1
|
Zhuo C, Zeng C, Liu H, Wang H, Peng Y, Zhao Y. Advances and Mechanisms of RNA-Ligand Interaction Predictions. Life (Basel) 2025; 15:104. [PMID: 39860045 PMCID: PMC11767038 DOI: 10.3390/life15010104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Revised: 01/13/2025] [Accepted: 01/15/2025] [Indexed: 01/27/2025] Open
Abstract
The diversity and complexity of RNA include sequence, secondary structure, and tertiary structure characteristics. These elements are crucial for RNA's specific recognition of other molecules. With advancements in biotechnology, RNA-ligand structures allow researchers to utilize experimental data to uncover the mechanisms of complex interactions. However, determining the structures of these complexes experimentally can be technically challenging and often results in low-resolution data. Many machine learning computational approaches have recently emerged to learn multiscale-level RNA features to predict the interactions. Predicting interactions remains an unexplored area. Therefore, studying RNA-ligand interactions is essential for understanding biological processes. In this review, we analyze the interaction characteristics of RNA-ligand complexes by examining RNA's sequence, secondary structure, and tertiary structure. Our goal is to clarify how RNA specifically recognizes ligands. Additionally, we systematically discuss advancements in computational methods for predicting interactions and to guide future research directions. We aim to inspire the creation of more reliable RNA-ligand interaction prediction tools.
Collapse
Affiliation(s)
- Chen Zhuo
- Institute of Biophysics and Department of Physics, Central China Normal University, Wuhan 430079, China
| | - Chengwei Zeng
- Institute of Biophysics and Department of Physics, Central China Normal University, Wuhan 430079, China
| | - Haoquan Liu
- Institute of Biophysics and Department of Physics, Central China Normal University, Wuhan 430079, China
| | - Huiwen Wang
- School of Physics and Engineering, Henan University of Science and Technology, Luoyang 471023, China;
| | - Yunhui Peng
- Institute of Biophysics and Department of Physics, Central China Normal University, Wuhan 430079, China
| | - Yunjie Zhao
- Institute of Biophysics and Department of Physics, Central China Normal University, Wuhan 430079, China
| |
Collapse
|
2
|
Sopić M, Vladimirov S, Munjas J, Mitić T, Hall IF, Jusic A, Ruzic D, Devaux Y. Targeting noncoding RNAs to treat atherosclerosis. Br J Pharmacol 2025; 182:220-245. [PMID: 38720437 DOI: 10.1111/bph.16412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 03/06/2024] [Accepted: 04/05/2024] [Indexed: 12/13/2024] Open
Abstract
Noncoding RNAs (ncRNAs) are pivotal for various pathological processes, impacting disease progression. The potential for leveraging ncRNAs to prevent or treat atherosclerosis and associated cardiovascular diseases is of great significance, especially given the increasing prevalence of atherosclerosis in an ageing and sedentary population. Together, these diseases impose a substantial socio-economic burden, demanding innovative therapeutic solutions. This review explores the potential of ncRNAs in atherosclerosis treatment. We commence by examining approaches for identifying and characterizing atherosclerosis-associated ncRNAs. We then delve into the functional aspects of ncRNAs in atherosclerosis development and progression. Additionally, we review current RNA and RNA-targeting molecules in development or under approval for clinical use, offering insights into their pharmacological potential. The importance of improved ncRNA delivery strategies is highlighted. Finally, we suggest avenues for advanced research to accelerate the use of ncRNAs in treating atherosclerosis and mitigating its societal impact. LINKED ARTICLES: This article is part of a themed issue Non-coding RNA Therapeutics. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v182.2/issuetoc.
Collapse
Affiliation(s)
- Miron Sopić
- Cardiovascular Research Unit, Department of Precision Health, Luxembourg Institute of Health, Luxembourg, Luxembourg
- Department of Medical Biochemistry, Faculty of Pharmacy, University of Belgrade, Belgrade, Serbia
| | - Sandra Vladimirov
- Department of Medical Biochemistry, Faculty of Pharmacy, University of Belgrade, Belgrade, Serbia
| | - Jelena Munjas
- Department of Medical Biochemistry, Faculty of Pharmacy, University of Belgrade, Belgrade, Serbia
| | - Tijana Mitić
- BHF/University Centre for Cardiovascular Science, Queens Medical Research Institute, University of Edinburgh, Edinburgh, UK
| | - Ignacio Fernando Hall
- BHF/University Centre for Cardiovascular Science, Queens Medical Research Institute, University of Edinburgh, Edinburgh, UK
| | - Amela Jusic
- HAYA Therapeutics SA, SuperLab Suisse - Bâtiment Serine, Lausanne, Vaud, Switzerland
| | - Dusan Ruzic
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Belgrade, Belgrade, Serbia
| | - Yvan Devaux
- Cardiovascular Research Unit, Department of Precision Health, Luxembourg Institute of Health, Luxembourg, Luxembourg
| |
Collapse
|
3
|
Chen S, Mao Q, Cheng H, Tai W. RNA-Binding Small Molecules in Drug Discovery and Delivery: An Overview from Fundamentals. J Med Chem 2024; 67:16002-16017. [PMID: 39287926 DOI: 10.1021/acs.jmedchem.4c01330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/19/2024]
Abstract
RNA molecules, similar to proteins, fold into complex structures to confer diverse functions in cells. The intertwining of functions with RNA structures offers a new therapeutic opportunity for small molecules to bind and manipulate disease-relevant RNA pathways, thus creating a therapeutic realm of RNA-binding small molecules. The ongoing interest in RNA targeting and subsequent screening campaigns have led to the identification of numerous compounds that can regulate RNAs from splicing, degradation to malfunctions, with therapeutic benefits for a variety of diseases. Moreover, along with the rise of RNA-based therapeutics, RNA-binding small molecules have expanded their application to the modification, regulation, and delivery of RNA drugs, leading to the burgeoning interest in this field. This Perspective overviews the emerging roles of RNA-binding small molecules in drug discovery and delivery, covering aspects from their action fundamentals to therapeutic applications, which may inspire researchers to advance the field.
Collapse
Affiliation(s)
- Siyi Chen
- Department of Pharmaceutical Engineering, School of Pharmaceutical Sciences, Wuhan University, Wuhan, Hubei 430071, China
- Department of Pharmacy, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 430071, China
| | - Qi Mao
- Department of Pharmaceutical Engineering, School of Pharmaceutical Sciences, Wuhan University, Wuhan, Hubei 430071, China
- Department of Pharmacy, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 430071, China
| | - Hong Cheng
- Department of Pharmaceutical Engineering, School of Pharmaceutical Sciences, Wuhan University, Wuhan, Hubei 430071, China
- Department of Pharmacy, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 430071, China
| | - Wanyi Tai
- Department of Pharmaceutical Engineering, School of Pharmaceutical Sciences, Wuhan University, Wuhan, Hubei 430071, China
- Department of Pharmacy, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 430071, China
| |
Collapse
|
4
|
Parmar S, Bume DD, Connelly CM, Boer RE, Prestwood PR, Wang Z, Labuhn H, Sinnadurai K, Feri A, Ouellet J, Homan P, Numata T, Schneekloth JS. Mechanistic analysis of Riboswitch Ligand interactions provides insights into pharmacological control over gene expression. Nat Commun 2024; 15:8173. [PMID: 39289353 PMCID: PMC11408619 DOI: 10.1038/s41467-024-52235-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 08/28/2024] [Indexed: 09/19/2024] Open
Abstract
Riboswitches are structured RNA elements that regulate gene expression upon binding to small molecule ligands. Understanding the mechanisms by which small molecules impact riboswitch activity is key to developing potent, selective ligands for these and other RNA targets. We report the structure-informed design of chemically diverse synthetic ligands for PreQ1 riboswitches. Multiple X-ray co-crystal structures of synthetic ligands with the Thermoanaerobacter tengcongensis (Tte)-PreQ1 riboswitch confirm a common binding site with the cognate ligand, despite considerable chemical differences among the ligands. Structure probing assays demonstrate that one ligand causes conformational changes similar to PreQ1 in six structurally and mechanistically diverse PreQ1 riboswitch aptamers. Single-molecule force spectroscopy is used to demonstrate differential modes of riboswitch stabilization by the ligands. Binding of the natural ligand brings about the formation of a persistent, folded pseudoknot structure, whereas a synthetic ligand decreases the rate of unfolding through a kinetic mechanism. Single round transcription termination assays show the biochemical activity of the ligands, while a GFP reporter system reveals compound activity in regulating gene expression in live cells without toxicity. Taken together, this study reveals that diverse small molecules can impact gene expression in live cells by altering conformational changes in RNA structures through distinct mechanisms.
Collapse
Affiliation(s)
- Shaifaly Parmar
- Chemical Biology Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, MD, USA
| | - Desta Doro Bume
- Chemical Biology Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, MD, USA
| | - Colleen M Connelly
- Chemical Biology Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, MD, USA
| | - Robert E Boer
- Chemical Biology Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, MD, USA
| | - Peri R Prestwood
- Chemical Biology Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, MD, USA
| | | | | | | | | | | | - Philip Homan
- Center for Cancer Research Collaborative Bioinformatics Resource, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
- Advanced Biomedical Computational Science, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Tomoyuki Numata
- Department of Bioscience and Biotechnology, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, Fukuoka, Japan
| | - John S Schneekloth
- Chemical Biology Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, MD, USA.
| |
Collapse
|
5
|
Fullenkamp CR, Mehdi S, Jones CP, Tenney L, Pichling P, Prestwood PR, Ferré-D’Amaré AR, Tiwary P, Schneekloth JS. Machine learning-augmented molecular dynamics simulations (MD) reveal insights into the disconnect between affinity and activation of ZTP riboswitch ligands. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.13.612887. [PMID: 39314358 PMCID: PMC11419147 DOI: 10.1101/2024.09.13.612887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/25/2024]
Abstract
The challenge of targeting RNA with small molecules necessitates a better understanding of RNA-ligand interaction mechanisms. However, the dynamic nature of nucleic acids, their ligand-induced stabilization, and how conformational changes influence gene expression pose significant difficulties for experimental investigation. This work employs a combination of computational and experimental methods to address these challenges. By integrating structure-informed design, crystallography, and machine learning-augmented all-atom molecular dynamics simulations (MD) we synthesized, biophysically and biochemically characterized, and studied the dissociation of a library of small molecule activators of the ZTP riboswitch, a ligand-binding RNA motif that regulates bacterial gene expression. We uncovered key interaction mechanisms, revealing valuable insights into the role of ligand binding kinetics on riboswitch activation. Further, we established that ligand on-rates determine activation potency as opposed to binding affinity and elucidated RNA structural differences, which provide mechanistic insights into the interplay of RNA structure on riboswitch activation.
Collapse
Affiliation(s)
| | - Shams Mehdi
- Biophysics Program and Institute for Physical Science and Technology, University of Maryland, College Park 20742, USA
| | - Christopher P. Jones
- Laboratory of Nucleic Acids, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Logan Tenney
- Chemical Biology Laboratory, National Cancer Institute, Frederick, MD, USA
| | - Patricio Pichling
- Laboratory of Nucleic Acids, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Peri R. Prestwood
- Chemical Biology Laboratory, National Cancer Institute, Frederick, MD, USA
| | - Adrian R. Ferré-D’Amaré
- Laboratory of Nucleic Acids, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Pratyush Tiwary
- Department of Chemistry and Biochemistry and Institute for Physical Science and Technology, University of Maryland, College Park 20742, USA
- University of Maryland Institute for Health Computing, Bethesda, Maryland 20852, USA
| | | |
Collapse
|
6
|
Prestwood PR, Yang M, Lewis GV, Balaratnam S, Yazdani K, Schneekloth JS. Competitive Microarray Screening Reveals Functional Ligands for the DHX15 RNA G-Quadruplex. ACS Med Chem Lett 2024; 15:814-821. [PMID: 38894923 PMCID: PMC11181508 DOI: 10.1021/acsmedchemlett.3c00574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 03/12/2024] [Accepted: 03/22/2024] [Indexed: 06/21/2024] Open
Abstract
RNAs are increasingly considered valuable therapeutic targets, and the development of methods to identify and validate both RNA targets and ligands is more important than ever. Here, we utilized a bioinformatic approach to identify a hairpin-containing RNA G-quadruplex (rG4) in the 5' untranslated region (5' UTR) of DHX15 mRNA. By using a novel competitive small molecule microarray (SMM) approach, we identified a compound that specifically binds to the DHX15 rG4 (K D = 12.6 ± 1.0 μM). This rG4 directly impacts translation of a DHX15 reporter mRNA in vitro, and binding of our compound (F1) to the structure inhibits translation up to 57% (IC50 = 22.9 ± 3.8 μM). This methodology allowed us to identify and target the mRNA of a cancer-relevant helicase with no known inhibitors. Our target identification method and the novelty of our screening approach make our work informative for future development of novel small molecule cancer therapeutics for RNA targets.
Collapse
Affiliation(s)
- Peri R. Prestwood
- Chemical Biology Laboratory,
Center for Cancer Research, National Cancer
Institute, Frederick, Maryland 21702-1201, United States
| | - Mo Yang
- Chemical Biology Laboratory,
Center for Cancer Research, National Cancer
Institute, Frederick, Maryland 21702-1201, United States
| | - Grace V. Lewis
- Chemical Biology Laboratory,
Center for Cancer Research, National Cancer
Institute, Frederick, Maryland 21702-1201, United States
| | - Sumirtha Balaratnam
- Chemical Biology Laboratory,
Center for Cancer Research, National Cancer
Institute, Frederick, Maryland 21702-1201, United States
| | - Kamyar Yazdani
- Chemical Biology Laboratory,
Center for Cancer Research, National Cancer
Institute, Frederick, Maryland 21702-1201, United States
| | - John S. Schneekloth
- Chemical Biology Laboratory,
Center for Cancer Research, National Cancer
Institute, Frederick, Maryland 21702-1201, United States
| |
Collapse
|
7
|
Bosio S, Bernetti M, Rocchia W, Masetti M. Similarities and Differences in Ligand Binding to Protein and RNA Targets: The Case of Riboflavin. J Chem Inf Model 2024; 64:4570-4586. [PMID: 38800845 DOI: 10.1021/acs.jcim.4c00420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
It is nowadays clear that RNA molecules can play active roles in several biological processes. As a result, an increasing number of RNAs are gradually being identified as potentially druggable targets. In particular, noncoding RNAs can adopt highly organized conformations that are suitable for drug binding. However, RNAs are still considered challenging targets due to their complex structural dynamics and high charge density. Thus, elucidating relevant features of drug-RNA binding is fundamental for advancing drug discovery. Here, by using Molecular Dynamics simulations, we compare key features of ligand binding to proteins with those observed in RNA. Specifically, we explore similarities and differences in terms of (i) conformational flexibility of the target, (ii) electrostatic contribution to binding free energy, and (iii) water and ligand dynamics. As a test case, we examine binding of the same ligand, namely riboflavin, to protein and RNA targets, specifically the riboflavin (RF) kinase and flavin mononucleotide (FMN) riboswitch. The FMN riboswitch exhibited enhanced fluctuations and explored a wider conformational space, compared to the protein target, underscoring the importance of RNA flexibility in ligand binding. Conversely, a similar electrostatic contribution to the binding free energy of riboflavin was found. Finally, greater stability of water molecules was observed in the FMN riboswitch compared to the RF kinase, possibly due to the different shape and polarity of the pockets.
Collapse
Affiliation(s)
- Stefano Bosio
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum - University of Bologna, Via Belmeloro 6, 40126 Bologna, Italy
- Computational and Chemical Biology, Fondazione Istituto Italiano di Tecnologia, Via Morego 30, I-16163 Genova, Italy
| | - Mattia Bernetti
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum - University of Bologna, Via Belmeloro 6, 40126 Bologna, Italy
- Computational and Chemical Biology, Fondazione Istituto Italiano di Tecnologia, Via Morego 30, I-16163 Genova, Italy
| | - Walter Rocchia
- Computational mOdelling of NanosCalE and bioPhysical sysTems (CONCEPT) Lab, Istituto Italiano di Tecnologia, Via Melen - 83, B Block, 16152 Genova, Italy
| | - Matteo Masetti
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum - University of Bologna, Via Belmeloro 6, 40126 Bologna, Italy
| |
Collapse
|
8
|
Kaur J, Sharma A, Mundlia P, Sood V, Pandey A, Singh G, Barnwal RP. RNA-Small-Molecule Interaction: Challenging the "Undruggable" Tag. J Med Chem 2024; 67:4259-4297. [PMID: 38498010 DOI: 10.1021/acs.jmedchem.3c01354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2024]
Abstract
RNA targeting, specifically with small molecules, is a relatively new and rapidly emerging avenue with the promise to expand the target space in the drug discovery field. From being "disregarded" as an "undruggable" messenger molecule to FDA approval of an RNA-targeting small-molecule drug Risdiplam, a radical change in perspective toward RNA has been observed in the past decade. RNAs serve important regulatory functions beyond canonical protein synthesis, and their dysregulation has been reported in many diseases. A deeper understanding of RNA biology reveals that RNA molecules can adopt a variety of structures, carrying defined binding pockets that can accommodate small-molecule drugs. Due to its functional diversity and structural complexity, RNA can be perceived as a prospective target for therapeutic intervention. This perspective highlights the proof of concept of RNA-small-molecule interactions, exemplified by targeting of various transcripts with functional modulators. The advent of RNA-oriented knowledge would help expedite drug discovery.
Collapse
Affiliation(s)
- Jaskirat Kaur
- Department of Biophysics, Panjab University, Chandigarh 160014, India
| | - Akanksha Sharma
- Department of Biophysics, Panjab University, Chandigarh 160014, India
- University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh 160014, India
| | - Poonam Mundlia
- Department of Biophysics, Panjab University, Chandigarh 160014, India
| | - Vikas Sood
- Department of Biochemistry, Jamia Hamdard, New Delhi 110062, India
| | - Ankur Pandey
- Department of Chemistry, Panjab University, Chandigarh 160014, India
| | - Gurpal Singh
- University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh 160014, India
| | | |
Collapse
|
9
|
Parmar S, Bume DD, Conelly C, Boer R, Prestwood PR, Wang Z, Labuhn H, Sinnadurai K, Feri A, Ouellet J, Homan P, Numata T, Schneekloth JS. Mechanistic Analysis of Riboswitch Ligand Interactions Provides Insights into Pharmacological Control over Gene Expression. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.23.581746. [PMID: 38903087 PMCID: PMC11188086 DOI: 10.1101/2024.02.23.581746] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/22/2024]
Abstract
Riboswitches are structured RNA elements that regulate gene expression upon binding to small molecule ligands. Understanding the mechanisms by which small molecules impact riboswitch activity is key to developing potent, selective ligands for these and other RNA targets. We report the structure-informed design of chemically diverse synthetic ligands for PreQ1 riboswitches. Multiple X-ray co-crystal structures of synthetic ligands with the Thermoanaerobacter tengcongensis (Tte)-PreQ1 riboswitch confirm a common binding site with the cognate ligand, despite considerable chemical differences among the ligands. Structure probing assays demonstrate that one ligand causes conformational changes similar to PreQ1 in six structurally and mechanistically diverse PreQ1 riboswitch aptamers. Single-molecule force spectroscopy is used to demonstrate differential modes of riboswitch stabilization by the ligands. Binding of the natural ligand brings about the formation of a persistent, folded pseudoknot structure, whereas a synthetic ligand decreases the rate of unfolding through a kinetic mechanism. Single round transcription termination assays show the biochemical activity of the ligands, while a GFP reporter system reveals compound activity in regulating gene expression in live cells without toxicity. Taken together, this study reveals that diverse small molecules can impact gene expression in live cells by altering conformational changes in RNA structures through distinct mechanisms.
Collapse
Affiliation(s)
- Shaifaly Parmar
- Chemical Biology Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702-1201, USA
| | - Desta Doro Bume
- Chemical Biology Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702-1201, USA
| | - Colleen Conelly
- Chemical Biology Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702-1201, USA
| | - Robert Boer
- Chemical Biology Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702-1201, USA
| | - Peri R. Prestwood
- Chemical Biology Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702-1201, USA
| | - Zhen Wang
- Depixus SAS, 3-5 Impasse Reille, 75014 Paris, France
| | | | | | - Adeline Feri
- Depixus SAS, 3-5 Impasse Reille, 75014 Paris, France
| | - Jimmy Ouellet
- Depixus SAS, 3-5 Impasse Reille, 75014 Paris, France
| | - Philip Homan
- Center for Cancer Research Collaborative Bioinformatics Resource, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA
- Advanced Biomedical Computational Science, Frederick National Laboratory for Cancer Research, Frederick, MD, 21702, USA
| | - Tomoyuki Numata
- Department of Bioscience and Biotechnology, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, Fukuoka 819-0395, Japan
| | - John S. Schneekloth
- Chemical Biology Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702-1201, USA
| |
Collapse
|
10
|
Krishnan SR, Roy A, Gromiha MM. Reliable method for predicting the binding affinity of RNA-small molecule interactions using machine learning. Brief Bioinform 2024; 25:bbae002. [PMID: 38261341 PMCID: PMC10805179 DOI: 10.1093/bib/bbae002] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 12/21/2023] [Accepted: 12/24/2023] [Indexed: 01/24/2024] Open
Abstract
Ribonucleic acids (RNAs) play important roles in cellular regulation. Consequently, dysregulation of both coding and non-coding RNAs has been implicated in several disease conditions in the human body. In this regard, a growing interest has been observed to probe into the potential of RNAs to act as drug targets in disease conditions. To accelerate this search for disease-associated novel RNA targets and their small molecular inhibitors, machine learning models for binding affinity prediction were developed specific to six RNA subtypes namely, aptamers, miRNAs, repeats, ribosomal RNAs, riboswitches and viral RNAs. We found that differences in RNA sequence composition, flexibility and polar nature of RNA-binding ligands are important for predicting the binding affinity. Our method showed an average Pearson correlation (r) of 0.83 and a mean absolute error of 0.66 upon evaluation using the jack-knife test, indicating their reliability despite the low amount of data available for several RNA subtypes. Further, the models were validated with external blind test datasets, which outperform other existing quantitative structure-activity relationship (QSAR) models. We have developed a web server to host the models, RNA-Small molecule binding Affinity Predictor, which is freely available at: https://web.iitm.ac.in/bioinfo2/RSAPred/.
Collapse
Affiliation(s)
- Sowmya R Krishnan
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai 600036, India
- TCS Research (Life Sciences division), Tata Consultancy Services, Hyderabad 500081, India
| | - Arijit Roy
- TCS Research (Life Sciences division), Tata Consultancy Services, Hyderabad 500081, India
| | - M Michael Gromiha
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai 600036, India
- International Research Frontiers Initiative, School of Computing, Tokyo Institute of Technology, Yokohama 226-8501, Japan
- Department of Computer Science, National University of Singapore, Singapore 117543
| |
Collapse
|
11
|
Sabalette KB, Makarova L, Marcia M. G·U base pairing motifs in long non-coding RNAs. Biochimie 2023; 214:123-140. [PMID: 37353139 DOI: 10.1016/j.biochi.2023.06.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 06/08/2023] [Accepted: 06/09/2023] [Indexed: 06/25/2023]
Abstract
Long non-coding RNAs (lncRNAs) are recently-discovered transcripts involved in gene expression regulation and associated with diseases. Despite the unprecedented molecular complexity of these transcripts, recent studies of the secondary and tertiary structure of lncRNAs are starting to reveal the principles of lncRNA structural organization, with important functional implications. It therefore starts to be possible to analyze lncRNA structures systematically. Here, using a set of prototypical and medically-relevant lncRNAs of known secondary structure, we specifically catalogue the distribution and structural environment of one of the first-identified and most frequently occurring non-canonical Watson-Crick interactions, the G·U base pair. We compare the properties of G·U base pairs in our set of lncRNAs to those of the G·U base pairs in other well-characterized transcripts, like rRNAs, tRNAs, ribozymes, and riboswitches. Furthermore, we discuss how G·U base pairs in these targets participate in establishing interactions with proteins or miRNAs, and how they enable lncRNA tertiary folding by forming intramolecular or metal-ion interactions. Finally, by identifying highly-G·U-enriched regions of yet unknown function in our target lncRNAs, we provide a new rationale for future experimental investigation of these motifs, which will help obtain a more comprehensive understanding of lncRNA functions and molecular mechanisms in the future.
Collapse
Affiliation(s)
- Karina Belen Sabalette
- European Molecular Biology Laboratory (EMBL) Grenoble, 71 Avenue des Martyrs, Grenoble, 38042, France
| | - Liubov Makarova
- European Molecular Biology Laboratory (EMBL) Grenoble, 71 Avenue des Martyrs, Grenoble, 38042, France
| | - Marco Marcia
- European Molecular Biology Laboratory (EMBL) Grenoble, 71 Avenue des Martyrs, Grenoble, 38042, France.
| |
Collapse
|
12
|
Mathez G, Cagno V. Small Molecules Targeting Viral RNA. Int J Mol Sci 2023; 24:13500. [PMID: 37686306 PMCID: PMC10487773 DOI: 10.3390/ijms241713500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 08/25/2023] [Accepted: 08/28/2023] [Indexed: 09/10/2023] Open
Abstract
The majority of antivirals available target viral proteins; however, RNA is emerging as a new and promising antiviral target due to the presence of highly structured RNA in viral genomes fundamental for their replication cycle. Here, we discuss methods for the identification of RNA-targeting compounds, starting from the determination of RNA structures either from purified RNA or in living cells, followed by in silico screening on RNA and phenotypic assays to evaluate viral inhibition. Moreover, we review the small molecules known to target the programmed ribosomal frameshifting element of SARS-CoV-2, the internal ribosomal entry site of different viruses, and RNA elements of HIV.
Collapse
Affiliation(s)
| | - Valeria Cagno
- Institute of Microbiology, University Hospital of Lausanne, University of Lausanne, 1011 Lausanne, Switzerland
| |
Collapse
|
13
|
Mikutis S, Rebelo M, Yankova E, Gu M, Tang C, Coelho AR, Yang M, Hazemi ME, Pires de Miranda M, Eleftheriou M, Robertson M, Vassiliou GS, Adams DJ, Simas JP, Corzana F, Schneekloth JS, Tzelepis K, Bernardes GJL. Proximity-Induced Nucleic Acid Degrader (PINAD) Approach to Targeted RNA Degradation Using Small Molecules. ACS CENTRAL SCIENCE 2023; 9:892-904. [PMID: 37252343 PMCID: PMC10214512 DOI: 10.1021/acscentsci.3c00015] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Indexed: 05/31/2023]
Abstract
Nature has evolved intricate machinery to target and degrade RNA, and some of these molecular mechanisms can be adapted for therapeutic use. Small interfering RNAs and RNase H-inducing oligonucleotides have yielded therapeutic agents against diseases that cannot be tackled using protein-centered approaches. Because these therapeutic agents are nucleic acid-based, they have several inherent drawbacks which include poor cellular uptake and stability. Here we report a new approach to target and degrade RNA using small molecules, proximity-induced nucleic acid degrader (PINAD). We have utilized this strategy to design two families of RNA degraders which target two different RNA structures within the genome of SARS-CoV-2: G-quadruplexes and the betacoronaviral pseudoknot. We demonstrate that these novel molecules degrade their targets using in vitro, in cellulo, and in vivo SARS-CoV-2 infection models. Our strategy allows any RNA binding small molecule to be converted into a degrader, empowering RNA binders that are not potent enough to exert a phenotypic effect on their own. PINAD raises the possibility of targeting and destroying any disease-related RNA species, which can greatly expand the space of druggable targets and diseases.
Collapse
Affiliation(s)
- Sigitas Mikutis
- Yusuf
Hamied Department of Chemistry, University
of Cambridge, Lensfield Road, Cambridge CB2 1EW, U.K.
| | - Maria Rebelo
- Instituto
de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Avenida Professor Egas Moniz, 1649-028, Lisboa, Portugal
| | - Eliza Yankova
- Wellcome-MRC
Cambridge Stem Cell Institute, University
of Cambridge, Cambridge CB2 0AW, U.K.
- Milner
Therapeutics Institute, University of Cambridge, Puddicombe Way, Cambridge CB2 0AW, U.K.
| | - Muxin Gu
- Wellcome-MRC
Cambridge Stem Cell Institute, University
of Cambridge, Cambridge CB2 0AW, U.K.
| | - Cong Tang
- Instituto
de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Avenida Professor Egas Moniz, 1649-028, Lisboa, Portugal
| | - Ana R. Coelho
- Instituto
de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Avenida Professor Egas Moniz, 1649-028, Lisboa, Portugal
| | - Mo Yang
- Chemical
Biology Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, Maryland 21702, United States
| | - Madoka E. Hazemi
- Yusuf
Hamied Department of Chemistry, University
of Cambridge, Lensfield Road, Cambridge CB2 1EW, U.K.
| | - Marta Pires de Miranda
- Instituto
de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Avenida Professor Egas Moniz, 1649-028, Lisboa, Portugal
| | - Maria Eleftheriou
- Wellcome-MRC
Cambridge Stem Cell Institute, University
of Cambridge, Cambridge CB2 0AW, U.K.
- Milner
Therapeutics Institute, University of Cambridge, Puddicombe Way, Cambridge CB2 0AW, U.K.
| | - Max Robertson
- Yusuf
Hamied Department of Chemistry, University
of Cambridge, Lensfield Road, Cambridge CB2 1EW, U.K.
| | - George S. Vassiliou
- Wellcome-MRC
Cambridge Stem Cell Institute, University
of Cambridge, Cambridge CB2 0AW, U.K.
| | - David J. Adams
- Experimental
Cancer Genetics, Wellcome Trust Sanger Institute, Hinxton, Cambridge CB10 1SA, U.K.
| | - J. Pedro Simas
- Instituto
de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Avenida Professor Egas Moniz, 1649-028, Lisboa, Portugal
- Católica
Biomedical Research and Católica Medical School, Universidade Católica Portuguesa, 1649-023 Lisboa, Portugal
| | - Francisco Corzana
- Departamento
de Química, Centro de Investigación en Síntesis
Química, Universidad de La Rioja, 26006 Logroño, Spain
| | - John S. Schneekloth
- Chemical
Biology Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, Maryland 21702, United States
| | - Konstantinos Tzelepis
- Wellcome-MRC
Cambridge Stem Cell Institute, University
of Cambridge, Cambridge CB2 0AW, U.K.
- Milner
Therapeutics Institute, University of Cambridge, Puddicombe Way, Cambridge CB2 0AW, U.K.
| | - Gonçalo J. L. Bernardes
- Yusuf
Hamied Department of Chemistry, University
of Cambridge, Lensfield Road, Cambridge CB2 1EW, U.K.
- Instituto
de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Avenida Professor Egas Moniz, 1649-028, Lisboa, Portugal
| |
Collapse
|
14
|
Bagnolini G, Luu TB, Hargrove AE. Recognizing the power of machine learning and other computational methods to accelerate progress in small molecule targeting of RNA. RNA (NEW YORK, N.Y.) 2023; 29:473-488. [PMID: 36693763 PMCID: PMC10019373 DOI: 10.1261/rna.079497.122] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
RNA structures regulate a wide range of processes in biology and disease, yet small molecule chemical probes or drugs that can modulate these functions are rare. Machine learning and other computational methods are well poised to fill gaps in knowledge and overcome the inherent challenges in RNA targeting, such as the dynamic nature of RNA and the difficulty of obtaining RNA high-resolution structures. Successful tools to date include principal component analysis, linear discriminate analysis, k-nearest neighbor, artificial neural networks, multiple linear regression, and many others. Employment of these tools has revealed critical factors for selective recognition in RNA:small molecule complexes, predictable differences in RNA- and protein-binding ligands, and quantitative structure activity relationships that allow the rational design of small molecules for a given RNA target. Herein we present our perspective on the value of using machine learning and other computation methods to advance RNA:small molecule targeting, including select examples and their validation as well as necessary and promising future directions that will be key to accelerate discoveries in this important field.
Collapse
Affiliation(s)
- Greta Bagnolini
- Department of Chemistry, Duke University, Durham, North Carolina 27708, USA
| | - TinTin B Luu
- Department of Chemistry, Duke University, Durham, North Carolina 27708, USA
| | - Amanda E Hargrove
- Department of Chemistry, Duke University, Durham, North Carolina 27708, USA
- Department of Biochemistry, Duke University School of Medicine, Durham, North Carolina 27710, USA
| |
Collapse
|
15
|
Koehn JT, Felder S, Weeks KM. Innovations in targeting RNA by fragment-based ligand discovery. Curr Opin Struct Biol 2023; 79:102550. [PMID: 36863268 PMCID: PMC10023403 DOI: 10.1016/j.sbi.2023.102550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Revised: 01/21/2023] [Accepted: 01/23/2023] [Indexed: 03/04/2023]
Abstract
A subset of functional regions within large RNAs fold into complex structures able to bind small-molecule ligands with high affinity and specificity. Fragment-based ligand discovery (FBLD) offers notable opportunities for discovery and design of potent small molecules that bind pockets in RNA. Here we share an integrated analysis of recent innovations in FBLD, emphasizing opportunities resulting from fragment elaboration via both linking and growing. Analysis of elaborated fragments emphasizes that high-quality interactions form with complex tertiary structures in RNA. FBLD-inspired small molecules have been shown to modulate RNA functions by competitively inhibiting protein binding and by selectively stabilizing dynamic RNA states. FBLD is creating a foundation to interrogate the relatively unknown structural space for RNA ligands and for discovery of RNA-targeted therapeutics.
Collapse
Affiliation(s)
- Jordan T Koehn
- Department of Chemistry, University of North Carolina, Chapel Hill NC 27599-3290, USA
| | - Simon Felder
- Department of Chemistry, University of North Carolina, Chapel Hill NC 27599-3290, USA
| | - Kevin M Weeks
- Department of Chemistry, University of North Carolina, Chapel Hill NC 27599-3290, USA.
| |
Collapse
|
16
|
Garner AL. Contemporary Progress and Opportunities in RNA-Targeted Drug Discovery. ACS Med Chem Lett 2023; 14:251-259. [PMID: 36923915 PMCID: PMC10009794 DOI: 10.1021/acsmedchemlett.3c00020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 02/15/2023] [Indexed: 02/25/2023] Open
Abstract
The surprising discovery that RNAs are the predominant gene products to emerge from the human genome catalyzed a renaissance in RNA biology. It is now well-understood that RNAs act as more than just a messenger and comprise a large and diverse family of ribonucleic acids of differing sizes, structures, and functions. RNAs play expansive roles in the cell, contributing to the regulation and fine-tuning of nearly all aspects of gene expression and genome architecture. In line with the significance of these functions, we have witnessed an explosion in discoveries connecting RNAs with a variety of human diseases. Consequently, the targeting of RNAs, and more broadly RNA biology, has emerged as an untapped area of drug discovery, making the search for RNA-targeted therapeutics of great interest. In this Microperspective, I highlight contemporary learnings in the field and present my views on how to catapult us toward the systematic discovery of RNA-targeted medicines.
Collapse
Affiliation(s)
- Amanda L. Garner
- Department of Medicinal Chemistry,
College of Pharmacy, University of Michigan, 1600 Huron Parkway, NCRC B520, Ann Arbor, Michigan 48109, United States
| |
Collapse
|
17
|
Yazdani K, Jordan D, Yang M, Fullenkamp CR, Calabrese DR, Boer R, Hilimire T, Allen TEH, Khan RT, Schneekloth JS. Machine Learning Informs RNA-Binding Chemical Space. Angew Chem Int Ed Engl 2023; 62:e202211358. [PMID: 36584293 PMCID: PMC9992102 DOI: 10.1002/anie.202211358] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 12/21/2022] [Accepted: 12/23/2022] [Indexed: 01/01/2023]
Abstract
Small molecule targeting of RNA has emerged as a new frontier in medicinal chemistry, but compared to the protein targeting literature our understanding of chemical matter that binds to RNA is limited. In this study, we reported Repository Of BInders to Nucleic acids (ROBIN), a new library of nucleic acid binders identified by small molecule microarray (SMM) screening. The complete results of 36 individual nucleic acid SMM screens against a library of 24 572 small molecules were reported (including a total of 1 627 072 interactions assayed). A set of 2 003 RNA-binding small molecules was identified, representing the largest fully public, experimentally derived library of its kind to date. Machine learning was used to develop highly predictive and interpretable models to characterize RNA-binding molecules. This work demonstrates that machine learning algorithms applied to experimentally derived sets of RNA binders are a powerful method to inform RNA-targeted chemical space.
Collapse
Affiliation(s)
- Kamyar Yazdani
- Chemical Biology Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702-1201, USA
| | - Deondre Jordan
- Chemical Biology Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702-1201, USA
| | - Mo Yang
- Chemical Biology Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702-1201, USA
| | - Christopher R. Fullenkamp
- Chemical Biology Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702-1201, USA
| | - David R. Calabrese
- Chemical Biology Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702-1201, USA
| | - Robert Boer
- Chemical Biology Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702-1201, USA
| | - Thomas Hilimire
- Chemical Biology Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702-1201, USA
| | | | | | - John S. Schneekloth
- Chemical Biology Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702-1201, USA
| |
Collapse
|
18
|
Morishita EC. Discovery of RNA-targeted small molecules through the merging of experimental and computational technologies. Expert Opin Drug Discov 2023; 18:207-226. [PMID: 36322542 DOI: 10.1080/17460441.2022.2134852] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
INTRODUCTION The field of RNA-targeted small molecules is rapidly evolving, owing to the advances in experimental and computational technologies. With the identification of several bioactive small molecules that target RNA, including the FDA-approved risdiplam, the biopharmaceutical industry is gaining confidence in the field. This review, based on the literature obtained from PubMed, aims to disseminate information about the various technologies developed for targeting RNA with small molecules and propose areas for improvement to develop drugs more efficiently, particularly those linked to diseases with unmet medical needs. AREAS COVERED The technologies for the identification of RNA targets, screening of chemical libraries against RNA, assessing the bioactivity and target engagement of the hit compounds, structure determination, and hit-to-lead optimization are reviewed. Along with the description of the technologies, their strengths, limitations, and examples of how they can impact drug discovery are provided. EXPERT OPINION Many existing technologies employed for protein targets have been repurposed for use in the discovery of RNA-targeted small molecules. In addition, technologies tailored for RNA targets have been developed. Nevertheless, more improvements are necessary, such as artificial intelligence to dissect important RNA structures and RNA-small-molecule interactions and more powerful chemical probing and structure prediction techniques.
Collapse
|
19
|
Zhuang JJ, Liu Q, Wu DL, Tie L. Current strategies and progress for targeting the "undruggable" transcription factors. Acta Pharmacol Sin 2022; 43:2474-2481. [PMID: 35132191 PMCID: PMC9525275 DOI: 10.1038/s41401-021-00852-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Accepted: 12/23/2021] [Indexed: 11/08/2022] Open
Abstract
Transcription factors (TFs) specifically bind to DNA, recruit cofactor proteins and modulate target gene expression, rendering them essential roles in the regulation of numerous biological processes. Meanwhile, mutated or dysregulated TFs are involved in a variety of human diseases. As multiple signaling pathways ultimately converge at TFs, targeting these TFs directly may prove to be more specific and cause fewer side effects, than targeting the upfront conventional targets in these pathways. All these features together endue TFs with great potential and high selectivity as therapeutic drug targets. However, TFs have been historically considered "undruggable", mainly due to their lack of structural information, especially about the appropriate ligand-binding sites and protein-protein interactions, leading to relatively limited choices in the TF-targeting drug design. In this review, we summarize the recent progress of TF-targeting drugs and highlight certain strategies used for targeting TFs, with a number of representative drugs that have been approved or in the clinical trials as examples. Various approaches in targeting TFs directly or indirectly have been developed. Common direct strategies include aiming at defined binding pockets, proteolysis-targeting chimaera (PROTAC), and mutant protein reactivation. In contrast, the indirect ones comprise inhibition of protein-protein interactions between TF and other proteins, blockade of TF expression, targeting the post-translational modifications, and targeting the TF-DNA interactions. With more comprehensive structural information about TFs revealed by the powerful cryo-electron microscopy technology and predicted by machine-learning algorithms, plus more efficient compound screening platforms and a deeper understanding of TF-disease relationships, the development of TF-targeting drugs will certainly be accelerated in the near future.
Collapse
Affiliation(s)
- Jing-Jing Zhuang
- Marine College, Shandong University, Weihai, 264209, China
- Helmholtz International Lab, State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237, China
| | - Qian Liu
- Department of Pharmacology, School of Basic Medical Sciences, Peking University and Beijing Key Laboratory of Tumor Systems Biology, Peking University, Beijing, 100191, China
| | - Da-Lei Wu
- Helmholtz International Lab, State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237, China.
| | - Lu Tie
- Department of Pharmacology, School of Basic Medical Sciences, Peking University and Beijing Key Laboratory of Tumor Systems Biology, Peking University, Beijing, 100191, China.
| |
Collapse
|
20
|
Panei FP, Torchet R, Ménager H, Gkeka P, Bonomi M. HARIBOSS: a curated database of RNA-small molecules structures to aid rational drug design. Bioinformatics 2022; 38:4185-4193. [PMID: 35799352 DOI: 10.1093/bioinformatics/btac483] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 07/04/2022] [Accepted: 07/06/2022] [Indexed: 12/24/2022] Open
Abstract
MOTIVATION RNA molecules are implicated in numerous fundamental biological processes and many human pathologies, such as cancer, neurodegenerative disorders, muscular diseases and bacterial infections. Modulating the mode of action of disease-implicated RNA molecules can lead to the discovery of new therapeutical agents and even address pathologies linked to 'undruggable' protein targets. This modulation can be achieved by direct targeting of RNA with small molecules. As of today, only a few RNA-targeting small molecules are used clinically. One of the main obstacles that have hampered the development of a rational drug design protocol to target RNA with small molecules is the lack of a comprehensive understanding of the molecular mechanisms at the basis of RNA-small molecule (RNA-SM) recognition. RESULTS Here, we present Harnessing RIBOnucleic acid-Small molecule Structures (HARIBOSS), a curated collection of RNA-SM structures determined by X-ray crystallography, nuclear magnetic resonance spectroscopy and cryo-electron microscopy. HARIBOSS facilitates the exploration of drug-like compounds known to bind RNA, the analysis of ligands and pockets properties and ultimately the development of in silico strategies to identify RNA-targeting small molecules. AVAILABILITY AND IMPLEMENTATION HARIBOSS can be explored via a web interface available at http://hariboss.pasteur.cloud. SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- F P Panei
- Sanofi, R&D, Data & In Silico Sciences, 91385 Chilly Mazarin, France.,Department of Structural Biology and Chemistry, Institut Pasteur, Université Paris Cité, CNRS UMR 3528, 75015 Paris, France.,Ecole Doctorale Complexité du Vivant, Sorbonne Université, 75005 Paris, France
| | - R Torchet
- Institut Pasteur, Université Paris Cité, Bioinformatics and Biostatistics Hub, F-75015 Paris, France
| | - H Ménager
- Institut Pasteur, Université Paris Cité, Bioinformatics and Biostatistics Hub, F-75015 Paris, France
| | - P Gkeka
- Sanofi, R&D, Data & In Silico Sciences, 91385 Chilly Mazarin, France
| | - M Bonomi
- Department of Structural Biology and Chemistry, Institut Pasteur, Université Paris Cité, CNRS UMR 3528, 75015 Paris, France
| |
Collapse
|
21
|
Kole GK, Košćak M, Amar A, Majhen D, Božinović K, Brkljaca Z, Ferger M, Michail E, Lorenzen S, Friedrich A, Krummenacher I, Moos M, Braunschweig H, Boucekkine A, Lambert C, Halet J, Piantanida I, Müller‐Buschbaum K, Marder TB. Methyl Viologens of Bis-(4'-Pyridylethynyl)Arenes - Structures, Photophysical and Electrochemical Studies, and their Potential Application in Biology. Chemistry 2022; 28:e202200753. [PMID: 35502627 PMCID: PMC9400870 DOI: 10.1002/chem.202200753] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Indexed: 12/20/2022]
Abstract
A series of bis-(4'-pyridylethynyl)arenes (arene=benzene, tetrafluorobenzene, and anthracene) were synthesized and their bis-N-methylpyridinium compounds were investigated as a class of π-extended methyl viologens. Their structures were determined by single crystal X-ray diffraction, and their photophysical and electrochemical properties (cyclic voltammetry), as well as their interactions with DNA/RNA were investigated. The dications showed bathochromic shifts in emission compared to the neutral compounds. The neutral compounds showed very small Stokes shifts, which are a little larger for the dications. All of the compounds showed very short fluorescence lifetimes (<4 ns). The neutral compound with an anthracene core has a quantum yield of almost unity. With stronger acceptors, the analogous bis-N-methylpyridinium compound showed a larger two-photon absorption cross-section than its neutral precursor. All of the dicationic compounds interact with DNA/RNA; while the compounds with benzene and tetrafluorobenzene cores bind in the grooves, the one with an anthracene core intercalates as a consequence of its large, condensed aromatic linker moiety, and it aggregates within the polynucleotide when in excess over DNA/RNA. Moreover, all cationic compounds showed highly specific CD spectra upon binding to ds-DNA/RNA, attributed to the rare case of forcing the planar, achiral molecule into a chiral rotamer, and negligible toxicity toward human cell lines at ≤10 μM concentrations. The anthracene-analogue exhibited intracellular accumulation within lysosomes, preventing its interaction with cellular DNA/RNA. However, cytotoxicity was evident at 1 μM concentration upon exposure to light, due to singlet oxygen generation within cells. These multi-faceted features, in combination with its two-photon absorption properties, suggest it to be a promising lead compound for development of novel light-activated theranostic agents.
Collapse
Affiliation(s)
- Goutam Kumar Kole
- Institut für Anorganische Chemie, andInstitute for Sustainable Chemistry & Catalysis with BoronJulius-Maximilians-Universität WürzburgAm Hubland97074WürzburgGermany
- Department of ChemistryCollege of Engineering and TechnologySRM Institute of Science and Technology, SRM NagarKattankulathurTamil Nadu603203India
| | | | - Anissa Amar
- Laboratoire de Physique et Chimie QuantiquesUniversité Mouloud MammeriTizi Ouzou15000 Tizi-OuzouAlgeria
| | | | | | | | - Matthias Ferger
- Institut für Anorganische Chemie, andInstitute for Sustainable Chemistry & Catalysis with BoronJulius-Maximilians-Universität WürzburgAm Hubland97074WürzburgGermany
| | - Evripidis Michail
- Institut für Organische ChemieJulius-Maximilians-Universität WürzburgAm Hubland97074WürzburgGermany
| | - Sabine Lorenzen
- Institut für Anorganische Chemie, andInstitute for Sustainable Chemistry & Catalysis with BoronJulius-Maximilians-Universität WürzburgAm Hubland97074WürzburgGermany
| | - Alexandra Friedrich
- Institut für Anorganische Chemie, andInstitute for Sustainable Chemistry & Catalysis with BoronJulius-Maximilians-Universität WürzburgAm Hubland97074WürzburgGermany
| | - Ivo Krummenacher
- Institut für Anorganische Chemie, andInstitute for Sustainable Chemistry & Catalysis with BoronJulius-Maximilians-Universität WürzburgAm Hubland97074WürzburgGermany
| | - Michael Moos
- Institut für Organische ChemieJulius-Maximilians-Universität WürzburgAm Hubland97074WürzburgGermany
| | - Holger Braunschweig
- Institut für Anorganische Chemie, andInstitute for Sustainable Chemistry & Catalysis with BoronJulius-Maximilians-Universität WürzburgAm Hubland97074WürzburgGermany
| | - Abdou Boucekkine
- Univ Rennes, Ecole Nationale Supérieure de Chimie de Rennes, CNRS, Institut des Sciences Chimiques de Rennes UMR 622635000RennesFrance
| | - Christoph Lambert
- Institut für Organische ChemieJulius-Maximilians-Universität WürzburgAm Hubland97074WürzburgGermany
| | - Jean‐François Halet
- Univ Rennes, Ecole Nationale Supérieure de Chimie de Rennes, CNRS, Institut des Sciences Chimiques de Rennes UMR 622635000RennesFrance
- CNRS-Saint-Gobain-NIMSIRL 3629Laboratory for Innovative Key Materials and Structures (LINK)National Institute for Materials Science (NIMS)Tsukuba305-0044Japan
| | | | - Klaus Müller‐Buschbaum
- Institut für Anorganische und Analytische ChemieJustus-Liebig-Universität GießenHeinrich-Buff-Ring 1735392GießenGermany
| | - Todd B. Marder
- Institut für Anorganische Chemie, andInstitute for Sustainable Chemistry & Catalysis with BoronJulius-Maximilians-Universität WürzburgAm Hubland97074WürzburgGermany
| |
Collapse
|
22
|
Donlic A, Swanson EG, Chiu LY, Wicks SL, Umuhire Juru A, Cai Z, Kassam K, Laudeman C, Sanaba BG, Sugarman A, Han E, Tolbert BS, Hargrove AE. R-BIND 2.0: An Updated Database of Bioactive RNA-Targeting Small Molecules and Associated RNA Secondary Structures. ACS Chem Biol 2022; 17:1556-1566. [PMID: 35594415 PMCID: PMC9343015 DOI: 10.1021/acschembio.2c00224] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Discoveries of RNA roles in cellular physiology and pathology are increasing the need for new tools that modulate the structure and function of these biomolecules, and small molecules are proving useful. In 2017, we curated the RNA-targeted BIoactive ligaNd Database (R-BIND) and discovered distinguishing physicochemical properties of RNA-targeting ligands, leading us to propose the existence of an "RNA-privileged" chemical space. Biennial updates of the database and the establishment of a website platform (rbind.chem.duke.edu) have provided new insights and tools to design small molecules based on the analyzed physicochemical and spatial properties. In this report and R-BIND 2.0 update, we refined the curation approach and ligand classification system as well as conducted analyses of RNA structure elements for the first time to identify new targeting strategies. Specifically, we curated and analyzed RNA target structural motifs to determine the properties of small molecules that may confer selectivity for distinct RNA secondary and tertiary structures. Additionally, we collected sequences of target structures and incorporated an RNA structure search algorithm into the website that outputs small molecules targeting similar motifs without a priori secondary structure knowledge. Cheminformatic analyses revealed that, despite the 50% increase in small molecule library size, the distinguishing properties of R-BIND ligands remained significantly different from that of proteins and are therefore still relevant to RNA-targeted probe discovery. Combined, we expect these novel insights and website features to enable the rational design of RNA-targeted ligands and to serve as a resource and inspiration for a variety of scientists interested in RNA targeting.
Collapse
Affiliation(s)
| | | | - Liang-Yuan Chiu
- Department of Chemistry, Case Western Reserve University, Cleveland, Ohio 441106, United States
| | - Sarah L. Wicks
- Department of Chemistry, Duke University, Durham, North Carolina 27705, United States
| | - Aline Umuhire Juru
- Department of Chemistry, Duke University, Durham, North Carolina 27705, United States
| | - Zhengguo Cai
- Department of Chemistry, Duke University, Durham, North Carolina 27705, United States
| | - Kamillah Kassam
- Department of Chemistry, Duke University, Durham, North Carolina 27705, United States
| | - Chris Laudeman
- Department of Chemistry, Duke University, Durham, North Carolina 27705, United States
| | - Bilva G. Sanaba
- Department of Chemistry, Duke University, Durham, North Carolina 27705, United States
| | - Andrew Sugarman
- Department of Chemistry, Case Western Reserve University, Cleveland, Ohio 441106, United States
| | - Eunseong Han
- Department of Chemistry, Duke University, Durham, North Carolina 27705, United States
| | - Blanton S. Tolbert
- Department of Chemistry, Case Western Reserve University, Cleveland, Ohio 441106, United States
| | - Amanda E. Hargrove
- Department of Chemistry, Duke University, Durham, North Carolina 27705, United States
| |
Collapse
|
23
|
Zhou Y, Jiang Y, Chen SJ. RNA-ligand molecular docking: advances and challenges. WILEY INTERDISCIPLINARY REVIEWS. COMPUTATIONAL MOLECULAR SCIENCE 2022; 12:e1571. [PMID: 37293430 PMCID: PMC10250017 DOI: 10.1002/wcms.1571] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Accepted: 07/20/2021] [Indexed: 12/16/2022]
Abstract
With rapid advances in computer algorithms and hardware, fast and accurate virtual screening has led to a drastic acceleration in selecting potent small molecules as drug candidates. Computational modeling of RNA-small molecule interactions has become an indispensable tool for RNA-targeted drug discovery. The current models for RNA-ligand binding have mainly focused on the docking-and-scoring method. Accurate docking and scoring should tackle four crucial problems: (1) conformational flexibility of ligand, (2) conformational flexibility of RNA, (3) efficient sampling of binding sites and binding poses, and (4) accurate scoring of different binding modes. Moreover, compared with the problem of protein-ligand docking, predicting ligand binding to RNA, a negatively charged polymer, is further complicated by additional effects such as metal ion effects. Thermodynamic models based on physics-based and knowledge-based scoring functions have shown highly encouraging success in predicting ligand binding poses and binding affinities. Recently, kinetic models for ligand binding have further suggested that including dissociation kinetics (residence time) in ligand docking would result in improved performance in estimating in vivo drug efficacy. More recently, the rise of deep-learning approaches has led to new tools for predicting RNA-small molecule binding. In this review, we present an overview of the recently developed computational methods for RNA-ligand docking and their advantages and disadvantages.
Collapse
Affiliation(s)
- Yuanzhe Zhou
- Department of Physics and Astronomy, Department of Biochemistry, Institute of Data Sciences and Informatics, University of Missouri, Columbia, MO 65211-7010, USA
| | - Yangwei Jiang
- Department of Physics and Astronomy, Department of Biochemistry, Institute of Data Sciences and Informatics, University of Missouri, Columbia, MO 65211-7010, USA
| | - Shi-Jie Chen
- Department of Physics and Astronomy, Department of Biochemistry, Institute of Data Sciences and Informatics, University of Missouri, Columbia, MO 65211-7010, USA
| |
Collapse
|
24
|
Sun S, Yang J, Zhang Z. RNALigands: a database and web server for RNA-ligand interactions. RNA (NEW YORK, N.Y.) 2022; 28:115-122. [PMID: 34732566 PMCID: PMC8906548 DOI: 10.1261/rna.078889.121] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Accepted: 10/25/2021] [Indexed: 06/13/2023]
Abstract
RNA molecules can fold into complex and stable 3D structures, allowing them to carry out important genetic, structural, and regulatory roles inside the cell. These complex structures often contain 3D pockets made up of secondary structural motifs that can be potentially targeted by small molecule ligands. Indeed, many RNA structures in PDB contain bound small molecules, and high-throughput experimental studies have generated a large number of interacting RNA and ligand pairs. There is considerable interest in developing small molecule lead compounds targeting viral RNAs or those RNAs implicated in neurological diseases or cancer. We hypothesize that RNAs that have similar secondary structural motifs may bind to similar small molecule ligands. Toward this goal, we established a database collecting RNA secondary structural motifs and bound small molecule ligands. We further developed a computational pipeline, which takes as input an RNA sequence, predicts its secondary structure, extracts structural motifs, and searches the database for similar secondary structure motifs and interacting small molecule. We demonstrated the utility of the server by querying α-synuclein mRNA 5' UTR sequence and finding potential matches which were validated as correct. The server is publicly available at http://RNALigands.ccbr.utoronto.ca The source code can also be downloaded at https://github.com/SaisaiSun/RNALigands.
Collapse
Affiliation(s)
- Saisai Sun
- School of Computer Science and Technology, Xidian University, Xi'an, 710071, Shanxi, China
- Terrence Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Ontario M5S 3E1, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario M5S 3E1, Canada
| | - Jianyi Yang
- School of Mathematical Sciences, Nankai University, Tianjin, 300071, China
| | - Zhaolei Zhang
- Terrence Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Ontario M5S 3E1, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario M5S 3E1, Canada
- Department of Computer Science, University of Toronto, Toronto, Ontario M5S 3E1, Canada
| |
Collapse
|
25
|
Zafferani M, Haddad C, Luo L, Davila-Calderon J, Chiu LY, Mugisha CS, Monaghan AG, Kennedy AA, Yesselman JD, Gifford RJ, Tai AW, Kutluay SB, Li ML, Brewer G, Tolbert BS, Hargrove AE. Amilorides inhibit SARS-CoV-2 replication in vitro by targeting RNA structures. SCIENCE ADVANCES 2021; 7:eabl6096. [PMID: 34826236 PMCID: PMC8626076 DOI: 10.1126/sciadv.abl6096] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Accepted: 10/06/2021] [Indexed: 05/15/2023]
Abstract
The SARS-CoV-2 pandemic, and the likelihood of future coronavirus pandemics, emphasized the urgent need for development of novel antivirals. Small-molecule chemical probes offer both to reveal aspects of virus replication and to serve as leads for antiviral therapeutic development. Here, we report on the identification of amiloride-based small molecules that potently inhibit OC43 and SARS-CoV-2 replication through targeting of conserved structured elements within the viral 5′-end. Nuclear magnetic resonance–based structural studies revealed specific amiloride interactions with stem loops containing bulge like structures and were predicted to be strongly bound by the lead amilorides in retrospective docking studies. Amilorides represent the first antiviral small molecules that target RNA structures within the 5′ untranslated regions and proximal region of the CoV genomes. These molecules will serve as chemical probes to further understand CoV RNA biology and can pave the way for the development of specific CoV RNA–targeted antivirals.
Collapse
Affiliation(s)
- Martina Zafferani
- Chemistry Department, Duke University, 124 Science Drive, Durham, NC 27705, USA
| | - Christina Haddad
- Department of Chemistry, Case Western Reserve University, Cleveland, OH 441106, USA
| | - Le Luo
- Department of Chemistry, Case Western Reserve University, Cleveland, OH 441106, USA
| | | | - Liang-Yuan Chiu
- Department of Chemistry, Case Western Reserve University, Cleveland, OH 441106, USA
| | - Christian Shema Mugisha
- Department of Molecular Microbiology, Washington University School of Medicine, Saint Louis, MO 63110, USA
| | - Adeline G. Monaghan
- Chemistry Department, Duke University, 124 Science Drive, Durham, NC 27705, USA
| | - Andrew A. Kennedy
- Department of Internal Medicine and Department of Microbiology and Immunology, University of Michigan, 1150 W Medical Center Dr., Ann Arbor, MI 48109, USA
| | - Joseph D. Yesselman
- Department of Chemistry, University of Nebraska-Lincoln, Lincoln, NE 68588, USA
| | - Robert J. Gifford
- MRC-University of Glasgow Centre for Virus Research, 464 Bearsden Rd., Bearsden, Glasgow G61 1QH, UK
| | - Andrew W. Tai
- Department of Internal Medicine and Department of Microbiology and Immunology, University of Michigan, 1150 W Medical Center Dr., Ann Arbor, MI 48109, USA
| | - Sebla B. Kutluay
- Department of Molecular Microbiology, Washington University School of Medicine, Saint Louis, MO 63110, USA
| | - Mei-Ling Li
- Department of Biochemistry and Molecular Biology, Rutgers Robert Wood Johnson Medical School, 675 Hoes Lane West, Piscataway, NJ 08854, USA
| | - Gary Brewer
- Department of Biochemistry and Molecular Biology, Rutgers Robert Wood Johnson Medical School, 675 Hoes Lane West, Piscataway, NJ 08854, USA
| | - Blanton S. Tolbert
- Department of Chemistry, Case Western Reserve University, Cleveland, OH 441106, USA
| | - Amanda E. Hargrove
- Chemistry Department, Duke University, 124 Science Drive, Durham, NC 27705, USA
| |
Collapse
|
26
|
Manigrasso J, Marcia M, De Vivo M. Computer-aided design of RNA-targeted small molecules: A growing need in drug discovery. Chem 2021. [DOI: 10.1016/j.chempr.2021.05.021] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
27
|
Rekand IH, Brenk R. DrugPred_RNA-A Tool for Structure-Based Druggability Predictions for RNA Binding Sites. J Chem Inf Model 2021; 61:4068-4081. [PMID: 34286972 PMCID: PMC8389535 DOI: 10.1021/acs.jcim.1c00155] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
![]()
RNA is an emerging
target for drug discovery. However, like for
proteins, not all RNA binding sites are equally suited to be addressed
with conventional drug-like ligands. To this end, we have developed
the structure-based druggability predictor DrugPred_RNA to identify
druggable RNA binding sites. Due to the paucity of annotated RNA binding
sites, the predictor was trained on protein pockets, albeit using
only descriptors that can be calculated for both RNA and protein binding
sites. DrugPred_RNA performed well in discriminating druggable from
less druggable binding sites for the protein set and delivered predictions
for selected RNA binding sites that agreed with manual assignment.
In addition, most drug-like ligands contained in an RNA test set were
found in pockets predicted to be druggable, further adding confidence
to the performance of DrugPred_RNA. The method is robust against conformational
and sequence changes in the binding sites and can contribute to direct
drug discovery efforts for RNA targets.
Collapse
Affiliation(s)
- Illimar Hugo Rekand
- Department of Biomedicine, University of Bergen, Jonas Lies Vei, 5020 Bergen, Norway
| | - Ruth Brenk
- Department of Biomedicine, University of Bergen, Jonas Lies Vei, 5020 Bergen, Norway
| |
Collapse
|
28
|
Bush JA, Williams CC, Meyer SM, Tong Y, Haniff HS, Childs-Disney JL, Disney MD. Systematically Studying the Effect of Small Molecules Interacting with RNA in Cellular and Preclinical Models. ACS Chem Biol 2021; 16:1111-1127. [PMID: 34166593 PMCID: PMC8867596 DOI: 10.1021/acschembio.1c00014] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The interrogation and manipulation of biological systems by small molecules is a powerful approach in chemical biology. Ideal compounds selectively engage a target and mediate a downstream phenotypic response. Although historically small molecule drug discovery has focused on proteins and enzymes, targeting RNA is an attractive therapeutic alternative, as many disease-causing or -associated RNAs have been identified through genome-wide association studies. As the field of RNA chemical biology emerges, the systematic evaluation of target validation and modulation of target-associated pathways is of paramount importance. In this Review, through an examination of case studies, we outline the experimental characterization, including methods and tools, to evaluate comprehensively the impact of small molecules that target RNA on cellular phenotype.
Collapse
Affiliation(s)
- Jessica A Bush
- The Scripps Research Institute, Department of Chemistry, 130 Scripps Way, Jupiter, Florida 33458, United States
| | - Christopher C Williams
- The Scripps Research Institute, Department of Chemistry, 130 Scripps Way, Jupiter, Florida 33458, United States
| | - Samantha M Meyer
- The Scripps Research Institute, Department of Chemistry, 130 Scripps Way, Jupiter, Florida 33458, United States
| | - Yuquan Tong
- The Scripps Research Institute, Department of Chemistry, 130 Scripps Way, Jupiter, Florida 33458, United States
| | - Hafeez S Haniff
- The Scripps Research Institute, Department of Chemistry, 130 Scripps Way, Jupiter, Florida 33458, United States
| | - Jessica L Childs-Disney
- The Scripps Research Institute, Department of Chemistry, 130 Scripps Way, Jupiter, Florida 33458, United States
| | - Matthew D Disney
- The Scripps Research Institute, Department of Chemistry, 130 Scripps Way, Jupiter, Florida 33458, United States
| |
Collapse
|
29
|
François-Moutal L, Miranda VG, Mollasalehi N, Gokhale V, Khanna M. In Silico Targeting of the Long Noncoding RNA MALAT1. ACS Med Chem Lett 2021; 12:915-921. [PMID: 34141069 DOI: 10.1021/acsmedchemlett.1c00060] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Accepted: 03/24/2021] [Indexed: 11/29/2022] Open
Abstract
RNA targeting has gained traction over the past decade. It has become clear that dysregulation of RNA can be linked to many diseases, leading to a need for new scaffolds recognizing RNA specifically. Long noncoding RNAs are emerging as key controllers of gene expression and potential therapeutic targets. However, traditional targeting methods have overwhelmingly been focused on proteins. In this study, we used a protein computational tool and found several possible targetable pockets in a structurally characterized long noncoding RNA, MALAT1. Screening against those identified pockets revealed several hit compounds. We tested the binding of those compounds to MALAT1 RNA and tRNA as a negative control, using SPR. While several compounds were nonspecific binders, others were able to recognize MALAT1 specifically. One of them, MTC07, has an apparent affinity of 400.2 ± 14.4 μM. Although it has weak affinity, MTC07 is the first compound targeting MALAT1 originating from in silico docking.
Collapse
Affiliation(s)
- Liberty François-Moutal
- Department of Pharmacology, College of Medicine, University of Arizona, Tucson, Arizona 85724, United States
- Center of Innovation in Brain Science, Tucson, Arizona 85721, United States
| | - Victor G. Miranda
- Department of Pharmacology, College of Medicine, University of Arizona, Tucson, Arizona 85724, United States
- Center of Innovation in Brain Science, Tucson, Arizona 85721, United States
| | - Niloufar Mollasalehi
- Department of Pharmacology, College of Medicine, University of Arizona, Tucson, Arizona 85724, United States
- Center of Innovation in Brain Science, Tucson, Arizona 85721, United States
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, Arizona 85721-0041, United States
| | - Vijay Gokhale
- Bio5 Institute, University of Arizona, Tucson, Arizona 85721-0041, United States
| | - May Khanna
- Department of Pharmacology, College of Medicine, University of Arizona, Tucson, Arizona 85724, United States
- Center of Innovation in Brain Science, Tucson, Arizona 85721, United States
| |
Collapse
|
30
|
Ferger M, Ban Ž, Krošl I, Tomić S, Dietrich L, Lorenzen S, Rauch F, Sieh D, Friedrich A, Griesbeck S, Kenđel A, Miljanić S, Piantanida I, Marder TB. Bis(phenylethynyl)arene Linkers in Tetracationic Bis-triarylborane Chromophores Control Fluorimetric and Raman Sensing of Various DNAs and RNAs. Chemistry 2021; 27:5142-5159. [PMID: 33411942 PMCID: PMC8048639 DOI: 10.1002/chem.202005141] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Revised: 12/20/2020] [Indexed: 11/24/2022]
Abstract
We report four new luminescent tetracationic bis-triarylborane DNA and RNA sensors that show high binding affinities, in several cases even in the nanomolar range. Three of the compounds contain substituted, highly emissive and structurally flexible bis(2,6-dimethylphenyl-4-ethynyl)arene linkers (3: arene=5,5'-2,2'-bithiophene; 4: arene=1,4-benzene; 5: arene=9,10-anthracene) between the two boryl moieties and serve as efficient dual Raman and fluorescence chromophores. The shorter analogue 6 employs 9,10-anthracene as the linker and demonstrates the importance of an adequate linker length with a certain level of flexibility by exhibiting generally lower binding affinities than 3-5. Pronounced aggregation-deaggregation processes are observed in fluorimetric titration experiments with DNA for compounds 3 and 5. Molecular modelling of complexes of 5 with AT-DNA, suggest the minor groove as the dominant binding site for monomeric 5, but demonstrate that dimers of 5 can also be accommodated. Strong SERS responses for 3-5 versus a very weak response for 6, particularly the strong signals from anthracene itself observed for 5 but not for 6, demonstrate the importance of triple bonds for strong Raman activity in molecules of this compound class. The energy of the characteristic stretching vibration of the C≡C bonds is significantly dependent on the aromatic moiety between the triple bonds. The insertion of aromatic moieties between two C≡C bonds thus offers an alternative design for dual Raman and fluorescence chromophores, applicable in multiplex biological Raman imaging.
Collapse
Affiliation(s)
- Matthias Ferger
- Institut für Anorganische Chemie andInstitute for Sustainable Chemistry & Catalysis with BoronJulius-Maximilians-Universität WürzburgAm Hubland97074WürzburgGermany
| | - Željka Ban
- Division of Organic Chemistry & BiochemistryRuđer Bošković Institute, Bijenička 5410000ZagrebCroatia
| | - Ivona Krošl
- Division of Organic Chemistry & BiochemistryRuđer Bošković Institute, Bijenička 5410000ZagrebCroatia
| | - Sanja Tomić
- Division of Organic Chemistry & BiochemistryRuđer Bošković Institute, Bijenička 5410000ZagrebCroatia
| | - Lena Dietrich
- Institut für Anorganische Chemie andInstitute for Sustainable Chemistry & Catalysis with BoronJulius-Maximilians-Universität WürzburgAm Hubland97074WürzburgGermany
| | - Sabine Lorenzen
- Institut für Anorganische Chemie andInstitute for Sustainable Chemistry & Catalysis with BoronJulius-Maximilians-Universität WürzburgAm Hubland97074WürzburgGermany
| | - Florian Rauch
- Institut für Anorganische Chemie andInstitute for Sustainable Chemistry & Catalysis with BoronJulius-Maximilians-Universität WürzburgAm Hubland97074WürzburgGermany
| | - Daniel Sieh
- Institut für Anorganische Chemie andInstitute for Sustainable Chemistry & Catalysis with BoronJulius-Maximilians-Universität WürzburgAm Hubland97074WürzburgGermany
| | - Alexandra Friedrich
- Institut für Anorganische Chemie andInstitute for Sustainable Chemistry & Catalysis with BoronJulius-Maximilians-Universität WürzburgAm Hubland97074WürzburgGermany
| | - Stefanie Griesbeck
- Institut für Anorganische Chemie andInstitute for Sustainable Chemistry & Catalysis with BoronJulius-Maximilians-Universität WürzburgAm Hubland97074WürzburgGermany
| | - Adriana Kenđel
- Division of Analytical ChemistryDepartment of Chemistry, Faculty of ScienceUniversity of Zagreb, Horvatovac 102a10000ZagrebCroatia
| | - Snežana Miljanić
- Division of Analytical ChemistryDepartment of Chemistry, Faculty of ScienceUniversity of Zagreb, Horvatovac 102a10000ZagrebCroatia
| | - Ivo Piantanida
- Division of Organic Chemistry & BiochemistryRuđer Bošković Institute, Bijenička 5410000ZagrebCroatia
| | - Todd B. Marder
- Institut für Anorganische Chemie andInstitute for Sustainable Chemistry & Catalysis with BoronJulius-Maximilians-Universität WürzburgAm Hubland97074WürzburgGermany
| |
Collapse
|
31
|
Falese JP, Donlic A, Hargrove AE. Targeting RNA with small molecules: from fundamental principles towards the clinic. Chem Soc Rev 2021; 50:2224-2243. [PMID: 33458725 PMCID: PMC8018613 DOI: 10.1039/d0cs01261k] [Citation(s) in RCA: 104] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Recent advances in our understanding of RNA biology have uncovered crucial roles for RNA in multiple disease states, ranging from viral and bacterial infections to cancer and neurological disorders. As a result, multiple laboratories have become interested in developing drug-like small molecules to target RNA. However, this development comes with multiple unique challenges. For example, RNA is inherently dynamic and has limited chemical diversity. In addition, promiscuous RNA-binding ligands are often identified during screening campaigns. This Tutorial Review overviews important considerations and advancements for generating RNA-targeted small molecules, ranging from fundamental chemistry to promising small molecule examples with demonstrated clinical efficacy. Specifically, we begin by exploring RNA functional classes, structural hierarchy, and dynamics. We then discuss fundamental RNA recognition principles along with methods for small molecule screening and RNA structure determination. Finally, we review unique challenges and emerging solutions from both the RNA and small molecule perspectives for generating RNA-targeted ligands before highlighting a selection of the "Greatest Hits" to date. These molecules target RNA in a variety of diseases, including cancer, neurodegeneration, and viral infection, in cellular and animal model systems. Additionally, we explore the recently FDA-approved small molecule regulator of RNA splicing, risdiplam, for treatment of spinal muscular atrophy. Together, this Tutorial Review showcases the fundamental role of chemical and molecular recognition principles in enhancing our understanding of RNA biology and contributing to the rapidly growing number of RNA-targeted probes and therapeutics. In particular, we hope this widely accessible review will serve as inspiration for aspiring small molecule and/or RNA researchers.
Collapse
Affiliation(s)
- James P Falese
- Duke University School of Medicine, Department of Biochemistry, Durham, North Carolina, USA.
| | - Anita Donlic
- Princeton University, Department of Chemical and Biological Engineering, Princeton, New Jersey, USA
| | - Amanda E Hargrove
- Duke University School of Medicine, Department of Biochemistry, Durham, North Carolina, USA. and Duke University, Department of Chemistry, Durham, North Carolina, USA
| |
Collapse
|
32
|
Huston NC, Wan H, Strine MS, de Cesaris Araujo Tavares R, Wilen CB, Pyle AM. Comprehensive in vivo secondary structure of the SARS-CoV-2 genome reveals novel regulatory motifs and mechanisms. Mol Cell 2021; 81:584-598.e5. [PMID: 33444546 PMCID: PMC7775661 DOI: 10.1016/j.molcel.2020.12.041] [Citation(s) in RCA: 183] [Impact Index Per Article: 45.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 11/06/2020] [Accepted: 12/21/2020] [Indexed: 02/07/2023]
Abstract
Severe-acute-respiratory-syndrome-related coronavirus 2 (SARS-CoV-2) is the positive-sense RNA virus that causes coronavirus disease 2019 (COVID-19). The genome of SARS-CoV-2 is unique among viral RNAs in its vast potential to form RNA structures, yet as much as 97% of its 30 kilobases have not been structurally explored. Here, we apply a novel long amplicon strategy to determine the secondary structure of the SARS-CoV-2 RNA genome at single-nucleotide resolution in infected cells. Our in-depth structural analysis reveals networks of well-folded RNA structures throughout Orf1ab and reveals aspects of SARS-CoV-2 genome architecture that distinguish it from other RNA viruses. Evolutionary analysis shows that several features of the SARS-CoV-2 genomic structure are conserved across β-coronaviruses, and we pinpoint regions of well-folded RNA structure that merit downstream functional analysis. The native, secondary structure of SARS-CoV-2 presented here is a roadmap that will facilitate focused studies on the viral life cycle, facilitate primer design, and guide the identification of RNA drug targets against COVID-19.
Collapse
Affiliation(s)
- Nicholas C Huston
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06511, USA
| | - Han Wan
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, CT 06511, USA
| | - Madison S Strine
- Department of Laboratory Medicine, Yale School of Medicine, New Haven, CT 06510, USA; Department of Immunobiology, Yale School of Medicine, New Haven, CT 06519, USA
| | | | - Craig B Wilen
- Department of Laboratory Medicine, Yale School of Medicine, New Haven, CT 06510, USA; Department of Immunobiology, Yale School of Medicine, New Haven, CT 06519, USA
| | - Anna Marie Pyle
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, CT 06511, USA; Department of Chemistry, Yale University, New Haven, CT 06511, USA; Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA.
| |
Collapse
|
33
|
Panchal V, Brenk R. Riboswitches as Drug Targets for Antibiotics. Antibiotics (Basel) 2021; 10:45. [PMID: 33466288 PMCID: PMC7824784 DOI: 10.3390/antibiotics10010045] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 12/21/2020] [Accepted: 12/29/2020] [Indexed: 12/13/2022] Open
Abstract
Riboswitches reside in the untranslated region of RNA and regulate genes involved in the biosynthesis of essential metabolites through binding of small molecules. Since their discovery at the beginning of this century, riboswitches have been regarded as potential antibacterial targets. Using fragment screening, high-throughput screening and rational ligand design guided by X-ray crystallography, lead compounds against various riboswitches have been identified. Here, we review the current status and suitability of the thiamine pyrophosphate (TPP), flavin mononucleotide (FMN), glmS, guanine, and other riboswitches as antibacterial targets and discuss them in a biological context. Further, we highlight challenges in riboswitch drug discovery and emphasis the need to develop riboswitch specific high-throughput screening methods.
Collapse
Affiliation(s)
- Vipul Panchal
- Department of Biomedicine, University of Bergen, Jonas Lies vei 91, 5020 Bergen, Norway
| | - Ruth Brenk
- Department of Biomedicine, University of Bergen, Jonas Lies vei 91, 5020 Bergen, Norway
| |
Collapse
|
34
|
Manfredonia I, Nithin C, Ponce-Salvatierra A, Ghosh P, Wirecki TK, Marinus T, Ogando NS, Snijder E, van Hemert MJ, Bujnicki JM, Incarnato D. Genome-wide mapping of SARS-CoV-2 RNA structures identifies therapeutically-relevant elements. Nucleic Acids Res 2020; 48:12436-12452. [PMID: 33166999 PMCID: PMC7736786 DOI: 10.1093/nar/gkaa1053] [Citation(s) in RCA: 174] [Impact Index Per Article: 34.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2020] [Revised: 10/13/2020] [Accepted: 10/22/2020] [Indexed: 01/25/2023] Open
Abstract
SARS-CoV-2 is a betacoronavirus with a linear single-stranded, positive-sense RNA genome, whose outbreak caused the ongoing COVID-19 pandemic. The ability of coronaviruses to rapidly evolve, adapt, and cross species barriers makes the development of effective and durable therapeutic strategies a challenging and urgent need. As for other RNA viruses, genomic RNA structures are expected to play crucial roles in several steps of the coronavirus replication cycle. Despite this, only a handful of functionally-conserved coronavirus structural RNA elements have been identified to date. Here, we performed RNA structure probing to obtain single-base resolution secondary structure maps of the full SARS-CoV-2 coronavirus genome both in vitro and in living infected cells. Probing data recapitulate the previously described coronavirus RNA elements (5' UTR and s2m), and reveal new structures. Of these, ∼10.2% show significant covariation among SARS-CoV-2 and other coronaviruses, hinting at their functionally-conserved role. Secondary structure-restrained 3D modeling of these segments further allowed for the identification of putative druggable pockets. In addition, we identify a set of single-stranded segments in vivo, showing high sequence conservation, suitable for the development of antisense oligonucleotide therapeutics. Collectively, our work lays the foundation for the development of innovative RNA-targeted therapeutic strategies to fight SARS-related infections.
Collapse
Affiliation(s)
- Ilaria Manfredonia
- Department of Molecular Genetics, Groningen Biomolecular Sciences and Biotechnology Institute (GBB), University of Groningen, Nijenborgh 7, 9747 AG, Groningen, the Netherlands
| | - Chandran Nithin
- Laboratory of Bioinformatics and Protein Engineering, International Institute of Molecular and Cell Biology in Warsaw, ul. Ks. Trojdena 4, 02-109 Warsaw, Poland
| | - Almudena Ponce-Salvatierra
- Laboratory of Bioinformatics and Protein Engineering, International Institute of Molecular and Cell Biology in Warsaw, ul. Ks. Trojdena 4, 02-109 Warsaw, Poland
| | - Pritha Ghosh
- Laboratory of Bioinformatics and Protein Engineering, International Institute of Molecular and Cell Biology in Warsaw, ul. Ks. Trojdena 4, 02-109 Warsaw, Poland
| | - Tomasz K Wirecki
- Laboratory of Bioinformatics and Protein Engineering, International Institute of Molecular and Cell Biology in Warsaw, ul. Ks. Trojdena 4, 02-109 Warsaw, Poland
| | - Tycho Marinus
- Department of Molecular Genetics, Groningen Biomolecular Sciences and Biotechnology Institute (GBB), University of Groningen, Nijenborgh 7, 9747 AG, Groningen, the Netherlands
| | - Natacha S Ogando
- Molecular Virology Laboratory, Department of Medical Microbiology, Leiden University Medical Center, Leiden, the Netherlands
| | - Eric J Snijder
- Molecular Virology Laboratory, Department of Medical Microbiology, Leiden University Medical Center, Leiden, the Netherlands
| | - Martijn J van Hemert
- Molecular Virology Laboratory, Department of Medical Microbiology, Leiden University Medical Center, Leiden, the Netherlands
| | - Janusz M Bujnicki
- Laboratory of Bioinformatics and Protein Engineering, International Institute of Molecular and Cell Biology in Warsaw, ul. Ks. Trojdena 4, 02-109 Warsaw, Poland
| | - Danny Incarnato
- Department of Molecular Genetics, Groningen Biomolecular Sciences and Biotechnology Institute (GBB), University of Groningen, Nijenborgh 7, 9747 AG, Groningen, the Netherlands
| |
Collapse
|
35
|
Martina Z, Christina H, Le L, Jesse DC, Liang YC, Christian SM, Monaghan AG, Kennedy AA, Yesselman JD, Gifford RR, Tai AW, Kutluay SB, Li ML, Brewer G, Tolbert BS, Hargrove AE. Amilorides inhibit SARS-CoV-2 replication in vitro by targeting RNA structures. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2020:2020.12.05.409821. [PMID: 33299997 PMCID: PMC7724665 DOI: 10.1101/2020.12.05.409821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
The SARS-CoV-2 pandemic, and the likelihood of future coronavirus pandemics, has rendered our understanding of coronavirus biology more essential than ever. Small molecule chemical probes offer to both reveal novel aspects of virus replication and to serve as leads for antiviral therapeutic development. The RNA-biased amiloride scaffold was recently tuned to target a viral RNA structure critical for translation in enterovirus 71, ultimately uncovering a novel mechanism to modulate positive-sense RNA viral translation and replication. Analysis of CoV RNA genomes reveal many conserved RNA structures in the 5'-UTR and proximal region critical for viral translation and replication, including several containing bulge-like secondary structures suitable for small molecule targeting. Following phylogenetic conservation analysis of this region, we screened an amiloride-based small molecule library against a less virulent human coronavirus, OC43, to identify lead ligands. Amilorides inhibited OC43 replication as seen in viral plaque assays. Select amilorides also potently inhibited replication competent SARS-CoV-2 as evident in the decreased levels of cell free virions in cell culture supernatants of treated cells. Reporter screens confirmed the importance of RNA structures in the 5'-end of the viral genome for small molecule activity. Finally, NMR chemical shift perturbation studies of the first six stem loops of the 5'-end revealed specific amiloride interactions with stem loops 4, 5a, and 6, all of which contain bulge like structures and were predicted to be strongly bound by the lead amilorides in retrospective docking studies. Taken together, the use of multiple orthogonal approaches allowed us to identify the first small molecules aimed at targeting RNA structures within the 5'-UTR and proximal region of the CoV genome. These molecules will serve as chemical probes to further understand CoV RNA biology and can pave the way for the development of specific CoV RNA-targeted antivirals.
Collapse
Affiliation(s)
- Zafferani Martina
- Chemistry Department, Duke University, 124 Science Drive; Durham, NC USA 27705
| | - Haddad Christina
- Department of Chemistry, Case Western Reserve University, Cleveland OH 441106
| | - Luo Le
- Department of Chemistry, Case Western Reserve University, Cleveland OH 441106
| | | | - Yuan-Chiu Liang
- Department of Chemistry, Case Western Reserve University, Cleveland OH 441106
| | - Shema Mugisha Christian
- Department of Molecular Microbiology, Washington University School of Medicine, Saint Louis, MO 63110, USA
| | - Adeline G. Monaghan
- Chemistry Department, Duke University, 124 Science Drive; Durham, NC USA 27705
| | - Andrew A. Kennedy
- Department of Internal Medicine and Department of Microbiology & Immunology, University of Michigan, 1150 W Medical Center Dr, Ann Arbor MI 48109
| | - Joseph D. Yesselman
- Department of Chemistry, University of Nebraska-Lincoln, Lincoln, NE 68588 USA
| | - Robert R. Gifford
- MRC-University of Glasgow Centre for Virus Research, 464 Bearsden Rd, Bearsden, Glasgow, UK, G61 1QH
| | - Andrew W. Tai
- Department of Internal Medicine and Department of Microbiology & Immunology, University of Michigan, 1150 W Medical Center Dr, Ann Arbor MI 48109
| | - Sebla B. Kutluay
- Department of Molecular Microbiology, Washington University School of Medicine, Saint Louis, MO 63110, USA
| | - Mei-Ling Li
- Department of Biochemistry and Molecular Biology, Rutgers Robert Wood Johnson Medical School, 675 Hoes Lane West, Piscataway, NJ USA 08854
| | - Gary Brewer
- Department of Biochemistry and Molecular Biology, Rutgers Robert Wood Johnson Medical School, 675 Hoes Lane West, Piscataway, NJ USA 08854
| | - Blanton S. Tolbert
- Department of Chemistry, Case Western Reserve University, Cleveland OH 441106
| | - Amanda E. Hargrove
- Chemistry Department, Duke University, 124 Science Drive; Durham, NC USA 27705
| |
Collapse
|
36
|
Abstract
The structural and regulatory elements in therapeutically relevant RNAs offer many opportunities for targeting by small molecules, yet fundamental understanding of what drives selectivity in small molecule:RNA recognition has been a recurrent challenge. In particular, RNAs tend to be more dynamic and offer less chemical functionality than proteins, and biologically active ligands must compete with the highly abundant and highly structured RNA of the ribosome. Indeed, the only small molecule drug targeting RNA other than the ribosome was just approved in August 2020, and our recent survey of the literature revealed fewer than 150 reported chemical probes that target non-ribosomal RNA in biological systems. This Feature outlines our efforts to improve small molecule targeting strategies and gain fundamental insights into small molecule:RNA recognition by analyzing patterns in both RNA-biased small molecule chemical space and RNA topological space privileged for differentiation. First, we synthesized libraries based on RNA binding scaffolds that allowed us to reveal general principles in small molecule:recognition and to ask precise chemical questions about drivers of affinity and selectivity. Elaboration of these scaffolds has led to recognition of medicinally relevant RNA targets, including viral and long noncoding RNA structures. More globally, we identified physicochemical, structural, and spatial properties of biologically active RNA ligands that are distinct from those of protein-targeted ligands, and we have provided the dataset and associated analytical tools as part of a publicly available online platform to facilitate RNA ligand discovery. At the same time, we used pattern recognition protocols to identify RNA topologies that can be differentially recognized by small molecules and have elaborated this technique to visualize conformational changes in RNA secondary structure. These fundamental insights into the drivers of RNA recognition in vitro have led to functional targeting of RNA structures in biological systems. We hope that these initial guiding principles, as well as the approaches and assays developed in their pursuit, will enable rapid progress toward the development of RNA-targeted chemical probes and ultimately new therapeutic approaches to a wide range of deadly human diseases.
Collapse
Affiliation(s)
- Amanda E Hargrove
- Department of Chemistry, Duke University, 124 Science Drive, Box 90346, Durham, NC 27708, USA.
| |
Collapse
|
37
|
Mukherjee H, Blain JC, Vandivier LE, Chin DN, Friedman JE, Liu F, Maillet A, Fang C, Kaplan JB, Li J, Chenoweth DM, Christensen AB, Petersen LK, Hansen NJV, Barrera L, Kubica N, Kumaravel G, Petter JC. PEARL-seq: A Photoaffinity Platform for the Analysis of Small Molecule-RNA Interactions. ACS Chem Biol 2020; 15:2374-2381. [PMID: 32804474 DOI: 10.1021/acschembio.0c00357] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
RNA is emerging as a valuable target for the development of novel therapeutic agents. The rational design of RNA-targeting small molecules, however, has been hampered by the relative lack of methods for the analysis of small molecule-RNA interactions. Here, we present our efforts to develop such a platform using photoaffinity labeling. This technique, termed Photoaffinity Evaluation of RNA Ligation-Sequencing (PEARL-seq), enables the rapid identification of small molecule binding locations within their RNA targets and can provide information on ligand selectivity across multiple different RNAs. These data, when supplemented with small molecule SAR data and RNA probing data enable the construction of a computational model of the RNA-ligand structure, thereby enabling the rational design of novel RNA-targeted ligands.
Collapse
Affiliation(s)
- Herschel Mukherjee
- Arrakis Therapeutics, 830 Winter Street, Waltham, Massachusetts, United States
| | - J. Craig Blain
- Arrakis Therapeutics, 830 Winter Street, Waltham, Massachusetts, United States
| | - Lee E. Vandivier
- Arrakis Therapeutics, 830 Winter Street, Waltham, Massachusetts, United States
| | - Donovan N. Chin
- Arrakis Therapeutics, 830 Winter Street, Waltham, Massachusetts, United States
| | - Jessica E. Friedman
- Arrakis Therapeutics, 830 Winter Street, Waltham, Massachusetts, United States
| | - Fei Liu
- Arrakis Therapeutics, 830 Winter Street, Waltham, Massachusetts, United States
| | - Ashley Maillet
- Arrakis Therapeutics, 830 Winter Street, Waltham, Massachusetts, United States
| | - Chao Fang
- Arrakis Therapeutics, 830 Winter Street, Waltham, Massachusetts, United States
| | - Jenifer B. Kaplan
- Arrakis Therapeutics, 830 Winter Street, Waltham, Massachusetts, United States
| | - Jinxing Li
- Department of Chemistry, University of Pennsylvania, 231 South 34th Street, Philadelphia, Pennsylvania, United States
| | - David M. Chenoweth
- Department of Chemistry, University of Pennsylvania, 231 South 34th Street, Philadelphia, Pennsylvania, United States
| | | | | | | | - Luis Barrera
- Arrakis Therapeutics, 830 Winter Street, Waltham, Massachusetts, United States
| | - Neil Kubica
- Arrakis Therapeutics, 830 Winter Street, Waltham, Massachusetts, United States
| | | | - Jennifer C. Petter
- Arrakis Therapeutics, 830 Winter Street, Waltham, Massachusetts, United States
| |
Collapse
|
38
|
Donlic A, Zafferani M, Padroni G, Puri M, Hargrove A. Regulation of MALAT1 triple helix stability and in vitro degradation by diphenylfurans. Nucleic Acids Res 2020; 48:7653-7664. [PMID: 32667657 PMCID: PMC7430642 DOI: 10.1093/nar/gkaa585] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Revised: 05/18/2020] [Accepted: 07/09/2020] [Indexed: 12/23/2022] Open
Abstract
Small molecule-based modulation of a triple helix in the long non-coding RNA metastasis-associated lung adenocarcinoma transcript 1 (MALAT1) has been proposed as an attractive avenue for cancer treatment and a model system for understanding small molecule:RNA recognition. To elucidate fundamental recognition principles and structure-function relationships, we designed and synthesized nine novel analogs of a diphenylfuran-based small molecule DPFp8, a previously identified lead binder of MALAT1. We investigated the role of recognition modalities in binding and in silico studies along with the relationship between affinity, stability and in vitro enzymatic degradation of the triple helix. Specifically, molecular docking studies identified patterns driving affinity and selectivity, including limited ligand flexibility, as observed by ligand preorganization and 3D shape complementarity for the binding pocket. The use of differential scanning fluorimetry allowed rapid evaluation of ligand-induced thermal stabilization of the triple helix, which correlated with decreased in vitro degradation of this structure by the RNase R exonuclease. The magnitude of stabilization was related to binding mode and selectivity between the triple helix and its precursor stem loop structure. Together, this work demonstrates the value of scaffold-based libraries in revealing recognition principles and of raising broadly applicable strategies, including functional assays, for small molecule-RNA targeting.
Collapse
Affiliation(s)
- Anita Donlic
- Department of Chemistry, Duke University, 124 Science Drive, Durham, NC 27708, USA
| | - Martina Zafferani
- Department of Chemistry, Duke University, 124 Science Drive, Durham, NC 27708, USA
| | - Giacomo Padroni
- Department of Chemistry, Duke University, 124 Science Drive, Durham, NC 27708, USA
| | - Malavika Puri
- Department of Chemistry, Duke University, 124 Science Drive, Durham, NC 27708, USA
| | - Amanda E Hargrove
- To whom correspondence should be addressed. Tel: +1 919 660 1522; Fax: +1 919 660 1522;
| |
Collapse
|
39
|
Weißenstein A, Vysotsky MO, Piantanida I, Würthner F. Naphthalene diimide–amino acid conjugates as novel fluorimetric and CD probes for differentiation between ds-DNA and ds-RNA. Beilstein J Org Chem 2020; 16:2032-2045. [PMID: 32874350 PMCID: PMC7445415 DOI: 10.3762/bjoc.16.170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Accepted: 08/04/2020] [Indexed: 11/23/2022] Open
Abstract
Two novel unnatural amino acids, prepared by linking a dicationic purple-coloured and fluorescent naphthalene diimide (NDI) at core position to amino acid side chains of variable length, strongly interacted with ds-DNA/RNA by threading intercalation. Different from a reference NDI dye with identical visible range absorbance (520–540 nm) and Stokes shifts in emission (+60 nm, quantum yield > 0.2), only these amino acid–NDI conjugates showed selective fluorimetric response for GC-DNA in respect to AT(U)-polynucleotides. The DNA/RNA binding-induced circular dichroism (ICD) response of NDI at 450–550 nm strongly depended on the length and rigidity of the linker to the amino acid unit, which controls the orientation of the NDI unit inside within the intercalative binding site. The ICD selectivity also depends on the type of polynucleotide, thus the studied NDI dyes act as dual fluorimetric/ICD probes for sensing the difference between here used GC-DNA, AT-DNA and AU-RNA.
Collapse
Affiliation(s)
- Annike Weißenstein
- Institut für Organische Chemie, Universität Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Myroslav O Vysotsky
- Institut für Organische Chemie, Universität Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Ivo Piantanida
- Division of Organic Chemistry & Biochemistry, Ruđer Bošković Institute, PO Box 180, 10002 Zagreb, Croatia
| | - Frank Würthner
- Institut für Organische Chemie, Universität Würzburg, Am Hubland, 97074 Würzburg, Germany
- Center for Nanosystems Chemistry (CNC), Universität Würzburg, Theodor-Boveri-Weg, 97074 Würzburg, Germany
| |
Collapse
|
40
|
Huston NC, Wan H, de Cesaris Araujo Tavares R, Wilen C, Pyle AM. Comprehensive in-vivo secondary structure of the SARS-CoV-2 genome reveals novel regulatory motifs and mechanisms. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2020:2020.07.10.197079. [PMID: 32676598 PMCID: PMC7359520 DOI: 10.1101/2020.07.10.197079] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
SARS-CoV-2 is the positive-sense RNA virus that causes COVID-19, a disease that has triggered a major human health and economic crisis. The genome of SARS-CoV-2 is unique among viral RNAs in its vast potential to form stable RNA structures and yet, as much as 97% of its 30 kilobases have not been structurally explored in the context of a viral infection. Our limited knowledge of SARS-CoV-2 genomic architecture is a fundamental limitation to both our mechanistic understanding of coronavirus life cycle and the development of COVID-19 RNA-based therapeutics. Here, we apply a novel long amplicon strategy to determine for the first time the secondary structure of the SARS-CoV-2 RNA genome probed in infected cells. In addition to the conserved structural motifs at the viral termini, we report new structural features like a conformationally flexible programmed ribosomal frameshifting pseudoknot, and a host of novel RNA structures, each of which highlights the importance of studying viral structures in their native genomic context. Our in-depth structural analysis reveals extensive networks of well-folded RNA structures throughout Orf1ab and reveals new aspects of SARS-CoV-2 genome architecture that distinguish it from other single-stranded, positive-sense RNA viruses. Evolutionary analysis of RNA structures in SARS-CoV-2 shows that several features of its genomic structure are conserved across beta coronaviruses and we pinpoint individual regions of well-folded RNA structure that merit downstream functional analysis. The native, complete secondary structure of SAR-CoV-2 presented here is a roadmap that will facilitate focused studies on mechanisms of replication, translation and packaging, and guide the identification of new RNA drug targets against COVID-19.
Collapse
Affiliation(s)
- Nicholas C. Huston
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, USA
| | - Han Wan
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, CT, USA
| | | | - Craig Wilen
- Department of Laboratory Medicine, Yale School of Medicine, New Haven, CT, USA
- Department of Immunobiology, Yale School of Medicine, New Haven, CT, USA
| | - Anna Marie Pyle
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, CT, USA
- Department of Chemistry, Yale University, New Haven, CT, USA
- Howard Hughes Medical Institute, Chevy Chase, MD, USA
| |
Collapse
|
41
|
Padroni G, Patwardhan NN, Schapira M, Hargrove AE. Systematic analysis of the interactions driving small molecule-RNA recognition. RSC Med Chem 2020; 11:802-813. [PMID: 33479676 DOI: 10.1039/d0md00167h] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Accepted: 05/20/2020] [Indexed: 12/14/2022] Open
Abstract
RNA molecules are becoming an important target class in drug discovery. However, the principles for designing RNA-binding small molecules are yet to be fully uncovered. In this study, we examined the Protein Data Bank (PDB) to highlight privileged interactions underlying small molecule-RNA recognition. By comparing this analysis with previously determined small molecule-protein interactions, we find that RNA recognition is driven mostly by stacking and hydrogen bonding interactions, while protein recognition is instead driven by hydrophobic effects. Furthermore, we analyze patterns of interactions to highlight potential strategies to tune RNA recognition, such as stacking and cation-π interactions that favor purine and guanine recognition, and note an unexpected paucity of backbone interactions, even for cationic ligands. Collectively, this work provides further understanding of RNA-small molecule interactions that may inform the design of small molecules targeting RNA.
Collapse
Affiliation(s)
- G Padroni
- Department of Chemistry , Duke University , Durham , North Carolina 27708 , USA .
| | - N N Patwardhan
- Department of Chemistry , Duke University , Durham , North Carolina 27708 , USA .
| | - M Schapira
- Structural Genomics Consortium , University of Toronto , Toronto , ON M5G 1L7 , Canada.,Department of Pharmacology and Toxicology , University of Toronto , Toronto , ON M5S 1A8 , Canada
| | - A E Hargrove
- Department of Chemistry , Duke University , Durham , North Carolina 27708 , USA .
| |
Collapse
|
42
|
Boer RE, Torrey ZR, Schneekloth JS. Chemical Modulation of Pre-mRNA Splicing in Mammalian Systems. ACS Chem Biol 2020; 15:808-818. [PMID: 32191432 DOI: 10.1021/acschembio.0c00001] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
RNA splicing is a key component of gene expression and proteomic diversity in humans. The spliceosome assembles on and processes individual nascent pre-mRNA transcripts into distinct mature mRNAs that can code for different proteins. Splicing programs can be affected by somatic mutations and changes in response to exogenous stimuli. Importantly, alterations in splicing can be direct drivers of diseases including cancers. This Review describes recent advances and the potential for targeting and controlling pre-mRNA splicing in humans with small molecules, ranging from targeting spliceosomal proteins to direct targeting of individual RNA transcripts.
Collapse
Affiliation(s)
- Robert E. Boer
- Chemical Biology Laboratory, National Cancer Institute, Frederick Maryland 21702, United States
| | - Zachary R. Torrey
- Chemical Biology Laboratory, National Cancer Institute, Frederick Maryland 21702, United States
| | - John S. Schneekloth
- Chemical Biology Laboratory, National Cancer Institute, Frederick Maryland 21702, United States
| |
Collapse
|
43
|
Đud M, Glasovac Z, Margetić D, Piantanida I. Guanidino-aryl derivatives: protonation and structure tuning for spectrophotometric recognition of ds-DNA and ds-RNA. NEW J CHEM 2020. [DOI: 10.1039/d0nj01879a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Fine interplay between protonation of guanidine and size of Aryl controls DNA/RNA recognition and fluorimetric or CD response.
Collapse
Affiliation(s)
- Mateja Đud
- Laboratory for Physical Organic Chemistry
- Division of Organic Chemistry & Biochemistry
- Ruđer Bošković Institute
- HR 10002 Zagreb
- Croatia
| | - Zoran Glasovac
- Laboratory for Physical Organic Chemistry
- Division of Organic Chemistry & Biochemistry
- Ruđer Bošković Institute
- HR 10002 Zagreb
- Croatia
| | - Davor Margetić
- Laboratory for Physical Organic Chemistry
- Division of Organic Chemistry & Biochemistry
- Ruđer Bošković Institute
- HR 10002 Zagreb
- Croatia
| | - Ivo Piantanida
- Laboratory for Biomolecular Interactions and Spectroscopy
- Division of Organic Chemistry & Biochemistry, Ruđer Bošković Institute
- HR 10002 Zagreb
- Croatia
| |
Collapse
|