1
|
Murray AP, Biscussi B, Cavallaro V, Donozo M, Rodriguez SA. Naturally Occurring Cholinesterase Inhibitors from Plants, Fungi, Algae, and Animals: A Review of the Most Effective Inhibitors Reported in 2012-2022. Curr Neuropharmacol 2024; 22:1621-1649. [PMID: 37357520 PMCID: PMC11284722 DOI: 10.2174/1570159x21666230623105929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 02/11/2023] [Accepted: 02/26/2023] [Indexed: 06/27/2023] Open
Abstract
Since the development of the "cholinergic hypothesis" as an important therapeutic approach in the treatment of Alzheimer's disease (AD), the scientific community has made a remarkable effort to discover new and effective molecules with the ability to inhibit the enzyme acetylcholinesterase (AChE). The natural function of this enzyme is to catalyze the hydrolysis of the neurotransmitter acetylcholine in the brain. Thus, its inhibition increases the levels of this neurochemical and improves the cholinergic functions in patients with AD alleviating the symptoms of this neurological disorder. In recent years, attention has also been focused on the role of another enzyme, butyrylcholinesterase (BChE), mainly in the advanced stages of AD, transforming this enzyme into another target of interest in the search for new anticholinesterase agents. Over the past decades, Nature has proven to be a rich source of bioactive compounds relevant to the discovery of new molecules with potential applications in AD therapy. Bioprospecting of new cholinesterase inhibitors among natural products has led to the discovery of an important number of new AChE and BChE inhibitors that became potential lead compounds for the development of anti-AD drugs. This review summarizes a total of 260 active compounds from 142 studies which correspond to the most relevant (IC50 ≤ 15 μM) research work published during 2012-2022 on plant-derived anticholinesterase compounds, as well as several potent inhibitors obtained from other sources like fungi, algae, and animals.
Collapse
Affiliation(s)
- Ana Paula Murray
- INQUISUR-CONICET, Departamento de Química, Universidad Nacional del Sur, Bahía Blanca, Argentina
| | - Brunella Biscussi
- INQUISUR-CONICET, Departamento de Química, Universidad Nacional del Sur, Bahía Blanca, Argentina
| | - Valeria Cavallaro
- INQUISUR-CONICET, Departamento de Química, Universidad Nacional del Sur, Bahía Blanca, Argentina
| | - Martina Donozo
- INQUISUR-CONICET, Departamento de Química, Universidad Nacional del Sur, Bahía Blanca, Argentina
| | - Silvana A. Rodriguez
- INQUISUR-CONICET, Departamento de Química, Universidad Nacional del Sur, Bahía Blanca, Argentina
| |
Collapse
|
2
|
Dongmo Zeukang R, Kalinski JC, Tembeni B, Goosen ED, Tembu J, Tabopda Kuiate T, Ngono Bikobo DS, Tagatsing Fotsing M, Atchadé ADT, Siwe-Noundou X. Quinones from Cordia species from 1972 to 2023: isolation, structural diversity and pharmacological activities. NATURAL PRODUCTS AND BIOPROSPECTING 2023; 13:52. [PMID: 37996570 PMCID: PMC10667191 DOI: 10.1007/s13659-023-00414-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Accepted: 10/31/2023] [Indexed: 11/25/2023]
Abstract
Plants of the genus Cordia (Boraginaceae family) are widely distributed in the tropical regions of America, Africa, and Asia. They are extensively used in folk medicine due to their rich medicinal properties. This review presents a comprehensive analysis of the isolation, structure, biogenesis, and biological properties of quinones from Cordia species reported from 1972 to 2023. Meroterpenoids were identified as the major quinones in most Cordia species and are reported as a chemotaxonomic markers of the Cordia. In addition to this property, quinones are reported to display a wider and broader spectrum of activities, are efficient scaffold in biological activity, compared to other classes of compounds reported in Cordia, hence our focus on the study of quinones reported from Cordia species. About 70 types of quinones have been isolated, while others have been identified by phytochemical screening or gas chromatography. Although the biosynthesis of quinones from Cordia species is not yet fully understood, previous reports suggest that they may be derived from geranyl pyrophosphate and an aromatic precursor unit, followed by oxidative cyclization of the allylic methyl group. Studies have demonstrated that quinones from this genus exhibit antifungal, larvicidal, antileishmanial, anti-inflammatory, antibiofilm, antimycobacterial, antioxidant, antimalarial, neuroinhibitory, and hemolytic activities. In addition, they have been shown to exhibit remarkable cytotoxic effects against several cancer cell lines which is likely related to their ability to inhibit electron transport as well as oxidative phosphorylation, and generate reactive oxygen species (ROS). Their biological activities indicate potential utility in the development of new drugs, especially as active components in drug-carrier systems, against a broad spectrum of pathogens and ailments.
Collapse
Affiliation(s)
- Rostanie Dongmo Zeukang
- Department of Organic Chemistry, Faculty of Science, University of Yaounde I, PO Box 812, Yaounde, Cameroon.
| | - Jarmo-Charles Kalinski
- Department of Biochemistry and Microbiology, Faculty of Science, Rhodes University, PO Box 94, Makhanda, 6140, South Africa
| | - Babalwa Tembeni
- Department of Pharmaceutical Sciences, School of Pharmacy, Sefako Makgatho Health Sciences University, Medunsa, PO Box 218, Pretoria, 0204, South Africa
| | - Eleonora D Goosen
- Division of Pharmaceutical Chemistry, Faculty of Pharmacy, Rhodes University, PO Box 94, Makhanda, 6140, South Africa
| | - Jacqueline Tembu
- Department of Chemistry, Tshwane University of Technology, Private Bag X680, Pretoria, 0001, South Africa
| | - Turibio Tabopda Kuiate
- Department of Organic Chemistry, Faculty of Science, University of Yaounde I, PO Box 812, Yaounde, Cameroon
| | | | - Maurice Tagatsing Fotsing
- Department of Organic Chemistry, Faculty of Science, University of Yaounde I, PO Box 812, Yaounde, Cameroon
| | - Alex de Théodore Atchadé
- Department of Organic Chemistry, Faculty of Science, University of Yaounde I, PO Box 812, Yaounde, Cameroon
| | - Xavier Siwe-Noundou
- Department of Pharmaceutical Sciences, School of Pharmacy, Sefako Makgatho Health Sciences University, Medunsa, PO Box 218, Pretoria, 0204, South Africa.
| |
Collapse
|
3
|
Qi Y, Wang Z, Zhang J, Tang S, Zhu H, Jiang B, Li X, Wang J, Sun Z, Zhao M, Zhu H, Yan P. Anti-Neuroinflammatory Meroterpenoids from a Chinese Collection of the Brown Alga Sargassum siliquastrum. JOURNAL OF NATURAL PRODUCTS 2023; 86:1284-1293. [PMID: 37137291 DOI: 10.1021/acs.jnatprod.3c00087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Nine new chromane-type meroterpenoids, including the rare nor-meroterpenoid sargasilol A (1) and the eight meroditerpenoids sargasilols B-I (2-9), were isolated from a China Sea collection of the brown alga Sargassum siliquastrum, together with six known analogues (10-15). The structures of the new chromanes were identified by extensive spectroscopic analysis and by comparison with previously reported data. Compounds 1-3 and 6-15 exhibited inhibition against LPS-induced NO production in BV-2 microglial cells, and 1, with a shorter carbon chain, was the most active one. Compound 1 was established as an anti-neuroinflammatory agent through targeting the IKK/IκB/NF-κB signaling pathway. As such, the chromanes from brown algae could provide promising anti-neuroinflammatory lead compounds for further structural modification.
Collapse
Affiliation(s)
- Yu Qi
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, People's Republic of China
| | - Zhongle Wang
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, People's Republic of China
| | - Jingwen Zhang
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, People's Republic of China
| | - Shuhua Tang
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, People's Republic of China
| | - Haoyun Zhu
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, People's Republic of China
| | - Bing Jiang
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, People's Republic of China
| | - Xinhua Li
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, People's Republic of China
| | - Jiabao Wang
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, People's Republic of China
| | - Zhongmin Sun
- Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, People's Republic of China
| | - Min Zhao
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, People's Republic of China
| | - Haoru Zhu
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, People's Republic of China
| | - Pengcheng Yan
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, People's Republic of China
| |
Collapse
|
4
|
Fernando IPS, Fernando PWP, Kim T, Ahn G. Structural diversity, biosynthesis, and health-promoting properties of brown algal meroditerpenoids. Crit Rev Biotechnol 2022; 42:1238-1259. [PMID: 34875939 DOI: 10.1080/07388551.2021.2001639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 08/09/2021] [Accepted: 09/08/2021] [Indexed: 10/19/2022]
Abstract
Marine algae that constitute hundreds of millions of tons of biomass are the oldest representatives of the plant kingdom. Recently, there has been growing interest in the utilization of algae as sustainable feedstocks for natural products with an economic value. Among these natural products are the meroditerpenoids, which are renowned for their protective effects against oxidative stress, inflammation, cancer, obesity, diabetes, and neurodegenerative disorders. Meroditerpenoids have a mixed biosynthetic origin and display a wide range of structural diversity. Their basic structure consists of a ring system bearing a diterpenoid side chain. Structural variations are observed in terms of the functional groups and saturation/cyclization of the diterpenoid side chain. This review classifies algal meroditerpenoids as plastoquinones, chromanols, chromenes, chromones, cyclic meroditerpenoids, nahocols, and isonahocols and examines their potential applications in functional foods and biopharmacology. Their lipid solubility, low molecular weight, and propensity to cross the blood-brain barrier places meroditerpenoids as potential drug candidates. There is growing interest in the study of algal meroterpenoids, and recent research has reported the structure of several new meroterpenoids and their biological activities. Further research is needed to extend the use of algal meroditerpenoids in preclinical trials. Understanding the mechanism of their biosynthesis will allow the development of de novo biosynthesis and biomimetic synthesis strategies for the industrial-scale production of meroditerpenoids and their synthetic derivatives to aid pharmaceutical research. This review is the first to summarize up-to-date information on all brown algae-derived meroditerpenoids.
Collapse
Affiliation(s)
| | | | - Taeho Kim
- Division of Marine Technology, Chonnam National University, Yeosu, South Korea
| | - Ginnae Ahn
- Department of Marine Bio-Food Sciences, Chonnam National University, Yeosu, South Korea
- Department of Food Technology and Nutrition, Chonnam National University, Yeosu, South Korea
| |
Collapse
|
5
|
Fuloria NK, Raheja RK, Shah KH, Oza MJ, Kulkarni YA, Subramaniyan V, Sekar M, Fuloria S. Biological activities of meroterpenoids isolated from different sources. Front Pharmacol 2022; 13:830103. [PMID: 36199687 PMCID: PMC9527340 DOI: 10.3389/fphar.2022.830103] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 08/04/2022] [Indexed: 11/13/2022] Open
Abstract
Meroterpenoids are natural products synthesized by unicellular organisms such as bacteria and multicellular organisms such as fungi, plants, and animals, including those of marine origin. Structurally, these compounds exhibit a wide diversity depending upon the origin and the biosynthetic pathway they emerge from. This diversity in structural features imparts a wide spectrum of biological activity to meroterpenoids. Based on the biosynthetic pathway of origin, these compounds are either polyketide-terpenoids or non-polyketide terpenoids. The recent surge of interest in meroterpenoids has led to a systematic screening of these compounds for many biological actions. Different meroterpenoids have been recorded for a broad range of operations, such as anti-cholinesterase, COX-2 inhibitory, anti-leishmanial, anti-diabetic, anti-oxidative, anti-inflammatory, anti-neoplastic, anti-bacterial, antimalarial, anti-viral, anti-obesity, and insecticidal activity. Meroterpenoids also possess inhibitory activity against the expression of nitric oxide, TNF- α, and other inflammatory mediators. These compounds also show renal protective, cardioprotective, and neuroprotective activities. The present review includes literature from 1999 to date and discusses 590 biologically active meroterpenoids, of which 231 are from fungal sources, 212 are from various species of plants, and 147 are from marine sources such as algae and sponges.
Collapse
Affiliation(s)
| | | | - Kaushal H. Shah
- SVKM’s Dr. Bhanuben Nanavati College of Pharmacy, Mumbai, India
| | - Manisha J. Oza
- SVKM’s Dr. Bhanuben Nanavati College of Pharmacy, Mumbai, India
| | - Yogesh A. Kulkarni
- Shobhaben Pratapbhai Patel School of Pharmacy & Technology Management, SVKM’s NMIMS, Mumbai, India
| | | | - Mahendran Sekar
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy and Health Sciences, Royal College of Medicine Perak, Universiti Kuala Lumpur, Ipoh, Malaysia
| | - Shivkanya Fuloria
- Faculty of Pharmacy, AIMST University, Bedong, Malaysia
- *Correspondence: Shivkanya Fuloria,
| |
Collapse
|
6
|
Lins Alves LK, Cechinel Filho V, de Souza RLR, Furtado-Alle L. BChE inhibitors from marine organisms - A review. Chem Biol Interact 2022; 367:110136. [PMID: 36096160 DOI: 10.1016/j.cbi.2022.110136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 08/12/2022] [Accepted: 08/23/2022] [Indexed: 11/18/2022]
Abstract
Acetylcholine is a key neurotransmitter for brain and muscle function, that has its levels decreased in the brain of people with Alzheimer's Disease (AD). Cholinesterase inhibitors are medicines that decrease the breakdown of acetylcholine, through the inhibition of acetyl- and butyrylcholinesterase enzymes. Despite the fact that butyrylcholinesterase activity rises with the disease, while acetylcholinesterase activity declines, the cholinesterase inhibitors that are currently commercialized inhibit either acetylcholinesterase or both enzymes. The development of selective butyrylcholinesterase inhibitors is a promising strategy in the search for new drugs acting against AD. The marine environment is a rich source of molecules with therapeutic potential, which can provide compounds more easily than traditional methods, with reduced toxicity risks compared to synthetic molecules. This review comprises articles from 2003 to 2020, that assessed the butyrylcholinesterase inhibitory activities from marine organisms, considering their crude extracts and isolated compounds. Part of the articles reported a multi-target activity, inhibiting also other AD-related enzymes. Some of the marine compounds reported here have shown an excellent potential for butyrylcholinesterase inhibition compared to standard inhibitors. Further studies of some compounds reported here may lead to the development of a new treatment for AD.
Collapse
Affiliation(s)
- Luana Kamarowski Lins Alves
- Department of Genetics, Federal University of Paraná, Av. Coronel Francisco Heráclito dos Santos, 210 - Jardim das Américas, 81530-001, Curitiba, PR, Brazil.
| | - Valdir Cechinel Filho
- Post-graduation Program of Pharmaceutical Sciences (PPGCF), Chemical-Pharmaceutical Research Center (NIQFAR), University of Itajaí Valley (UNIVALI), R. Uruguai, 458 - Centro, 88302-901, Itajaí, SC, Brazil
| | - Ricardo Lehtonen Rodrigues de Souza
- Department of Genetics, Federal University of Paraná, Av. Coronel Francisco Heráclito dos Santos, 210 - Jardim das Américas, 81530-001, Curitiba, PR, Brazil
| | - Lupe Furtado-Alle
- Department of Genetics, Federal University of Paraná, Av. Coronel Francisco Heráclito dos Santos, 210 - Jardim das Américas, 81530-001, Curitiba, PR, Brazil
| |
Collapse
|
7
|
Arrué L, Cigna-Méndez A, Barbosa T, Borrego-Muñoz P, Struve-Villalobos S, Oviedo V, Martínez-García C, Sepúlveda-Lara A, Millán N, Márquez Montesinos JCE, Muñoz J, Santana PA, Peña-Varas C, Barreto GE, González J, Ramírez D. New Drug Design Avenues Targeting Alzheimer's Disease by Pharmacoinformatics-Aided Tools. Pharmaceutics 2022; 14:1914. [PMID: 36145662 PMCID: PMC9503559 DOI: 10.3390/pharmaceutics14091914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 09/03/2022] [Accepted: 09/06/2022] [Indexed: 11/30/2022] Open
Abstract
Neurodegenerative diseases (NDD) have been of great interest to scientists for a long time due to their multifactorial character. Among these pathologies, Alzheimer's disease (AD) is of special relevance, and despite the existence of approved drugs for its treatment, there is still no efficient pharmacological therapy to stop, slow, or repair neurodegeneration. Existing drugs have certain disadvantages, such as lack of efficacy and side effects. Therefore, there is a real need to discover new drugs that can deal with this problem. However, as AD is multifactorial in nature with so many physiological pathways involved, the most effective approach to modulate more than one of them in a relevant manner and without undesirable consequences is through polypharmacology. In this field, there has been significant progress in recent years in terms of pharmacoinformatics tools that allow the discovery of bioactive molecules with polypharmacological profiles without the need to spend a long time and excessive resources on complex experimental designs, making the drug design and development pipeline more efficient. In this review, we present from different perspectives how pharmacoinformatics tools can be useful when drug design programs are designed to tackle complex diseases such as AD, highlighting essential concepts, showing the relevance of artificial intelligence and new trends, as well as different databases and software with their main results, emphasizing the importance of coupling wet and dry approaches in drug design and development processes.
Collapse
Affiliation(s)
- Lily Arrué
- Centro de Investigación de Estudios Avanzados del Maule (CIEAM), Vicerrectoría de Investigación y Postgrado, Universidad Católica del Maule, Talca 3480094, Chile
| | - Alexandra Cigna-Méndez
- Facultad de Ingeniería, Instituto de Ciencias Químicas Aplicadas, Universidad Autónoma de Chile, Santiago 8910060, Chile
| | - Tábata Barbosa
- Departamento de Nutrición y Bioquímica, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá 110231, Colombia
| | - Paola Borrego-Muñoz
- Escuela de Medicina, Fundación Universitaria Juan N. Corpas, Bogotá 110311, Colombia
| | - Silvia Struve-Villalobos
- Instituto de Ciencias Biomédicas, Facultad de Ciencias de la Salud, Universidad Autónoma de Chile, Temuco 4780000, Chile
| | - Victoria Oviedo
- Facultad de Ingeniería, Instituto de Ciencias Químicas Aplicadas, Universidad Autónoma de Chile, Santiago 8910060, Chile
| | - Claudia Martínez-García
- Departamento de Farmacia, Facultad de Ciencias, Universidad Nacional de Colombia, Bogotá 111321, Colombia
| | - Alexis Sepúlveda-Lara
- Instituto de Ciencias Biomédicas, Facultad de Ciencias de la Salud, Universidad Autónoma de Chile, Temuco 4780000, Chile
| | - Natalia Millán
- Departamento de Nutrición y Bioquímica, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá 110231, Colombia
| | | | - Juana Muñoz
- Departamento de Nutrición y Bioquímica, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá 110231, Colombia
| | - Paula A. Santana
- Facultad de Ingeniería, Instituto de Ciencias Químicas Aplicadas, Universidad Autónoma de Chile, Santiago 8910060, Chile
| | - Carlos Peña-Varas
- Departamento de Farmacología, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción 4030000, Chile
| | - George E. Barreto
- Department of Biological Sciences, University of Limerick, V94 T9PX Limerick, Ireland
| | - Janneth González
- Departamento de Nutrición y Bioquímica, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá 110231, Colombia
| | - David Ramírez
- Departamento de Farmacología, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción 4030000, Chile
| |
Collapse
|
8
|
Anti-Alzheimer's disease potential of traditional chinese medicinal herbs as inhibitors of BACE1 and AChE enzymes. Biomed Pharmacother 2022; 154:113576. [PMID: 36007279 DOI: 10.1016/j.biopha.2022.113576] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 08/09/2022] [Accepted: 08/16/2022] [Indexed: 12/31/2022] Open
Abstract
Alzheimer's disease (AD) is a common neurodegenerative disease that often occurs in the elderly population. At present, most drugs for AD on the market are single-target drugs, which have achieved certain success in the treatment of AD. However, the efficacy and safety of single-target drugs have not achieved the expected results because AD is a multifactorial disease. Multi-targeted drugs act on multiple factors of the disease network to improve efficacy and reduce adverse reactions. Therefore, the search for effective dual-target or even multi-target drugs has become a new research trend. Many of results found that the dual-target inhibitors of the beta-site amyloid precursor protein cleaving enzyme 1 (BACE1) and acetylcholinesterase (AChE) found from traditional Chinese medicine have a good inhibitory effect on AD with fewer side effects. This article reviews sixty-six compounds extracted from Chinese medicinal herbs, which have inhibitory activity on BACE1 and AChE. This provides a theoretical basis for the further development of these compounds as dual-target inhibitors for the treatment of AD.
Collapse
|
9
|
Ugbaja SC, Lawal IA, Abubakar BH, Mushebenge AG, Lawal MM, Kumalo HM. Allostery Inhibition of BACE1 by Psychotic and Meroterpenoid Drugs in Alzheimer's Disease Therapy. Molecules 2022; 27:4372. [PMID: 35889246 PMCID: PMC9320338 DOI: 10.3390/molecules27144372] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Revised: 01/06/2022] [Accepted: 01/17/2022] [Indexed: 02/04/2023] Open
Abstract
In over a century since its discovery, Alzheimer's disease (AD) has continued to be a global health concern due to its incurable nature and overwhelming increase among older people. In this paper, we give an overview of the efforts of researchers towards identifying potent BACE1 exosite-binding antibodies and allosteric inhibitors. Herein, we apply computer-aided drug design (CADD) methods to unravel the interactions of some proposed psychotic and meroterpenoid BACE1 allosteric site inhibitors. This study is aimed at validating the allosteric potentials of these selected compounds targeted at BACE1 inhibition. Molecular docking, molecular dynamic (MD) simulations, and post-MD analyses are carried out on these selected compounds, which have been experimentally proven to exhibit allosteric inhibition on BACE1. The SwissDock software enabled us to identify more than five druggable pockets on the BACE1 structural surface using docking. Besides the active site region, a melatonin derivative (compound 1) previously proposed as a BACE1 allostery inhibitor showed appreciable stability at eight different subsites on BACE1. Refinement with molecular dynamic (MD) simulations shows that the identified non-catalytic sites are potential allostery sites for compound 1. The allostery and binding mechanism of the selected potent inhibitors show that the smaller the molecule, the easier the attachment to several enzyme regions. This finding hereby establishes that most of these selected compounds failed to exhibit strong allosteric binding with BACE1 except for compound 1. We hereby suggest that further studies and additional identification/validation of other BACE1 allosteric compounds be done. Furthermore, this additional allosteric site investigation will help in reducing the associated challenges with designing BACE1 inhibitors while exploring the opportunities in the design of allosteric BACE1 inhibitors.
Collapse
Affiliation(s)
- Samuel C. Ugbaja
- Discipline of Medical Biochemistry, School of Laboratory Medicine and Medical Science, University of KwaZulu-Natal, Durban 4001, South Africa; (A.G.M.); (M.M.L.)
| | - Isiaka A. Lawal
- Chemistry Department, Faculty of Applied and Computer Science, Vanderbijlpark Campus, Vaal University of Technology, Vanderbijlpark 1900, South Africa;
| | - Bahijjahtu H. Abubakar
- The Renewable Energy Programme, Federal Ministry of Environment, Aguiyi Ironsi St, Maitama, Abuja 904101, Nigeria;
| | - Aganze G. Mushebenge
- Discipline of Medical Biochemistry, School of Laboratory Medicine and Medical Science, University of KwaZulu-Natal, Durban 4001, South Africa; (A.G.M.); (M.M.L.)
| | - Monsurat M. Lawal
- Discipline of Medical Biochemistry, School of Laboratory Medicine and Medical Science, University of KwaZulu-Natal, Durban 4001, South Africa; (A.G.M.); (M.M.L.)
| | - Hezekiel M. Kumalo
- Discipline of Medical Biochemistry, School of Laboratory Medicine and Medical Science, University of KwaZulu-Natal, Durban 4001, South Africa; (A.G.M.); (M.M.L.)
| |
Collapse
|
10
|
Natural Products from Plants and Algae for Treatment of Alzheimer’s Disease: A Review. Biomolecules 2022; 12:biom12050694. [PMID: 35625622 PMCID: PMC9139049 DOI: 10.3390/biom12050694] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Revised: 05/05/2022] [Accepted: 05/06/2022] [Indexed: 12/14/2022] Open
Abstract
Neurodegenerative disorders including Parkinson’s disease (PD), Huntington’s disease (HD) and the most frequent, Alzheimer’s disease (AD), represent one of the most urgent medical needs worldwide. Despite a significantly developed understanding of disease development and pathology, treatments that stop AD progression are not yet available. The recent approval of sodium oligomannate (GV-971) for AD treatment in China emphasized the potential value of natural products for the treatment of neurodegenerative disorders. Many current clinical studies include the administration of a natural compound as a single and combination treatment. The most prominent mechanisms of action are anti-inflammatory and anti-oxidative activities, thus preserving cellular survival. Here, we review current natural products that are either approved or are in testing for a treatment of neurodegeneration in AD. In addition to the most important compounds of plant origin, we also put special emphasis on compounds from algae, given their neuroprotective activity and their underlying mechanisms of neuroprotection.
Collapse
|
11
|
do Bomfim MR, Barbosa DB, de Carvalho PB, da Silva AM, de Oliveira TA, Taranto AG, Leite FHA. Identification of potential human beta-secretase 1 inhibitors by hierarchical virtual screening and molecular dynamics. J Biomol Struct Dyn 2022:1-15. [DOI: 10.1080/07391102.2022.2069155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Mayra Ramos do Bomfim
- Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Estadual de Feira de Santana, Feira de Santana, Brazil
| | - Deyse Brito Barbosa
- Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Estadual de Feira de Santana, Feira de Santana, Brazil
| | | | - Alisson Marques da Silva
- Departamento de Informática, Gestão e Design, Centro Federal de Educação Tecnológica de Minas Gerais, Divinópolis, Brazil
| | - Tiago Alves de Oliveira
- Departamento de Informática, Gestão e Design, Centro Federal de Educação Tecnológica de Minas Gerais, Divinópolis, Brazil
- Departamento de Bioengenharia, Universidade Federal de São João del-Rei, São João del-Rei, Brazil
| | - Alex Gutterres Taranto
- Departamento de Bioengenharia, Universidade Federal de São João del-Rei, São João del-Rei, Brazil
- Faculty of Computing, University of Latvia (UL), Riga, Latvia
| | - Franco Henrique Andrade Leite
- Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Estadual de Feira de Santana, Feira de Santana, Brazil
| |
Collapse
|
12
|
Seong Choi K, Shin TS, Chun J, Ahn G, Jeong Han E, Kim MJ, Kim JB, Kim SH, Kho KH, Heon Kim D, Shim SY. Sargahydroquinoic acid isolated from Sargassum serratifolium as inhibitor of cellular basophils activation and passive cutaneous anaphylaxis in mice. Int Immunopharmacol 2022; 105:108567. [PMID: 35114442 DOI: 10.1016/j.intimp.2022.108567] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 01/10/2022] [Accepted: 01/20/2022] [Indexed: 11/19/2022]
Abstract
Basophils and mast cells are characteristic effector cells in allergic reactions. Sargahydorquinoic acid (SHQA), a compound isolated from Sargassum serratifolium (marine alga), possesses various biochemical properties, including potent antioxidant activities. The objective of the present study was to investigate inhibitory effects of SHQA on the activation of human basophilic KU812F cells induced by phorbol myristate acetate and A23187 (PMACI), a calcium ionophore. Furthermore, we confirmed the inhibitory effects of SHQA on the activation of rat basophilic leukemia (RBL)-2H3 cells induced by compound 48/80 (com 48/80), bone marrow-derived mast cells (BMCMCs) induced by anti-dinitrophenyl(DNP)-immunoglobulin E (IgE)/DNP-bovine serum albumin (BSA), DNP/IgE and on the reaction of passive cutaneous anaphylaxis (PCA) mediated by IgE. SHQA reduced PMACI-induced intracellular reactive oxygen species (ROS) and calcium levels. Western blot analysis revealed that SHQA downregulated the activation of ERK, p38, and NF-κB in a dose-dependent manner. Moreover, SHQA suppressed the production and gene expression of various cytokines, including interleukin (IL)-1 β, IL-4, IL-6, and IL-8 in PMACI-induced KU812F cells and IL-4 and tumor necrosis factor (TNF)- α in com 48/80-induced RBL-2H3 cells. It also determined the inhibition of PMACI, com 48/80- and IgE/DNP-induced degranulation by reducing the release of β -hexosaminidase. Furthermore, it attenuated the IgE/DNP-induced PCA reaction in the ears of BALB/c mice. These results suggest that SHQA isolated from S. serratifolium is a potential therapeutic functional food material for inhibiting effector cell activation in allergic reactions and anaphylaxis in animal model.
Collapse
Affiliation(s)
- Kap Seong Choi
- Department of Food Science and Biotechnology, Sunchon National University, Suncheon 57922, Republic of Korea
| | - Tai-Sun Shin
- Division of Food and Nutrition, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Jiyeon Chun
- Department of Food Science and Biotechnology, Sunchon National University, Suncheon 57922, Republic of Korea
| | - Ginnae Ahn
- Department of Marine Bio-Food Sciences, Chonnam National University, Yeosu 59626, Republic of Korea
| | - Eui Jeong Han
- Research Center for Healthcare and Biomedical Engineering, Chonnam National University, Yeosu 59626, Korea; Department of Food Technology and Nutrition, Chonnam National University, Yeosu 59626, Republic of Korea
| | - Min-Jong Kim
- Cell & Matrix Research Institute, Department of Pharmacology, Kyungpook National University School of Medicine, Daegu, Republic of Korea
| | - Jung-Beom Kim
- Department of Food Science and Biotechnology, Sunchon National University, Suncheon 57922, Republic of Korea
| | - Sang-Hyun Kim
- Cell & Matrix Research Institute, Department of Pharmacology, Kyungpook National University School of Medicine, Daegu, Republic of Korea
| | - Kang-Hee Kho
- Department of Fisheries Science, College of Fisheries and Ocean Sciences, Chonnam National University, Yeosu 59626, Republic of Korea
| | - Dae Heon Kim
- Department of Biology, Sunchon National University, Suncheon 57922, Republic of Korea
| | - Sun-Yup Shim
- Department of Food Science and Biotechnology, Sunchon National University, Suncheon 57922, Republic of Korea.
| |
Collapse
|
13
|
Rathnayake AU, Abuine R, Palanisamy S, Lee JK, Byun HG. Characterization and purification of β−secretase inhibitory peptides fraction from sea cucumber (Holothuria spinifera) enzymatic hydrolysates. Process Biochem 2021. [DOI: 10.1016/j.procbio.2021.10.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
14
|
Hafez Ghoran S, Kijjoa A. Marine-Derived Compounds with Anti-Alzheimer's Disease Activities. Mar Drugs 2021; 19:410. [PMID: 34436249 PMCID: PMC8399123 DOI: 10.3390/md19080410] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 07/17/2021] [Accepted: 07/22/2021] [Indexed: 12/21/2022] Open
Abstract
Alzheimer's disease (AD) is an irreversible and progressive brain disorder that slowly destroys memory and thinking skills, and, eventually, the ability to perform simple tasks. As the aging population continues to increase exponentially, AD has become a big concern for society. Therefore, neuroprotective compounds are in the spotlight, as a means to tackle this problem. On the other hand, since it is believed-in many cultures-that marine organisms in an individual diet cannot only improve brain functioning, but also slow down its dysfunction, many researchers have focused on identifying neuroprotective compounds from marine resources. The fact that the marine environment is a rich source of structurally unique and biologically and pharmacologically active compounds, with unprecedented mechanisms of action, marine macroorganisms, such as tunicates, corals, sponges, algae, as well as microorganisms, such as marine-derived bacteria, actinomycetes, and fungi, have been the target sources of these compounds. Therefore, this literature review summarizes and categorizes various classes of marine-derived compounds that are able to inhibit key enzymes involved in AD, including acetylcholinesterase (AChE), butyrylcholinesterase (BuChE), β-secretase (BACE-1), and different kinases, together with the related pathways involved in the pathogenesis of AD. The compounds discussed herein are emerging as promising anti-AD activities for further in-depth in vitro and in vivo investigations, to gain more insight of their mechanisms of action and for the development of potential anti-AD drug leads.
Collapse
Affiliation(s)
- Salar Hafez Ghoran
- Department of Chemistry, Faculty of Science, Golestan University, Gorgan 439361-79142, Iran;
- Medicinal Plants Research Center, Yasuj University of Medical Sciences, Yasuj 75919-94779, Iran
| | - Anake Kijjoa
- ICBAS-Instituto de Ciências Biomédicas Abel Salazar and CIIMAR, Rua de Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal
| |
Collapse
|
15
|
Nazir M, Saleem M, Tousif MI, Anwar MA, Surup F, Ali I, Wang D, Mamadalieva NZ, Alshammari E, Ashour ML, Ashour AM, Ahmed I, Elizbit, Green IR, Hussain H. Meroterpenoids: A Comprehensive Update Insight on Structural Diversity and Biology. Biomolecules 2021; 11:957. [PMID: 34209734 PMCID: PMC8301922 DOI: 10.3390/biom11070957] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 06/23/2021] [Accepted: 06/24/2021] [Indexed: 11/17/2022] Open
Abstract
Meroterpenoids are secondary metabolites formed due to mixed biosynthetic pathways which are produced in part from a terpenoid co-substrate. These mixed biosynthetically hybrid compounds are widely produced by bacteria, algae, plants, and animals. Notably amazing chemical diversity is generated among meroterpenoids via a combination of terpenoid scaffolds with polyketides, alkaloids, phenols, and amino acids. This review deals with the isolation, chemical diversity, and biological effects of 452 new meroterpenoids reported from natural sources from January 2016 to December 2020. Most of the meroterpenoids possess antimicrobial, cytotoxic, antioxidant, anti-inflammatory, antiviral, enzyme inhibitory, and immunosupressive effects.
Collapse
Affiliation(s)
- Mamona Nazir
- Department of Chemistry, Government Sadiq College Women University Bahawalpur, Bahawalpur 63100, Pakistan
| | - Muhammad Saleem
- Institute of Chemistry, Baghdad-ul-Jadeed Campus, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan
| | - Muhammad Imran Tousif
- Department of Chemistry, DG Khan Campus, University of Education Lahore, Dera Ghazi Khan 32200, Pakistan
| | - Muhammad Aijaz Anwar
- Pharmaceutical Research Division, PCSIR Laboratories Complex Karachi, Karachi 75280, Pakistan
| | - Frank Surup
- Microbial Drugs, Helmholtz Centre for Infection Research, 38124 Braunschweig, Germany
| | - Iftikhar Ali
- School of Pharmaceutical Sciences and Key Laboratory for Applied Technology of Sophisticated Analytical Instruments of Shandong Province, Shandong Analysis and Test Center, School of Pharmaceutical Sciences, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, China
- Department of Chemistry, Karakoram International University, Gilgit 15100, Pakistan
| | - Daijie Wang
- School of Pharmaceutical Sciences and Key Laboratory for Applied Technology of Sophisticated Analytical Instruments of Shandong Province, Shandong Analysis and Test Center, School of Pharmaceutical Sciences, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, China
| | - Nilufar Z Mamadalieva
- Department of Bioorganic Chemistry, Leibniz Institute of Plant Biochemistry, Weinberg 3, D-06120 Halle, Germany
- Institute of the Chemistry of Plant Substances, Uzbekistan Academy of Sciences, Mirzo Ulugbek Str 77, Tashkent 100170, Uzbekistan
| | - Elham Alshammari
- Department of Pharmacy Practice, College of Pharmacy, Princess Nourah Bint Abdulrahman University, Riyadh 11671, Saudi Arabia
| | - Mohamed L Ashour
- Department of Pharmaceutical Sciences, Pharmacy Program, Batterjee Medical College, Jeddah 21442, Saudi Arabia
- Department of Pharmacognosy, Faculty of Pharmacy, Ain Shams University, Cairo 11566, Egypt
| | - Ahmed M Ashour
- Department of Pharmacology and Toxicology, College of Pharmacy, Umm Al-Qura University, P.O. Box 13578, Makkah 21955, Saudi Arabia
| | - Ishtiaq Ahmed
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge CB2 1TN, UK
| | - Elizbit
- Department of Materials Engineering, National University of Sciences and Technology (NUST) H12, Islamabad 44000, Pakistan
| | - Ivan R Green
- Department of Chemistry and Polymer Science, University of Stellenbosch, Private Bag X1, Matieland, Stellenbosch 7600, South Africa
| | - Hidayat Hussain
- Department of Bioorganic Chemistry, Leibniz Institute of Plant Biochemistry, Weinberg 3, D-06120 Halle, Germany
| |
Collapse
|
16
|
Ugbaja SC, Lawal M, Kumalo H. An Overview of β-Amyloid Cleaving Enzyme 1 (Bace1) in Alzheimer's Disease Therapy Elucidating its Exosite-Binding Antibody and Allosteric Inhibitor. Curr Med Chem 2021; 29:114-135. [PMID: 34102967 DOI: 10.2174/0929867328666210608145357] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 04/18/2021] [Accepted: 04/19/2021] [Indexed: 11/22/2022]
Abstract
Over decades of its identification, numerous past and ongoing researches have focused on the therapeutic roles of β-amyloid cleaving enzyme 1 (BACE1) as a target in treating Alzheimer's disease (AD). Although the initial BACE1 inhibitors at phase-3 clinical trials tremendously reduced β-amyloid-associated plaques in patients with AD, the researchers eventually discontinued the tests due to the lack of potency. This discontinuation has resulted in limited drug development and discovery targeted at BACE1, despite the high demand for dementia and AD therapies. It is, therefore, imperative to describe the detailed underlying biological basis of the BACE1 therapeutic option in neurological diseases. Herein, we highlight BACE1 bioactivity, genetic properties, and role in neurodegenerative therapy. We review research contributions to BACE1 exosite-binding antibody and allosteric inhibitor development as AD therapies. The review also covers BACE1 biological function, the disease-associated mechanisms, and the enzyme conditions for amyloid precursor protein sites splitting. Based on the present review, we suggest further studies on anti-BACE1 exosite antibodies and BACE1 allosteric inhibitors. Non-active site inhibition might be the way forward to BACE1 therapy in Alzheimer's neurological disorder.
Collapse
Affiliation(s)
- Samuel C Ugbaja
- Discipline of Medical Biochemistry, School of Laboratory Medicine and Medical Science, University of KwaZulu-Natal, Durban 4001, South Africa
| | - Monsurat Lawal
- Discipline of Medical Biochemistry, School of Laboratory Medicine and Medical Science, University of KwaZulu-Natal, Durban 4001, South Africa
| | - Hezekiel Kumalo
- Discipline of Medical Biochemistry, School of Laboratory Medicine and Medical Science, University of KwaZulu-Natal, Durban 4001, South Africa
| |
Collapse
|
17
|
Kim HY, Kim JH, Jeong HG, Jin CH. Anti-diabetic effect of the lupinalbin A compound isolated from Apios americana: In vitro analysis and molecular docking study. Biomed Rep 2021; 14:39. [PMID: 33692902 PMCID: PMC7938295 DOI: 10.3892/br.2021.1415] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2020] [Accepted: 02/03/2021] [Indexed: 12/29/2022] Open
Abstract
Dipeptidyl peptidase 4 (DPP4) and α-glucosidase inhibitors have been developed as anti-diabetic agents for the treatment of diabetes mellitus. In the present study, the anti-diabetic effects of the lupinalbin A compound isolated from Apios americana was investigated by measuring its inhibitory activity against DPP4 and α-glucosidase. To detect the inhibitory effect of lupinalbin A, DPP4 and α-glucosidase assays were performed in vitro. Molecular docking analysis was performed using AutoDock 4.2. The IC50 values of lupinalbin A against DPP4 and α-glucosidase were 45.2 and 53.4 µM, respectively. Analysis of the enzyme kinetics revealed that lupinalbin A interacted with the active site of DPP4 in a competitive manner, with an inhibition constant (Ki) value of 35.1±2.0 µM, whereas the lupinalbin A interaction with α-glucosidase was non-competitive, with a Ki value of 45.0 µM. Molecular docking analysis revealed a binding pose between the DPP4 enzyme and lupinalbin A. Taken together, these data suggest lupinalbin A is more effective against DPP4 than α-glucosidase, with regard to its anti-diabetic effects.
Collapse
Affiliation(s)
- Hyo-Young Kim
- Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup-si, Jeollabuk-do 56212, Republic of Korea
| | - Jang Hoon Kim
- Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup-si, Jeollabuk-do 56212, Republic of Korea
| | - Hye Gwang Jeong
- College of Pharmacy, Chungnam National University, Daejeon, Chungcheongnam-do 34134, Republic of Korea
| | - Chang Hyun Jin
- Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup-si, Jeollabuk-do 56212, Republic of Korea
| |
Collapse
|
18
|
Green Synthesis of Silver and Gold Nanoparticles via Sargassum serratifolium Extract for Catalytic Reduction of Organic Dyes. Catalysts 2021. [DOI: 10.3390/catal11030347] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The green synthesis of inorganic nanoparticles (NPs) using bio-materials has attained enormous attention in recent years due to its simple, eco-friendly, low-cost and non-toxic nature. In this work, silver nanoparticles (AgNPs) and gold nanoparticles (AuNPs) were synthesized by the marine algae extract, Sargassum serratifolium (SS). The characteristic studies of bio-synthesized SS-AgNPs and SS-AuNPs were carried out by using ultraviolet–visible (UV–Vis) absorption spectroscopy, dynamic light scattering (DLS), high-resolution transmission electron microscope (HR-TEM), selected area electron diffraction (SAED), energy-dispersive X-ray spectroscopy (EDX), X-ray powder diffraction (XRD) and Fourier transform infrared spectroscopy (FT-IR). Phytochemicals in the algae extract, such as meroterpenoids, acted as a capping agent for the NPs’ growth. The synthesized Ag and Au NPs were found to have important catalytic activity for the degradation of organic dyes, including methylene blue, rhodamine B and methyl orange. The reduction of dyes by SS-AgNPs and -AuNPs followed the pseudo-first order kinetics.
Collapse
|
19
|
Panda SS, Jhanji N. Natural Products as Potential Anti-Alzheimer Agents. Curr Med Chem 2021; 27:5887-5917. [PMID: 31215372 DOI: 10.2174/0929867326666190618113613] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2018] [Revised: 03/20/2019] [Accepted: 05/28/2019] [Indexed: 01/18/2023]
Abstract
Medicinal plants have curative properties due to the presence of various complex chemical substances of different composition, which are found as secondary metabolites in one or more parts of the plant. The diverse secondary metabolites play an important role in the prevention and cure of various diseases including neurodegenerative diseases like Alzheimer's disease. Naturally occurring compounds such as flavonoids, polyphenols, alkaloids, and glycosides found in various parts of the plant and/or marine sources may potentially protect neurodegeneration as well as improve memory and cognitive function. Many natural compounds show anti-Alzheimer activity through specific pharmacological mechanisms like targeting β-amyloid, Beta-secretase 1 and Acetylcholinesterase. In this review, we have compiled more than 130 natural products with a broad diversity in the class of compounds, which were isolated from different sources showing anti- Alzheimer properties.
Collapse
Affiliation(s)
- Siva S Panda
- Department of Chemistry & Physics, Augusta University, Augusta, Georgia 30912, United States
| | - Nancy Jhanji
- Department of Chemistry & Physics, Augusta University, Augusta, Georgia 30912, United States
| |
Collapse
|
20
|
Abstract
Alzheimer’s disease (AD) is a common chronic neurodegenerative disorders. Melatonin (MLT) has been reported to be neuroprotective agent, and its modified structures exhibit potent antioxidant and anti-inflammation activities. Therefore, the activity of MLT and its derivatives against AD was investigated. Herein, the targeted enzymes, such as β-secretase (BACE1) and acetylcholinesterase (AChE), as well as the neuroprotective and neuritogenic effects on P19-derived neurons were evaluated. All the derivatives (1–5), including MLT, displayed potent inhibitory activity for BACE1, with inhibition values of more than 75% at 5 µM. A molecular docking study predicted that MLT, 5-MT, and 5 bound with BACE1 at catalytic amino acids Asp32 and the flap region, whereas 1–4 interacted with allosteric residue Thr232 and the flap region. The additional π-π interactions between 2, 3, and 5 with Tyr71 promoted ligand-enzyme binding. In addition, MLT, 1, 3, and 5 significantly protected neuron cells from oxidative stress by increasing the cell viability to 97.95, 74.29, 70.80, and 69.50% at 1 nM, respectively. Moreover, these derivatives significantly induced neurite outgrowth by increasing the neurite length and number. The derivatives 1, 3, and 5 should be thoroughly studied as potential AD treatment and neuroprotective agents.
Collapse
|
21
|
Sakata RP, Antoniolli G, Lancellotti M, Kawano DF, Guimarães Barbosa E, Almeida WP. Synthesis and biological evaluation of 2'-Aminochalcone: A multi-target approach to find drug candidates to treat Alzheimer's disease. Bioorg Chem 2020; 103:104201. [PMID: 32890999 DOI: 10.1016/j.bioorg.2020.104201] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2020] [Revised: 07/17/2020] [Accepted: 08/01/2020] [Indexed: 02/07/2023]
Abstract
Alzheimer's disease (AD) is a neurodegenerative process that compromises cognitive functions. The physiopathology of AD is multifactorial and is mainly supported by the cholinergic and amyloid hypotheses, which allows the identification the fundamental role of some markers, such as the enzymes acetylcholinesterase (AChE) and β-secretase (BACE-1), and the β-amyloid peptide (Aβ). In this work, we prepared a series of chalcones and 2'-aminochalcones, which were tested against AChE and BACE-1 enzymes and on the aggregation of Aβ. All compounds inhibited AChE activity with different potencies. We have found that the majority of chalcones having the amino group are able to inhibit BACE-1, which was not observed for chalcones without this group. The most active compound is the one derived from 2,3-dichlorobenzaldeyde, having an IC50 value of 2.71 μM. A molecular docking study supported this result, showing a good interaction of the amino group with aspartic acid residues of the catalytic diade of BACE-1. Thioflavin-T fluorescence emission is reduced in 30 - 40%, when Aβ42 is incubated in the presence of some chalcones under aggregation conditions. In vitro cytotoxicity and in silico prediction of pharmacokinetic properties were also conducted in this study.
Collapse
Affiliation(s)
- Renata P Sakata
- Institute of Chemistry, University of Campinas, Brazil; Porphirio da Paz High School, Campinas, SP, Brazil
| | | | - Marcelo Lancellotti
- Faculty of Pharmaceutical Sciences, University of Campinas, 200, Candido Portinari, Campinas, SP ZC 13083-871, Brazil
| | - Daniel Fabio Kawano
- Faculty of Pharmaceutical Sciences, University of Campinas, 200, Candido Portinari, Campinas, SP ZC 13083-871, Brazil
| | | | - Wanda P Almeida
- Institute of Chemistry, University of Campinas, Brazil; Faculty of Pharmaceutical Sciences, University of Campinas, 200, Candido Portinari, Campinas, SP ZC 13083-871, Brazil.
| |
Collapse
|
22
|
Hannan MA, Dash R, Haque MN, Mohibbullah M, Sohag AAM, Rahman MA, Uddin MJ, Alam M, Moon IS. Neuroprotective Potentials of Marine Algae and Their Bioactive Metabolites: Pharmacological Insights and Therapeutic Advances. Mar Drugs 2020; 18:E347. [PMID: 32630301 PMCID: PMC7401253 DOI: 10.3390/md18070347] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 06/19/2020] [Accepted: 06/25/2020] [Indexed: 12/14/2022] Open
Abstract
Beyond their significant contribution to the dietary and industrial supplies, marine algae are considered to be a potential source of some unique metabolites with diverse health benefits. The pharmacological properties, such as antioxidant, anti-inflammatory, cholesterol homeostasis, protein clearance and anti-amyloidogenic potentials of algal metabolites endorse their protective efficacy against oxidative stress, neuroinflammation, mitochondrial dysfunction, and impaired proteostasis which are known to be implicated in the pathophysiology of neurodegenerative disorders and the associated complications after cerebral ischemia and brain injuries. As was evident in various preclinical studies, algal compounds conferred neuroprotection against a wide range of neurotoxic stressors, such as oxygen/glucose deprivation, hydrogen peroxide, glutamate, amyloid β, or 1-methyl-4-phenylpyridinium (MPP+) and, therefore, hold therapeutic promise for brain disorders. While a significant number of algal compounds with promising neuroprotective capacity have been identified over the last decades, a few of them have had access to clinical trials. However, the recent approval of an algal oligosaccharide, sodium oligomannate, for the treatment of Alzheimer's disease enlightened the future of marine algae-based drug discovery. In this review, we briefly outline the pathophysiology of neurodegenerative diseases and brain injuries for identifying the targets of pharmacological intervention, and then review the literature on the neuroprotective potentials of algal compounds along with the underlying pharmacological mechanism, and present an appraisal on the recent therapeutic advances. We also propose a rational strategy to facilitate algal metabolites-based drug development.
Collapse
Affiliation(s)
- Md. Abdul Hannan
- Department of Anatomy, Dongguk University College of Medicine, Gyeongju 38066, Korea; (M.A.H.); (R.D.); (M.A.)
- Department of Biochemistry and Molecular Biology, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh;
| | - Raju Dash
- Department of Anatomy, Dongguk University College of Medicine, Gyeongju 38066, Korea; (M.A.H.); (R.D.); (M.A.)
| | - Md. Nazmul Haque
- Department of Fisheries Biology and Genetics, Patuakhali Science and Technology University, Patuakhali 8602, Bangladesh;
| | - Md. Mohibbullah
- Department of Fishing and Post Harvest Technology, Sher-e-Bangla Agricultural University, Sher-e-Bangla Nagar, Dhaka 1207, Bangladesh;
| | - Abdullah Al Mamun Sohag
- Department of Biochemistry and Molecular Biology, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh;
| | - Md. Ataur Rahman
- Center for Neuroscience, Korea Institute of Science and Technology (KIST), Seoul 02792, Korea;
| | - Md Jamal Uddin
- Graduate School of Pharmaceutical Sciences, College of Pharmacy, Ewha Womans University, Seoul 03760, Korea;
- ABEx Bio-Research Center, East Azampur, Dhaka 1230, Bangladesh
| | - Mahboob Alam
- Department of Anatomy, Dongguk University College of Medicine, Gyeongju 38066, Korea; (M.A.H.); (R.D.); (M.A.)
- Division of Chemistry and Biotechnology, Dongguk University, Gyeongju 780-714, Korea
| | - Il Soo Moon
- Department of Anatomy, Dongguk University College of Medicine, Gyeongju 38066, Korea; (M.A.H.); (R.D.); (M.A.)
| |
Collapse
|
23
|
Deligiannidou GE, Papadopoulos RE, Kontogiorgis C, Detsi A, Bezirtzoglou E, Constantinides T. Unraveling Natural Products' Role in Osteoarthritis Management-An Overview. Antioxidants (Basel) 2020; 9:E348. [PMID: 32340224 PMCID: PMC7222394 DOI: 10.3390/antiox9040348] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 04/20/2020] [Accepted: 04/21/2020] [Indexed: 12/11/2022] Open
Abstract
The natural process of aging gradually causes changes in living organisms, leading to the deterioration of organs, tissues, and cells. In the case of osteoarthritis (OA), the degradation of cartilage is a result of both mechanical stress and biochemical factors. Natural products have already been evaluated for their potential role in the prevention and treatment of OA, providing a safe and effective adjunctive therapeutic approach. This review aimed to assess the therapeutic potential of natural products and their derivatives in osteoarthritis via a systematic search of literature after 2008, including in vitro, in vivo, ex vivo, and animal models, along with clinical trials and meta-analysis. Overall, 170 papers were obtained and screened. Here, we presented findings referring to the preventative and therapeutic potential of 17 natural products and 14 naturally occurring compounds, underlining, when available, the mechanisms implicated. The nature of OA calls to initially focus on the management of symptoms, and, in that context, several naturally occurring compounds have been utilized. Underlying a global need for more sustainable natural sources for treatment, the evidence supporting their chondroprotective potential is still building up. However, arriving at that kind of solution requires more clinical research, targeting the implications of long-term treatment, adverse effects, and epigenetic implications.
Collapse
Affiliation(s)
- Georgia-Eirini Deligiannidou
- Laboratory of Hygiene and Environmental Protection, Department of Medicine, Democritus University of Thrace, 68100 Alexandroupolis, Greece; (G.-E.D.); (R.-E.P.); (E.B.); (T.C.)
| | - Rafail-Efraim Papadopoulos
- Laboratory of Hygiene and Environmental Protection, Department of Medicine, Democritus University of Thrace, 68100 Alexandroupolis, Greece; (G.-E.D.); (R.-E.P.); (E.B.); (T.C.)
| | - Christos Kontogiorgis
- Laboratory of Hygiene and Environmental Protection, Department of Medicine, Democritus University of Thrace, 68100 Alexandroupolis, Greece; (G.-E.D.); (R.-E.P.); (E.B.); (T.C.)
| | - Anastasia Detsi
- Laboratory of Organic Chemistry, School of Chemical Engineering, National Technical University of Athens, 15780 Athens, Greece;
| | - Eugenia Bezirtzoglou
- Laboratory of Hygiene and Environmental Protection, Department of Medicine, Democritus University of Thrace, 68100 Alexandroupolis, Greece; (G.-E.D.); (R.-E.P.); (E.B.); (T.C.)
| | - Theodoros Constantinides
- Laboratory of Hygiene and Environmental Protection, Department of Medicine, Democritus University of Thrace, 68100 Alexandroupolis, Greece; (G.-E.D.); (R.-E.P.); (E.B.); (T.C.)
| |
Collapse
|
24
|
Abstract
Reports on β-secretase inhibitors of natural origin are listed in order to reveal their chemical diversity. Various types of compounds were found to inhibit β-secretase, and natural resources included a wide spectrum of biological species. Among them, some triterpenes and moracin derivatives, which are nonpeptidic compounds, were determined to be competitive inhibitors. In addition, no peptide compounds were reported from natural resources. These points will be clarified in future studies.
Collapse
Affiliation(s)
- Kazuya Murata
- Faculty of Pharmacy, Kindai University, Osaka, Japan
| |
Collapse
|
25
|
Comparing AutoDock and Vina in Ligand/Decoy Discrimination for Virtual Screening. APPLIED SCIENCES-BASEL 2019. [DOI: 10.3390/app9214538] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
AutoDock and Vina are two of the most widely used protein–ligand docking programs. The fact that these programs are free and available under an open source license, also makes them a very popular first choice for many users and a common starting point for many virtual screening campaigns, particularly in academia. Here, we evaluated the performance of AutoDock and Vina against an unbiased dataset containing 102 protein targets, 22,432 active compounds and 1,380,513 decoy molecules. In general, the results showed that the overall performance of Vina and AutoDock was comparable in discriminating between actives and decoys. However, the results varied significantly with the type of target. AutoDock was better in discriminating ligands and decoys in more hydrophobic, poorly polar and poorly charged pockets, while Vina tended to give better results for polar and charged binding pockets. For the type of ligand, the tendency was the same for both Vina and AutoDock. Bigger and more flexible ligands still presented a bigger challenge for these docking programs. A set of guidelines was formulated, based on the strengths and weaknesses of both docking program and their limits of validation.
Collapse
|
26
|
Macroalgae as a Valuable Source of Naturally Occurring Bioactive Compounds for the Treatment of Alzheimer's Disease. Mar Drugs 2019; 17:md17110609. [PMID: 31731422 PMCID: PMC6891758 DOI: 10.3390/md17110609] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Revised: 10/10/2019] [Accepted: 10/11/2019] [Indexed: 01/02/2023] Open
Abstract
Alzheimer's disease (AD) is a neurological condition that affects mostly aged individuals. Evidence suggests that pathological mechanisms involved in the development of AD are associated with cholinergic deficit, glutamate excitotoxicity, beta-amyloid aggregation, tau phosphorylation, neuro-inflammation, and oxidative damage to neurons. Currently there is no cure for AD; however, synthetic therapies have been developed to effectively manage some of the symptoms at the early stage of the disease. Natural products from plants and marine organisms have been identified as important sources of bioactive compounds with neuroprotective potentials and less adverse effects compared to synthetic agents. Seaweeds contain several kinds of secondary metabolites such as phlorotannins, carotenoids, sterols, fucoidans, and poly unsaturated fatty acids. However, their neuroprotective effects and mechanisms of action have not been fully explored. This review discusses recent investigations and/or updates on interactions of bioactive compounds from seaweeds with biomarkers involved in the pathogenesis of AD using reports in electronic databases such as Web of science, Scopus, PubMed, Science direct, Scifinder, Taylor and Francis, Wiley, Springer, and Google scholar between 2015 and 2019. Phlorotannins, fucoidans, sterols, and carotenoids showed strong neuroprotective potentials in different experimental models. However, there are no data from human studies and/or clinical trials.
Collapse
|
27
|
Abstract
Covering: January to December 2017This review covers the literature published in 2017 for marine natural products (MNPs), with 740 citations (723 for the period January to December 2017) referring to compounds isolated from marine microorganisms and phytoplankton, green, brown and red algae, sponges, cnidarians, bryozoans, molluscs, tunicates, echinoderms, mangroves and other intertidal plants and microorganisms. The emphasis is on new compounds (1490 in 477 papers for 2017), together with the relevant biological activities, source organisms and country of origin. Reviews, biosynthetic studies, first syntheses, and syntheses that led to the revision of structures or stereochemistries, have been included. Geographic distributions of MNPs at a phylogenetic level are reported.
Collapse
Affiliation(s)
- Anthony R Carroll
- School of Environment and Science, Griffith University, Gold Coast, Australia. and Griffith Institute for Drug Discovery, Griffith University, Brisbane, Australia
| | - Brent R Copp
- School of Chemical Sciences, University of Auckland, Auckland, New Zealand
| | - Rohan A Davis
- Griffith Institute for Drug Discovery, Griffith University, Brisbane, Australia
| | - Robert A Keyzers
- Centre for Biodiscovery, School of Chemical and Physical Sciences, Victoria University of Wellington, Wellington, New Zealand
| | | |
Collapse
|
28
|
Lee JS, Kim JH, Han YK, Ma JY, Kim YH, Li W, Yang SY. Cholinesterases inhibition studies of biological active compounds from the rhizomes of Alpinia officinarum Hance and in silico molecular dynamics. Int J Biol Macromol 2018; 120:2442-2447. [DOI: 10.1016/j.ijbiomac.2018.09.014] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Revised: 09/02/2018] [Accepted: 09/04/2018] [Indexed: 12/13/2022]
|
29
|
Yu Z, Wu S, Zhao W, Ding L, Fan Y, Shiuan D, Liu J, Chen F. Anti-Alzheimers activity and molecular mechanism of albumin-derived peptides against AChE and BChE. Food Funct 2018; 9:1173-1178. [PMID: 29363710 DOI: 10.1039/c7fo01462g] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Alzheimer's disease (AD) is a global health issue affecting millions of elderly people worldwide. The aim of the present study was to identify novel anti-AD peptides isolated from albumin. Anti-AD activities of the peptides were evaluated via inhibitory activities on acetylcholinesterase (AChE) and butyrylcholinesterase (BChE). Furthermore, the potential molecular mechanisms of the KLPGF/AChE were investigated by CDOCKER of Discovery studio 2017. The results revealed that peptide KLPGF could effectively inhibit AChE with an inhibition rate of 61.23% at a concentration of 50 μg mL-1. In addition, the peptide KLPGF came in contact with acylation sites and peripheral anion sites of AChE. The present study demonstrates that the peptide KLPGF could become a potential functional food intervention in AD.
Collapse
Affiliation(s)
- Zhipeng Yu
- College of Food Science and Engineering, Bohai University, Jinzhou 121013, P.R. China.
| | | | | | | | | | | | | | | |
Collapse
|
30
|
Koirala P, Seong SH, Zhou Y, Shrestha S, Jung HA, Choi JS. Structure⁻Activity Relationship of the Tyrosinase Inhibitors Kuwanon G, Mulberrofuran G, and Albanol B from Morus Species: A Kinetics and Molecular Docking Study. Molecules 2018; 23:molecules23061413. [PMID: 29891812 PMCID: PMC6099663 DOI: 10.3390/molecules23061413] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Revised: 06/05/2018] [Accepted: 06/09/2018] [Indexed: 02/07/2023] Open
Abstract
Kuwanon G (KG) and benzofuran flavonoids such as mulberrofuran G (MG) and albanol B (AB) isolated from Morus sp. are reported to exhibit anti-Alzheimer’s disease, anti-inflammatory, fungicidal, anti-cancer, anti-bacterial, and anti-tyrosinase properties. We investigated the inhibition of mono- and diphenolase activity of mushroom tyrosinase by KG, MG, and AB. KG and MG displayed acceptable inhibition activity compared to kojic acid. AB did not show any activity up to 350 µM. MG displayed six-fold higher inhibition of l-tyrosine oxidation (IC50 = 6.35 ± 0.45 µM) compared to kojic acid (IC50 = 36.0 µM). Kinetic studies revealed that KG and MG inhibited monophenolase activity of tyrosinase in a competitive manner. Docking simulations of KG and MG demonstrated favorable binding energies with amino acid residues of the active sites of tyrosinase. Our investigation of the structure-activity relationship of the fused benzofuran flavonoids (MG vs. AB) implicated the methyl cyclohexene ring moiety in tyrosinase inhibition. The enzyme substrate and relative structural analyses demonstrated that KG and MG from Morus sp. could be useful natural tyrosinase inhibitors in foods or cosmetics.
Collapse
Affiliation(s)
- Prashamsa Koirala
- Department of Food and Life Science, Pukyong National University, Busan 48513, Korea.
| | - Su Hui Seong
- Department of Food and Life Science, Pukyong National University, Busan 48513, Korea.
| | - Yajuan Zhou
- Department of Food and Life Science, Pukyong National University, Busan 48513, Korea.
| | - Srijan Shrestha
- Department of Food and Life Science, Pukyong National University, Busan 48513, Korea.
| | - Hyun Ah Jung
- Department of Food Science and Human Nutrition, Chonbuk National University, Jeonju 54896, Korea.
| | - Jae Sue Choi
- Department of Food and Life Science, Pukyong National University, Busan 48513, Korea.
| |
Collapse
|
31
|
Anti-inflammatory effect of Apo-9'-fucoxanthinone via inhibition of MAPKs and NF-kB signaling pathway in LPS-stimulated RAW 264.7 macrophages and zebrafish model. Int Immunopharmacol 2018; 59:339-346. [PMID: 29679858 DOI: 10.1016/j.intimp.2018.03.034] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Revised: 03/17/2018] [Accepted: 03/29/2018] [Indexed: 12/27/2022]
Abstract
In this study, we confirmed the anti-inflammatory effect of Apo-9-fucoxanthinone (AF) in in vitro RAW 264.7 cells and in vivo zebrafish model. In lipopolysaccharide (LPS)-stimulated zebrafish, AF significantly decreased the production of reactive oxygen species (ROS), nitric oxide (NO) and cell death. In addition, the mRNA expression of inducible nitric oxide synthase (iNOS), suppressed cyclooxygenase-2 (COX-2) and an inflammatory cytokines; IL-1β, TNF-α were shown reduction. And AF significantly inhibited NO production and expression of iNOS in LPS-stimulated RAW 264.7 cells. Further, AF suppressed COX-2, prostaglandin E2 (PGE2), and pro-inflammatory cytokines such as interleukin-6 (IL-6), IL-1β, and tumor necrosis factor-α (TNF-α) at 25, 50 and 100 μg/mL, respectively. Further mechanistic studies showed that AF suppressed the nuclear factor-kB (NF-kB) pathway and phosphorylation of mitogen-activated protein kinase (MAPK) pathway molecules such as extracellular signal-regulated kinase (ERK) and c-Jun N-terminal kinase (JNK). According to the results, AF can be used and applied as a useful anti-inflammatory agent of nutraceutical or pharmaceutical.
Collapse
|
32
|
Yu T, Paudel P, Seong SH, Kim JA, Jung HA, Choi JS. Computational insights into β-site amyloid precursor protein enzyme 1 (BACE1) inhibition by tanshinones and salvianolic acids from Salvia miltiorrhiza via molecular docking simulations. Comput Biol Chem 2018; 74:273-285. [PMID: 29679864 DOI: 10.1016/j.compbiolchem.2018.04.008] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2018] [Revised: 04/11/2018] [Accepted: 04/12/2018] [Indexed: 12/13/2022]
Abstract
The rhizome of Salvia miltiorrhiza has emerged as a rich source of natural therapeutic agents, and its several compounds are supposed to exhibit favorable effects on Alzheimer's disease (AD). The present work investigate the anti-AD potentials of 12 tanshinones, three salvianolic acids and three caffeic acid derivatives from S. miltiorrhiza via the inhibition of β-site amyloid precursor protein cleaving enzyme 1 (BACE1). Among the tested compounds, deoxyneocryptotanshinone (1), salvianolic acid A (13) and salvianolic acid C (15) displayed good inhibitory effect on BACE1 with IC50 values of 11.53 ± 1.13, 13.01 ± 0.32 and 9.18 ± 0.03 μM, respectively. Besides this, enzyme kinetic analysis on BACE1 revealed 13, a competitive type inhibitor while 1 and 15 showed mixed-type inhibition. Furthermore, molecular docking simulation displayed negative binding energies (AutoDock 4.2.6 = -10.0 to -7.1 kcal/mol) of 1, 13, and 15 for BACE1, indicating these compounds bound tightly to the active site of the enzyme with low energy and high affinity. The results of the present study clearly demonstrate that S. miltiorrhiza and its constituents have potential anti-AD activity and can be used as a therapeutic agent for the treatment of AD.
Collapse
Affiliation(s)
- Ting Yu
- Department of Food and Life Science, Pukyong National University, Busan, 48513, Republic of Korea
| | - Pradeep Paudel
- Department of Food and Life Science, Pukyong National University, Busan, 48513, Republic of Korea
| | - Su Hui Seong
- Department of Food and Life Science, Pukyong National University, Busan, 48513, Republic of Korea
| | - Jeong Ah Kim
- College of Pharmacy, Research Institute of Pharmaceutical Sciences, Kyungpook National University, Daegu, 41566, Republic of Korea
| | - Hyun Ah Jung
- Department of Food Science and Human Nutrition, Chonbuk National University, Jeonju, 54896, Republic of Korea.
| | - Jae Sue Choi
- Department of Food and Life Science, Pukyong National University, Busan, 48513, Republic of Korea.
| |
Collapse
|
33
|
Birringer M, Siems K, Maxones A, Frank J, Lorkowski S. Natural 6-hydroxy-chromanols and -chromenols: structural diversity, biosynthetic pathways and health implications. RSC Adv 2018; 8:4803-4841. [PMID: 35539527 PMCID: PMC9078042 DOI: 10.1039/c7ra11819h] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Accepted: 01/18/2018] [Indexed: 01/26/2023] Open
Abstract
We present the first comprehensive and systematic review on the structurally diverse toco-chromanols and -chromenols found in photosynthetic organisms, including marine organisms, and as metabolic intermediates in animals. The focus of this work is on the structural diversity of chromanols and chromenols that result from various side chain modifications. We describe more than 230 structures that derive from a 6-hydroxy-chromanol- and 6-hydroxy-chromenol core, respectively, and comprise di-, sesqui-, mono- and hemiterpenes. We assort the compounds into a structure-activity relationship with special emphasis on anti-inflammatory and anti-carcinogenic activities of the congeners. This review covers the literature published from 1970 to 2017.
Collapse
Affiliation(s)
- Marc Birringer
- Department of Nutritional, Food and Consumer Sciences, Fulda University of Applied Sciences Leipziger Straße 123 36037 Fulda Germany
| | - Karsten Siems
- AnalytiCon Discovery GmbH Hermannswerder Haus 17 14473 Potsdam Germany
| | - Alexander Maxones
- Department of Nutritional, Food and Consumer Sciences, Fulda University of Applied Sciences Leipziger Straße 123 36037 Fulda Germany
| | - Jan Frank
- Institute of Biological Chemistry and Nutrition, University of Hohenheim Garbenstr. 28 70599 Stuttgart Germany
| | - Stefan Lorkowski
- Institute of Nutrition, Friedrich Schiller University Jena Dornburger Str. 25 07743 Jena Germany
- Competence Cluster for Nutrition and Cardiovascular Health (nutriCARD), Halle-Jena-Leipzig Germany
| |
Collapse
|
34
|
Ali MY, Kim DH, Seong SH, Kim HR, Jung HA, Choi JS. α-Glucosidase and Protein Tyrosine Phosphatase 1B Inhibitory Activity of Plastoquinones from Marine Brown Alga Sargassum serratifolium. Mar Drugs 2017; 15:E368. [PMID: 29194348 PMCID: PMC5742828 DOI: 10.3390/md15120368] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Revised: 11/18/2017] [Accepted: 11/27/2017] [Indexed: 01/22/2023] Open
Abstract
Sargassum serratifolium C. Agardh (Phaeophyceae, Fucales) is a marine brown alga that belongs to the family Sargassaceae. It is widely distributed throughout coastal areas of Korea and Japan. S. serratifolium has been found to contain high concentrations of plastoquinones, which have strong anti-cancer, anti-inflammatory, antioxidant, and neuroprotective activity. This study aims to investigate the anti-diabetic activity of S. serratifolium and its major constituents through inhibition of protein tyrosine phosphatase 1B (PTP1B), α-glucosidase, and ONOO--mediated albumin nitration. S. serratifolium ethanolic extract and fractions exhibited broad PTP1B and α-glucosidase inhibitory activity (IC50, 1.83~7.04 and 3.16~24.16 µg/mL for PTP1B and α-glucosidase, respectively). In an attempt to identify bioactive compounds, three plastoquinones (sargahydroquinoic acid, sargachromenol and sargaquinoic acid) were isolated from the active n-hexane fraction of S. serratifolium. All three plastoquinones exhibited dose-dependent inhibitory activity against PTP1B in the IC50 range of 5.14-14.15 µM, while sargachromenol and sargaquinoic acid showed dose-dependent inhibitory activity against α-glucosidase (IC50 42.41 ± 3.09 and 96.17 ± 3.48 µM, respectively). In the kinetic study of PTP1B enzyme inhibition, sargahydroquinoic acid and sargaquinoic acid led to mixed-type inhibition, whereas sargachromenol displayed noncompetitive-type inhibition. Moreover, plastoquinones dose-dependently inhibited ONOO--mediated albumin nitration. Docking simulations of these plastoquinones demonstrated negative binding energies and close proximity to residues in the binding pocket of PTP1B and α-glucosidase, indicating that these plastoquinones have high affinity and tight binding capacity towards the active site of the enzymes. These results demonstrate that S. serratifolium and its major plastoquinones may have the potential as functional food ingredients for the prevention and treatment of type 2 diabetes.
Collapse
Affiliation(s)
- Md Yousof Ali
- Department of Food and Life Science, Pukyong National University, Busan 48513, Korea.
| | - Da Hye Kim
- Department of Food and Life Science, Pukyong National University, Busan 48513, Korea.
| | - Su Hui Seong
- Department of Food and Life Science, Pukyong National University, Busan 48513, Korea.
| | - Hyeung-Rak Kim
- Department of Food and Life Science, Pukyong National University, Busan 48513, Korea.
| | - Hyun Ah Jung
- Department of Food Science and Human Nutrition, Chonbuk National University, Jeonju 54896, Korea.
| | - Jae Sue Choi
- Department of Food and Life Science, Pukyong National University, Busan 48513, Korea.
| |
Collapse
|
35
|
Simon L, Abdul Salam AA, Madan Kumar S, Shilpa T, Srinivasan KK, Byrappa K. Synthesis, anticancer, structural, and computational docking studies of 3-benzylchroman-4-one derivatives. Bioorg Med Chem Lett 2017; 27:5284-5290. [PMID: 29074256 DOI: 10.1016/j.bmcl.2017.10.026] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Revised: 10/12/2017] [Accepted: 10/13/2017] [Indexed: 12/28/2022]
Abstract
A series of 3-Benzylchroman-4-ones were synthesized and screened for anticancer activity by MTT assay. The compounds were evaluated against two cancerous cell lines BT549 (human breast carcinoma), HeLa (human cervical carcinoma), and one noncancerous cell line vero (normal kidney epithelial cells). 3b was found to be the most active molecule against BT549 cells (IC50 = 20.1 µM) and 3h against HeLa cells (IC50 = 20.45 µM). 3b also exhibited moderate activity against HeLa cells (IC50 = 42.8 µM). The molecular structures of 3h and 3i were solved by single crystal X-ray crystallographic technique. Additionally, the molecular docking studies between the tumour suppressor protein p53 with the lead compound 3h, which exhibited better anticancer activity against HeLa cells was examined.
Collapse
Affiliation(s)
- Lalitha Simon
- Department of Chemistry, Manipal Institute of Technology, Manipal University, Manipal 576 104, India
| | - Abdul Ajees Abdul Salam
- Department of Atomic and Molecular Physics, Manipal Institute of Technology, Manipal University, Manipal 576 104, India.
| | - S Madan Kumar
- PURSE Lab, Mangalagangotri, Mangalore University, Mangalore 574 199, India
| | - T Shilpa
- Department of Atomic and Molecular Physics, Manipal Institute of Technology, Manipal University, Manipal 576 104, India
| | - K K Srinivasan
- Department of Chemistry, Shri Madhwa Vadiraja Institute of Technology and Management, Vishwothama Nagar, Bantakal, Udupi 576 115, India
| | - K Byrappa
- Department of Material Science, Mangalagangotri, Mangalore University, Mangalore 574 199, India
| |
Collapse
|
36
|
Kinetics and Molecular Docking Studies of 6-Formyl Umbelliferone Isolated from Angelica decursiva as an Inhibitor of Cholinesterase and BACE1. Molecules 2017; 22:molecules22101604. [PMID: 28946641 PMCID: PMC6151429 DOI: 10.3390/molecules22101604] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Revised: 09/21/2017] [Accepted: 09/21/2017] [Indexed: 11/17/2022] Open
Abstract
Coumarins, which have low toxicity, are present in some natural foods, and are used in various herbal remedies, have attracted interest in recent years because of their potential medicinal properties. In this study, we report the isolation of two natural coumarins, namely umbelliferone (1) and 6-formyl umbelliferone (2), from Angelica decursiva, and the synthesis of 8-formyl umbelliferone (3) from 1. We investigated the anti-Alzheimer disease (anti-AD) potential of these coumarins by assessing their ability to inhibit acetylcholinesterase (AChE), butyrylcholinesterase (BChE), and β-site amyloid precursor protein (APP) cleaving enzyme 1 (BACE1). Among these coumarins, 2 exhibited poor inhibitory activity against AChE and BChE, and modest activity against BACE1. Structure–activity relationship analysis showed that 2 has an aldehyde group at the C-6 position, and exhibited strong anti-AD activity, whereas the presence or absence of an aldehyde group at the C-8 position reduced the anti-AD activity of 3 and 1, respectively. In addition, 2 exhibited concentration-dependent inhibition of peroxynitrite-mediated protein tyrosine nitration. A kinetic study revealed that 2 and 3 non-competitively inhibited BACE1. To confirm enzyme inhibition, we predicted the 3D structures of AChE and BACE1, and used AutoDock 4.2 to simulate binding of coumarins to these enzymes. The blind docking studies demonstrated that these molecules could interact with both the catalytic active sites and peripheral anionic sites of AChE and BACE1. Together, our results indicate that 2 has an interesting inhibitory activity in vitro, and can be used in further studies to develop therapeutic modalities for the treatment of AD.
Collapse
|