1
|
Lee JE, Jayakody JTM, Kim JI, Jeong JW, Choi KM, Kim TS, Seo C, Azimi I, Hyun JM, Ryu BM. The Influence of Solvent Choice on the Extraction of Bioactive Compounds from Asteraceae: A Comparative Review. Foods 2024; 13:3151. [PMID: 39410186 PMCID: PMC11475975 DOI: 10.3390/foods13193151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 09/30/2024] [Accepted: 09/30/2024] [Indexed: 10/20/2024] Open
Abstract
While the potential of Asteraceae plants as herbal remedies has been globally recognized, their widespread application in the food, cosmetic, and pharmaceutical industries requires a deeper understanding of how extraction methods influence bioactive compound yields and functionalities. Previous research has primarily focused on the physiological activities or chemical compositions of individual Asteraceae species, often overlooking the critical role of solvent selection in optimizing extraction. Additionally, the remarkable physiological activities observed in these plants have spurred a growing number of clinical trials, aiming to validate their efficacy and safety for potential therapeutic and commercial applications. This work aims to bridge these knowledge gaps by providing an integrated analysis of extraction techniques, the diverse range of bioactive compounds present in Asteraceae, and the influence of solvent choice on isolating these valuable substances. By elucidating the interplay between extraction methods, solvent properties, and bioactivity, we underscore the promising potential of Asteraceae plants and highlight the importance of continued research, including clinical trials, to fully unlock their potential in the food, cosmetic, and pharmaceutical sectors.
Collapse
Affiliation(s)
- Ji-Eun Lee
- Department of Food Science Nutrition, Pukyong National University, Busan 48513, Republic of Korea; (J.-E.L.); (J.-I.K.)
- Department of Smart Green Technology Engineering, Pukyong National University, Busan 48513, Republic of Korea
| | | | - Jae-Il Kim
- Department of Food Science Nutrition, Pukyong National University, Busan 48513, Republic of Korea; (J.-E.L.); (J.-I.K.)
| | - Jin-Woo Jeong
- Honam National Institute of Biological Resources, 99 Gohadoangil, Mokpo-si 587262, Republic of Korea; (J.-W.J.); (K.-M.C.); (T.-S.K.); (C.S.)
| | - Kyung-Min Choi
- Honam National Institute of Biological Resources, 99 Gohadoangil, Mokpo-si 587262, Republic of Korea; (J.-W.J.); (K.-M.C.); (T.-S.K.); (C.S.)
| | - Tae-Su Kim
- Honam National Institute of Biological Resources, 99 Gohadoangil, Mokpo-si 587262, Republic of Korea; (J.-W.J.); (K.-M.C.); (T.-S.K.); (C.S.)
| | - Chan Seo
- Honam National Institute of Biological Resources, 99 Gohadoangil, Mokpo-si 587262, Republic of Korea; (J.-W.J.); (K.-M.C.); (T.-S.K.); (C.S.)
| | - Iman Azimi
- Monash Biomedicine Discovery Institute, Department of Pharmacology, Monash University, Melbourne, VIC 3168, Australia;
| | - Ji-Min Hyun
- Department of Food Science Nutrition, Pukyong National University, Busan 48513, Republic of Korea; (J.-E.L.); (J.-I.K.)
| | - Bo-Mi Ryu
- Department of Food Science Nutrition, Pukyong National University, Busan 48513, Republic of Korea; (J.-E.L.); (J.-I.K.)
- Department of Smart Green Technology Engineering, Pukyong National University, Busan 48513, Republic of Korea
| |
Collapse
|
2
|
Lu Y, Li DH, Xu JM, Zhou S. Role of naringin in the treatment of atherosclerosis. Front Pharmacol 2024; 15:1451445. [PMID: 39309005 PMCID: PMC11412885 DOI: 10.3389/fphar.2024.1451445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Accepted: 08/29/2024] [Indexed: 09/25/2024] Open
Abstract
Atherosclerosis (AS) is a major pathological basis of coronary heart disease. However, the currently available medications are unable to effectively reduce the incidence of cardiovascular events in the majority of patients with AS. Therefore, naringin has been attracting considerable attention owing to its anti-AS effects. Naringin can inhibit the growth, proliferation, invasion, and migration of vascular smooth muscle cells, ameliorate endothelial cell inflammation and apoptosis, lower blood pressure, halt the cell cycle at the G1 phase, and impede growth via its antioxidant and free radical scavenging effects. These activities suggest the potential anti-AS effects of naringin. In this review article, we comprehensively summarized the latest findings on the anti-AS effects of naringin and their underlying mechanisms, providing a crucial reference for future research on the anti-AS potential of this agent.
Collapse
Affiliation(s)
- Yan Lu
- Department of Clinical Laboratory, Gansu Provincial Hospital, Lanzhou, China
| | - De-Hong Li
- Department of Clinical Laboratory, Gansu Provincial Hospital, Lanzhou, China
| | - Ji-Mei Xu
- Department of General Surgery, Gansu Provincial Hospital, Lanzhou, China
| | - Sheng Zhou
- Department of Radiology, Gansu Provincial Hospital, Lanzhou, China
| |
Collapse
|
3
|
Ruan J, Shi Z, Cao X, Dang Z, Zhang Q, Zhang W, Wu L, Zhang Y, Wang T. Research Progress on Anti-Inflammatory Effects and Related Mechanisms of Astragalin. Int J Mol Sci 2024; 25:4476. [PMID: 38674061 PMCID: PMC11050484 DOI: 10.3390/ijms25084476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 04/12/2024] [Accepted: 04/17/2024] [Indexed: 04/28/2024] Open
Abstract
Chronic inflammation is a significant contributor to the development of cancer, cardiovascular disease, diabetes, obesity, autoimmune disease, inflammatory bowel disease, and other illnesses. In the academic field, there is a constant demand for effective methods to alleviate inflammation. Astragalin (AST), a type of flavonoid glycoside that is the primary component in several widely used traditional Chinese anti-inflammatory medications in clinical practice, has garnered attention from numerous experts and scholars. This article focuses on the anti-inflammatory effects of AST and conducts research on relevant literature from 2003 to 2023. The findings indicate that AST demonstrates promising anti-inflammatory potential in various models of inflammatory diseases. Specifically, AST is believed to possess inhibitory effects on inflammation-related factors and protein levels in various in vitro cell models, such as macrophages, microglia, and epithelial cells. In vivo studies have shown that AST effectively alleviates neuroinflammation and brain damage while also exhibiting potential for treating moderate diseases such as depression and stroke; it also demonstrates significant anti-inflammatory effects on both large and small intestinal epithelial cells. Animal experiments have further demonstrated that AST exerts therapeutic effects on colitis mice. Molecular biology studies have revealed that AST regulates complex signaling networks, including NF-κB, MAPK, JAK/STAT pathways, etc. In conclusion, this review will provide insights and references for the development of AST as an anti-inflammatory agent as well as for related drug development.
Collapse
Affiliation(s)
- Jingya Ruan
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, West Area, Tuanbo New Town, Jinghai District, Tianjin 301617, China; (J.R.); (X.C.); (Z.D.); (Q.Z.)
- Tianjin Key Laboratory of TCM Chemistry and Analysis, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, West Area, Tuanbo New Town, Jinghai District, Tianjin 301617, China; (Z.S.); (W.Z.); (L.W.)
| | - Zhongwei Shi
- Tianjin Key Laboratory of TCM Chemistry and Analysis, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, West Area, Tuanbo New Town, Jinghai District, Tianjin 301617, China; (Z.S.); (W.Z.); (L.W.)
| | - Xiaoyan Cao
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, West Area, Tuanbo New Town, Jinghai District, Tianjin 301617, China; (J.R.); (X.C.); (Z.D.); (Q.Z.)
| | - Zhunan Dang
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, West Area, Tuanbo New Town, Jinghai District, Tianjin 301617, China; (J.R.); (X.C.); (Z.D.); (Q.Z.)
| | - Qianqian Zhang
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, West Area, Tuanbo New Town, Jinghai District, Tianjin 301617, China; (J.R.); (X.C.); (Z.D.); (Q.Z.)
- Tianjin Key Laboratory of TCM Chemistry and Analysis, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, West Area, Tuanbo New Town, Jinghai District, Tianjin 301617, China; (Z.S.); (W.Z.); (L.W.)
| | - Wei Zhang
- Tianjin Key Laboratory of TCM Chemistry and Analysis, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, West Area, Tuanbo New Town, Jinghai District, Tianjin 301617, China; (Z.S.); (W.Z.); (L.W.)
| | - Lijie Wu
- Tianjin Key Laboratory of TCM Chemistry and Analysis, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, West Area, Tuanbo New Town, Jinghai District, Tianjin 301617, China; (Z.S.); (W.Z.); (L.W.)
| | - Yi Zhang
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, West Area, Tuanbo New Town, Jinghai District, Tianjin 301617, China; (J.R.); (X.C.); (Z.D.); (Q.Z.)
- Tianjin Key Laboratory of TCM Chemistry and Analysis, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, West Area, Tuanbo New Town, Jinghai District, Tianjin 301617, China; (Z.S.); (W.Z.); (L.W.)
| | - Tao Wang
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, West Area, Tuanbo New Town, Jinghai District, Tianjin 301617, China; (J.R.); (X.C.); (Z.D.); (Q.Z.)
- Tianjin Key Laboratory of TCM Chemistry and Analysis, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, West Area, Tuanbo New Town, Jinghai District, Tianjin 301617, China; (Z.S.); (W.Z.); (L.W.)
| |
Collapse
|
4
|
Lephatsi MM, Choene MS, Kappo AP, Madala NE, Tugizimana F. An Integrated Molecular Networking and Docking Approach to Characterize the Metabolome of Helichrysum splendidum and Its Pharmaceutical Potentials. Metabolites 2023; 13:1104. [PMID: 37887429 PMCID: PMC10609414 DOI: 10.3390/metabo13101104] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 10/13/2023] [Accepted: 10/16/2023] [Indexed: 10/28/2023] Open
Abstract
South Africa is rich in diverse medicinal plants, and it is reported to have over 35% of the global Helichrysum species, many of which are utilized in traditional medicine. Various phytochemical studies have offered valuable insights into the chemistry of Helichrysum plants, hinting at bioactive components that define the medicinal properties of the plant. However, there are still knowledge gaps regarding the size and diversity of the Helichrysum chemical space. As such, continuous efforts are needed to comprehensively characterize the phytochemistry of Helichrysum, which will subsequently contribute to the discovery and exploration of Helichrysum-derived natural products for drug discovery. Thus, reported herein is a computational metabolomics work to comprehensively characterize the metabolic landscape of the medicinal herb Helichrysum splendidum, which is less studied. Metabolites were methanol-extracted and analyzed on a liquid chromatography-tandem mass spectrometry (LC-MS/MS) system. Spectral data were mined using molecular networking (MN) strategies. The results revealed that the metabolic map of H. splendidum is chemically diverse, with chemical superclasses that include organic polymers, benzenoids, lipid and lipid-like molecules, alkaloids, and derivatives, phenylpropanoids and polyketides. These results point to a vastly rich chemistry with potential bioactivities, and the latter was demonstrated through computationally assessing the binding of selected metabolites with CDK-2 and CCNB1 anti-cancer targets. Molecular docking results showed that flavonoids (luteolin, dihydroquercetin, and isorhamnetin) and terpenoids (tiliroside and silybin) interact strongly with the CDK-2 and CCNB1 targets. Thus, this work suggests that these flavonoid and terpenoid compounds from H. splendidum are potentially anti-cancer agents through their ability to interact with these proteins involved in cancer pathways and progression. As such, these actionable insights are a necessary step for further exploration and translational studies for H. splendidum-derived compounds for drug discovery.
Collapse
Affiliation(s)
- Motseoa Mariam Lephatsi
- Department of Biochemistry, University of Johannesburg, Auckland Park, Johannesburg 2006, South Africa; (M.M.L.); (M.S.C.); (A.P.K.)
| | - Mpho Susan Choene
- Department of Biochemistry, University of Johannesburg, Auckland Park, Johannesburg 2006, South Africa; (M.M.L.); (M.S.C.); (A.P.K.)
| | - Abidemi Paul Kappo
- Department of Biochemistry, University of Johannesburg, Auckland Park, Johannesburg 2006, South Africa; (M.M.L.); (M.S.C.); (A.P.K.)
| | - Ntakadzeni Edwin Madala
- Department of Biochemistry and Microbiology, University of Venda, Thohoyandou 0950, South Africa;
| | - Fidele Tugizimana
- Department of Biochemistry, University of Johannesburg, Auckland Park, Johannesburg 2006, South Africa; (M.M.L.); (M.S.C.); (A.P.K.)
- International Research and Development Division, Omnia Group, Ltd., Bryanston, Johannesburg 2021, South Africa
| |
Collapse
|
5
|
Borgonetti V, Caroli C, Governa P, Virginia B, Pollastro F, Franchini S, Manetti F, Les F, López V, Pellati F, Galeotti N. Helichrysum stoechas (L.) Moench reduces body weight gain and modulates mood disorders via inhibition of silent information regulator 1 (SIRT1) by arzanol. Phytother Res 2023; 37:4304-4320. [PMID: 37433745 DOI: 10.1002/ptr.7941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 06/06/2023] [Accepted: 06/25/2023] [Indexed: 07/13/2023]
Abstract
The prevalence of obesity is steadily rising, making safe and more efficient anti-obesity treatments an urgent medical need. Growing evidence correlates obesity and comorbidities, including anxiety and depression, with the development of a low-grade inflammation in peripheral and central tissues. We hypothesized that attenuating neuroinflammation might reduce weight gain and improve mood. We investigated the efficacy of a methanolic extract from Helichrysum stoechas (L.) Moench (HSE), well-known for its anti-inflammatory properties, and its main constituent arzanol (AZL). HPLC-ESI-MS2 and HPLC-UV were used to characterize the extract. HSE effects on mood and feeding behavior was assessed in mice. The mechanism of action of HSE and AZL was investigated in hippocampus samples and SH-SY5Y cells by western blotting and immunofluorescence. Oral administration of HSE for 3 weeks limited weight gain with no significant decrease in food intake. HSE produced an anxiolytic-like and antidepressant-like phenotype comparable to diazepam and amitriptyline, respectively, in the absence of locomotor and cognitive impairments and induced neuroprotective effects in glutamate-exposed SH-SY5Y cells. A dose-dependent reduction of SIRT1 expression was detected in SH-SY5Y cells and in hippocampal samples from HSE-treated mice. The inhibition of the SIRT1-FoxO1 pathway was induced in the hypothalamus. Molecular docking studies proposed a mechanism of SIRT1 inhibition by AZL, confirmed by the evaluation of inhibitory effects on SIRT1 enzymatic activity. HSE limited weight gain and comorbidities through an AZL-mediated SIRT1 inhibition. These activities indicate HSE an innovative therapeutic perspective for obesity and associated mood disorders.
Collapse
Affiliation(s)
- Vittoria Borgonetti
- Department of Neuroscience, Psychology, Drug Research and Child Health (NEUROFARBA), Section of Pharmacology and Toxicology, University of Florence, Florence, Italy
- Department of Molecular Medicine and Neuroscience, Scripps Research Institute, La Jolla, California, USA
| | - Clarissa Caroli
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
- Clinical and Experimental Medicine PhD Program, University of Modena and Reggio Emilia, Modena, Italy
| | - Paolo Governa
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Siena, Italy
- Department of Integrative Structural and Computational Biology, Scripps Research Institute, La Jolla, California, USA
| | - Brighenti Virginia
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Federica Pollastro
- Department of Pharmaceutical Sciences, University of Eastern Piedmont, Novara, Italy
| | - Silvia Franchini
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Fabrizio Manetti
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Siena, Italy
| | - Francisco Les
- Department of Pharmacy, Faculty of Health Sciences, Universidad San Jorge, Zaragoza, Spain
- Instituto Agroalimentario de Aragón, IA2, Universidad de Zaragoza-CITA, Zaragoza, Spain
| | - Victor López
- Department of Pharmacy, Faculty of Health Sciences, Universidad San Jorge, Zaragoza, Spain
- Instituto Agroalimentario de Aragón, IA2, Universidad de Zaragoza-CITA, Zaragoza, Spain
| | - Federica Pellati
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Nicoletta Galeotti
- Department of Neuroscience, Psychology, Drug Research and Child Health (NEUROFARBA), Section of Pharmacology and Toxicology, University of Florence, Florence, Italy
| |
Collapse
|
6
|
Ortiz S, Šavikin K, Massicot F, Olivier E, Dutot M, Rat P, Deguin B, Gođevac D, Menković N, Živković J, Zdunić G, Boutefnouchet S. P2X7-Receptor Pathway Involvement in the Anti-Inflammatory Activity of Medicinal Plants. Chem Biodivers 2023; 20:e202300427. [PMID: 37439445 DOI: 10.1002/cbdv.202300427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 07/10/2023] [Accepted: 07/11/2023] [Indexed: 07/14/2023]
Abstract
Medicinal plants used in European folk medicine attached to Lamiales, Gentianales or Asterales orders are used to treat inflammatory disorders. Many targets have been identified but to date, implication of purinergic receptor P2X7 activation has not yet been investigated. We managed to evaluate the protective effect on P2X7 activation by plant extracts used as anti-inflammatory in European folk medicine by the YO-PRO-1 uptake dye in vitro bioassay. Results revealed that among our selected plants, species from Scrophularia and Plantago genus were able to decrease significantly P2X7 activation (>50 % at 0.1 and 1 μg/mL). UPLC/MS, dereplication and metabolomic analysis of Scrophularia extracts, allowed us to identify the cinnamoyl-iridoid harpagoside as putative inhibitor of P2X7 activation. These results open a new research field regarding the anti-inflammatory mechanism of cinnamoyl-iridoids bearing plants, which may involve the P2X7 receptor.
Collapse
Affiliation(s)
- Sergio Ortiz
- Team Natural Products, Analyzes and Syntheses, Université Paris Cité, CNRS, Faculté de Pharmacie de, 4 Avenue de l'Observatoire F, 75006, Paris, France
- UMR 7200 Laboratoire d'Innovation Thérapeutique, Université de Strasbourg, CNRS, Strasbourg Drug Discovery and Development Institute (IMS), Illkirch-Graffenstaden, France
| | - Katarina Šavikin
- Institute for Medicinal Plants Research "Dr. Josif Pančić", Department of Pharmaceutical Research and Development, Tadeuša Košćuška 1, 11000, Belgrade, Serbia
| | - France Massicot
- Team Analytical Chemistry and Experimental Toxicology, Université Paris Cité, CNRS, Faculté de Pharmacie de, 4 Avenue de l'Observatoire F, 75006, Paris, France
| | - Elodie Olivier
- Team Analytical Chemistry and Experimental Toxicology, Université Paris Cité, CNRS, Faculté de Pharmacie de, 4 Avenue de l'Observatoire F, 75006, Paris, France
| | - Melody Dutot
- Team Analytical Chemistry and Experimental Toxicology, Université Paris Cité, CNRS, Faculté de Pharmacie de, 4 Avenue de l'Observatoire F, 75006, Paris, France
| | - Patrice Rat
- Team Analytical Chemistry and Experimental Toxicology, Université Paris Cité, CNRS, Faculté de Pharmacie de, 4 Avenue de l'Observatoire F, 75006, Paris, France
| | - Brigitte Deguin
- Team Natural Products, Analyzes and Syntheses, Université Paris Cité, CNRS, Faculté de Pharmacie de, 4 Avenue de l'Observatoire F, 75006, Paris, France
| | - Dejan Gođevac
- Institute of Chemistry, Technology and Metallurgy, National Institute, Univeristy of Belgrade, Njegoševa 12, Belgrade, Serbia
| | - Nebojša Menković
- Institute for Medicinal Plants Research "Dr. Josif Pančić", Department of Pharmaceutical Research and Development, Tadeuša Košćuška 1, 11000, Belgrade, Serbia
| | - Jelena Živković
- Institute for Medicinal Plants Research "Dr. Josif Pančić", Department of Pharmaceutical Research and Development, Tadeuša Košćuška 1, 11000, Belgrade, Serbia
| | - Gordana Zdunić
- Institute for Medicinal Plants Research "Dr. Josif Pančić", Department of Pharmaceutical Research and Development, Tadeuša Košćuška 1, 11000, Belgrade, Serbia
| | - Sabrina Boutefnouchet
- Team Natural Products, Analyzes and Syntheses, Université Paris Cité, CNRS, Faculté de Pharmacie de, 4 Avenue de l'Observatoire F, 75006, Paris, France
| |
Collapse
|
7
|
Guo S, Xing N, Xiang G, Zhang Y, Wang S. Eriodictyol: a review of its pharmacological activities and molecular mechanisms related to ischemic stroke. Food Funct 2023; 14:1851-1868. [PMID: 36757280 DOI: 10.1039/d2fo03417d] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Ischemic stroke (IS) is characterized by a prominent mortality and disability rate, which has increased the burden on the global economy to a certain extent. Meanwhile, patients benefit little from the limited clinical strategies of intravenous alteplase and thrombectomy due to the limited therapeutic window. Given this, it is urgent to study new therapeutic methods to intervene in these patients. Eriodyctiol (ERD) is a major natural flavonoid, which widely exists in fruits, vegetables, and medicinal herbs, and has various pharmacological properties. It has been reported that ERD can maintain homeostasis in organisms by exerting neuroprotective and vascular protective effects. Therefore, more and more studies have focused on the pharmacological activity and mechanism of ERD in IS. This paper provides an overview of the plant sources, phytochemical properties, pharmacokinetics, and pathogenesis, as well as the pharmacological effects and mechanisms of ERD in IS. To date, preclinical studies on ERD in diverse cell lines and animal models have established the idea of ERD as a feasible agent capable of specifically ameliorating IS. The molecular mechanisms of ERD to prevent or reduce IS are mainly based on the inhibition of inflammation, oxidative stress, autophagy and apoptosis. Nevertheless, the mechanism of ERD against IS is flawed and needs more exploration by the research community. Moreover, well-designed clinical trials are needed to increase the scientific validity of the beneficial effects of ERD against IS.
Collapse
Affiliation(s)
- Sa Guo
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Nan Xing
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Gelin Xiang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Ethnic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| | - Yi Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Ethnic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| | - Shaohui Wang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Ethnic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| |
Collapse
|
8
|
Ding S, Wang P, Pang X, Zhang L, Qian L, Jia X, Chen W, Ruan S, Sun L. The new exploration of pure total flavonoids extracted from Citrus maxima (Burm.) Merr. as a new therapeutic agent to bring health benefits for people. Front Nutr 2022; 9:958329. [PMID: 36276813 PMCID: PMC9582534 DOI: 10.3389/fnut.2022.958329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Accepted: 08/25/2022] [Indexed: 11/13/2022] Open
Abstract
The peel and fruit of Citrus varieties have been a raw material for some traditional Chinese medicine (TCM). Pure total flavonoids from Citrus maxima (Burm.) Merr. (PTFC), including naringin, hesperidin, narirutin, and neohesperidin, have been attracted increasing attention for their multiple clinical efficacies. Based on existing in vitro and in vivo research, this study systematically reviewed the biological functions of PTFC and its components in preventing or treating liver metabolic diseases, cardiovascular diseases, intestinal barrier dysfunction, as well as malignancies. PTFC and its components are capable of regulating glycolipid metabolism, blocking peroxidation and persistent inflammation, inhibiting tumor progression, protecting the integrity of intestinal barrier and positively regulating intestinal microbiota, while the differences in fruit cultivation system, picking standard, manufacturing methods, delivery system and individual intestinal microecology will have impact on the specific therapeutic effect. Thus, PTFC is a promising drug for the treatment of some chronic diseases, as well as continuous elaborate investigations are necessary to improve its effectiveness and bioavailability.
Collapse
Affiliation(s)
- Shuning Ding
- The First School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, China
| | - Peipei Wang
- The First School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, China
| | - Xi Pang
- The First School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, China
| | - Leyin Zhang
- Department of Medical Oncology, Hangzhou TCM Hospital of Zhejiang Chinese Medical University (Hangzhou Hospital of Traditional Chinese Medicine), Hangzhou, China
| | - Lihui Qian
- The First School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, China
| | - Xinru Jia
- The First School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, China
| | - Wenqian Chen
- The First School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, China
| | - Shanming Ruan
- Department of Medical Oncology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Traditional Chinese Medicine), Hangzhou, China,Shanming Ruan,
| | - Leitao Sun
- Department of Medical Oncology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Traditional Chinese Medicine), Hangzhou, China,*Correspondence: Leitao Sun,
| |
Collapse
|
9
|
Kenig S, Kramberger K, Šik Novak K, Karnjuš I, Bandelj D, Petelin A, Jenko Pražnikar Z. Helichrysum italicum (Roth) G. Don and Helichrysum arenarium (L.) Moench infusions in reversing the traits of metabolic syndrome: a double-blind randomized comparative trial. Food Funct 2022; 13:7697-7706. [PMID: 35749144 DOI: 10.1039/d2fo00880g] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Health impairments characteristic for metabolic syndrome such as increased body mass, a dysregulated lipid or glucose profile and elevated blood pressure can be reversed by appropriate lifestyle modifications. Supplementing the normal diet with herbal infusions is a promising strategy. We conducted a randomised double-blind comparative study in which participants with at least two traits of metabolic syndrome consumed an infusion of either Helichrysum italicum subsp. italicum (HI, n = 14) or Helichrysum arenarium (HA, n = 13) daily for 28 days. Anthropometric and biochemical parameters were measured at baseline, at the end of the intervention and after a 2-week washout period. HI infusion consumption had a beneficial effect on anthropometric traits; significant reductions in body weight, body mass index, and visceral and total body fat were observed. In the HA group, there was a greater reduction in serum glucose levels and an improvement in the lipid profile. In both groups, high LDL levels were measured at baseline, but two weeks after the intervention, in 84% of participants in the HA group and 71% in the HI group, the levels were within the reference range. Both interventions caused a decrease in HDL but also improved serum antioxidant properties. Consuming either infusion could thus be recommended as a simple, profitable habit for individuals with traits of metabolic syndrome.
Collapse
Affiliation(s)
- Saša Kenig
- Faculty of Health Sciences, University of Primorska, Polje 42, Izola, Slovenia.
| | - Katja Kramberger
- Faculty of Health Sciences, University of Primorska, Polje 42, Izola, Slovenia.
| | - Karin Šik Novak
- Faculty of Health Sciences, University of Primorska, Polje 42, Izola, Slovenia.
| | - Igor Karnjuš
- Faculty of Health Sciences, University of Primorska, Polje 42, Izola, Slovenia.
| | - Dunja Bandelj
- Faculty of Mathematics, Natural Sciences and Information Technologies, University of Primorska, 6000 Koper, Slovenia
| | - Ana Petelin
- Faculty of Health Sciences, University of Primorska, Polje 42, Izola, Slovenia.
| | | |
Collapse
|
10
|
Valero MS, Nuñez S, Les F, Castro M, Gómez-Rincón C, Arruebo MP, Plaza MÁ, Köhler R, López V. The Potential Role of Everlasting Flower ( Helichrysum stoechas Moench) as an Antihypertensive Agent: Vasorelaxant Effects in the Rat Aorta. Antioxidants (Basel) 2022; 11:antiox11061092. [PMID: 35739989 PMCID: PMC9219724 DOI: 10.3390/antiox11061092] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 05/26/2022] [Accepted: 05/27/2022] [Indexed: 02/04/2023] Open
Abstract
Helichrysum stoechas (L.) Moench (H. stoechas) is a medicinal plant traditionally used in the Iberian Peninsula to treat different disorders such as arterial hypertension. The aim of this study was to investigate the vascular effects of a polyphenolic methanolic extract of H. stoechas, which has high antioxidant activity, and its mechanism of action. Isometric myography studies were performed in an organ bath with rat aortic rings with intact endothelium. The H. stoechas extract produced vasorelaxation in the aortic rings that were precontracted by phenylephrine or KCl. L-NAME and Rp-8-Br-PET-cGMPS but not indomethacin or H-89; it also reduced the relaxant response evoked by H. stoechas extract on the phenylephrine-induced contractions. H. stoechas extract reduced the response to CaCl2 similar to verapamil and reduced the phenylephrine-induced contractions comparable with heparin. TRAM-34, apamin and glibenclamide reduced relaxation induced by the H. stoechas extract. The combination of L-NAME+TRAM-34+apamin almost completely inhibited the H. stoechas-induced effect. In conclusion, the relaxant effect of the H. stoechas extract is partially mediated by endothelium through the activation of the NO/PKG/cGMP pathway and the opening of Ca2+-activated K+ channels. Furthermore, the decrease in the cytosolic Ca2+ by the inhibition of Ca2+ influx through the L-type Ca2+ channels and by the reduction of Ca2+ release from the sarcoplasmic reticulum via the IP3 pathway is also involved.
Collapse
Affiliation(s)
- Marta Sofía Valero
- Departamento de Farmacología, Fisiología y Medicina Legal y Forense, Universidad de Zaragoza, 50009 Zaragoza, Spain; (M.C.); (M.P.A.); (M.Á.P.)
- Instituto Agroalimentario de Aragón, IA2, Universidad de Zaragoza-CITA, 50830 Zaragoza, Spain; (F.L.); (C.G.-R.)
- Correspondence: (M.S.V.); (V.L.); Tel.: +34-974-239408 (M.S.V. & V.L.)
| | - Sonia Nuñez
- Facultad de Ciencias de la Salud, Universidad San Jorge, Villanueva de Gállego, 50830 Zaragoza, Spain;
| | - Francisco Les
- Instituto Agroalimentario de Aragón, IA2, Universidad de Zaragoza-CITA, 50830 Zaragoza, Spain; (F.L.); (C.G.-R.)
- Facultad de Ciencias de la Salud, Universidad San Jorge, Villanueva de Gállego, 50830 Zaragoza, Spain;
| | - Marta Castro
- Departamento de Farmacología, Fisiología y Medicina Legal y Forense, Universidad de Zaragoza, 50009 Zaragoza, Spain; (M.C.); (M.P.A.); (M.Á.P.)
- Instituto Agroalimentario de Aragón, IA2, Universidad de Zaragoza-CITA, 50830 Zaragoza, Spain; (F.L.); (C.G.-R.)
- Instituto de Investigación Sanitaria Aragón (IIS Aragón), 50009 Zaragoza, Spain
| | - Carlota Gómez-Rincón
- Instituto Agroalimentario de Aragón, IA2, Universidad de Zaragoza-CITA, 50830 Zaragoza, Spain; (F.L.); (C.G.-R.)
- Facultad de Ciencias de la Salud, Universidad San Jorge, Villanueva de Gállego, 50830 Zaragoza, Spain;
| | - María Pilar Arruebo
- Departamento de Farmacología, Fisiología y Medicina Legal y Forense, Universidad de Zaragoza, 50009 Zaragoza, Spain; (M.C.); (M.P.A.); (M.Á.P.)
- Instituto Agroalimentario de Aragón, IA2, Universidad de Zaragoza-CITA, 50830 Zaragoza, Spain; (F.L.); (C.G.-R.)
- Instituto de Investigación Sanitaria Aragón (IIS Aragón), 50009 Zaragoza, Spain
| | - Miguel Ángel Plaza
- Departamento de Farmacología, Fisiología y Medicina Legal y Forense, Universidad de Zaragoza, 50009 Zaragoza, Spain; (M.C.); (M.P.A.); (M.Á.P.)
- Instituto Agroalimentario de Aragón, IA2, Universidad de Zaragoza-CITA, 50830 Zaragoza, Spain; (F.L.); (C.G.-R.)
- Instituto de Investigación Sanitaria Aragón (IIS Aragón), 50009 Zaragoza, Spain
| | - Ralf Köhler
- Instituto Aragonés de Ciencias de la Salud (IACS), Agencia Aragonesa de Investigación y Desarrollo (ARAID), 50009 Zaragoza, Spain;
| | - Víctor López
- Instituto Agroalimentario de Aragón, IA2, Universidad de Zaragoza-CITA, 50830 Zaragoza, Spain; (F.L.); (C.G.-R.)
- Facultad de Ciencias de la Salud, Universidad San Jorge, Villanueva de Gállego, 50830 Zaragoza, Spain;
- Correspondence: (M.S.V.); (V.L.); Tel.: +34-974-239408 (M.S.V. & V.L.)
| |
Collapse
|
11
|
Zheljazkov VD, Semerdjieva I, Yankova-Tsvetkova E, Astatkie T, Stanev S, Dincheva I, Kačániová M. Chemical Profile and Antimicrobial Activity of the Essential Oils of Helichrysum arenarium (L.) Moench. and Helichrysum italicum (Roth.) G. Don. PLANTS 2022; 11:plants11070951. [PMID: 35406931 PMCID: PMC9002512 DOI: 10.3390/plants11070951] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 03/13/2022] [Accepted: 03/29/2022] [Indexed: 11/29/2022]
Abstract
This study compared the essential oils (EO) composition of Helichrysum arenarium (Bulgarian populations) with that of the cultivated species H. italicum. The EO composition of H. arenarium and H. italicum were analyzed via gas chromatography. In general, 75 components were identified in H. arenarium EO and 79 in H. italicum EO. The predominant constituents in H. arenarium EO were α-pinene (34.64–44.35%) and sabinene (10.63–11.1%), which affirmed the examined population as a new chemical type. Overall, the main EO constituents of H. italicum originating in France, Bosnia and Corsica were neryl acetate (4.04–14.87%) and β-himachalene (9.9–10.99%). However, the EOs profile of H. italicum introduced from the above three countries differed to some extent. D-limonene (5.23%), italicene, α-guaiene and neryl acetate (14.87%) predominated in the H. italicum introduced from France, while α-pinene (13.74%), δ-cadinene (5.51%), α-cadinene (3.3%), β-caryophyllene (3.65%) and α-calacorene (1.63%) predominated in plants introduced from Bosnia. The EOs of the plants introduced from France and Corsica had similar chemical composition and antimicrobiological activity.
Collapse
Affiliation(s)
- Valtcho D. Zheljazkov
- Crop and Soil Science Department, Oregon State University, 3050 SW Campus Way, 109 Crop Science Building, Corvallis, OR 97331, USA
- Correspondence:
| | - Ivanka Semerdjieva
- Department of Botany and agrometeorology, Agricultural University, Mendeleev 12, 4000 Plovdiv, Bulgaria;
- Department of Plant and Fungal Diversity, Division of Flora and Vegetation, Institute of Biodiversity and Ecosystem Research, BAS, 2, Gagarin Str., 1113 Sofia, Bulgaria;
| | - Elina Yankova-Tsvetkova
- Department of Plant and Fungal Diversity, Division of Flora and Vegetation, Institute of Biodiversity and Ecosystem Research, BAS, 2, Gagarin Str., 1113 Sofia, Bulgaria;
| | - Tess Astatkie
- Faculty of Agriculture, Dalhousie University, P.O. Box 550, Truro, NS B2N 5E3, Canada;
| | - Stanko Stanev
- Institute of Roses, Essential and Medical Plants, Agricultural Academy, bul. “Osvobozhdenie” 49, 6100 Kazanlak, Bulgaria;
| | - Ivayla Dincheva
- Department of Agrobiotechnologies, AgroBioInstitute, Agricultural Academy, 8 Dragan Tsankov blvd., 1164 Sofia, Bulgaria;
| | - Miroslava Kačániová
- Institute of Horticulture, Faculty of Horticulture and Landscape Engineering, Slovak University of Agriculture, Tr. A. Hlinku 2, 94976 Nitra, Slovakia;
- Department of Bioenergetics and Food Analysis, Institute of Food Technology and Nutrition, University of Rzeszow, 35-601 Rzeszow, Poland
| |
Collapse
|
12
|
Judzentiene A, Budiene J, Nedveckyte I, Garjonyte R. Antioxidant and Toxic Activity of Helichrysum arenarium (L.) Moench and Helichrysum italicum (Roth) G. Don Essential Oils and Extracts. Molecules 2022; 27:molecules27041311. [PMID: 35209096 PMCID: PMC8879542 DOI: 10.3390/molecules27041311] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 02/07/2022] [Accepted: 02/13/2022] [Indexed: 02/01/2023] Open
Abstract
Helichrysum arenarium (L.) Moench (sandy everlasting) is the only species from genus Helichrysum Mill that grows spontaneously in Lithuania. The chemical composition of the essential oils (EOs) from inflorescences and leaves of H. arenarium wild plants was analysed by GC-MS. Palmitic (≤23.8%), myristic (≤14.9%) and lauric (6.1%) acids, n-nonanal (10.4%), and trans-β-caryophyllene (≤6.5%) were the major constituents in the EOs. For comparison, the main components in EO from flowers (commercial herb material) of H.italicum were γ-curcumene (21.5%), β-selinene (13.6%), α-selinene (8.1%), β-eudesmol (8.3%), and α-pinene (6.5%). Composition of H. arenarium methanolic extracts was investigated by HPLC-DAD-TOF. The main compounds were the following: luteolin-7-O-glucoside, naringenin and its glucoside, apigenin, chlorogenic acid, arenol, and arzanol. Antioxidant activity of EOs and extracts was tested by DPPH● and ABTS●+ assays. Sandy everlasting extracts exhibited significantly higher radical scavenging activities (for leaves 11.18 to 19.13 and for inflorescences 1.96 to 6.13 mmol/L TROLOX equivalent) compared to those of all tested EOs (0.25 to 0.46 mmol/L TROLOX equivalent). Antioxidant activity, assayed electrochemically by cyclic and square wave voltammetry correlated with total polyphenolic content in extracts and radical scavenging properties of EOs and extracts. The toxic activity of EOs of both Helichrysum species was evaluated using a brine shrimp (Artemia salina) bioassay. H. italicum inflorescence EO was found to be toxic (LC50 = 15.99 µg/mL) as well as that of H. arenarium (LC50 ≤ 23.42 µg/mL) oils.
Collapse
Affiliation(s)
- Asta Judzentiene
- Department of Organic Chemistry, Center for Physical Sciences and Technology, Sauletekio Avenue 3, LT-10257 Vilnius, Lithuania; (J.B.); (R.G.)
- Correspondence: ; Tel.: +370-69412190
| | - Jurga Budiene
- Department of Organic Chemistry, Center for Physical Sciences and Technology, Sauletekio Avenue 3, LT-10257 Vilnius, Lithuania; (J.B.); (R.G.)
| | - Irena Nedveckyte
- Institute of Biosciences, Life Sciences Center, Vilnius University, Sauletekio Avenue 7, LT-10257 Vilnius, Lithuania;
| | - Rasa Garjonyte
- Department of Organic Chemistry, Center for Physical Sciences and Technology, Sauletekio Avenue 3, LT-10257 Vilnius, Lithuania; (J.B.); (R.G.)
| |
Collapse
|
13
|
Wu Q, Yin CH, Li Y, Cai JQ, Yang HY, Huang YY, Zheng YX, Xiong K, Yu HL, Lu AP, Wang KX, Guan DG, Chen YP. Detecting Critical Functional Ingredients Group and Mechanism of Xuebijing Injection in Treating Sepsis. Front Pharmacol 2021; 12:769190. [PMID: 34938184 PMCID: PMC8687625 DOI: 10.3389/fphar.2021.769190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 11/04/2021] [Indexed: 11/13/2022] Open
Abstract
Sepsis is a systemic inflammatory reaction caused by various infectious or noninfectious factors, which can lead to shock, multiple organ dysfunction syndrome, and death. It is one of the common complications and a main cause of death in critically ill patients. At present, the treatments of sepsis are mainly focused on the controlling of inflammatory response and reduction of various organ function damage, including anti-infection, hormones, mechanical ventilation, nutritional support, and traditional Chinese medicine (TCM). Among them, Xuebijing injection (XBJI) is an important derivative of TCM, which is widely used in clinical research. However, the molecular mechanism of XBJI on sepsis is still not clear. The mechanism of treatment of "bacteria, poison and inflammation" and the effects of multi-ingredient, multi-target, and multi-pathway have still not been clarified. For solving this issue, we designed a new systems pharmacology strategy which combines target genes of XBJI and the pathogenetic genes of sepsis to construct functional response space (FRS). The key response proteins in the FRS were determined by using a novel node importance calculation method and were condensed by a dynamic programming strategy to conduct the critical functional ingredients group (CFIG). The results showed that enriched pathways of key response proteins selected from FRS could cover 95.83% of the enriched pathways of reference targets, which were defined as the intersections of ingredient targets and pathogenetic genes. The targets of the optimized CFIG with 60 ingredients could be enriched into 182 pathways which covered 81.58% of 152 pathways of 1,606 pathogenetic genes. The prediction of CFIG targets showed that the CFIG of XBJI could affect sepsis synergistically through genes such as TAK1, TNF-α, IL-1β, and MEK1 in the pathways of MAPK, NF-κB, PI3K-AKT, Toll-like receptor, and tumor necrosis factor signaling. Finally, the effects of apigenin, baicalein, and luteolin were evaluated by in vitro experiments and were proved to be effective in reducing the production of intracellular reactive oxygen species in lipopolysaccharide-stimulated RAW264.7 cells, significantly. These results indicate that the novel integrative model can promote reliability and accuracy on depicting the CFIGs in XBJI and figure out a methodological coordinate for simplicity, mechanism analysis, and secondary development of formulas in TCM.
Collapse
Affiliation(s)
- Qi- Wu
- Department of Burns, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Chuan-Hui Yin
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China.,Guangdong Province Key Laboratory of Single Cell Technology and Application, Southern Medical University, Guangzhou, China
| | - Yi Li
- Department of Radiology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Jie-Qi Cai
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China.,Guangdong Province Key Laboratory of Single Cell Technology and Application, Southern Medical University, Guangzhou, China
| | - Han-Yun Yang
- The First Clinical Medical College of Southern Medical University, Guangzhou, China
| | - Ying-Ying Huang
- Department of Obstetrics and Gynecology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Yi-Xu Zheng
- Department of Ophthalmology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Ke Xiong
- Department of Ophthalmology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Hai-Lang Yu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China.,Guangdong Province Key Laboratory of Single Cell Technology and Application, Southern Medical University, Guangzhou, China
| | - Ai-Ping Lu
- Institute of Integrated Bioinformedicine and Translational Science, Hong Kong Baptist University, Kowloon Tong, Hong Kong China
| | - Ke-Xin Wang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China.,National Key Clinical Specialty/Engineering Technology Research Center of Education Ministry of China, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Department of Neurosurgery, Neurosurgery Institute, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Dao-Gang Guan
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China.,Guangdong Province Key Laboratory of Single Cell Technology and Application, Southern Medical University, Guangzhou, China
| | - Yu-Peng Chen
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China.,Guangdong Province Key Laboratory of Single Cell Technology and Application, Southern Medical University, Guangzhou, China
| |
Collapse
|
14
|
Deng S, Gong X, Long Z, Bao B, Meng F, Feng J, Kuang H, Li H, Wang B, Wang J. Xuefu Zhuyu decoction improves asthma-induced asthenozoospermia based on network pharmacology and in vivo experiment. Andrologia 2021; 53:e14198. [PMID: 34375006 DOI: 10.1111/and.14198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 07/08/2021] [Accepted: 07/20/2021] [Indexed: 11/29/2022] Open
Abstract
This study aimed to verify that Xuefu Zhuyu decoction (XFZYD) can improve asthenozoospermia caused by asthma, and explore its potential mechanism. Ovalbumin solution is used to induce asthma rat models. Sperm concentration and motility are used to evaluate semen quality. Immunohistochemistry (IHC), Western blotting and real-time reverse transcription-quantitative polymerase chain reaction (RT-qPCR) are used to detect proteins and mRNA related to rat testis tissue. Haematoxylin and eosin (H&E) staining was used to observe changes in testicular tissues. Through network pharmacology, eriodictyol, 18-β-glycyrrhetinic acid, naringenin, chrysin and Hispidulin were prominent active ingredients of XFZYD. We found that XFZYD regulates the expression levels of albumin (ALB), vascular endothelial growth factor A (VEGFA), interleukin 6 (IL-6) protein and mRNA, thereby improving the histopathological morphology of the testis, increasing the concentration and motility of spermatozoa. We suggest that future research can increase the detection of hormones and oxidative stress and other related indicators, so as to conduct more in-depth exploration.
Collapse
Affiliation(s)
- Sheng Deng
- First Clinical Medical College, Beijing University of Chinese Medicine, Beijing, China.,Department of Andrology, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Xuefeng Gong
- First Clinical Medical College, Beijing University of Chinese Medicine, Beijing, China.,Department of Traditional Chinese Medicine, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
| | - Zhongwen Long
- First Clinical Medical College, Beijing University of Chinese Medicine, Beijing, China.,Department of Andrology, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Binghao Bao
- First Clinical Medical College, Beijing University of Chinese Medicine, Beijing, China.,Department of Andrology, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Fanchao Meng
- First Clinical Medical College, Beijing University of Chinese Medicine, Beijing, China.,Department of Andrology, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Junlong Feng
- First Clinical Medical College, Beijing University of Chinese Medicine, Beijing, China.,Department of Andrology, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Hao Kuang
- First Clinical Medical College, Beijing University of Chinese Medicine, Beijing, China.,Department of Andrology, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Haisong Li
- Department of Andrology, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Bin Wang
- Department of Andrology, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Jisheng Wang
- First Clinical Medical College, Beijing University of Chinese Medicine, Beijing, China.,Department of Andrology, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China.,Department of Cardiology, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
15
|
Wang X, Cao Y, Chen S, Lin J, Bian J, Huang D. Anti-Inflammation Activity of Flavones and Their Structure-Activity Relationship. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:7285-7302. [PMID: 34160206 DOI: 10.1021/acs.jafc.1c02015] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Flavones are an important class of bioactive constituents in foods, and their structural diversity enables them to interact with different targets. In particular, flavones are known for their anti-inflammatory activity. Herein, we summarized commonly applied in vitro, in vivo, and clinical models in testing anti-inflammatory activity of flavones. The anti-inflammatory structure-activity relationship of flavones was systematically mapped and supported with cross comparisons of that with flavanones, flavanols, and isoflavones. Hydroxyl groups (-OH) are indispensable for the anti-inflammatory function of flavones, and -OH at the C-5 and C-4' positions enhance while -OH at the C-6, C-7, C-8, and C-3' positions attenuate their activity. Moreover, the C2-C3 single bond, -OH at the C-3 and B-ring positions undermine flavone aglycones' activity. Most of the flavone aglycones function through NF-κB, MAPK, and JNK-STAT pathways, and their possible cell binding targets are kinase, aryl hydrocarbon receptor (AhR), G-protein coupled receptors, and estrogen receptors. However, the structure and anti-inflammatory activity relationship of flavones were unclear, and further research shall be conducted to close the gap in order to guide development of evidence-based functional foods.
Collapse
Affiliation(s)
- Xiang Wang
- Department of Food Science and Technology, National University of Singapore, 2 Science Drive 2, Singapore, 117542
| | - Yujia Cao
- Department of Food Science and Technology, National University of Singapore, 2 Science Drive 2, Singapore, 117542
| | - Siyu Chen
- Department of Food Science and Technology, National University of Singapore, 2 Science Drive 2, Singapore, 117542
| | - Jiachen Lin
- Department of Food Science and Technology, National University of Singapore, 2 Science Drive 2, Singapore, 117542
| | - Jinsong Bian
- Department of Pharmacology, School of Medicine, Southern University of Science and Technology, Shenzhen 518055, PR China
- National University of Singapore (Suzhou) Research Institute, 377 Linquan Street, Suzhou 215123, PR China
| | - Dejian Huang
- Department of Food Science and Technology, National University of Singapore, 2 Science Drive 2, Singapore, 117542
- National University of Singapore (Suzhou) Research Institute, 377 Linquan Street, Suzhou 215123, PR China
| |
Collapse
|
16
|
Miles EA, Calder PC. Effects of Citrus Fruit Juices and Their Bioactive Components on Inflammation and Immunity: A Narrative Review. Front Immunol 2021; 12:712608. [PMID: 34249019 PMCID: PMC8264544 DOI: 10.3389/fimmu.2021.712608] [Citation(s) in RCA: 74] [Impact Index Per Article: 24.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Accepted: 06/14/2021] [Indexed: 12/19/2022] Open
Abstract
The immune system provides defence to the host against pathogenic organisms. A weak immune system increases susceptibility to infections and allows infections to become more severe. One component of the immune response is inflammation. Where inflammation is excessive or uncontrolled it can damage host tissues and cause pathology. Limitation of oxidative stress is one means of controlling inflammation. Citrus fruit juices are a particularly good source of vitamin C and folate, which both have roles in sustaining the integrity of immunological barriers and in supporting the function of many types of immune cell including phagocytes, natural killer cells, T-cells and B-cells. Vitamin C is an antioxidant and reduces aspects of the inflammatory response. Important bioactive polyphenols in citrus fruit juices include hesperidin, narirutin and naringin. Hesperidin is a glycoside of hesperetin while narirutin and naringin are glycosides of naringenin. Hesperidin, hesperetin, naringenin, naringin and narirutin have all been found to have anti-inflammatory effects in model systems, and human trials of hesperidin report reductions in inflammatory markers. In humans, orange juice was shown to limit the post-prandial inflammation induced by a high fat-high carbohydrate meal. Consuming orange juice daily for a period of weeks has been reported to reduce markers of inflammation, including C-reactive protein, as confirmed through a recent meta-analysis. A newly emerging topic is whether polyphenols from orange juice have direct anti-viral effects. In summary, micronutrients and other bioactives present in citrus fruit juices have established roles in controlling oxidative stress and inflammation and in supporting innate and acquired immune responses. Trials in humans demonstrate that orange juice reduces inflammation; its effects on innate and acquired immunity require further exploration in well-designed trials in appropriate population sub-groups such as older people.
Collapse
Affiliation(s)
- Elizabeth A. Miles
- School of Human Development and Health, Faculty of Medicine, University of Southampton, Southampton, United Kingdom
| | - Philip C. Calder
- School of Human Development and Health, Faculty of Medicine, University of Southampton, Southampton, United Kingdom
- National Institute for Health Research (NIHR) Southampton Biomedical Research Centre, University Hospital Southampton National Health Service (NHS) Foundation Trust and University of Southampton, Southampton, United Kingdom
| |
Collapse
|
17
|
Enayati A, Johnston TP, Sahebkar A. Anti-atherosclerotic Effects of Spice-Derived Phytochemicals. Curr Med Chem 2021; 28:1197-1223. [PMID: 32368966 DOI: 10.2174/0929867327666200505084620] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 03/29/2020] [Accepted: 04/02/2020] [Indexed: 11/22/2022]
Abstract
Cardiovascular diseases are the leading cause of death in the world. Atherosclerosis is characterized by oxidized lipid deposition and inflammation in the arterial wall and represents a significant problem in public health and medicine. Some dietary spices have been widely used in many countries; however, the mechanism of their action as it relates to the prevention and treatment of atherosclerosis is still poorly understood. In this review, we focus on the properties of various spice-derived active ingredients used in the prevention and treatment of atherosclerosis, as well as associated atherosclerotic risk factors. We provide a summary of the mechanisms of action, epidemiological analyses, and studies of various components of spice used in the clinic, animal models, and cell lines related to atherosclerosis. Most notably, we focused on mechanisms of action by which these spice-derived compounds elicit their lipid-lowering, anti-inflammatory, antioxidant, and immunomodulatory properties, as well as their involvement in selected biochemical and signal transduction pathways. It is suggested that future research should aim to design well-controlled clinical trials and more thoroughly investigate the role of spices and their active components in the prevention/treatment of atherosclerosis. Based on this literature review, it appears that spices and their active components are well tolerated and have few adverse side effects and, therefore, provide a promising adjunctive treatment strategy for patients with atherosclerosis.
Collapse
Affiliation(s)
- Ayesheh Enayati
- Ischemic Disorders Research Center, Golestan University of Medical Sciences, Gorgan, Iran
| | - Thomas P Johnston
- Division of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Missouri-Kansas City, Kansas City, Missouri, United States
| | | |
Collapse
|
18
|
Zhao ZW, Zhang M, Wang G, Zou J, Gao JH, Zhou L, Wan XJ, Zhang DW, Yu XH, Tang CK. Astragalin Retards Atherosclerosis by Promoting Cholesterol Efflux and Inhibiting the Inflammatory Response via Upregulating ABCA1 and ABCG1 Expression in Macrophages. J Cardiovasc Pharmacol 2021; 77:217-227. [PMID: 33165140 DOI: 10.1097/fjc.0000000000000944] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Accepted: 10/19/2020] [Indexed: 01/22/2023]
Abstract
ABSTRACT Lipid metabolism disorder and inflammatory response are considered to be the major causes of atherosclerogenesis. Astragalin, the most important functional component of flavonoid obtained from persimmon leaves, has the hypolipidemic effects. However, it is unknown, how astragalin protects against atherosclerosis. The aim of this study was to observe the effects of astragalin on cholesterol efflux and inflammatory response and to explore the underlying mechanisms. Our results showed that astragalin upregulated the expression of ATP-binding cassette transporters A1 and G1 (ABCA1 and ABCG1), promoted cholesterol efflux, and suppressed foam cell formation. Inhibition of the PPARγ/LXRα pathway abrogated the promotive effects of astragalin on both transporter expression and cholesterol efflux. In addition, treatment of astragalin markedly decreased the secretion of inflammatory factors, including interleukin 6, monocyte chemotactic protein 1, tumor necrosis factor α, and interleukin 1β. Mechanistically, astragalin upregulated ABCA1 and ABCG1 expression, which in turn reduced TLR4 surface levels and inhibited NF-κB nuclear translocation. Consistently, astragalin reduced atherosclerotic plaque area in apoE-/- mice. Taken together, these findings suggest that astragalin protects against atherosclerosis by promoting ABCA1- and ABCG1-mediated cholesterol efflux and inhibiting proinflammatory mediator release.
Collapse
Affiliation(s)
- Zhen-Wang Zhao
- Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, Medical Research Experiment Center, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Min Zhang
- Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, Medical Research Experiment Center, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Gang Wang
- Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, Medical Research Experiment Center, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Jin Zou
- Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, Medical Research Experiment Center, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Jia-Hui Gao
- Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, Medical Research Experiment Center, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Li Zhou
- Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, Medical Research Experiment Center, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Xiang-Jun Wan
- Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, Medical Research Experiment Center, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Da-Wei Zhang
- Department of Pediatrics and Group on the Molecular and Cell Biology of Lipids, University of Alberta, Edmonton, Alberta, Canada and
| | - Xiao-Hua Yu
- Institute of Clinical Medicine, The Second Affiliated Hospital of Hainan Medical University, Haikou, Hainan, China
| | - Chao-Ke Tang
- Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, Medical Research Experiment Center, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| |
Collapse
|
19
|
Pharmacological Activity of Eriodictyol: The Major Natural Polyphenolic Flavanone. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2020; 2020:6681352. [PMID: 33414838 PMCID: PMC7752289 DOI: 10.1155/2020/6681352] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 12/01/2020] [Accepted: 12/02/2020] [Indexed: 01/17/2023]
Abstract
Eriodictyol is a flavonoid that belongs to a subclass of flavanones and is widespread in citrus fruits, vegetables, and medicinally important plants. Eriodictyol has been anticipated to explain the method of its activity via multiple cellular signaling cascades. Eriodictyol is an effective natural drug source to maintain higher health standards due to its excellent therapeutic roles in neuroprotection, cardioprotective activity, hepatoprotective activity, antidiabetes and obesity, and skin protection and having highly analgesic, antioxidant, and anti-inflammatory effects, antipyretic and antinociceptive actions, antitumor activity, and much more. This review aims to highlight the modes of action of eriodictyol against various diseases via multiple cellular signaling pathways.
Collapse
|
20
|
Shen CY, Lin JJ, Jiang JG, Wang TX, Zhu W. Potential roles of dietary flavonoids from Citrus aurantium L. var. amara Engl. in atherosclerosis development. Food Funct 2020; 11:561-571. [PMID: 31850465 DOI: 10.1039/c9fo02336d] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Dietary consumption of flavonoids correlated positively with lower risk of cardiovascular disease. However, the precise roles of flavonoids from the blossoms of Citrus aurantium Linn variant amara Engl (CAVA) in atherosclerosis (AS) are still poorly understood. This study aimed to find novel flavonoid-type skeletons with protection against AS. Total flavonoids (CAVAF), homoeriodictyol (HE) and hesperetin-7-O-β-d-glucopyranoside (HG) were isolated from the blossoms of Citrus aurantium Linn variant amara Engl. by chromatography. Their suppressive effects on lipopolysaccharide (LPS)-induced inflammatory responses and ox-LDL-induced foam cell formation were systematically and comparatively investigated using macrophage RAW264.7 cells. HE was more powerful than HG in inhibiting LPS-induced production of nitric oxide (NO), interleukin-6 (IL-6), tumor necrosis factor-α (TNF-α), interleukin-1 beta (IL-1β) and gene expression in RAW264.7 cells. HE and HG showed different responses to extracellular signal-regulated kinases (ERK), c-Jun N-terminal kinases (JNK), P38, P65, IκBα, IκKα/β phosphorylation, and nuclear factor-kappa B (NF-κB) nuclear translocation. HE and HG also differentially decreased oxidized low-density lipoprotein (ox-LDL)-induced foam cell formation by regulating peroxisome proliferator-activated receptor-gamma (PPARγ), phospholipid ATP-binding cassette transporter A1 (ABCA1), phospholipid ATP-binding cassette transporter G1 (ABCG1), scavenger receptor class B type I (SRB1), scavenger receptor class A type I (SRA1) and cluster of differentiation 36 (CD36) expression at gene and protein levels in RAW264.7 cells. HG showed weaker potential than HE in preventing AS development. Their chemical differences might partially explain the discrepancy in their bioactivity. In conclusion, HE and HG might be developed into novel therapeutic agents against inflammation and AS-associated diseases.
Collapse
Affiliation(s)
- Chun-Yan Shen
- College of Food and Bioengineering, South China University of Technology, Guangzhou, 510640, China.
| | | | | | | | | |
Collapse
|
21
|
Guan Y, Zhao X, Liu W, Wang Y. Galuteolin suppresses proliferation and inflammation in TNF-α-induced RA-FLS cells by activating HMOX1 to regulate IKKβ/NF-κB pathway. J Orthop Surg Res 2020; 15:484. [PMID: 33087158 PMCID: PMC7579913 DOI: 10.1186/s13018-020-02004-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Accepted: 10/06/2020] [Indexed: 11/10/2022] Open
Abstract
OBJECTIVE Galuteolin (Galu) is a substance extracted and purified from honeysuckle. The purpose of this study was to explore the effects of Galu on the TNF-α-induced RA-FLS cells (synoviocytes) and reveal its potential molecular mechanism from the perspectives of anti-apoptosis and anti-inflammation. METHODS After TNF-α stimulation, cell proliferation of RA-FLS was assessed by CCK-8 assay. TUNEL staining was used to detect the apoptosis. Western blot was used to detect the expressions of Iκκβ, p-p65, p65, p-IκB, IκB, Cleaved-caspase3, Caspase-3, Bcl-2, and Bax. HO-1 were determined by RT-PCR. The contents of pro-inflammatory cytokines IL-1β, IL-6, IL-8, and MMP-1 were determined by ELISA. RESULTS Galu significantly suppressed cell proliferation in a dose-dependent manner. Additionally, Galu obviously promotes cell apoptosis rate of RA-FLS cells and elevated the expression levels of HO-1, caspase-3, and Bax, while reducing the expression level of Bcl-2. Furthermore, Galu apparently inhibited the levels of Iκκβ, p-p65, and p-IκB. Moreover, Galu also significantly reduced the levels of pro-inflammatory factors IL-1β, IL-6, IL-8, and MMP-1 in RA-FLS cells. CONCLUSION Galuteolin exerts protective effects against TNF-α-induced RA-FLS cells by inhibiting apoptosis and inflammation, which can guide the clinical use of rheumatoid arthritis.
Collapse
Affiliation(s)
- Yin Guan
- Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210029, Jiangsu, China
| | - Xiaoqian Zhao
- Department of Ethics Committee, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210029, Jiangsu, China
| | - Weiwei Liu
- Department of Medical Examination Center, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210029, Jiangsu, China
| | - Yue Wang
- Department of Rheumatism Immunity Branch, Affiliated Hospital of Nanjing University of Chinese Medicine, No. 155 Hanzhong Road, Qinhuai, Nanjing, 210029, Jiangsu, China.
| |
Collapse
|
22
|
Kherbache A, Senator A, Laouicha S, Al-Zoubi RM, Bouriche H. Phytochemical analysis, antioxidant and anti-inflammatory activities of Helichrysum stoechas (L.) Moench extracts. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2020. [DOI: 10.1016/j.bcab.2020.101826] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
23
|
Boniface PK, Elizabeth FI. Flavones as a Privileged Scaffold in Drug Discovery: Current Developments. Curr Org Synth 2020; 16:968-1001. [PMID: 31984880 DOI: 10.2174/1570179416666190719125730] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Revised: 04/03/2019] [Accepted: 04/27/2019] [Indexed: 12/15/2022]
Abstract
BACKGROUND Flavones are one of the main subclasses of flavonoids with diverse pharmacological properties. They have been reported to possess antimalarial, antimicrobial, anti-tuberculosis, anti-allergic, antioxidant, anti-inflammatory activities, among others. OBJECTIVE The present review summarizes the recent information on the pharmacological properties of naturally occurring and synthetic flavones. METHODS Scientific publications referring to natural and synthetic flavones in relation to their biological activities were hand-searched in databases such as SciFinder, PubMed (National Library of Medicine), Science Direct, Wiley, ACS, SciELO, Springer, among others. RESULTS As per the literature, seventy-five natural flavones were predicted as active compounds with reference to their IC50 (<20 µg/mL) in in vitro studies. Also, synthetic flavones were found active against several diseases. CONCLUSION As per the literature, flavones are important sources for the potential treatment of multifactorial diseases. However, efforts toward the development of flavone-based therapeutic agents are still needed. The appearance of new catalysts and chemical transformations is expected to provide avenues for the synthesis of unexplored flavones, leading to the discovery of flavones with new properties and biological activities.
Collapse
Affiliation(s)
- Pone K Boniface
- Department of Pharmacy, Faculty of Pharmaceutical Sciences, University of Sao Paulo, Sao Paulo, Brazil
| | - Ferreira I Elizabeth
- Department of Pharmacy, Faculty of Pharmaceutical Sciences, University of Sao Paulo, Sao Paulo, Brazil
| |
Collapse
|
24
|
The pharmacological and biological roles of eriodictyol. Arch Pharm Res 2020; 43:582-592. [PMID: 32594426 DOI: 10.1007/s12272-020-01243-0] [Citation(s) in RCA: 65] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2020] [Accepted: 06/24/2020] [Indexed: 12/25/2022]
Abstract
Eriodictyol is a flavonoid in the flavanones subclass. It is abundantly present in a wide range of medicinal plants, citrus fruits, and vegetables that are considered to have potential health importance. Having the considerable medicinal properties, eriodictyol has been predicted to clarify the mode of action in various cellular and molecular pathways. Evidence for the existing therapeutic roles of eriodictyol includes antioxidant, anti-inflammatory, anti-cancer, neuroprotective, cardioprotective, anti-diabetic, anti-obesity, hepatoprotective, and miscellaneous. Therefore, this review aims to present the recent evidence regarding the mechanisms of action of eriodictyol in different signaling pathways in a specific disease condition. In view of the immense therapeutic effects, eriodictyol may serve as a potential drug source to enhance community health standards.
Collapse
|
25
|
Vujić B, Vidaković V, Jadranin M, Novaković I, Trifunović S, Tešević V, Mandić B. Composition, Antioxidant Potential, and Antimicrobial Activity of Helichrysum plicatum DC. Various Extracts. PLANTS 2020; 9:plants9030337. [PMID: 32155955 PMCID: PMC7154845 DOI: 10.3390/plants9030337] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 02/23/2020] [Accepted: 02/26/2020] [Indexed: 11/24/2022]
Abstract
Helichrysum plicatum DC. is widely used in folk medicine in treating a variety of health disorders. The aim of this study was to examine the influence of different extraction solvents on the chemical composition, antioxidant potential, and antimicrobial activities of H. plicatum. Aerial parts were separately extracted with ethanol, dichloromethane, and sunflower oil. The oil extract (OE) was re-extracted with acetonitrile. A total of 142 compounds were tentatively identified in ethanolic (EE), dichloromethane (DCME), and acetonitrile (ACNE) extracts using HPLC-DAD/ESI-ToF-MS. The dominant compound class in all extracts were α-pyrones, alongside flavonoids in EE, terpenoids in DCME and ACNE, and phloroglucinols in DCME. The antioxidant potential of the extracts was assessed by the 2,2-diphenyl-1-picrylhydrazyl radical (DPPH) assay. EE and DCME possessed the most potent radical scavenging capacity. Antimicrobial activity was investigated on eight bacterial, two yeast, and one fungal species. All extracts exhibited high antifungal and notable antibacterial activities compared to control substances, with DCME being the most potent. DCME exhibited stronger antimicrobial activity against P. aeruginosa than the standard chloramphenicol.
Collapse
Affiliation(s)
- Bojan Vujić
- University of Belgrade-Faculty of Chemistry, Studentski trg 12-16, 11000 Belgrade, Serbia; (B.V.); (S.T.); (V.T.)
| | - Vera Vidaković
- Department of Ecology, Institute for Biological Research “Siniša Stanković”-National Institute of Republic of Serbia, University of Belgrade, Bulevar despota Stefana 142, 11060 Belgrade, Serbia;
| | - Milka Jadranin
- Institute of Chemistry, Technology and Metallurgy, National Institute, University of Belgrade, Studentski trg 12-16, 11000 Belgrade, Serbia; (M.J.); (I.N.)
| | - Irena Novaković
- Institute of Chemistry, Technology and Metallurgy, National Institute, University of Belgrade, Studentski trg 12-16, 11000 Belgrade, Serbia; (M.J.); (I.N.)
| | - Snežana Trifunović
- University of Belgrade-Faculty of Chemistry, Studentski trg 12-16, 11000 Belgrade, Serbia; (B.V.); (S.T.); (V.T.)
| | - Vele Tešević
- University of Belgrade-Faculty of Chemistry, Studentski trg 12-16, 11000 Belgrade, Serbia; (B.V.); (S.T.); (V.T.)
| | - Boris Mandić
- University of Belgrade-Faculty of Chemistry, Studentski trg 12-16, 11000 Belgrade, Serbia; (B.V.); (S.T.); (V.T.)
- Correspondence: ; Tel.: +381-11-2630477
| |
Collapse
|
26
|
De Canha MN, Komarnytsky S, Langhansova L, Lall N. Exploring the Anti-Acne Potential of Impepho [ Helichrysum odoratissimum (L.) Sweet] to Combat Cutibacterium acnes Virulence. Front Pharmacol 2020; 10:1559. [PMID: 32082144 PMCID: PMC7002546 DOI: 10.3389/fphar.2019.01559] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Accepted: 12/03/2019] [Indexed: 12/14/2022] Open
Abstract
The Gram-positive bacterium Cutibacterium acnes (previously Propionibacterium acnes), plays an important role in the pathogenesis and progression of the dermatological skin disorder acne vulgaris. The methanolic extract of Helichrysum odoratissimum (L.) Sweet (HO-MeOH) was investigated for its ability to target bacterial growth and pathogenic virulence factors associated with acne progression. The gas chromatography-mass spectrometry (GC-MS) analysis of HO-MeOH identified α-humulene (3.94%), α-curcumene (3.74%), and caryophyllene (8.12%) as major constituents, which correlated with previous reports of other Helichrysum species. The HO-MeOH extract exhibited potent antimicrobial activity against C. acnes (ATCC 6919) with a minimum inhibitory concentration (MIC) of 7.81 µg/ml. It enhanced the antimicrobial activity of benzoyl peroxide (BPO). The extract showed high specificity against C. acnes cell aggregation at sub-inhibitory concentrations, preventing biofilm formation. Mature C. acnes biofilms were disrupted at a sub-inhibitory concentration of 3.91 µg/ml. At 100 µg/ml, HO-MeOH reduced interleukin-1α (IL-1α) cytokine levels in C. acnes-induced human keratinocytes (HaCaT) by 11.08%, highlighting its potential as a comedolytic agent for the treatment of comedonal acne. The extract exhibited a 50% inhibitory concentration (IC50) of 157.50 µg/ml against lipase enzyme activity, an enzyme responsible for sebum degradation, ultimately causing inflammation. The extract's anti-inflammatory activity was tested against various targets associated with inflammatory activation by the bacterium. The extract inhibited pro-inflammatory cytokine levels of IL-8 by 48.31% when compared to C. acnes-induced HaCaT cells at 7.81 µg/ml. It exhibited cyclooxygenase-II (COX-II) enzyme inhibition with an IC50 of 22.87 µg/ml. Intracellular nitric oxide (NO) was inhibited by 40.39% at 7.81 µg/ml when compared with NO production in lipopolysaccharide (LPS)-induced RAW264.7 cells. The intracellular NO inhibition was potentially due to the 2.14 fold reduction of inducible nitric oxide synthase (iNOS) gene expression. The HO-MeOH extract exhibited an IC50 of 145.45 µg/ml against virulent hyaluronidase enzyme activity, which is responsible for hyaluronan degradation and scar formation. This study provides scientific validation for the traditional use of H. odoratissimum as an ointment for pimples, not only due to its ability to control C. acnes proliferation but also due to its inhibitory activity on various targets associated with bacterial virulence leading to acne progression.
Collapse
Affiliation(s)
- Marco Nuno De Canha
- Department of Plant and Soil Sciences, University of Pretoria, Pretoria, South Africa
| | - Slavko Komarnytsky
- Department of Food, Bioprocessing and Nutrition Sciences, Plants for Human Health Institute, North Carolina State University, Kannapolis, NC, United States
| | - Lenka Langhansova
- Laboratory of Plant Biotechnologies, Institute of Experimental Botany, The Czech Academy of Sciences, Prague, Czechia
| | - Namrita Lall
- Department of Plant and Soil Sciences, University of Pretoria, Pretoria, South Africa
- School of Natural Resources, University of Missouri, Columbia, MO, United States
- College of Pharmacy, JSS Academy of Higher Education and Research, Mysuru, India
| |
Collapse
|
27
|
The Interaction of Flavonols with Membrane Components: Potential Effect on Antioxidant Activity. J Membr Biol 2020; 253:57-71. [DOI: 10.1007/s00232-019-00105-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2019] [Accepted: 12/14/2019] [Indexed: 11/25/2022]
|
28
|
McGrail L, Garelnabi M. Polyphenolic Compounds and Gut Microbiome in Cardiovascular Diseases. Curr Pharm Biotechnol 2019; 21:578-586. [PMID: 31713494 DOI: 10.2174/1389201020666191111150239] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Revised: 10/27/2019] [Accepted: 10/28/2019] [Indexed: 12/11/2022]
Abstract
The onset of Cardiovascular Disease (CVD) is known to be associated with multiple risk factors related to exogenous exposures on predisposed genetic makeup. Diet and lifestyle have a cascade effect on microbiota biodiversity, thus impacting inflammation and heart health. Atherosclerosis is a type of CVD where chronic inflammation contributes to plaque buildup in the arteries resulting in narrowed blood vessels, which obstruct blood flow. Polyphenolic compounds, including flavonoids, most commonly consumed in the form of plants, have been identified to have various mechanisms of action to reduce the inflammatory response in the body. Flavonoids provide a variety of nutraceutical functions including antioxidant, antimicrobial, anti-inflammatory, antiangiogenic, antitumor, and improved pharmacokinetic properties. Therefore, the medicinal use of polyphenolic compounds as an intervention for the inflammatory response, especially relating to the gut microbiome, may significantly reduce the risk of atherosclerotic plaque development and disease onset. This review addresses the role of polyphenolic compounds and gut microbiome in cardiovascular disease. Research studies conducted in cells and animals were reviewed. These studies clearly illustrate that dietary polyphenolic compounds influence resident gut microbiota thus they are associated with the prevention of atherosclerosis progression. Further research in this field is warranted to identify potential gut microbiome mediated therapeutic approaches for CVD.
Collapse
Affiliation(s)
- Lindsay McGrail
- Department of Biomedical and Nutritional Sciences, Zuckerberg College of Health Sciences, University of Massachusetts, Lowell, MA, 01854, United States
| | - Mahdi Garelnabi
- Department of Biomedical and Nutritional Sciences, Zuckerberg College of Health Sciences, University of Massachusetts, Lowell, MA, 01854, United States
| |
Collapse
|
29
|
|
30
|
Targeting Inflammation by Flavonoids: Novel Therapeutic Strategy for Metabolic Disorders. Int J Mol Sci 2019; 20:ijms20194957. [PMID: 31597283 PMCID: PMC6801776 DOI: 10.3390/ijms20194957] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Revised: 09/28/2019] [Accepted: 09/30/2019] [Indexed: 12/16/2022] Open
Abstract
A balanced metabolic profile is essential for normal human physiological activities. Disproportions in nutrition give rise to imbalances in metabolism that are associated with aberrant immune function and an elevated risk for inflammatory-associated disorders. Inflammation is a complex process, and numerous mediators affect inflammation-mediated disorders. The available clinical modalities do not effectively address the underlying diseases but rather relieve the symptoms. Therefore, novel targeted agents have the potential to normalize the metabolic system and, thus, provide meaningful therapy to the underlying disorder. In this connection, polyphenols, the well-known and extensively studied phytochemical moieties, were evaluated for their effective role in the restoration of metabolism via various mechanistic signaling pathways. The various flavonoids that we observed in this comprehensive review interfere with the metabolic events that induce inflammation. The mechanisms via which the polyphenols, in particular flavonoids, act provide a promising treatment option for inflammatory disorders. However, detailed clinical studies of such molecules are required to decide their clinical fate.
Collapse
|
31
|
The role of traditional Chinese medicine in the treatment of atherosclerosis through the regulation of macrophage activity. Biomed Pharmacother 2019; 118:109375. [PMID: 31548175 DOI: 10.1016/j.biopha.2019.109375] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Revised: 08/16/2019] [Accepted: 08/22/2019] [Indexed: 12/27/2022] Open
Abstract
Atherosclerosis (AS) is the main cause of ischemic cardiovascular, cerebrovascular and peripheral vascular diseases. Macrophage activity has been proven to play a critical role during the AS pathological process, which involves the adhesion, aggregation of mononuclear-macrophages, cell differentiation of M1/M2 macrophages as part of complex mechanisms occurring during lipid metabolism, apoptosis, autophagy, inflammation and immune reaction. Therefore, the development of effective AS treatments is likely to target macrophage activity. Certain herbal extracts (such as Salvia miltiorrhiza) have exhibited enormous potential for AS treatment in the past. Here, we aim to provide a summary on the current understanding of the type of action and the underlying target/pathway in macrophage regulation of certain herbal extracts used in Traditional Chinese Medicine for treatment of AS.
Collapse
|
32
|
Judžentienė A, Charkova T, Misiūnas A. Chemical composition of the essential oils from Helichrysum arenarium (L.) plants growing in Lithuanian forests. JOURNAL OF ESSENTIAL OIL RESEARCH 2019. [DOI: 10.1080/10412905.2019.1572550] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Affiliation(s)
- Asta Judžentienė
- Institute of Chemistry, Department of Organic Chemistry, State Research Institute, Center for Physical Sciences and Technology, Vilnius, Lithuania
| | - Tatjana Charkova
- Institute of Chemistry, Department of Organic Chemistry, State Research Institute, Center for Physical Sciences and Technology, Vilnius, Lithuania
| | - Audrius Misiūnas
- Institute of Chemistry, Department of Organic Chemistry, State Research Institute, Center for Physical Sciences and Technology, Vilnius, Lithuania
| |
Collapse
|
33
|
Yinlai decoction alleviates lipopolysaccharide-induced pneumonia by changing the immune status of juvenile rats: A study based on network pharmacology. JOURNAL OF TRADITIONAL CHINESE MEDICAL SCIENCES 2019. [DOI: 10.1016/j.jtcms.2019.01.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
34
|
Song Y, Guo B, Ma S, Chang P, Tao K. Naringin suppresses the growth and motility of hypertrophic scar fibroblasts by inhibiting the kinase activity of Akt. Biomed Pharmacother 2018; 105:1291-1298. [DOI: 10.1016/j.biopha.2018.06.103] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Revised: 06/17/2018] [Accepted: 06/18/2018] [Indexed: 10/28/2022] Open
|
35
|
Lin F, Zhu Y, Hu G. Naringin promotes cellular chemokine synthesis and potentiates mesenchymal stromal cell migration via the Ras signaling pathway. Exp Ther Med 2018; 16:3504-3510. [PMID: 30233702 PMCID: PMC6143896 DOI: 10.3892/etm.2018.6634] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2017] [Accepted: 07/13/2018] [Indexed: 12/17/2022] Open
Abstract
Directional migration of mesenchymal stem cells (MSCs) is known to serve roles in bone fracture healing. Naringin is a traditional medicine used in China to treat bone injury and has been confirmed to act as a chemoattractant to MSCs. In the present study, the secretion of chemokines and stimulation of relevant signaling pathways by naringin were detected to determine the molecular mechanism of naringin-induced MSC migration. In these experiments, Quantibody® arrays were used to detect chemokines secreted by MSCs with or without the addition of naringin. The results revealed differential naringin-induced chemokine secretion of C-X-C motif chemokine (CXCL)5, CXCL6 and C-C motif chemokine 20. Furthermore, the Ras signaling pathway was markedly activated in the naringin-treated groups, suggesting that naringin may enhance the migrational ability of MSCs via Ras activation. Furthermore, naringin was able to promote the secretion of various chemokines derived from MSCs, which would, in turn, increase the mobility of MSCs. The aim of the present study was to provide novel candidate agents for clinical orthopedics and theoretical basis for the future improvement of adjunctive medication for bone fracture healing.
Collapse
Affiliation(s)
- Feng Lin
- Department of Orthopedics, Xiaoshan First People's Hospital, Hangzhou, Zhejiang 310000, P.R. China
| | - Yuan Zhu
- Department of Orthopedics, Xiaoshan First People's Hospital, Hangzhou, Zhejiang 310000, P.R. China
| | - Gangfeng Hu
- Department of Orthopedics, Xiaoshan First People's Hospital, Hangzhou, Zhejiang 310000, P.R. China
| |
Collapse
|
36
|
Pljevljakušić D, Bigović D, Janković T, Jelačić S, Šavikin K. Sandy Everlasting ( Helichrysum arenarium (L.) Moench): Botanical, Chemical and Biological Properties. FRONTIERS IN PLANT SCIENCE 2018; 9:1123. [PMID: 30131818 PMCID: PMC6090377 DOI: 10.3389/fpls.2018.01123] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Accepted: 07/11/2018] [Indexed: 05/13/2023]
Abstract
Sandy everlasting [Helichrysum arenarium (L.) Moench] is herbaceous perennial plant belonging to Asteraceae family and it is native to Europe, Central Asia, and China. It belongs to the section HELICHRYSUM (Asteraceae family, genus Helichrysum) along with H. plicatum DC. Prodr., which very similar phenolic profile and H. italicum (Roth), which is widely used for essential oil extraction. Its flowers have a long tradition in European ethnomedicine as a cholagogue, choleretic, hepatoprotective, and detoxifying herbal drug. The flowers are rich in phenolic compounds including flavonoids, chalcones, phenolic acids, coumarins, and pyrones. Apart from polyphenols, other compounds such as sterols, lignans, and glycosides of aromatic compounds have been also isolated from H. arenarium. The majority of authors confirm that the most important group of compounds responsible for biological activities is flavonoids. Moreover, significant activities of naringenin, one of the main flavonoids of H. arenarium, were reported. On the other hand, there are no clinical data about testing the extracts or preparations based on H. arenarium. Although H. arenarium is well known in phytotherapy for its potential in the treatment of gallbladder disease and are classified as endangered species in a number of European countries, very few data about its cultivation are available in the literature.
Collapse
Affiliation(s)
| | - Dubravka Bigović
- Institute for Medicinal Plant Research “Dr Josif Pančić”, Belgrade, Serbia
| | - Teodora Janković
- Institute for Medicinal Plant Research “Dr Josif Pančić”, Belgrade, Serbia
| | - Slavica Jelačić
- Faculty of Agriculture, University of Belgrade, Belgrade, Serbia
| | - Katarina Šavikin
- Institute for Medicinal Plant Research “Dr Josif Pančić”, Belgrade, Serbia
| |
Collapse
|
37
|
Effect of Aqueous Extract from Descurainia sophia (L.) Webb ex Prantl on Ventricular Remodeling in Chronic Heart Failure Rats. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2018; 2018:1904081. [PMID: 30008784 PMCID: PMC6020489 DOI: 10.1155/2018/1904081] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/19/2017] [Revised: 04/07/2018] [Accepted: 05/22/2018] [Indexed: 02/08/2023]
Abstract
Objective Descurainia sophia (L.) Webb ex Prantl (DS) is a traditional Chinese medicine. Our current study was to evaluate the effect of DS on ventricular remodeling in chronic heart failure (HF) rats and its underlying mechanism. Methods The rat chronic heart failure model induced by suprarenal abdominal aortic coarctation surgery. The survival rats were randomly divided into 3 groups: the sham group (n=6), the HF group (n=6), and the HF+DS group (n=6). After 3 months of drug intervention, we examined the effects of DS by Sirius Red staining, electron microscopy, echocardiography, hemodynamic measurement, and TUNEL and explored the underlying mechanism by Western blotting. Results We found that rats treated with DS showed improved cardiac function and less tissue damage compared to untreated group. Additionally, DS could reduce the cardiomyocytes apoptosis, decrease the ratio of Bax/bcl-2 and Caspase-3 expression, and enhance the phosphorylation of Akt protein expression. Conclusion Our study suggested that rats treated with DS after suprarenal abdominal aortic coarctation surgery showed attenuated cardiac fibrosis and apoptosis, and the protective effect may be correlated with the activation of PI3k/Akt/mTOR dependent manner.
Collapse
|
38
|
Cai Q, Ji S, Sun Y, Yu L, Wu X, Xie Z. 10-Hydroxy-trans-2-decenoic acid attenuates angiotensin II-induced inflammatory responses in rat vascular smooth muscle cells. J Funct Foods 2018. [DOI: 10.1016/j.jff.2018.04.034] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
|
39
|
Babotă M, Mocan A, Vlase L, Crișan O, Ielciu I, Gheldiu AM, Vodnar DC, Crișan G, Păltinean R. Phytochemical Analysis, Antioxidant and Antimicrobial Activities of Helichrysum arenarium (L.) Moench. and Antennaria dioica (L.) Gaertn. Flowers. Molecules 2018; 23:molecules23020409. [PMID: 29438342 PMCID: PMC6017730 DOI: 10.3390/molecules23020409] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Revised: 12/30/2017] [Accepted: 01/17/2018] [Indexed: 01/22/2023] Open
Abstract
Antennaria dioica (L.) Gaertn. and Helichrysum arenarium (L.) Moench. are two species of the Asteraceae family, known in Romanian traditional medicine for their diuretic, choleretic, and anti-inflammatory properties. The aim of the present study was to evaluate the phenolic and sterolic composition of flowers from the two species and to assess their antioxidant, antibacterial and antifungal properties. LC-MS analyses were performed on methanolic, ethanolic and 70% v/v ethanolic extracts, before and after acid hydrolysis, and revealed high amounts of polyphenols. Chlorogenic acid was found as the main compound for the flowers of A. dioica (502.70 ± 25.11 mg/100 g d.w.), while quercitrin was dominant in H. arenarium (424.28 ± 21.21 mg/100 g d.w.) in 70% v/v ethanolic extracts before hydrolysis. Antioxidant capacity assays showed an important antioxidant potential, which can be correlated with the determined polyphenolic compounds, showing the 70% v/v ethanolic extracts of the two species as being the most effective antioxidant samples for the DPPH assay. Antibacterial and antifungal assays confirm a modest biological potential for the same extract of both species. Results obtained in the present study bring important data and offer scientific evidence on the chemical composition and on the biological activities of the flowers belonging to the two species.
Collapse
Affiliation(s)
- Mihai Babotă
- Department of Pharmaceutical Botany, "Iuliu Hațieganu" University of Medicine and Pharmacy, 400337 Cluj-Napoca, Romania.
| | - Andrei Mocan
- Department of Pharmaceutical Botany, "Iuliu Hațieganu" University of Medicine and Pharmacy, 400337 Cluj-Napoca, Romania.
| | - Laurian Vlase
- Department of Pharmaceutical Technology and Biopharmaceutics, "Iuliu Hațieganu" University of Medicine and Pharmacy, 400010 Cluj-Napoca, Romania.
| | - Ovidiu Crișan
- Department of Organic Chemistry, "Iuliu Hațieganu" University of Medicine and Pharmacy, 400010 Cluj-Napoca, Romania.
| | - Irina Ielciu
- Department of Pharmaceutical Botany, "Iuliu Hațieganu" University of Medicine and Pharmacy, 400337 Cluj-Napoca, Romania.
| | - Ana-Maria Gheldiu
- Department of Pharmaceutical Technology and Biopharmaceutics, "Iuliu Hațieganu" University of Medicine and Pharmacy, 400010 Cluj-Napoca, Romania.
| | - Dan Cristian Vodnar
- Department of Food Science, University of Agricultural Sciences and Veterinary Medicine, 400372 Cluj-Napoca, Romania.
| | - Gianina Crișan
- Department of Pharmaceutical Botany, "Iuliu Hațieganu" University of Medicine and Pharmacy, 400337 Cluj-Napoca, Romania.
| | - Ramona Păltinean
- Department of Pharmaceutical Botany, "Iuliu Hațieganu" University of Medicine and Pharmacy, 400337 Cluj-Napoca, Romania.
| |
Collapse
|
40
|
Zhang M, Zhao R, Zhou S, Liu W, Liang Y, Zhao Z, Li S, Wang X, Wong T, Zhao H. Chemical characterization and evaluation of the antioxidants in Chaenomeles fruits by an improved HPLC-TOF/MS coupled to an on-line DPPH-HPLC method. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART C, ENVIRONMENTAL CARCINOGENESIS & ECOTOXICOLOGY REVIEWS 2018; 36:43-62. [PMID: 29336723 DOI: 10.1080/10590501.2017.1418814] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
An improved method based on HPLC-TOF/MS was developed to catalog the antioxidants in five species of Chaenomeles (Mugua). Forty-four fractions from the Mugua extracts show appreciable levels of antioxidative activity in scavenging the stable free-radical 2,2-diphenyl-1-picrylhydrazyl and the hydroxyl radicals. Twelve major antioxidant's chemical structures are identified. Antioxidant activities differ between species, but intra-species level of antioxidants, regardless of their ripeness, are similar. C. sinensis has the highest antioxidant level. A rigorous quality control procedure was implemented to ensure accuracy of antioxidant quantification. This improved procedure can be used for rapid discovery of antioxidants in other plant extracts.
Collapse
Affiliation(s)
- Minmin Zhang
- a Shandong Key Laboratory of TCM Quality Control Technology, Shandong Analysis and Test Center, Qilu University Of Technology (Shandong Academy of Sciences) , Jinan , P. R. China
| | - Ruixuan Zhao
- a Shandong Key Laboratory of TCM Quality Control Technology, Shandong Analysis and Test Center, Qilu University Of Technology (Shandong Academy of Sciences) , Jinan , P. R. China
| | - Siduo Zhou
- a Shandong Key Laboratory of TCM Quality Control Technology, Shandong Analysis and Test Center, Qilu University Of Technology (Shandong Academy of Sciences) , Jinan , P. R. China
- b College of Food Science and Technology, Nanjing Agricultural University , Nanjing , P. R. China
| | - Wei Liu
- a Shandong Key Laboratory of TCM Quality Control Technology, Shandong Analysis and Test Center, Qilu University Of Technology (Shandong Academy of Sciences) , Jinan , P. R. China
| | - Yan Liang
- a Shandong Key Laboratory of TCM Quality Control Technology, Shandong Analysis and Test Center, Qilu University Of Technology (Shandong Academy of Sciences) , Jinan , P. R. China
| | - Zhiguo Zhao
- a Shandong Key Laboratory of TCM Quality Control Technology, Shandong Analysis and Test Center, Qilu University Of Technology (Shandong Academy of Sciences) , Jinan , P. R. China
| | - Shengbo Li
- c Shandong Yate Eco-tech Co. LTD. , Linyi , P. R. China
| | - Xiao Wang
- a Shandong Key Laboratory of TCM Quality Control Technology, Shandong Analysis and Test Center, Qilu University Of Technology (Shandong Academy of Sciences) , Jinan , P. R. China
| | - Tityee Wong
- d Department of Biological Sciences , University of Memphis , Tennessee , USA
| | - Hengqiang Zhao
- a Shandong Key Laboratory of TCM Quality Control Technology, Shandong Analysis and Test Center, Qilu University Of Technology (Shandong Academy of Sciences) , Jinan , P. R. China
| |
Collapse
|
41
|
A Metabolomics-Based Strategy for the Mechanism Exploration of Traditional Chinese Medicine: Descurainia sophia Seeds Extract and Fractions as a Case Study. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2017; 2017:2845173. [PMID: 28932251 PMCID: PMC5592412 DOI: 10.1155/2017/2845173] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Accepted: 07/10/2017] [Indexed: 12/14/2022]
Abstract
A UPLC-QTOF-MS based metabolomics research was conducted to explore potential biomarkers which would increase our understanding of the model and to assess the integral efficacy of Descurainia sophia seeds extract (DS-A). Additionally, DS-A was split into five fractions in descending order of polarity, which were utilized to illustrate the mechanism together. The 26 identified biomarkers were mainly related to disturbances in phenylalanine, tyrosine, tryptophan, purine, arginine, and proline metabolism. Furthermore, heat map, hierarchical cluster analysis (HCA), and correlation network diagram of biomarkers perturbed by modeling were all conducted. The results of heat map and HCA suggested that fat oil fraction could reverse the abnormal metabolism in the model to some extent; meanwhile the metabolic inhibitory effect produced by the other four fractions helped to relieve cardiac load and compensate the insufficient energy supplement induced by the existing heart and lung injury in model rats. Briefly, the split fractions interfered with the model from different aspects and ultimately constituted the overall effects of extract. In conclusion, the metabolomics method, combined with split fractions of extract, is a powerful approach for illustrating pathologic changes of Chinese medicine syndrome and action mechanisms of traditional Chinese medicine.
Collapse
|