1
|
Ho TC, LaMere MW, Kawano H, Byun DK, LaMere EA, Chiu YC, Chen C, Wang J, Dokholyan NV, Calvi LM, Liesveld JL, Jordan CT, Kapur R, Singh RK, Becker MW. Targeting IL-1/IRAK1/4 signaling in Acute Myeloid Leukemia Stem Cells Following Treatment and Relapse. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.09.622796. [PMID: 39605740 PMCID: PMC11601227 DOI: 10.1101/2024.11.09.622796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
Therapies for acute myeloid leukemia (AML) face formidable challenges due to relapse, often driven by leukemia stem cells (LSCs). Strategies targeting LSCs hold promise for enhancing outcomes, yet paired comparisons of functionally defined LSCs at diagnosis and relapse remain underexplored. We present transcriptome analyses of functionally defined LSC populations at diagnosis and relapse, revealing significant alterations in IL-1 signaling. Interleukin-1 receptor type I (IL1R1) and interleukin-1 receptor accessory protein (IL1RAP) were notably upregulated in leukemia stem and progenitor cells at both diagnosis and relapse. Knockdown of IL1R1 and IL1RAP reduced the clonogenicity and/or engraftment of primary human AML cells. In leukemic MLL-AF9 mice, Il1r1 knockout reduced LSC frequency and extended survival. To target IL-1 signaling at both diagnosis and relapse, we developed UR241-2, a novel interleukin-1 receptor-associated kinase 1 and 4 (IRAK1/4) inhibitor. UR241-2 robustly suppressed IL-1/IRAK1/4 signaling, including NF-κB activation and phosphorylation of p65 and p38, following IL-1 stimulation. UR241-2 selectively inhibited LSC clonogenicity in primary human AML cells at both diagnosis and relapse, while sparing normal hematopoietic stem and progenitor cells. It also reduced AML engraftment in leukemic mice. Our findings highlight the therapeutic potential of UR241-2 in targeting IL-1/IRAK1/4 signaling to eradicate LSCs and improve AML outcomes.
Collapse
|
2
|
Kannan S, Vedia RA, Molldrem JJ. The immunobiology of myelodysplastic neoplasms: a mini-review. Front Immunol 2024; 15:1419807. [PMID: 39355256 PMCID: PMC11443505 DOI: 10.3389/fimmu.2024.1419807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 08/27/2024] [Indexed: 10/03/2024] Open
Abstract
This mini review summarizes the immunobiology of myelodysplastic syndromes, specifically focusing on the interactions between immune cells, cytokines, and dysplastic cells within the tumor microenvironment in the bone marrow. We elucidate in detail how immune dysregulation and evasion influence the initiation and progression of myelodysplastic syndromes, as well as resistance to therapy and progression to AML. In addition, we highlight a range of therapeutic strategies, including the most recent breakthroughs and experimental therapies for treating MDS. Finally, we address the existing knowledge gaps in the understanding of the immunobiology of MDS and propose future research directions, promising advancements toward enhancing clinical outcomes and survival for patients with MDS.
Collapse
Affiliation(s)
- Shruthi Kannan
- Department of Hematopoietic Biology and Malignancy, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Rolando A Vedia
- Department of Hematopoietic Biology and Malignancy, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Jeffrey J Molldrem
- Department of Hematopoietic Biology and Malignancy, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
- Evolution of Cancer, Leukemia, and Immunity Post Stem cEll transplant (ECLIPSE), Therapeutics Discovery Division, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
- Department of Stem Cell Transplantation and Cellular Therapy, Division of Cancer Medicine, UT MD Anderson Cancer Center, Houston, TX, United States
| |
Collapse
|
3
|
Gronnier M, Hedhli K, Sauzay C, Salle V, Duhaut P, Schmidt J, Dernoncourt A. Relevance of blood tumor markers in inpatients with significant involuntary weight loss and elevated levels of inflammation biomarkers. BMC Cancer 2024; 24:468. [PMID: 38622530 PMCID: PMC11017702 DOI: 10.1186/s12885-024-12201-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 03/28/2024] [Indexed: 04/17/2024] Open
Abstract
PURPOSE To assess the diagnostic performance of a panel of standard tumor markers (TMs) in patients hospitalized with significant involuntary weight loss (IWL) and elevated levels of inflammation biomarkers, and a combination of the TM panel and the finding of the computed tomography (CT) scan. METHODS We conducted a retrospective study in the internal medicine department at Amiens-Picardie University Medical Center (Amiens, France) between January 1st, 2015, and November 1st, 2021. The inclusion criteria were age 18 or over, significant IWL (≥ 5 kg over 6 months), elevated inflammation biomarkers (e.g. C-reactive protein), and assay data on two or more standard TMs (carcinoembryonic antigen (CEA), carbohydrate antigen (CA) 19 - 9, CA 15 - 3, CA 125, neuron-specific enolase (NSE), alpha-fetoprotein (AFP), calcitonin, and prostate-specific antigen (PSA)). The result of each TM assay was interpreted qualitatively (as positive or negative), according to our central laboratory's usual thresholds. RESULTS Cancer was diagnosed in 50 (37.0%) of the 135 patients included. Positivity for one or more TMs had a positive predictive value (PPV) of 0.55 [0.43-0.66], and a negative predictive value (NPV) of 0.84 [0.75-0.93] for cancer diagnosis. When combined with the presence of suspicious CT findings (e.g. a mass, enlarged lymph nodes and/or effusion), positivity for one or more TMs had a PPV of 0.92 [0.08-0.30]. In the absence of suspicious CT findings, a fully negative TM panel had an NPV of 0.96 [0.89-1.00]. CONCLUSION A negative TM panel argues against the presence of a cancer, especially in the absence of suspicious CT findings.
Collapse
Affiliation(s)
- Morgane Gronnier
- Department of Internal Medicine, Amiens-Picardie University Medical Center, Rue du Professeur Christian Cabrol, F-80054, Amiens, France
| | - Kaies Hedhli
- Laboratory of Hematology, Center of Human Biology, Amiens-Picardie University Medical Center, F-80054, Amiens, France
| | - Chloé Sauzay
- Laboratory of Biochemistry, Center of Human Biology, Amiens-Picardie University Medical Center, F-80054, Amiens, France
| | - Valéry Salle
- Department of Internal Medicine, Amiens-Picardie University Medical Center, Rue du Professeur Christian Cabrol, F-80054, Amiens, France
- RECIF, Amiens-Picardie University Medical Center, F-80000, Amiens, France
| | - Pierre Duhaut
- Department of Internal Medicine, Amiens-Picardie University Medical Center, Rue du Professeur Christian Cabrol, F-80054, Amiens, France
- RECIF, Amiens-Picardie University Medical Center, F-80000, Amiens, France
| | - Jean Schmidt
- Department of Internal Medicine, Amiens-Picardie University Medical Center, Rue du Professeur Christian Cabrol, F-80054, Amiens, France
- RECIF, Amiens-Picardie University Medical Center, F-80000, Amiens, France
| | - Amandine Dernoncourt
- Department of Internal Medicine, Amiens-Picardie University Medical Center, Rue du Professeur Christian Cabrol, F-80054, Amiens, France.
- RECIF, Amiens-Picardie University Medical Center, F-80000, Amiens, France.
| |
Collapse
|
4
|
Khalilian P, Eskandari N, Sharifi MJ, Soltani M, Nematollahi P. Toll-Like Receptor 4, 2, and Interleukin 1 Receptor Associated Kinase4: Possible Diagnostic Biomarkers in Myelodysplastic Syndrome Patients. Adv Biomed Res 2024; 13:17. [PMID: 38525404 PMCID: PMC10958736 DOI: 10.4103/abr.abr_67_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 05/02/2023] [Accepted: 05/10/2023] [Indexed: 03/26/2024] Open
Abstract
Background Myelodysplastic syndrome (MDS) is a clonal hematologic disorder that requires the integration of morphologic, cytogenetic, hematologic, and clinical findings for a successful diagnosis. Trying to find ancillary tests such as biomarkers improve the diagnosis process. Several studies showed that a disordered immune system is associated with MDS. The chronic activated innate immune system, particularly the Toll-like receptors (TLRs) pathway could be involved in the induction of the inflammation. Materials and Methods In the present study, we investigated the expression of TLR2, TLR4, and IRAK4 in bone marrow (BM) of MDS patients, the leukemia group, and the healthy group. For this purpose, we assessed the expression of TLR2, TLR4, and IRAK4 by real time-PCR. Results In line with new findings, we demonstrated that the expression of TLR2, TLR4, and IRAK4 significantly increased in MDS BM compared with the healthy group. Moreover, IRAK4 expression raised significantly in MDS patients compared with other studied hematologic neoplasms. Also, the expression levels of TLR2 and TLR4 significantly increased in MDS in comparison to some studied non-MDS malignancies (P ˂ 0.05). Receiver operating characteristics (ROC) analysis and area under the curve (AUC) suggested that the expression of TLR2, TLR4, and IRAK4 (AUC = 0.702, AUC = 0.75, and AUC = 0.682, respectively) had acceptable diagnostic values to identify MDS from the other understudied leukemias. Conclusion Overall, the expression of TLR2, TLR4, and IRAK4 could be potential biomarkers for discriminating MDS from some hematologic disorders.
Collapse
Affiliation(s)
- Parvin Khalilian
- Department of Immunology, Faculty of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Nahid Eskandari
- Department of Immunology, Faculty of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
- Applied Physiology Research Center, Isfahan Cardiovascular Research Institute, Department of Immunology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mohammad Jafar Sharifi
- Department of Laboratory Sciences, School of Paramedical Sciences, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mohammad Soltani
- Department of Immunology, Faculty of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Pardis Nematollahi
- Department of Pathology, School of Medicine, Cancer Prevention Research Center, Seyyed Al-Shohada Hospital, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
5
|
Zhao XC, Ju B, Xiu NN, Sun XY, Meng FJ. When inflammatory stressors dramatically change, disease phenotypes may transform between autoimmune hematopoietic failure and myeloid neoplasms. Front Immunol 2024; 15:1339971. [PMID: 38426096 PMCID: PMC10902444 DOI: 10.3389/fimmu.2024.1339971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 01/24/2024] [Indexed: 03/02/2024] Open
Abstract
Aplastic anemia (AA) and hypoplastic myelodysplastic syndrome are paradigms of autoimmune hematopoietic failure (AHF). Myelodysplastic syndrome and acute myeloid leukemia are unequivocal myeloid neoplasms (MNs). Currently, AA is also known to be a clonal hematological disease. Genetic aberrations typically observed in MNs are detected in approximately one-third of AA patients. In AA patients harboring MN-related genetic aberrations, a poor response to immunosuppressive therapy (IST) and an increased risk of transformation to MNs occurring either naturally or after IST are predicted. Approximately 10%-15% of patients with severe AA transform the disease phenotype to MNs following IST, and in some patients, leukemic transformation emerges during or shortly after IST. Phenotypic transformations between AHF and MNs can occur reciprocally. A fraction of advanced MN patients experience an aplastic crisis during which leukemic blasts are repressed. The switch that shapes the disease phenotype is a change in the strength of extramedullary inflammation. Both AHF and MNs have an immune-active bone marrow (BM) environment (BME). In AHF patients, an inflamed BME can be evoked by infiltrated immune cells targeting neoplastic molecules, which contributes to the BM-specific autoimmune impairment. Autoimmune responses in AHF may represent an antileukemic mechanism, and inflammatory stressors strengthen antileukemic immunity, at least in a significant proportion of patients who have MN-related genetic aberrations. During active inflammatory episodes, normal and leukemic hematopoieses are suppressed, which leads to the occurrence of aplastic cytopenia and leukemic cell regression. The successful treatment of underlying infections mitigates inflammatory stress-related antileukemic activities and promotes the penetration of leukemic hematopoiesis. The effect of IST is similar to that of treating underlying infections. Investigating inflammatory stress-powered antileukemic immunity is highly important in theoretical studies and clinical practice, especially given the wide application of immune-activating agents and immune checkpoint inhibitors in the treatment of hematological neoplasms.
Collapse
Affiliation(s)
- Xi-Chen Zhao
- Department of Hematology, The Central Hospital of Qingdao West Coast New Area, Qingdao, Shandong, China
| | - Bo Ju
- Department of Hematology, The Central Hospital of Qingdao West Coast New Area, Qingdao, Shandong, China
| | - Nuan-Nuan Xiu
- Department of Hematology, The Central Hospital of Qingdao West Coast New Area, Qingdao, Shandong, China
| | - Xiao-Yun Sun
- Department of Hematology, The Central Hospital of Qingdao West Coast New Area, Qingdao, Shandong, China
| | - Fan-Jun Meng
- Department of Hematology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| |
Collapse
|
6
|
Buckstein R, Callum J, Prica A, Bowen D, Wells RA, Leber B, Heddle N, Chodirker L, Cheung M, Mozessohn L, Yee K, Gallagher J, Parmentier A, Jamula E, Zhang L, Mamedov A, Stanworth SJ, Lin Y. Red cell transfusion thresholds in outpatients with myelodysplastic syndromes: Results of a pilot randomized trial RBC-ENHANCE. Transfusion 2024; 64:223-235. [PMID: 38323704 DOI: 10.1111/trf.17721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 11/16/2023] [Accepted: 11/18/2023] [Indexed: 02/08/2024]
Abstract
BACKGROUND The optimal hemoglobin (Hb) threshold for red blood cell transfusions in adult patients with myelodysplastic syndromes (MDS) has not been defined. STUDY DESIGN AND METHODS We conducted a pilot randomized multi-center study of two transfusion algorithms (liberal, to maintain Hb 110-120 g/L, transfuse 2 units if Hb < 105 g/L and 1 unit if Hb 105-110 g/L vs. restrictive, 85-105 g/L, transfuse 2 units when Hgb < 85 g/L). Primary objectives were 70% compliance in maintaining the q2 week hemoglobin within the targeted range and the achievement of a 15 g/L difference in pre-transfusion Hb. Secondary outcomes included measures of quality of life (QOL), iron studies and safety. RESULTS Twenty-eight patients were randomized between February 2015-2020, 13 to the restrictive arm and 15 to the liberal arm in three tertiary care centers. The compliance was 66% and 45% and the mean pre-transfusion Hb thresholds were 86 (standard deviation [SD] 8) and 98 g/L (SD 10) in the restrictive and liberal arms, (mean difference 11.8 g/L, p < .0001), respectively. Patients in the liberal arm experienced a mean of 3.4 (SD 2.6) more transfusion visits and received a mean of 5.3 (SD 5.5) more units of blood during the 12-week study. Ferritin increased by 1043 (SD 1516) IU/L and 148 (SD 1319) IU/L in the liberal and restrictive arms, respectively. Selected QOL scores were superior pre-transfusion and more patients achieved clinically important improvements in the liberal arm compared with the restrictive arm for selected symptoms and function domains. CONCLUSION The results establish that policies for transfusion support can be delivered in practice at multiple hospitals, but further research is required to understand the full clinical effects and safety of liberal transfusion policies in MDS outpatients.
Collapse
Affiliation(s)
- Rena Buckstein
- Department of Medicine, Odette Cancer Centre, Sunnybrook Health Sciences Centre, Toronto, Ontario, Canada
| | - Jeannie Callum
- Department of Pathology and Molecular Medicine, Kingston Health Sciences Centre and Queen's University, Kingston, Ontario, Canada
| | - Anca Prica
- Department of Medicine, Princess Margaret Hospital, United Health Network, Toronto, Ontario, Canada
| | - David Bowen
- Department of Medicine, University of York, York, UK
| | - Richard A Wells
- Department of Medicine, Odette Cancer Centre, Sunnybrook Health Sciences Centre, Toronto, Ontario, Canada
| | - Brian Leber
- Department of Medicine, Mcmaster University, Hamilton, Ontario, Canada
| | - Nancy Heddle
- Mcmaster Centre for Transfusion Research, Department of Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Lisa Chodirker
- Department of Medicine, Odette Cancer Centre, Sunnybrook Health Sciences Centre, Toronto, Ontario, Canada
| | - Matthew Cheung
- Department of Medicine, Odette Cancer Centre, Sunnybrook Health Sciences Centre, Toronto, Ontario, Canada
| | - Lee Mozessohn
- Department of Medicine, Odette Cancer Centre, Sunnybrook Health Sciences Centre, Toronto, Ontario, Canada
| | - Karen Yee
- Department of Medicine, Princess Margaret Hospital, United Health Network, Toronto, Ontario, Canada
| | - Jennifer Gallagher
- Department of Medicine, Odette Cancer Centre, Sunnybrook Health Sciences Centre, Toronto, Ontario, Canada
| | - Anne Parmentier
- Department of Medicine, Odette Cancer Centre, Sunnybrook Health Sciences Centre, Toronto, Ontario, Canada
| | - Erin Jamula
- Department of Medicine, Mcmaster University, Hamilton, Ontario, Canada
| | | | - Alex Mamedov
- Department of Medicine, Odette Cancer Centre, Sunnybrook Health Sciences Centre, Toronto, Ontario, Canada
| | - Simon J Stanworth
- NHS Blood and Transplant, Oxford, UK
- Oxford University NHS Trust, The John Radcliffe Hospital, Oxford, UK
- Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - Yulia Lin
- Precision Diagnostics and Therapeutics Program, Sunnybrook Health Sciences Centre, Toronto, Ontario, Canada
| |
Collapse
|
7
|
Casalin I, De Stefano A, Ceneri E, Cappellini A, Finelli C, Curti A, Paolini S, Parisi S, Zannoni L, Boultwood J, McCubrey JA, Suh PG, Ramazzotti G, Fiume R, Ratti S, Manzoli L, Cocco L, Follo MY. Deciphering signaling pathways in hematopoietic stem cells: the molecular complexity of Myelodysplastic Syndromes (MDS) and leukemic progression. Adv Biol Regul 2024; 91:101014. [PMID: 38242820 DOI: 10.1016/j.jbior.2024.101014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 01/03/2024] [Accepted: 01/08/2024] [Indexed: 01/21/2024]
Abstract
Myelodysplastic Syndromes, a heterogeneous group of hematological disorders, are characterized by abnormalities in phosphoinositide-dependent signaling, epigenetic regulators, apoptosis, and cytokine interactions within the bone marrow microenvironment, contributing to disease pathogenesis and neoplastic growth. Comprehensive knowledge of these pathways is crucial for the development of innovative therapies that aim to restore normal apoptosis and improve patient outcomes.
Collapse
Affiliation(s)
- Irene Casalin
- Department of Biomedical and Neuromotor Science, Cellular Signaling Laboratory, University of Bologna, Bologna, Italy.
| | - Alessia De Stefano
- Department of Biomedical and Neuromotor Science, Cellular Signaling Laboratory, University of Bologna, Bologna, Italy
| | - Eleonora Ceneri
- Department of Biomedical and Neuromotor Science, Cellular Signaling Laboratory, University of Bologna, Bologna, Italy
| | - Alessandra Cappellini
- Department of Biomedical and Neuromotor Science, Cellular Signaling Laboratory, University of Bologna, Bologna, Italy
| | - Carlo Finelli
- IRCCS Azienda Ospedaliero-Universitaria di Bologna - Istituto di Ematologia "Seràgnoli", Bologna, Italy
| | - Antonio Curti
- IRCCS Azienda Ospedaliero-Universitaria di Bologna - Istituto di Ematologia "Seràgnoli", Bologna, Italy
| | - Stefania Paolini
- IRCCS Azienda Ospedaliero-Universitaria di Bologna - Istituto di Ematologia "Seràgnoli", Bologna, Italy
| | - Sarah Parisi
- IRCCS Azienda Ospedaliero-Universitaria di Bologna - Istituto di Ematologia "Seràgnoli", Bologna, Italy
| | - Letizia Zannoni
- IRCCS Azienda Ospedaliero-Universitaria di Bologna - Istituto di Ematologia "Seràgnoli", Bologna, Italy
| | - Jacqueline Boultwood
- Bloodwise Molecular Haematology Unit, Nuffield Division of Clinical Laboratory Sciences, Radcliffe Department of Medicine, University of Oxford, John Radcliffe Hospital, Oxford, United Kingdom
| | - James A McCubrey
- Department of Microbiology & Immunology, Brody School of Medicine, East Carolina University, Greenville, NC, 27834, USA
| | - Pann-Ghill Suh
- Korea Brain Research Institute, Daegu, 41062, Republic of Korea
| | - Giulia Ramazzotti
- Department of Biomedical and Neuromotor Science, Cellular Signaling Laboratory, University of Bologna, Bologna, Italy
| | - Roberta Fiume
- Department of Biomedical and Neuromotor Science, Cellular Signaling Laboratory, University of Bologna, Bologna, Italy
| | - Stefano Ratti
- Department of Biomedical and Neuromotor Science, Cellular Signaling Laboratory, University of Bologna, Bologna, Italy
| | - Lucia Manzoli
- Department of Biomedical and Neuromotor Science, Cellular Signaling Laboratory, University of Bologna, Bologna, Italy
| | - Lucio Cocco
- Department of Biomedical and Neuromotor Science, Cellular Signaling Laboratory, University of Bologna, Bologna, Italy
| | - Matilde Y Follo
- Department of Biomedical and Neuromotor Science, Cellular Signaling Laboratory, University of Bologna, Bologna, Italy
| |
Collapse
|
8
|
Tsourveloudis I, Georgiadi EC, Vatalis G, Kotsi P. Case report of a patient with VEXAS syndrome. Medicine (Baltimore) 2023; 102:e36738. [PMID: 38206689 PMCID: PMC10754568 DOI: 10.1097/md.0000000000036738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Accepted: 11/30/2023] [Indexed: 01/13/2024] Open
Abstract
RATIONALE Hematological malignancies have always been a challenge for scientists because there is a constant need to better define these entities. Myelodysplastic syndromes (MDS) are clonal hematopoietic disorders characterized by ineffective hematopoiesis. Cytogenetics and molecular findings are a prerequisite for these syndromes as they confirm the clonal nature of the disease. However, MDS is often linked to autoimmunity and inflammation as part of its pathogenesis. Recently, VEXAS syndrome (vacuoles, E1 enzyme, X-linked, autoinflammatory, somatic) linked these two in a single mutation, suggesting that the heterogeneity among hematological malignancies often demands a more personalized medicine by tailoring medical treatment to the individual characteristics of each patient. PATIENT CONCERNS We present a case of VEXAS syndrome regarding a 63-year-old male patient who initially presented with episodes of low fever, polyarthritis of the knees and ankles, polymyalgia, and fatigue. His laboratory examinations revealed increased levels of serum inflammatory markers. DIAGNOSES Diagnosis was based on high clinical suspicion, laboratory findings, and vacuolization of the erythroid and myeloid precursors in the bone marrow evaluation. Mutational status of ubiquitin-like modifier activating enzyme 1 gene was positive with a 68.8% allelomorph frequency (rs782416867). INTERVENTIONS Therapy was based on controlling inflammation with the use of glucocorticoids and treating MDS-related anemia with the use of erythropoietin. OUTCOMES Currently, the patient visits our department regularly. He is still receiving the aforementioned treatment. He did not mention any new incidents for the time being. LESSONS VEXAS syndrome as a newly identified entity might be often underestimated since its clinical presentation is notably diverse.
Collapse
Affiliation(s)
| | - Eleni C. Georgiadi
- Transfusion Department, University General Hospital of Larissa, Larissa, Greece
| | | | - Paraskevi Kotsi
- Transfusion Department, University General Hospital of Larissa, Larissa, Greece
| |
Collapse
|
9
|
Putnam CM, Kondeti L, Kesler MBA, Varney ME. Modulating the immune system as a therapeutic target for myelodysplastic syndromes and acute myeloid leukemia. Biochem Cell Biol 2023; 101:481-495. [PMID: 37566901 DOI: 10.1139/bcb-2022-0374] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/13/2023] Open
Abstract
Modulating the immune system to treat diseases, including myeloid malignancies, has resulted in the development of a multitude of novel therapeutics in recent years. Myelodysplastic syndromes or neoplasms (MDS) and acute myeloid leukemia (AML) are hematologic malignancies that arise from defects in hematopoietic stem and progenitor cells (HSPCs). Dysregulated immune responses, especially in innate immune and inflammatory pathways, are highly associated with the acquisition of HSPC defects in MDS and AML pathogenesis. In addition to utilizing the immune system in immunotherapeutic interventions such as chimeric antigen receptor T cell therapy, vaccines, and immune checkpoint inhibitors, mitigating dysregulation of innate immune and inflammatory responses in MDS and AML remains a priority in slowing the initiation and progression of these myeloid malignancies. This review provides a comprehensive summary of the current progress of diverse strategies to utilize or modulate the immune system in the treatment of MDS and AML.
Collapse
Affiliation(s)
- Caroline M Putnam
- Department of Pharmaceutical Sciences, Marshall University School of Pharmacy, Huntington, WV, USA
| | - Lahari Kondeti
- Department of Pharmaceutical Sciences, Marshall University School of Pharmacy, Huntington, WV, USA
| | - Meredith B A Kesler
- Department of Pharmaceutical Sciences, Marshall University School of Pharmacy, Huntington, WV, USA
| | - Melinda E Varney
- Department of Pharmaceutical Sciences, Marshall University School of Pharmacy, Huntington, WV, USA
| |
Collapse
|
10
|
Petzer V, Wolf D. [Recent findings in myelodysplastic syndrome]. Dtsch Med Wochenschr 2023; 148:1431-1436. [PMID: 37918427 DOI: 10.1055/a-1968-3106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2023]
Abstract
Myelodysplastic syndromes (MDS) represent a heterogeneous group of myeloid disorders characterized by peripheral blood cytopenias and increased risk of transformation to acute myeloid leukemia (AML).Recent developments include the classification and the estimation of prognosis. In 2022 the former 2016 WHO classification was replaced by the ICC and WHO 2022 classification. Both classifications have included precursor lesions (CHIP and ICUS), both distinguish between three molecularly cytogenetically defined subgroups - del(5q), TP53, SF3B1 - and morphologically defined subgroups with differences in blast threshold (WHO: 20%; ICC: 10%) for the differentiation from AML. However, although prognostic factors influenced the classification-subgroups, it is important to distinguish the prognosis, which is crucial for optimal therapeutic decision making. Since 2022, the IPSS-M has been available for this purpose, which represents an expansion of the well-established IPSS-R. It could improve prognosis estimation by adding molecular data, recently this could have been confirmed in real world cohorts. The IPSS-M also represents an important extension with regard to prognosis estimation for patients with therapy-related MDS.In 2020 Luspatercept has been approved for transfusion-dependent lower risk MDS patients harboring ring sideroblasts ± an SF3B1 mutation after failure of an erythropoiesis stimulating agent. The COMMANDS trial has just reported an interim analysis, where the superiority of luspatercept in the 1st line compared to erythropoietin could be demonstrated. In addition, data from the phase III trial with Imeltelstat give reason to hope that we will be able to offer a new second-line therapy to LR-MDS patients. For higher risk MDS patients azacitidine therapy remains the standard of care, results of phase III trials of combination therapies must be awaited.
Collapse
|
11
|
Bloom M, Oak N, Baskin-Doerfler R, Feng R, Iacobucci I, Baviskar P, Zhao X, Stroh AN, Li C, Ozark P, Tillman HS, Li Y, Verbist KC, Albeituni S, Scott DC, King MT, McKinney-Freeman SL, Weiss MJ, Yang JJ, Nichols KE. ETV6 represses inflammatory response genes and regulates HSPC function during stress hematopoiesis in mice. Blood Adv 2023; 7:5608-5623. [PMID: 37522715 PMCID: PMC10514086 DOI: 10.1182/bloodadvances.2022009313] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 07/14/2023] [Accepted: 07/19/2023] [Indexed: 08/01/2023] Open
Abstract
ETS variant 6 (ETV6) encodes a transcriptional repressor expressed in hematopoietic stem and progenitor cells (HSPCs), where it is required for adult hematopoiesis. Heterozygous pathogenic germline ETV6 variants are associated with thrombocytopenia 5 (T5), a poorly understood genetic condition resulting in thrombocytopenia and predisposition to hematologic malignancies. To elucidate how germline ETV6 variants affect HSPCs and contribute to disease, we generated a mouse model harboring an Etv6R355X loss-of-function variant, equivalent to the T5-associated variant ETV6R359X. Under homeostatic conditions, all HSPC subpopulations are present in the bone marrow (BM) of Etv6R355X/+ mice; however, these animals display shifts in the proportions and/or numbers of progenitor subtypes. To examine whether the Etv6R355X/+ mutation affects HSPC function, we performed serial competitive transplantation and observed that Etv6R355X/+ lineage-sca1+cKit+ (LSK) cells exhibit impaired reconstitution, with near complete failure to repopulate irradiated recipients by the tertiary transplant. Mechanistic studies incorporating cleavage under target and release under nuclease assay, assay for transposase accessible chromatin sequencing, and high-throughput chromosome conformation capture identify ETV6 binding at inflammatory gene loci, including multiple genes within the tumor necrosis factor (TNF) signaling pathway in ETV6-sufficient mouse and human HSPCs. Furthermore, single-cell RNA sequencing of BM cells isolated after transplantation reveals upregulation of inflammatory genes in Etv6R355X/+ progenitors when compared to Etv6+/+ counterparts. Corroborating these findings, Etv6R355X/+ HSPCs produce significantly more TNF than Etv6+/+ cells post-transplantation. We conclude that ETV6 is required to repress inflammatory gene expression in HSPCs under conditions of hematopoietic stress, and this mechanism may be critical to sustain HSPC function.
Collapse
Affiliation(s)
- Mackenzie Bloom
- St. Jude Graduate School of Biomedical Sciences, Memphis, TN
- Department of Oncology, St. Jude Children’s Research Hospital, Memphis, TN
| | - Ninad Oak
- Department of Oncology, St. Jude Children’s Research Hospital, Memphis, TN
| | | | - Ruopeng Feng
- Department of Hematology, St. Jude Children’s Research Hospital, Memphis, TN
| | - Ilaria Iacobucci
- Department of Pathology, St. Jude Children’s Research Hospital, Memphis, TN
| | - Pradyumna Baviskar
- Department of Pathology, St. Jude Children’s Research Hospital, Memphis, TN
| | - Xujie Zhao
- Department of Pharmaceutical Sciences, St. Jude Children’s Research Hospital, Memphis, TN
| | - Alexa N. Stroh
- Department of Oncology, St. Jude Children’s Research Hospital, Memphis, TN
| | - Chunliang Li
- Department of Tumor Cell Biology, St. Jude Children’s Research Hospital, Memphis, TN
| | - Patrick Ozark
- Department of Oncology, St. Jude Children’s Research Hospital, Memphis, TN
| | - Heather S. Tillman
- Department of Pathology, St. Jude Children’s Research Hospital, Memphis, TN
| | - Yichao Li
- Department of Hematology, St. Jude Children’s Research Hospital, Memphis, TN
| | | | - Sabrin Albeituni
- Department of Oncology, St. Jude Children’s Research Hospital, Memphis, TN
| | - Danny C. Scott
- Department of Structural Biology, St. Jude Children’s Research Hospital, Memphis, TN
| | - Moeko T. King
- Department of Structural Biology, St. Jude Children’s Research Hospital, Memphis, TN
| | | | - Mitchell J. Weiss
- Department of Hematology, St. Jude Children’s Research Hospital, Memphis, TN
| | - Jun J. Yang
- Department of Pharmaceutical Sciences, St. Jude Children’s Research Hospital, Memphis, TN
| | - Kim E. Nichols
- Department of Oncology, St. Jude Children’s Research Hospital, Memphis, TN
| |
Collapse
|
12
|
Zhang X, Yang X, Ma L, Zhang Y, Wei J. Immune dysregulation and potential targeted therapy in myelodysplastic syndrome. Ther Adv Hematol 2023; 14:20406207231183330. [PMID: 37547364 PMCID: PMC10399277 DOI: 10.1177/20406207231183330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Accepted: 06/02/2023] [Indexed: 08/08/2023] Open
Abstract
Myelodysplastic syndrome (MDS) is a heterogeneous group of clonal hematological diseases and a high risk for transformation to acute myeloid leukemia (AML). The identification of key genetic alterations in MDS has enhanced our understanding of the pathogenesis and evolution. In recent years, it has been found that both innate and adaptive immune signaling are activated in the hematopoietic niche of MDS with aberrant cytokine secretion in the bone marrow microenvironment. It is also clear that immune dysregulation plays an important role in the occurrence and progression of MDS, especially the destruction of the bone marrow microenvironment, including hematopoiesis and stromal components. The purpose of this review is to explore the role of immune cells, the immune microenvironment, and cytokines in the pathogenesis of MDS. Insights into the mechanisms of these variants may facilitate the development of novel effective treatments to prevent disease progression.
Collapse
Affiliation(s)
- Xiaoying Zhang
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Xingcheng Yang
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Ling Ma
- Department of Clinical Laboratory, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Yicheng Zhang
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, Hubei 430030, China
- Key Laboratory of Organ Transplantation, Ministry of Education
- National Health Commission (NHC)
- Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan, Hubei 430030, China
| | - Jia Wei
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, Hubei 430030, China
- Key Laboratory of Organ Transplantation, Ministry of Education
- National Health Commission (NHC)
- Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan, Hubei 430030, China
- Department of Hematology, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, and Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, Shanxi 030032, China
- Sino-German Joint Oncological Research Laboratory, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Taiyuan, Shanxi 030032, China
| |
Collapse
|
13
|
Heiblig M, Patel B, Jamilloux Y. VEXAS syndrome, a new kid on the block of auto-inflammatory diseases: A hematologist's point of view. Best Pract Res Clin Rheumatol 2023; 37:101861. [PMID: 37652853 DOI: 10.1016/j.berh.2023.101861] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 06/29/2023] [Accepted: 07/24/2023] [Indexed: 09/02/2023]
Abstract
The recently discovered VEXAS syndrome is caused by the clonal expansion of hematopoietic stem or progenitor cells with acquired mutations in UBA1 gene, which encodes for a key enzyme of the ubiquitylation proteasome system. As a result, a shorter cytoplasmic isoform of UBA1 is transcribed, which is non-functional. The disease is characterized by non-specific and highly heterogeneous inflammatory manifestations and macrocytic anemia. VEXAS syndrome is a unique acquired hematological monogenic disease with unexpected association with hematological neoplasms. Despite its hematopoetic origin, patients with VEXAS syndrome usually present with multi-systemicinflammatory disease and are treated by physicians from many different specialties (rheumatologists, dermatologists, hematologistis, etc.). Furthermore, manifestations of VEXAS may fulfill criteria for existing diseases: relapsing polychondritis, giant cell arteritis, polyarteritis nodosa, and myelodysplastic syndrome. The goal of this review is to depict VEXAS syndrome from a hematologic point of view regarding its consequences on hematopoiesis and the current strategies on therapeutic interventions.
Collapse
Affiliation(s)
- Maël Heiblig
- Hospices Civils de Lyon, Hôpital Lyon Sud, Service d'hématologie clinique, Lyon, France; Université Claude Bernard Lyon 1, Faculté de médecine et de maïeutique Lyon Sud Charles Mérieux, Lymphoma Immunobiology Team, Pierre Bénite, France.
| | - Bhavisha Patel
- Hematology Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Yvan Jamilloux
- Hospices Civils de Lyon, Hôpital de la Croix Rousse, Service de médecine interne, Lyon, France
| |
Collapse
|
14
|
Yang X, Dong S, Li C, Li M, Xing C, He J, Peng C, Shao H, Jia Q. Hydroquinone triggers pyroptosis and endoplasmic reticulum stress via AhR-regulated oxidative stress in human lymphocytes. Toxicol Lett 2023; 376:39-50. [PMID: 36646296 DOI: 10.1016/j.toxlet.2023.01.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 01/04/2023] [Accepted: 01/12/2023] [Indexed: 01/15/2023]
Abstract
Benzene is a frequent component of environmental pollution and is abundant in petrochemicals, decorative materials, motor vehicle exhaust and cigarette smoke. Benzene is a well-known carcinogen in humans and animals, but the molecular mechanism has not yet been elucidated. Our earlier research indicated that hydroquinone (HQ), one of the main reactive metabolites of benzene, could activate aryl hydrocarbon receptor (AhR), which is essential for HQ-induced toxicity, including apoptosis and DNA damage. Since AhR is an important regulator of the immune system that integrates the environmental stimulus and immune response, we examined whether and how HQ-induced AhR activity could lead to NLRP3 inflammasome-dependent pyroptosis in JHP cells. Our results showed that HQ could cause inflammation process and resultant pyroptosis. In JHP cells, HQ also induced endoplasmic reticulum stress (ERS) by releasing excessive reactive oxygen species (ROS). The activation of pyroptosis induced by HQ treatment was reversed by an antioxidant (NAC) and an ERS inhibitor (4-PBA). Interestingly, the treatment of CH223191, an AhR inhibitor, reversed HQ-induced oxidative stress, ERS and pyroptosis. These data suggested that AhR-mediated HQ-induced ERS, ROS and inflammasome activation may play vital roles in the toxic effects of benzene. This work provides insights and prospective strategies into potential mechanisms for reducing benzene-induced hematotoxicity.
Collapse
Affiliation(s)
- Xiaohan Yang
- Shandong Academy of Occupational Health and Occupational Medicine, Shandong First Medical University & Shandong Academy of Medical Science, Ji'nan 250062, China
| | - Shuangyan Dong
- Shandong Academy of Occupational Health and Occupational Medicine, Shandong First Medical University & Shandong Academy of Medical Science, Ji'nan 250062, China
| | - Chao Li
- Shandong Academy of Occupational Health and Occupational Medicine, Shandong First Medical University & Shandong Academy of Medical Science, Ji'nan 250062, China
| | - Ming Li
- Shandong Academy of Occupational Health and Occupational Medicine, Shandong First Medical University & Shandong Academy of Medical Science, Ji'nan 250062, China
| | - Caihong Xing
- Key Laboratory of Chemical Safety and Health, National Institute of Occupational Health and Poison Control, Chinese Center for Disease Control and Prevention (CDC), Beijing 100050, China
| | - Jin He
- Shandong Academy of Occupational Health and Occupational Medicine, Shandong First Medical University & Shandong Academy of Medical Science, Ji'nan 250062, China
| | - Cheng Peng
- Eusyn Institute of Health Science, Brisbane, QLD 4108, Australia
| | - Hua Shao
- Shandong Academy of Occupational Health and Occupational Medicine, Shandong First Medical University & Shandong Academy of Medical Science, Ji'nan 250062, China.
| | - Qiang Jia
- Shandong Academy of Occupational Health and Occupational Medicine, Shandong First Medical University & Shandong Academy of Medical Science, Ji'nan 250062, China.
| |
Collapse
|
15
|
Vaxevanis CK, Bauer M, Subbarayan K, Friedrich M, Massa C, Biehl K, Al-Ali HK, Wickenhauser C, Seliger B. Biglycan as a mediator of proinflammatory response and target for MDS and sAML therapy. Oncoimmunology 2022; 12:2152998. [PMID: 36531688 PMCID: PMC9757483 DOI: 10.1080/2162402x.2022.2152998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Myelodysplastic syndromes (MDS) and their progression to secondary acute myeloid leukemia (sAML) are associated with an altered protein expression including extracellular matrix (ECM) components thereby promoting an inflammatory environment. Since the role of the proteoglycan biglycan (BGN) as an inflammatory mediator has not yet been investigated in both diseases and might play a role in disease progression, its expression and/or function was determined in cell lines and bone marrow biopsies (BMBs) of MDS and sAML patients and subpopulations of MDS stem cells by Western blot and immunohistochemistry. The bone marrow (BM) microenvironment was analyzed by multispectral imaging, patients' survival by Cox regression. ROC curves were assessed for diagnostic value of BGN. All cell lines showed a strong BGN surface expression in contrast to only marginal expression levels in mononuclear cells and CD34+ cells from healthy donors. In the MDS-L cell line, CD34-CD33+ and CD34+CD33+ blast subpopulations exhibited a differential BGN surface detection. Increased BGN mediated inflammasome activity of CD34-CD33+TLR4+ cells was observed, which was inhibited by direct targeting of BGN or NLRP3. BGN was heterogeneously expressed in BMBs of MDS and sAML, but was not detected in control biopsies. BGN expression in BMBs positively correlated with MUM1+ and CD8+, but negatively with CD33+TLR4+ cell infiltration and was accompanied by a decreased progression-free survival of MDS patients. BGN-mediated inflammasome activation appears to be a crucial mechanism in MDS pathogenesis implicating its use as suitable biomarker and potential therapeutic target. Abbreviations: Ab, antibody; alloSCT, allogenic stem cell transplant; AML, acute myeloid leukemia; BGN, biglycan; BM, bone marrow; BMB, bone marrow biopsy; casp1, caspase 1; CTLA-4, cytotoxic T lymphocyte-associated protein 4; DAMP, danger-associated molecular pattern; ECM, extracellular matrix; FCS, fetal calf serum; GAPDH, glyceraldehyde-3-phosphate dehydrogenase; HD, healthy donor; HSPC, hematopoietic stem and progenitor cell; HSC, hematopoietic stem cell; IFN, interferon; IHC, immunohistochemistry; IL, interleukin; MDS, myelodysplastic syndrome; MPN, myeloproliferative neoplasm; MSI, multispectral imaging; NGS, next-generation sequencing; NLRP3, NLR family pyrin domain containing 3; OS, overall survival; PBMC, peripheral blood mononuclear cell; PD-1, programmed cell death protein 1; PD-L1, programmed death-ligand 1, PFS, progression-free survival; PRR, pattern recognition receptor; SC, stem cell; SLRP, small leucine-rich proteoglycan; TGF, transforming growth factor; TIRAP, toll/interleukin 1 receptor domain-containing adapter protein; TLR, toll-like receptor; Treg, regulatory T cell.
Collapse
Affiliation(s)
| | - Marcus Bauer
- Institute of Pathology, Martin Luther University Halle-Wittenberg, Halle (Saale)06112, Germany
| | | | - Michael Friedrich
- Medical Faculty, Martin Luther University Halle-Wittenberg, Halle (Saale)06112, Germany
| | - Chiara Massa
- Medical Faculty, Martin Luther University Halle-Wittenberg, Halle (Saale)06112, Germany
| | - Katharina Biehl
- Medical Faculty, Martin Luther University Halle-Wittenberg, Halle (Saale)06112, Germany
| | - Haifa Kathrin Al-Ali
- Krukenberg Cancer Center Halle, University Hospital Halle, Krukenberg-Krebszentrum, Halle (Saale)06120, Germany
| | - Claudia Wickenhauser
- Institute of Pathology, Martin Luther University Halle-Wittenberg, Halle (Saale)06112, Germany
| | - Barbara Seliger
- Medical Faculty, Martin Luther University Halle-Wittenberg, Halle (Saale)06112, Germany,Department of Good Manufacturing Practice (GMP) Development & Advanced Therapy Medicinal Products (ATMP) Design, Fraunhofer Institute for Cell Therapy and Immunology (IZI), Leipzig04103, Germany,Medical School Theodor Fontane, Institute of Translational Medicine, Brandenburg an der Havel14770, Germany,CONTACT Barbara Seliger Medical Faculty, Martin Luther University Halle-Wittenberg, Halle (Saale), 06112, Germany
| |
Collapse
|
16
|
Zheng L, Zhang L, Guo Y, Xu X, Liu Z, Yan Z, Fu R. The immunological role of mesenchymal stromal cells in patients with myelodysplastic syndrome. Front Immunol 2022; 13:1078421. [PMID: 36569863 PMCID: PMC9767949 DOI: 10.3389/fimmu.2022.1078421] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Accepted: 11/24/2022] [Indexed: 12/13/2022] Open
Abstract
Myelodysplastic syndrome (MDS) is a common hematological malignant disease, characterized by malignant hematopoietic stem cell proliferation in the bone marrow (BM); clinically, it mainly manifests clinically mainly by as pathological hematopoiesis, hemocytopenia, and high-risk transformation to acute leukemia. Several studies have shown that the BM microenvironment plays a critical role in the progression of MDS. In this study, we specifically evaluated mesenchymal stromal cells (MSCs) that exert immunomodulatory effects in the BM microenvironment. This immunomodulatory effect occurs through direct cell-cell contact and the secretion of soluble cytokines or micro vesicles. Several researchers have compared MSCs derived from healthy donors to low-risk MDS-associated bone mesenchymal stem cells (BM-MSCs) and have found no significant abnormalities in the MDS-MSC phenotype; however, these cells have been observed to exhibit altered function, including a decline in osteoblastic function. This altered function may promote MDS progression. In patients with MDS, especially high-risk patients, MSCs in the BM microenvironment regulate immune cell function, such as that of T cells, B cells, natural killer cells, dendritic cells, neutrophils, myeloid-derived suppressor cells (MDSCs), macrophages, and Treg cells, thereby enabling MDS-associated malignant cells to evade immune cell surveillance. Alterations in MDS-MSC function include genomic instability, microRNA production, histone modification, DNA methylation, and abnormal signal transduction and cytokine secretion.
Collapse
Affiliation(s)
- Likun Zheng
- Department of Hematology, Tianjin Medical University General Hospital, Tianjin, China,Department of Hematology, North China University of Science and Technology Affiliated Hospital, Tangshan, Hebei, China
| | - Lei Zhang
- Department of Orthopedics, Kailuan General Hospital, Tangshan, Hebei, China
| | - Yixuan Guo
- Department of Hematology, Tianjin Medical University General Hospital, Tianjin, China
| | - Xintong Xu
- Department of Hematology, Tianjin Medical University General Hospital, Tianjin, China
| | - Zhaoyun Liu
- Department of Hematology, Tianjin Medical University General Hospital, Tianjin, China
| | - Zhenyu Yan
- Department of Hematology, North China University of Science and Technology Affiliated Hospital, Tangshan, Hebei, China
| | - Rong Fu
- Department of Hematology, Tianjin Medical University General Hospital, Tianjin, China,*Correspondence: Rong Fu,
| |
Collapse
|
17
|
Abdelhamed S, Thomas ME, Westover T, Umeda M, Xiong E, Rolle C, Walsh MP, Wu H, Schwartz JR, Valentine V, Valentine M, Pounds S, Ma J, Janke LJ, Klco JM. Mutant Samd9l expression impairs hematopoiesis and induces bone marrow failure in mice. J Clin Invest 2022; 132:e158869. [PMID: 36074606 PMCID: PMC9621136 DOI: 10.1172/jci158869] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Accepted: 09/01/2022] [Indexed: 11/17/2022] Open
Abstract
SAMD9 and SAMD9L germline mutations have recently emerged as a new class of predispositions to pediatric myeloid neoplasms. Patients commonly have impaired hematopoiesis, hypocellular marrows, and a greater risk of developing clonal chromosome 7 deletions leading to MDS and AML. We recently demonstrated that expressing SAMD9 or SAMD9L mutations in hematopoietic cells suppresses their proliferation and induces cell death. Here, we generated a mouse model that conditionally expresses mutant Samd9l to assess the in vivo impact on hematopoiesis. Using a range of in vivo and ex vivo assays, we showed that cells with heterozygous Samd9l mutations have impaired stemness relative to wild-type counterparts, which was exacerbated by inflammatory stimuli, and ultimately led to bone marrow hypocellularity. Genomic and phenotypic analyses recapitulated many of the hematopoietic cellular phenotypes observed in patients with SAMD9 or SAMD9L mutations, including lymphopenia, and pinpointed TGF-β as a potential targetable pathway. Further, we observed nonrandom genetic deletion of the mutant Samd9l locus on mouse chromosome 6, mimicking chromosome 7 deletions observed in patients. Collectively, our study has enhanced our understanding of mutant Samd9l hematopoietic phenotypes, emphasized the synergistic role of inflammation in exaggerating the associated hematopoietic defects, and provided insights into potential therapeutic options for patients.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Huiyun Wu
- Department of Biostatistics, St. Jude Children’s Research Hospital, Memphis, Tennessee, USA
| | - Jason R. Schwartz
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | | | | | - Stanley Pounds
- Department of Biostatistics, St. Jude Children’s Research Hospital, Memphis, Tennessee, USA
| | | | - Laura J. Janke
- Department of Pathology and
- Veterinary Pathology Core, St. Jude Children’s Research Hospital, Memphis, Tennessee, USA
| | | |
Collapse
|
18
|
Peng X, Zhu X, Di T, Tang F, Guo X, Liu Y, Bai J, Li Y, Li L, Zhang L. The yin-yang of immunity: Immune dysregulation in myelodysplastic syndrome with different risk stratification. Front Immunol 2022; 13:994053. [PMID: 36211357 PMCID: PMC9537682 DOI: 10.3389/fimmu.2022.994053] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 09/07/2022] [Indexed: 11/13/2022] Open
Abstract
Myelodysplastic syndrome (MDS) is a heterogeneous group of myeloid clonal diseases with diverse clinical courses, and immune dysregulation plays an important role in the pathogenesis of MDS. However, immune dysregulation is complex and heterogeneous in the development of MDS. Lower-risk MDS (LR-MDS) is mainly characterized by immune hyperfunction and increased apoptosis, and the immunosuppressive therapy shows a good response. Instead, higher-risk MDS (HR-MDS) is characterized by immune suppression and immune escape, and the immune activation therapy may improve the survival of HR-MDS. Furthermore, the immune dysregulation of some MDS changes dynamically which is characterized by the coexistence and mutual transformation of immune hyperfunction and immune suppression. Taken together, the authors think that the immune dysregulation in MDS with different risk stratification can be summarized by an advanced philosophical thought “Yin-Yang theory” in ancient China, meaning that the opposing forces may actually be interdependent and interconvertible. Clarifying the mechanism of immune dysregulation in MDS with different risk stratification can provide the new basis for diagnosis and clinical treatment. This review focuses on the manifestations and roles of immune dysregulation in the different risk MDS, and summarizes the latest progress of immunotherapy in MDS.
Collapse
Affiliation(s)
- Xiaohuan Peng
- Department of Hematology, Lanzhou University Second Hospital, Lanzhou University, Lanzhou, China
- Key Laboratory of the Hematology of Gansu Province, Lanzhou University Second Hospital, Lanzhou University, Lanzhou, China
| | - Xiaofeng Zhu
- Department of Hematology, Lanzhou University Second Hospital, Lanzhou University, Lanzhou, China
- Key Laboratory of the Hematology of Gansu Province, Lanzhou University Second Hospital, Lanzhou University, Lanzhou, China
| | - Tianning Di
- Department of Hematology, Lanzhou University Second Hospital, Lanzhou University, Lanzhou, China
- Key Laboratory of the Hematology of Gansu Province, Lanzhou University Second Hospital, Lanzhou University, Lanzhou, China
| | - Futian Tang
- Key Laboratory of the Digestive System Tumors of Gansu Province, Lanzhou University Second Hospital, Lanzhou University, Lanzhou, China
| | - Xiaojia Guo
- Department of Hematology, Lanzhou University Second Hospital, Lanzhou University, Lanzhou, China
| | - Yang Liu
- Department of Hematology, Lanzhou University Second Hospital, Lanzhou University, Lanzhou, China
| | - Jun Bai
- Key Laboratory of the Hematology of Gansu Province, Lanzhou University Second Hospital, Lanzhou University, Lanzhou, China
| | - Yanhong Li
- Key Laboratory of the Hematology of Gansu Province, Lanzhou University Second Hospital, Lanzhou University, Lanzhou, China
| | - Lijuan Li
- Department of Hematology, Lanzhou University Second Hospital, Lanzhou University, Lanzhou, China
- Key Laboratory of the Hematology of Gansu Province, Lanzhou University Second Hospital, Lanzhou University, Lanzhou, China
- *Correspondence: Lijuan Li, ; Liansheng Zhang,
| | - Liansheng Zhang
- Department of Hematology, Lanzhou University Second Hospital, Lanzhou University, Lanzhou, China
- Key Laboratory of the Hematology of Gansu Province, Lanzhou University Second Hospital, Lanzhou University, Lanzhou, China
- *Correspondence: Lijuan Li, ; Liansheng Zhang,
| |
Collapse
|
19
|
Myeloid-Derived Suppressor Cells: New Insights into the Pathogenesis and Therapy of MDS. J Clin Med 2022; 11:jcm11164908. [PMID: 36013147 PMCID: PMC9410159 DOI: 10.3390/jcm11164908] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 08/15/2022] [Accepted: 08/19/2022] [Indexed: 11/17/2022] Open
Abstract
Myelodysplastic syndromes (MDS) are hematopoietic malignancies characterized by the clonal expansion of hematopoietic stem cells, bone marrow failure manifested by cytopenias, and increased risk for evolving to acute myeloid leukemia. Despite the fact that the acquisition of somatic mutations is considered key for the initiation of the disease, the bone marrow microenvironment also plays significant roles in MDS by providing the right niche and even shaping the malignant clone. Aberrant immune responses are frequent in MDS and are implicated in many aspects of MDS pathogenesis. Recently, myeloid-derived suppressor cells (MDSCs) have gained attention for their possible implication in the immune dysregulation associated with MDS. Here, we summarize the key findings regarding the expansion of MDSCs in MDS, their role in MDS pathogenesis and immune dysregulation, as well their potential as a new therapeutic target for MDS.
Collapse
|
20
|
Zhang F, Chen L. Molecular Threat of Splicing Factor Mutations to Myeloid Malignancies and Potential Therapeutic Modulations. Biomedicines 2022; 10:biomedicines10081972. [PMID: 36009519 PMCID: PMC9405558 DOI: 10.3390/biomedicines10081972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 08/08/2022] [Accepted: 08/10/2022] [Indexed: 11/21/2022] Open
Abstract
Splicing factors are frequently mutated in myelodysplastic syndromes (MDS) and acute myeloid leukemia (AML). These mutations are presumed to contribute to oncogenic transformation, but the underlying mechanisms remain incompletely understood. While no specific treatment option is available for MDS/AML patients with spliceosome mutations, novel targeting strategies are actively explored, leading to clinical trials of small molecule inhibitors that target the spliceosome, DNA damage response pathway, and immune response pathway. Here, we review recent progress in mechanistic understanding of splicing factor mutations promoting disease progression and summarize potential therapeutic strategies, which, if successful, would provide clinical benefit to patients carrying splicing factor mutations.
Collapse
|
21
|
Tsilingiris D, Nasiri-Ansari N, Spyrou N, Magkos F, Dalamaga M. Management of Hematologic Malignancies in the Era of COVID-19 Pandemic: Pathogenetic Mechanisms, Impact of Obesity, Perspectives, and Challenges. Cancers (Basel) 2022; 14:2494. [PMID: 35626099 PMCID: PMC9139192 DOI: 10.3390/cancers14102494] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 05/14/2022] [Accepted: 05/16/2022] [Indexed: 02/04/2023] Open
Abstract
The COVID-19 pandemic brought about an unprecedented societal and healthcare system crisis, considerably affecting healthcare workers and patients, particularly those with chronic diseases. Patients with hematologic malignancies faced a variety of challenges, pertinent to the nature of an underlying hematologic disorder itself as well as its therapy as a risk factor for severe SARS-CoV-2 infection, suboptimal vaccine efficacy and the need for uninterrupted medical observation and continued therapy. Obesity constitutes another factor which was acknowledged since the early days of the pandemic that predisposed people to severe COVID-19, and shares a likely causal link with the pathogenesis of a broad spectrum of hematologic cancers. We review here the epidemiologic and pathogenetic features that obesity and hematologic malignancies share, as well as potential mutual pathophysiological links predisposing people to a more severe SARS-CoV-2 course. Additionally, we attempt to present the existing evidence on the multi-faceted crucial challenges that had to be overcome in this diverse patient group and discuss further unresolved questions and future challenges for the management of hematologic malignancies in the era of COVID-19.
Collapse
Affiliation(s)
- Dimitrios Tsilingiris
- First Department of Propaedeutic Internal Medicine, School of Medicine, National and Kapodistrian University of Athens, Laiko General Hospital, 17 St Thomas Street, 11527 Athens, Greece
| | - Narjes Nasiri-Ansari
- Department of Biological Chemistry, School of Medicine, National and Kapodistrian University of Athens, 75 Mikras Asias, 11527 Athens, Greece
| | - Nikolaos Spyrou
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Faidon Magkos
- Department of Nutrition, Exercise, and Sports, University of Copenhagen, DK-2200 Frederiksberg, Denmark
| | - Maria Dalamaga
- Department of Biological Chemistry, School of Medicine, National and Kapodistrian University of Athens, 75 Mikras Asias, 11527 Athens, Greece
| |
Collapse
|
22
|
Fozza C, Murtas A, Caocci G, La Nasa G. Autoimmune disorders associated with myelodysplastic syndromes: clinical, prognostic and therapeutic implications. Leuk Res 2022; 117:106856. [PMID: 35525186 DOI: 10.1016/j.leukres.2022.106856] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 04/27/2022] [Accepted: 04/28/2022] [Indexed: 12/29/2022]
Abstract
Around one third of patients with myelodysplastic syndromes (MDS) suffer from concomitant autoimmune disorders (AD). However the actual burden of such an association appears to be quite heterogeneous in different studies probably due to variable criteria in selecting both MDS patients and subtypes of AD. Moreover, both the prognostic implications and the potential applications of specific therapeutic approaches in this patient subgroup are still at least partially under debate. The present review will try to shed some further light on the clinical association between MDS and AD in order to better delineate its prognostic significance and to suggest potential therapeutic algorithms available for these patients.
Collapse
Affiliation(s)
- Claudio Fozza
- Department of Medical, Surgical and Experimental Sciences, University of Sassari, Viale San Pietro 12, 07100 Sassari, Italy
| | - Andrea Murtas
- Department of Medical, Surgical and Experimental Sciences, University of Sassari, Viale San Pietro 12, 07100 Sassari, Italy
| | - Giovanni Caocci
- Department of Medical Sciences, University of Cagliari, Cagliari, Italy
| | - Giorgio La Nasa
- Department of Medical Sciences, University of Cagliari, Cagliari, Italy
| |
Collapse
|
23
|
Xu GH, Lin J, Chen WQ. Concurrent ankylosing spondylitis and myelodysplastic syndrome: A case report. World J Clin Cases 2022; 10:1929-1936. [PMID: 35317144 PMCID: PMC8891766 DOI: 10.12998/wjcc.v10.i6.1929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 11/01/2021] [Accepted: 01/14/2022] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Ankylosing spondylitis (AS) is an autoimmune disease characterized by sacroiliitis and spondylitis, with a few hematological abnormalities. Myelodysplastic syndromes (MDS) are a heterogeneous group of hematopoietic stem cell disorders with frequent autoimmune phenomena. The relationship between AS and MDS remains unknown.
CASE SUMMARY We describe a rare case of concurrent AS and MDS. An 18-year-old man with low back pain and anemia was diagnosed with AS; however, the cause of anemia could not be determined by the first bone marrow examination. He recovered from anemia and the symptoms of AS resolved after treatment with etanercept, glucocorticoid, and blood transfusion, but he developed pancytopenia with an increased myeloblast count (from 2.5% to 9%). Chromosome analysis revealed del(7q) and trisomy 8. Refractory anemia with excess of blasts-1 (RAEB-1)/MDS was confirmed by repeating the bone marrow examination. He became blood transfusion-dependent and received decitabine-based chemotherapy but eventually died.
CONCLUSION We suspect that AS may be an early autoimmune phenomenon related to MDS. However, a condition of coexistence cannot be excluded.
Collapse
Affiliation(s)
- Guan-Hua Xu
- Division of Rheumatology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, Zhejiang Province, China
| | - Jin Lin
- Division of Rheumatology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, Zhejiang Province, China
| | - Wei-Qian Chen
- Division of Rheumatology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, Zhejiang Province, China
| |
Collapse
|
24
|
Lynch OF, Calvi LM. Immune Dysfunction, Cytokine Disruption, and Stromal Changes in Myelodysplastic Syndrome: A Review. Cells 2022; 11:580. [PMID: 35159389 PMCID: PMC8834462 DOI: 10.3390/cells11030580] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 01/12/2022] [Accepted: 01/27/2022] [Indexed: 02/04/2023] Open
Abstract
Myelodysplastic syndromes (MDS) are myeloid neoplasms characterized by bone marrow dysfunction and increased risk of transformation to leukemia. MDS represent complex and diverse diseases that evolve from malignant hematopoietic stem cells and involve not only the proliferation of malignant cells but also the dysfunction of normal bone marrow. Specifically, the marrow microenvironment-both hematopoietic and stromal components-is disrupted in MDS. While microenvironmental disruption has been described in human MDS and murine models of the disease, only a few current treatments target the microenvironment, including the immune system. In this review, we will examine current evidence supporting three key interdependent pillars of microenvironmental alteration in MDS-immune dysfunction, cytokine skewing, and stromal changes. Understanding the molecular changes seen in these diseases has been, and will continue to be, foundational to developing effective novel treatments that prevent disease progression and transformation to leukemia.
Collapse
Affiliation(s)
- Olivia F. Lynch
- School of Medicine and Dentistry, University of Rochester, Rochester, NY 14642, USA;
| | - Laura M. Calvi
- Division of Endocrinology and Metabolism, Department of Medicine, School of Medicine and Dentistry, University of Rochester, Rochester, NY 14642, USA
| |
Collapse
|
25
|
Apodaca-Chávez E, Demichelis-Gómez R, Rosas-López A, Mejía-Domínguez NR, Galvan-López I, Addorosio M, Tracey KJ, Valdés-Ferrer SI. Circulating HMGB1 is increased in myelodysplastic syndrome but not in other bone marrow failure syndromes: proof-of-concept cross-sectional study. Ther Adv Hematol 2022; 13:20406207221125990. [PMID: 36246421 PMCID: PMC9554121 DOI: 10.1177/20406207221125990] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Accepted: 06/24/2022] [Indexed: 11/06/2022] Open
Abstract
Background Myelodysplastic syndrome (MDS) is associated with persistent immune activation. High mobility group box-1 (HMGB1) is a ubiquitous, functionally diverse, non-histone intranuclear protein. During acute and chronic inflammatory states, HMGB1 is actively released by inflammatory cells, further amplifying the inflammatory response. A role in MDS and other hypoplastic bone marrow (BM) disorders is incompletely understood. Objectives The objective of the study is to evaluate whether circulating HMGB1 is elevated in patients with MDS and other BM failure syndromes [namely, aplastic anemia (AA) and paroxysmal nocturnal hemoglobinuria (PNH)]. Design This is a observational, cross-sectional, single-center, exploratory study. Methods We evaluated circulating concentrations of HMGB1, interleukin (IL)-1β, IL-6, and tumor necrosis factor (TNF)-α in patients with MDS and age-matched hematologically healthy controls as well as patients with AA and PNH. Results We included 66 patients with MDS and 65 age-matched controls as well as 44 patients with other BM failures (AA = 27, PNH = 17). Circulating levels of HMGB1 were higher in patients with MDS [median, 4.9 ng/ml; interquartile range (IQR): 2.3-8.1] than in AA (median, 2.6 ng/ml; IQR: 1.7-3.7), PNH (median, 1.7 ng/ml; IQR: 0.9-2.5), and age-matched healthy individuals (median, 1.9 ng/ml; IQR: 0.9-2.5) (p = 0.0001). We observed higher concentrations of HMGB1 in the very low/low-risk MDS patients than in the intermediate/high/very high-risk ones (p = 0.046). Finally, in comparison with patients with AA, those with hypocellular MDS (h-MDS) had significantly higher levels of circulating HMGB1 (n = 14; median concentration, 5.6 ng/ml, IQR: 2.8-7.3; p = 0.006). We determined a circulating HMGB1 value of 4.095 ng/ml as a diagnostic cutoff differentiator between h-MDS and AA. Conclusion These observations indicate that circulating HMGB1 is increased in patients with MDS. HMGB1 (but not IL-1β or TNF-α) differentiated between MDS and other BM failures, suggesting that HMGB1 may be mechanistically involved in MDS and a druggable target to decrease inflammation in MDS.
Collapse
Affiliation(s)
- Elia Apodaca-Chávez
- Departamento de Hematología, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
| | - Roberta Demichelis-Gómez
- Departamento de Hematología, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
| | - Adriana Rosas-López
- Departamento de Hematología, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
| | - Nancy R. Mejía-Domínguez
- Departamento de Hematología, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
| | - Isabela Galvan-López
- Departamento de Hematología, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
| | - Meghan Addorosio
- Center for Biomedical Science, Feinstein Institutes for Medical Research, Manhasset, NY, USA
| | - Kevin J. Tracey
- Center for Biomedical Science, Feinstein Institutes for Medical Research, Manhasset, NY, USA
| | | |
Collapse
|
26
|
Comont T, Treiner E, Vergez F. From Immune Dysregulations to Therapeutic Perspectives in Myelodysplastic Syndromes: A Review. Diagnostics (Basel) 2021; 11:diagnostics11111982. [PMID: 34829329 PMCID: PMC8620222 DOI: 10.3390/diagnostics11111982] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 10/21/2021] [Accepted: 10/22/2021] [Indexed: 12/12/2022] Open
Abstract
The pathophysiology of myelodysplastic syndromes (MDSs) is complex and often includes immune dysregulation of both the innate and adaptive immune systems. Whereas clonal selection mainly involves smoldering inflammation, a cellular immunity dysfunction leads to increased apoptosis and blast proliferation. Addressing immune dysregulations in MDS is a recent concept that has allowed the identification of new therapeutic targets. Several approaches targeting the different actors of the immune system have therefore been developed. However, the results are very heterogeneous, indicating the need to improve our understanding of the disease and interactions between chronic inflammation, adaptive dysfunction, and somatic mutations. This review highlights current knowledge of the role of immune dysregulation in MDS pathophysiology and the field of new drugs.
Collapse
Affiliation(s)
- Thibault Comont
- Department of Internal Medicine, IUCT-Oncopole, Toulouse University Hospital (CHU-Toulouse), 31300 Toulouse, France
- Cancer Research Center of Toulouse, Unité Mixte de Recherche (UMR) 1037 INSERM, ERL5294 Centre National de La Recherche Scientifique, 31100 Toulouse, France;
- School of Medicine, Université Toulouse III—Paul Sabatier, 31062 Toulouse, France;
- Correspondence: ; Tel.: +33-531-15-62-66; Fax: +33-531-15-62-58
| | - Emmanuel Treiner
- School of Medicine, Université Toulouse III—Paul Sabatier, 31062 Toulouse, France;
- Laboratory of Immunology, Toulouse University Hospital (CHU-Toulouse), 31300 Toulouse, France
- Infinity, Inserm UMR1291, 31000 Toulouse, France
| | - François Vergez
- Cancer Research Center of Toulouse, Unité Mixte de Recherche (UMR) 1037 INSERM, ERL5294 Centre National de La Recherche Scientifique, 31100 Toulouse, France;
- School of Medicine, Université Toulouse III—Paul Sabatier, 31062 Toulouse, France;
- Laboratory of Hematology, IUCT-Oncopole, Toulouse University Hospital (CHU-Toulouse), 31300 Toulouse, France
| |
Collapse
|
27
|
Okano T, Nishimura A, Inoue K, Naruto T, Tokoro S, Tomoda T, Kamiya T, Simbo A, Akutsu Y, Okamoto K, Yeh T, Isoda T, Yanagimachi M, Kajiwara M, Imai K, Kanegane H, Mori M, Morio T, Takagi M. Somatic mutation in RUNX1 underlies mucocutaneus inflammatory manifestations. Rheumatology (Oxford) 2021; 60:e429-e431. [PMID: 34528076 DOI: 10.1093/rheumatology/keab513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 05/20/2021] [Accepted: 06/09/2021] [Indexed: 11/13/2022] Open
Affiliation(s)
- Tsubasa Okano
- Department of Pediatrics and Developmental Biology, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Akira Nishimura
- Department of Pediatrics and Developmental Biology, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Kento Inoue
- Department of Pediatrics and Developmental Biology, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Takuya Naruto
- Department of Lifetime Clinical Immunology, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Shown Tokoro
- Department of Dermatology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Takahiro Tomoda
- Department of Pediatrics and Developmental Biology, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Takahiro Kamiya
- Department of Pediatrics and Developmental Biology, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Asami Simbo
- Department of Pediatrics and Developmental Biology, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Yuko Akutsu
- Department of Pediatrics and Developmental Biology, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Keisuke Okamoto
- Department of Pediatrics and Developmental Biology, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Tzuwen Yeh
- Department of Pediatrics and Developmental Biology, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Takeshi Isoda
- Department of Pediatrics and Developmental Biology, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Masakatsu Yanagimachi
- Department of Pediatrics and Developmental Biology, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Michiko Kajiwara
- Center for Transfusion Medicine and Cell Therapy, Medical Hospital, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Kohsuke Imai
- Department of Pediatrics, Perinatal and Maternal Medicine, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Hirokazu Kanegane
- Department of Child Health and Development, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Masaaki Mori
- Department of Lifetime Clinical Immunology, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Tomohiro Morio
- Department of Pediatrics and Developmental Biology, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Masatoshi Takagi
- Department of Pediatrics and Developmental Biology, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| |
Collapse
|
28
|
Wouters HJCM, Conrads-Frank A, Koinig KA, Smith A, Yu G, de Witte T, Wolffenbuttel BHR, Huls G, Siebert U, Stauder R, van der Klauw MM. The anemia-independent impact of myelodysplastic syndromes on health-related quality of life. Ann Hematol 2021; 100:2921-2932. [PMID: 34476573 PMCID: PMC8592948 DOI: 10.1007/s00277-021-04654-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Accepted: 08/24/2021] [Indexed: 01/12/2023]
Abstract
Myelodysplastic syndromes (MDS) are in the majority of cases characterized by anemia. Both anemia and MDS per se may directly contribute to impairments in health-related quality of life (HRQoL). In this study, we aimed to investigate the anemia-independent impact of MDS on HRQoL. We evaluated participants (≥ 50 years) from the large population-based Lifelines cohort (N = 44,694, mean age 59.0 ± 7.4 years, 43.6% male) and the European MDS Registry (EUMDS) (N = 1538, mean age 73.4 ± 9.0 years, 63.0% male), which comprises a cohort of lower-risk MDS patients. To enable comparison concerning HRQoL, SF-36 scores measured in Lifelines were converted to EQ-5D-3L index (range 0–1) and dimension scores. Lower-risk MDS patients had significantly lower HRQoL than those from the Lifelines cohort, as illustrated in both the index score and in the five different dimensions. Multivariable linear regression analysis demonstrated that MDS had an adjusted total impact on the EQ-5D index score (B = − 0.12, p < 0.001) and an anemia-independent “direct” impact (B = − 0.10, p < 0.001). Multivariable logistic regression analysis revealed an anemia-independent impact of MDS in the dimension mobility, self-care, usual activities, and anxiety/depression (all except pain/discomfort). This study demonstrates that the major part of the negative impact of lower-risk MDS on HRQoL is not mediated via anemia. Thus, the therapeutic focus should include treatment strategies directed at underlying pathogenic mechanisms to improve HRQoL, rather than aiming predominantly at increasing hemoglobin levels.
Collapse
Affiliation(s)
- Hanneke J C M Wouters
- Department of Hematology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands.
- Department of Endocrinology, University of Groningen, University Medical Center Groningen, 9700 RB, Groningen, The Netherlands.
| | - Annette Conrads-Frank
- Institute of Public Health, Medical Decision Making and Health Technology Assessment, Department of Public Health, Health Services Research and Health Technology Assessment, UMIT - University for Health Sciences, Medical Informatics and Technology, Hall in Tirol, Austria
| | - Karin A Koinig
- Department of Internal Medicine V (Hematology and Oncology), Medical University Innsbruck, Innsbruck, Austria
| | - Alex Smith
- Epidemiology and Cancer Statistics Group, Department of Health Sciences, University of York, York, UK
| | - Ge Yu
- Epidemiology and Cancer Statistics Group, Department of Health Sciences, University of York, York, UK
- Population Health Sciences Institute, Newcastle University, Newcastle upon Tyne, UK
| | - Theo de Witte
- Department of Tumor Immunology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Bruce H R Wolffenbuttel
- Department of Endocrinology, University of Groningen, University Medical Center Groningen, 9700 RB, Groningen, The Netherlands
| | - Gerwin Huls
- Department of Hematology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Uwe Siebert
- Institute of Public Health, Medical Decision Making and Health Technology Assessment, Department of Public Health, Health Services Research and Health Technology Assessment, UMIT - University for Health Sciences, Medical Informatics and Technology, Hall in Tirol, Austria
- Division of Health Technology Assessment, ONCOTYROL - Center for Personalized Cancer Medicine, Innsbruck, Austria
- Center for Health Decision Science, Department of Health Policy and Management, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Institute for Technology Assessment and Department of Radiology and Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Reinhard Stauder
- Department of Internal Medicine V (Hematology and Oncology), Medical University Innsbruck, Innsbruck, Austria
| | - Melanie M van der Klauw
- Department of Endocrinology, University of Groningen, University Medical Center Groningen, 9700 RB, Groningen, The Netherlands
| |
Collapse
|
29
|
Ma J, Ai X, Wang J, Xing L, Tian C, Yang H, Yu Y, Zhao H, Wang X, Zhao Z, Wang Y, Cao Z. Multiplex ligation-dependent probe amplification identifies copy number changes in normal and undetectable karyotype MDS patients. Ann Hematol 2021; 100:2207-2214. [PMID: 33990890 PMCID: PMC8357724 DOI: 10.1007/s00277-021-04550-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Accepted: 05/01/2021] [Indexed: 10/31/2022]
Abstract
Chromosomal abnormalities play an important role in classification and prognostication of myelodysplastic syndrome (MDS) patients. However, more than 50% of low-risk MDS patients harbor a normal karyotype. Recently, multiplex ligation-dependent probe amplification (MLPA) has emerged as an effective and robust method for the detection of cytogenetic aberrations in MDS patients. To characterize the subset of MDS with normal karyotype or failed chromosome banding analysis, we analyzed 144 patient samples with normal karyotype or undetectable through regular chromosome banding analysis, which were subjected to parallel comparison via fluorescence in situ hybridization (FISH) and MLPA. MLPA identifies copy number changes in 16.7% of 144 MDS patients, and we observed a significant difference in overall survival (OS) (median OS: undefined vs 27 months, p=0.0071) in patients with normal karyotype proved by MLPA versus aberrant karyotype cohort as determined by MLPA. Interestingly, patients with undetectable karyotype via regular chromosome banding indicated inferior outcome. Collectively, MDS patients with normal or undetectable karyotype via chromosome banding analysis can be further clarified by MLPA, providing more prognostic information that benefit for individualized therapy.
Collapse
Affiliation(s)
- Jing Ma
- Department of Hematology and Blood and Marrow Transplantation, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Huan-Hu-Xi Road, Ti-Yuan-Bei, Hexi District, Tianjin, 300060, China
| | - Xiaofei Ai
- Department of Pathology, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, No. 288 Nanjing Road, Heping District, Tianjin, 300020, China
| | - Jinhuan Wang
- Department of Oncology, The Second Hospital of Tianjin Medical University, No.23 Pingjiang Road, Hexi District, Tianjin, 300211, China
| | - Limin Xing
- Hematology Department of General Hospital, Tianjin Medical University, No.154 Anshan Road, Heping District, Tianjin, 300052, China
| | - Chen Tian
- Department of Hematology and Blood and Marrow Transplantation, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Huan-Hu-Xi Road, Ti-Yuan-Bei, Hexi District, Tianjin, 300060, China
| | - Hongliang Yang
- Department of Hematology and Blood and Marrow Transplantation, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Huan-Hu-Xi Road, Ti-Yuan-Bei, Hexi District, Tianjin, 300060, China
| | - Yong Yu
- Department of Hematology and Blood and Marrow Transplantation, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Huan-Hu-Xi Road, Ti-Yuan-Bei, Hexi District, Tianjin, 300060, China
| | - Haifeng Zhao
- Department of Hematology and Blood and Marrow Transplantation, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Huan-Hu-Xi Road, Ti-Yuan-Bei, Hexi District, Tianjin, 300060, China
| | - Xiaofang Wang
- Department of Hematology and Blood and Marrow Transplantation, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Huan-Hu-Xi Road, Ti-Yuan-Bei, Hexi District, Tianjin, 300060, China
| | - Zhigang Zhao
- Department of Hematology and Blood and Marrow Transplantation, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Huan-Hu-Xi Road, Ti-Yuan-Bei, Hexi District, Tianjin, 300060, China.
| | - Yafei Wang
- Department of Hematology and Blood and Marrow Transplantation, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Huan-Hu-Xi Road, Ti-Yuan-Bei, Hexi District, Tianjin, 300060, China.
| | - Zeng Cao
- Department of Hematology and Blood and Marrow Transplantation, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Huan-Hu-Xi Road, Ti-Yuan-Bei, Hexi District, Tianjin, 300060, China.
| |
Collapse
|
30
|
Trowbridge JJ, Starczynowski DT. Innate immune pathways and inflammation in hematopoietic aging, clonal hematopoiesis, and MDS. J Exp Med 2021; 218:212382. [PMID: 34129017 PMCID: PMC8210621 DOI: 10.1084/jem.20201544] [Citation(s) in RCA: 108] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 04/09/2021] [Accepted: 04/12/2021] [Indexed: 12/23/2022] Open
Abstract
With a growing aged population, there is an imminent need to develop new therapeutic strategies to ameliorate disorders of hematopoietic aging, including clonal hematopoiesis and myelodysplastic syndrome (MDS). Cell-intrinsic dysregulation of innate immune- and inflammatory-related pathways as well as systemic inflammation have been implicated in hematopoietic defects associated with aging, clonal hematopoiesis, and MDS. Here, we review and discuss the role of dysregulated innate immune and inflammatory signaling that contribute to the competitive advantage and clonal dominance of preleukemic and MDS-derived hematopoietic cells. We also propose how emerging concepts will further reveal critical biology and novel therapeutic opportunities.
Collapse
Affiliation(s)
| | - Daniel T Starczynowski
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH.,Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH.,Department of Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, OH
| |
Collapse
|
31
|
Serrand C, Mura T, Fabbro-Peray P, Seni G, Mousty È, Boudemaghe T, Gris JC. Assessment of All-Cause Cancer Incidence Among Individuals With Preeclampsia or Eclampsia During First Pregnancy. JAMA Netw Open 2021; 4:e2114486. [PMID: 34160606 PMCID: PMC8223101 DOI: 10.1001/jamanetworkopen.2021.14486] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
IMPORTANCE Preeclampsia or eclampsia (preeclampsia/eclampsia) during pregnancy induces major physiological changes and may be associated with specific cancer occurrences in later life. The current data regarding the association between preeclampsia/eclampsia and cancer are heterogeneous, and cancer risk after preeclampsia/eclampsia could be different depending on the organ. These uncertainties warrant reexamination of the association between preeclampsia/eclampsia and the risk of cancer overall and by specific cancer type. OBJECTIVE To evaluate the risk of cancer, overall and by type, after preeclampsia/eclampsia during a first pregnancy. DESIGN, SETTING, AND PARTICIPANTS This retrospective cohort study used data from the French hospital discharge database to identify all female individuals who had a pregnancy-associated hospitalization between January 1, 2010, and December 31, 2019. To allow a minimum of 2 years for the detection of medical history, individuals with a first detected pregnancy before January 1, 2012, were excluded, as were those with a cancer-associated hospitalization before or during their first detected pregnancy. Exposures, comorbidities, and occurrences of cancer were evaluated using data from the medico-administrative registers of hospitalizations in private and public French hospitals. Cox proportional hazards models were used to analyze cancer risk according to the occurrence of preeclampsia/eclampsia during first pregnancy. EXPOSURES Preeclampsia/eclampsia-associated hospitalization during the first detected pregnancy. MAIN OUTCOMES AND MEASURES The primary outcome was the incidence of cancer, including myelodysplastic or myeloproliferative diseases, after a first pregnancy with and without preeclampsia/eclampsia. RESULTS After exclusions, a total of 4 322 970 female individuals (mean [SD] age at first detected pregnancy, 29.6 [6.2] years) with and without preeclampsia/eclampsia during their first pregnancy were included. Of those, 45 523 individuals (1.1%) were diagnosed with preeclampsia/eclampsia during their first detected pregnancy. The maximum follow-up was 8 years, during which 29 173 individuals (0.7%) were diagnosed with cancer. No significant difference in overall cancer incidence was found between those with and without preeclampsia/eclampsia during their first pregnancy (adjusted hazard ratio [AHR], 0.94; 95% CI, 0.84-1.05). Preeclampsia/eclampsia was associated with an increase in the risk of myelodysplastic syndromes or myeloproliferative diseases (AHR, 2.43; 95% CI, 1.46-4.06) and kidney cancer (AHR, 2.19; 95% CI, 1.09-4.42) and a decrease in the risk of breast cancer (AHR, 0.79; 95% CI, 0.62-0.99) and cervical cancer (AHR, 0.75; 95% CI, 0.58-0.96). CONCLUSIONS AND RELEVANCE In this study, a history of preeclampsia/eclampsia during first pregnancy was associated with an increase in the incidence of myelodysplastic or myeloproliferative diseases and kidney cancer and a decrease in the incidence of cervical and breast cancers. These associations might reflect an underlying common factor among preeclampsia/eclampsia and these pathologies and/or an association between preeclampsia/eclampsia and the development of these cancers.
Collapse
Affiliation(s)
- Chris Serrand
- Department of Biostatistics, Clinical Epidemiology, Public Health, and Innovation in Methodology, Centre Hospitalier Universitaire de Nîmes, Groupe Hospitalo–Universitaire Caremeau, Nîmes, France
- Faculty of Medicine, University of Montpellier, Montpellier, France
| | - Thibault Mura
- Department of Biostatistics, Clinical Epidemiology, Public Health, and Innovation in Methodology, Centre Hospitalier Universitaire de Nîmes, Groupe Hospitalo–Universitaire Caremeau, Nîmes, France
- Faculty of Medicine, University of Montpellier, Montpellier, France
| | - Pascale Fabbro-Peray
- Department of Biostatistics, Clinical Epidemiology, Public Health, and Innovation in Methodology, Centre Hospitalier Universitaire de Nîmes, Groupe Hospitalo–Universitaire Caremeau, Nîmes, France
- Faculty of Medicine, University of Montpellier, Montpellier, France
- Institut National de la Santé et de la Recherche Médicale UA11, Institut Desbrest d’Épidémiologie et de Santé Publique, University of Montpellier, Montpellier, France
| | - Gilles Seni
- Department of Medical Information, Methods and Research, Centre Hospitalier Universitaire de Nîmes, University of Montpellier, Nîmes, France
| | - Ève Mousty
- Department of Gynecology and Obstetrics, Centre Hospitalier Universitaire de Nîmes, University of Montpellier, Nîmes, France
| | - Thierry Boudemaghe
- Institut National de la Santé et de la Recherche Médicale UA11, Institut Desbrest d’Épidémiologie et de Santé Publique, University of Montpellier, Montpellier, France
- Department of Medical Information, Methods and Research, Centre Hospitalier Universitaire de Nîmes, University of Montpellier, Nîmes, France
| | - Jean-Christophe Gris
- Institut National de la Santé et de la Recherche Médicale UA11, Institut Desbrest d’Épidémiologie et de Santé Publique, University of Montpellier, Montpellier, France
- Department of Gynecology and Obstetrics, Centre Hospitalier Universitaire de Nîmes, University of Montpellier, Nîmes, France
- Department of Hematology, Centre Hospitalier Universitaire de Nîmes, University of Montpellier, Nîmes, France
- Faculty of Pharmaceutical and Biological Sciences, University of Montpellier, Montpellier, France
- I.M. Sechenov First Moscow State Medical University, Moscow, Russian Federation
| |
Collapse
|
32
|
EnvIRONmental Aspects in Myelodysplastic Syndrome. Int J Mol Sci 2021; 22:ijms22105202. [PMID: 34068996 PMCID: PMC8156755 DOI: 10.3390/ijms22105202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 05/06/2021] [Accepted: 05/11/2021] [Indexed: 11/24/2022] Open
Abstract
Systemic iron overload is multifactorial in patients suffering from myelodysplastic syndrome (MDS). Disease-immanent ineffective erythropoiesis together with chronic red blood cell transfusion represent the main underlying reasons. However, like the genetic heterogeneity of MDS, iron homeostasis is also diverse in different MDS subtypes and can no longer be generalized. While a certain amount of iron and reactive oxygen species (ROS) are indispensable for proper hematological output, both are harmful if present in excess. Consequently, iron overload has been increasingly recognized as an important player in MDS, which is worth paying attention to. This review focuses on iron- and ROS-mediated effects in the bone marrow niche, their implications for hematopoiesis and their yet unclear involvement in clonal evolution. Moreover, we provide recent insights into hepcidin regulation in MDS and its interaction between erythropoiesis and inflammation. Based on Tet methylcytosine dioxygenase 2 (TET2), representing one of the most frequently mutated genes in MDS, leading to disturbances in both iron homeostasis and hematopoiesis, we highlight that different genetic alteration may have different implications and that a comprehensive workup is needed for a complete understanding and development of future therapies.
Collapse
|
33
|
Ooi SL, Campbell R, Pak SC, Golombick T, Manoharan A, Ramakrishna R, Badmaev V, Schloss J. Is 6-Shogaol an Effective Phytochemical for Patients With Lower-risk Myelodysplastic Syndrome? A Narrative Review. Integr Cancer Ther 2021; 20:15347354211065038. [PMID: 34930049 PMCID: PMC8728773 DOI: 10.1177/15347354211065038] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 11/02/2021] [Accepted: 11/19/2021] [Indexed: 12/14/2022] Open
Abstract
Myelodysplastic syndrome (MDS) evolves due to genomic instability, dysregulated signaling pathways, and overproduction of inflammatory markers. Reactive oxygen species contribute to the inflammatory response, which causes gene damage, cellular remodeling, and fibrosis. MDS can be a debilitating condition, and management options in patients with MDS aim to improve cytopenias, delay disease progression, and enhance quality of life. High serum ferritin levels, a source of iron for reactive oxygen species production, correlate with a higher risk of progression to acute myeloid leukemia, and iron overload is compounded by blood transfusions given to improve anemia. 6-shogaol is a natural phenolic compound formed when ginger is exposed to heat and/or acidic conditions, and it has been shown to possess anti-tumor activity against leukemia cell lines and antioxidant effects. This narrative review assessed the potential benefits of this phytochemical in lower-risk MDS patients through examining the current evidence on the pharmacological and therapeutic properties of ginger and 6-shogaol.
Collapse
Affiliation(s)
| | - Ron Campbell
- Charles Sturt University, Bathurst,
NSW, Australia
- The Oaks Medical Practice, The Oaks,
NSW, Australia
| | | | | | - Arumugam Manoharan
- Southern Sydney Haematology, Kogarah,
NSW, Australia
- University of Wollongong Australia,
Wollongong NSW, Australia
| | - Raj Ramakrishna
- Southern Sydney Haematology, Kogarah,
NSW, Australia
- University of Wollongong Australia,
Wollongong NSW, Australia
| | | | | |
Collapse
|
34
|
SanMiguel JM, Young K, Trowbridge JJ. Hand in hand: intrinsic and extrinsic drivers of aging and clonal hematopoiesis. Exp Hematol 2020; 91:1-9. [PMID: 32991978 DOI: 10.1016/j.exphem.2020.09.197] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Revised: 09/23/2020] [Accepted: 09/24/2020] [Indexed: 12/17/2022]
Abstract
Over the past 25 years, the importance of hematopoietic stem cell (HSC) aging in overall hematopoietic and immune system health span has been appreciated. Much work has been done in model organisms to understand the intrinsic dysregulation that occurs in HSCs during aging, with the goal of identifying modifiable mechanisms that represent the proverbial "fountain of youth." Much more recently, the discovery of somatic mutations that are found to provide a selective advantage to HSCs and accumulate in the hematopoietic system during aging, termed clonal hematopoiesis (CH), inspires revisiting many of these previously defined drivers of HSC aging in the context of these somatic mutations. To truly understand these processes and develop a holistic picture of HSC aging, ongoing and future studies must include investigation of the critical changes that occur in the HSC niche or bone marrow microenvironment with aging, as increasing evidence supports that these HSC-extrinsic alterations provide necessary inflammation, signaling pathway activation or repression, and other selective pressures to favor HSC aging-associated phenotypes and CH. Here, we provide our perspectives based on the past 8 years of our own laboratory's investigations into these mechanisms and chart a path for integrative studies that, in our opinion, will provide an ideal opportunity to discover HSC and hematopoietic health span-extending interventions. This path includes examining when and how aging-associated HSC-intrinsic and HSC-extrinsic changes accumulate over time in different individuals and developing new models to track and test relevant HSC-extrinsic changes, complementary to innovative HSC lineage tracing systems that have recently been developed.
Collapse
|
35
|
Immune Dysregulation and Recurring Mutations in Myelodysplastic Syndromes Pathogenesis. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1326:1-10. [PMID: 33385175 DOI: 10.1007/5584_2020_608] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Myelodysplastic syndromes (MDS) are clonal stem cell malignancies characterized by ineffective hematopoiesis leading to peripheral cytopenias and variable risk of progression to acute myeloid leukemia. Inflammation is associated with MDS pathogenesis. Several cytokines, reactive species of oxygen/nitrogen and growth factors are directly or indirectly involved in dysfunction of the MDS bone marrow (BM) microenvironment. Mutations in genes mainly regulating RNA splicing, DNA methylation and chromatin accessibility, transcription factors, signal transduction and the response to DNA damage contribute to ineffective hematopoiesis, genomic instability and MDS development. The inflammation-associated DNA damage in hematopoietic stem cells may also contribute to MDS development and progression with aggressive clinical characteristics. Many studies have aimed at clarifying mechanisms involved in the activity of immature myeloid cells as powerful modulators of the immune response and their correlation with aging, autoimmunity, and development of cancer. In this review, we explore recent advances and accumulating evidence uniting immune dysregulation, inflammaging and recurring mutations in the pathogenesis of MDS.
Collapse
|
36
|
Guo X, Zhong W, Chen Y, Zhang W, Ren J, Gao A. Benzene metabolites trigger pyroptosis and contribute to haematotoxicity via TET2 directly regulating the Aim2/Casp1 pathway. EBioMedicine 2019; 47:578-589. [PMID: 31474553 PMCID: PMC6796562 DOI: 10.1016/j.ebiom.2019.08.056] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Revised: 08/09/2019] [Accepted: 08/23/2019] [Indexed: 12/12/2022] Open
Abstract
Background Long term low-dose benzene exposure leads to the inhibition of haematopoiesis. However, the underlying mechanisms remained poorly defined, especially mediated by early effector molecules. Methods Here, we first found in mRNA microarray that pyroptotic classic genes (Casp1, 4, 5, and IL1β) were up-regulated and represented dose-dependent differential expression in controls, low-dose benzene-exposed and chronic benzene-poisoned workers, and the expression of Casp1 and IL1β were confirmed in low-dose benzene-exposed workers and was accompanied with elevated potent proinflammatory IL1β. In vitro studies showed that benzene metabolites induced AHH-1 cell pyroptosis through activating Aim2/Casp1 pathway with the increased expression of GSDMD. Meanwhile, TET2 overexpression was elevated in vivo and in vitro and it was positively correlated with IL1β. Further, we verified that pyroptosis caused by 1,4-BQ could be ameliorated in vitro by RNAi or pretreatment with Dimethyloxalylglycine (DMOG), the inhibitor of TET2. Findings Exposure to benzene can trigger pyroptosis via TET2 directly regulating the Aim2/Casp1 signaling pathway to cause haematotoxicity. Interpretation Benzene metabolites induced pyroptotic cell death through activation of the Aim2/Casp1 pathway which can be regulated by Tet2 overexpression. Tet2 may be a potential risk factor and is implicated in the development of benzene-related diseases. Fund National Natural Science Foundation of China; the Support Project of High–level Teachers in Beijing Municipal Universities in the Period of 13th Five–year Plan; Beijing Natural Science Foundation Program and Scientific Research Key Program of Beijing Municipal Commission of Education.
Collapse
Affiliation(s)
- Xiaoli Guo
- Department of Occupational Health and Environmental Health, School of Public Health, Capital Medical University, Beijing 100069, PR China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, PR China
| | - Wen Zhong
- Department of Occupational Health and Environmental Health, School of Public Health, Capital Medical University, Beijing 100069, PR China
| | - Yujiao Chen
- Department of Occupational Health and Environmental Health, School of Public Health, Capital Medical University, Beijing 100069, PR China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, PR China
| | - Wei Zhang
- Department of Occupational Health and Environmental Health, School of Public Health, Capital Medical University, Beijing 100069, PR China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, PR China
| | - Jing Ren
- Department of Occupational Health and Environmental Health, School of Public Health, Capital Medical University, Beijing 100069, PR China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, PR China
| | - Ai Gao
- Department of Occupational Health and Environmental Health, School of Public Health, Capital Medical University, Beijing 100069, PR China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, PR China.
| |
Collapse
|