1
|
Lim Zee ZJ, Karalapillai D, Kolawole H, Fiddes C, Pilcher D, Subramaniam A. A retrospective registry-based study into the proportion of patients admitted to intensive care who have anaphylaxis as a principal diagnosis and their outcomes in Australia and New Zealand. CRIT CARE RESUSC 2024; 26:185-191. [PMID: 39355504 PMCID: PMC11440054 DOI: 10.1016/j.ccrj.2024.06.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 06/07/2024] [Accepted: 06/12/2024] [Indexed: 10/03/2024]
Abstract
Objective To describe the proportion of patients admitted to intensive care who have anaphylaxis as a principal diagnosis and their subsequent outcomes in Australia and New Zealand. Design Retrospective observational study of ICU admissions for severe anaphylaxis. Setting ICU admissions recorded in the Australian and New Zealand Intensive Care Society Adult Patient Database between 2012 and 2022. Participants Adults 16 years or older with severe anaphylaxis admitted to the ICU. Interventions None. Main outcome measures Proportion of patients admitted to ICU who have anaphylaxis as a principal diagnosis, mortality rate, ICU and hospital length of stay. Results 7189 of the 7270 ICU admissions for severe anaphylaxis recorded between 2012 and 2022, were included in the analysis. This represented a proportion from 0.25% in 2012 to 0.43% in 2022. ICU and hospital mortality were 0.4% and 0.8%, respectively. The proportion of ICUs reporting at least one severe anaphylaxis each year increased from 61.7% in 2012 to 83.0% in 2022. Most of the patients were discharged home (92.6%, n = 6660). Increasing age (OR = 1.055; 95%CI: 1.008-1.105) and SOFA scores (OR = 1.616; 95%CI: 1.265-2.065), an immunosuppressive chronic condition (OR = 16.572; 95%CI: 3.006-91.349) and an increasing respiratory rate above 16 breaths/min (OR = 1.116; 95%CI: 1.057-1.178) predicted in-hospital mortality in patients with anaphylaxis, while higher GCS decreased in-hospital mortality (OR = 0.827; 95%CI: 0.705-0.969). Conclusions The overall proportion of patients admitted to ICU who have anaphylaxis as a principal diagnosis has increased. In-hospital mortality remains low despite the need for vital organ support. Further studies should investigate these identified factors that may predict in-hospital mortality among these patients. Trial registration Not applicable.
Collapse
Affiliation(s)
- Zheng Jie Lim Zee
- Department of Anaesthesia, Austin Hospital, Heidelberg, Victoria, Australia
- Department of Anaesthesia and Pain Medicine, Northern Health, Epping, Victoria, Australia
| | - Dharshi Karalapillai
- Department of Anaesthesia, Austin Hospital, Heidelberg, Victoria, Australia
- Department of Intensive Care, Austin Hospital, Heidelberg, Victoria, Australia
- Department of Critical Care, University of Melbourne, Parkville, Victoria, Australia
| | - Helen Kolawole
- Department of Anaesthesia, Peninsula Health, Frankston, Victoria, Australia
- Department of Anaesthesia Teaching and Research, Monash University, Melbourne, Victoria, Australia
| | - Chris Fiddes
- Department of Anaesthesia, Austin Hospital, Heidelberg, Victoria, Australia
| | - David Pilcher
- Department of Intensive Care, Alfred Hospital, Melbourne, Victoria, Australia
- Centre for Outcome and Resource Evaluation, Australian and New Zealand Intensive Care Society, Melbourne, Victoria, Australia
- Australian and New Zealand Intensive Care Research Centre, School of Public Health and Preventive Medicine, Monash University, Melbourne, Victoria, Australia
| | - Ashwin Subramaniam
- Australian and New Zealand Intensive Care Research Centre, School of Public Health and Preventive Medicine, Monash University, Melbourne, Victoria, Australia
- Department of Intensive Care, Peninsula Health, Frankston, Victoria, Australia
- Department of Intensive Care, Dandenong Hospital, Monash Health, Dandenong, Victoria, Australia
- Peninsula Clinical School, Monash University, Frankston, Victoria, Australia
| |
Collapse
|
2
|
Piotin A, Oulehri W, Charles AL, Tacquard C, Collange O, Mertes PM, Geny B. Oxidative Stress and Mitochondria Are Involved in Anaphylaxis and Mast Cell Degranulation: A Systematic Review. Antioxidants (Basel) 2024; 13:920. [PMID: 39199166 PMCID: PMC11352116 DOI: 10.3390/antiox13080920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 07/23/2024] [Accepted: 07/24/2024] [Indexed: 09/01/2024] Open
Abstract
Anaphylaxis, an allergic reaction caused by the massive release of active mediators, can lead to anaphylactic shock (AS), the most severe and potentially life-threatening form of anaphylactic reaction. Nevertheless, understanding of its pathophysiology to support new therapies still needs to be improved. We performed a systematic review, assessing the role and the complex cellular interplay of mitochondria and oxidative stress during anaphylaxis, mast cell metabolism and degranulation. After presenting the main characteristics of anaphylaxis, the oxidant/antioxidant balance and mitochondrial functions, we focused this review on the involvement of mitochondria and oxidative stress in anaphylaxis. Then, we discussed the role of oxidative stress and mitochondria following mast cell stimulation by allergens, leading to degranulation, in order to further elucidate mechanistic pathways. Finally, we considered potential therapeutic interventions implementing these findings for the treatment of anaphylaxis. Experimental studies evaluated mainly cardiomyocyte metabolism during AS. Cardiac dysfunction was associated with left ventricle mitochondrial impairment and lipid peroxidation. Studies evaluating in vitro mast cell degranulation, following Immunoglobulin E (IgE) or non-IgE stimulation, revealed that mitochondrial respiratory complex integrity and membrane potential are crucial for mast cell degranulation. Antigen stimulation raises reactive oxygen species (ROS) production from nicotinamide adenine dinucleotide phosphate (NADPH) oxidases and mitochondria, leading to mast cell degranulation. Moreover, mast cell activation involved mitochondrial morphological changes and mitochondrial translocation to the cell surface near exocytosis sites. Interestingly, antioxidant administration reduced degranulation by lowering ROS levels. Altogether, these results highlight the crucial role of oxidative stress and mitochondria during anaphylaxis and mast cell degranulation. New therapeutics against anaphylaxis should probably target oxidative stress and mitochondria, in order to decrease anaphylaxis-induced systemic and major organ deleterious effects.
Collapse
Affiliation(s)
- Anays Piotin
- Physiology and Functional Exploration Service, Strasbourg University Hospital, 67000 Strasbourg, France;
- Division of Asthma and Allergy, Chest Diseases Department, Strasbourg University Hospital, 67000 Strasbourg, France
- Team 3072 “Mitochondria, Oxidative Stress and Muscle Protection”, Translational Medicine Federation of Strasbourg (FMTS), Faculty of Medicine, University of Strasbourg, 67000 Strasbourg, France; (W.O.); (A.-L.C.); (O.C.); (P.-M.M.)
| | - Walid Oulehri
- Team 3072 “Mitochondria, Oxidative Stress and Muscle Protection”, Translational Medicine Federation of Strasbourg (FMTS), Faculty of Medicine, University of Strasbourg, 67000 Strasbourg, France; (W.O.); (A.-L.C.); (O.C.); (P.-M.M.)
- Department of Anesthesia and Intensive Care, Strasbourg University Hospital, 67000 Strasbourg, France;
| | - Anne-Laure Charles
- Team 3072 “Mitochondria, Oxidative Stress and Muscle Protection”, Translational Medicine Federation of Strasbourg (FMTS), Faculty of Medicine, University of Strasbourg, 67000 Strasbourg, France; (W.O.); (A.-L.C.); (O.C.); (P.-M.M.)
| | - Charles Tacquard
- Department of Anesthesia and Intensive Care, Strasbourg University Hospital, 67000 Strasbourg, France;
- Établissement Français du Sang (EFS) Grand Est, French National Institute of Health and Medical Research), (INSERM) BPPS UMR_S1255, Fédération de Médecine Translationnelle de Strasbourg (FMTS), University of Strasbourg, 67000 Strasbourg, France
| | - Olivier Collange
- Team 3072 “Mitochondria, Oxidative Stress and Muscle Protection”, Translational Medicine Federation of Strasbourg (FMTS), Faculty of Medicine, University of Strasbourg, 67000 Strasbourg, France; (W.O.); (A.-L.C.); (O.C.); (P.-M.M.)
- Department of Anesthesia and Intensive Care, Strasbourg University Hospital, 67000 Strasbourg, France;
| | - Paul-Michel Mertes
- Team 3072 “Mitochondria, Oxidative Stress and Muscle Protection”, Translational Medicine Federation of Strasbourg (FMTS), Faculty of Medicine, University of Strasbourg, 67000 Strasbourg, France; (W.O.); (A.-L.C.); (O.C.); (P.-M.M.)
- Department of Anesthesia and Intensive Care, Strasbourg University Hospital, 67000 Strasbourg, France;
| | - Bernard Geny
- Physiology and Functional Exploration Service, Strasbourg University Hospital, 67000 Strasbourg, France;
- Team 3072 “Mitochondria, Oxidative Stress and Muscle Protection”, Translational Medicine Federation of Strasbourg (FMTS), Faculty of Medicine, University of Strasbourg, 67000 Strasbourg, France; (W.O.); (A.-L.C.); (O.C.); (P.-M.M.)
| |
Collapse
|
3
|
Pouessel G, Dribin TE, Tacquard C, Tanno LK, Cardona V, Worm M, Deschildre A, Muraro A, Garvey LH, Turner PJ. Management of Refractory Anaphylaxis: An Overview of Current Guidelines. Clin Exp Allergy 2024; 54:470-488. [PMID: 38866583 PMCID: PMC11439156 DOI: 10.1111/cea.14514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 05/21/2024] [Accepted: 05/23/2024] [Indexed: 06/14/2024]
Abstract
In this review, we compare different refractory anaphylaxis (RA) management guidelines focusing on cardiovascular involvement and best practice recommendations, discuss postulated pathogenic mechanisms underlining RA and highlight knowledge gaps and research priorities. There is a paucity of data supporting existing management guidelines. Therapeutic recommendations include the need for the timely administration of appropriate doses of aggressive fluid resuscitation and intravenous (IV) adrenaline in RA. The preferred second-line vasopressor (noradrenaline, vasopressin, metaraminol and dopamine) is unknown. Most guidelines recommend IV glucagon for patients on beta-blockers, despite a lack of evidence. The use of methylene blue or extracorporeal life support (ECLS) is also suggested as rescue therapy. Despite recent advances in understanding the pathogenesis of anaphylaxis, the factors that lead to a lack of response to the initial adrenaline and thus RA are unclear. Genetic factors, such as deficiency in platelet activating factor-acetyl hydrolase or hereditary alpha-tryptasaemia, mastocytosis may modulate reaction severity or response to treatment. Further research into the underlying pathophysiology of RA may help define potential new therapeutic approaches and reduce the morbidity and mortality of anaphylaxis.
Collapse
Affiliation(s)
- Guillaume Pouessel
- Department of Paediatrics, Children’s Hospital, Roubaix, France
- Paediatric Pulmonology and Allergy Department, Jeanne de Flandre Hospital, CHU Lille, Lille, France
- Univ Lille, ULR 2694: METRICS, Lille, France
| | - Timothy E. Dribin
- Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Division of Emergency Medicine, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Charles Tacquard
- Department of Anaesthesia and Intensive Care, Strasbourg University Hospital, Strasbourg, France
| | - Luciana Kase Tanno
- University Hospital of Montpellier, Montpellier, France
- Desbrest Institute of Epidemiology and Public Health, University of Montpellier – INSERM, Montpellier, France
- WHO Collaborating Centre on Scientific Classification Support, Montpellier, France
| | - Victoria Cardona
- Department of Allergy, Hospital Universitari Vall d’Hebron, Barcelona, Spain
| | - Margitta Worm
- Division of Allergy and Immunology, Department of Dermatology, Venerology and Allergology, Charité—Universitätsmedizin Berlin, Berlin Institute of Health, Berlin, Germany
| | - Antoine Deschildre
- Paediatric Pulmonology and Allergy Department, Jeanne de Flandre Hospital, CHU Lille, Lille, France
| | - Antonella Muraro
- Food Allergy Referral Centres, Padua University Hospital, Padua, Italy
| | - Lene H. Garvey
- Department of Dermatology and Allergy, Danish Anaesthesia Allergy Centre, Allergy Clinic, Copenhagen University Hospital-Herlev and Gentofte, Copenhagen, Denmark
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Paul J. Turner
- National Heart & Lung Institute, Imperial College London, London, UK
| |
Collapse
|
4
|
Dagher J, Antonios D, Chollet-Martin S, de Chaisemartin L, Pallardy M, Azouri H, Irani C. Drug-induced hypersensitivity reactions in a Lebanese outpatient population: A decade-long retrospective analysis (2012-2021). THE JOURNAL OF ALLERGY AND CLINICAL IMMUNOLOGY. GLOBAL 2024; 3:100169. [PMID: 37876854 PMCID: PMC10590748 DOI: 10.1016/j.jacig.2023.100169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 07/24/2023] [Accepted: 07/26/2023] [Indexed: 10/26/2023]
Abstract
Background Drug hypersensitivity reactions (DHRs) are becoming more common as a result of increasing prevalence and case complexity. Allergists and clinical immunologists worldwide are challenged daily to adequately diagnose and manage these reactions. Data in the literature regarding DHR outpatient consultations are scarce worldwide, limited in the Middle East, and currently unavailable in Lebanon. Objective This retrospective study aimed to evaluate the characteristics of all reported DHRs over 10 years in a tertiary-care allergy clinic in Lebanon. Methods We conducted a decade-long (2012-21) retrospective analysis of the archived medical records of patients with a history of DHRs. Demographics, clinical history, diagnostic tools, and characteristics of the DHRs were collected and analyzed. Results A total of 758 patients experienced DHRs to therapeutic molecules provided for ambulatory care. Our results identified 72 medications. The most frequently implicated drug classes included β-lactam antibiotics (53.8%), followed closely by nonsteroidal anti-inflammatory drugs (48.9%). Of the 758 patients, 32.6% reported DHRs to multiple molecules, and 11.8% reported concomitant DHRs to 1 or several molecules provided in the perioperative setting. Of those, opioids and neuromuscular blocking agents were the 2 most common therapeutic classes. Furthermore, we evaluated the cross-reactivity between molecules of the same class. In neuromuscular blocking agents, rocuronium and cisatracurium were the most commonly cross-reactive, and for opioids, the most common association we recorded was with morphine and pethidine. Conclusion Our findings constitute the first step toward a more comprehensive evaluation of the clinical characteristics of DHRs in Lebanon.
Collapse
Affiliation(s)
- Joelle Dagher
- Université Paris-Saclay, INSERM, Inflammation Microbiome Immunosurveillance, Faculty of Pharmacy, Orsay, France
- Laboratory of Toxicology, Faculty of Pharmacy, Saint Joseph University of Beirut, Beirut, Lebanon
| | - Diane Antonios
- Laboratory of Toxicology, Faculty of Pharmacy, Saint Joseph University of Beirut, Beirut, Lebanon
| | - Sylvie Chollet-Martin
- Université Paris-Saclay, INSERM, Inflammation Microbiome Immunosurveillance, Faculty of Pharmacy, Orsay, France
| | - Luc de Chaisemartin
- Université Paris-Saclay, INSERM, Inflammation Microbiome Immunosurveillance, Faculty of Pharmacy, Orsay, France
| | - Marc Pallardy
- Université Paris-Saclay, INSERM, Inflammation Microbiome Immunosurveillance, Faculty of Pharmacy, Orsay, France
| | - Hayat Azouri
- Laboratory of Toxicology, Faculty of Pharmacy, Saint Joseph University of Beirut, Beirut, Lebanon
| | - Carla Irani
- Internal Medicine and Clinical Immunology, University Medical Center Hôtel-Dieu de France Hospital, Faculty of Medicine, Saint Joseph University of Beirut, Beirut, Lebanon
| |
Collapse
|
5
|
Pouessel G, Tacquard C, Tanno LK, Mertes PM, Lezmi G. Anaphylaxis mortality in the perioperative setting: Epidemiology, elicitors, risk factors and knowledge gaps. Clin Exp Allergy 2024; 54:11-20. [PMID: 38168878 DOI: 10.1111/cea.14434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 11/09/2023] [Accepted: 11/09/2023] [Indexed: 01/05/2024]
Abstract
Perioperative anaphylaxis (PA) is a severe condition that can be fatal, but data on PA mortality are scarce. The aim of this article is to review the epidemiology, elicitors and risk factors for PA mortality and identify knowledge gaps and areas for improvement regarding the management of severe PA. PA affects about 100 cases per million procedures. Mortality is rare, estimated at 3 to 5 cases per million procedures, but the PA mortality rate is higher than for other anaphylaxis aetiologies, at 1.4% to 4.8%. However, the data are incomplete. Published data mention neuromuscular blocking agents and antibiotics, mainly penicillin and cefazolin, as the main causes of fatal PA. Reported risk factors for fatal PA vary in different countries. Most frequently occurring comorbidities are obesity, male gender, cardiovascular diseases and ongoing treatment with beta-blockers. However, there are no clues about how these factors interact and the impact of individual risk factors. The pathophysiology of fatal PA is still not completely known. Genetic factors such as deficiency in PAF-acetyl hydrolase and hereditary alpha-tryptasemia, have been reported as modulators of severe anaphylaxis and possible targets for specific treatments. Our review underlines unmet needs in the field of fatal PA. Although we confirmed the need for timely administration of an adequate dose of adrenaline and the proper infusion of fluids, there is no evidence-based data on the proper dose of intravenous titrated adrenaline and which clinical manifestations would flag the need for fluid therapy. There are no large clinical studies supporting the administration of alternative vasopressors, such as glucagon and methylene blue. Further research on pathophysiological mechanisms of PA and its severity may address these issues and help clinicians to define new therapeutic approaches.
Collapse
Affiliation(s)
- Guillaume Pouessel
- Department of Pediatrics, Children's Hospital, CH Roubaix, Roubaix, France
- Pediatric Pulmonology and Allergy Department, Pôle enfant, Hôpital Jeanne de Flandre, CHU Lille, Lille, France
- ULR 2694: METRICS, Univ Lille, Lille, France
| | - Charles Tacquard
- Department of Anaesthesia and Intensive Care, Strasbourg University Hospital, Strasbourg, France
| | - Luciana Kase Tanno
- Division of Allergy, Department of Pulmonology, Allergy and Thoracic Oncology, University Hospital of Montpellier, Montpellier, France
- Desbrest Institute of Epidemiology and Public Health, UMR UA11 University of Montpellier - INSERM, Montpellier, France
- WHO Collaborating Centre on Scientific Classification Support, Montpellier, France
| | - Paul Michel Mertes
- Department of Anaesthesia and Intensive Care, Hôpitaux Universitaires de Strasbourg, Nouvel Hôpital Civil, FMTS de Strasbourg, Strasbourg, France
| | - Guillaume Lezmi
- Paediatric Pneumology and Allergology Unit, Children's Hospital Necker, Paris, France
| |
Collapse
|
6
|
Tacquard C, Iba T, Levy JH. Perioperative Anaphylaxis: Reply. Anesthesiology 2023; 139:362-364. [PMID: 37247346 DOI: 10.1097/aln.0000000000004598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Affiliation(s)
| | | | - Jerrold H Levy
- Duke University School of Medicine, Durham, North Carolina (J.H.L.).
| |
Collapse
|
7
|
Gouel-Chéron A, Dejoux A, Lamanna E, Bruhns P. Animal Models of IgE Anaphylaxis. BIOLOGY 2023; 12:931. [PMID: 37508362 PMCID: PMC10376466 DOI: 10.3390/biology12070931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Revised: 06/16/2023] [Accepted: 06/21/2023] [Indexed: 07/30/2023]
Abstract
Allergies and atopy have emerged as significant public health concerns, with a progressively increasing incidence over the last two decades. Anaphylaxis is the most severe form of allergic reactions, characterized by a rapid onset and potentially fatal outcome, even in healthy individuals. Due to the unpredictable nature and potential lethality of anaphylaxis and the wide range of allergens involved, clinical studies in human patients have proven to be challenging. Diagnosis is further complicated by the lack of reliable laboratory biomarkers to confirm clinical suspicion. Thus, animal models have been developed to replicate human anaphylaxis and explore its pathophysiology. Whereas results obtained from animal models may not always be directly translatable to humans, they serve as a foundation for understanding the underlying mechanisms. Animal models are an essential tool for investigating new biomarkers that could be incorporated into the allergy workup for patients, as well as for the development of novel treatments. Two primary pathways have been described in animals and humans: classic, predominantly involving IgE and histamine, and alternative, reliant on IgG and the platelet-activating factor. This review will focus essentially on the former and aims to describe the most utilized IgE-mediated anaphylaxis animal models, including their respective advantages and limitations.
Collapse
Affiliation(s)
- Aurélie Gouel-Chéron
- Université Paris Cité, 75010 Paris, France
- Anaesthesiology and Critical Care Medicine Department, DMU Parabol, Bichat-Claude Bernard Hospital, AP-HP, 75018 Paris, France
- Institut Pasteur, Université de Paris Cité, INSERM UMR1222, Antibodies in Therapy and Pathology, 75015 Paris, France
| | - Alice Dejoux
- Institut Pasteur, Université de Paris Cité, INSERM UMR1222, Antibodies in Therapy and Pathology, 75015 Paris, France
- Sorbonne Université, Collège Doctoral, 75005 Paris, France
| | - Emma Lamanna
- Institut Pasteur, Université de Paris Cité, INSERM UMR1222, Antibodies in Therapy and Pathology, 75015 Paris, France
- Neovacs SA, 92150 Suresnes, France
| | - Pierre Bruhns
- Institut Pasteur, Université de Paris Cité, INSERM UMR1222, Antibodies in Therapy and Pathology, 75015 Paris, France
| |
Collapse
|
8
|
Mertes PM, Tacquard C. Maîtriser le risque allergique en anesthésie réanimation. ANESTHÉSIE & RÉANIMATION 2023. [DOI: 10.1016/j.anrea.2023.02.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/18/2023]
|
9
|
Abstract
Anesthesiologists routinely manage patients receiving drugs and agents, all of which have the potential for anaphylaxis, the life-threatening presentation of an allergic reaction. Clinicians must be ready to diagnose and manage the acute cardiopulmonary dysfunction that occurs.
Collapse
Affiliation(s)
- Charles Tacquard
- Department of Anesthesia and Intensive Care, Strasbourg University Hospital, Strasbourg, France
| | - Toshiaki Iba
- Department of Emergency and Disaster Medicine, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Jerrold H Levy
- Departments of Anesthesiology, Critical Care, and Surgery, Duke University School of Medicine, Durham, North Carolina
| |
Collapse
|
10
|
Oulehri W, Collange O, Tacquard C, Bellou A, Graff J, Charles AL, Geny B, Mertes PM. Impaired Myocardial Mitochondrial Function in an Experimental Model of Anaphylactic Shock. BIOLOGY 2022; 11:730. [PMID: 35625458 PMCID: PMC9139016 DOI: 10.3390/biology11050730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 04/30/2022] [Accepted: 05/06/2022] [Indexed: 12/07/2022]
Abstract
Anaphylactic shock (AS) is associated with a profound vasodilation and cardiac dysfunction. The cellular mechanisms underlying AS-related cardiac dysfunction are unknown. We hypothesized that myocardial mitochondrial dysfunction may be associated with AS cardiac dysfunction. In controls and sensitized Brown Norway rats, shock was induced by ovalbumin i.v bolus, and abdominal aortic blood flow (ABF), systemic mean arterial pressure (MAP), and lactatemia were measured for 15 min. Myocardial mitochondrial function was assessed with the evaluation of mitochondrial respiration, oxidative stress production by reactive oxygen species (ROS), reactive nitrogen species (RNS), and the measurement of superoxide dismutases (SODs) activity. Oxidative damage was assessed by lipid peroxidation. The mitochondrial ultrastructure was assessed using transmission electronic microscopy. AS was associated with a dramatic drop in ABF and MAP combined with a severe hyperlactatemia 15 min after shock induction. CI-linked substrate state (197 ± 21 vs. 144 ± 21 pmol/s/mg, p < 0.05), OXPHOS activity by complexes I and II (411 ± 47 vs. 246 ± 33 pmol/s/mg, p < 0.05), and OXPHOS activity through complex II (316 ± 40 vs. 203 ± 28 pmol/s/mg, p < 0.05) were significantly impaired. ROS and RNS production was not significantly increased, but SODs activity was significantly higher in the AS group (11.15 ± 1.02 vs. 15.50 ± 1.40 U/mL/mg protein, p = 0.02). Finally, cardiac lipid peroxidation was significantly increased in the AS group (8.50 ± 0.67 vs. 12.17 ± 1.44 µM/mg protein, p < 0.05). No obvious changes were observed in the mitochondrial ultrastructure between CON and AS groups. Our experimental model of AS results in rapid and deleterious hemodynamic effects and was associated with a myocardial mitochondrial dysfunction with oxidative damage and without mitochondrial ultrastructural injury.
Collapse
Affiliation(s)
- Walid Oulehri
- Pôle Anesthésie, Réanimation Chirurgicale, Hôpitaux Universitaires de Strasbourg, 67091 Strasbourg, France; (W.O.); (O.C.); (C.T.)
- Faculté de Médecine de Strasbourg, UR 3072 Institut de Physiologie, FMTS (Fédération de Médecine Translationnelle de Strasbourg), Université de Strasbourg, 67091 Strasbourg, France; (A.-L.C.); (B.G.)
| | - Olivier Collange
- Pôle Anesthésie, Réanimation Chirurgicale, Hôpitaux Universitaires de Strasbourg, 67091 Strasbourg, France; (W.O.); (O.C.); (C.T.)
- Faculté de Médecine de Strasbourg, UR 3072 Institut de Physiologie, FMTS (Fédération de Médecine Translationnelle de Strasbourg), Université de Strasbourg, 67091 Strasbourg, France; (A.-L.C.); (B.G.)
| | - Charles Tacquard
- Pôle Anesthésie, Réanimation Chirurgicale, Hôpitaux Universitaires de Strasbourg, 67091 Strasbourg, France; (W.O.); (O.C.); (C.T.)
- Faculté de Médecine de Strasbourg, UR 3072 Institut de Physiologie, FMTS (Fédération de Médecine Translationnelle de Strasbourg), Université de Strasbourg, 67091 Strasbourg, France; (A.-L.C.); (B.G.)
| | - Abdelouahab Bellou
- Institute of Sciences in Emergency Medicine, Academy of Medical Sciences, Guangdong General People Hospital, Guangzhou 510060, China;
- Department of Emergency Medicine, Wayne State University School of Medicine, Detroit, MI 48201, USA
- Global Healthcare Network & Research Innovation Institute LLC, Brookline, MA 02446, USA
| | - Julien Graff
- Faculté de Médecine de Strasbourg, Institut d’Histologie, Service Central de Microscopie Électronique, FMTS (Fédération de Médecine Translationnelle de Strasbourg), Université de Strasbourg, 67091 Strasbourg, France;
| | - Anne-Laure Charles
- Faculté de Médecine de Strasbourg, UR 3072 Institut de Physiologie, FMTS (Fédération de Médecine Translationnelle de Strasbourg), Université de Strasbourg, 67091 Strasbourg, France; (A.-L.C.); (B.G.)
- Service de Physiologie et d’Explorations Fonctionnelles, Pôle de Pathologie Thoracique, Hôpitaux Universitaires de Strasbourg, 67091 Strasbourg, France
| | - Bernard Geny
- Faculté de Médecine de Strasbourg, UR 3072 Institut de Physiologie, FMTS (Fédération de Médecine Translationnelle de Strasbourg), Université de Strasbourg, 67091 Strasbourg, France; (A.-L.C.); (B.G.)
- Service de Physiologie et d’Explorations Fonctionnelles, Pôle de Pathologie Thoracique, Hôpitaux Universitaires de Strasbourg, 67091 Strasbourg, France
| | - Paul-Michel Mertes
- Pôle Anesthésie, Réanimation Chirurgicale, Hôpitaux Universitaires de Strasbourg, 67091 Strasbourg, France; (W.O.); (O.C.); (C.T.)
- Faculté de Médecine de Strasbourg, UR 3072 Institut de Physiologie, FMTS (Fédération de Médecine Translationnelle de Strasbourg), Université de Strasbourg, 67091 Strasbourg, France; (A.-L.C.); (B.G.)
| |
Collapse
|
11
|
Epidemiology of perioperative anaphylaxis in the United States: new insights but more to learn and do. Br J Anaesth 2021; 128:7-10. [PMID: 34689992 DOI: 10.1016/j.bja.2021.09.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 09/18/2021] [Accepted: 09/20/2021] [Indexed: 11/23/2022] Open
Abstract
Gonzalez-Estrada and colleagues report an estimated risk of severe or fatal perioperative anaphylaxis of one in 6,825 procedures during the period 2005-2014. This is slightly higher than that reported previously in France and England. Several predictors of near-fatal and fatal reactions are identified, such as increased age, cancer, and congestive cardiac failure.
Collapse
|
12
|
Boehm T, Ristl R, Joseph S, Petroczi K, Klavins K, Valent P, Jilma B. Metabolome and lipidome derangements during a severe mast cell activation event in a patient with indolent systemic mastocytosis. J Allergy Clin Immunol 2021; 148:1533-1544. [PMID: 33864889 DOI: 10.1016/j.jaci.2021.03.043] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 03/02/2021] [Accepted: 03/30/2021] [Indexed: 12/27/2022]
Abstract
BACKGROUND The number of mast cells in various organs is elevated manifold in individuals with systemic mastocytosis. Degranulation can lead to life-threatening symptomatology. No data about the alterations of the metabolome and lipidome during an attack have been published. OBJECTIVE Our aim was to analyze changes in metabolomics and lipidomics during the acute phase of a severe mast cell activation event. METHODS A total of 43 metabolites and 11 lipid classes comprising 200 subvariants from multiple plasma samples in duplicate, covering 72 hours of a severe mast cell activation attack with nausea and vomiting, were compared with 2 baseline samples by using quantitative liquid chromatography-mass spectrometry. RESULTS A strong enterocyte dysfunction reflected in an almost 20-fold reduction in the functional small bowel length was extrapolated from strongly reduced ornithine and citrulline concentrations and was very likely secondary to severe endothelial cell dysfunction with hypoperfusion and extensive vascular leakage. Highly increased histamine and lactate concentrations accompanied the peak in clinical symptoms. Elevated asymmetric and symmetric dimethylarginine levels combined with reduced arginine levels compromised endothelial nitric oxide synthase activity and nitric oxide signaling. Specific and extensive depletion of many lysophosphatidylcholine variants indicates localized autotaxin activation and lysophosphatidic acid release. A strong correlation of clinical parameters with histamine concentrations and symptom reduction after 100-fold elevated plasma diamine oxidase concentrations implies that histamine is the key driver of the acute phase. CONCLUSIONS Rapid elimination of elevated histamine concentrations through use of recombinant human diamine oxidase, supplementation of lysophosphatidylcholine for immunomodulation, inhibition of autotaxin activity, and/or blockade of lysophosphatidic acid receptors might represent new treatment options for life-threatening mast cell activation events.
Collapse
Affiliation(s)
- Thomas Boehm
- Department of Clinical Pharmacology, Medical University of Vienna, Vienna, Austria.
| | - Robin Ristl
- Section for Medical Statistics, Center of Medical Statistics, Informatics, and Intelligent Systems, Medical University of Vienna, Vienna, Austria
| | - Saijo Joseph
- Department of Clinical Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Karin Petroczi
- Department of Clinical Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Kristaps Klavins
- CeMM Research Center for Molecular Medicine, Austrian Academy of Sciences, Vienna, Austria
| | - Peter Valent
- Department of Internal Medicine I, Division of Hematology and Hemostaseology and Ludwig Boltzmann Cluster Oncology, Medical University of Vienna, Vienna, Austria
| | - Bernd Jilma
- Department of Clinical Pharmacology, Medical University of Vienna, Vienna, Austria
| |
Collapse
|