithm that aggregates peptides into peptide clusters, reducing the dimensionality of peptidomics data, improving the definition of protease cut sites, enhancing inter-sample comparability, and enabling the implementation of large-scale data analysis methods akin to those employed in other omics fields. We showcase the algorithm by performing large-scale quantitative analysis of wound fluid peptidomes of highly defined porcine wound infections and human clinical non-healing wounds. This revealed signature phenotype-specific peptide regions and proteolytic activity at the earliest stages of bacterial colonization. We validated the method on the urinary peptidome of type 1 diabetics which revealed potential subgroups and improved classification accuracy.
Collapse
Affiliation(s)
- Erik Hartman
- Division of Infection Medicine, Department of Clinical Sciences Lund, Faculty of Medicine, Lund University, Lund, Sweden.
| | - Fredrik Forsberg
- Division of Dermatology and Venereology, Department of Clinical Sciences, Lund University, Lund, Sweden
| | - Sven Kjellström
- Division of Mass Spectrometry, Department of Clinical Sciences, Lund University, Lund, Sweden
| | - Jitka Petrlova
- Division of Dermatology and Venereology, Department of Clinical Sciences, Lund University, Lund, Sweden
| | - Congyu Luo
- Division of Dermatology and Venereology, Department of Clinical Sciences, Lund University, Lund, Sweden
| | - Aaron Scott
- Division of Infection Medicine, Department of Clinical Sciences Lund, Faculty of Medicine, Lund University, Lund, Sweden
| | - Manoj Puthia
- Division of Dermatology and Venereology, Department of Clinical Sciences, Lund University, Lund, Sweden
| | - Johan Malmström
- Division of Infection Medicine, Department of Clinical Sciences Lund, Faculty of Medicine, Lund University, Lund, Sweden
| | - Artur Schmidtchen
- Division of Dermatology and Venereology, Department of Clinical Sciences, Lund University, Lund, Sweden
| |
Collapse
|
7
|
Zhu Y. Plasma/Serum Proteomics based on Mass Spectrometry. Protein Pept Lett 2024; 31:192-208. [PMID: 38869039 PMCID: PMC11165715 DOI: 10.2174/0109298665286952240212053723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 01/22/2024] [Accepted: 01/31/2024] [Indexed: 06/14/2024]
Abstract
Human blood is a window of physiology and disease. Examination of biomarkers in blood is a common clinical procedure, which can be informative in diagnosis and prognosis of diseases, and in evaluating treatment effectiveness. There is still a huge demand on new blood biomarkers and assays for precision medicine nowadays, therefore plasma/serum proteomics has attracted increasing attention in recent years. How to effectively proceed with the biomarker discovery and clinical diagnostic assay development is a question raised to researchers who are interested in this area. In this review, we comprehensively introduce the background and advancement of technologies for blood proteomics, with a focus on mass spectrometry (MS). Analyzing existing blood biomarkers and newly-built diagnostic assays based on MS can shed light on developing new biomarkers and analytical methods. We summarize various protein analytes in plasma/serum which include total proteome, protein post-translational modifications, and extracellular vesicles, focusing on their corresponding sample preparation methods for MS analysis. We propose screening multiple protein analytes in the same set of blood samples in order to increase success rate for biomarker discovery. We also review the trends of MS techniques for blood tests including sample preparation automation, and further provide our perspectives on their future directions.
Collapse
Affiliation(s)
- Yiying Zhu
- Department of Chemistry, Tsinghua University, Beijing, China
| |
Collapse
|
8
|
Pérez-Torres I, Aisa-Álvarez A, Casarez-Alvarado S, Borrayo G, Márquez-Velasco R, Guarner-Lans V, Manzano-Pech L, Cruz-Soto R, Gonzalez-Marcos O, Fuentevilla-Álvarez G, Gamboa R, Saucedo-Orozco H, Franco-Granillo J, Soto ME. Impact of Treatment with Antioxidants as an Adjuvant to Standard Therapy in Patients with Septic Shock: Analysis of the Correlation between Cytokine Storm and Oxidative Stress and Therapeutic Effects. Int J Mol Sci 2023; 24:16610. [PMID: 38068931 PMCID: PMC10706209 DOI: 10.3390/ijms242316610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 11/14/2023] [Accepted: 11/18/2023] [Indexed: 12/18/2023] Open
Abstract
Cellular homeostasis is lost or becomes dysfunctional during septic shock due to the activation of the inflammatory response and the deregulation of oxidative stress. Antioxidant therapy administered alongside standard treatment could restore this lost homeostasis. We included 131 patients with septic shock who were treated with standard treatment and vitamin C (Vit C), vitamin E (Vit E), N-acetylcysteine (NAC), or melatonin (MT), in a randomized trial. Organ damage quantified by Sequential Organ Failure Assessment (SOFA) score, and we determined levels of Interleukins (IL) IL1β, Tumor necrosis factor alpha (TNFα), IL-6, monocyte chemoattractant protein-1 (MCP-1), Transforming growth factor B (TGFβ), IL-4, IL-10, IL-12, and Interferon-γ (IFNγ). The SOFA score decreased in patients treated with Vit C, NAC, and MT. Patients treated with MT had statistically significantly reduced of IL-6, IL-8, MCP-1, and IL-10 levels. Lipid peroxidation, Nitrates and nitrites (NO3- and NO2-), glutathione reductase, and superoxide dismutase decreased after treatment with Vit C, Vit E, NAC, and MT. The levels of thiols recovered with the use of Vit E, and all patients treated with antioxidants maintained their selenium levels, in contrast with controls (p = 0.04). The findings regarding oxidative stress markers and cytokines after treatment with antioxidants allow us to consider to future the combined use of antioxidants in a randomized clinical trial with a larger sample to demonstrate the reproducibility of these beneficial effects.
Collapse
Affiliation(s)
- Israel Pérez-Torres
- Cardiovascular Biomedicine Department, Instituto Nacional de Cardiología Ignacio Chávez, Juan Badiano No. 1, Col. Sección XVI, Mexico City 14380, Mexico; (I.P.-T.); (L.M.-P.)
| | - Alfredo Aisa-Álvarez
- Critical Care Department, American British Cowdray (ABC) Medical Center, PAI ABC Sur 136 No. 116, Col. las Américas, Mexico City 01120, Mexico; (A.A.-Á.); (O.G.-M.); (J.F.-G.)
| | - Sergio Casarez-Alvarado
- Immunology Department, Instituto Nacional de Cardiología Ignacio Chávez, Juan Badiano No. 1, Col. Sección XVI, Mexico City 14380, Mexico; (S.C.-A.); (R.M.-V.); (R.C.-S.)
| | - Gabriela Borrayo
- Instituto Mexicano del Seguro Social, Dirección de Prestaciones Médicas Coordinación de Innovación en Salud, Ciudad de México 06700, Mexico;
| | - Ricardo Márquez-Velasco
- Immunology Department, Instituto Nacional de Cardiología Ignacio Chávez, Juan Badiano No. 1, Col. Sección XVI, Mexico City 14380, Mexico; (S.C.-A.); (R.M.-V.); (R.C.-S.)
| | - Verónica Guarner-Lans
- Physiology Department, Instituto Nacional de Cardiología Ignacio Chávez, Juan Badiano No. 1, Col. Sección XVI, Mexico City 14380, Mexico; (V.G.-L.); (G.F.-Á.); (R.G.)
| | - Linaloe Manzano-Pech
- Cardiovascular Biomedicine Department, Instituto Nacional de Cardiología Ignacio Chávez, Juan Badiano No. 1, Col. Sección XVI, Mexico City 14380, Mexico; (I.P.-T.); (L.M.-P.)
| | - Randall Cruz-Soto
- Immunology Department, Instituto Nacional de Cardiología Ignacio Chávez, Juan Badiano No. 1, Col. Sección XVI, Mexico City 14380, Mexico; (S.C.-A.); (R.M.-V.); (R.C.-S.)
| | - Omar Gonzalez-Marcos
- Critical Care Department, American British Cowdray (ABC) Medical Center, PAI ABC Sur 136 No. 116, Col. las Américas, Mexico City 01120, Mexico; (A.A.-Á.); (O.G.-M.); (J.F.-G.)
| | - Giovanny Fuentevilla-Álvarez
- Physiology Department, Instituto Nacional de Cardiología Ignacio Chávez, Juan Badiano No. 1, Col. Sección XVI, Mexico City 14380, Mexico; (V.G.-L.); (G.F.-Á.); (R.G.)
| | - Ricardo Gamboa
- Physiology Department, Instituto Nacional de Cardiología Ignacio Chávez, Juan Badiano No. 1, Col. Sección XVI, Mexico City 14380, Mexico; (V.G.-L.); (G.F.-Á.); (R.G.)
| | | | - Juvenal Franco-Granillo
- Critical Care Department, American British Cowdray (ABC) Medical Center, PAI ABC Sur 136 No. 116, Col. las Américas, Mexico City 01120, Mexico; (A.A.-Á.); (O.G.-M.); (J.F.-G.)
| | - María Elena Soto
- Immunology Department, Instituto Nacional de Cardiología Ignacio Chávez, Juan Badiano No. 1, Col. Sección XVI, Mexico City 14380, Mexico; (S.C.-A.); (R.M.-V.); (R.C.-S.)
- Research Direction Instituto Nacional de Cardiología Ignacio Chávez, Juan Badiano No. 1, Col. Sección XVI, Mexico City 14380, Mexico
- Cardiovascular Line in American British Cowdray (ABC) Medical Center, PAI ABC Sur 136 No. 116, Col. Las Américas, Mexico City 01120, Mexico
| |
Collapse
|
9
|
Dong J, Wang S, Hu Z, Gong L. Extracellular proteins as potential biomarkers in Sepsis-related cerebral injury. Front Immunol 2023; 14:1128476. [PMID: 37901226 PMCID: PMC10611492 DOI: 10.3389/fimmu.2023.1128476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 09/13/2023] [Indexed: 10/31/2023] Open
Abstract
Background Sepsis can cause brain damage known as septic encephalopathy (SAE), which is linked to higher mortality and poorer outcomes. Objective clinical markers for SAE diagnosis and prognosis are lacking. This study aimed to identify biomarkers of SAE by investigating genes and extracellular proteins involved in sepsis-induced brain injury. Methods Extracellular protein differentially expressed genes (EP-DEGs) from sepsis patients' brain tissue (GSE135838) were obtained from Gene Expression Omnibus (GEO) and evaluated by protein annotation database. The function and pathways of EP-DEGs were examined using GO and KEGG. Protein-protein interaction (PPI) networks were built and crucial EP-DEGs were screened using STRING, Cytoscape, MCODE, and Cytohubba. The diagnostic and prognostic accuracy of key EP-DEGs was assessed in 31 sepsis patients' blood samples and a rat cecal ligation and puncture (CLP)-induced sepsis model. Cognitive and spatial memory impairment was evaluated 7-11 days post-CLP using behavioral tests. Blood and cerebrospinal fluid from 26 rats (SHAM n=14, CLP n=12) were collected 6 days after CLP to analyze key EP-DEGs. Results Thirty-one EP-DEGs from DEGs were examined. Bone marrow leukocytes, neutrophil movement, leukocyte migration, and reactions to molecules with bacterial origin were all enhanced in EP-DEGs. In comparison to the sham-operated group, sepsis rats had higher levels of MMP8 and S100A8 proteins in their venous blood (both p<0.05) and cerebrospinal fluid (p=0.0506, p<0.0001, respectively). Four important extracellular proteins, MMP8, CSF3, IL-6, and S100A8, were identified in clinical peripheral blood samples. MMP8 and S100A8 levels in the peripheral blood of sepsis patients were higher in SAE than in non-SAE. In comparison to MMP8, S100A8 had a higher area under the curve (AUC: 0.962, p<0.05) and a higher sensitivity and specificity (80% and 100%, respectively) than MMP8 (AUC: 0.790, p<0.05). High levels of S100A8 strongly correlated with 28-day mortality and the Glasgow Coma Scale (GCS) scores. Conclusion The extracellular proteins MMP8, CSF3, IL-6, and S100A8 may be crucial in the pathophysiology of SAE. S100A8 and MMP8 are possible biomarkers for SAE's onset and progression. This research may help to clarify the pathogenesis of SAE and improve the diagnosis and prognosis of the disease.
Collapse
Affiliation(s)
| | | | - Zhonghua Hu
- Department of Anesthesiology, The Third Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Li Gong
- Department of Anesthesiology, The Third Xiangya Hospital of Central South University, Changsha, Hunan, China
| |
Collapse
|
10
|
Petruk G, Puthia M, Samsudin F, Petrlova J, Olm F, Mittendorfer M, Hyllén S, Edström D, Strömdahl AC, Diehl C, Ekström S, Walse B, Kjellström S, Bond PJ, Lindstedt S, Schmidtchen A. Targeting Toll-like receptor-driven systemic inflammation by engineering an innate structural fold into drugs. Nat Commun 2023; 14:6097. [PMID: 37773180 PMCID: PMC10541425 DOI: 10.1038/s41467-023-41702-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 09/14/2023] [Indexed: 10/01/2023] Open
Abstract
There is a clinical need for conceptually new treatments that target the excessive activation of inflammatory pathways during systemic infection. Thrombin-derived C-terminal peptides (TCPs) are endogenous anti-infective immunomodulators interfering with CD14-mediated TLR-dependent immune responses. Here we describe the development of a peptide-based compound for systemic use, sHVF18, expressing the evolutionarily conserved innate structural fold of natural TCPs. Using a combination of structure- and in silico-based design, nuclear magnetic resonance spectroscopy, biophysics, mass spectrometry, cellular, and in vivo studies, we here elucidate the structure, CD14 interactions, protease stability, transcriptome profiling, and therapeutic efficacy of sHVF18. The designed peptide displays a conformationally stabilized, protease resistant active innate fold and targets the LPS-binding groove of CD14. In vivo, it shows therapeutic efficacy in experimental models of endotoxin shock in mice and pigs and increases survival in mouse models of systemic polymicrobial infection. The results provide a drug class based on Nature´s own anti-infective principles.
Collapse
Affiliation(s)
- Ganna Petruk
- Division of Dermatology and Venereology, Department of Clinical Sciences, Lund University, SE-22184, Lund, Sweden.
| | - Manoj Puthia
- Division of Dermatology and Venereology, Department of Clinical Sciences, Lund University, SE-22184, Lund, Sweden
| | - Firdaus Samsudin
- Bioinformatics Institute (BII), Agency for Science, Technology and Research (A*STAR), Singapore, 138671, Singapore
| | - Jitka Petrlova
- Division of Dermatology and Venereology, Department of Clinical Sciences, Lund University, SE-22184, Lund, Sweden
| | - Franziska Olm
- Department of Clinical Sciences, Lund University, SE-22184, Lund, Sweden
| | | | - Snejana Hyllén
- Department of Clinical Sciences, Lund University, SE-22184, Lund, Sweden
- Department of Cardiothoracic Surgery, Anesthesia and Intensive Care, Skåne University Hospital, SE-22185, Lund, Sweden
| | - Dag Edström
- Department of Clinical Sciences, Lund University, SE-22184, Lund, Sweden
- Department of Cardiothoracic Surgery, Anesthesia and Intensive Care, Skåne University Hospital, SE-22185, Lund, Sweden
| | - Ann-Charlotte Strömdahl
- Division of Dermatology and Venereology, Department of Clinical Sciences, Lund University, SE-22184, Lund, Sweden
| | - Carl Diehl
- SARomics Biostructures AB, Medicon Village, SE-22381, Lund, Sweden
| | - Simon Ekström
- BioMS - Swedish National Infrastructure for Biological Mass Spectrometry, SE-22184, Lund, Sweden
| | - Björn Walse
- SARomics Biostructures AB, Medicon Village, SE-22381, Lund, Sweden
| | - Sven Kjellström
- Division of Mass Spectrometry, Department of Clinical Sciences, Lund University, SE-22184, Lund, Sweden
| | - Peter J Bond
- Bioinformatics Institute (BII), Agency for Science, Technology and Research (A*STAR), Singapore, 138671, Singapore
- Department of Biological Sciences, National University of Singapore, Singapore, 117543, Singapore
| | - Sandra Lindstedt
- Department of Clinical Sciences, Lund University, SE-22184, Lund, Sweden
- Department of Cardiothoracic Surgery, Anesthesia and Intensive Care, Skåne University Hospital, SE-22185, Lund, Sweden
| | - Artur Schmidtchen
- Division of Dermatology and Venereology, Department of Clinical Sciences, Lund University, SE-22184, Lund, Sweden
- Dermatology, Skane University Hospital, SE-22185, Lund, Sweden
| |
Collapse
|
11
|
Maegele M, Aletti F, Efron PA, Relja B, Orfanos SE. NEW INSIGHTS INTO THE PATHOPHYSIOLOGY OF TRAUMA AND HEMORRHAGE. Shock 2023; 59:6-9. [PMID: 36867756 DOI: 10.1097/shk.0000000000001954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2023]
Abstract
ABSTRACT Circulatory shock from trauma and hemorrhage remains a clinical challenge with mortality still high within the first hours after impact. It represents a complex disease involving the impairment of a number of physiological systems and organs and the interaction of different pathological mechanisms. Multiple external and patient-specific factors may further modulate and complicate the clinical course. Recently, novel targets and models with complex multiscale interaction of data from different sources have been identified which offer new windows of opportunity. Future works needs to consider patient-specific conditions and outcomes to mount shock research onto the next higher level of precision and personalized medicine.
Collapse
Affiliation(s)
- Marc Maegele
- Department of Traumatology and Orthopedic Surgery, Cologne-Merheim Medical Center, Institute for Research in Operative Medicine, University Witten-Herdecke, Cologne, Germany
| | - Federico Aletti
- Instituto de Ciência e Tecnologia, Universidade Federal de São Paulo, São José dos Campos, Brazil
| | - Philip A Efron
- Department of Surgery, Division of Acute Care Surgery and Surgical Critical Care, Laboratory of Inflammation Biology and Surgical Science, UF Health Critical Care Organization, Florida
| | - Borna Relja
- Department of Radiology and Nuclear Medicine, Experimental Radiology, Otto-von-Guericke University, Magdeburg, Germany
| | - Stylianos E Orfanos
- 1st Department of Critical Care Medicine, National and Kapodistrian University of Athens, Medical School, Greece
| |
Collapse
|
12
|
Baldanzi G, Purghè B, Ragnoli B, Sainaghi PP, Rolla R, Chiocchetti A, Manfredi M, Malerba M. Circulating Peptidome Is Strongly Altered in COVID-19 Patients. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:1564. [PMID: 36674321 PMCID: PMC9865723 DOI: 10.3390/ijerph20021564] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 01/06/2023] [Accepted: 01/11/2023] [Indexed: 05/30/2023]
Abstract
Whilst the impact of coronavirus disease 2019 (COVID-19) on the host proteome, metabolome, and lipidome has been largely investigated in different bio-fluids, to date, the circulating peptidome remains unexplored. Thus, the present study aimed to apply an untargeted peptidomic approach to provide insight into alterations of circulating peptides in the development and severity of SARS-CoV-2 infection. The circulating peptidome from COVID-19 severe and mildly symptomatic patients and negative controls was characterized using LC-MS/MS analysis for identification and quantification purposes. Database search and statistical analysis allowed a complete characterization of the plasma peptidome and the detection of the most significant modulated peptides that were impacted by the infection. Our results highlighted not only that peptide abundance inversely correlates with disease severity, but also the involvement of biomolecules belonging to inflammatory, immune-response, and coagulation proteins/processes. Moreover, our data suggested a possible involvement of changes in protein degradation patterns. In the present research, for the first time, the untargeted peptidomic approach enabled the identification of circulating peptides potentially playing a crucial role in the progression of COVID-19.
Collapse
Affiliation(s)
- Gianluca Baldanzi
- Department of Translational Medicine, University of Piemonte Orientale, 28100 Novara, Italy
- Center for Translational Research on Autoimmune and Allergic Diseases, University of Piemonte Orientale, 28100 Novara, Italy
| | - Beatrice Purghè
- Department of Translational Medicine, University of Piemonte Orientale, 28100 Novara, Italy
- Center for Translational Research on Autoimmune and Allergic Diseases, University of Piemonte Orientale, 28100 Novara, Italy
| | | | - Pier Paolo Sainaghi
- Department of Translational Medicine, University of Piemonte Orientale, 28100 Novara, Italy
- Internal and Emergency Medicine Department, Department of Translational Medicine, University of Piemonte Orientale, 28100 Novara, Italy
| | - Roberta Rolla
- Department of Health Sciences, University of Piemonte Orientale, 28100 Novara, Italy
| | - Annalisa Chiocchetti
- Center for Translational Research on Autoimmune and Allergic Diseases, University of Piemonte Orientale, 28100 Novara, Italy
- Department of Health Sciences, University of Piemonte Orientale, 28100 Novara, Italy
| | - Marcello Manfredi
- Department of Translational Medicine, University of Piemonte Orientale, 28100 Novara, Italy
- Center for Translational Research on Autoimmune and Allergic Diseases, University of Piemonte Orientale, 28100 Novara, Italy
| | - Mario Malerba
- Department of Translational Medicine, University of Piemonte Orientale, 28100 Novara, Italy
- Respiratory Unit, Sant’Andrea Hospital, 13100 Vercelli, Italy
| |
Collapse
|
13
|
Dos Santos F, Li JB, Juocys N, Mazor R, Beretta L, Coufal NG, Lam MTY, Odish MF, Irigoyen MC, O’Donoghue AJ, Aletti F, Kistler EB. Plasma enzymatic activity, proteomics and peptidomics in COVID-19-induced sepsis: A novel approach for the analysis of hemostasis. Front Mol Biosci 2023; 9:1051471. [PMID: 36710882 PMCID: PMC9874325 DOI: 10.3389/fmolb.2022.1051471] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 12/20/2022] [Indexed: 01/13/2023] Open
Abstract
Introduction: Infection by SARS-CoV-2 and subsequent COVID-19 can cause viral sepsis. We investigated plasma protease activity patterns in COVID-19-induced sepsis with bacterial superinfection, as well as plasma proteomics and peptidomics in order to assess the possible implications of enhanced proteolysis on major protein systems (e.g., coagulation). Methods: Patients (=4) admitted to the intensive care units (ICUs) at the University of California, San Diego (UCSD) Medical Center with confirmed positive test for COVID-19 by real-time reverse transcription polymerase chain reaction (RT-PCR) were enrolled in a study approved by the UCSD Institutional Review Board (IRB# 190699, Protocol #20-0006). Informed consent was obtained for the collection of blood samples and de-identified use of the data. Blood samples were collected at multiple time points and analyzed to quantify a) the circulating proteome and peptidome by mass spectrometry; b) the aminopeptidase activity in plasma; and c) the endopeptidase activity in plasma using fluorogenic substrates that are cleaved by trypsin-like endopeptidases, specific clotting factors and plasmin. The one patient who died was diagnosed with bacterial superinfection on day 7 after beginning of the study. Results: Spikes in protease activity (factor VII, trypsin-like activity), and corresponding increases in the intensity of peptides derived by hydrolysis of plasma proteins, especially of fibrinogen degradation products and downregulation of endogenous protease inhibitors were detected on day 7 for the patient who died. The activity of the analyzed proteases was stable in survivors. Discussion: The combination of multiomics and enzymatic activity quantification enabled to i) hypothesize that elevated proteolysis occurs in COVID-19-induced septic shock with bacterial superinfection, and ii) provide additional insight into malfunctioning protease-mediated systems, such as hemostasis.
Collapse
Affiliation(s)
- Fernando Dos Santos
- Department of Anesthesiology, School of Medicine, University of California, San Diego, CA, United States
| | - Joyce B. Li
- Department of Bioengineering, University of California, San Diego, CA, United States
| | - Nathalia Juocys
- Department of Anesthesiology, School of Medicine, University of California, San Diego, CA, United States
- Instituto do Coração, Hospital das Clínicas, Faculdade de Medicina, Universidade de São Paulo (InCor-FMUSP), São Paulo, Brazil
| | - Rafi Mazor
- Department of Anesthesiology, School of Medicine, University of California, San Diego, CA, United States
| | - Laura Beretta
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, CA, United States
| | - Nicole G. Coufal
- Department of Pediatrics, School of Medicine, University of California, San Diego, CA, United States
| | - Michael T. Y. Lam
- Department of Medicine, School of Medicine, University of California, San Diego, CA, United States
| | - Mazen F. Odish
- Department of Medicine, School of Medicine, University of California, San Diego, CA, United States
| | - Maria Claudia Irigoyen
- Instituto do Coração, Hospital das Clínicas, Faculdade de Medicina, Universidade de São Paulo (InCor-FMUSP), São Paulo, Brazil
| | - Anthony J. O’Donoghue
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, CA, United States
| | - Federico Aletti
- Instituto de Ciência e Tecnologia, Universidade Federal de São Paulo, São Josê dos Campos, Brazil
| | - Erik B. Kistler
- Department of Anesthesiology, School of Medicine, University of California, San Diego, CA, United States
- Department of Anesthesiology and Critical Care, VA San Diego Healthcare System, San Diego, CA, United States
| |
Collapse
|
14
|
Pérez-Hernández EG, De la Puente-Díaz de León V, Luna-Reyes I, Delgado-Coello B, Sifuentes-Osornio J, Mas-Oliva J. The cholesteryl-ester transfer protein isoform (CETPI) and derived peptides: new targets in the study of Gram-negative sepsis. Mol Med 2022; 28:157. [PMID: 36536294 PMCID: PMC9764724 DOI: 10.1186/s10020-022-00585-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 12/04/2022] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Sepsis is a syndrome where the dysregulated host response to infection threatens the life of the patient. The isoform of the cholesteryl-ester transfer protein (CETPI) is synthesized in the small intestine, and it is present in human plasma. CETPI and peptides derived from its C-terminal sequence present the ability to bind and deactivate bacterial lipopolysaccharides (LPS). The present study establishes the relationship between the plasma levels of CETPI and disease severity of sepsis due to Gram-negative bacteria. METHODS Plasma samples from healthy subjects and patients with positive blood culture for Gram-negative bacteria were collected at the Intensive Care Unit (ICU) of INCMNSZ (Mexico City). 47 healthy subjects, 50 patients with infection, and 55 patients with sepsis and septic shock, were enrolled in this study. CETPI plasma levels were measured by an enzyme-linked immunosorbent assay and its expression confirmed by Western Blot analysis. Plasma cytokines (IL-1β, TNFα, IL-6, IL-8, IL-12p70, IFNγ, and IL-10) were measured in both, healthy subjects, and patients, and directly correlated with their CETPI plasma levels and severity of clinical parameters. Sequential Organ Failure Assessment (SOFA) scores were evaluated at ICU admission and within 24 h of admission. Plasma LPS and CETPI levels were also measured and studied in patients with liver dysfunction. RESULTS The level of CETPI in plasma was found to be higher in patients with positive blood culture for Gram-negative bacteria that in control subjects, showing a direct correlation with their SOFA values. Accordingly, septic shock patients showing a high CETPI plasma concentration, presented a negative correlation with cytokines IL-8, IL-1β, and IL-10. Also, in patients with liver dysfunction, since higher CETPI levels correlated with a high plasma LPS concentration, LPS neutralization carried out by CETPI might be considered a physiological response that will have to be studied in detail. CONCLUSIONS Elevated levels of plasma CETPI were associated with disease severity and organ failure in patients with Gram-negative bacteraemia, defining CETPI as a protein implicated in the systemic response to LPS.
Collapse
Affiliation(s)
- Eréndira G. Pérez-Hernández
- grid.9486.30000 0001 2159 0001Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, 04510 Ciudad de Mexico, Mexico
| | - Víctor De la Puente-Díaz de León
- grid.416850.e0000 0001 0698 4037Departamento de Medicina Interna, Instituto Nacional de Ciencias Médicas y Nutrición “Salvador Zubirán”, 14080 Ciudad de Mexico, Mexico
| | - Ismael Luna-Reyes
- grid.9486.30000 0001 2159 0001Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, 04510 Ciudad de Mexico, Mexico
| | - Blanca Delgado-Coello
- grid.9486.30000 0001 2159 0001Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, 04510 Ciudad de Mexico, Mexico
| | - José Sifuentes-Osornio
- grid.416850.e0000 0001 0698 4037Dirección de Medicina, Instituto Nacional de Ciencias Médicas y Nutrición “Salvador Zubirán”, 14080 Ciudad de Mexico, Mexico
| | - Jaime Mas-Oliva
- grid.9486.30000 0001 2159 0001Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, 04510 Ciudad de Mexico, Mexico
| |
Collapse
|
15
|
Ruiz-Sanmartín A, Ribas V, Suñol D, Chiscano-Camón L, Palmada C, Bajaña I, Larrosa N, González JJ, Canela N, Ferrer R, Ruiz-Rodríguez JC. Characterization of a proteomic profile associated with organ dysfunction and mortality of sepsis and septic shock. PLoS One 2022; 17:e0278708. [PMID: 36459524 PMCID: PMC9718383 DOI: 10.1371/journal.pone.0278708] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Accepted: 11/21/2022] [Indexed: 12/04/2022] Open
Abstract
INTRODUCTION The search for new biomarkers that allow an early diagnosis in sepsis and predict its evolution has become a necessity in medicine. The objective of this study is to identify, through omics techniques, potential protein biomarkers that are expressed in patients with sepsis and their relationship with organ dysfunction and mortality. METHODS Prospective, observational and single-center study that included adult patients (≥ 18 years) who were admitted to a tertiary hospital and who met the criteria for sepsis. A mass spectrometry-based approach was used to analyze the plasma proteins in the enrolled subjects. Subsequently, using recursive feature elimination classification and cross-validation with a vector classifier, an association of these proteins with mortality and organ dysfunction was established. The protein-protein interaction network was analyzed with String software. RESULTS 141 patients were enrolled in this study. Mass spectrometry identified 177 proteins. Of all of them, and by recursive feature elimination, nine proteins (GPX3, APOB, ORM1, SERPINF1, LYZ, C8A, CD14, APOC3 and C1QC) were associated with organ dysfunction (SOFA > 6) with an accuracy of 0.82 ± 0.06, precision of 0.85 ± 0.093, sensitivity 0.81 ± 0.10, specificity 0.84 ± 0.10 and AUC 0.82 ± 0.06. Twenty-two proteins (CLU, LUM, APOL1, SAA1, CLEBC3B, C8A, ITIH4, KNG1, AGT, C7, SAA2, APOH, HRG, AFM, APOE, APOC1, C1S, SERPINC1, IGFALS, KLKB1, CFB and BTD) were associated with mortality with an accuracy of 0.86 ± 0.05, a precision of 0.91 ± 0.05, a sensitivity of 0.91 ± 0.05, a specificity of 0.72 ± 0.17, and an area under the curve (AUC) of 0.81 ± 0.08 with a confidence interval of 95%. CONCLUSION In sepsis there are proteomic patterns associated with organ dysfunction and mortality.
Collapse
Affiliation(s)
- Adolfo Ruiz-Sanmartín
- Department of Intensive Care, Vall d’Hebron University Hospital, Vall d’Hebron Barcelona Hospital Campus, Barcelona, Spain
- Shock, Organ Dysfunction and Resuscitation (SODIR) Research Group, Vall d’Hebron Research Institute, Barcelona, Spain
- Departament de Medicina, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Vicent Ribas
- Eurecat, Centre Tecnològic de Catalunya, Digital Health Unit, Barcelona, Spain
| | - David Suñol
- Eurecat, Centre Tecnològic de Catalunya, Digital Health Unit, Barcelona, Spain
| | - Luis Chiscano-Camón
- Department of Intensive Care, Vall d’Hebron University Hospital, Vall d’Hebron Barcelona Hospital Campus, Barcelona, Spain
- Shock, Organ Dysfunction and Resuscitation (SODIR) Research Group, Vall d’Hebron Research Institute, Barcelona, Spain
- Departament de Medicina, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Clara Palmada
- Department of Intensive Care, Vall d’Hebron University Hospital, Vall d’Hebron Barcelona Hospital Campus, Barcelona, Spain
- Shock, Organ Dysfunction and Resuscitation (SODIR) Research Group, Vall d’Hebron Research Institute, Barcelona, Spain
| | - Iván Bajaña
- Department of Intensive Care, Vall d’Hebron University Hospital, Vall d’Hebron Barcelona Hospital Campus, Barcelona, Spain
- Shock, Organ Dysfunction and Resuscitation (SODIR) Research Group, Vall d’Hebron Research Institute, Barcelona, Spain
| | - Nieves Larrosa
- Department of Clinical Microbiology, Vall d’Hebron University Hospital, Vall d’Hebron Barcelona Hospital Campus, Barcelona, Spain
- Department of Genetics and Microbiology, Universitat Autònoma de Barcelona, Barcelona, Spain
- CIBERINFEC, ISCIII–CIBER de Enfermedades Infecciosas, Instituto de Salud Carlos III, Madrid, Spain
| | - Juan José González
- Department of Clinical Microbiology, Vall d’Hebron University Hospital, Vall d’Hebron Barcelona Hospital Campus, Barcelona, Spain
- Department of Genetics and Microbiology, Universitat Autònoma de Barcelona, Barcelona, Spain
- CIBERINFEC, ISCIII–CIBER de Enfermedades Infecciosas, Instituto de Salud Carlos III, Madrid, Spain
| | - Núria Canela
- Eurecat, Centre Tecnològic de Catalunya, Centre for Omic Sciences (COS), Joint Unit URV-EURECAT, Unique Scientific and Technical Infrastructures (ICTS), Reus, Spain
| | - Ricard Ferrer
- Department of Intensive Care, Vall d’Hebron University Hospital, Vall d’Hebron Barcelona Hospital Campus, Barcelona, Spain
- Shock, Organ Dysfunction and Resuscitation (SODIR) Research Group, Vall d’Hebron Research Institute, Barcelona, Spain
- Departament de Medicina, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Juan Carlos Ruiz-Rodríguez
- Department of Intensive Care, Vall d’Hebron University Hospital, Vall d’Hebron Barcelona Hospital Campus, Barcelona, Spain
- Shock, Organ Dysfunction and Resuscitation (SODIR) Research Group, Vall d’Hebron Research Institute, Barcelona, Spain
- Departament de Medicina, Universitat Autònoma de Barcelona, Barcelona, Spain
- * E-mail:
| |
Collapse
|
16
|
Piedrafita A, Siwy J, Klein J, Akkari A, Amaya-garrido A, Mebazaa A, Sanz AB, Breuil B, Montero Herrero L, Marcheix B, Depret F, Fernandez L, Tardif E, Minville V, Alves M, Metzger J, Grossac J, Mischak H, Ortiz A, Gazut S, Schanstra JP, Faguer S, Mayeur N, Casemayou A, Labaste F, Mayeur N, Casemayou A, Labaste F. A universal predictive and mechanistic urinary peptide signature in acute kidney injury. Crit Care 2022; 26:344. [PMID: 36345008 PMCID: PMC9640896 DOI: 10.1186/s13054-022-04193-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 10/07/2022] [Indexed: 11/09/2022] Open
Abstract
BACKGROUND The delayed diagnosis of acute kidney injury (AKI) episodes and the lack of specificity of current single AKI biomarkers hamper its management. Urinary peptidome analysis may help to identify early molecular changes in AKI and grasp its complexity to identify potential targetable molecular pathways. METHODS In derivation and validation cohorts totalizing 1170 major cardiac bypass surgery patients and in an external cohort of 1569 intensive care unit (ICU) patients, a peptide-based score predictive of AKI (7-day KDIGO classification) was developed, validated, and compared to the reference biomarker urinary NGAL and NephroCheck and clinical scores. RESULTS A set of 204 urinary peptides derived from 48 proteins related to hemolysis, inflammation, immune cells trafficking, innate immunity, and cell growth and survival was identified and validated for the early discrimination (< 4 h) of patients according to their risk to develop AKI (OR 6.13 [3.96-9.59], p < 0.001) outperforming reference biomarkers (urinary NGAL and [IGFBP7].[TIMP2] product) and clinical scores. In an external cohort of 1569 ICU patients, performances of the signature were similar (OR 5.92 [4.73-7.45], p < 0.001), and it was also associated with the in-hospital mortality (OR 2.62 [2.05-3.38], p < 0.001). CONCLUSIONS An overarching AKI physiopathology-driven urinary peptide signature shows significant promise for identifying, at an early stage, patients who will progress to AKI and thus to develop tailored treatments for this frequent and life-threatening condition. Performance of the urine peptide signature is as high as or higher than that of single biomarkers but adds mechanistic information that may help to discriminate sub-phenotypes of AKI offering new therapeutic avenues.
Collapse
Affiliation(s)
- Alexis Piedrafita
- grid.411175.70000 0001 1457 2980Department of Nephrology and Organ Transplantation, University Hospital of Toulouse, and French Intensive Care Renal Network, 31000 Toulouse, France ,grid.7429.80000000121866389National Institute of Health and Medical Research (INSERM), UMR 1297, Institute of Cardiovascular and Metabolic Disease, 31000 Toulouse, France ,grid.15781.3a0000 0001 0723 035XUniversity Paul Sabatier, Toulouse-III, 31000 Toulouse, France
| | - Justyna Siwy
- grid.421873.bMosaiques Diagnostics GmbH, Hannover, Germany
| | - Julie Klein
- grid.7429.80000000121866389National Institute of Health and Medical Research (INSERM), UMR 1297, Institute of Cardiovascular and Metabolic Disease, 31000 Toulouse, France ,grid.15781.3a0000 0001 0723 035XUniversity Paul Sabatier, Toulouse-III, 31000 Toulouse, France
| | - Amal Akkari
- grid.457331.7Université Paris-Saclay, CEA, List, 91120 Palaiseau, France
| | - Ana Amaya-garrido
- grid.7429.80000000121866389National Institute of Health and Medical Research (INSERM), UMR 1297, Institute of Cardiovascular and Metabolic Disease, 31000 Toulouse, France
| | - Alexandre Mebazaa
- Department of Anesthesiology, Critical Care and Burn Unit, Hôpitaux Universitaires Saint Louis-Lariboisière, Assistance Publique-Hôpitaux de Paris, Université Paris Diderot-Paris 7, Sorbonne Paris Cité, UMR-S 942, INSERM, France, INI-CRCT, ParisNancy, France
| | - Anna Belen Sanz
- grid.5515.40000000119578126School of Medicine, IIS-Fundación Jiménez Díaz, Autonomous University of Madrid, FRIAT and REDINREN, Madrid, Spain
| | - Benjamin Breuil
- grid.7429.80000000121866389National Institute of Health and Medical Research (INSERM), UMR 1297, Institute of Cardiovascular and Metabolic Disease, 31000 Toulouse, France ,grid.15781.3a0000 0001 0723 035XUniversity Paul Sabatier, Toulouse-III, 31000 Toulouse, France
| | - Laura Montero Herrero
- grid.5515.40000000119578126School of Medicine, IIS-Fundación Jiménez Díaz, Autonomous University of Madrid, FRIAT and REDINREN, Madrid, Spain
| | - Bertrand Marcheix
- grid.15781.3a0000 0001 0723 035XUniversity Paul Sabatier, Toulouse-III, 31000 Toulouse, France ,grid.411175.70000 0001 1457 2980Department of Cardiac and Vascular Surgery, University Hospital of Toulouse, 31000 Toulouse, France
| | - François Depret
- Department of Anesthesiology, Critical Care and Burn Unit, Hôpitaux Universitaires Saint Louis-Lariboisière, Assistance Publique-Hôpitaux de Paris, Université Paris Diderot-Paris 7, Sorbonne Paris Cité, UMR-S 942, INSERM, France, INI-CRCT, ParisNancy, France
| | - Lucie Fernandez
- grid.7429.80000000121866389National Institute of Health and Medical Research (INSERM), UMR 1297, Institute of Cardiovascular and Metabolic Disease, 31000 Toulouse, France
| | - Elsa Tardif
- grid.411175.70000 0001 1457 2980Department of Anesthesiology and Critical Care Medicine, University Hospital of Toulouse, 31000 Toulouse, France
| | - Vincent Minville
- grid.15781.3a0000 0001 0723 035XUniversity Paul Sabatier, Toulouse-III, 31000 Toulouse, France ,grid.411175.70000 0001 1457 2980Department of Anesthesiology and Critical Care Medicine, University Hospital of Toulouse, 31000 Toulouse, France
| | - Melinda Alves
- grid.7429.80000000121866389National Institute of Health and Medical Research (INSERM), UMR 1297, Institute of Cardiovascular and Metabolic Disease, 31000 Toulouse, France
| | - Jochen Metzger
- grid.421873.bMosaiques Diagnostics GmbH, Hannover, Germany
| | | | - Julia Grossac
- grid.411175.70000 0001 1457 2980Department of Anesthesiology and Critical Care Medicine, University Hospital of Toulouse, 31000 Toulouse, France
| | - Harald Mischak
- grid.421873.bMosaiques Diagnostics GmbH, Hannover, Germany
| | - Alberto Ortiz
- grid.5515.40000000119578126School of Medicine, IIS-Fundación Jiménez Díaz, Autonomous University of Madrid, FRIAT and REDINREN, Madrid, Spain
| | - Stéphane Gazut
- grid.457331.7Université Paris-Saclay, CEA, List, 91120 Palaiseau, France
| | - Joost P. Schanstra
- grid.7429.80000000121866389National Institute of Health and Medical Research (INSERM), UMR 1297, Institute of Cardiovascular and Metabolic Disease, 31000 Toulouse, France ,grid.15781.3a0000 0001 0723 035XUniversity Paul Sabatier, Toulouse-III, 31000 Toulouse, France
| | - Stanislas Faguer
- grid.411175.70000 0001 1457 2980Department of Nephrology and Organ Transplantation, University Hospital of Toulouse, and French Intensive Care Renal Network, 31000 Toulouse, France ,grid.7429.80000000121866389National Institute of Health and Medical Research (INSERM), UMR 1297, Institute of Cardiovascular and Metabolic Disease, 31000 Toulouse, France ,grid.15781.3a0000 0001 0723 035XUniversity Paul Sabatier, Toulouse-III, 31000 Toulouse, France
| | - Nicolas Mayeur
- grid.411175.70000 0001 1457 2980Department of Anesthesiology and Critical Care Medicine, University Hospital of Toulouse, 31000 Toulouse, France
| | - Audrey Casemayou
- grid.7429.80000000121866389Institute for Metabolic and Cardiovascular Disease, National Institute of Health and Medical Research, Toulouse, France
| | - François Labaste
- grid.411175.70000 0001 1457 2980Department of Anesthesiology and Critical Care Medicine, University Hospital of Toulouse, 31000 Toulouse, France
| | | | | | | | | |
Collapse
|
17
|
Ledesma M, Todero MF, Maceira L, Prieto M, Vay C, Galas M, López B, Yokobori N, Rearte B. Peptidome profiling for the immunological stratification in sepsis: a proof of concept study. Sci Rep 2022; 12:11469. [PMID: 35794460 PMCID: PMC9259554 DOI: 10.1038/s41598-022-15792-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Accepted: 06/29/2022] [Indexed: 11/09/2022] Open
Abstract
Sepsis has been called the graveyard of pharmaceutical companies due to the numerous failed clinical trials. The lack of tools to monitor the immunological status in sepsis constrains the development of therapies. Here, we evaluated a test based on whole plasma peptidome acquired by MALDI-TOF-mass spectrometer and machine-learning algorithms to discriminate two lipopolysaccharide-(LPS) induced murine models emulating the pro- and anti-inflammatory/immunosuppression environments that can be found during sepsis. The LPS group was inoculated with a single high dose of LPS and the IS group was subjected to increasing doses of LPS, to induce proinflammatory and anti-inflammatory/immunosuppression profiles respectively. The LPS group showed leukopenia and higher levels of cytokines and tissue damage markers, and the IS group showed neutrophilia, lymphopenia and decreased humoral response. Principal component analysis of the plasma peptidomes formed discrete clusters that mostly coincided with the experimental groups. In addition, machine-learning algorithms discriminated the different experimental groups with a sensitivity of 95.7% and specificity of 90.9%. Data reveal the potential of plasma fingerprints analysis by MALDI-TOF-mass spectrometry as a simple, speedy and readily transferrable method for sepsis patient stratification that would contribute to therapeutic decision-making based on their immunological status.
Collapse
Affiliation(s)
- Martín Ledesma
- Laboratorio de Bacteriología, Departamento de Bioquímica Clínica, Hospital de Clínicas "José de San Martín", Facultad de Farmacia y Bioquímica, UBA, Av. Córdoba 2351, C1120, CABA, Argentina.,Consejo Nacional de Investigaciones Científicas Y Técnicas (CONICET), Godoy Cruz 2290, C1425FQB, CABA, Argentina
| | - María Florencia Todero
- Instituto de Medicina Experimental (IMEX) - CONICET - Academia Nacional de Medicina, Pacheco de Melo 3081, C1425AUM, CABA, Argentina
| | - Lautaro Maceira
- Instituto de Medicina Experimental (IMEX) - CONICET - Academia Nacional de Medicina, Pacheco de Melo 3081, C1425AUM, CABA, Argentina
| | - Mónica Prieto
- Servicio de Bacteriología Especial. Instituto Nacional de Enfermedades Infecciosas (INEI), ANLIS "Dr. C. G. Malbrán", Av. Vélez Sarsfield 563, C1282AFF, CABA, Argentina
| | - Carlos Vay
- Laboratorio de Bacteriología, Departamento de Bioquímica Clínica, Hospital de Clínicas "José de San Martín", Facultad de Farmacia y Bioquímica, UBA, Av. Córdoba 2351, C1120, CABA, Argentina
| | - Marcelo Galas
- Special Program of AMR, Communicable Diseases and Environmental Determinants of Health Department, Pan-American Health Organization, 525 23rd St NW, Washington, DC, 20037, USA
| | - Beatriz López
- Departamento de Bacteriología. INEI, ANLIS "Dr. C. G. Malbrán", Av. Vélez Sarsfield 563, C1282AFF, CABA, Argentina
| | - Noemí Yokobori
- Servicio de Micobacterias INEI, ANLIS "Dr. C. G. Malbrán", Av. Vélez Sarsfield 563, C1282AFF, CABA, Argentina.,Consejo Nacional de Investigaciones Científicas Y Técnicas (CONICET), Godoy Cruz 2290, C1425FQB, CABA, Argentina
| | - Bárbara Rearte
- Instituto de Medicina Experimental (IMEX) - CONICET - Academia Nacional de Medicina, Pacheco de Melo 3081, C1425AUM, CABA, Argentina. .,Consejo Nacional de Investigaciones Científicas Y Técnicas (CONICET), Godoy Cruz 2290, C1425FQB, CABA, Argentina.
| |
Collapse
|
18
|
Chiscano-Camón L, Plata-Menchaca E, Ruiz-Rodríguez JC, Ferrer R. Fisiopatología del shock séptico. Med Intensiva 2022. [DOI: 10.1016/j.medin.2022.03.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
19
|
Chiscano-Camón L, Plata-Menchaca E, Ruiz-Rodríguez JC, Ferrer R. [Pathophysiology of septic shock]. Med Intensiva 2022; 46 Suppl 1:1-13. [PMID: 38341256 DOI: 10.1016/j.medine.2022.03.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Accepted: 03/20/2022] [Indexed: 02/12/2024]
Abstract
Sepsis and septic shock result from an inadequate host response to an infection, which causes organ dysfunction. The progression of this condition is manifested by the occurrence of successive clinical stages, resulting from the systemic inflammatory response secondary to the activation of different inflammatory mediators, leading to organ dysfunction. There is a high burden of evidence on the role of endotoxin in the pathogenesis of sepsis and its crucial role in triggering the inflammatory response in sepsis caused by gram-negative bacteria. The coagulation cascade activation in sepsis patients is part of the host's adaptive immune response to infection. The endothelium is the main target in sepsis, which is metabolically active and can.
Collapse
Affiliation(s)
- Luis Chiscano-Camón
- Servicio de Medicina Intensiva, Hospital Universitario Vall d'Hebron, Barcelona, España; Grupo de Investigación Sepsis Organ Dysfunction and Resuscitation (SODIR), Vall d'Hebron Institut de Recerca (VHIR), Hospital Universitari Vall d'Hebron, Barcelona, España; Departament de Medicina. Universitat Autònoma de Barcelona. Barcelona. España
| | - Erika Plata-Menchaca
- Servicio de Medicina Intensiva, Hospital Universitario Vall d'Hebron, Barcelona, España; Grupo de Investigación Sepsis Organ Dysfunction and Resuscitation (SODIR), Vall d'Hebron Institut de Recerca (VHIR), Hospital Universitari Vall d'Hebron, Barcelona, España
| | - Juan Carlos Ruiz-Rodríguez
- Servicio de Medicina Intensiva, Hospital Universitario Vall d'Hebron, Barcelona, España; Grupo de Investigación Sepsis Organ Dysfunction and Resuscitation (SODIR), Vall d'Hebron Institut de Recerca (VHIR), Hospital Universitari Vall d'Hebron, Barcelona, España; Departament de Medicina. Universitat Autònoma de Barcelona. Barcelona. España
| | - Ricard Ferrer
- Servicio de Medicina Intensiva, Hospital Universitario Vall d'Hebron, Barcelona, España; Grupo de Investigación Sepsis Organ Dysfunction and Resuscitation (SODIR), Vall d'Hebron Institut de Recerca (VHIR), Hospital Universitari Vall d'Hebron, Barcelona, España; Departament de Medicina. Universitat Autònoma de Barcelona. Barcelona. España.
| |
Collapse
|
20
|
Barichello T, Generoso JS, Dominguini D, Córneo E, Giridharan VV, Sahrapour TA, Simões LR, Rosa MID, Petronilho F, Ritter C, Sharshar T, Dal-Pizzol F. Postmortem Evidence of Brain Inflammatory Markers and Injury in Septic Patients: A Systematic Review. Crit Care Med 2022; 50:e241-e252. [PMID: 34402457 DOI: 10.1097/ccm.0000000000005307] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
OBJECTIVES Sepsis is a life-threatening organ dysfunction caused by a host's unregulated immune response to eliminate the infection. After hospitalization, sepsis survivors often suffer from long-term impairments in memory, attention, verbal fluency, and executive functioning. To understand the effects of sepsis and the exacerbated peripheral inflammatory response in the brain, we asked the question: What are the findings and inflammatory markers in the brains of deceased sepsis patients? To answer this question, we conducted this systematic review by the recommendations of Preferred Reporting Items for Systematic Reviews and Meta-Analyses. DATA SOURCES Relevant studies were identified by searching the PubMed/National Library of Medicine, PsycINFO, EMBASE, Bibliographical Index in Spanish in Health Sciences, Latin American and Caribbean Health Sciences Literature, and Web of Science databases for peer-reviewed journal articles published on April 05, 2021. STUDY SELECTION A total of 3,745 articles were included in the primary screening; after omitting duplicate articles, animal models, and reviews, 2,896 articles were selected for the study. These studies were selected based on the title and abstract, and 2,772 articles were still omitted based on the exclusion criteria. DATA EXTRACTION The complete texts of the remaining 124 articles were obtained and thoroughly evaluated for the final screening, and 104 articles were included. DATA SYNTHESIS The postmortem brain had edema, abscess, hemorrhagic and ischemic injuries, infarction, hypoxia, atrophy, hypoplasia, neuronal loss, axonal injuries, demyelination, and necrosis. CONCLUSIONS The mechanisms by which sepsis induces brain dysfunction are likely to include vascular and neuronal lesions, followed by the activation of glial cells and the presence of peripheral immune cells in the brain.
Collapse
Affiliation(s)
- Tatiana Barichello
- Translational Psychiatry Program, Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX
- Laboratory of Experimental Pathophysiology, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Santa Catarina, Brazil
| | - Jaqueline S Generoso
- Laboratory of Experimental Pathophysiology, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Santa Catarina, Brazil
| | - Diogo Dominguini
- Laboratory of Experimental Pathophysiology, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Santa Catarina, Brazil
| | - Emily Córneo
- Laboratory of Experimental Pathophysiology, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Santa Catarina, Brazil
| | - Vijayasree V Giridharan
- Translational Psychiatry Program, Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX
| | - Taha A Sahrapour
- Translational Psychiatry Program, Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX
| | - Lutiana R Simões
- Laboratory of Experimental Pathophysiology, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Santa Catarina, Brazil
| | - Maria Inês da Rosa
- Laboratory of Experimental Pathophysiology, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Santa Catarina, Brazil
| | - Fabricia Petronilho
- Laboratory of Neurobiology of Inflammatory and Metabolic Processes, Graduate Program in Health Sciences, Health Sciences Unit, University of South Santa Catarina, Santa Catarina, Brazil
| | - Cristiane Ritter
- Laboratory of Experimental Pathophysiology, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Santa Catarina, Brazil
| | - Tarek Sharshar
- Department of Neurointensive Care and Neuroanesthesia, GHU Paris Psychiatrie et Neuroscience, Paris, France
- Université de Paris, Paris, France
| | - Felipe Dal-Pizzol
- Laboratory of Experimental Pathophysiology, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Santa Catarina, Brazil
| |
Collapse
|
21
|
Ruiz-Rodriguez JC, Plata-Menchaca EP, Chiscano-Camón L, Ruiz-Sanmartin A, Pérez-Carrasco M, Palmada C, Ribas V, Martínez-Gallo M, Hernández-González M, Gonzalez-Lopez JJ, Larrosa N, Ferrer R. Precision medicine in sepsis and septic shock: From omics to clinical tools. World J Crit Care Med 2022; 11:1-21. [PMID: 35433311 PMCID: PMC8788206 DOI: 10.5492/wjccm.v11.i1.1] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 06/23/2021] [Accepted: 12/22/2021] [Indexed: 02/06/2023] Open
Abstract
Sepsis is a heterogeneous disease with variable clinical course and several clinical phenotypes. As it is associated with an increased risk of death, patients with this condition are candidates for receipt of a very well-structured and protocolized treatment. All patients should receive the fundamental pillars of sepsis management, which are infection control, initial resuscitation, and multiorgan support. However, specific subgroups of patients may benefit from a personalized approach with interventions targeted towards specific pathophysiological mechanisms. Herein, we will review the framework for identifying subpopulations of patients with sepsis, septic shock, and multiorgan dysfunction who may benefit from specific therapies. Some of these approaches are still in the early stages of research, while others are already in routine use in clinical practice, but together will help in the effective generation and safe implementation of precision medicine in sepsis.
Collapse
Affiliation(s)
- Juan Carlos Ruiz-Rodriguez
- Intensive Care Department, Vall d’Hebron Hospital Universitari, Vall d’Hebron Barcelona Hospital Campus, Barcelona 08035, Spain
- Shock, Organ Dysfunction and Resuscitation Research Group, Vall d’Hebron Institut de Recerca (VHIR), Vall d’Hebron Barcelona Hospital Campus, Barcelona 08035, Spain
- Departament de Medicina, Universitat Autònoma de Barcelona, Bellaterra 08193, Spain
| | - Erika P Plata-Menchaca
- Shock, Organ Dysfunction and Resuscitation Research Group, Vall d’Hebron Institut de Recerca (VHIR), Vall d’Hebron Barcelona Hospital Campus, Barcelona 08035, Spain
- Department of Intensive Care, Hospital Clínic de Barcelona, Barcelona 08036, Spain
| | - Luis Chiscano-Camón
- Intensive Care Department, Vall d’Hebron Hospital Universitari, Vall d’Hebron Barcelona Hospital Campus, Barcelona 08035, Spain
- Shock, Organ Dysfunction and Resuscitation Research Group, Vall d’Hebron Institut de Recerca (VHIR), Vall d’Hebron Barcelona Hospital Campus, Barcelona 08035, Spain
- Departament de Medicina, Universitat Autònoma de Barcelona, Bellaterra 08193, Spain
| | - Adolfo Ruiz-Sanmartin
- Intensive Care Department, Vall d’Hebron Hospital Universitari, Vall d’Hebron Barcelona Hospital Campus, Barcelona 08035, Spain
- Shock, Organ Dysfunction and Resuscitation Research Group, Vall d’Hebron Institut de Recerca (VHIR), Vall d’Hebron Barcelona Hospital Campus, Barcelona 08035, Spain
- Departament de Medicina, Universitat Autònoma de Barcelona, Bellaterra 08193, Spain
| | - Marcos Pérez-Carrasco
- Intensive Care Department, Vall d’Hebron Hospital Universitari, Vall d’Hebron Barcelona Hospital Campus, Barcelona 08035, Spain
- Shock, Organ Dysfunction and Resuscitation Research Group, Vall d’Hebron Institut de Recerca (VHIR), Vall d’Hebron Barcelona Hospital Campus, Barcelona 08035, Spain
| | - Clara Palmada
- Intensive Care Department, Vall d’Hebron Hospital Universitari, Vall d’Hebron Barcelona Hospital Campus, Barcelona 08035, Spain
| | - Vicent Ribas
- Data Analytics in Medicine, Digital Health Unit, Eurecat, Centre Tecnològic de Catalunya, Barcelona 08005, Spain
| | - Mónica Martínez-Gallo
- Immunology Division, Vall d’Hebron Hospital Universitari, Vall d’Hebron Barcelona Hospital Campus, Barcelona 08035, Spain
- Diagnostic Immunology Research Group, Vall d’Hebron Institut de Recerca (VHIR), Vall d’Hebron Barcelona Hospital Campus, Barcelona 08035, Spain
- Department of Cell Biology, Physiology and Immunology, Universitat Autònoma de Barcelona, Bellaterra 08193, Spain
| | - Manuel Hernández-González
- Immunology Division, Vall d’Hebron Hospital Universitari, Vall d’Hebron Barcelona Hospital Campus, Barcelona 08035, Spain
- Diagnostic Immunology Research Group, Vall d’Hebron Institut de Recerca (VHIR), Vall d’Hebron Barcelona Hospital Campus, Barcelona 08035, Spain
- Department of Cell Biology, Physiology and Immunology, Universitat Autònoma de Barcelona, Bellaterra 08193, Spain
| | - Juan J Gonzalez-Lopez
- Department of Clinical Microbiology, Vall d’Hebron Hospital Universitari, Vall d’Hebron Barcelona Hospital Campus, Barcelona 08035, Spain
- Department of Microbiology and Genetics, Universitat Autònoma de Barcelona, Bellaterra 08193, Spain
| | - Nieves Larrosa
- Department of Clinical Microbiology, Vall d’Hebron Hospital Universitari, Vall d’Hebron Barcelona Hospital Campus, Barcelona 08035, Spain
- Department of Microbiology and Genetics, Universitat Autònoma de Barcelona, Bellaterra 08193, Spain
| | - Ricard Ferrer
- Intensive Care Department, Vall d’Hebron Hospital Universitari, Vall d’Hebron Barcelona Hospital Campus, Barcelona 08035, Spain
- Shock, Organ Dysfunction and Resuscitation Research Group, Vall d’Hebron Institut de Recerca (VHIR), Vall d’Hebron Barcelona Hospital Campus, Barcelona 08035, Spain
- Departament de Medicina, Universitat Autònoma de Barcelona, Bellaterra 08193, Spain
| |
Collapse
|
22
|
Foreman RE, George AL, Reimann F, Gribble FM, Kay RG. Peptidomics: A Review of Clinical Applications and Methodologies. J Proteome Res 2021; 20:3782-3797. [PMID: 34270237 DOI: 10.1021/acs.jproteome.1c00295] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Improvements in both liquid chromatography (LC) and mass spectrometry (MS) instrumentation have greatly enhanced proteomic and small molecule metabolomic analysis in recent years. Less focus has been on the improved capability to detect and quantify small bioactive peptides, even though the exact sequences of the peptide species produced can have important biological consequences. Endogenous bioactive peptide hormones, for example, are generated by the targeted and regulated cleavage of peptides from their prohormone sequence. This process may include organ specific variants, as proglucagon is converted to glucagon in the pancreas but glucagon-like peptide-1 (GLP-1) in the small intestine, with glucagon raising, whereas GLP-1, as an incretin, lowering blood glucose. Therefore, peptidomics workflows must preserve the structure of the processed peptide products to prevent the misidentification of ambiguous peptide species. The poor in vivo and in vitro stability of peptides in biological matrices is a major factor that needs to be considered when developing methods to study them. The bioinformatic analysis of peptidomics data sets requires the inclusion of specific post-translational modifications, which are critical for the function of many bioactive peptides. This review aims to discuss and contrast the various extraction, analytical, and bioinformatics approaches used for human peptidomics studies in a multitude of matrices.
Collapse
Affiliation(s)
- Rachel E Foreman
- University of Cambridge Metabolic Research Laboratories, Level 4, Wellcome Trust-MRC Institute of Metabolic Science, Box 289, Addenbrooke's Hospital, Cambridge CB2 0QQ, U.K
| | - Amy L George
- University of Cambridge Metabolic Research Laboratories, Level 4, Wellcome Trust-MRC Institute of Metabolic Science, Box 289, Addenbrooke's Hospital, Cambridge CB2 0QQ, U.K
| | - Frank Reimann
- University of Cambridge Metabolic Research Laboratories, Level 4, Wellcome Trust-MRC Institute of Metabolic Science, Box 289, Addenbrooke's Hospital, Cambridge CB2 0QQ, U.K
| | - Fiona M Gribble
- University of Cambridge Metabolic Research Laboratories, Level 4, Wellcome Trust-MRC Institute of Metabolic Science, Box 289, Addenbrooke's Hospital, Cambridge CB2 0QQ, U.K
| | - Richard G Kay
- University of Cambridge Metabolic Research Laboratories, Level 4, Wellcome Trust-MRC Institute of Metabolic Science, Box 289, Addenbrooke's Hospital, Cambridge CB2 0QQ, U.K
| |
Collapse
|
23
|
Patterson EK, Gillio-Meina C, Martin CM, Fraser DD, Van Nynatten LR, Slessarev M, Cepinskas G. Proteinase 3 contributes to endothelial dysfunction in an experimental model of sepsis. Exp Biol Med (Maywood) 2021; 246:2338-2345. [PMID: 34292081 DOI: 10.1177/15353702211029284] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
In sepsis-induced inflammation, polymorphonuclear neutrophils (PMNs) contribute to vascular dysfunction. The serine proteases proteinase 3 (PR3) and human leukocyte elastase (HLE) are abundant in PMNs and are released upon degranulation. While HLE's role in inflammation-induced endothelial dysfunction is well studied, PR3's role is largely uninvestigated. We hypothesized that PR3, similarly to HLE, contributes to vascular barrier dysfunction in sepsis. Plasma PR3 and HLE concentrations and their leukocyte mRNA levels were measured by ELISA and qPCR, respectively, in sepsis patients and controls. Exogenous PR3 or HLE was applied to human umbilical vein endothelial cells (HUVECs) and HUVEC dysfunction was assessed by FITC-dextran permeability and electrical resistance. Both PR3 and HLE protein and mRNA levels were significantly increased in sepsis patients (P < 0.0001 and P < 0.05, respectively). Additionally, each enzyme independently increased HUVEC monolayer FITC-dextran permeability (P < 0.01), and decreased electrical resistance in a time- and dose-dependent manner (P < 0.001), an effect that could be ameliorated by novel treatment with carbon monoxide-releasing molecule 3 (CORM-3). The serine protease PR3, in addition to HLE, lead to vascular dysfunction and increased endothelial permeability, a hallmark pathological consequence of sepsis-induced inflammation. CORMs may offer a new strategy to reduce serine protease-induced vascular dysfunction.
Collapse
Affiliation(s)
- Eric K Patterson
- Centre for Critical Illness Research, 151158Lawson Health Research Institute, Lawson Health Research Institute, London, N6A 5W9, Canada
| | - Carolina Gillio-Meina
- Children's Health Research Institute and Translational Research Centre, Lawson Health Research Institute, London, N6A 5W9, Canada
| | - Claudio M Martin
- Centre for Critical Illness Research, 151158Lawson Health Research Institute, Lawson Health Research Institute, London, N6A 5W9, Canada.,Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, Western University, London, N6A 5C1, Canada
| | - Douglas D Fraser
- Centre for Critical Illness Research, 151158Lawson Health Research Institute, Lawson Health Research Institute, London, N6A 5W9, Canada.,Children's Health Research Institute and Translational Research Centre, Lawson Health Research Institute, London, N6A 5W9, Canada.,Department of Paediatrics, Schulich School of Medicine and Dentistry, Western University, London, N6A 5C1, Canada
| | - Logan R Van Nynatten
- Department of Medicine, Schulich School of Medicine and Dentistry, Western University, London, N6A 5C1, Canada
| | - Marat Slessarev
- Centre for Critical Illness Research, 151158Lawson Health Research Institute, Lawson Health Research Institute, London, N6A 5W9, Canada.,Department of Medicine, Schulich School of Medicine and Dentistry, Western University, London, N6A 5C1, Canada
| | - Gediminas Cepinskas
- Centre for Critical Illness Research, 151158Lawson Health Research Institute, Lawson Health Research Institute, London, N6A 5W9, Canada.,Department of Medical Biophysics, Western University, London, N6A 5C1, Canada
| |
Collapse
|
24
|
Fung AA, Zhou A, Vanos JK, Schmid-Schönbein GW. Enhanced intestinal permeability and intestinal co-morbidities in heat strain: A review and case for autodigestion. Temperature (Austin) 2021; 8:223-244. [PMID: 34527763 PMCID: PMC8436972 DOI: 10.1080/23328940.2021.1922261] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 04/22/2021] [Accepted: 04/23/2021] [Indexed: 11/05/2022] Open
Abstract
Enhanced intestinal permeability is a pervasive issue in modern medicine, with implications demonstrably associated with significant health consequences such as sepsis, multiorgan failure, and death. Key issues involve the trigger mechanisms that could compromise intestinal integrity and increase local permeability allowing the passage of larger, potentially dangerous molecules. Heat stress, whether exertional or environmental, may modulate intestinal permeability and begs interesting questions in the context of global climate change, increasing population vulnerabilities, and public health. Emerging evidence indicates that intestinal leakage of digestive enzymes and associated cell dysfunctions--a process referred to as autodigestion--may play a critical role in systemic physiological damage within the body. This increased permeability is exacerbated in the presence of elevated core temperatures. We employed Latent Dirichlet Allocation (LDA) topic modeling methods to analyze the relationship between heat stress and the nascent theory of autodigestion in a systematic, quantifiable, and unbiased manner. From a corpus of 11,233 scientific articles across four relevant scientific journals (Gut, Shock, Temperature, Gastroenterology), it was found that over 1,000 documents expressed a relationship between intestine, enhanced permeability, core temperature, and heat stress. The association has grown stronger in recent years, as heat stress and potential autodigestion are investigated in tandem, yet still by a limited number of specific research studies. Such findings justify the design of future studies to critically test novel interventions against digestive enzymes permeating the intestinal tract, especially the small intestine.
Collapse
Affiliation(s)
- Anthony A. Fung
- Department of Bioengineering, University of California San Diego, La Jolla, CA, USA
| | - Andy Zhou
- Department of Bioengineering, University of California San Diego, La Jolla, CA, USA
| | | | | |
Collapse
|
25
|
Pantalone D, Bergamini C, Martellucci J, Alemanno G, Bruscino A, Maltinti G, Sheiterle M, Viligiardi R, Panconesi R, Guagni T, Prosperi P. The Role of DAMPS in Burns and Hemorrhagic Shock Immune Response: Pathophysiology and Clinical Issues. Review. Int J Mol Sci 2021; 22:7020. [PMID: 34209943 PMCID: PMC8268351 DOI: 10.3390/ijms22137020] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 06/14/2021] [Accepted: 06/22/2021] [Indexed: 12/20/2022] Open
Abstract
Severe or major burns induce a pathophysiological, immune, and inflammatory response that can persist for a long time and affect morbidity and mortality. Severe burns are followed by a "hypermetabolic response", an inflammatory process that can be extensive and become uncontrolled, leading to a generalized catabolic state and delayed healing. Catabolism causes the upregulation of inflammatory cells and innate immune markers in various organs, which may lead to multiorgan failure and death. Burns activate immune cells and cytokine production regulated by damage-associated molecular patterns (DAMPs). Trauma has similar injury-related immune responses, whereby DAMPs are massively released in musculoskeletal injuries and elicit widespread systemic inflammation. Hemorrhagic shock is the main cause of death in trauma. It is hypovolemic, and the consequence of volume loss and the speed of blood loss manifest immediately after injury. In burns, the shock becomes evident within the first 24 h and is hypovolemic-distributive due to the severely compromised regulation of tissue perfusion and oxygen delivery caused by capillary leakage, whereby fluids shift from the intravascular to the interstitial space. In this review, we compare the pathophysiological responses to burns and trauma including their associated clinical patterns.
Collapse
Affiliation(s)
- Desirè Pantalone
- ESA-European Space Agency Headquarter, 24 Rue de Général Bertrand, 75345 Paris, France
- Department of Experimental and Clinical Medicine, University of Florence, 50121 Firenze, Italy
| | - Carlo Bergamini
- Trauma Team, Acute Care Surgery and Trauma Unit, Careggi University Hospital, Largo A. Brambilla 3, 50134 Florence, Italy; (C.B.); (J.M.); (G.A.); (A.B.); (G.M.); (M.S.); (R.V.); (R.P.); (T.G.); (P.P.)
| | - Jacopo Martellucci
- Trauma Team, Acute Care Surgery and Trauma Unit, Careggi University Hospital, Largo A. Brambilla 3, 50134 Florence, Italy; (C.B.); (J.M.); (G.A.); (A.B.); (G.M.); (M.S.); (R.V.); (R.P.); (T.G.); (P.P.)
| | - Giovanni Alemanno
- Trauma Team, Acute Care Surgery and Trauma Unit, Careggi University Hospital, Largo A. Brambilla 3, 50134 Florence, Italy; (C.B.); (J.M.); (G.A.); (A.B.); (G.M.); (M.S.); (R.V.); (R.P.); (T.G.); (P.P.)
| | - Alessandro Bruscino
- Trauma Team, Acute Care Surgery and Trauma Unit, Careggi University Hospital, Largo A. Brambilla 3, 50134 Florence, Italy; (C.B.); (J.M.); (G.A.); (A.B.); (G.M.); (M.S.); (R.V.); (R.P.); (T.G.); (P.P.)
| | - Gherardo Maltinti
- Trauma Team, Acute Care Surgery and Trauma Unit, Careggi University Hospital, Largo A. Brambilla 3, 50134 Florence, Italy; (C.B.); (J.M.); (G.A.); (A.B.); (G.M.); (M.S.); (R.V.); (R.P.); (T.G.); (P.P.)
| | - Maximilian Sheiterle
- Trauma Team, Acute Care Surgery and Trauma Unit, Careggi University Hospital, Largo A. Brambilla 3, 50134 Florence, Italy; (C.B.); (J.M.); (G.A.); (A.B.); (G.M.); (M.S.); (R.V.); (R.P.); (T.G.); (P.P.)
| | - Riccardo Viligiardi
- Trauma Team, Acute Care Surgery and Trauma Unit, Careggi University Hospital, Largo A. Brambilla 3, 50134 Florence, Italy; (C.B.); (J.M.); (G.A.); (A.B.); (G.M.); (M.S.); (R.V.); (R.P.); (T.G.); (P.P.)
| | - Roberto Panconesi
- Trauma Team, Acute Care Surgery and Trauma Unit, Careggi University Hospital, Largo A. Brambilla 3, 50134 Florence, Italy; (C.B.); (J.M.); (G.A.); (A.B.); (G.M.); (M.S.); (R.V.); (R.P.); (T.G.); (P.P.)
| | - Tommaso Guagni
- Trauma Team, Acute Care Surgery and Trauma Unit, Careggi University Hospital, Largo A. Brambilla 3, 50134 Florence, Italy; (C.B.); (J.M.); (G.A.); (A.B.); (G.M.); (M.S.); (R.V.); (R.P.); (T.G.); (P.P.)
| | - Paolo Prosperi
- Trauma Team, Acute Care Surgery and Trauma Unit, Careggi University Hospital, Largo A. Brambilla 3, 50134 Florence, Italy; (C.B.); (J.M.); (G.A.); (A.B.); (G.M.); (M.S.); (R.V.); (R.P.); (T.G.); (P.P.)
| |
Collapse
|
26
|
Continuous enteral protease inhibition as a novel treatment for experimental trauma/hemorrhagic shock. Eur J Trauma Emerg Surg 2021; 48:1579-1588. [PMID: 33483765 DOI: 10.1007/s00068-020-01591-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Accepted: 12/27/2020] [Indexed: 02/07/2023]
Abstract
PURPOSE Trauma and hemorrhagic shock (T/HS) is a major cause of morbidity and mortality. Existing treatment options are largely limited to source control and fluid and blood repletion. Previously, we have shown that enteral protease inhibition improves outcomes in experimental models of T/HS by protecting the gut from malperfusion and ischemia. However, enteral protease inhibition was achieved invasively, by laparotomy and direct injection of tranexamic acid (TXA) into the small intestine. In this study, we tested a minimally invasive method of enteral protease inhibitor infusion in experimental T/HS that can be readily adapted for clinical use. METHODS Wistar rats were exsanguinated to a mean arterial blood pressure (MABP) of 40 mmHg, with laparotomy to induce trauma. Hypovolemia was maintained for 120 min and was followed by reperfusion of shed blood. Animals were monitored for an additional 120 min. A modified orogastric multi-lumen tube was developed to enable rapid enteral infusion of a protease inhibitor solution while simultaneously mitigating risk of reflux aspiration into the airways. The catheter was used to deliver TXA (T/HS + TXA) or vehicle (T/HS) continuously into the proximal small intestine, starting 20 min into the ischemic period. RESULTS Rats treated with enteral protease inhibition (T/HS + TXA) displayed improved outcomes compared to control animals (T/HS), including significantly improved MABP (p = 0.022) and lactate (p = 0.044). Mass spectrometry-based analysis of the plasma peptidome after T/HS indicated mitigation of systemic proteolysis in T/HS + TXA. CONCLUSION Minimally invasive, continuous enteral protease inhibitor delivery improves outcomes in T/HS and is readily translatable to the clinical arena.
Collapse
|
27
|
Scheen M, Giraud R, Bendjelid K. Stress hyperglycemia, cardiac glucotoxicity, and critically ill patient outcomes current clinical and pathophysiological evidence. Physiol Rep 2021; 9:e14713. [PMID: 33463901 PMCID: PMC7814494 DOI: 10.14814/phy2.14713] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 12/09/2020] [Accepted: 12/12/2020] [Indexed: 01/07/2023] Open
Abstract
Stress hyperglycemia is a transient increase in blood glucose during acute physiological stress in the absence of glucose homeostasis dysfunction. Its's presence has been described in critically ill patients who are subject to many physiological insults. In this regard, hyperglycemia and impaired glucose tolerance are also frequent in patients who are admitted to the intensive care unit for heart failure and cardiogenic shock. The hyperglycemia observed at the beginning of these cardiac disorders appears to be related to a variety of stress mechanisms. The release of major stress and steroid hormones, catecholamine overload, and glucagon all participate in generating a state of insulin resistance with increased hepatic glucose output and glycogen breakdown. In fact, the observed pathophysiological response, which appears to regulate a stress situation, is harmful because it induces mitochondrial impairment, oxidative stress-related injury to cells, endothelial damage, and dysfunction of several cellular channels. Paradigms are now being challenged by growing evidence of a phenomenon called glucotoxicity, providing an explanation for the benefits of lowering glucose levels with insulin therapy in these patients. In the present review, the authors present the data published on cardiac glucotoxicity and discuss the benefits of lowering plasma glucose to improve heart function and to positively affect the course of critical illness.
Collapse
Affiliation(s)
- Marc Scheen
- Intensive Care Division, University Hospitals, Geneva, Switzerland.,Geneva Hemodynamic Research Group, Geneva, Switzerland.,Faculty of Medicine, Geneva, Switzerland
| | - Raphael Giraud
- Intensive Care Division, University Hospitals, Geneva, Switzerland.,Geneva Hemodynamic Research Group, Geneva, Switzerland.,Faculty of Medicine, Geneva, Switzerland
| | - Karim Bendjelid
- Intensive Care Division, University Hospitals, Geneva, Switzerland.,Geneva Hemodynamic Research Group, Geneva, Switzerland.,Faculty of Medicine, Geneva, Switzerland
| |
Collapse
|
28
|
Rivas AM, Nugent K. Hyperglycemia, Insulin, and Insulin Resistance in Sepsis. Am J Med Sci 2020; 361:297-302. [PMID: 33500122 DOI: 10.1016/j.amjms.2020.11.007] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 10/18/2020] [Accepted: 11/06/2020] [Indexed: 02/06/2023]
Abstract
Critically ill patients frequently have hyperglycemia. This event may reflect severe stress with an imbalance between anabolic hormones and catabolic hormones. Alternatively, it may reflect alterations in either insulin levels or insulin function. Insulin is a pleiotropic hormone with multiple important metabolic effects. In patients with sepsis, insulin levels are increased but insulin sensitivity is decreased. However, there is variability in insulin sensitivity, and this creates variability in glucose levels and insulin requirements and increases the frequency of hypo- and hyperglycemia. The factors that influence insulin sensitivity are complex and include inhibition of tyrosine kinase activity of the beta subunit, increased proteolytic activity resulting in loss of receptors from the plasma membrane, and possibly the transfer of insulin receptors into the nucleus where they bind to gene promoters. Better understanding of the role of insulin in critically ill patients requires prospective studies measuring insulin levels in various patient groups and the development of a simple measure of insulin sensitivity.
Collapse
Affiliation(s)
- Ana Marcella Rivas
- The Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, United States.
| | - Kenneth Nugent
- The Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, United States
| |
Collapse
|
29
|
Osuchowski MF, Aletti F, Cavaillon JM, Flohé SB, Giamarellos-Bourboulis EJ, Huber-Lang M, Relja B, Skirecki T, Szabó A, Maegele M. SARS-CoV-2/COVID-19: Evolving Reality, Global Response, Knowledge Gaps, and Opportunities. Shock 2020; 54:416-437. [PMID: 32433217 PMCID: PMC7363382 DOI: 10.1097/shk.0000000000001565] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 04/29/2020] [Accepted: 05/05/2020] [Indexed: 02/06/2023]
Abstract
Approximately 3 billion people around the world have gone into some form of social separation to mitigate the current severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic. The uncontrolled influx of patients in need of emergency care has rapidly brought several national health systems to near-collapse with deadly consequences to those afflicted by Coronavirus Disease 2019 (COVID-19) and other critical diseases associated with COVID-19. Solid scientific evidence regarding SARS-CoV-2/COVID-19 remains scarce; there is an urgent need to expand our understanding of the SARS-CoV-2 pathophysiology to facilitate precise and targeted treatments. The capacity for rapid information dissemination has emerged as a double-edged sword; the existing gap of high-quality data is frequently filled by anecdotal reports, contradictory statements, and misinformation. This review addresses several important aspects unique to the SARS-CoV-2/COVID-19 pandemic highlighting the most relevant knowledge gaps and existing windows-of-opportunity. Specifically, focus is given on SARS-CoV-2 immunopathogenesis in the context of experimental therapies and preclinical evidence and their applicability in supporting efficacious clinical trial planning. The review discusses the existing challenges of SARS-CoV-2 diagnostics and the potential application of translational technology for epidemiological predictions, patient monitoring, and treatment decision-making in COVID-19. Furthermore, solutions for enhancing international strategies in translational research, cooperative networks, and regulatory partnerships are contemplated.
Collapse
Affiliation(s)
- Marcin F. Osuchowski
- Ludwig Boltzmann Institute for Experimental and Clinical Traumatology in the AUVA Trauma Research Center, Vienna, Austria
| | - Federico Aletti
- Department of Bioengineering, University of California San Diego, La Jolla, California
| | | | - Stefanie B. Flohé
- Department of Trauma, Hand, and Reconstructive Surgery, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | | | - Markus Huber-Lang
- Institute of Clinical and Experimental Trauma-Immunology, University Hospital Ulm, Ulm University, Ulm, Germany
| | - Borna Relja
- Experimental Radiology, Department of Radiology and Nuclear Medicine, Otto von Guericke University Magdeburg, Magdeburg, Germany
| | - Tomasz Skirecki
- Laboratory of Flow Cytometry, Centre of Postgraduate Medical Education, Warsaw, Poland
| | - Andrea Szabó
- Institute of Surgical Research, University of Szeged, Szeged, Hungary
| | - Marc Maegele
- Department of Trauma and Orthopaedic Surgery, Cologne-Merheim Medical Center (CMMC), University of Witten/Herdecke, Cologne-Merheim Campus, Cologne, Germany
- Institute for Research in Operative Medicine (IFOM), University of Witten/Herdecke, Cologne-Merheim Campus, Cologne, Germany
| |
Collapse
|
30
|
Maffioli E, Jiang Z, Nonnis S, Negri A, Romeo V, Lietz CB, Hook V, Ristagno G, Baselli G, Kistler EB, Aletti F, O’Donoghue AJ, Tedeschi G. High-Resolution Mass Spectrometry-Based Approaches for the Detection and Quantification of Peptidase Activity in Plasma. Molecules 2020; 25:molecules25184071. [PMID: 32899982 PMCID: PMC7571063 DOI: 10.3390/molecules25184071] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 08/28/2020] [Accepted: 09/04/2020] [Indexed: 12/16/2022] Open
Abstract
Proteomic technologies have identified 234 peptidases in plasma but little quantitative information about the proteolytic activity has been uncovered. In this study, the substrate profile of plasma proteases was evaluated using two nano-LC-ESI-MS/MS methods. Multiplex substrate profiling by mass spectrometry (MSP-MS) quantifies plasma protease activity in vitro using a global and unbiased library of synthetic peptide reporter substrates, and shotgun peptidomics quantifies protein degradation products that have been generated in vivo by proteases. The two approaches gave complementary results since they both highlight key peptidase activities in plasma including amino- and carboxypeptidases with different substrate specificity profiles. These assays provide a significant advantage over traditional approaches, such as fluorogenic peptide reporter substrates, because they can detect active plasma proteases in a global and unbiased manner, in comparison to detecting select proteases using specific reporter substrates. We discovered that plasma proteins are cleaved by endoproteases and these peptide products are subsequently degraded by amino- and carboxypeptidases. The exopeptidases are more active and stable in plasma and therefore were found to be the most active proteases in the in vitro assay. The protocols presented here set the groundwork for studies to evaluate changes in plasma proteolytic activity in shock.
Collapse
Affiliation(s)
- Elisa Maffioli
- Department of Veterinary Medicine, University of Milano, 20133 Milano, Italy; (E.M.); (S.N.); (A.N.); (V.R.)
- Centre for Nanostructured Materials and Interfaces (CIMAINA), University of Milano, 20133 Milano, Italy
| | - Zhenze Jiang
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA 92093, USA; (Z.J.); (C.B.L.); (V.H.)
| | - Simona Nonnis
- Department of Veterinary Medicine, University of Milano, 20133 Milano, Italy; (E.M.); (S.N.); (A.N.); (V.R.)
- Centre for Nanostructured Materials and Interfaces (CIMAINA), University of Milano, 20133 Milano, Italy
| | - Armando Negri
- Department of Veterinary Medicine, University of Milano, 20133 Milano, Italy; (E.M.); (S.N.); (A.N.); (V.R.)
- Centre for Nanostructured Materials and Interfaces (CIMAINA), University of Milano, 20133 Milano, Italy
| | - Valentina Romeo
- Department of Veterinary Medicine, University of Milano, 20133 Milano, Italy; (E.M.); (S.N.); (A.N.); (V.R.)
| | - Christopher B. Lietz
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA 92093, USA; (Z.J.); (C.B.L.); (V.H.)
| | - Vivian Hook
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA 92093, USA; (Z.J.); (C.B.L.); (V.H.)
- Department of Neurosciences, School of Medicine, University of California San Diego, La Jolla, CA 92093, USA
| | - Giuseppe Ristagno
- Department of Pathophysiology and Transplantation, University of Milan, 20133 Milan, Italy;
| | - Giuseppe Baselli
- Dipartimento di Elettronica, Informazione e Bioingegneria, Politecnico di Milano, 20133 Milan, Italy;
| | - Erik B. Kistler
- Department of Anesthesiology & Critical Care, University of California San Diego, La Jolla, CA 92093, USA;
- Department of Anesthesiology & Critical Care, VA San Diego HealthCare System, San Diego, CA 92161, USA
| | - Federico Aletti
- Department of Bioengineering, University of California San Diego, La Jolla, CA 92093, USA;
| | - Anthony J. O’Donoghue
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA 92093, USA; (Z.J.); (C.B.L.); (V.H.)
- Correspondence: (A.J.O.); (G.T.); Tel.: +1-8585345360 (A.J.O.); +39-02-50318127 (G.T.)
| | - Gabriella Tedeschi
- Department of Veterinary Medicine, University of Milano, 20133 Milano, Italy; (E.M.); (S.N.); (A.N.); (V.R.)
- Centre for Nanostructured Materials and Interfaces (CIMAINA), University of Milano, 20133 Milano, Italy
- Correspondence: (A.J.O.); (G.T.); Tel.: +1-8585345360 (A.J.O.); +39-02-50318127 (G.T.)
| |
Collapse
|
31
|
Peng J, Zhang H, Niu H, Wu R. Peptidomic analyses: The progress in enrichment and identification of endogenous peptides. Trends Analyt Chem 2020. [DOI: 10.1016/j.trac.2020.115835] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
32
|
Martin-Fernandez M, Vaquero-Roncero LM, Almansa R, Gómez-Sánchez E, Martín S, Tamayo E, Esteban-Velasco MC, Ruiz-Granado P, Aragón M, Calvo D, Rico-Feijoo J, Ortega A, Gómez-Pesquera E, Lorenzo-López M, López J, Doncel C, González-Sanchez C, Álvarez D, Zarca E, Ríos-Llorente A, Diaz-Alvarez A, Sanchez-Barrado E, Andaluz-Ojeda D, Calvo-Vecino JM, Muñoz-Bellvís L, Gomez-Herreras JI, Abad-Molina C, Bermejo-Martin JF, Aldecoa C, Heredia-Rodríguez M. Endothelial dysfunction is an early indicator of sepsis and neutrophil degranulation of septic shock in surgical patients. BJS Open 2020; 4:524-534. [PMID: 32073224 PMCID: PMC7260414 DOI: 10.1002/bjs5.50265] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Accepted: 01/14/2020] [Indexed: 01/01/2023] Open
Abstract
Background Stratification of the severity of infection is currently based on the Sequential Organ Failure Assessment (SOFA) score, which is difficult to calculate outside the ICU. Biomarkers could help to stratify the severity of infection in surgical patients. Methods Levels of ten biomarkers indicating endothelial dysfunction, 22 indicating emergency granulopoiesis, and six denoting neutrophil degranulation were compared in three groups of patients in the first 12 h after diagnosis at three Spanish hospitals. Results There were 100 patients with infection, 95 with sepsis and 57 with septic shock. Seven biomarkers indicating endothelial dysfunction (mid‐regional proadrenomedullin (MR‐ProADM), syndecan 1, thrombomodulin, angiopoietin 2, endothelial cell‐specific molecule 1, vascular cell adhesion molecule 1 and E‐selectin) had stronger associations with sepsis than infection alone. MR‐ProADM had the highest odds ratio (OR) in multivariable analysis (OR 11·53, 95 per cent c.i. 4·15 to 32·08; P = 0·006) and the best area under the curve (AUC) for detecting sepsis (0·86, 95 per cent c.i. 0·80 to 0·91; P < 0·001). In a comparison of sepsis with septic shock, two biomarkers of neutrophil degranulation, proteinase 3 (OR 8·09, 1·34 to 48·91; P = 0·028) and lipocalin 2 (OR 6·62, 2·47 to 17·77; P = 0·002), had the strongest association with septic shock, but lipocalin 2 exhibited the highest AUC (0·81, 0·73 to 0·90; P < 0·001). Conclusion MR‐ProADM and lipocalin 2 could be alternatives to the SOFA score in the detection of sepsis and septic shock respectively in surgical patients with infection.
Collapse
Affiliation(s)
- M Martin-Fernandez
- Group for Biomedical Research in Sepsis (BioSepsis), Instituto de Investigación Biomédica de Salamanca (IBSAL), Salamanca, Spain.,Research Unit, Hospital Clínico Universitario de Valladolid, Valladolid, Spain
| | - L M Vaquero-Roncero
- Anaesthesiology and Reanimation Service, Hospital Universitario de Salamanca, Salamanca, Spain
| | - R Almansa
- Group for Biomedical Research in Sepsis (BioSepsis), Instituto de Investigación Biomédica de Salamanca (IBSAL), Salamanca, Spain.,Research Unit, Hospital Clínico Universitario de Valladolid, Valladolid, Spain.,Biomedical Research Networking Centre on Respiratory Diseases (CIBERES), Instituto de Salud Carlos III, Madrid, Spain
| | - E Gómez-Sánchez
- Group for Biomedical Research in Critical Care (BioCritic), Anaesthesiology and Reanimation Service, Hospital Clínico Universitario de Valladolid, Valladolid, Spain
| | - S Martín
- Anaesthesiology and Reanimation Service, Hospital Universitario Río Hortega, Valladolid, Spain
| | - E Tamayo
- Group for Biomedical Research in Critical Care (BioCritic), Anaesthesiology and Reanimation Service, Hospital Clínico Universitario de Valladolid, Valladolid, Spain
| | - M C Esteban-Velasco
- Department of General and Gastrointestinal Surgery, Hospital Universitario de Salamanca, Instituto de Investigación Biomédica de Salamanca (IBSAL) and Universidad de Salamanca, Salamanca, Spain
| | - P Ruiz-Granado
- Group for Biomedical Research in Critical Care (BioCritic), Anaesthesiology and Reanimation Service, Hospital Clínico Universitario de Valladolid, Valladolid, Spain
| | - M Aragón
- Group for Biomedical Research in Critical Care (BioCritic), Anaesthesiology and Reanimation Service, Hospital Clínico Universitario de Valladolid, Valladolid, Spain
| | - D Calvo
- Clinical Analysis Service, Hospital Clínico Universitario de Valladolid, Valladolid, Spain
| | - J Rico-Feijoo
- Anaesthesiology and Reanimation Service, Hospital Universitario Río Hortega, Valladolid, Spain
| | - A Ortega
- Group for Biomedical Research in Sepsis (BioSepsis), Instituto de Investigación Biomédica de Salamanca (IBSAL), Salamanca, Spain.,Research Unit, Hospital Clínico Universitario de Valladolid, Valladolid, Spain
| | - E Gómez-Pesquera
- Group for Biomedical Research in Critical Care (BioCritic), Anaesthesiology and Reanimation Service, Hospital Clínico Universitario de Valladolid, Valladolid, Spain
| | - M Lorenzo-López
- Group for Biomedical Research in Critical Care (BioCritic), Anaesthesiology and Reanimation Service, Hospital Clínico Universitario de Valladolid, Valladolid, Spain
| | - J López
- Department of General and Gastrointestinal Surgery, Hospital Universitario de Salamanca, Instituto de Investigación Biomédica de Salamanca (IBSAL) and Universidad de Salamanca, Salamanca, Spain
| | - C Doncel
- Group for Biomedical Research in Sepsis (BioSepsis), Instituto de Investigación Biomédica de Salamanca (IBSAL), Salamanca, Spain.,Research Unit, Hospital Clínico Universitario de Valladolid, Valladolid, Spain
| | - C González-Sanchez
- Department of General and Gastrointestinal Surgery, Hospital Universitario de Salamanca, Instituto de Investigación Biomédica de Salamanca (IBSAL) and Universidad de Salamanca, Salamanca, Spain
| | - D Álvarez
- Anaesthesiology and Reanimation Service, Hospital Universitario de Salamanca, Salamanca, Spain
| | - E Zarca
- Clinical Analysis Service, Hospital Clínico Universitario de Valladolid, Valladolid, Spain
| | - A Ríos-Llorente
- Anaesthesiology and Reanimation Service, Hospital Universitario de Salamanca, Salamanca, Spain
| | - A Diaz-Alvarez
- Anaesthesiology and Reanimation Service, Hospital Universitario de Salamanca, Salamanca, Spain
| | - E Sanchez-Barrado
- Anaesthesiology and Reanimation Service, Hospital Universitario de Salamanca, Salamanca, Spain
| | - D Andaluz-Ojeda
- Intensive Care Medicine Service, Hospital Clínico Universitario de Valladolid, Valladolid, Spain
| | - J M Calvo-Vecino
- Anaesthesiology and Reanimation Service, Hospital Universitario de Salamanca, Salamanca, Spain
| | - L Muñoz-Bellvís
- Department of General and Gastrointestinal Surgery, Hospital Universitario de Salamanca, Instituto de Investigación Biomédica de Salamanca (IBSAL) and Universidad de Salamanca, Salamanca, Spain.,Biomedical Research Networking Centre on Cancer (CIBERONC), Madrid, Spain
| | - J I Gomez-Herreras
- Group for Biomedical Research in Critical Care (BioCritic), Anaesthesiology and Reanimation Service, Hospital Clínico Universitario de Valladolid, Valladolid, Spain
| | - C Abad-Molina
- Microbiology and Immunology Service, Hospital Clínico Universitario de Valladolid, Valladolid, Spain
| | - J F Bermejo-Martin
- Group for Biomedical Research in Sepsis (BioSepsis), Instituto de Investigación Biomédica de Salamanca (IBSAL), Salamanca, Spain.,Research Unit, Hospital Clínico Universitario de Valladolid, Valladolid, Spain.,Biomedical Research Networking Centre on Respiratory Diseases (CIBERES), Instituto de Salud Carlos III, Madrid, Spain
| | - C Aldecoa
- Anaesthesiology and Reanimation Service, Hospital Universitario Río Hortega, Valladolid, Spain
| | - M Heredia-Rodríguez
- Anaesthesiology and Reanimation Service, Hospital Universitario de Salamanca, Salamanca, Spain
| |
Collapse
|
33
|
Nkuipou-Kenfack E, Latosinska A, Yang WY, Fournier MC, Blet A, Mujaj B, Thijs L, Feliot E, Gayat E, Mischak H, Staessen JA, Mebazaa A, Zhang ZY. A novel urinary biomarker predicts 1-year mortality after discharge from intensive care. CRITICAL CARE : THE OFFICIAL JOURNAL OF THE CRITICAL CARE FORUM 2020; 24:10. [PMID: 31918764 PMCID: PMC6953276 DOI: 10.1186/s13054-019-2686-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/28/2019] [Accepted: 11/26/2019] [Indexed: 01/25/2023]
Abstract
Rationale The urinary proteome reflects molecular drivers of disease. Objectives To construct a urinary proteomic biomarker predicting 1-year post-ICU mortality. Methods In 1243 patients, the urinary proteome was measured on ICU admission, using capillary electrophoresis coupled with mass spectrometry along with clinical variables, circulating biomarkers (BNP, hsTnT, active ADM, and NGAL), and urinary albumin. Methods included support vector modeling to construct the classifier, Cox regression, the integrated discrimination (IDI), and net reclassification (NRI) improvement, and area under the curve (AUC) to assess predictive accuracy, and Proteasix and protein-proteome interactome analyses. Measurements and main results In the discovery (deaths/survivors, 70/299) and test (175/699) datasets, the new classifier ACM128, mainly consisting of collagen fragments, yielding AUCs of 0.755 (95% CI, 0.708–0.798) and 0.688 (0.656–0.719), respectively. While accounting for study site and clinical risk factors, hazard ratios in 1243 patients were 2.41 (2.00–2.91) for ACM128 (+ 1 SD), 1.24 (1.16–1.32) for the Charlson Comorbidity Index (+ 1 point), and ≥ 1.19 (P ≤ 0.022) for other biomarkers (+ 1 SD). ACM128 improved (P ≤ 0.0001) IDI (≥ + 0.50), NRI (≥ + 53.7), and AUC (≥ + 0.037) over and beyond clinical risk indicators and other biomarkers. Interactome mapping, using parental proteins derived from sequenced peptides included in ACM128 and in silico predicted proteases, including/excluding urinary collagen fragments (63/35 peptides), revealed as top molecular pathways protein digestion and absorption, lysosomal activity, and apoptosis. Conclusions The urinary proteomic classifier ACM128 predicts the 1-year post-ICU mortality over and beyond clinical risk factors and other biomarkers and revealed molecular pathways potentially contributing to a fatal outcome.
Collapse
Affiliation(s)
| | | | - Wen-Yi Yang
- Studies Coordinating Centre, Research Unit Hypertension and Cardiovascular Epidemiology, KU Leuven Department of Cardiovascular Sciences, University of Leuven, Campus Sint Rafaël, Kapucijnenvoer 35, Box 7001, 3000, Leuven, Belgium.,Department of Cardiology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Marie-Céline Fournier
- Department of Anesthesiology and Intensive Care, Saint Louis-Lariboisière - Fernand Widal University Hospital, Assistance Publique Hôpitaux de Paris, Paris, France
| | - Alice Blet
- Department of Anesthesiology and Intensive Care, Saint Louis-Lariboisière - Fernand Widal University Hospital, Assistance Publique Hôpitaux de Paris, Paris, France.,Université de Paris, Paris, France
| | - Blerim Mujaj
- Studies Coordinating Centre, Research Unit Hypertension and Cardiovascular Epidemiology, KU Leuven Department of Cardiovascular Sciences, University of Leuven, Campus Sint Rafaël, Kapucijnenvoer 35, Box 7001, 3000, Leuven, Belgium
| | - Lutgarde Thijs
- Studies Coordinating Centre, Research Unit Hypertension and Cardiovascular Epidemiology, KU Leuven Department of Cardiovascular Sciences, University of Leuven, Campus Sint Rafaël, Kapucijnenvoer 35, Box 7001, 3000, Leuven, Belgium
| | - Elodie Feliot
- Department of Anesthesiology and Intensive Care, Saint Louis-Lariboisière - Fernand Widal University Hospital, Assistance Publique Hôpitaux de Paris, Paris, France
| | - Etienne Gayat
- Department of Anesthesiology and Intensive Care, Saint Louis-Lariboisière - Fernand Widal University Hospital, Assistance Publique Hôpitaux de Paris, Paris, France.,Université de Paris, Paris, France.,INSERM UMR-S 942 - MASCOT, Paris, France
| | | | - Jan A Staessen
- Studies Coordinating Centre, Research Unit Hypertension and Cardiovascular Epidemiology, KU Leuven Department of Cardiovascular Sciences, University of Leuven, Campus Sint Rafaël, Kapucijnenvoer 35, Box 7001, 3000, Leuven, Belgium.,Cardiovascular Research Institute Maastricht, Maastricht University, Maastricht, the Netherlands
| | - Alexandre Mebazaa
- Department of Anesthesiology and Intensive Care, Saint Louis-Lariboisière - Fernand Widal University Hospital, Assistance Publique Hôpitaux de Paris, Paris, France.,Université de Paris, Paris, France.,INSERM UMR-S 942 - MASCOT, Paris, France
| | - Zhen-Yu Zhang
- Studies Coordinating Centre, Research Unit Hypertension and Cardiovascular Epidemiology, KU Leuven Department of Cardiovascular Sciences, University of Leuven, Campus Sint Rafaël, Kapucijnenvoer 35, Box 7001, 3000, Leuven, Belgium.
| | | |
Collapse
|
34
|
Braga D, Barcella M, Herpain A, Aletti F, Kistler EB, Bollen Pinto B, Bendjelid K, Barlassina C. A longitudinal study highlights shared aspects of the transcriptomic response to cardiogenic and septic shock. CRITICAL CARE : THE OFFICIAL JOURNAL OF THE CRITICAL CARE FORUM 2019; 23:414. [PMID: 31856860 PMCID: PMC6921511 DOI: 10.1186/s13054-019-2670-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/25/2019] [Accepted: 11/12/2019] [Indexed: 12/13/2022]
Abstract
Background Septic shock (SS) and cardiogenic shock (CS) are two types of circulatory shock with a different etiology. Several studies have described the molecular alterations in SS patients, whereas the molecular factors involved in CS have been poorly investigated. We aimed to assess in the whole blood of CS and SS patients, using septic patients without shock (SC) as controls, transcriptomic modifications that occur over 1 week after ICU admission and are common to the two types of shock. Methods We performed whole blood RNA sequencing in 21 SS, 11 CS, and 5 SC. In shock patients, blood samples were collected within 16 h from ICU admission (T1), 48 h after ICU admission (T2), and at day 7 or before discharge (T3). In controls, blood samples were available at T1 and T2. Gene expression changes over time have been studied in CS, SS, and SC separately with a paired analysis. Genes with p value < 0.01 (Benjamini-Hochberg multiple test correction) were defined differentially expressed (DEGs). We used gene set enrichment analysis (GSEA) to identify the biological processes and transcriptional regulators significantly enriched in both types of shock. Results In both CS and SS patients, GO terms of inflammatory response and pattern recognition receptors (PRRs) were downregulated following ICU admission, whereas gene sets of DNA replication were upregulated. At the gene level, we observed that alarmins, interleukin receptors, PRRs, inflammasome, and DNA replication genes significantly changed their expression in CS and SS, but not in SC. Analysis of transcription factor targets showed in both CS and SS patients, an enrichment of CCAAT-enhancer-binding protein beta (CEBPB) targets in genes downregulated over time and an enrichment of E2F targets in genes with an increasing expression trend. Conclusions This pilot study supports, within the limits of a small sample size, the role of alarmins, PRRs, DNA replication, and immunoglobulins in the pathophysiology of circulatory shock, either in the presence of infection or not. We hypothesize that these genes could be potential targets of therapeutic interventions in CS and SS. Trial registration ClinicalTrials.gov, NCT02141607. Registered 19 May 2014.
Collapse
Affiliation(s)
- Daniele Braga
- Dipartimento di Scienze della Salute, Università degli Studi di Milano, 20142, Milano, Italy. .,Fondazione Filarete, 20139, Milano, Italy.
| | - Matteo Barcella
- Dipartimento di Scienze della Salute, Università degli Studi di Milano, 20142, Milano, Italy.,Fondazione Filarete, 20139, Milano, Italy
| | - Antoine Herpain
- Department of Intensive Care, Hôpital Erasme, Université Libre de Bruxelles, Brussels, Belgium
| | - Federico Aletti
- Department of Bioengineering, University of California San Diego, La Jolla, CA, USA
| | - Erik B Kistler
- Department of Anestesiology & Critical Care, University of California, San Diego, USA
| | - Bernardo Bollen Pinto
- Department of Anaesthesia, Pharmacology and Intensive Care, Geneva University Hospitals, Geneva, Switzerland
| | - Karim Bendjelid
- Department of Anaesthesia, Pharmacology and Intensive Care, Geneva University Hospitals, Geneva, Switzerland
| | - Cristina Barlassina
- Dipartimento di Scienze della Salute, Università degli Studi di Milano, 20142, Milano, Italy.,Fondazione Filarete, 20139, Milano, Italy
| |
Collapse
|
35
|
Grozdanić M, Vidmar R, Vizovišek M, Fonović M. Degradomics in Biomarker Discovery. Proteomics Clin Appl 2019; 13:e1800138. [PMID: 31291060 DOI: 10.1002/prca.201800138] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2019] [Revised: 05/01/2019] [Indexed: 12/13/2022]
Abstract
The upregulation of protease expression and proteolytic activity is implicated in numerous pathological conditions such as neurodegeneration, cancer, cardiovascular and autoimmune diseases, and bone degeneration. During disease progression, various proteases form characteristic patterns of cleaved proteins and peptides, which can affect disease severity and course of progression. It has been shown that qualitative and quantitative monitoring of cleaved protease substrates can provide relevant prognostic, diagnostic, and therapeutic information. As proteolytic fragments and peptides generated in the affected tissue are commonly translocated to blood, urine, and other proximal fluids, their possible application as biomarkers is the subject of ongoing research. The field of degradomics has been established to enable the global identification of proteolytic events on the organism level, utilizing proteomic approaches and sample preparation techniques that facilitate the detection of proteolytic processing of protease substrates in complex biological samples. In this review, some of the latest developments in degradomic methodologies used for the identification and validation of biologically relevant proteolytic events and their application in the search for clinically relevant biomarker candidates are presented. The current state of degradomics in clinics is discussed and the future perspectives of the field are outlined.
Collapse
Affiliation(s)
- Marija Grozdanić
- Department of Biochemistry, Molecular and Structural Biology, Jozef Stefan Institute, SI-1000, Ljubljana, Slovenia.,International Postgraduate School Jožef Stefan, SI-1000, Ljubljana, Slovenia
| | - Robert Vidmar
- Department of Biochemistry, Molecular and Structural Biology, Jozef Stefan Institute, SI-1000, Ljubljana, Slovenia
| | - Matej Vizovišek
- Department of Biochemistry, Molecular and Structural Biology, Jozef Stefan Institute, SI-1000, Ljubljana, Slovenia
| | - Marko Fonović
- Department of Biochemistry, Molecular and Structural Biology, Jozef Stefan Institute, SI-1000, Ljubljana, Slovenia
| |
Collapse
|
36
|
Bermejo-Martin JF, Andaluz-Ojeda D, Martin-Fernandez M, Aldecoa C, Almansa R. Composed endotypes to guide antibiotic discontinuation in sepsis. CRITICAL CARE : THE OFFICIAL JOURNAL OF THE CRITICAL CARE FORUM 2019; 23:140. [PMID: 31018868 PMCID: PMC6482544 DOI: 10.1186/s13054-019-2439-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/15/2018] [Accepted: 04/15/2019] [Indexed: 11/23/2022]
Abstract
Overuse of empiric antibiotic therapy in the ICU is responsible for promoting the dissemination of multidrug-resistant (MDR) bacteria. Shortened antibiotic treatment duration could contribute to palliating the emergence of MDR. Uncertainty about patient evolution is a major concern for deciding to stop antibiotics. Biomarkers could represent a complementary tool to identify those patients for whom antibiotic treatment could be safely discontinued. The biomarker most extensively studied to guide antibiotic withdrawal is procalcitonin (PCT), but its real impact on decreasing the duration of antibiotic treatment is a matter of controversy. Combining biomarkers to rule out complicated outcomes in sepsis patients could represent a better option. Some candidate biomarkers, including mid-regional proadrenomedullin, the percentage of human leukocyte antigen DR (HLA-DR)-positive monocytes, means of fluorescence intensities of HLA-DR on monocytes, interleukin-7 receptor expression levels, immunoglobulin M levels in the serum or the absence of increased proteolysis, have already demonstrated the potential to exclude the risk of progression to septic shock, nosocomial infections, and mortality when tested along the sepsis course. Other promising biomarkers to rule out complicated outcomes are neutrophil protease activity, the adaptive/coagulopathic signatures identified by whole transcriptome analysis by Sweeney et al., and the SRS1 signature identified by Davenport et al. In conclusion, there are a number of promising biomarkers involved in proteolytic, vascular, immunological, and coagulation alterations that could be useful to build composed endotypes to predict uncomplicated outcomes in sepsis. These endotypes could help to identify patients deserving the discontinuation of antibiotics.
Collapse
Affiliation(s)
- Jesus F Bermejo-Martin
- Group for Biomedical Research in Sepsis (BioSepsis), Hospital Clínico Universitario de Valladolid/IECSCYL, Av. Ramón y Cajal, 3, 47003, Valladolid, Spain. .,Centro de Investigación Biomedica en Red-Enfermedades Respiratorias (CibeRes, CB06/06/0028), Instituto de salud Carlos III (ISCIII), Av. de Monforte de Lemos, 5, 28029, Madrid, Spain.
| | - David Andaluz-Ojeda
- Group for Biomedical Research in Sepsis (BioSepsis), Hospital Clínico Universitario de Valladolid/IECSCYL, Av. Ramón y Cajal, 3, 47003, Valladolid, Spain.,Intensive Care Medicine Service, Hospital Clínico Universitario de Valladolid/IECSCYL, Av. Ramón y Cajal, 3, 47003, Valladolid, Spain
| | - Marta Martin-Fernandez
- Group for Biomedical Research in Sepsis (BioSepsis), Hospital Clínico Universitario de Valladolid/IECSCYL, Av. Ramón y Cajal, 3, 47003, Valladolid, Spain
| | - Cesar Aldecoa
- Group for Biomedical Research in Sepsis (BioSepsis), Hospital Clínico Universitario de Valladolid/IECSCYL, Av. Ramón y Cajal, 3, 47003, Valladolid, Spain.,Anesthesiology and Reanimation Service, Hospital Universitario Río Hortega, Calle Dulzaina, 2, 47012, Valladolid, Spain
| | - Raquel Almansa
- Group for Biomedical Research in Sepsis (BioSepsis), Hospital Clínico Universitario de Valladolid/IECSCYL, Av. Ramón y Cajal, 3, 47003, Valladolid, Spain.,Centro de Investigación Biomedica en Red-Enfermedades Respiratorias (CibeRes, CB06/06/0028), Instituto de salud Carlos III (ISCIII), Av. de Monforte de Lemos, 5, 28029, Madrid, Spain
| |
Collapse
|