1
|
Elsebaie HA, Abdulla MH, Elsayed ZM, Shaldam MA, Tawfik HO, Morsy SN, Vaali Mohammed MA, Bin Traiki T, Elkaeed EB, Abdel-Aziz HA, Eldehna WM. Unveiling the potential of isatin-grafted phenyl-1,2,3-triazole derivatives as dual VEGFR-2/STAT-3 inhibitors: Design, synthesis and biological assessments. Bioorg Chem 2024; 151:107626. [PMID: 39013242 DOI: 10.1016/j.bioorg.2024.107626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 07/08/2024] [Accepted: 07/09/2024] [Indexed: 07/18/2024]
Abstract
The use of VEGFR-2 inhibitors as a stand-alone treatment has proven to be ineffective in clinical trials due to the robustness of cellular response loops that lead to treatment resistance when only targeting VEGFR-2. The over-activation of the signal transducer/activator of transcription 3 (STAT-3) is expected to significantly impact treatment failure and resistance to VEGFR-2 inhibitors. In this study, we propose the concept of combined inhibition of VEGFR-2 and STAT-3 to combat induced STAT-3-mediated resistance to VEGFR-2 inhibition therapy. To explore this, we synthesized new isatin-grafted phenyl-1,2,3-triazole derivatives "6a-n" and "9a-f". Screening on PANC1 and PC3 cancer cell lines revealed that compounds 6b, 6 k, 9c, and 9f exhibited sub-micromolar ranges. The most promising molecules, 6b, 6 k, 9c, and 9f, demonstrated the highest inhibition when tested as dual inhibitors on VEGFR-2 (with IC50 range 53-82 nM, respectively) and STAT-3 (with IC50 range 5.63-10.25 nM). In particular, triazole 9f showed the best results towards both targets. Inspired by these findings, we investigated whether 9f has the ability to trigger apoptosis in prostate cancer PC3 cells via the assessment of the expression levels of the apoptotic markers Caspase-8, Bcl-2, Bax, and Caspase-9. Treatment of the PC3 cells with compound 9f significantly inhibited the protein expression levels of VEGFR-2 and STAT-3 kinases compared to the control.
Collapse
Affiliation(s)
- Heba A Elsebaie
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Tanta University, Tanta 31527, Egypt
| | - Maha-Hamadien Abdulla
- Colorectal Research Chair, Department of Surgery, College of Medicine, King Saud University, Riyadh, Saudi Arabia.
| | - Zainab M Elsayed
- Scientific Research and Innovation Support Unit, Faculty of Pharmacy, Kafrelsheikh University, Kafrelsheikh, Egypt
| | - Moataz A Shaldam
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Kafrelsheikh University, Kafrelsheikh 33516, Egypt
| | - Haytham O Tawfik
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Tanta University, Tanta 31527, Egypt.
| | - Samar N Morsy
- Scientific Research and Innovation Support Unit, Faculty of Pharmacy, Kafrelsheikh University, Kafrelsheikh, Egypt
| | - Mansoor-Ali Vaali Mohammed
- Colorectal Research Chair, Department of Surgery, College of Medicine, King Saud University, Riyadh, Saudi Arabia
| | - Thamer Bin Traiki
- Colorectal Research Chair, Department of Surgery, College of Medicine, King Saud University, Riyadh, Saudi Arabia
| | - Eslam B Elkaeed
- Department of Pharmaceutical Sciences, College of Pharmacy, AlMaarefa University, P.O. Box 71666, Riyadh 11597, Saudi Arabia; Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo 11884, Egypt
| | - Hatem A Abdel-Aziz
- Department of Applied Organic Chemistry, National Research Center, Dokki, Cairo 12622, Egypt
| | - Wagdy M Eldehna
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Kafrelsheikh University, Kafrelsheikh 33516, Egypt; Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Pharos University in Alexandria, Canal El Mahmoudia St., Alexandria 21648, Egypt.
| |
Collapse
|
2
|
Farghaly TA, Masaret GS, Riyadh SM, Harras MF. A Literature Review Focusing on the Antiviral Activity of [1,2,4] and [1,2,3]-triazoles. Mini Rev Med Chem 2024; 24:1602-1629. [PMID: 38008942 DOI: 10.2174/0113895575277122231108095511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Revised: 09/07/2023] [Accepted: 09/09/2023] [Indexed: 11/28/2023]
Abstract
Out of a variety of heterocycles, triazole scaffolds have been shown to play a significant part in a wide array of biological functions. Many drug compounds containing a triazole moiety with important antimicrobial, anticancer and antidepressant properties have been commercialized. In addition, the triazole scaffold exhibits remarkable antiviral activity either incorporated into nucleoside analogs or non-nucleosides. Many synthetic techniques have been produced by scientists around the world as a result of their wide-ranging biological function. In this review, we have tried to summarize new synthetic methods produced by diverse research groups as well as provide a comprehensive description of the function of [1,2,4] and [1,2,3]-triazole derivatives as antiviral agents. Antiviral triazole compounds have been shown to target a wide variety of molecular proteins. In addition, several strains of viruses, including the human immunodeficiency virus, SARS virus, hepatitis B and C viruses, influenza virus, Hantavirus, and herpes virus, were discovered to be susceptible to triazole derivatives. This review article covered the reports for antiviral activity of both 1,2,3- and 1,2,4-triazole moieties up to 2022.
Collapse
Affiliation(s)
- Thoraya A Farghaly
- Department of Chemistry, Faculty of Applied Science, Umm Al-Qura University, Makkah Almukaramah, 21514, Saudi Arabia
| | - Ghada S Masaret
- Department of Chemistry, Faculty of Applied Science, Umm Al-Qura University, Makkah Almukaramah, 21514, Saudi Arabia
| | - Sayed M Riyadh
- Chemistry Department, Faculty of Science, University of Cairo, Giza 12613, Egypt
| | - Marwa F Harras
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy (Girls), Al-Azhar University, Cairo, Egypt
| |
Collapse
|
3
|
Gandham SK, Kudale AA, Allaka TR, Chepuri K, Jha A. New tetrazolopyrrolidine-1,2,3-triazole analogues as potent anticancer agents: design, synthesis and molecular docking studies. Mol Divers 2023:10.1007/s11030-023-10762-z. [PMID: 37938509 DOI: 10.1007/s11030-023-10762-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Accepted: 10/31/2023] [Indexed: 11/09/2023]
Abstract
1,2,3-Triazole and tetrazole derivatives bearing pyrrolidines are found to exhibit notable biological activity and have become useful scaffolds in medicinal chemistry for application in lead discovery and optimization. We report design, synthesis and molecular docking studies of tetrazolyl-1,2,3-triazole derivatives (7a-i) bearing pyrrolidine moiety and evaluating their anticancer activity against four cancer cell lines viz. Hela, MCF-7, HCT-116 and HepG2. The structures of the new compounds were ascertained by spectral means IR, NMR: 1H &13C and Mass spectrum. From the studies compounds7a and 7i exhibited significant anticancer activity against the Hela cell line with IC50 = 0.32 ± 1.00, 1.80 ± 0.22 μM when compared to reference drug Doxorubicin (IC50 = 2.34 ± 0.11 μM), whereas 7h, 7i, and 7b were found to be active against MCF-7, HCT-116 and HepG2 cell lines with IC50 = 3.20 ± 1.40, 1.38 ± 0.06 and 0.97 ± 0.12 μM respectively. Notably 7a exhibited highest conventional hydrogen bondings TyrA:40, SerA:17, LysA:117, AlaA:146, Tyr218 with 3HB4and SerA:17, LysA:117, AlaA:146, TyrA:40 with 6IBZ and docking energy - 10.85, - 8.21 kcal/mol respectively. These compounds were further evaluated for their ADMET and physicochemical properties by using SwissADME. The results of the in vitro and in silico studies suggest that the tetrazole incorporated pyrrolidine-triazoles may possess the ideal structural requirements for further developing new anticancer agents.
Collapse
Affiliation(s)
- Siva Kumar Gandham
- Department of Chemistry, GITAM School of Science, GITAM (Deemed to be University), Gandhi Nagar, Rushikonda, Visakhapatnam, Andhra Pradesh, 530045, India
| | - Amit A Kudale
- Research and Development, ASolution Pharmaceuticals Pvt Ltd, Dist. Thane, Ambernath, Maharashtra, 421506, India
| | - Tejeswara Rao Allaka
- Department of Chemistry, Centre for Chemical Sciences and Technology, Institute of Science & Technology, Jawaharlal Nehru Technological University Hyderabad, Kukatpally, Hyderabad, Telangana, 500085, India
| | - Kalyani Chepuri
- Centre for Biotechnology, Institute of Science and Technology, Jawaharlal Nehru Technological University Hyderabad, Kukatpally, Hyderabad, Telangana, 500085, India
| | - Anjali Jha
- Department of Chemistry, GITAM School of Science, GITAM (Deemed to be University), Gandhi Nagar, Rushikonda, Visakhapatnam, Andhra Pradesh, 530045, India.
| |
Collapse
|
4
|
Bivacqua R, Romeo I, Barreca M, Barraja P, Alcaro S, Montalbano A. HSV-1 Glycoprotein D and Its Surface Receptors: Evaluation of Protein-Protein Interaction and Targeting by Triazole-Based Compounds through In Silico Approaches. Int J Mol Sci 2023; 24:ijms24087092. [PMID: 37108255 PMCID: PMC10138673 DOI: 10.3390/ijms24087092] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 03/27/2023] [Accepted: 04/09/2023] [Indexed: 04/29/2023] Open
Abstract
Protein-protein interactions (PPI) represent attractive targets for drug design. Thus, aiming at a deeper insight into the HSV-1 envelope glycoprotein D (gD), protein-protein docking and dynamic simulations of gD-HVEM and gD-Nectin-1 complexes were performed. The most stable complexes and the pivotal key residues useful for gD to anchor human receptors were identified and used as starting points for a structure-based virtual screening on a library of both synthetic and designed 1,2,3-triazole-based compounds. Their binding properties versus gD interface with HVEM and Nectin-1 along with their structure-activity relationships (SARs) were evaluated. Four [1,2,3]triazolo[4,5-b]pyridines were identified as potential HSV-1 gD inhibitors, for their good theoretical affinity towards all conformations of HSV-1 gD. Overall, this study suggests promising basis for the design of new antiviral agents targeting gD as a valuable strategy to prevent viral attachment and penetration into the host cell.
Collapse
Affiliation(s)
- Roberta Bivacqua
- Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche (STEBICEF), Università degli Studi di Palermo, Via Archirafi 32, 90123 Palermo, Italy
| | - Isabella Romeo
- Dipartimento di Scienze della Salute, Università degli Studi "Magna Græcia" di Catanzaro, Campus "S. Venuta", Viale Europa, 88100 Catanzaro, Italy
- Net4Science Academic Spin-Off, Università degli Studi "Magna Græcia" di Catanzaro, Campus "S. Venuta", Viale Europa, 88100 Catanzaro, Italy
| | - Marilia Barreca
- Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche (STEBICEF), Università degli Studi di Palermo, Via Archirafi 32, 90123 Palermo, Italy
| | - Paola Barraja
- Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche (STEBICEF), Università degli Studi di Palermo, Via Archirafi 32, 90123 Palermo, Italy
| | - Stefano Alcaro
- Dipartimento di Scienze della Salute, Università degli Studi "Magna Græcia" di Catanzaro, Campus "S. Venuta", Viale Europa, 88100 Catanzaro, Italy
- Net4Science Academic Spin-Off, Università degli Studi "Magna Græcia" di Catanzaro, Campus "S. Venuta", Viale Europa, 88100 Catanzaro, Italy
| | - Alessandra Montalbano
- Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche (STEBICEF), Università degli Studi di Palermo, Via Archirafi 32, 90123 Palermo, Italy
| |
Collapse
|
5
|
Addo JK, Owusu-Ansah E, Dayie NT, Cheseto X, Torto B. Synthesis of 1,2,3-triazole-thymol derivatives as potential antimicrobial agents. Heliyon 2022; 8:e10836. [PMID: 36217474 PMCID: PMC9547220 DOI: 10.1016/j.heliyon.2022.e10836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 09/09/2022] [Accepted: 09/26/2022] [Indexed: 11/22/2022] Open
Abstract
Background Thymol as a natural biological template can be modified chemically since the hydroxyl group makes it a candidate for structural modification. Thus, this study incorporated the triazole moiety on thymol and the chlorination of thymol moiety to help improve its biological potency. Materials and methods A series of ten 1,2,3-triazole-thymol derivatives 1-10 were synthesized from thymol, by a click reaction between O-propargyl terminal alkyne of thymol and its chlorothymol with benzyl azide and substituted benzyl azides. Their structures were confirmed by spectroscopic methods (1H-NMR, 13C-NMR, IR, GC-MS-EI/CI and LC-ESI-QTOF-MS). The Well diffusion method using Müeller-Hinton agar plates was used to demonstrate the antimicrobial activities of the synthesized triazole-thymol derivatives on selected bacterial strains; Escherichia coli ATCC 25922, Staphylococcus aureus ATCC25923, Methicillin resistant S. aureus (MRSA), Pseudomonas aeruginosa ATCC 29853, E. coli ESBL, K l ebsiella pneumoniae NCTC 13438 and Meropenem Resistant E. coli. Results All the synthesized triazole-thymol derivatives showed significant but variable antibacterial activity against the seven medically important bacterial strains tested. The compound 4-((4-chloro-2-isopropyl-5-methylphenoxy)methyl)-1-(2-nitrobenzyl)-1H-1,2,3triazole (9) demonstrated a higher antibacterial activity with a mean zone of inhibition (38.7 mm) compared with ampicillin as the positive control which gave a zone size of 30.0 mm. In addition, the compound showed a three-fold potency than the parent compound, thymol (11.0 mm) against MRSA at a concentration of 100 μg/ml. Conclusion These results provide additional evidence of the exploitation of natural products like thymol as leads for drug development against medically important bacterial pathogens.
Collapse
Affiliation(s)
- Justice Kwaku Addo
- Department of Chemistry, School of Physical Sciences, University of Cape Coast, Ghana
- International Centre of Insect Physiology and Ecology (icipe), P.O. Box 30772-00100, Nairobi, Kenya
| | - Ernest Owusu-Ansah
- Department of Chemistry, School of Physical Sciences, University of Cape Coast, Ghana
| | - Nicholas T.K.D. Dayie
- Department of Medical Microbiology, University of Ghana Medical School, P.O. Box 4236, Korle-Bu, Accra, Ghana
| | - Xavier Cheseto
- International Centre of Insect Physiology and Ecology (icipe), P.O. Box 30772-00100, Nairobi, Kenya
| | - Baldwyn Torto
- International Centre of Insect Physiology and Ecology (icipe), P.O. Box 30772-00100, Nairobi, Kenya
| |
Collapse
|
6
|
Albelwi FF, Abdu Mansour HM, Elshatanofy MM, El Kilany Y, Kandeel K, Elwakil BH, Hagar M, Aouad MR, El Ashry ESH, Rezki N, El Sawy MA. Design, Synthesis and Molecular Docking of Novel Acetophenone-1,2,3-Triazoles Containing Compounds as Potent Enoyl-Acyl Carrier Protein Reductase (InhA) Inhibitors. Pharmaceuticals (Basel) 2022; 15:ph15070799. [PMID: 35890098 PMCID: PMC9316523 DOI: 10.3390/ph15070799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Revised: 06/03/2022] [Accepted: 06/05/2022] [Indexed: 11/25/2022] Open
Abstract
New medications are desperately needed to combat rising drug resistance among tuberculosis (TB) patients. New agents should ideally work through unique targets to avoid being hampered by preexisting clinical resistance to existing treatments. The enoyl-acyl carrier protein reductase InhA of M. tuberculosis is one of the most crucial targets since it is a promising target that has undergone extensive research for anti-tuberculosis drug development. A well-known scaffold for a variety of biological activities, including antitubercular activity, is the molecular linkage of a1,2,3-triazole with an acetamide group. As a result, in the current study, which was aided by ligand-based molecular modeling investigations, 1,2,3-triazolesweredesigned and synthesized adopting the CuAAC aided cycloaddition of 1-(4-(prop-2-yn-1-yloxy)phenyl)ethanone with appropriate acetamide azides. Standard spectroscopic methods were used to characterize the newly synthesized compounds. In vitro testing of the proposed compounds against the InhA enzyme was performed. All the synthesized inhibitors completely inhibited the InhA enzyme at a concentration of 10 µM that exceeded Rifampicin in terms of activity. Compounds 9, 10, and 14 were the most promising InhA inhibitors, with IC50 values of 0.005, 0.008, and 0.002 µM, respectively. To promote antitubercular action and investigate the binding manner of the screened compounds with the target InhA enzyme’s binding site, a molecular docking study was conducted.
Collapse
Affiliation(s)
- Fawzia Faleh Albelwi
- Department of Chemistry, Faculty of Science, Taibah University, Al-Madinah Al-Munawarah 30002, Saudi Arabia; (F.F.A.); (H.M.A.M.); (M.R.A.)
| | - Hanaa M. Abdu Mansour
- Department of Chemistry, Faculty of Science, Taibah University, Al-Madinah Al-Munawarah 30002, Saudi Arabia; (F.F.A.); (H.M.A.M.); (M.R.A.)
| | - Maram M. Elshatanofy
- Department of Chemistry, Faculty of Science, Alexandria University, Alexandria 21321, Egypt; (M.M.E.); (Y.E.K.); (M.H.); (E.S.H.E.A.)
| | - Yeldez El Kilany
- Department of Chemistry, Faculty of Science, Alexandria University, Alexandria 21321, Egypt; (M.M.E.); (Y.E.K.); (M.H.); (E.S.H.E.A.)
| | - Kamal Kandeel
- Department of Biochemistry, Faculty of Science, Alexandria University, Moharam Beik, Alexandria 21547, Egypt;
| | - Bassma H. Elwakil
- Department of Medical Laboratory Technology, Faculty of Applied Health Sciences Technology, Pharos University in Alexandria, Alexandria 21311, Egypt;
| | - Mohamed Hagar
- Department of Chemistry, Faculty of Science, Alexandria University, Alexandria 21321, Egypt; (M.M.E.); (Y.E.K.); (M.H.); (E.S.H.E.A.)
| | - Mohamed Reda Aouad
- Department of Chemistry, Faculty of Science, Taibah University, Al-Madinah Al-Munawarah 30002, Saudi Arabia; (F.F.A.); (H.M.A.M.); (M.R.A.)
| | - El Sayed H. El Ashry
- Department of Chemistry, Faculty of Science, Alexandria University, Alexandria 21321, Egypt; (M.M.E.); (Y.E.K.); (M.H.); (E.S.H.E.A.)
| | - Nadjet Rezki
- Department of Chemistry, Faculty of Science, Taibah University, Al-Madinah Al-Munawarah 30002, Saudi Arabia; (F.F.A.); (H.M.A.M.); (M.R.A.)
- Correspondence:
| | - Maged A. El Sawy
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Pharos University, Alexandria 21311, Egypt;
| |
Collapse
|
7
|
Costa DCS, da S. M. Forezi L, Lessa MD, Delarmelina M, Matuck BVA, Freitas MCR, Ferreira VF, de C. Resende JAL, de M. Carneiro JW, de C. da Silva F. A Stereoselective, Base‐free, Palladium‐Catalyzed Heck Coupling Between 3‐halo‐1,4‐Naphthoquinones and Vinyl‐1
H
‐1,2,3‐Triazoles. ChemistrySelect 2022. [DOI: 10.1002/slct.202201334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Dora C. S. Costa
- Universidade Federal Fluminense Instituto de Química Campus do Valonguinho, CEP 24020-150 Niterói RJ Brazil
| | - Luana da S. M. Forezi
- Universidade Federal Fluminense Instituto de Química Campus do Valonguinho, CEP 24020-150 Niterói RJ Brazil
| | - Milena D. Lessa
- Universidade Federal Fluminense Instituto de Química Campus do Valonguinho, CEP 24020-150 Niterói RJ Brazil
| | - Maicon Delarmelina
- School of Chemistry Cardiff University, Main Building Park Place Cardiff CF10 3AT United Kingdom
| | - Beatriz V. A. Matuck
- Universidade Federal Fluminense Instituto de Química Campus do Valonguinho, CEP 24020-150 Niterói RJ Brazil
| | - Maria Clara R. Freitas
- Universidade Federal Rural do Rio de Janeiro Instituto de Química Departamento de Química Fundamental e Inorgânica Campus Seropédica, CEP 23890-000 Seropédica RJ Brazil
| | - Vitor F. Ferreira
- Universidade Federal Fluminense Departamento de Tecnologia Farmacêutica Faculdade de Farmácia 24241-002 Niterói RJ Brazil
| | - Jackson A. L. de C. Resende
- Universidade Federal do Mato Grosso Campus Universitário do Araguaia Instituto de Ciências Exatas e da Terra 78698-000 Pontal do Araguaia MT Brazil
| | | | - Fernando de C. da Silva
- Universidade Federal Fluminense Instituto de Química Campus do Valonguinho, CEP 24020-150 Niterói RJ Brazil
| |
Collapse
|
8
|
Synthesis, Characterization and Nanoformulation of Novel Sulfonamide-1,2,3-triazole Molecular Conjugates as Potent Antiparasitic Agents. Int J Mol Sci 2022; 23:ijms23084241. [PMID: 35457059 PMCID: PMC9025934 DOI: 10.3390/ijms23084241] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 03/30/2022] [Accepted: 03/30/2022] [Indexed: 02/01/2023] Open
Abstract
Toxoplasma gondii (T. gondii) is a highly prevalent parasite that has no gold standard treatment due to the poor action or the numerous side effects. Focused sulfonamide-1,2,3-triazole hybrids 3a–c were wisely designed and synthesized via copper catalyzed 1,3-dipolar cycloaddition approach between prop-2-yn-1-alcohol 1 and sulfa drug azides 2a–c. The newly synthesized click products were fully characterized using different spectroscopic experiments and were loaded onto chitosan nanoparticles to form novel nanoformulations for further anti-Toxoplasma investigation. The current study proved the anti-Toxoplasma effectiveness of all examined compounds in experimentally infected mice. Relative to sulfadiazine, the synthesized sulfonamide-1,2,3-triazole (3c) nanoformulae demonstrated the most promising result for toxoplasmosis treatment as it resulted in 100% survival, 100% parasite reduction along with the remarkable histopathological improvement in all the studied organs.
Collapse
|
9
|
Cunha AC, Ferreira VF, Vaz MGF, Cassaro RAA, Resende JALC, Sacramento CQ, Costa J, Abrantes JL, Souza TML, Jordão AK. Chemistry and anti-herpes simplex virus type 1 evaluation of 4-substituted-1H-1,2,3-triazole-nitroxyl-linked hybrids. Mol Divers 2021; 25:2035-2043. [PMID: 32377993 DOI: 10.1007/s11030-020-10094-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Accepted: 04/23/2020] [Indexed: 12/18/2022]
Abstract
HSV disease is distributed worldwide. Anti-herpesvirus drugs are a problem in clinical settings, particularly in immunocompromised individuals undergoing herpes simplex virus type 1 infection. In this work, 4-substituted-1,2,3-1H-1,2,3-triazole linked nitroxyl radical derived from TEMPOL were synthesized, and their ability to inhibit the in vitro replication of HSV-1 was evaluated. The nitroxide derivatives were characterized by infrared spectroscopy and elemental analysis, and three of them had their crystal structures determined by single-crystal X-ray diffraction. Four hybrid molecules showed important anti-HSV-1 activity with IC50 values ranged from 0.80 to 1.32 µM. In particular, one of the nitroxide derivatives was more active than Acyclovir (IC50 = 0.99 µM). All compounds tested were more selective inhibitors than the reference antiviral drug. Among them, two compounds were 4.5 (IC50 0.80 µM; selectivity index CC50/IC50 3886) and 7.7 times (IC50 1.10 µM; selectivity index CC50/IC50 6698) more selective than acyclovir (IC50 0.99 µM; selectivity index CC50/IC50: 869). These nitroxide derivatives may be elected as leading compounds due to their antiherpetic activities and good selectivity.
Collapse
Affiliation(s)
- Anna C Cunha
- Departamento de Química Orgânica, Instituto de Química, Outeiro de São João Batista, Universidade Federal Fluminense, Niterói, RJ, 24020-141, Brazil
| | - Vitor F Ferreira
- Departamento de Tecnologia Farmacêutica, Faculdade de Farmácia, Universidade Federal Fluminense, Rua Dr. Mário Vianna 523, Niterói, RJ, 24241-002, Brazil
| | - Maria G F Vaz
- Departamento de Química Inorgânica, Instituto de Química, Outeiro de São João Batista, Universidade Federal Fluminense, Niterói, RJ, 24020-141, Brazil
| | - Rafael A Allão Cassaro
- Departamento de Química Inorgânica, Instituto de Química, Universidade Federal Do Rio de Janeiro, Rio de Janeiro, RJ, 21941-972, Brazil
| | - Jackson A L C Resende
- Laboratório de difração de Raios X, Programa de Pós-Graduação Em Química, Universidade Federal Fluminense, Niterói, RJ, 24020-141, Brazil
- Instituto de Ciências Exatas E da Terra, Universidade Federal do Mato Grosso, Barra do Garças, MT, 78698-000, Brazil
| | - Carolina Q Sacramento
- Laboratório de Imunofarmacologia, Instituto Oswaldo Cruz, FIOCRUZ, Rio de Janeiro, Brazil
| | - Jéssica Costa
- Laboratório de Imunofarmacologia, Instituto Oswaldo Cruz, FIOCRUZ, Rio de Janeiro, Brazil
| | - Juliana L Abrantes
- Laboratório de Imunofarmacologia, Instituto Oswaldo Cruz, FIOCRUZ, Rio de Janeiro, Brazil
| | - Thiago Moreno L Souza
- Laboratório de Imunofarmacologia, Instituto Oswaldo Cruz, FIOCRUZ, Rio de Janeiro, Brazil
- National Institute for Science and Technology On Innovation On Diseases of Neglected Populations (INCT/IDPN), Center for Technological Development in Health (CDTS), Fiocruz, Rio de Janeiro, RJ, Brazil
| | - Alessandro K Jordão
- Departamento de Farmácia, Universidade Federal do Rio Grande do Norte, Natal, RN, 59012-570, Brazil.
| |
Collapse
|
10
|
Morais PAB, Francisco CS, de Paula H, Ribeiro R, Eloy MA, Javarini CL, Neto ÁC, Júnior VL. Semisynthetic Triazoles as an Approach in the Discovery of Novel Lead Compounds. CURR ORG CHEM 2021. [DOI: 10.2174/1385272825666210126100227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Historically, medicinal chemistry has been concerned with the approach of organic
chemistry for new drug synthesis. Considering the fruitful collections of new molecular entities,
the dedicated efforts for medicinal chemistry are rewarding. Planning and search for new
and applicable pharmacologic therapies involve the altruistic nature of the scientists. Since
the 19th century, notoriously applying isolated and characterized plant-derived compounds in
modern drug discovery and various stages of clinical development highlight its viability and
significance. Natural products influence a broad range of biological processes, covering transcription,
translation, and post-translational modification, being effective modulators of most
basic cellular processes. The research of new chemical entities through “click chemistry”
continuously opens up a map for the remarkable exploration of chemical space towards leading
natural products optimization by structure-activity relationship. Finally, in this review, we expect to gather a
broad knowledge involving triazolic natural product derivatives, synthetic routes, structures, and their biological activities.
Collapse
Affiliation(s)
- Pedro Alves Bezerra Morais
- Centro de Ciencias Exatas, Naturais e da Saude, Universidade Federal do Espirito Santo, 29500000, Alegre, ES, Brazil
| | - Carla Santana Francisco
- Programa de Pos-Graduacao em Quimica, Universidade Federal do Espirito Santo, 29075910, Vitória, ES, Brazil
| | - Heberth de Paula
- Centro de Ciencias Exatas, Naturais e da Saude, Universidade Federal do Espirito Santo, 29500000, Alegre, ES, Brazil
| | - Rayssa Ribeiro
- Programa de Pos- Graduacao em Agroquimica, Universidade Federal do Espirito Santo, 29500000, Alegre, ES, Brazil
| | - Mariana Alves Eloy
- Programa de Pos- Graduacao em Agroquimica, Universidade Federal do Espirito Santo, 29500000, Alegre, ES, Brazil
| | - Clara Lirian Javarini
- Programa de Pos-Graduacao em Quimica, Universidade Federal do Espirito Santo, 29075910, Vitória, ES, Brazil
| | - Álvaro Cunha Neto
- Programa de Pos-Graduacao em Quimica, Universidade Federal do Espirito Santo, 29075910, Vitória, ES, Brazil
| | - Valdemar Lacerda Júnior
- Programa de Pos-Graduacao em Quimica, Universidade Federal do Espirito Santo, 29075910, Vitória, ES, Brazil
| |
Collapse
|
11
|
Staśkiewicz A, Ledwoń P, Rovero P, Papini AM, Latajka R. Triazole-Modified Peptidomimetics: An Opportunity for Drug Discovery and Development. Front Chem 2021; 9:674705. [PMID: 34095086 PMCID: PMC8172596 DOI: 10.3389/fchem.2021.674705] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Accepted: 04/06/2021] [Indexed: 12/18/2022] Open
Abstract
Peptidomimetics play a fundamental role in drug design due to their preferential properties regarding natural peptides. In particular, compounds possessing nitrogen-containing heterocycles have been intensively studied in recent years. The triazolyl moiety incorporation decreases the molecule susceptibility to enzymatic degradation, reduction, hydrolysis, and oxidation. In fact, peptides containing triazole rings are a typical example of peptidomimetics. They have all the advantages over classic peptides. Both efficient synthetic methods and biological activity make these systems an interesting and promising object of research. Peptide triazole derivatives display a diversity of biological properties and can be obtained via numerous synthetic strategies. In this review, we have highlighted the importance of the triazole-modified peptidomimetics in the field of drug design. We present an overview on new achievements in triazolyl-containing peptidomimetics synthesis and their biological activity as inhibitors of enzymes or against cancer, viruses, bacteria, or fungi. The relevance of above-mentioned compounds was confirmed by their comparison with unmodified peptides.
Collapse
Affiliation(s)
- Agnieszka Staśkiewicz
- Department of Bioorganic Chemistry, Faculty of Chemistry, Wroclaw University of Science and Technology, Wroclaw, Poland
- Interdepartmental Research Unit of Peptide and Protein Chemistry and Biology, Department of Chemistry “Ugo Schiff”, University of Florence, Firenze, Italy
| | - Patrycja Ledwoń
- Department of Bioorganic Chemistry, Faculty of Chemistry, Wroclaw University of Science and Technology, Wroclaw, Poland
- Interdepartmental Research Unit of Peptide and Protein Chemistry and Biology, Department of Neurosciences, Psychology, Drug Research and Child Health-Section of Pharmaceutical Sciences and Nutraceutics, University of Florence, Firenze, Italy
| | - Paolo Rovero
- Interdepartmental Research Unit of Peptide and Protein Chemistry and Biology, Department of Neurosciences, Psychology, Drug Research and Child Health-Section of Pharmaceutical Sciences and Nutraceutics, University of Florence, Firenze, Italy
| | - Anna Maria Papini
- Interdepartmental Research Unit of Peptide and Protein Chemistry and Biology, Department of Chemistry “Ugo Schiff”, University of Florence, Firenze, Italy
| | - Rafal Latajka
- Department of Bioorganic Chemistry, Faculty of Chemistry, Wroclaw University of Science and Technology, Wroclaw, Poland
| |
Collapse
|
12
|
Budeev A, Kantin G, Dar’in D, Krasavin M. Diazocarbonyl and Related Compounds in the Synthesis of Azoles. Molecules 2021; 26:2530. [PMID: 33926128 PMCID: PMC8123665 DOI: 10.3390/molecules26092530] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 04/21/2021] [Accepted: 04/22/2021] [Indexed: 12/15/2022] Open
Abstract
Diazocarbonyl compounds have found numerous applications in many areas of chemistry. Among the most developed fields of diazo chemistry is the preparation of azoles from diazo compounds. This approach represents a useful alternative to more conventional methods of the synthesis of azoles. A comprehensive review on the preparation of various azoles (oxazoles, thiazoles, imidazoles, pyrazoles, triazoles, and tetrazoles) from diazocarbonyl and related compounds is presented for the first time along with discussion of advantages and disadvantages of «diazo» approaches to azoles.
Collapse
Affiliation(s)
| | | | - Dmitry Dar’in
- Institute of Chemistry, St. Petersburg State University, 198504 Peterhof, Russia; (A.B.); (G.K.)
| | - Mikhail Krasavin
- Institute of Chemistry, St. Petersburg State University, 198504 Peterhof, Russia; (A.B.); (G.K.)
| |
Collapse
|
13
|
da S M Forezi L, Lima CGS, Amaral AAP, Ferreira PG, de Souza MCBV, Cunha AC, de C da Silva F, Ferreira VF. Bioactive 1,2,3-Triazoles: An Account on their Synthesis, Structural Diversity and Biological Applications. CHEM REC 2021; 21:2782-2807. [PMID: 33570242 DOI: 10.1002/tcr.202000185] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 01/28/2021] [Accepted: 01/29/2021] [Indexed: 12/14/2022]
Abstract
The triazole heterocycle is a privileged scaffold in medicinal chemistry, since its structure is present in a large number of biologically active molecules, including several drugs currently in the market. Due to their vast applications, a wide variety of methods are described for their preparation, such as the 1,3-dipolar cycloaddition and processes involving diazo compounds and diazo transfer reactions. Considering the significant number of contributions from our research group to this chemistry in recent decades, in this account we discuss both the development of new methods for the synthesis of 1,2,3-triazoles and the preparation of new triazole-functionalized biologically active molecules using classical approaches.
Collapse
Affiliation(s)
- Luana da S M Forezi
- Departamento de Química Orgânica, Instituto de Química, Universidade Federal Fluminense, Campus do Valonguinho, 24020-150, Niterói, RJ, Brazil
| | - Carolina G S Lima
- Departamento de Química Orgânica, Instituto de Química, Universidade Federal Fluminense, Campus do Valonguinho, 24020-150, Niterói, RJ, Brazil
| | - Adriane A P Amaral
- Departamento de Química Orgânica, Instituto de Química, Universidade Federal Fluminense, Campus do Valonguinho, 24020-150, Niterói, RJ, Brazil
| | - Patricia G Ferreira
- Departamento de Tecnologia Farmacêutica, Faculdade de Farmácia, Universidade Federal Fluminense, R. Dr. Mario Vianna, 523 - Santa Rosa, 24241-000, Niterói, RJ, Brazil
| | - Maria Cecília B V de Souza
- Departamento de Química Orgânica, Instituto de Química, Universidade Federal Fluminense, Campus do Valonguinho, 24020-150, Niterói, RJ, Brazil
| | - Anna C Cunha
- Departamento de Química Orgânica, Instituto de Química, Universidade Federal Fluminense, Campus do Valonguinho, 24020-150, Niterói, RJ, Brazil
| | - Fernando de C da Silva
- Departamento de Química Orgânica, Instituto de Química, Universidade Federal Fluminense, Campus do Valonguinho, 24020-150, Niterói, RJ, Brazil
| | - Vitor F Ferreira
- Departamento de Tecnologia Farmacêutica, Faculdade de Farmácia, Universidade Federal Fluminense, R. Dr. Mario Vianna, 523 - Santa Rosa, 24241-000, Niterói, RJ, Brazil
| |
Collapse
|
14
|
Viegas DJ, da Silva VD, Buarque CD, Bloom DC, Abreu PA. Antiviral activity of 1,4-disubstituted-1,2,3-triazoles against HSV-1 in vitro. Antivir Ther 2021; 25:399-410. [PMID: 33705354 DOI: 10.3851/imp3387] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/23/2020] [Indexed: 10/21/2022]
Abstract
BACKGROUND Herpes simplex virus 1 (HSV-1) affects a large part of the adult population. Anti-HSV-1 drugs, such as acyclovir, target thymidine kinase and viral DNA polymerase. However, the emerging of resistance of HSV-1 alerts for the urgency in developing new antivirals with other therapeutic targets. Thus, this study evaluated a series of 1,4-disubstituted-1,2,3-triazole derivatives against HSV-1 acute infection and provided deeper insights into the possible mechanisms of action. METHODS Human fibroblast cells (HFL-1) were infected with HSV-1 17syn+ and treated with the triazole compounds at 50 μM for 24 h. The 50% effective drug concentration (EC50) was determined for the active compounds. Their cytotoxicity was also evaluated in HFL-1 with the 50% cytotoxic concentration (CC50) determined using CellTiter-Glo® solution. The most promising compounds were evaluated by virucidal activity and influence on virus egress, DNA replication and transcription, and effect on an acyclovir-resistant HSV-1 strain. RESULTS Compounds 3 ((E)-4-methyl-N'-(2-(4-(phenoxymethyl)-1H-1,2,3-triazol1yl)benzylidene)benzenesulfonohydrazide) and 4 (2,2'-(4,4'-((1,3-phenylenebis(oxy))bis(methylene))bis(1H-1,2,3-triazole-4,1 diyl)) dibenzaldehyde) were the most promising, with an EC50 of 16 and 21 μM and CC50 of 285 and 2,593 μM, respectively. Compound 3 was able to inhibit acyclovir-resistant strain replication and to interfere with virus egress. Both compounds did not affect viral DNA replication, but inhibited significantly the expression of ICP0, ICP4 and gC. Compound 4 also affected the transcription of UL30 and ICP34.5. CONCLUSIONS Our findings demonstrated that these compounds are promising antiviral candidates with different mechanisms of action from acyclovir and further studies are merited.
Collapse
Affiliation(s)
- Daiane J Viegas
- LAMCIFAR, Laboratório de Modelagem Molecular e Pesquisa em Ciências Farmacêuticas, Universidade Federal do Rio de Janeiro, Macaé, Rio de Janeiro, Brazil
| | - Verônica D da Silva
- Laboratório de Síntese Orgânica, Pontifícia Universidade Católica do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Camilla D Buarque
- Laboratório de Síntese Orgânica, Pontifícia Universidade Católica do Rio de Janeiro, Rio de Janeiro, Brazil
| | - David C Bloom
- College of Medicine, Department of Microbiology and Molecular Genetics, University of Florida, Gainesville, FL, USA
| | - Paula A Abreu
- LAMCIFAR, Laboratório de Modelagem Molecular e Pesquisa em Ciências Farmacêuticas, Universidade Federal do Rio de Janeiro, Macaé, Rio de Janeiro, Brazil
| |
Collapse
|
15
|
Synthesis, characterization, α-glucosidase inhibition and molecular modeling studies of some pyrazoline-1H-1,2,3-triazole hybrids. J Mol Struct 2020. [DOI: 10.1016/j.molstruc.2020.128253] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
16
|
Abu-Zaied M, Hammad SF, Halaweish FT, Elgemeie GH. Sofosbuvir Thio-analogues: Synthesis and Antiviral Evaluation of the First Novel Pyridine- and Pyrimidine-Based Thioglycoside Phosphoramidates. ACS OMEGA 2020; 5:14645-14655. [PMID: 32596602 PMCID: PMC7315579 DOI: 10.1021/acsomega.0c01364] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Accepted: 05/25/2020] [Indexed: 05/31/2023]
Abstract
The synthesis and antiviral screening of the first reported series of pyridine- and pyrimidine-based thioglycoside phosphoramidates are herein reported. They were prepared through two synthetic steps: The first step is via coupling of mercapto-derivatized heterocyclic bases with the appropriate α-bromo per-acetylated sugars. The second one is the hydrolysis of the acetate esters under basic conditions that were consequently conjugated with the phosphoramidating reagent to afford the desired thioglycoside protides. Eight compounds were evaluated for their antiviral activities against different viral cell lines, namely, adenovirus 7, HAV (hepatitis A) HM175, Coxsackievirus B4, and HSV-1 (herpes simplex virus type 1), in addition to the antiviral bioassay against ED-43/SG-Feo (VYG) replicon of HCV (hepatitis C virus) genotype 4a. Both compounds 5b and 11 showed notable antiviral activity against Coxsackie virus B4, reflected from the CC50 values of 17 and 20 μg/100 μL and IC50 values of 4.5 and 6.0 μg/100 μL, respectively. Same two compounds elicited remarkable activities toward herpes simplex virus type 1, represented by CC50 values of 17 and 16 μg/100 μL and IC50 values of 6.3 and 6.6 μg/100 μL, respectively. Combination of 11 with acyclovir elicited a notable synergistic activity in comparison with acyclovir alone, as inferred from herpes simplex polymerase enzyme inhibitory assay values of 2.64 and 4.78 μg/100 mL, respectively. Only compound 11 elicited a remarkable activity against HCV. Potential promising activities of compound 11 have been shown with respect to CC50, IC50, and enzyme assay inhibitory activities.
Collapse
Affiliation(s)
| | - Sherif F. Hammad
- Pharmaceutical
Chemistry Department, Faculty of Pharmacy, Helwan University, Helwan, Cairo 11795, Egypt
- Basic
and Applied Sciences Institute, Egypt-Japan
University of Science and Technology (E-JUST), P.O Box 179, New Borg El-Arab City, Alexandria 21934, Egypt
| | - Fathi T. Halaweish
- Department
of Chemistry & Biochemistry, South Dakota
State University, Brookings, South Dakota 57007, United States
| | - Galal Hamza Elgemeie
- Chemistry
Department, Faculty of Science, Helwan University, Helwan, Cairo 11795, Egypt
| |
Collapse
|
17
|
Faeza Abdul Kareem Almashal, Al-Hujaj HH, Jassem AM, Al-Masoudi NA. A Click Synthesis, Molecular Docking, Cytotoxicity on Breast Cancer (MDA-MB 231) and Anti-HIV Activities of New 1,4-Disubstituted-1,2,3-Triazole Thymine Derivatives. RUSSIAN JOURNAL OF BIOORGANIC CHEMISTRY 2020. [DOI: 10.1134/s1068162020030024] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
18
|
Hernández-López H, Leyva-Ramos S, Azael Gómez-Durán CF, Pedraza-Alvarez A, Rodríguez-Gutiérrez IR, Leyva-Peralta MA, Razo-Hernández RS. Synthesis of 1,4-Biphenyl-triazole Derivatives as Possible 17β-HSD1 Inhibitors: An in Silico Study. ACS OMEGA 2020; 5:14061-14068. [PMID: 32566872 PMCID: PMC7301541 DOI: 10.1021/acsomega.0c01519] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Accepted: 05/15/2020] [Indexed: 05/12/2023]
Abstract
Triazoles occupy an important position in medicinal chemistry because of their various biological activities. The structural features of 1,2,3-triazoles enable them to act as a bioisostere of different functional groups such as amide, ester, carboxylic acid, and heterocycle, being capable of forming hydrogen bonds and π-π interactions or coordinate metal ions with biological targets. In this work, the synthesis of 1,2,3-triazole derivatives via copper(I)-catalyzed azide-alkyne cycloaddition (CuAAC) is reported. Overexpression of 17β-hydroxysteroid dehydrogenase type 1 (17β-HSD1) is often found in breast cancer cells. Molecular similarity and docking analysis were used to evaluate the potential inhibitory activity of 1,2,3-triazoles synthesized over 17β-HSD1 for the treatment of mammary tumors. Our in silico analysis shows that compounds 4c, 4d, 4f, 4g, and 4j are good molecular scaffold candidates as 17β-HSD1 inhibitors.
Collapse
Affiliation(s)
- Hiram Hernández-López
- Unidad
Académica de Ciencias Químicas, Universidad Autónoma de Zacatecas, Carretera Zacatecas-Guadalajara Km 6, Ejido la
Escondida s/n, Zacatecas, Zacatecas 98160, México
| | - Socorro Leyva-Ramos
- Facultad
de Ciencias Químicas, Universidad
Autónoma de San Luis Potosí, Av. Manuel Nava 6, Zona Universitaria, San Luis Potosí, San Luis Potosí 78210, México
- . Phone: +52 444 826
2300 ext. 6476
| | - Cesar Fernando Azael Gómez-Durán
- Facultad
de Ciencias Químicas, Universidad
Autónoma de San Luis Potosí, Av. Manuel Nava 6, Zona Universitaria, San Luis Potosí, San Luis Potosí 78210, México
| | - Alberto Pedraza-Alvarez
- Facultad
de Ciencias Químicas, Universidad
Autónoma de San Luis Potosí, Av. Manuel Nava 6, Zona Universitaria, San Luis Potosí, San Luis Potosí 78210, México
| | - Irving Rubén Rodríguez-Gutiérrez
- Facultad
de Ciencias Químicas, Universidad
Autónoma de San Luis Potosí, Av. Manuel Nava 6, Zona Universitaria, San Luis Potosí, San Luis Potosí 78210, México
| | - Mario Alberto Leyva-Peralta
- Departamento
de Ciencias Químico Biológicas y Agropecuarias, Universidad de Sonora, URN Campus Caborca. Av. Universidad e Irigoyen
s/n. H. Caborca, Sonora 83621, México
| | - Rodrigo Said Razo-Hernández
- Centro
de Investigación en Dinámica Celular, Universidad Autónoma del Estado de Morelos. Av. Universidad 1001. Cuernavaca, Morelos 62209, México
| |
Collapse
|
19
|
Sacramento CQ, Jordão AK, Abrantes JL, Alves CM, Marttorelli A, Fintelman-Rodrigues N, de Freitas CS, de Melo GR, Cunha AC, Ferreira VF, Souza TML. Neuraminidase from Influenza A and B Viruses is Susceptible to the Compound 4-(4-Phenyl-1H-1,2,3-Triazol-1-yl)-2,2,6,6-Tetramethylpiperidine-1- Oxyl. Curr Top Med Chem 2020; 20:132-139. [DOI: 10.2174/1568026620666191227142433] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Revised: 11/13/2019] [Accepted: 11/29/2019] [Indexed: 12/24/2022]
Abstract
Background:
Since the influenza virus is the main cause of acute seasonal respiratory infections
and pandemic outbreaks, antiviral drugs are critical to mitigate infections and impair chain of
transmission. Neuraminidase inhibitors (NAIs) are the main class of anti-influenza drugs in clinical use.
Nevertheless, resistance to oseltamivir (OST), the most used NAI, has been detected in circulating
strains of the influenza virus. Therefore, novel compounds with anti-influenza activity are necessary.
Objective:
To verify whether the NA from influenza A and B virus is susceptible to the compound 4-(4-
phenyl-1H-1,2,3-triazol-1-yl)-2,2,6,6-tetramethylpiperidine-1-oxyl (Tritempo).
Methods:
Cell-free neuraminidase inhibition assays were performed with Tritempo, using wild-type
(WT) and OST-resistant influenza strains. Cell-based assays in MDCKs were performed to confirm
Tritempo`s antiviral activity and cytotoxicity. Multiple passages of the influenza virus in increasing concentrations
of our compound, followed by the sequencing of NA gene and molecular docking, were used
to identify our Tritempo’s target.
Results/Discussion:
Indeed, Tritempo inhibited the neuraminidase activity of WT and OSTresistant
strains of influenza A and B, at the nanomolar range. Tritempo bound to WT and OST-resistant
influenza NA isoforms at the sialic acid binding site with low free binding energies. Cell-free assays
were confirmed using a prototypic influenza A infection assay in MDCK cells, in which we found an
EC50 of 0.38 µM, along with very low cytotoxicity, CC50 > 2,000 µM. When we passaged the influenza
A virus in the presence of Tritempo, a mutant virus with the G248P change in the NA was detected. This
mutant was resistant to Tritempo but remained sensitive to OST, indicating no cross-resistance between
the studied and reference drugs.
Conclusion:
Our results suggest that Tritempo’s chemical structure is a promising one for the development
of novel antivirals against influenza.
Collapse
Affiliation(s)
- Carolina Q. Sacramento
- Laboratorio de Vírus Respiratorios, Instituto Oswaldo Cruz, Fundacao Oswaldo Cruz, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Alessandro Kappel Jordão
- Laboratorio de Sintese Organica, Programa de pos-Graduacao em Quimica, Departamento de Quimica Organica, Instituto de Quimica, Universidade Federal Fluminense, Niterói, Rio de Janeiro, Brazil
| | - Juliana L. Abrantes
- Instituto de Ciencias Biomedicas, Centro de Ciencias da Saude, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Cristiane M. Alves
- Laboratorio de Vírus Respiratorios, Instituto Oswaldo Cruz, Fundacao Oswaldo Cruz, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Andressa Marttorelli
- Laboratorio de Vírus Respiratorios, Instituto Oswaldo Cruz, Fundacao Oswaldo Cruz, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Natalia Fintelman-Rodrigues
- Laboratorio de Vírus Respiratorios, Instituto Oswaldo Cruz, Fundacao Oswaldo Cruz, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Caroline S. de Freitas
- Laboratorio de Vírus Respiratorios, Instituto Oswaldo Cruz, Fundacao Oswaldo Cruz, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Gabrielle R. de Melo
- Laboratorio de Vírus Respiratorios, Instituto Oswaldo Cruz, Fundacao Oswaldo Cruz, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Anna Claudia Cunha
- Laboratorio de Sintese Organica, Programa de pos-Graduacao em Quimica, Departamento de Quimica Organica, Instituto de Quimica, Universidade Federal Fluminense, Niterói, Rio de Janeiro, Brazil
| | - Vitor F. Ferreira
- Laboratorio de Sintese Organica, Programa de pos-Graduacao em Quimica, Departamento de Quimica Organica, Instituto de Quimica, Universidade Federal Fluminense, Niterói, Rio de Janeiro, Brazil
| | - Thiago Moreno L. Souza
- Laboratorio de Vírus Respiratorios, Instituto Oswaldo Cruz, Fundacao Oswaldo Cruz, Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
20
|
Yuan WY, Chen X, Liu NN, Wen YN, Yang B, Andrei G, Snoeck R, Xiang YH, Wu YW, Jiang Z, Schols D, Zhang ZY, Wu QP. Synthesis, Anti-Varicella-Zoster Virus and Anti-Cytomegalovirus Activity of 4,5-Disubstituted 1,2,3-(1H)-Triazoles. Med Chem 2019; 15:801-812. [PMID: 30411688 DOI: 10.2174/1573406414666181109095239] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Revised: 10/05/2018] [Accepted: 10/30/2018] [Indexed: 11/22/2022]
Abstract
BACKGROUND Clinical drugs for herpesvirus exhibit high toxicity and suffer from significant drug resistance. The development of new, effective, and safe anti-herpesvirus agents with different mechanisms of action is greatly required. OBJECTIVE Novel inhibitors against herpesvirus with different mechanisms of action from that of clinical drugs. METHODS A series of novel 5-(benzylamino)-1H-1,2,3-triazole-4-carboxamides were efficiently synthesized and EC50 values against Human Cytomegalovirus (HCMV), Varicella-Zoster Virus (VZV) and Herpes Simplex Virus (HSV) were evaluated in vitro. RESULTS Some compounds present antiviral activity. Compounds 5s and 5t are potent against both HCMV and VZV. Compounds 5m, 5n, 5s, and 5t show similar EC50 values against both TK+ and TK- VZV strains. CONCLUSION 5-(Benzylamino)-1H-1, 2,3-triazole-4-carboxamides are active against herpesviruses and their activity is remarkably affected by the nature and the position of substituents in the benzene ring. The results indicate that these derivatives are independent of the viral thymidine kinase (TK) for activation, which is indispensable for current drugs. Their mechanisms of action may differ from those of the clinic anti-herpesvirus drugs.
Collapse
Affiliation(s)
- Wei-Yuan Yuan
- School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Xue Chen
- School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Ning-Ning Liu
- School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Yi-Ning Wen
- School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Bei Yang
- School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Graciela Andrei
- Rega Institute for Medical Research, KU Leuven, Minderbroedersstraat 10, Leuven B-3000, Belgium
| | - Robert Snoeck
- Rega Institute for Medical Research, KU Leuven, Minderbroedersstraat 10, Leuven B-3000, Belgium
| | - Yu-Hong Xiang
- School of Chemistry, Capital Normal University, Beijing 100048, China
| | - Yong-Wei Wu
- School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Zhen Jiang
- School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Dominique Schols
- Rega Institute for Medical Research, KU Leuven, Minderbroedersstraat 10, Leuven B-3000, Belgium
| | - Zhuo-Yong Zhang
- School of Chemistry, Capital Normal University, Beijing 100048, China
| | - Qin-Pei Wu
- School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, China
| |
Collapse
|
21
|
Jain A, Piplani P. Exploring the Chemistry and Therapeutic Potential of Triazoles: A Comprehensive Literature Review. Mini Rev Med Chem 2019; 19:1298-1368. [DOI: 10.2174/1389557519666190312162601] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Revised: 02/28/2019] [Accepted: 03/06/2019] [Indexed: 12/20/2022]
Abstract
:
Triazole is a valuable platform in medicinal chemistry, possessing assorted pharmacological
properties, which could play a major role in the common mechanisms associated with various disorders
like cancer, infections, inflammation, convulsions, oxidative stress and neurodegeneration. Structural
modification of this scaffold could be helpful in the generation of new therapeutically useful
agents. Although research endeavors are moving towards the growth of synthetic analogs of triazole,
there is still a lot of scope to achieve drug discovery break-through in this area. Upcoming therapeutic
prospective of this moiety has captured the attention of medicinal chemists to synthesize novel triazole
derivatives. The authors amalgamated the chemistry, synthetic strategies and detailed pharmacological
activities of the triazole nucleus in the present review. Information regarding the marketed triazole derivatives
has also been incorporated. The objective of the review is to provide insights to designing and
synthesizing novel triazole derivatives with advanced and unexplored pharmacological implications.
Collapse
Affiliation(s)
- Ankit Jain
- Department of Pharmaceutical Chemistry, University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh- 160014, India
| | - Poonam Piplani
- Department of Pharmaceutical Chemistry, University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh- 160014, India
| |
Collapse
|
22
|
Kaushik CP, Sangwan J, Luxmi R, Kumar K, Pahwa A. Synthetic Routes for 1,4-disubstituted 1,2,3-triazoles: A Review. CURR ORG CHEM 2019. [DOI: 10.2174/1385272823666190514074146] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
N-Heterocyclic compounds like 1,2,3-triazoles serve as a key scaffolds among organic compounds having diverse applications in the field of drug discovery, bioconjugation, material science, liquid crystals, pharmaceutical chemistry and solid phase organic synthesis. Various drugs containing 1,2,3-triazole ring which are commonly available in market includes Rufinamide, Cefatrizine, Tazobactam etc., Stability to acidic/basic hydrolysis along with significant dipole moment support triazole moiety for appreciable participation in hydrogen bonding and dipole-dipole interactions with biological targets. Huisgen 1,3-dipolar azide-alkyne cycloaddition culminate into a mixture of 1,4 and 1,5- disubstituted 1,2,3-triazoles. In 2001, Sharpless and Meldal came across with a copper(I) catalyzed regioselective synthesis of 1,4-disubstituted 1,2,3-triazoles by cycloaddition between azides and terminal alkynes. This azide-alkyne cycloaddition has been labelled as a one of the important key click reaction. Click synthesis describes chemical reactions that are simple to perform, gives high selectivity, wide in scope, fast reaction rate and high yields. Click reactions are not single specific reaction, but serve as a pathway for construction of simple to complex molecules from a variety of starting materials. In the last few decades, 1,2,3-triazoles attracted attention of researchers all over the world because of their broad spectrum of biological activities. Keeping in view the biological importance of 1,2,3-triazole, in this review we focus on the various synthetic routes for the syntheisis of 1,4-disubstituted 1,2,3-triazoles. This review involves various synthetic protocols which involves copper and non-copper catalysts, different solvents as well as substrates. It will boost synthetic chemists to explore new pathway for the development of newer biologically active 1,2,3-triazoles.
Collapse
Affiliation(s)
- Chander P. Kaushik
- Department of Chemistry, Guru Jambheshwar University of Science & Technology, Hisar, Haryana-125001, India
| | - Jyoti Sangwan
- Department of Chemistry, Guru Jambheshwar University of Science & Technology, Hisar, Haryana-125001, India
| | - Raj Luxmi
- Department of Chemistry, Guru Jambheshwar University of Science & Technology, Hisar, Haryana-125001, India
| | - Krishan Kumar
- Department of Chemistry, Guru Jambheshwar University of Science & Technology, Hisar, Haryana-125001, India
| | - Ashima Pahwa
- Department of Chemistry, Guru Jambheshwar University of Science & Technology, Hisar, Haryana-125001, India
| |
Collapse
|
23
|
Bhoomireddy RPR, Narla LB, Peddiahgari VGR. Green synthesis of 1,2,3-triazoles via
Cu2
O NPs on hydrogen trititanate nanotubes promoted 1,3-dipolar cycloadditions. Appl Organomet Chem 2018. [DOI: 10.1002/aoc.4752] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
| | - L.G. Bhavani Narla
- Department of Humanities and Sciences; SV College of Engineering; Kadapa 516003 Andhra Pradesh India
| | | |
Collapse
|
24
|
Al-blewi FF, Almehmadi MA, Aouad MR, Bardaweel SK, Sahu PK, Messali M, Rezki N, El Ashry ESH. Design, synthesis, ADME prediction and pharmacological evaluation of novel benzimidazole-1,2,3-triazole-sulfonamide hybrids as antimicrobial and antiproliferative agents. Chem Cent J 2018; 12:110. [PMID: 30387018 PMCID: PMC6768023 DOI: 10.1186/s13065-018-0479-1] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2018] [Accepted: 10/23/2018] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND Nitrogen heterocyclic rings and sulfonamides have attracted attention of several researchers. RESULTS A series of regioselective imidazole-based mono- and bis-1,4-disubstituted-1,2,3-triazole-sulfonamide conjugates 4a-f and 6a-f were designed and synthesized. The first step in the synthesis was a regioselective propargylation in the presence of the appropriate basic catalyst (Et3N and/or K2CO3) to afford the corresponding mono-2 and bis-propargylated imidazoles 5. Second, the ligation of the terminal C≡C bond of mono-2 and/or bis alkynes 5 to the azide building blocks of sulfa drugs 3a-f using optimized conditions for a Huisgen copper (I)-catalysed 1,3-dipolar cycloaddition reaction yielded targeted 1,2,3-triazole hybrids 4a-f and 6a-f. The newly synthesized compounds were screened for their in vitro antimicrobial and antiproliferative activities. Among the synthesized compounds, compound 6a emerged as the most potent antimicrobial agent with MIC values ranging between 32 and 64 µg/mL. All synthesized molecules were evaluated against three aggressive human cancer cell lines, PC-3, HepG2, and HEK293, and revealed sufficient antiproliferative activities with IC50 values in the micromolar range (55-106 μM). Furthermore, we conducted a receptor-based electrostatic analysis of their electronic, steric and hydrophobic properties, and the results were in good agreement with the experimental results. In silico ADMET prediction studies also supported the experimental biological results and indicated that all compounds are nonmutagenic and noncarcinogenic. CONCLUSION In summary, we have successfully synthesized novel targeted benzimidazole-1,2,3-triazole-sulfonamide hybrids through 1,3-dipolar cycloaddition reactions between the mono- or bis-alkynes based on imidazole and the appropriate sulfonamide azide under the optimized Cu(I) click conditions. The structures of newly synthesized sulfonamide hybrids were confirmed by means of spectroscopic analysis. All newly synthesized compounds were evaluated for their antimicrobial and antiproliferative activities. Our results showed that the benzimidazole-1,2,3-triazole-sulfonamide hybrids inhibited microbial and fungal strains within MIC values from 32 to 64 μg/mL. The antiproliferative evaluation of the synthesized compounds showed sufficient antiproliferative activities with IC50 values in the micromolar range (55-106 μM). In conclusion, compound 6a has remarkable antimicrobial activity. Pharmacophore elucidation of the compounds was performed based on in silico ADMET evaluation of the tested compounds. Screening results of drug-likeness rules showed that all compounds follow the accepted rules, meet the criteria of drug-likeness and follow Lipinski's rule of five. In addition, the toxicity results showed that all compounds are nonmutagenic and noncarcinogenic.
Collapse
Affiliation(s)
- Fawzia Faleh Al-blewi
- Department of Chemistry, Faculty of Science, Taibah University, Medina, 30002 Saudi Arabia
| | - Meshal A. Almehmadi
- Department of Chemistry, Faculty of Science, Taibah University, Medina, 30002 Saudi Arabia
| | - Mohamed Reda Aouad
- Department of Chemistry, Faculty of Science, Taibah University, Medina, 30002 Saudi Arabia
- Department of Chemistry, Faculty of Sciences, University of Sciences and Technology Mohamed Boudiaf, Laboratoire de Chimie Et Electrochimie des Complexes Metalliques (LCECM) USTO‑MB, P.O. Box 1505, 31000 El M‘nouar, Oran Algeria
| | - Sanaa K. Bardaweel
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, University of Jordan, Amman, 11942 Jordan
| | - Pramod K. Sahu
- School of Study in Chemistry, Jiwaji University, Gwalior, Madhya Pradesh 474011 India
| | - Mouslim Messali
- Department of Chemistry, Faculty of Science, Taibah University, Medina, 30002 Saudi Arabia
| | - Nadjet Rezki
- Department of Chemistry, Faculty of Science, Taibah University, Medina, 30002 Saudi Arabia
- Department of Chemistry, Faculty of Sciences, University of Sciences and Technology Mohamed Boudiaf, Laboratoire de Chimie Et Electrochimie des Complexes Metalliques (LCECM) USTO‑MB, P.O. Box 1505, 31000 El M‘nouar, Oran Algeria
| | - El Sayed H. El Ashry
- Department of Chemistry, Faculty of Science, Alexandria University, Alexandria, 21500 Egypt
| |
Collapse
|
25
|
da Silva VD, de Faria BM, Colombo E, Ascari L, Freitas GPA, Flores LS, Cordeiro Y, Romão L, Buarque CD. Design, synthesis, structural characterization and in vitro evaluation of new 1,4-disubstituted-1,2,3-triazole derivatives against glioblastoma cells. Bioorg Chem 2018; 83:87-97. [PMID: 30343205 DOI: 10.1016/j.bioorg.2018.10.003] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Revised: 09/25/2018] [Accepted: 10/04/2018] [Indexed: 12/21/2022]
Abstract
A new series of 1,4-disubstituted-1,2,3-triazole derivatives were synthesized through the copper-catalyzed azide-alkyne 1,3-dipolar cycloaddition (Click chemistry) and their inhibitory activities were evaluated against different human glioblastoma (GBM) cell lines, including highly drug-resistant human cell lines GBM02, GBM95. The most effective compounds were 9d, containing the methylenoxy moiety linked to triazole and the tosyl-hydrazone group, and the symmetrical bis-triazole 10a, also containing methylenoxy moiety linked to triazole. Single crystal X-ray diffraction analysis was employed for structural elucidation of compound 9d. In silico analyses of physicochemical, pharmacokinetic, and toxicological properties suggest that compounds 8a, 8b, 8c, 9d, and 10a are potential candidates for central nervous system-acting drugs.
Collapse
Affiliation(s)
- Veronica D da Silva
- Laboratório de Síntese orgânica, Pontifícia Universidade Católica do Rio de Janeiro, 22451-900 Rio de Janeiro, RJ, Brazil
| | - Bruna M de Faria
- Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, 21941-902 Rio de Janeiro, RJ, Brazil
| | - Eduardo Colombo
- Laboratório de Síntese orgânica, Pontifícia Universidade Católica do Rio de Janeiro, 22451-900 Rio de Janeiro, RJ, Brazil
| | - Lucas Ascari
- Faculdade de Farmácia, UFRJ, RJ 21941-902, Brazil
| | - Gabriella P A Freitas
- Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, 21941-902 Rio de Janeiro, RJ, Brazil
| | - Leonã S Flores
- Laboratório de Difração de raios X, UFJF, MG 36036-900, Brazil
| | | | - Luciana Romão
- Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, 21941-902 Rio de Janeiro, RJ, Brazil
| | - Camilla D Buarque
- Laboratório de Síntese orgânica, Pontifícia Universidade Católica do Rio de Janeiro, 22451-900 Rio de Janeiro, RJ, Brazil.
| |
Collapse
|
26
|
Dihydropyrimidinone/1,2,3-triazole hybrid molecules: Synthesis and anti-varicella-zoster virus (VZV) evaluation. Eur J Med Chem 2018; 155:772-781. [DOI: 10.1016/j.ejmech.2018.06.028] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Revised: 05/28/2018] [Accepted: 06/11/2018] [Indexed: 11/22/2022]
|
27
|
Novel indole and triazole based hybrid molecules exhibit potent anti-adipogenic and antidyslipidemic activity by activating Wnt3a/β-catenin pathway. Eur J Med Chem 2018; 143:1345-1360. [DOI: 10.1016/j.ejmech.2017.10.034] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Revised: 10/05/2017] [Accepted: 10/11/2017] [Indexed: 12/18/2022]
|
28
|
Bakulev VA, Beryozkina T, Thomas J, Dehaen W. The Rich Chemistry Resulting from the 1,3-Dipolar Cycloaddition Reactions of Enamines and Azides. European J Org Chem 2017. [DOI: 10.1002/ejoc.201701031] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
| | | | - Joice Thomas
- Department of Chemistry; The Bridge@USC and Loker Hydrocarbon Research Institute; University of Southern California; 90089-1661 Los Angeles CA USA
| | - Wim Dehaen
- Molecular Design and Synthesis; Department of Chemistry; KU Leuven; Celestijnenlaan 200F 3001 Leuven Belgium
| |
Collapse
|
29
|
Lopes SMM, Novais JS, Costa DCS, Castro HC, Figueiredo AMS, Ferreira VF, Pinho E Melo TMVD, da Silva FDC. Hetero-Diels-Alder reactions of novel 3-triazolyl-nitrosoalkenes as an approach to functionalized 1,2,3-triazoles with antibacterial profile. Eur J Med Chem 2017; 143:1010-1020. [PMID: 29232578 DOI: 10.1016/j.ejmech.2017.11.052] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2017] [Revised: 11/05/2017] [Accepted: 11/19/2017] [Indexed: 12/20/2022]
Abstract
The generation and reactivity of 3-triazolyl-nitrosoalkenes are reported for the first time. The study showed that hetero-Diels-Alder reaction of these heterodienes is an interesting synthetic strategy to functionalized 1,2,3-triazoles, including 1,2,3-triazolyl-pyrroles, 1,2,3-triazolyl-dipyrromethanes and 1,2,3-triazolyl-indoles. The evaluation of the antibacterial profile against Gram-positive and Gram-negative strains revealed the new 5,5'-diethyldipyrromethane bearing a side chain incorporating a triazole and oxime moieties. The antibacterial profile detected was within the Clinical and Laboratory Standard Institute (CLSI) range and against important Staphylococcus species including Methicillin-resistant strain (S. aureus ATCC 25923, S. epidermidis ATCC 12228 and S. simulans ATCC 27851 and MRSA). Interestingly, this new 1,2,3-triazole presented hemocompatibility and low in silico toxicity profile similar to antibiotics current in use. It also has an usual antibiofilm activity against MRSA, which reinforced its potential as a new antibacterial prototype.
Collapse
Affiliation(s)
- Susana M M Lopes
- CQC and Department of Chemistry, University of Coimbra, 3004-535 Coimbra, Portugal
| | - Juliana S Novais
- Universidade Federal Fluminense, PPBI, Instituto de Biologia, Campus Valonguinho, 24210130, Niterói, RJ, Brazil
| | - Dora C S Costa
- Universidade Federal Fluminense, Departamento de Química Orgânica, Instituto de Química, Campus do Valonguinho, 24020-150, Niterói, RJ, Brazil
| | - Helena C Castro
- Universidade Federal Fluminense, PPBI, Instituto de Biologia, Campus Valonguinho, 24210130, Niterói, RJ, Brazil
| | - Agnes Marie S Figueiredo
- Universidade Federal do Rio de Janeiro, Instituto de Microbiologia Professor Paulo de Góes, Departamento de Microbiologia Médica, Rio de Janeiro, Brazil
| | - Vitor F Ferreira
- Universidade Federal Fluminense, Departamento de Tecnologia Farmacêutica, Faculdade de Farmácia, Niterói, RJ, 24241-002, Brazil
| | | | - Fernando de Carvalho da Silva
- Universidade Federal Fluminense, Departamento de Química Orgânica, Instituto de Química, Campus do Valonguinho, 24020-150, Niterói, RJ, Brazil.
| |
Collapse
|
30
|
Gonzaga DTG, Ferreira LBG, Moreira Maramaldo Costa TE, von Ranke NL, Anastácio Furtado Pacheco P, Sposito Simões AP, Arruda JC, Dantas LP, de Freitas HR, de Melo Reis RA, Penido C, Bello ML, Castro HC, Rodrigues CR, Ferreira VF, Faria RX, da Silva FDC. 1-Aryl-1 H - and 2-aryl-2 H -1,2,3-triazole derivatives blockade P2X7 receptor in vitro and inflammatory response in vivo. Eur J Med Chem 2017; 139:698-717. [DOI: 10.1016/j.ejmech.2017.08.034] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2017] [Revised: 08/02/2017] [Accepted: 08/15/2017] [Indexed: 01/09/2023]
|
31
|
Zhang J, Chen W, Huang D, Zeng X, Wang X, Hu Y. Tandem Synthesis of α-Diazoketones from 1,3-Diketones. J Org Chem 2017; 82:9171-9174. [DOI: 10.1021/acs.joc.7b01187] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Jianlan Zhang
- Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology
(Ministry of Education), Department of Chemistry, Tsinghua University, Beijing 100084, People’s Republic of China
| | - Wenwen Chen
- Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology
(Ministry of Education), Department of Chemistry, Tsinghua University, Beijing 100084, People’s Republic of China
| | - Dayun Huang
- Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology
(Ministry of Education), Department of Chemistry, Tsinghua University, Beijing 100084, People’s Republic of China
| | - Xiaobao Zeng
- Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology
(Ministry of Education), Department of Chemistry, Tsinghua University, Beijing 100084, People’s Republic of China
| | - Xinyan Wang
- Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology
(Ministry of Education), Department of Chemistry, Tsinghua University, Beijing 100084, People’s Republic of China
| | - Yuefei Hu
- Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology
(Ministry of Education), Department of Chemistry, Tsinghua University, Beijing 100084, People’s Republic of China
| |
Collapse
|
32
|
Santos TF, de Jesus JB, Neufeld PM, Jordão AK, Campos VR, Cunha AC, Castro HC, de Souza MCBV, Ferreira VF, Rodrigues CR, Abreu PA. Exploring 1,2,3-triazole derivatives by using in vitro and in silico assays to target new antifungal agents and treat Candidiasis. Med Chem Res 2017. [DOI: 10.1007/s00044-017-1789-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
33
|
Głowacka IE, Gulej R, Grzonkowski P, Andrei G, Schols D, Snoeck R, Piotrowska DG. Synthesis and the Biological Activity of Phosphonylated 1,2,3-Triazolenaphthalimide Conjugates. Molecules 2016; 21:E1420. [PMID: 27792200 PMCID: PMC6273621 DOI: 10.3390/molecules21111420] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2016] [Revised: 10/19/2016] [Accepted: 10/20/2016] [Indexed: 12/23/2022] Open
Abstract
A novel series of diethyl {4-[(5-substituted-1,3-dioxo-1H-benzo[de]isoquinolin-2(3H)-yl)-methyl]-1H-1,2,3-triazol-1-yl}alkylphosphonates designed as analogues of amonafide was synthesized. All phosphonates were assessed for antiviral activity against a broad range of DNA and RNA viruses and several of them showed potency against varicella-zoster virus (VZV) [EC50 (50% effective concentration) = 27.6-91.5 μM]. Compound 16b exhibited the highest activity against a thymidine kinase-deficient (TK-) VZV strain (EC50 = 27.59 μM), while 16d was the most potent towards TK⁺ VZV (EC50 = 29.91 μM). Cytostatic properties of the compounds 14a-i-17a-i were studied on L1210, CEM, HeLa and HMEC-1 cell lines and most of them were slightly cytostatic for HeLa [IC50 (50% inhibitory concentration) = 29-130 µM] and L1210 cells [IC50 (50% inhibitory concentration) = 14-142 µM].
Collapse
Affiliation(s)
- Iwona E Głowacka
- Bioorganic Chemistry Laboratory, Faculty of Pharmacy, Medical University of Lodz, Muszyńskiego 1, 90-151 Lodz, Poland.
| | - Rafał Gulej
- Bioorganic Chemistry Laboratory, Faculty of Pharmacy, Medical University of Lodz, Muszyńskiego 1, 90-151 Lodz, Poland.
| | - Piotr Grzonkowski
- Bioorganic Chemistry Laboratory, Faculty of Pharmacy, Medical University of Lodz, Muszyńskiego 1, 90-151 Lodz, Poland.
| | - Graciela Andrei
- Rega Institute for Medical Research, KU Leuven, Minderbroedersstraat 10, B-3000 Leuven, Belgium.
| | - Dominique Schols
- Rega Institute for Medical Research, KU Leuven, Minderbroedersstraat 10, B-3000 Leuven, Belgium.
| | - Robert Snoeck
- Rega Institute for Medical Research, KU Leuven, Minderbroedersstraat 10, B-3000 Leuven, Belgium.
| | - Dorota G Piotrowska
- Bioorganic Chemistry Laboratory, Faculty of Pharmacy, Medical University of Lodz, Muszyńskiego 1, 90-151 Lodz, Poland.
| |
Collapse
|
34
|
Kumari S, Singh H, Khurana JM. An efficient green approach for the synthesis of novel triazolyl spirocyclic oxindole derivatives via one-pot five component protocol using DBU as catalyst in PEG-400. Tetrahedron Lett 2016. [DOI: 10.1016/j.tetlet.2016.05.084] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
35
|
Nagarajan R, Jayashankaran J, Emmanuvel L. Transition metal-free steric controlled one-pot synthesis of highly substituted N -amino 1,2,3-triazole derivatives via diazo transfer reaction from β-keto esters. Tetrahedron Lett 2016. [DOI: 10.1016/j.tetlet.2016.04.112] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
36
|
Singh H, Khanna G, Nand B, Khurana JM. Metal-free synthesis of 1,2,3-triazoles by azide–aldehyde cycloaddition under ultrasonic irradiation in TSIL [DBU-Bu]OH and in hydrated IL Bu4NOH under heating. MONATSHEFTE FUR CHEMIE 2015. [DOI: 10.1007/s00706-015-1623-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
37
|
Rajeswari M, Sindhu J, Singh H, Khurana JM. An efficient, green synthesis of novel regioselective and stereoselective indan-1,3-dione grafted spirooxindolopyrrolizidine linked 1,2,3-triazoles via a one-pot five-component condensation using PEG-400. RSC Adv 2015. [DOI: 10.1039/c5ra03505h] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
An efficient synthesis of highly diversified novel functionalized indan-1,3-dione grafted spirooxindolopyrrolizidine linked 1,2,3-triazole conjugates is reported using Cu(i) as a catalyst in PEG-400.
Collapse
Affiliation(s)
- M. Rajeswari
- Department of Chemistry
- University of Delhi
- New Delhi – 110 007
- India
| | - Jayant Sindhu
- Department of Chemistry
- University of Delhi
- New Delhi – 110 007
- India
| | - Harjinder Singh
- Department of Chemistry
- University of Delhi
- New Delhi – 110 007
- India
| | | |
Collapse
|
38
|
Reaction of Nitrilimines with Pyruvaldehyde Hydrazones: Synthesis and Antimicrobial Evaluation of Some New 1,2,4-Triazole Derivatives. J CHEM-NY 2015. [DOI: 10.1155/2015/593738] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
A new series of 1,3,4,5,5-pentasubstituted-1,2,4-triazoles (4a–j,6a–j) have been synthesized by the 1,3-dipolar cycloaddition of suitable nitrilimines2to pyruvaldehyde (2-oxopropanal) hydrazones having (COPh, COOMe, COOEt, Me/Me, and Me/Ph) groups3and5. Both analytical and spectroscopical data of all the synthesized compounds are in full agreement with the proposed structures. The microbial features of the synthesized compounds were studied by a known method.
Collapse
|
39
|
Wu J, Fu D, Cao S. Synthesis of polyfluoroaryl-containing 1,2,3-triazoles by reaction of polyfluoroarenes, sodium azide and active methylene ketones/esters. J Fluor Chem 2014. [DOI: 10.1016/j.jfluchem.2014.10.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
40
|
Synthesis and antifungal activity of benzamidine derivatives carrying 1,2,3-triazole moieties. Molecules 2014; 19:5674-91. [PMID: 24796390 PMCID: PMC6270668 DOI: 10.3390/molecules19055674] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2014] [Revised: 04/20/2014] [Accepted: 04/25/2014] [Indexed: 12/04/2022] Open
Abstract
Eighteen novel benzamidine derivatives containing 1,2,3-triazole moieties were synthesized. The in vitro and in vivo fungicidal acitivities of the title compounds and the arylamidine intermediates against Colletotrichum lagenarium and Botrytis cinerea were tested. The synthesized benzamidines exhibited weak antifungal activities in vitro against the tested fungi, but some of the compounds showed excellent activities in vivo to the same strains. Among the compounds tested, 9b showed 79% efficacy in vivo against C. lagenarium at a concentration of 200 μg/mL, and the efficacy of compound 16d (90%) toward the same strain was even superior than that of the commercial fungicide carbendazim (85%).
Collapse
|
41
|
Ultrasound promoted one pot synthesis of novel fluorescent triazolyl spirocyclic oxindoles using DBU based task specific ionic liquids and their antimicrobial activity. Eur J Med Chem 2014; 77:145-54. [DOI: 10.1016/j.ejmech.2014.03.016] [Citation(s) in RCA: 72] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2014] [Revised: 02/22/2014] [Accepted: 03/06/2014] [Indexed: 11/22/2022]
|
42
|
Li YJ, Huang HM, Ye Q, Hou LF, Yu WB, Jia JH, Gao JR. The Construction of Polysubstituted Aromatic Core Derivativesviaa Cycloaddition/Oxidative Aromatization Sequence from Quinone and β-Enamino Esters. Adv Synth Catal 2014. [DOI: 10.1002/adsc.201300892] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
43
|
Bankowska E, Balzarini J, Głowacka IE, Wróblewski AE. Design, synthesis, antiviral and cytotoxic evaluation of novel acyclic phosphonate nucleotide analogues with a 5,6-dihydro-1 H-[1,2,3]triazolo[4,5- d]pyridazine-4,7-dione system. MONATSHEFTE FUR CHEMIE 2014; 145:663-673. [PMID: 26166892 PMCID: PMC4494773 DOI: 10.1007/s00706-013-1137-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2013] [Accepted: 12/16/2013] [Indexed: 11/26/2022]
Abstract
ABSTRACT A series of diethyl 2-(4,5-dimethoxycarbonyl-1H-1,2,3-triazol-1-yl)alkylphosphonates was synthesised from ω-azidoalkylphosphonates and dimethyl acetylenedicarboxylate and was further transformed into the respective diamides, dihydrazides, and 5,6-dihydro-1H-[1,2,3]triazolo[4,5-d]pyridazine-4,7-diones as phosphonate analogues of acyclic nucleosides having nucleobases replaced with substituted 1,2,3-triazoles. All compounds containing P-C-C-triazole or P-C-C-CH2-triazole moieties exist in single conformations in which the diethoxyphosphoryl and substituted 1,2,3-triazolyl or substituted (1,2,3-triazolyl)methyl groups are oriented anti. All phosphonates were evaluated in vitro for activity against a variety of DNA and RNA viruses. None of the compounds were endowed with antiviral activity. They were not cytostatic at 100 μM. GRAPHICAL ABSTRACT
Collapse
Affiliation(s)
- Emilia Bankowska
- Bioorganic Chemistry Laboratory, Faculty of Pharmacy, Medical University of Łódź, Muszyńskiego 1, 90-151 Lodz, Poland
| | - Jan Balzarini
- Rega Institute for Medical Research, KU Leuven, Minderbroedersstraat 10, 3000 Leuven, Belgium
| | - Iwona E. Głowacka
- Bioorganic Chemistry Laboratory, Faculty of Pharmacy, Medical University of Łódź, Muszyńskiego 1, 90-151 Lodz, Poland
| | - Andrzej E. Wróblewski
- Bioorganic Chemistry Laboratory, Faculty of Pharmacy, Medical University of Łódź, Muszyńskiego 1, 90-151 Lodz, Poland
| |
Collapse
|
44
|
1-Phenyl-1H- and 2-phenyl-2H-1,2,3-triazol derivatives: design, synthesis and inhibitory effect on alpha-glycosidases. Eur J Med Chem 2014; 74:461-76. [PMID: 24487194 DOI: 10.1016/j.ejmech.2013.12.039] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2013] [Revised: 12/26/2013] [Accepted: 12/29/2013] [Indexed: 12/23/2022]
Abstract
Due to aging and increasingly overweight in human population, the incidence of non-insulin dependent diabetes mellitus (NIDDM or Type 2 DM) is increasing considerably. Therefore, searching for new α-glycosidase inhibitors (GIs) capable of slowing down carbohydrate assimilation by humans is an important strategy towards control of NIDDM. In this report, we disclose the search for new easily accessible synthetic triazoles as anti-diabetic compounds. Two series of non-glycosid triazoles were synthesized (series A and B) and screened against baker's yeast α-glucosidase (MAL12) and porcine pancreatic α-amylase activity (PPA). Of the 60 compounds tested at 500 μM, were considered hits (≥60% inhibition) six triazoles against MAL12 and three against PPA, with the inhibition reaching up to 99.4% on MAL12 and 88.6% on PPA. The IC₅₀ values were calculated for both enzymes and ranged from 54 to 482 μM for MAL12 and 145 to 282 μM for PPA. These results demonstrated the potential activity of simple and non-glycosidic triazoles as an important novel class of GIs for the development of drugs to treat Type 2 DM.
Collapse
|
45
|
de Carvalho da Silva F, Cardoso MFDC, Ferreira PG, Ferreira VF. Biological Properties of 1H-1,2,3- and 2H-1,2,3-Triazoles. TOPICS IN HETEROCYCLIC CHEMISTRY 2014. [DOI: 10.1007/7081_2014_124] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
46
|
Synthesis, characterization, X-ray structure and biological activities of C-5-bromo-2-hydroxyphenylcalix[4]-2-methyl resorcinarene. Molecules 2013; 18:13369-84. [PMID: 24172244 PMCID: PMC6270492 DOI: 10.3390/molecules181113369] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2013] [Revised: 10/14/2013] [Accepted: 10/14/2013] [Indexed: 12/01/2022] Open
Abstract
C-5-bromo-2-hydroxyphenylcalix[4]-2-methylresorcinarene (I) was synthesized by cyclocondensation of 5-bromo-2-hydroxybenzaldehyde and 2-methylresorcinol in the presence of concentrated HCl. Compound I was characterized by infrared and nuclear magnetic resonance spectroscopic data. X-ray analysis showed that this compound crystallized in a triclinic system with space group of Pī, a = 15.9592(16)Å, b = 16.9417(17)Å, c = 17.0974(17)Å, α = 68.656(3)°, β = 85.689(3)°, γ = 81.631(3)°, Z = 2 and V = 4258.6(7)Å3. The molecule adopts a chair (C2h) conformation. The thermal properties and antioxidant activity were also investigated. It was strongly antiviral against HSV-1 and weakly antibacterial against Gram-positive bacteria. Cytotoxicity testing on Vero cells showed that it is non-toxic, with a CC50 of more than 0.4 mg/mL.
Collapse
|
47
|
de Lourdes G. Ferreira M, Pinheiro LCS, Santos-Filho OA, Peçanha MDS, Sacramento CQ, Machado V, Ferreira VF, Souza TML, Boechat N. Design, synthesis, and antiviral activity of new 1H-1,2,3-triazole nucleoside ribavirin analogs. Med Chem Res 2013. [DOI: 10.1007/s00044-013-0762-6] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
|
48
|
Ulloora S, Shabaraya R, Adhikari AV. Facile synthesis of new imidazo[1,2-a]pyridines carrying 1,2,3-triazoles via click chemistry and their antiepileptic studies. Bioorg Med Chem Lett 2013; 23:3368-72. [DOI: 10.1016/j.bmcl.2013.03.086] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2013] [Revised: 03/19/2013] [Accepted: 03/22/2013] [Indexed: 01/03/2023]
|
49
|
Domingos TFS, Moura LDA, Carvalho C, Campos VR, Jordão AK, Cunha AC, Ferreira VF, de Souza MCBV, Sanchez EF, Fuly AL. Antivenom effects of 1,2,3-triazoles against Bothrops jararaca and Lachesis muta snakes. BIOMED RESEARCH INTERNATIONAL 2013; 2013:294289. [PMID: 23710441 PMCID: PMC3654660 DOI: 10.1155/2013/294289] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/24/2013] [Revised: 03/25/2013] [Accepted: 03/26/2013] [Indexed: 11/18/2022]
Abstract
Snake venoms are complex mixtures of proteins of both enzymes and nonenzymes, which are responsible for producing several biological effects. Human envenomation by snake bites particularly those of the viperid family induces a complex pathophysiological picture characterized by spectacular changes in hemostasis and frequently hemorrhage is also seen. The present work reports the ability of six of a series of 1,2,3-triazole derivatives to inhibit some pharmacological effects caused by the venoms of Bothrops jararaca and Lachesis muta. In vitro assays showed that these compounds were impaired in a concentration-dependent manner, the fibrinogen or plasma clotting, hemolysis, and proteolysis produced by both venoms. Moreover, these compounds inhibited biological effects in vivo as well. Mice treated with these compounds were fully protected from hemorrhagic lesions caused by such venoms. But, only the B. jararaca edema-inducing activity was neutralized by the triazoles. So the inhibitory effect of triazoles derivatives against some in vitro and in vivo biological assays of snake venoms points to promising aspects that may indicate them as molecular models to improve the production of effective antivenom or to complement antivenom neutralization, especially the local pathological effects, which are partially neutralized by antivenoms.
Collapse
Affiliation(s)
- Thaisa F. S. Domingos
- Programa de Pós-Graduação em Biologia Marinha, Instituto de Biologia, Universidade Federal Fluminense, Niterói, RJ, Brazil
| | - Laura de A. Moura
- Programa de Pós-Graduação em Biologia das Interações, Instituto de Biologia, Universidade Federal Fluminense, Niterói, RJ, Brazil
| | - Carla Carvalho
- Departamento de Biologia Celular e Molecular, Instituto de Biologia, Universidade Federal Fluminense, Outeiro de São João Batista, s/n, 3 Andar, Sala 310, 24020-141 Niterói, RJ, Brazil
| | - Vinícius R. Campos
- Departamento de Química Orgânica, Programa de Pós-Graduação em Química, Universidade Federal Fluminense, Niterói, RJ, Brazil
| | - Alessandro K. Jordão
- Departamento de Química Orgânica, Programa de Pós-Graduação em Química, Universidade Federal Fluminense, Niterói, RJ, Brazil
| | - Anna C. Cunha
- Departamento de Química Orgânica, Programa de Pós-Graduação em Química, Universidade Federal Fluminense, Niterói, RJ, Brazil
| | - Vitor F. Ferreira
- Departamento de Química Orgânica, Programa de Pós-Graduação em Química, Universidade Federal Fluminense, Niterói, RJ, Brazil
| | - Maria Cecília B. V. de Souza
- Departamento de Química Orgânica, Programa de Pós-Graduação em Química, Universidade Federal Fluminense, Niterói, RJ, Brazil
| | - Eladio F. Sanchez
- Fundação Ezequiel Dias, Centro de Pesquisa e Desenvolvimento, Belo Horizonte, MG, Brazil
| | - André L. Fuly
- Departamento de Biologia Celular e Molecular, Instituto de Biologia, Universidade Federal Fluminense, Outeiro de São João Batista, s/n, 3 Andar, Sala 310, 24020-141 Niterói, RJ, Brazil
| |
Collapse
|
50
|
Mohamed HA, Abdel-Wahab BF, Ng SW, Tiekink ERT. 5-Methyl- N′-[(3 Z)-2-oxo-2,3-dihydro-1 H-indol-3-ylidene]-1-phenyl-1 H-1,2,3-triazole-4-carbohydrazide. Acta Crystallogr Sect E Struct Rep Online 2013; 69:o577. [PMID: 23634111 PMCID: PMC3629624 DOI: 10.1107/s1600536813007502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2013] [Accepted: 03/18/2013] [Indexed: 11/16/2022]
Abstract
In the title compound, C18H14N6O2, the benzene ring is slightly twisted out of the plane of the 1,2,3-triazole ring (r.m.s. deviation = 0.010 Å), forming a dihedral angle of 6.20 (13)°. The nine non-H ring atoms of the fused five- and six-membered ring system are almost coplanar (r.m.s. deviation = 0.032 Å). The near coplanarity in the central residue is consolidated by an intramolecular bifurcated N—H⋯(O,N) hydrogen bond. The conformation about the N=C bond is Z. In the crystal, supramolecular chains along [101] are sustained by N—H⋯O hydrogen bonds and C—H⋯O interactions. These are consolidated into a three-dimensional architecture by C—H⋯π and π–π interactions; the latter occur between centrosymmetrically related 1,2,3-triazole rings [centroid–centroid distance = 3.6056 (14) Å].
Collapse
|