1
|
Fujimori K, Iguchi Y, Yamashita Y, Gohda K, Teno N. FXR Activation Accelerates Early Phase of Osteoblast Differentiation Through COX-2-PGE 2-EP4 Axis in BMP-2-Induced Mouse Mesenchymal Stem Cells. Molecules 2024; 30:58. [PMID: 39795115 PMCID: PMC11722014 DOI: 10.3390/molecules30010058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Revised: 12/14/2024] [Accepted: 12/24/2024] [Indexed: 01/13/2025] Open
Abstract
Farnesoid X receptor (FXR), a nuclear receptor, is expressed in calvaria and bone marrow stromal cells and plays a role in bone homeostasis. However, the mechanism of FXR-activated osteoblast differentiation remains unclear. In this study, we investigated the regulatory mechanism underlying FXR-activated osteoblast differentiation using bone morphogenetic protein-2 (BMP-2)-induced mouse ST-2 mesenchymal stem cells. We also synthesized a novel FXR agonist, FLG390, and compared its biological effects in osteoblast differentiation with a known FXR agonist, chenodeoxycholic acid (CDCA). As an FXR agonist, FLG390 accelerated osteoblast differentiation to a comparable extent with CDCA, enhancing alkaline phosphatase (ALP) activity and the expression of osteoblast differentiated-related genes such as ALP, collagen type 1 α1 chain (COL1A1), and runt-related transcription factor 2 (RUNX2). FXR activation elevated the expression of cyclooxygenase (COX)-2 and the production of prostaglandin (PG) E2 in the early phase of osteoblast differentiation. A selective COX-2 inhibitor and an antagonist of EP4 receptors, one of PGE2 receptors, partially suppressed FXR-activated osteoblast differentiation. Moreover, treatment with either inhibitor during the first 6 h after initiating osteoblast differentiation repressed FXR-activated osteoblast differentiation to the same extent as did the treatment for 6 d. Therefore, a novel FXR agonist, FLG390, exhibited potency comparable to CDCA. FXR activation promoted the early phase of osteoblast differentiation via the COX-2-PGE2-EP4 axis, representing a potential target for control of bone metabolism.
Collapse
Affiliation(s)
- Ko Fujimori
- Department of Pathobiochemistry, Faculty of Pharmacy, Osaka Medical and Pharmaceutical University, 4-20-1 Nasahara, Takatsuki 569-1094, Japan
| | - Yusuke Iguchi
- Faculty of Pharmaceutical Sciences, Hiroshima International University, 5-1-1, Hirokoshingai, Kure 737-0112, Japan; (Y.I.); (Y.Y.)
| | - Yukiko Yamashita
- Faculty of Pharmaceutical Sciences, Hiroshima International University, 5-1-1, Hirokoshingai, Kure 737-0112, Japan; (Y.I.); (Y.Y.)
| | - Keigo Gohda
- Computer-Aided Molecular Modeling Research Center, Kansai (CAMM-Kansai), 3-32-302, Tsuto-Otsuka, Nishinomiya 663-8241, Japan;
| | - Naoki Teno
- Graduate School of Pharmaceutical Sciences, Hiroshima International University, 5-1-1, Hirokoshingai, Kure 737-0112, Japan;
- Faculty of Clinical Nutrition, Hiroshima International University, 5-1-1, Hirokoshingai, Kure 737-0112, Japan
| |
Collapse
|
2
|
Salama MA, Anwar Ismail A, Islam MS, K. G. AR, Al Kawas S, Samsudin AR, A. C. SA. Impact of Bone Morphogenetic Protein 7 and Prostaglandin receptors on osteoblast healing and organization of collagen. PLoS One 2024; 19:e0303202. [PMID: 38753641 PMCID: PMC11098345 DOI: 10.1371/journal.pone.0303202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 04/19/2024] [Indexed: 05/18/2024] Open
Abstract
PURPOSE This study seeks to investigate the impact of co-administering either a Prostaglandin EP2 receptor agonist or an EP1 receptor antagonist alone with a low dose BMP7 on in vitro healing process, collagen content and maturation of human osteoblasts. METHODOLOGY Human osteoblast cells were used in this study. These cells were cultured and subjected to different concentrations of Prostaglandin EP2 receptor agonist, EP1 receptor antagonist, BMP7, Control (Ct) (Vehicle alone), and various combinations treatments. Cell viability at 24, 48 and 72 hours (h) was evaluated using the XTT assay. A wound healing assay was conducted to observe the migration ability of human osteoblast cells. Additionally, Sirius red staining and Fourier-Transform Infrared Spectroscopy Imaging (FT-IR) was employed to analyze various parameters, including total protein concentration, collagen production, mature collagen concentration, and mineral content. RESULTS The combination of low dose BMP7 and Prostaglandin EP2 receptor agonist resulted to the lowest cell viability when compared to both the Ct and individual treatments. In contrast, the Prostaglandin EP1 receptor antagonist alone showed the highest cellular viability at 72 h. In the wound healing assay, the combined treatment of low dose BMP7 with the Prostaglandin EP2 receptor agonist and EP1 receptor antagonist showed a decrease in human osteoblast healing after 24 h. Analysis of FT-IR data indicated a reduction in total protein content, collagen maturity, collagen concentration and mineral content in combination treatment compared to the single or Ct treatments. CONCLUSION The combination of a Prostaglandin EP2 receptor agonist or an EP1 receptor antagonist when combined with low dose BMP7 significantly hinders both human osteoblast healing and collagen maturity/concentration in comparison to low dose BMP7 treatment alone.
Collapse
Affiliation(s)
- Mohammad Ali Salama
- Department of Oral and Craniofacial Health Sciences, College of Dental Medicine, University of Sharjah, Sharjah, United Arab Emirates
| | - Asmaa Anwar Ismail
- Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah, United Arab Emirates
| | - Md Sofiqul Islam
- Department of Operative Dentistry, RAK College of Dental Sciences, RAK Medical and Health Sciences University, Ras Al Khaimah, United Arab Emirates
| | - Aghila Rani K. G.
- Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah, United Arab Emirates
| | - Sausan Al Kawas
- Department of Oral and Craniofacial Health Sciences, College of Dental Medicine, University of Sharjah, Sharjah, United Arab Emirates
| | - A. R. Samsudin
- Department of Oral and Craniofacial Health Sciences, College of Dental Medicine, University of Sharjah, Sharjah, United Arab Emirates
| | - Smriti Aryal A. C.
- Department of Oral and Craniofacial Health Sciences, College of Dental Medicine, University of Sharjah, Sharjah, United Arab Emirates
| |
Collapse
|
3
|
Zhao Y, Peng X, Wang Q, Zhang Z, Wang L, Xu Y, Yang H, Bai J, Geng D. Crosstalk Between the Neuroendocrine System and Bone Homeostasis. Endocr Rev 2024; 45:95-124. [PMID: 37459436 DOI: 10.1210/endrev/bnad025] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Indexed: 01/05/2024]
Abstract
The homeostasis of bone microenvironment is the foundation of bone health and comprises 2 concerted events: bone formation by osteoblasts and bone resorption by osteoclasts. In the early 21st century, leptin, an adipocytes-derived hormone, was found to affect bone homeostasis through hypothalamic relay and the sympathetic nervous system, involving neurotransmitters like serotonin and norepinephrine. This discovery has provided a new perspective regarding the synergistic effects of endocrine and nervous systems on skeletal homeostasis. Since then, more studies have been conducted, gradually uncovering the complex neuroendocrine regulation underlying bone homeostasis. Intriguingly, bone is also considered as an endocrine organ that can produce regulatory factors that in turn exert effects on neuroendocrine activities. After decades of exploration into bone regulation mechanisms, separate bioactive factors have been extensively investigated, whereas few studies have systematically shown a global view of bone homeostasis regulation. Therefore, we summarized the previously studied regulatory patterns from the nervous system and endocrine system to bone. This review will provide readers with a panoramic view of the intimate relationship between the neuroendocrine system and bone, compensating for the current understanding of the regulation patterns of bone homeostasis, and probably developing new therapeutic strategies for its related disorders.
Collapse
Affiliation(s)
- Yuhu Zhao
- Department of Orthopedics, The First Affiliated Hospital of Soochow University; Orthopedics Institute, Medical College, Soochow University, Suzhou, Jiangsu 215006, China
| | - Xiaole Peng
- Department of Orthopedics, The First Affiliated Hospital of Soochow University; Orthopedics Institute, Medical College, Soochow University, Suzhou, Jiangsu 215006, China
| | - Qing Wang
- Department of Orthopedics, The First Affiliated Hospital of Soochow University; Orthopedics Institute, Medical College, Soochow University, Suzhou, Jiangsu 215006, China
| | - Zhiyu Zhang
- Department of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, China
| | - Liangliang Wang
- Department of Orthopedics, The Affiliated Changzhou No. 2 People's Hospital of Nanjing Medical University, Changzhou, Jiangsu 213000, China
| | - Yaozeng Xu
- Department of Orthopedics, The First Affiliated Hospital of Soochow University; Orthopedics Institute, Medical College, Soochow University, Suzhou, Jiangsu 215006, China
| | - Huilin Yang
- Department of Orthopedics, The First Affiliated Hospital of Soochow University; Orthopedics Institute, Medical College, Soochow University, Suzhou, Jiangsu 215006, China
| | - Jiaxiang Bai
- Department of Orthopedics, The First Affiliated Hospital of Soochow University; Orthopedics Institute, Medical College, Soochow University, Suzhou, Jiangsu 215006, China
- Department of Orthopedics, Division of Life Sciences and Medicine, The First Affiliated Hospital of USTC, University of Science and Technology of China, Hefei 230022, China
| | - Dechun Geng
- Department of Orthopedics, The First Affiliated Hospital of Soochow University; Orthopedics Institute, Medical College, Soochow University, Suzhou, Jiangsu 215006, China
| |
Collapse
|
4
|
Mauro D, Srinath A, Guggino G, Nicolaidou V, Raimondo S, Ellis JJ, Whyte JM, Nicoletti MM, Romano M, Kenna TJ, Cañete J, Alessandro R, Rizzo A, Brown MA, Horwood NJ, Haroon N, Ciccia F. Prostaglandin E2/EP4 axis is upregulated in Spondyloarthritis and contributes to radiographic progression. Clin Immunol 2023; 251:109332. [PMID: 37075950 DOI: 10.1016/j.clim.2023.109332] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 04/05/2023] [Accepted: 04/15/2023] [Indexed: 04/21/2023]
Abstract
Ankylosing spondylitis (AS) is an inflammatory disease leading to spine ankylosis; however, the mechanisms behind new bone formation are still not fully understood. Single Nucleotide Polymorphisms (SNPs) in PTGER4, encoding for the receptor EP4 of prostaglandin E2 (PGE2), are associated with AS. Since the PGE2-EP4 axis participates in inflammation and bone metabolism, this work aims at investigating the influence of the prostaglandin-E2 axis on radiographic progression in AS. In 185 AS (97 progressors), baseline serum PGE2 predicted progression, and PTGER4 SNP rs6896969 was more frequent in progressors. Increased EP4/PTGER4 expression was observed in AS circulating immune cells, synovial tissue, and bone marrow. CD14highEP4 + cells frequency correlated with disease activity, and when monocytes were cocultured with mesenchymal stem cells, the PGE2/EP4 axis induced bone formation. In conclusion, the Prostaglandin E2 axis is involved in bone remodelling and may contribute to the radiographic progression in AS due to genetic and environmental upregulation.
Collapse
Affiliation(s)
- Daniele Mauro
- Rheumatology Unit, Department of Precision Medicine, Università degli Studi della Campania "L. Vanvitelli", Naples, Italy
| | - Archita Srinath
- Schroeder Arthritis Institute, Krembil Research Institute, University Health Network, Toronto Western Hospital, University of Toronto, Toronto, Ontario, Canada
| | - Giuliana Guggino
- Rheumatology Section, Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties, University of Palermo, Italy
| | - Vicky Nicolaidou
- Department of Life Sciences, School of Life and Health Sciences, University of Nicosia, Cyprus
| | - Stefania Raimondo
- Dipartimento di Biomedicina, Neuroscienze e Diagnostica Avanzata, Università degli Studi di Palermo, Palermo, Italy
| | - Jonathan J Ellis
- Institute of Health and Biomedical Innovation, Queensland University of Technology, Woolloongabba, Queensland, Australia
| | - Jessica M Whyte
- Institute of Health and Biomedical Innovation, Queensland University of Technology, Woolloongabba, Queensland, Australia
| | - Maria Maddalena Nicoletti
- Rheumatology Unit, Department of Precision Medicine, Università degli Studi della Campania "L. Vanvitelli", Naples, Italy
| | - Marco Romano
- Hepato-Gastroenterology Unit, Department of Precision Medicine, Università degli Studi della Campania "L. Vanvitelli", Naples, Italy
| | - Tony John Kenna
- Institute of Health and Biomedical Innovation, Queensland University of Technology, Woolloongabba, Queensland, Australia
| | - Juan Cañete
- Department of Rheumatology, Hospital Clinic of Barcelona, 08036 Barcelona, Spain
| | - Riccardo Alessandro
- Dipartimento di Biomedicina, Neuroscienze e Diagnostica Avanzata, Università degli Studi di Palermo, Palermo, Italy
| | - Aroldo Rizzo
- Dipartimento di Oncoematologia, Sezione di Anatomia Patologica, Azienda Ospedaliera Ospedali riuniti Villa Sofia Cervello, Palermo, Italy
| | | | | | - Nigil Haroon
- Schroeder Arthritis Institute, Krembil Research Institute, University Health Network, Toronto Western Hospital, University of Toronto, Toronto, Ontario, Canada.
| | - Francesco Ciccia
- Rheumatology Unit, Department of Precision Medicine, Università degli Studi della Campania "L. Vanvitelli", Naples, Italy.
| |
Collapse
|
5
|
The gut-enthesis axis and the pathogenesis of Spondyloarthritis. Semin Immunol 2021; 58:101607. [PMID: 35850909 DOI: 10.1016/j.smim.2022.101607] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 03/15/2022] [Accepted: 05/29/2022] [Indexed: 12/14/2022]
Abstract
Subclinical inflammation is associated with Spondylarthritis (SpA). SpA patients show features of dysbiosis, altered gut barrier function, and local expansion of innate and innate-like cells involved in type 3 immune response. The recirculation of intestinal primed immune cells into the bloodstream and, in some cases, in the joints and the inflamed bone marrow of SpA patients gave the basis of the gut-joint axis theory. In the light of the critical role of enthesis in the pathogenesis of SpA and the identification of mucosal-derived immune cells residing into the normal human enthesis, a gut-enthesis axis is also likely to exist. This work reviews the current knowledge on enthesis-associated innate immune cells' primary involvement in enthesitis development, questions their origin, and critically discusses the clues supporting the existence of a gut-enthesis axis contributing to SpA development.
Collapse
|
6
|
Wani TU, Khan RS, Rather AH, Beigh MA, Sheikh FA. Local dual delivery therapeutic strategies: Using biomaterials for advanced bone tissue regeneration. J Control Release 2021; 339:143-155. [PMID: 34563589 DOI: 10.1016/j.jconrel.2021.09.029] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 09/18/2021] [Accepted: 09/21/2021] [Indexed: 01/18/2023]
Abstract
Bone development is a complex process involving a vast number of growth factors and chemical substances. These factors include transforming growth factor-beta, platelet-derived growth factor, insulin-like growth factor, and most importantly, the bone morphogenetic protein, which exhibits excellent therapeutic value in bone repair. However, the spatial-temporal relationship in the expression of these factors during bone formation makes the bone repair a more complicated process to address. Thus, using a single therapeutic agent to address bone formation does not seem to provide a clinically effective option. Conversely, a dual delivery approach facilitating the co-delivery of agents has proved to be a dynamic alternative since such a strategy can provide more efficient spatial-temporal action. Such delivery systems can smartly target more than one pathway or differentiation lineage and thus offer more efficient bone regeneration. This review discusses various dual delivery strategies reported in the literature employed to achieve improved bone regeneration. These include concurrent use of different therapeutic agents (including growth factors and drugs), enhancing bone formation and cell recruitment, and improving the efficiency of bone healing.
Collapse
Affiliation(s)
- Taha Umair Wani
- Department of Nanotechnology, University of Kashmir, Hazratbal, Srinagar 190006, Jammu and Kashmir, India
| | - Rumysa Saleem Khan
- Department of Nanotechnology, University of Kashmir, Hazratbal, Srinagar 190006, Jammu and Kashmir, India
| | - Anjum Hamid Rather
- Department of Nanotechnology, University of Kashmir, Hazratbal, Srinagar 190006, Jammu and Kashmir, India
| | - Mushtaq A Beigh
- Department of Nanotechnology, University of Kashmir, Hazratbal, Srinagar 190006, Jammu and Kashmir, India
| | - Faheem A Sheikh
- Department of Nanotechnology, University of Kashmir, Hazratbal, Srinagar 190006, Jammu and Kashmir, India.
| |
Collapse
|
7
|
Matsuzaka T, Matsugaki A, Nakano T. Control of osteoblast arrangement by osteocyte mechanoresponse through prostaglandin E2 signaling under oscillatory fluid flow stimuli. Biomaterials 2021; 279:121203. [PMID: 34717197 DOI: 10.1016/j.biomaterials.2021.121203] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 10/07/2021] [Accepted: 10/20/2021] [Indexed: 01/04/2023]
Abstract
Anisotropic collagen/apatite microstructure is a prominent determinant of bone tissue functionalization; in particular, bone matrix modulates its anisotropic microstructure depending on the surrounding mechanical condition. Although mechanotransduction in bones is governed by osteocyte function, the precise mechanisms linking mechanical stimuli and anisotropic formation of collagen/apatite microstructure are poorly understood. Here we developed a novel anisotropic mechano-coculture system which enables the understanding of the biological mechanisms regulating the oriented bone matrix formation, which is constructed by aligned osteoblasts. The developed model provides bone-mimetic coculture platform that enables simultaneous control of mechanical condition and osteoblast-osteocyte communication with an anisotropic culture scaffold. The engineered coculture device helps in understanding the relationship between osteocyte mechanoresponses and osteoblast arrangement, which is a significant contributor to anisotropic organization of bone tissue. Our study showed that osteocyte responses to oscillatory flow stimuli regulated osteoblast arrangement through soluble molecular interactions. Importantly, we found that prostaglandin E2 is a novel determinant for oriented collagen/apatite organization of bone matrix, through controlling osteoblast arrangement.
Collapse
Affiliation(s)
- Tadaaki Matsuzaka
- Division of Materials and Manufacturing Science, Graduate School of Engineering, Osaka University, 2-1 Yamada-oka, Suita, Osaka, 565-0871, Japan
| | - Aira Matsugaki
- Division of Materials and Manufacturing Science, Graduate School of Engineering, Osaka University, 2-1 Yamada-oka, Suita, Osaka, 565-0871, Japan
| | - Takayoshi Nakano
- Division of Materials and Manufacturing Science, Graduate School of Engineering, Osaka University, 2-1 Yamada-oka, Suita, Osaka, 565-0871, Japan.
| |
Collapse
|
8
|
Liu S, Wang Q, Li Z, Ma L, Li T, Li Y, Wang N, Liu C, Xue P, Wang C. TRPV1 Channel Activated by the PGE2/EP4 Pathway Mediates Spinal Hypersensitivity in a Mouse Model of Vertebral Endplate Degeneration. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:9965737. [PMID: 34471470 PMCID: PMC8405310 DOI: 10.1155/2021/9965737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Accepted: 08/04/2021] [Indexed: 11/25/2022]
Abstract
Low back pain (LBP) is the primary cause of disability globally. There is a close relationship between Modic changes or endplate defects and LBP. Endplates undergo ossification and become highly porous during intervertebral disc (IVD) degeneration. In our study, we used a mouse model of vertebral endplate degeneration by lumbar spine instability (LSI) surgery. Safranin O and fast green staining and μCT scan showed that LSI surgery led to endplate ossification and porosity, but the endplates in the sham group were cartilaginous and homogenous. Immunofluorescent staining demonstrated the innervation of calcitonin gene-related peptide- (CGRP-) positive nerve fibers in the porous endplate of LSI mice. Behavior test experiments showed an increased spinal hypersensitivity in LSI mice. Moreover, we found an increased cyclooxygenase 2 (COX2) expression and an elevated prostaglandin E2 (PGE2) concentration in the porous endplate of LSI mice. Immunofluorescent staining showed the colocalization of E-prostanoid 4 (EP4)/transient receptor potential vanilloid 1 (TRPV1) and CGRP in the nerve endings in the endplate and in the dorsal root ganglion (DRG) neurons, and western blotting analysis demonstrated that EP4 and TRPV1 expression significantly increased in the LSI group. Our patch clamp study further showed that LSI surgery significantly enhanced the current density of the TRPV1 channel in small-size DRG neurons. A selective EP4 receptor antagonist, L161982, reduced the spinal hypersensitivity of LSI mice by blocking the PGE2/EP4 pathway. In addition, TRPV1 current and neuronal excitability in DRG neurons were also significantly decreased by L161982 treatment. In summary, the PGE2/EP4 pathway in the porous endplate could activate the TRPV1 channel in DRG neurons to cause spinal hypersensitivity in LSI mice. L161982, a selective EP4 receptor antagonist, could turn down the TRPV1 current and decrease the neuronal excitability of DRG neurons to reduce spinal pain.
Collapse
Affiliation(s)
- Sijing Liu
- Editorial Department of Hebei Medical University, Hebei Medical University, Shijiazhuang, Hebei 050017, China
| | - Qiong Wang
- Department of Pharmacology, Hebei Medical University, Shijiazhuang, Hebei 050017, China
| | - Ziyi Li
- Department of Endocrinology, The Third Hospital of Hebei Medical University, Shijiazhuang, Hebei 050051, China
- Key Orthopaedic Biomechanics Laboratory of Hebei Province, Shijiazhuang, Hebei 050051, China
| | - Lei Ma
- Department of Spine Surgery, The Third Hospital of Hebei Medical University, Shijiazhuang, Hebei 050051, China
| | - Ting Li
- Institute of Biomedical Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300020, China
| | - Yukun Li
- Department of Endocrinology, The Third Hospital of Hebei Medical University, Shijiazhuang, Hebei 050051, China
- Key Orthopaedic Biomechanics Laboratory of Hebei Province, Shijiazhuang, Hebei 050051, China
| | - Na Wang
- Department of Endocrinology, The Third Hospital of Hebei Medical University, Shijiazhuang, Hebei 050051, China
- Key Orthopaedic Biomechanics Laboratory of Hebei Province, Shijiazhuang, Hebei 050051, China
| | - Chang Liu
- Department of Endocrinology, The Third Hospital of Hebei Medical University, Shijiazhuang, Hebei 050051, China
- Key Orthopaedic Biomechanics Laboratory of Hebei Province, Shijiazhuang, Hebei 050051, China
| | - Peng Xue
- Department of Endocrinology, The Third Hospital of Hebei Medical University, Shijiazhuang, Hebei 050051, China
- Key Orthopaedic Biomechanics Laboratory of Hebei Province, Shijiazhuang, Hebei 050051, China
| | - Chuan Wang
- Department of Pharmacology, Hebei Medical University, Shijiazhuang, Hebei 050017, China
| |
Collapse
|
9
|
RANKL/RANK/OPG Pathway: A Mechanism Involved in Exercise-Induced Bone Remodeling. BIOMED RESEARCH INTERNATIONAL 2020; 2020:6910312. [PMID: 32149122 PMCID: PMC7053481 DOI: 10.1155/2020/6910312] [Citation(s) in RCA: 151] [Impact Index Per Article: 30.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/16/2019] [Accepted: 01/06/2020] [Indexed: 12/21/2022]
Abstract
Bones as an alive organ consist of about 70% mineral and 30% organic component. About 200 million people are suffering from osteopenia and osteoporosis around the world. There are multiple ways of protecting bone from endogenous and exogenous risk factors. Planned physical activity is another useful way for protecting bone health. It has been investigated that arranged exercise would effectively regulate bone metabolism. Until now, a number of systems have discovered how exercise could help bone health. Previous studies reported different mechanisms of the effect of exercise on bone health by modulation of bone remodeling. However, the regulation of RANKL/RANK/OPG pathway in exercise and physical performance as one of the most important remodeling systems is not considered comprehensive in previous evidence. Therefore, the aim of this review is to clarify exercise influence on bone modeling and remodeling, with a concentration on its role in regulating RANKL/RANK/OPG pathway.
Collapse
|
10
|
Rothe R, Schulze S, Neuber C, Hauser S, Rammelt S, Pietzsch J. Adjuvant drug-assisted bone healing: Part I – Modulation of inflammation. Clin Hemorheol Microcirc 2020; 73:381-408. [PMID: 31177205 DOI: 10.3233/ch-199102] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Rebecca Rothe
- Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Institute of Radiopharmaceutical Cancer Research, Department of Radiopharmaceutical and Chemical Biology, Dresden, Germany
| | - Sabine Schulze
- University Center of Orthopaedics & Traumatology (OUC), University Hospital Carl Gustav Carus, Dresden, Germany
- Center for Translational Bone, Joint and Soft Tissue Research, University Hospital Carl Gustav Carus and Faculty of Medicine, Technische Universität Dresden, Dresden, Germany
| | - Christin Neuber
- Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Institute of Radiopharmaceutical Cancer Research, Department of Radiopharmaceutical and Chemical Biology, Dresden, Germany
| | - Sandra Hauser
- Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Institute of Radiopharmaceutical Cancer Research, Department of Radiopharmaceutical and Chemical Biology, Dresden, Germany
| | - Stefan Rammelt
- University Center of Orthopaedics & Traumatology (OUC), University Hospital Carl Gustav Carus, Dresden, Germany
- Center for Translational Bone, Joint and Soft Tissue Research, University Hospital Carl Gustav Carus and Faculty of Medicine, Technische Universität Dresden, Dresden, Germany
- Center for Regenerative Therapies Dresden (CRTD), Dresden, Germany
| | - Jens Pietzsch
- Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Institute of Radiopharmaceutical Cancer Research, Department of Radiopharmaceutical and Chemical Biology, Dresden, Germany
- Technische Universität Dresden, School of Science, Faculty of Chemistry and Food Chemistry, Dresden, Germany
| |
Collapse
|
11
|
Sheikh Z, Chen G, Al-Jaf F, Thévenin M, Banks K, Glogauer M, Young RN, Grynpas MD. In Vivo Bone Effects of a Novel Bisphosphonate-EP4a Conjugate Drug (C3) for Reversing Osteoporotic Bone Loss in an Ovariectomized Rat Model. JBMR Plus 2019; 3:e10237. [PMID: 31844825 PMCID: PMC6894726 DOI: 10.1002/jbm4.10237] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Revised: 08/15/2019] [Accepted: 09/06/2019] [Indexed: 01/30/2023] Open
Abstract
Pathological bone loss is a regular feature of postmenopausal osteoporosis, and the microstructural changes along with the bone loss make the individual prone to getting hip, spine, and wrist fractures. We have developed a new conjugate drug named C3, which has a synthetic, stable EP4 agonist (EP4a) covalently linked to an inactive alendronate (ALN) that binds to bone and allows physiological remodeling. After losing bone for 12 weeks, seven groups of rats were treated for 8 weeks via tail‐vein injection. The groups were: C3 conjugate at low and high doses, vehicle‐treated ovariectomy (OVX) and sham, C1 (a similar conjugate, but with active ALN at high dose), inactive ALN alone, and a mixture of unconjugated ALN and EP4a to evaluate the conjugation effects. Bone turnover was determined by dynamic and static histomorphometry; μCT was employed to determine bone microarchitecture; and bone mechanical properties were evaluated via biomechanical testing. Treatment with C3 significantly increased trabecular bone volume and vertebral BMD versus OVX controls. There was also significant improvement in the vertebral load‐bearing abilities and stimulation of bone formation in femurs after C3 treatment. This preclinical research revealed that C3 resulted in significant anabolic effects on trabecular bone, and EP4a and ALN conjugation components are vital to conjugate anabolic efficacy. A combined therapy using an EP4 selective agonist anabolic agent linked to an inactive ALN is presented here that produces significant anabolic effects, allows bone remodeling, and has the potential for treating postmenopausal osteoporosis or other diseases where bone strengthening would be beneficial. © 2019 The Authors. JBMR Plus published by Wiley Periodicals, Inc. on behalf of American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Zeeshan Sheikh
- Lunenfeld-Tanenbaum Research Institute Mount Sinai Hospital Toronto Ontario Canada.,Department of Laboratory Medicine and Pathology University of Toronto Toronto Ontario Canada.,Faculty of Dentistry University of Toronto Toronto Ontario Canada.,Faculty of Dentistry Dalhousie University Halifax Nova Scotia Canada
| | - Gang Chen
- Department of Chemistry Simon Fraser University Burnaby British Columbia Canada
| | - Faik Al-Jaf
- Faculty of Dentistry University of Toronto Toronto Ontario Canada
| | - Marion Thévenin
- Department of Chemistry Simon Fraser University Burnaby British Columbia Canada
| | - Kate Banks
- Division of Comparative Medicine University of Toronto Toronto Ontario Canada.,Department of Physiology University of Toronto Toronto Ontario Canada
| | - Michael Glogauer
- Faculty of Dentistry University of Toronto Toronto Ontario Canada.,Department of Dental Oncology and Maxillofacial Prosthetics Princess Margaret Cancer Centre Toronto Ontario Canada
| | - Robert N Young
- Department of Chemistry Simon Fraser University Burnaby British Columbia Canada
| | - Marc D Grynpas
- Lunenfeld-Tanenbaum Research Institute Mount Sinai Hospital Toronto Ontario Canada.,Department of Laboratory Medicine and Pathology University of Toronto Toronto Ontario Canada.,Institute of Biomaterials and Biomedical Engineering University of Toronto Toronto Ontario Canada
| |
Collapse
|
12
|
Feigenson M, Jonason JH, Shen J, Loiselle AE, Awad HA, O'Keefe RJ. Inhibition of the Prostaglandin EP-1 Receptor in Periosteum Progenitor Cells Enhances Osteoblast Differentiation and Fracture Repair. Ann Biomed Eng 2019; 48:927-939. [PMID: 30980293 DOI: 10.1007/s10439-019-02264-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Accepted: 04/04/2019] [Indexed: 01/19/2023]
Abstract
Fracture healing is a complex and integrated process that involves mesenchymal progenitor cell (MPC) recruitment, proliferation and differentiation that eventually results in bone regeneration. Prostaglandin E2 (PGE2) is an important regulator of bone metabolism and has an anabolic effect on fracture healing. Prior work from our laboratory showed EP1-/- mice have enhanced fracture healing, stronger cortical bones, higher trabecular bone volume and increased in vivo bone formation. We also showed that bone marrow MSCs from EP1-/- mice exhibit increased osteoblastic differentiation in vitro. In this study we investigate the changes in the periosteal derived MPCs (PDMPCs), which are crucial for fracture repair, upon EP1 deletion. EP1-/- PDMPCs exhibit increased numbers of total (CFU-F) and osteoblastic colonies (CFU-O) as well as enhanced osteoblastic and chondrogenic differentiation. Moreover, we tested the possible therapeutic application of a specific EP1 receptor antagonist to accelerate fracture repair. Our findings showed that EP1 antagonist administration to wild type mice in the early stages of repair similarly resulted in enhanced CFU-F, CFU-O, and osteoblast differentiation in PDMPCs and resulted in enhanced fracture callus formation at 10 days post fracture and increased bone volume and improved biomechanical healing of femur fractures at 21 days post fracture.
Collapse
Affiliation(s)
- Marina Feigenson
- Department of Developmental Biology, Harvard School of Dental Medicine, Boston, USA
| | - Jennifer H Jonason
- Department of Orthopaedics and Rehabilitation, Center for Musculoskeletal Research, University of Rochester School of Medicine and Dentistry, Rochester, USA
| | - Jie Shen
- Department of Orthopaedic Surgery, Washington University School of Medicine, 660 S. Euclid, CB 8233, St. Louis, MO, 63110, USA
| | - Alayna E Loiselle
- Department of Orthopaedics and Rehabilitation, Center for Musculoskeletal Research, University of Rochester School of Medicine and Dentistry, Rochester, USA
| | - Hani A Awad
- Department of Biomedical Engineering, Center for Musculoskeletal Research, University of Rochester School of Medicine and Dentistry, Rochester, USA
| | - Regis J O'Keefe
- Department of Orthopaedic Surgery, Washington University School of Medicine, 660 S. Euclid, CB 8233, St. Louis, MO, 63110, USA.
| |
Collapse
|
13
|
Identification of Specific Components of the Eicosanoid Biosynthetic and Signaling Pathway Involved in Pathological Inflammation during Intra-abdominal Infection with Candida albicans and Staphylococcus aureus. Infect Immun 2018; 86:IAI.00144-18. [PMID: 29735520 DOI: 10.1128/iai.00144-18] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Accepted: 04/24/2018] [Indexed: 01/16/2023] Open
Abstract
Polymicrobial intra-abdominal infections (IAIs) are a significant cause of morbidity and mortality, particularly when fungal pathogens are involved. Our experimental murine model of IAI involving intraperitoneal inoculation of Candida albicans and Staphylococcus aureus results in synergistic lethality (∼80%) due to exacerbated inflammation. Monomicrobial infection results in no mortality, despite a microbial burden and dissemination similar to those in a coinfection. In the coinfection model, the immunomodulatory eicosanoid prostaglandin E2 (PGE2) was determined to be necessary and sufficient to induce mortality, implicating PGE2 as the central mediator of the amplified inflammatory response. The aim of this study was to identify key components of the PGE2 biosynthetic and signaling pathway involved in the inflammatory response and explore whether these can be targeted to prevent or reduce mortality. Using selective pharmacological inhibitors of cyclooxygenases (COX) or PGE2 receptor antagonists in the C. albicans-S. aureus IAI mouse model, we found that inhibition of COX and/or blocking of PGE2 receptor 1 (EP1) or PGE2 receptor 3 (EP3) signaling reduced proinflammatory cytokine production, promoted interleukin-10 production, reduced cellular damage in the peritoneal cavity, and, most importantly, significantly improved survival. The greatest effect on survival was obtained by the simultaneous inhibition of COX-1 activity and EP1 and EP3 receptor signaling. Importantly, early inhibition of PGE2 pathways dramatically improved the survival of fluconazole-treated mice compared with that achieved with fluconazole treatment alone. These findings indicate that COX-1 and the EP1 and EP3 receptors mediate the downstream pathological effects of PGE2 during polymicrobial IAI and may serve as effective therapeutic targets.
Collapse
|
14
|
Diepenhorst N, Rueda P, Cook AE, Pastoureau P, Sabatini M, Langmead CJ. G protein-coupled receptors as anabolic drug targets in osteoporosis. Pharmacol Ther 2017; 184:1-12. [PMID: 29080701 DOI: 10.1016/j.pharmthera.2017.10.015] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Osteoporosis is a progressive bone disorder characterised by imbalance between bone building (anabolism) and resorption (catabolism). Most therapeutics target inhibition of osteoclast-mediated bone resorption, but more recent attention in early drug discovery has focussed on anabolic targets in osteoblasts or their precursors. Two marketed agents that display anabolic properties, strontium ranelate and teriparatide, mediate their actions via the G protein-coupled calcium-sensing and parathyroid hormone-1 receptors, respectively. This review explores their activity, the potential for improved therapeutics targeting these receptors and other putative anabolic GPCR targets, including Smoothened, Wnt/Frizzled, relaxin family peptide, adenosine, cannabinoid, prostaglandin and sphingosine-1-phosphate receptors.
Collapse
Affiliation(s)
- Natalie Diepenhorst
- Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, VIC 3052, Australia
| | - Patricia Rueda
- Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, VIC 3052, Australia
| | - Anna E Cook
- Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, VIC 3052, Australia
| | - Philippe Pastoureau
- Therapeutic Innovation Pole of Immuno-Inflammatory Diseases, Institut de Recherches Servier, Suresnes, France
| | - Massimo Sabatini
- Therapeutic Innovation Pole of Immuno-Inflammatory Diseases, Institut de Recherches Servier, Suresnes, France
| | - Christopher J Langmead
- Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, VIC 3052, Australia.
| |
Collapse
|
15
|
Wang S, Xie L, Zhang Y, Xu P, Liu A. Expression of Prostaglandin E 2 Receptors in Acquired Middle Ear Cholesteatoma. Clin Exp Otorhinolaryngol 2017; 11:17-22. [PMID: 28838229 PMCID: PMC5831662 DOI: 10.21053/ceo.2017.00304] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2017] [Revised: 07/20/2017] [Accepted: 08/02/2017] [Indexed: 11/22/2022] Open
Abstract
Objectives To investigate the expression of prostaglandin E2 receptor subtypes, E-prostanoid (EP) 1–4 receptors, in acquired cholesteatoma and its possible role in the pathologic process of this disorder. Methods Specimens of human acquired cholesteatoma were obtained from 29 patients and 19 skin biopsies of normal external auditory canal were as controls. The mRNA and protein expression of EP receptors was assessed by quantitative real-time polymerase chain reaction, immunohistochemistry and Western blot. Results In acquired cholesteatoma, EP1–EP4 receptors were mainly expressed on squamous epithelium and subepithelial infiltrated inflammatory cells. In external auditory canal skin, EP1–EP4 receptors were mainly expressed on squamous epithelium and glandular epithelium. The expression of EP4 receptor on mRNA and protein levels were significant lower in acquired cholesteatoma compared with controls. EP1–EP3 receptors had no significant difference between the experimental and control group. Conclusion Low expression of EP4 may play a crucial role in the pathologic process of inflammation reaction and bone destruction in acquired cholesteatoma, but not EP1, EP2, or EP3 receptors.
Collapse
Affiliation(s)
- Sujie Wang
- Department of Otolaryngology-Head and Neck Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Li Xie
- Department of Otolaryngology-Head and Neck Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yanfei Zhang
- Department of Otolaryngology-Head and Neck Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Pengfei Xu
- Department of Pathology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Aiguo Liu
- Department of Otolaryngology-Head and Neck Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
16
|
Feigenson M, Eliseev RA, Jonason JH, Mills BN, O'Keefe RJ. PGE2 Receptor Subtype 1 (EP1) Regulates Mesenchymal Stromal Cell Osteogenic Differentiation by Modulating Cellular Energy Metabolism. J Cell Biochem 2017; 118:4383-4393. [PMID: 28444901 DOI: 10.1002/jcb.26092] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2017] [Accepted: 04/24/2017] [Indexed: 12/19/2022]
Abstract
Mesenchymal stromal cells (MSCs) are multipotent progenitors capable of differentiation into osteoblasts and can potentially serve as a source for cell-based therapies for bone repair. Many factors have been shown to regulate MSC differentiation into the osteogenic lineage such as the Cyclooxygenase-2 (COX2)/Prostaglandin E2 (PGE2) signaling pathway that is critical for bone repair. PGE2 binds four different receptors EP1-4. While most studies focus on the role PGE2 receptors EP2 and EP4 in MSC differentiation, our study focuses on the less studied, receptor subtype 1 (EP1) in MSC function. Recent work from our laboratory showed that EP1-/- mice have enhanced fracture healing, stronger cortical bones, higher trabecular bone volume and increased in vivo bone formation, suggesting that EP1 is a negative regulator of bone formation. In this study, the regulation of MSC osteogenic differentiation by EP1 receptor was investigated using EP1 genetic deletion in EP1-/- mice. The data suggest that EP1 receptor functions to maintain MSCs in an undifferentiated state. Loss of the EP1 receptor changes MSC characteristics and permits stem cells to undergo more rapid osteogenic differentiation. Notably, our studies suggest that EP1 receptor regulates MSC differentiation by modulating MSC bioenergetics, preventing the shift to mitochondrial oxidative phosphorylation by maintaining high Hif1α activity. Loss of EP1 results in inactivation of Hif1α, increased oxygen consumption rate and thus increased osteoblast differentiation. J. Cell. Biochem. 118: 4383-4393, 2017. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Marina Feigenson
- Department of Biochemistry and Biophysics, University of Rochester School of Medicine and Dentistry, Rochester, New York 14620.,Center for Musculoskeletal Research, University of Rochester School of Medicine and Dentistry, Rochester, New York 14620
| | - Roman A Eliseev
- Center for Musculoskeletal Research, University of Rochester School of Medicine and Dentistry, Rochester, New York 14620
| | - Jennifer H Jonason
- Center for Musculoskeletal Research, University of Rochester School of Medicine and Dentistry, Rochester, New York 14620
| | - Bradley N Mills
- Department of Neurology, University of Rochester School of Medicine and Dentistry, Rochester, New York 14620
| | - Regis J O'Keefe
- Department of Orthopaedic Surgery, Washington University School of Medicine, St. Louis, Missouri 63110
| |
Collapse
|
17
|
G-CSF-induced sympathetic tone provokes fever and primes antimobilizing functions of neutrophils via PGE2. Blood 2016; 129:587-597. [PMID: 27827823 DOI: 10.1182/blood-2016-07-725754] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Accepted: 11/01/2016] [Indexed: 12/22/2022] Open
Abstract
Granulocyte colony-stimulating factor (G-CSF) is widely used for peripheral blood stem/progenitor mobilization. G-CSF causes low-grade fever that is ameliorated by nonsteroidal anti-inflammatory drugs (NSAIDs), suggesting the activation of arachidonic acid (AA) cascade. How G-CSF regulated this reaction was assessed. G-CSF treatment in mice resulted in fever, which was canceled in prostaglandin E synthase (mPGES-1)-deficient mice. Mobilization efficiency was twice as high in chimeric mice lacking mPGES-1, specifically in hematopoietic cells, suggesting that prostaglandin E2 (PGE2) from hematopoietic cells modulated the bone marrow (BM) microenvironment. Neutrophils from steady-state BM constitutively expressed mPGES-1 and significantly enhanced PGE2 production in vitro by β-adrenergic stimulation, but not by G-CSF, which was inhibited by an NSAID. Although neutrophils expressed all β-adrenergic receptors, only β3-agonist induced this phenomenon. Liquid chromatography-tandem mass spectrometry traced β-agonist-induced PGE2 synthesis from exogenous deuterium-labeled AA. Spontaneous PGE2 production was highly efficient in Gr-1high neutrophils among BM cells from G-CSF-treated mice. In addition to these in vitro data, the in vivo depletion of Gr-1high neutrophils disrupted G-CSF-induced fever. Furthermore, sympathetic denervation eliminated both neutrophil priming for PGE2 production and fever during G-CSF treatment. Thus, sympathetic tone-primed BM neutrophils were identified as one of the major PGE2 producers. PGE2 upregulated osteopontin, specifically in preosteoblasts, to retain progenitors in the BM via EP4 receptor. Thus, the sympathetic nervous system regulated neutrophils as an indispensable PGE2 source to modulate BM microenvironment and body temperature. This study provided a novel mechanistic insight into the communication of the nervous system, BM niche components, and hematopoietic cells.
Collapse
|
18
|
Yuan Y, Chen X, Zhang L, Wu J, Guo J, Zou D, Chen B, Sun Z, Shen C, Zou J. The roles of exercise in bone remodeling and in prevention and treatment of osteoporosis. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2016; 122:122-130. [DOI: 10.1016/j.pbiomolbio.2015.11.005] [Citation(s) in RCA: 66] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2015] [Revised: 11/25/2015] [Accepted: 11/27/2015] [Indexed: 12/23/2022]
|
19
|
Satitsri S, Pongkorpsakol P, Srimanote P, Chatsudthipong V, Muanprasat C. Pathophysiological mechanisms of diarrhea caused by the Vibrio cholerae O1 El Tor variant: an in vivo study in mice. Virulence 2016; 7:789-805. [PMID: 27222028 DOI: 10.1080/21505594.2016.1192743] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
Abstract
Cholera is caused by infection with Vibrio cholerae. This study aimed to investigate the pathophysiology of diarrhea caused by the V. cholerae O1 El Tor variant (EL), a major epidemic strain causing severe diarrhea in several regions. In the ligated ileal loop model of EL-induced diarrhea in the ICR mice, a cystic fibrosis transmembrane conductance regulator (CFTR) inhibitor and a calcium-activated chloride channel (CaCC) inhibitor similarly inhibited intestinal fluid secretion. In addition, barrier disruption and NF-κB-mediated inflammatory responses, e.g., iNOS and COX-2 expression, were observed in the infected ileal loops. Interestingly, intestinal fluid secretion and barrier disruption were suppressed by NF-κB and COX-2 inhibitors, whereas an iNOS inhibitor suppressed barrier disruption without affecting fluid secretion. Furthermore, EP2 and EP4 PGE2 receptor antagonists ameliorated the fluid secretion in the infected ileal loops. The amount of cholera toxin (CT) produced in the ileal loops by the EL was ∼2.4-fold of the classical biotype. The CT transcription inhibitor virstatin, a toll-like receptor-4 (TLR-4) antibody and a CT antibody suppressed the EL-induced intestinal fluid secretion, barrier disruption and COX-2 expression. The CT at levels detected during EL infection induced mild intestinal barrier disruption without inducing inflammatory responses in mouse intestine. Collectively, this study indicates that CT-induced intestinal barrier disruption and subsequent TLR-4-NF-κB-mediated COX-2 expression are involved in the pathogenesis of EL-induced diarrhea and represent promising novel therapeutic targets of cholera.
Collapse
Affiliation(s)
- Saravut Satitsri
- a Department of Physiology , Faculty of Science, Mahidol University , Ratchathewi , Bangkok , Thailand
| | - Pawin Pongkorpsakol
- b Graduate Program in Translational Medicine, Research Center, Faculty of Medicine, Ramathibodi Hospital, Mahidol University , Ratchathewi , Bangkok , Thailand
| | - Potjanee Srimanote
- c Graduate Studies, Faculty of Allied Health Science, Thammasat University , Rangsit , Prathumthani , Thailand
| | - Varanuj Chatsudthipong
- a Department of Physiology , Faculty of Science, Mahidol University , Ratchathewi , Bangkok , Thailand.,d Excellent Center for Drug Discovery, Faculty of Science, Mahidol University , Ratchathewi , Bangkok , Thailand.,e Center of Excellence on Medical Biotechnology (CEMB), S&T Postgraduate Education and Research Development Office (PERDO), Ministry of Education , Bangkok , Thailand
| | - Chatchai Muanprasat
- a Department of Physiology , Faculty of Science, Mahidol University , Ratchathewi , Bangkok , Thailand.,b Graduate Program in Translational Medicine, Research Center, Faculty of Medicine, Ramathibodi Hospital, Mahidol University , Ratchathewi , Bangkok , Thailand.,d Excellent Center for Drug Discovery, Faculty of Science, Mahidol University , Ratchathewi , Bangkok , Thailand.,e Center of Excellence on Medical Biotechnology (CEMB), S&T Postgraduate Education and Research Development Office (PERDO), Ministry of Education , Bangkok , Thailand
| |
Collapse
|
20
|
Pujari-Palmer M, Pujari-Palmer S, Engqvist H, Karlsson Ott M. Rebamipide delivered by brushite cement enhances osteoblast and macrophage proliferation. PLoS One 2015; 10:e0128324. [PMID: 26023912 PMCID: PMC4449171 DOI: 10.1371/journal.pone.0128324] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2014] [Accepted: 04/26/2015] [Indexed: 01/04/2023] Open
Abstract
Many of the bioactive agents capable of stimulating osseous regeneration, such as bone morphogenetic protein-2 (BMP-2) or prostaglandin E2 (PGE2), are limited by rapid degradation, a short bioactive half-life at the target site in vivo, or are prohibitively expensive to obtain in large quantities. Rebamipide, an amino acid modified hydroxylquinoline, can alter the expression of key mediators of bone anabolism, cyclo-oxygenase 2 (COX-2), BMP-2 and vascular endothelial growth factor (VEGF), in diverse cell types such as mucosal and endothelial cells or chondrocytes. The present study investigates whether Rebamipide enhances proliferation and differentiation of osteoblasts when delivered from brushite cement. The reactive oxygen species (ROS) quenching ability of Rebampide was tested in macrophages as a measure of bioactivity following drug release incubation times, up to 14 days. Rebamipide release from brushite occurs via non-fickian diffusion, with a rapid linear release of 9.70% ± 0.37% of drug per day for the first 5 days, and an average of 0.5%-1% per day thereafter for 30 days. Rebamipide slows the initial and final cement setting time by up to 3 and 1 minute, respectively, but does not significantly reduce the mechanical strength below 4% (weight percentage). Pre-osteoblast proliferation increases by 24% upon exposure to 0.4 uM Rebamipide, and by up to 73% when Rebamipide is delivered via brushite cement. Low doses of Rebamipide do not adversely affect peak alkaline phosphatase activity in differentiating pre-osteoblasts. Rebamipide weakly stimulates proliferation in macrophages at low concentrations (118 ± 7.4% at 1 uM), and quenches ROS by 40-60%. This is the first investigation of Rebamipide in osteoblasts.
Collapse
Affiliation(s)
- Michael Pujari-Palmer
- Division of Applied Material Science, Department of Engineering Sciences, Uppsala University, Uppsala, Sweden
| | - Shiuli Pujari-Palmer
- Division of Applied Material Science, Department of Engineering Sciences, Uppsala University, Uppsala, Sweden
| | - Håkan Engqvist
- Division of Applied Material Science, Department of Engineering Sciences, Uppsala University, Uppsala, Sweden
| | - Marjam Karlsson Ott
- Division of Applied Material Science, Department of Engineering Sciences, Uppsala University, Uppsala, Sweden
- * E-mail:
| |
Collapse
|
21
|
Liu CC, Hu S, Chen G, Georgiou J, Arns S, Kumar NS, Young RN, Grynpas MD. Novel EP4 receptor agonist-bisphosphonate conjugate drug (C1) promotes bone formation and improves vertebral mechanical properties in the ovariectomized rat model of postmenopausal bone loss. J Bone Miner Res 2015; 30:670-80. [PMID: 25284325 DOI: 10.1002/jbmr.2382] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2014] [Revised: 08/29/2014] [Accepted: 09/11/2014] [Indexed: 11/12/2022]
Abstract
Current treatments for postmenopausal osteoporosis aim to either promote bone formation or inhibit bone resorption. The C1 conjugate drug represents a new treatment approach by chemically linking the antiresorptive compound alendronate (ALN) with the anabolic agent prostanoid EP4 receptor agonist (EP4a) through a linker molecule (LK) to form a conjugate compound. This enables the bone-targeting ability of ALN to deliver EP4a to bone sites and mitigate the systemic side effects of EP4a, while also facilitating dual antiresorptive and anabolic effects. In vivo hydrolysis is required to release the EP4a and ALN components for pharmacological activity. Our study investigated the in vivo efficacy of this drug in treating established bone loss using an ovariectomized (OVX) rat model of postmenopausal osteopenia. In a curative experiment, 3-month-old female Sprague-Dawley rats were OVX, allowed to lose bone for 7 weeks, then treated for 6 weeks. Treatment groups consisted of C1 conjugate at low and high doses, vehicle-treated OVX and sham, prostaglandin E2 (PGE2 ), and mixture of unconjugated ALN-LK and EP4a to assess the effect of conjugation. Results showed that weekly administration of C1 conjugate dose-dependently increased bone volume in trabecular bone, which partially or completely reversed OVX-induced bone loss in the lumbar vertebra and improved vertebral mechanical strength. The conjugate also dose-dependently stimulated endocortical woven bone formation and intracortical resorption in cortical bone, with high-dose treatment increasing the mechanical strength but compromising the material properties. Conjugation between the EP4a and ALN-LK components was crucial to the drug's anabolic efficacy. To our knowledge, the C1 conjugate represents the first time that a combined therapy using an anabolic agent and the antiresorptive compound ALN has shown significant anabolic effects which reversed established osteopenia.
Collapse
Affiliation(s)
- Careesa C Liu
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, Ontario, Canada; Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Inal S, Kabay S, Cayci MK, Kuru HI, Altikat S, Akkas G, Deger A. Comparison of the effects of dexketoprofen trometamol, meloxicam and diclofenac sodium on fibular fracture healing, kidney and liver: an experimental rat model. Injury 2014; 45:494-500. [PMID: 24246878 DOI: 10.1016/j.injury.2013.10.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/06/2013] [Revised: 08/08/2013] [Accepted: 10/04/2013] [Indexed: 02/02/2023]
Abstract
OBJECTIVES Nonsteroidal anti-inflammatory drugs (NSAIDs) are particularly used in patients with bone fractures, but there are limited studies on whether one NSAID is superior to another. In this study, we used histopathological and biochemical parameters to determine whether there are differences between the effects of the administration of clinical doses of dexketoprofen trometamol (DEXT), meloxicam (MEL) and diclofenac sodium (DIC) on the healing of closed fibular fractures and the toxicity of both the liver and kidney. METHODS Twenty-eight male Sprague-Dawley rats were randomly divided into four groups of seven each. Closed diaphyseal fractures were formed in the left fibulas of all of the rats. The NSAIDs dexketoprofen trometamol (DEXT) (Arveles(®)), meloxicam (MEL) (Melox(®)) and diclofenac sodium (DIC) (Voltaren(®)) were intramuscularly administered to Groups I, II, and III, respectively, for a period of 10 days after the fibular fractures were performed. No pharmacological agents were administered to Group IV (Control group). Blood samples were collected from all of the rats after the fractures were performed, and the rats were sacrificed on day 28. The histopathological findings were compared, and the blood samples were evaluated to determine any differences between the levels of superoxide dismutase (SOD), catalase (CAT), and malondialdehyde (MDA). RESULTS Our results suggest that DEXT and MEL impair the healing of bone fractures and that DIC does not histopathologically affect the healing process of bone fractures. We also found that DEXT, MEL, and DIC impaired the renal histopathology compared with the control group. However, the liver histopathological analysis showed that DEXT and MEL caused a higher degree of parenchymal necrosis compared with DIC. CONCLUSION Based on our results, DIC can be considered a relatively safe medication in patients with fractures.
Collapse
Affiliation(s)
- Sermet Inal
- Department of Orthopaedics and Traumatology, Faculty of Medicine, Dumlupinar University, Kutahya, Turkey.
| | - Sahin Kabay
- Department of Urology, Faculty of Medicine, Dumlupinar University, Kutahya, Turkey.
| | - M Kasim Cayci
- Department of Biology, Faculty of Arts and Science, Dumlupinar University, Kutahya, Turkey.
| | - H Isa Kuru
- Department of Medical Laboratory Techniques, Simav Vocational High School, Dumlupinar University, Turkey.
| | - Sayit Altikat
- Department of Biochemistry, Faculty of Medicine, Dumlupinar University, Kutahya, Turkey.
| | - Gizem Akkas
- Department of Pathology, Faculty of Medicine, Dumlupinar University, Kutahya, Turkey.
| | - Aysenur Deger
- Department of Pathology, Faculty of Medicine, Dumlupinar University, Kutahya, Turkey.
| |
Collapse
|
23
|
Yokoyama U, Iwatsubo K, Umemura M, Fujita T, Ishikawa Y. The prostanoid EP4 receptor and its signaling pathway. Pharmacol Rev 2013; 65:1010-52. [PMID: 23776144 DOI: 10.1124/pr.112.007195] [Citation(s) in RCA: 202] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/21/2025] Open
Abstract
The EP4 prostanoid receptor is one of four receptor subtypes for prostaglandin E2. It belongs to the family of G protein-coupled receptors. It was originally identified, similar to the EP2 receptor as a G(s)α-coupled, adenylyl cyclase-stimulating receptor. EP4 signaling plays a variety of roles through cAMP effectors, i.e., protein kinase A and exchange protein activated by cAMP. However, emerging evidence from studies using pharmacological approaches and genetically modified mice suggests that EP4, unlike EP2, can also be coupled to G(i)α, phosphatidylinositol 3-kinase, β-arrestin, or β-catenin. These signaling pathways constitute unique roles for the EP4 receptor. EP4 is widely distributed in the body and thus plays various physiologic and pathophysiologic roles. In particular, EP4 signaling is closely related to carcinogenesis, cardiac hypertrophy, vasodilation, vascular remodeling, bone remodeling, gastrointestinal homeostasis, renal function, and female reproductive function. In addition to the classic anti-inflammatory action of EP4 on mononuclear cells and T cells, recent evidence has shown that EP4 signaling contributes to proinflammatory action as well. The aim of this review is to present current findings on the biologic functions of the EP4 receptor. In particular, we will discuss its diversity from the standpoint of EP4-mediated signaling.
Collapse
Affiliation(s)
- Utako Yokoyama
- Cardiovascular Research Institute, Yokohama City University, Yokohama, Kanagawa, Japan
| | | | | | | | | |
Collapse
|
24
|
Hell RCR, Ocarino NM, Boeloni JN, Silva JF, Goes AM, Santos RL, Serakides R. Physical activity improves age-related decline in the osteogenic potential of rats' bone marrow-derived mesenchymal stem cells. Acta Physiol (Oxf) 2012; 205:292-301. [PMID: 22168399 DOI: 10.1111/j.1748-1716.2011.02397.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2011] [Revised: 04/08/2011] [Accepted: 12/08/2011] [Indexed: 02/03/2023]
Abstract
AIM To examine whether physical activity increases osteogenic differentiation of bone marrow mesenchymal stem cells (BMMSCs) from adult rats compared with young rats. METHODS Eighteen female Wistar rats were divided into three groups and the following cells isolated: (1) differentiated BMMSCs from young donors, (2) differentiated BMMSCs from sedentary adult donors and (3) differentiated BMMSCs from active adult donors. We analysed MTT conversion, percentage of cells per field, mineralized nodule number and gene expression for telomerase reverse transcriptase (TERT), alkaline phosphatase, caspase 3, osteocalcin, bone sialoprotein and collagen I. RESULTS Telomerase reverse transcriptase expression and the percentage of cells per field in BMMSCs cultures from adult rats were smaller than those observed in young donors. However, levels of caspase 3 expression were higher in BMMSCs from adult donors (P < 0.05). Despite the fact that physical activity was associated with an increase in expression of caspase 3 (P < 0.05), there was no difference in the percentage of cells per field between groups of adult BMMSCs (active or sedentary). However, physical activity increased the number of mineralized nodules and osteocalcin expression after 21 days, and alkaline phosphatase expression at 7, 14 and 21 days in the BMMSCs of adult donors (P < 0.05). However, those values were smaller when compared with young donors BMMSCs (P < 0.05). Only the expression levels of alkaline phosphatase were similar to young donors BMMSCs (P ≥ 0.05). CONCLUSION Physical activity increases osteogenic differentiation of BMMSCs from adult donors but does not increase the differentiation to the levels observed in BMMSCs from young donor rats.
Collapse
Affiliation(s)
- R. C. R. Hell
- Núcleo de Células Tronco e Terapia Celular do Departamento de Clínica e Cirurgia Veterinárias; Escola de Veterinária da Universidade Federal de Minas Gerais; Belo Horizonte; Minas Gerais; Brazil
| | - N. M. Ocarino
- Núcleo de Células Tronco e Terapia Celular do Departamento de Clínica e Cirurgia Veterinárias; Escola de Veterinária da Universidade Federal de Minas Gerais; Belo Horizonte; Minas Gerais; Brazil
| | - J. N. Boeloni
- Núcleo de Células Tronco e Terapia Celular do Departamento de Clínica e Cirurgia Veterinárias; Escola de Veterinária da Universidade Federal de Minas Gerais; Belo Horizonte; Minas Gerais; Brazil
| | - J. F. Silva
- Núcleo de Células Tronco e Terapia Celular do Departamento de Clínica e Cirurgia Veterinárias; Escola de Veterinária da Universidade Federal de Minas Gerais; Belo Horizonte; Minas Gerais; Brazil
| | - A. M. Goes
- Laboratório de Imunologia Celular e Biologia Molecular do Departamento de Bioquímica e Imunologia; Instituto de Ciências Biológicas; Universidade Federal de Minas Gerais; Belo Horizonte; Minas Gerais; Brazil
| | - R. L. Santos
- Laboratório de Patologia do Departamento de Clínica e Cirurgia Veterinárias; Escola de Veterinária da Universidade Federal de Minas Gerais; Belo Horizonte; Minas Gerais; Brazil
| | - R. Serakides
- Núcleo de Células Tronco e Terapia Celular do Departamento de Clínica e Cirurgia Veterinárias; Escola de Veterinária da Universidade Federal de Minas Gerais; Belo Horizonte; Minas Gerais; Brazil
| |
Collapse
|
25
|
LUI NAILEE, CARTY ADELE, HAROON NIGIL, SHEN HUA, COOK RICHARDJ, INMAN ROBERTD. Clinical Correlates of Urolithiasis in Ankylosing Spondylitis. J Rheumatol 2011; 38:1953-6. [DOI: 10.3899/jrheum.101175] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Objective.To determine the association between urolithiasis and syndesmophyte formation and the effect of urolithiasis on ankylosing spondylitis (AS) disease activity.Methods.In a longitudinal cohort of 504 patients with AS, we conducted an analysis of all patients with AS who have a history of urolithiasis. All patients met the modified New York criteria for AS. Demographics, clinical characteristics, extraarticular features, and comorbidities are systematically recorded in the database. We compared disease activity, functional indices, medical therapy and radiographic damage between AS patients with (Uro+) and without urolithiasis (Uro–) using the modified Stoke Ankylosing Spondylitis Spinal Score (mSASSS).Results.Thirty-eight patients with AS (7.5%) had a history of urolithiasis in our cohort. Seventy-six patients with AS who did not have urolithiasis, matched for age, sex, and ethnicity, were selected as controls. Patients who were Uro+ were more likely to have more functional disability, based on the Bath AS Functional Index (BASFI; mean 5.3 vs 3.6 in control group, p = 0.003). Trends were noted in the Uro+ group toward higher Bath AS Disease Activity Index (BASDAI; mean 4.9 vs 4.0, p = 0.09), more peripheral joint involvement (p = 0.075), and higher frequency of biologic therapy (p = 0.09). No significant difference was detected in mSASSS or the Bath AS Metrology Index (BASMI). Significant association with diabetes mellitus (DM; p = 0.016) and Crohn’s disease (p = 0.006) was noted in the Uro+ group.Conclusion.Although there is no acceleration of syndesmophyte formation or spinal mobility restriction, more functional disability was detected in the urolithiasis group. The higher risk with concomitant DM or Crohn’s disease should alert clinicians to these comorbidities in Uro+ patients with AS.
Collapse
|
26
|
Tumati S, Roeske WR, Vanderah TW, Varga EV. Sustained morphine treatment augments prostaglandin E2-evoked calcitonin gene-related peptide release from primary sensory neurons in a PKA-dependent manner. Eur J Pharmacol 2010; 648:95-101. [PMID: 20826131 DOI: 10.1016/j.ejphar.2010.08.042] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2009] [Revised: 07/16/2010] [Accepted: 08/25/2010] [Indexed: 11/19/2022]
Abstract
Tissue damage leads to pain sensitization due to peripheral and central release of excitatory mediators such as prostaglandin E₂ (PGE₂). PGE₂ sensitizes spinal pain neurotransmitter such as calcitonin gene-related peptide (CGRP) release via activation of cyclic AMP (cAMP)/protein kinase A (PKA)-dependent signaling mechanisms. Our previous data demonstrate that sustained morphine pretreatment sensitizes adenylyl cyclase(s) (AC) toward the direct stimulator, forskolin, in cultured primary sensory neurons (AC superactivation). In the present work we investigated the hypothesis that morphine pretreatment also sensitizes ACs toward Gs-protein-coupled excitatory modulators (such as PGE₂), leading to augmented PKA-dependent CGRP release from PGE₂-stimulated primary sensory dorsal root ganglion (DRG) neurons. Our results show that sustained morphine treatment potentiated PGE₂-mediated cAMP formation and augmented PGE₂-evoked CGRP release from cultured primary sensory neurons in a PKA-dependent manner. Our data suggest that attenuation of AC superactivation in primary sensory neurons may prevent the development of opioid-induced hyperalgesia.
Collapse
Affiliation(s)
- Suneeta Tumati
- Department of Pharmacology, The University of Arizona, Tucson, AZ 85724, USA
| | | | | | | |
Collapse
|
27
|
Minamizaki T, Yoshiko Y, Kozai K, Aubin JE, Maeda N. EP2 and EP4 receptors differentially mediate MAPK pathways underlying anabolic actions of prostaglandin E2 on bone formation in rat calvaria cell cultures. Bone 2009; 44:1177-85. [PMID: 19233324 DOI: 10.1016/j.bone.2009.02.010] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/03/2008] [Revised: 11/27/2008] [Accepted: 02/08/2009] [Indexed: 11/16/2022]
Abstract
Of the four prostaglandin (PG) E receptor subtypes (EP1-EP4), EP2 and EP4 have been proposed to mediate the anabolic action of PGE(2) on bone formation but comparative evaluation studies of EPs on bone formation do not necessarily share a common mechanism, implying that their additional features including downstream MAPK pathways may be beneficial to resolve this issue. We systematically assessed the roles of EPs in the rat calvaria (RC) cell culture model by using four selective EP agonists (EPAs). Consistent with relative expression levels of the respective receptors, multiple phenotypic traits of bone formation in vitro, including proliferation of nodule-associated cells, osteoblast marker expression and mineralized nodule formation were upregulated not only by PGE(2) but equally by EP2A and EP4A, but not by EP1A and EP3A. EP2A and EP4A were effective when cells were treated chronically or pulse-treated during nascent nodule formation. EP2A and EP4A equally stimulated the endogenous PGE(2) production, while EP2A caused a greater increase in cAMP production and c-Fos gene expression compared to EP4A. EP2A and EP4A activated predominantly p38 MAPK and ERK respectively, while c-Jun N-terminal kinase (JNK) was equally activated by both agonists. SB203580 (p38 MAPK inhibitor) blocked the PGE(2) effect on mineralized nodule formation, while U0126 (ERK inhibitor) and dicumarol (JNK inhibitor) were less effective. PGE(2)-dependent phosphorylation of the MAPKs was affected not only by protein kinase (PK)A and PKC inhibitors but also by adenylate cyclase and PKC activators. Co-treatment of RC cells with EP2A or EP4A and bone morphogenetic protein (BMP)2, whose effects on bone nodule formation is known to be, in part, mediated through the PKA and p38 MAPK pathways, resulted in an additive effect on mineralized nodule formation. Further, PGE(2), EP2A and EP4A did not increase BMP2/4 mRNA levels in RC cells, and EP2-induced phosphorylation of p38 MAPK was not eliminated by Noggin. These results suggest that, in the RC cell model, the anabolic actions of PGE(2) on mineralized nodule formation are mediated at least in part by activation of the EP2 and EP4 receptor subtype-specific MAPK pathways, independently of BMP signaling, in cells associated with nascent bone nodules.
Collapse
MESH Headings
- Animals
- Animals, Newborn
- Blotting, Western
- Cells, Cultured
- Cyclic AMP
- Dinoprostone/pharmacology
- MAP Kinase Signaling System/drug effects
- MAP Kinase Signaling System/physiology
- Osteogenesis/drug effects
- Oxytocics/pharmacology
- Rats
- Rats, Wistar
- Receptors, Prostaglandin E/agonists
- Receptors, Prostaglandin E/genetics
- Receptors, Prostaglandin E/metabolism
- Receptors, Prostaglandin E, EP2 Subtype
- Receptors, Prostaglandin E, EP4 Subtype
- Reverse Transcriptase Polymerase Chain Reaction
- Skull/cytology
- Skull/drug effects
Collapse
Affiliation(s)
- Tomoko Minamizaki
- Department of Oral Growth and Developmental Biology, Hiroshima University Graduate School of Biomedical Sciences, 1-2-3 Kasumi, Minami-ku, Hiroshima 734-8553, Japan.
| | | | | | | | | |
Collapse
|
28
|
Graham S, Gamie Z, Polyzois I, Narvani AA, Tzafetta K, Tsiridis E, Heliotis M, Mantalaris A, Tsiridis E. Prostaglandin EP2 and EP4 receptor agonists in bone formation and bone healing:In vivoandin vitroevidence. Expert Opin Investig Drugs 2009; 18:746-66. [DOI: 10.1517/13543780902893051] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
29
|
Abstract
The cellular and molecular events responsible for reduced fracture healing with aging are unknown. Cyclooxygenase 2 (COX-2), the inducible regulator of prostaglandin E(2) (PGE(2)) synthesis, is critical for normal bone repair. A femoral fracture repair model was used in mice at either 7-9 or 52-56 wk of age, and healing was evaluated by imaging, histology, and gene expression studies. Aging was associated with a decreased rate of chondrogenesis, decreased bone formation, reduced callus vascularization, delayed remodeling, and altered expression of genes involved in repair and remodeling. COX-2 expression in young mice peaked at 5 days, coinciding with the transition of mesenchymal progenitors to cartilage and the onset of expression of early cartilage markers. In situ hybridization and immunohistochemistry showed that COX-2 is expressed primarily in early cartilage precursors that co-express col-2. COX-2 expression was reduced by 75% and 65% in fractures from aged mice compared with young mice on days 5 and 7, respectively. Local administration of an EP4 agonist to the fracture repair site in aged mice enhanced the rate of chondrogenesis and bone formation to levels observed in young mice, suggesting that the expression of COX-2 during the early inflammatory phase of repair regulates critical subsequent events including chondrogenesis, bone formation, and remodeling. The findings suggest that COX-2/EP4 agonists may compensate for deficient molecular signals that result in the reduced fracture healing associated with aging.
Collapse
|
30
|
Fujita S, Kikuchi T, Sobue T, Suzuki M, Koide M, Noguchi T. Lipopolysaccharide-Mediated Enhancement of Bone Metabolism in Estrogen-Deficient Mice. J Periodontol 2008; 79:2173-81. [DOI: 10.1902/jop.2008.070127] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
31
|
Sprowson AP, McCaskie AW, Birch MA. ASARM-truncated MEPE and AC-100 enhance osteogenesis by promoting osteoprogenitor adhesion. J Orthop Res 2008; 26:1256-62. [PMID: 18383145 DOI: 10.1002/jor.20606] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Matrix extracellular phosphoglycoprotein (MEPE) is a member of the SIBLING (Small Integrin-Binding Ligand, N-linked Glycoprotein) family of secreted glycophosphoproteins. Several previous studies have demonstrated that MEPE and its peptide motif, AC-100, may regulate bone mass and influence osteoblast activity, suggesting its potential for inclusion in novel therapeutic strategies aimed at increasing osteogenesis. Our study uses in vitro approaches to assess how adhesion of nonadherent cells is influenced by MEPE and whether response to MEPE is dependent on the maturity of osteoblastic cells. Truncated MEPE (ASARM removed) or AC-100 enhanced the adhesion, spreading, and focal complex formation of unadhered osteoblastic cells leading to increased differentiation and bone formation after 28 days of culture. Furthermore, addition of truncated MEPE or AC-100 to mature osteoblasts had no significant effect on bone formation. Our data supports an action for truncated MEPE and AC-100 in altering the physiology of immature poorly adherent cells which subsequently influences the way in which these cells interact with a substrate to facilitate their survival and/or commitment to the osteoblast lineage.
Collapse
Affiliation(s)
- Andrew P Sprowson
- Musculoskeletal Research Group, Institute for Cellular Medicine, The Medical School, Newcastle University, Newcastle upon Tyne NE2 4HH, United Kingdom
| | | | | |
Collapse
|
32
|
Rundle CH, Strong DD, Chen ST, Linkhart TA, Sheng MHC, Wergedal JE, Lau KHW, Baylink DJ. Retroviral-based gene therapy with cyclooxygenase-2 promotes the union of bony callus tissues and accelerates fracture healing in the rat. J Gene Med 2008; 10:229-41. [PMID: 18088065 DOI: 10.1002/jgm.1148] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
BACKGROUND An in vivo gene therapy strategy was developed to accelerate bone fracture repair. METHODS Direct injection of a murine leukemia virus-based vector targeted transgene expression to the proliferating periosteal cells arising shortly after fracture. Cyclooxygenase-2 (Cox-2) was selected because the transgene for its prostaglandin products that promote angiogenesis, bone formation and bone resorption, are all required for fracture healing. The human (h) Cox-2 transgene was modified to remove AU-rich elements in the 3'-untranslated region and to improve protein translation. RESULTS In vitro studies revealed robust and sustained Cox-2 protein expression, prostaglandin E(2) and alkaline phosphatase production in rat bone marrow stromal cells and osteoblasts transgenic for the hCox-2 gene. In vivo studies in the rat femur fracture revealed that Cox-2 transgene expression produced bony union of the fracture by 21 days post-fracture, a time when cartilage persisted within the fracture tissues of control animals and approximately 1 week earlier than the healing normally observed in this model. None of the ectopic bone formation associated with bone morphogenetic protein gene therapy was observed. CONCLUSIONS This study represents the first demonstration that a single local application of a retroviral vector expressing a single osteoinductive transgene consistently accelerated fracture repair.
Collapse
Affiliation(s)
- Charles H Rundle
- Department of Medicine, Loma Linda University, Loma Linda, CA, USA
| | | | | | | | | | | | | | | |
Collapse
|
33
|
Knippenberg M, Helder MN, de Blieck-Hogervorst JMA, Wuisman PIJM, Klein-Nulend J. Prostaglandins differentially affect osteogenic differentiation of human adipose tissue-derived mesenchymal stem cells. ACTA ACUST UNITED AC 2007; 13:2495-503. [PMID: 17655490 DOI: 10.1089/ten.2006.0420] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Adipose tissue-derived mesenchymal stem cells (AT-MSCs) are currently used for bone tissue engineering. AT-MSCs undergoing osteogenic differentiation respond to mechanical loading with increased cyclooxygenase-2 gene expression, a key enzyme in prostaglandin (PG) synthesis. PGs are potent multifunctional regulators in bone, exhibiting stimulatory and inhibitory effects on bone formation and resorption. PGE(2), but not PGI(2) or PGF(2), recruits osteoprogenitors from the bone marrow space and influences their differentiation. We hypothesize that PGE(2), PGI(2), and PGF(2) may differentially regulate osteogenic differentiation of human AT-MSCs. PGE(2), PGI(2), and PGF(2) (0.01-10 microM) affected osteogenic differentiation, but not proliferation of AT-MSCs after 4-14 days. Only PGF(2) (0.01-10 microM) increased alkaline phosphatase (ALP) activity at day 4. PGE(2) (10 microM), PGI(2) (0.01-10 microM), and PGF(2) (10 microM) decreased ALP activity, whereas PGF(2) (0.1 microM) increased ALP activity at day 14. PGF(2) (0.01-0.1 microM) and PGI(2) (0.01 microM) upregulated osteopontin gene expression, and PGF(2) (0.01 microM) upregulated alpha1(I)procollagen gene expression at day 4. PGE(2) and PGF(2) (10 microM) at day 4 and PGF(2) (1 microM) at day 14 downregulated runt-related transcription factor-2 gene expression. We conclude that PGE(2), PGI(2), and PGF(2) differentially affect osteogenic differentiation of AT-MSCs, with PGF(2) being the most potent. Thus, locally produced PGF(2) might be most beneficial in promoting osteogenic differentiation of AT-MSCs, resulting in enhanced bone formation for bone tissue engineering.
Collapse
Affiliation(s)
- M Knippenberg
- Department of Oral Cell Biology, Academic Center of Dentistry Amsterdam (ACTA)-Universiteit van Amsterdam and Vrije Universiteit, Research Institute MOVE, Amsterdam, The Netherlands
| | | | | | | | | |
Collapse
|
34
|
Bone formation and tooth movement are synergistically enhanced by administration of EP4 agonist. Am J Orthod Dentofacial Orthop 2007; 132:427.e13-20. [PMID: 17920491 DOI: 10.1016/j.ajodo.2007.02.049] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2007] [Revised: 02/01/2007] [Accepted: 02/06/2007] [Indexed: 01/19/2023]
Abstract
INTRODUCTION Stimulation of the prostaglandin receptor EP4 induces bone anabolic responses to external loading. The aim of this study was to determine the possibility of synergistic enhancement of tooth movement along with bone formation in vivo through the stimulation of the prostaglandin receptor EP4. METHODS The sample consisted of 25 male rats, 6 to 7 weeks old. Experimental tooth movement was induced in the maxillary right molars with a split-mouth design. During the 7-day experimental period, some rats were injected periodically with a specific EP4 agonist (ONO-AE1-329), a drug that binds to the EP4 receptor to mimic the actions of ligand binding; the injection site was on the tension side in the interproximal region between the first and second molars. Other rats received vehicle injection (saline solution only). For control, EP4 agonist or vehicle was injected into some rats, but tooth movement was not initiated. The amounts of tooth movement and bone volume of the paradental region were evaluated by using soft x-ray and micro-computed tomography. RESULTS The injection of EP4 agonist alone did not induce notable changes in body weight, macro-structures, or bone volume compared with the vehicle-treated group or the untouched control side. EP4 agonist injection in conjunction with tooth movement significantly enhanced the amounts of tooth movement and regional bone volume in the tension side compared with the vehicle-treated group (P <.05). CONCLUSIONS Our preliminary study suggests the possibilities of synergistic enhancement of the rates of tooth movement and bone formation during tooth movement through the local injection of a specific EP4 receptor agonist. However, more study on the synergistic effect on tooth movement and bone formation in response to an EP4 agonist is needed to determine its mechanisms.
Collapse
|
35
|
Nakagawa K, Imai Y, Ohta Y, Takaoka K. Prostaglandin E2 EP4 agonist (ONO-4819) accelerates BMP-induced osteoblastic differentiation. Bone 2007; 41:543-8. [PMID: 17681894 DOI: 10.1016/j.bone.2007.06.013] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/12/2006] [Revised: 06/03/2007] [Accepted: 06/20/2007] [Indexed: 10/23/2022]
Abstract
Bone morphogenetic proteins (BMPs) were originally isolated based on their ability to induce ectopic cartilage and bone formation. The agents to promote the local bone formation with BMP would be beneficial to promote bone repair and to shorten the treatment period. For this purpose, we have examined ONO-4819, which is a prostaglandin (PG) E2 EP4 receptor selective agonist (EP4A), as a positive modulators for the efficacy of BMPs. In our previous study, the systemic and local (with biodegradable synthetic polymers) administration of EP4A led to a significant augmentation of ossicle mass. But the mechanisms how EP4A accelerates the BMP-mediated bone formation are still unknown. In this study, we have examined how EP4A facilitates the BMP signaling using in vitro system with pluripotent stromal cell line, ST2. The mRNA expressions of Osterix and ALP (a marker enzyme of osteoblastic differentiation) and enzymatic activity of ALP in the ST2 cells were elevated significantly by BMP treatment. This elevation was further elevated by addition of the EP4A. The accelerated BMP action by the EP4A was abolished by pre-treatment with PKA inhibitor. This study suggests that ONO-4819 accelerates BMP-induced osteoblastic differentiation of ST2 cells by stimulating the commitment for osteoblastic lineage. Thus PKA signaling pathway would be the main intracellular signaling pathway of the EP4 for the anabolic effect of bone and mineral metabolisms.
Collapse
Affiliation(s)
- Keisuke Nakagawa
- Department of Orthopaedic Surgery, Osaka City University Graduate School of Medicine, Asahimachi 1-4-3, Osaka 545-8585, Japan.
| | | | | | | |
Collapse
|
36
|
Namikawa T, Terai H, Hoshino M, Kato M, Toyoda H, Yano K, Nakamura H, Takaoka K. Enhancing effects of a prostaglandin EP4 receptor agonist on recombinant human bone morphogenetic protein-2 mediated spine fusion in a rabbit model. Spine (Phila Pa 1976) 2007; 32:2294-9. [PMID: 17906568 DOI: 10.1097/brs.0b013e318154c5b6] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
STUDY DESIGN An experimental animal study aimed at achieving posterolateral intertransverse process fusion with rhBMP-2 in combination with the local delivery of an EP4 receptor agonist. OBJECTIVE To determine whether an EP4 receptor agonist (EP4A) can reduce the amount of BMP required to achieve posterolateral spinal fusion in rabbits. SUMMARY OF BACKGROUND DATA In the clinic, BMP retaining implants are used for spinal fusion and the treatment of pseudarthrosis after long bone fracture. However, the requirement of high doses of BMP-2 for bone formation in humans makes the implants expensive and limits their use in the clinic. Previous studies in our laboratory using a new delivery system involving a synthetic polymer/beta-TCP powder composite had shown it was possible to reduce the total BMP-2 amount to 30 microg per fusion in a rabbit model. To further reduce the dose of BMP required for a successful fusion, we explored the use of a chemical compound to enhance the bone-inducing action of BMP-2. METHODS In order to prepare 1 implant to bridge the unilateral L5 and L6 transverse processes, 300 mg of polymer gel (PLA-DX-PEG block copolymer), 300 mg of beta-TCP powder, rhBMP-2 (7.5, 3.75, or 0 microg), with or without EP4A (45 microg) were mixed and manually shaped to resemble a rod. Through a posterolateral approach, 2 implants were placed on both sides (1 per side) by surgery in order to bridge the transverse processes of adult New Zealand white rabbits (n = 48). The lumbar vertebrae were recovered 6 weeks after surgery. The posterolateral fusion was examined by manual palpation, radiography, biomechanical testing, and histology. RESULTS All of 8 rabbits that received 7.5 microg of BMP-2 and EP4A consistently showed fusion by significant amount of new bone formation. However, solid fusion was seen in only 3 of 8 rabbits that received 7.5 microg of BMP-2 without the EP4 receptor agonist. CONCLUSION Local administration of an EP4 receptor agonist enhanced the bone-inducing activity of BMP-2 in a rabbit posterolateral lumbar spinal fusion model and as a result, the dose of BMP-2 required for this outcome was reduced by 50% compared with our previous report. The coadministration of this compound via a local delivery system may help to reduce the costs of spine fusion with use of BMP-2 in the clinic.
Collapse
Affiliation(s)
- Takashi Namikawa
- Department of Orthopaedic Surgery, Osaka City University Graduate School of Medicine, Osaka, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
37
|
Krischak GD, Augat P, Blakytny R, Claes L, Kinzl L, Beck A. The non-steroidal anti-inflammatory drug diclofenac reduces appearance of osteoblasts in bone defect healing in rats. Arch Orthop Trauma Surg 2007; 127:453-8. [PMID: 17245601 DOI: 10.1007/s00402-007-0288-9] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/16/2006] [Indexed: 02/09/2023]
Abstract
INTRODUCTION Non-steroidal anti-inflammatory drug (NSAID) is well known to significantly delay fracture healing. Results from in vitro studies implicate an impairment of osteoblast proliferation due to NSAIDs during the initial stages of healing. We studied whether diclofenac, a non-selective NSAID, also impairs appearance of osteoblasts in vivo during the early phase of healing (at 10 days). MATERIALS AND METHODS Two defects (Ø 1.1 mm) were drilled within distal femurs of 20 male Wistar rats. Ten rats received diclofenac continuously; the other obtained a placebo until sacrificing at 10 days. Osteoblast proliferation was assessed by cell counting using light microscopy, and bone mineral density (BMD) was measured using pQCT. RESULTS Osteoblast counts from the centre of bone defect were significantly reduced in the diclofenac group (median 73.5 +/- 8.4 cells/grid) compared to animals fed with placebo (median 171.5 +/- 13.9 cells/grid). BMD within the defect showed a significant reduction after diclofenac administration (median 111.5 +/- 9.3 mg/cm(3)) compared to the placebo group (median 177 +/- 45.4 mg/cm(3)). CONCLUSION The reduced appearance of osteoblasts in vivo implicates an inhibiting effect of diclofenac on osteoblasts at a very early level of bone healing. The inhibition of proliferation and migration of osteoblasts, or differentiation from progenitor cells, is implicated in the delay of fracture healing after NSAID application.
Collapse
Affiliation(s)
- G D Krischak
- Clinic for Traumatology, Hand, Plastic, and Reconstructive Surgery, Centre for Surgery, University of Ulm, Steinhoevelstr. 9, 89075 Ulm, Germany.
| | | | | | | | | | | |
Collapse
|
38
|
Niki Y, Takaishi H, Takito J, Miyamoto T, Kosaki N, Matsumoto H, Toyama Y, Tada N. Administration of Cyclooxygenase-2 Inhibitor Reduces Joint Inflammation but Exacerbates Osteopenia in IL-1α Transgenic Mice Due to GM-CSF Overproduction. THE JOURNAL OF IMMUNOLOGY 2007; 179:639-46. [PMID: 17579086 DOI: 10.4049/jimmunol.179.1.639] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
IL-1alpha transgenic (Tg) mice exhibit chronic inflammatory arthritis and subsequent osteopenia, with IL-1-induced GM-CSF playing an important role in the pathogenesis. This study analyzed the mechanisms underlying osteopenia in Tg mice, and the therapeutic effects of the cyclooxygenase-2 inhibitor celecoxib on such osteopenia. Inhibited osteoclast formation was observed in RANKL-treated bone marrow cell (BMC) cultures from Tg mice and coculture of Tg-derived BMCs and wild-type-derived primary osteoblasts (POBs). FACS analysis indicated that this inhibition was attributable to a decreased number of osteoclast precursors within Tg-derived BMCs. Moreover, in coculture of Tg-derived POBs and either Tg- or wild-type-derived BMCs, osteoclast formation was markedly inhibited because Tg-derived POBs produced abundant GM-CSF, known as a potent inhibitor of osteoclast differentiation. Histomorphometric analysis of Tg mice revealed that both bone formation and resorption were decreased, with bone formation decreased more prominently. Interestingly, administration of celecoxib resulted in further deterioration of osteopenia where bone formation was markedly suppressed, whereas bone resorption remained unchanged. These results were explained by our in vitro observation that celecoxib dose-dependently and dramatically decreased osteogenesis by Tg mouse-derived POBs in culture, whereas mRNA expressions of GM-CSF and M-CSF remained unchanged. Consequently, blockade of PGE(2) may exert positive effects on excessively enhanced bone resorption observed in inflammatory bone disease, whereas negative effects may occur mainly through reduced bone formation, when bone resorption is constitutively down-regulated as seen in Tg mice.
Collapse
MESH Headings
- Administration, Oral
- Animals
- Anti-Inflammatory Agents, Non-Steroidal/administration & dosage
- Arthritis, Experimental/enzymology
- Arthritis, Experimental/genetics
- Arthritis, Experimental/immunology
- Arthritis, Experimental/prevention & control
- Bone Diseases, Metabolic/enzymology
- Bone Diseases, Metabolic/genetics
- Bone Diseases, Metabolic/immunology
- Bone Diseases, Metabolic/metabolism
- Bone Resorption/enzymology
- Bone Resorption/genetics
- Bone Resorption/pathology
- Bone Resorption/prevention & control
- Celecoxib
- Cells, Cultured
- Coculture Techniques
- Cyclooxygenase 2 Inhibitors/administration & dosage
- Dinoprostone/antagonists & inhibitors
- Granulocyte-Macrophage Colony-Stimulating Factor/biosynthesis
- Granulocyte-Macrophage Colony-Stimulating Factor/genetics
- Interleukin-1alpha/genetics
- Mice
- Mice, Inbred C3H
- Mice, Transgenic
- Osteoclasts/enzymology
- Osteoclasts/pathology
- Osteogenesis/genetics
- Pyrazoles/administration & dosage
- Sulfonamides/administration & dosage
Collapse
Affiliation(s)
- Yasuo Niki
- Department of Orthopaedic Surgery, Keio University, Tokyo, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
39
|
Abstract
A major unmet need in the medical field today is the availability of suitable treatments for the ever-increasing incidence of osteoporosis and the treatment of bone deficit conditions. Although therapies exist which prevent bone loss, the options are extremely limited for patients once a substantial loss of skeletal bone mass has occurred. Patients who have reduced bone mass are predisposed to fractures and further morbidity. The FDA recently approved PTH (1-34) (Teriparatide) for the treatment of postmenopausal osteoporosis after both preclinical animal and clinical human studies indicated it induces bone formation. This is the only approved bone anabolic agent available but unfortunately it has limited use, it is relatively expensive and difficult to administer. Consequently, the discovery of low cost orally available bone anabolic agents is critical for the future treatment of bone loss conditions. The intricate process of bone formation is co-ordinated by the action of many different bone growth factors, some stored in bone matrix and others released into the bone microenvironment from surrounding cells. Although all these factors play important roles, the bone morphogenetic proteins (BMPs) clearly play a central role in both bone cartilage formation and repair. Recent research into the regulation of the BMP pathway has led to the discovery of a number of small molecular weight compounds as candidate bone anabolic agents. These agents may usher in a new wave of more innovative and versatile treatments for osteoporosis as well as orthopedic and dental indications.
Collapse
|
40
|
Shoji M, Tanabe N, Mitsui N, Tanaka H, Suzuki N, Takeichi O, Sugaya A, Maeno M. Lipopolysaccharide stimulates the production of prostaglandin E2 and the receptor Ep4 in osteoblasts. Life Sci 2006; 78:2012-8. [PMID: 16289620 DOI: 10.1016/j.lfs.2005.09.019] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2005] [Accepted: 09/02/2005] [Indexed: 11/18/2022]
Abstract
Previous studies have indicated that one of the causes of alveolar bone destruction with periodontitis is lipopolysaccharide (LPS) from the cell wall of gram-negative bacteria in plaque, and that prostaglandin E(2) (PGE(2)) is one of the bone resorption factors that stimulate osteoclast formation through an intercellular interaction between osteoblasts and osteoclast precursors. The present study was undertaken to determine the effect of LPS on cell growth, alkaline phosphatase (ALPase) activity, the production of PGE(2), and the expression of receptors by PGE(2), cyclooxygenase (COX)-1, and COX-2, using human osteosarcoma cell line Saos-2 as osteoblasts. The cells were cultured with 0, 1, or 10 microg mL(-1) of LPS for up to 14 days. The production of PGE(2) and the gene expression of COX-1, COX-2, and PGE(2) receptors, including Ep1, Ep2, Ep3, and Ep4, were determined using enzyme-linked immunosorbent assay (ELISA) and real-time reverse transcription-polymerase chain reaction (real-time RT-PCR), respectively. With the addition of LPS, cell growth and ALPase activity decreased by day 5 of the culture, while PGE(2) production increased in a dose-dependent manner throughout the entire 14-day culture period. LPS-reduced ALP activity and LPS-induced PGE(2) production returned to the control level by the addition simultaneously with indomethacin. The expression of COX-1, Ep1, Ep2, and Ep3 receptors decreased on day 14 of the culture, whereas the expression of COX-2 and Ep4 receptors increased significantly with the addition of LPS. These results suggest that LPS promotes PGE(2) production by increasing the expression of COX-2, and that LPS promotes the production of Ep4 receptors in osteoblasts. These results also indicate that LPS-induced PGE(2) may combine with osteoblast Ep4 receptors in autocrine or paracrine modes, and may promote the formation of osteoclasts.
Collapse
Affiliation(s)
- Maiko Shoji
- Department of Oral Health Sciences, Nihon University School of Dentistry, 1-8-13, Kanda Surugadai, Tokyo 101-8310, Japan
| | | | | | | | | | | | | | | |
Collapse
|
41
|
Smith BJ, Lerner MR, Bu SY, Lucas EA, Hanas JS, Lightfoot SA, Postier RG, Bronze MS, Brackett DJ. Systemic bone loss and induction of coronary vessel disease in a rat model of chronic inflammation. Bone 2006; 38:378-86. [PMID: 16256450 DOI: 10.1016/j.bone.2005.09.008] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/25/2005] [Revised: 09/08/2005] [Accepted: 09/14/2005] [Indexed: 12/12/2022]
Abstract
Clinically, osteopenia or low bone mass has been observed in a variety of chronic inflammatory diseases, and elevated proinflammatory mediators have implicated this process. The purpose of this study was to develop an in vivo model of bone loss induced by chronic systemic inflammation. Time-release pellets designed to deliver one of three doses of LPS: Low (3.3 microg/day), High (33.3 microg/day), or Placebo over 90 days, were implanted subcutaneously in 3-month-old male Sprague-Dawley rats (n = 8/group). Neutrophil counts, indicative of ongoing inflammation, were elevated (P < 0.05) in both LPS groups at 30 days post-implant and remained significantly elevated in the High dose throughout the 90-day study period. At the end of the study, bone loss occurred in the femur as indicated by decreased bone mineral density (BMD) in both LPS-treated groups, but vertebral BMD was reduced in the High dose animals only. Microcomputed tomography revealed that trabecular bone volume (BV/TV) of the proximal tibial metaphysis tended to be reduced in the High dose LPS group. Deleterious effects on trabecular number (TbN) and trabecular separation (TbSp) were observed in both LPS-treated groups, but only the High dose group reached statistical significance. These alterations in trabecular microarchitecture resulted in compromised biomechanical properties. No changes in cortical thickness, porosity, or area of the tibia midshaft were evident at either dose of LPS. Up-regulation of the proinflammatory mediators, cyclooxygenase (COX)-2, interleukin (IL)-1, and tumor necrosis factor (TNF)-alpha was demonstrated in the metaphyseal region where the deleterious effects of LPS were observed. In addition to these alterations in bone, trichrome staining indicated changes in the coronary arterioles, consistent with vascular disease. Utilization of a LPS time-release pellet appears to provide an in vivo model of chronic inflammation-induced bone loss and a potentially novel system to study concurrent development of osteopenia and vascular disease.
Collapse
Affiliation(s)
- B J Smith
- Department of Surgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73190, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Stein D, Lee Y, Schmid MJ, Killpack B, Genrich MA, Narayana N, Marx DB, Cullen DM, Reinhardt RA. Local simvastatin effects on mandibular bone growth and inflammation. J Periodontol 2006; 76:1861-70. [PMID: 16274305 PMCID: PMC1350642 DOI: 10.1902/jop.2005.76.11.1861] [Citation(s) in RCA: 133] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
BACKGROUND Simvastatin has been shown to increase bone growth when applied topically to murine bone; however, it causes considerable soft tissue inflammation at high doses (2.2 mg), making future clinical use problematic. This study evaluated the effect of lower simvastatin doses and cyclooxygenase (COX) synthase inhibitors on tissue inflammation and bone growth in rats and gene expression in mice. METHODS Adult female rats were untreated or treated with a single dose of 0.1, 0.5, 1.0, 1.5, or 2.2 mg simvastatin in methylcellulose gel in a polylactic acid membrane (SIM) on the lateral aspect of the mandible. The contralateral mandible side was implanted with methylcellulose gel/polylactic acid membrane alone (GEL), and five rats in each dose pairing were evaluated histomorphometrically after 3, 7, and 24 days. Subsequent rats were similarly treated with 0.5 mg simvastatin (optimal dose) and daily intraperitoneal injections of COX-2 inhibitor (NS-398; 1 mg/kg x 7 days; N = 16), general COX inhibitor (indomethacin; 1 mg/kg x 7 days; N = 16), or no inhibitor (N = 10) and evaluated histomorphometrically after 7 or 24 days by analysis of variance (ANOVA). Gene arrays were also used to evaluate osteogenic gene expression from 0.5 mg simvastatin in murine calvaria (N = 12). RESULTS There was a 45% increase in bone area with 0.5 mg simvastatin versus gel control (P <0.001; similar to the 2.2-mg dose), and clinical swelling was reduced compared to the high simvastatin dose (P <0.05). The 0.1-mg simvastatin dose failed to stimulate significant bone growth. NS-398 and indomethacin reduced inflammation and bone growth. Simvastatin significantly upregulated procollagen, fibronectin, and matrix metalloproteinase-13 genes. CONCLUSION Reducing the simvastatin dose from 2.2 to 0.5 mg reduced inflammation to a more clinically acceptable level without sacrificing bone-growth potential, but COX-associated inflammation appears to be necessary for in vivo bone growth.
Collapse
Affiliation(s)
- David Stein
- Department of Surgical Specialties, College of Dentistry, University of Nebraska Medical Center, Lincoln, NE 68583-0740, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Toyoda H, Terai H, Sasaoka R, Oda K, Takaoka K. Augmentation of bone morphogenetic protein-induced bone mass by local delivery of a prostaglandin E EP4 receptor agonist. Bone 2005; 37:555-62. [PMID: 16027058 DOI: 10.1016/j.bone.2005.04.042] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2004] [Revised: 04/09/2005] [Accepted: 04/29/2005] [Indexed: 01/26/2023]
Abstract
Recombinant human bone morphogenetic protein (rhBMP) is viewed as a therapeutic cytokine because of its ability to induce bone. However, the high doses of rhBMP required for bone induction in humans remain a major hurdle for the therapeutic application of this protein. The development of a methodology that would effectively overcome the weak responsiveness to human BMP is highly desired. In the present study, we investigate the ability of a prostaglandin E EP4 receptor selective agonist (EP4A) to augment the bone-inducing ability of BMP in a biodegradable delivery system. A block copolymer composed of poly-D,L-lactic acid with random insertion of p-dioxanone and polyethylene glycol (PLA-DX-PEG, polymer) was used as the delivery system. Polymer discs containing rhBMP-2 and EP4A were implanted into the left dorsal muscle pouch of mice to examine the dose-dependent effects of EP4A. Fifty mice were divided into 5 groups based on the contents of rhBMP and EP4 in the polymer (group 1; BMP 5 microg EP4A 0 microg, group 2; BMP 5 microg EP4 3 microg, group 3; BMP 5 microg EP4 30 microg, group 4; BMP 5 microg EP4 300 microg, group 5; BMP 0 microg EP4 30 microg, n=10 each). All implants were harvested, examined radiologically, and processed for histological analysis 3 weeks after surgery. On dual-energy X-ray absorptiometry (DXA) analysis, the bone mineral content (BMC) of the ossicles was 6.52+/-0.80 (mg), 9.36+/-1.89, 14.21+/-1.27, and 18.75+/-2.31 in groups 1, 2, 3, and 4 respectively. In terms of BMC, the values of groups 3 and 4 were significantly higher than those of group 1. The mean BMC value of group 4 was approximately 3 times higher than that of group 1. No significant difference in body weight was noted among the groups during the experimental period. In summary, the presence of a prostaglandin E EP4 receptor selective agonist in the carrier polymer enhanced the bone-inducing capacity of rhBMP-2 with no apparent systemic adverse effects.
Collapse
Affiliation(s)
- Hiromitsu Toyoda
- Department of Orthopaedic Surgery, Osaka City University Graduate School of Medicine, Osaka, 4-3 Asahi-machi, 1-chome, Abeno-ku, Osaka 545-8585, Japan
| | | | | | | | | |
Collapse
|
44
|
Hagino H, Kuraoka M, Kameyama Y, Okano T, Teshima R. Effect of a selective agonist for prostaglandin E receptor subtype EP4 (ONO-4819) on the cortical bone response to mechanical loading. Bone 2005; 36:444-53. [PMID: 15777678 DOI: 10.1016/j.bone.2004.12.013] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2004] [Revised: 11/06/2004] [Accepted: 12/15/2004] [Indexed: 11/26/2022]
Abstract
The influence of a selective agonist for prostaglandin E receptor subtype EP4 (ONO-4819) on the bone response to mechanical loading was evaluated. Six-month-old female Wistar rats were used and assigned to three groups (n = 12/group): Vehicle administration (EP4-V), low-dose ONO-4819 administration (EP4-L, 3 microg/kg BW), and high-dose ONO-4819 administration (EP4-H, 30 microg/kg BW). ONO-4819 was subcutaneously injected in the back twice a day for 3 weeks. Loads on the right tibia at 39.4 N for 36 cycles at 2 Hz were applied in vivo by 4-point bending every other day for 3 weeks. Whole-body bone mineral content showed a significant difference between EP4-V and EP4-H (P < 0.05). Bone mineral density (BMD) of the total and regional tibia (the region with maximal bending at the central diaphysis) was higher in EP4-H than EP4-V, showing a significant effect of loading (P < 0.001) and ONO-4819 (P < 0.05). BMD of the total femur was higher in EP4-H than EP4-V (P < 0.01) and that of the distal femur was higher in EP4-H than EP4-V (P < 0.001). Histomorphometry of the cortical bone showed that loading increased formation surface (FS/BS), mineral appositional rate (MAR), and bone formation rate (BFR/BS) significantly at the lateral periosteal surface (P < 0.001); however, the effect of ONO-4819 was not significant. At the medial periosteal surface, loading increased the three parameters (P < 0.001) and ONO-4819 increased FS/BS (P < 0.001) and MAR (P < 0.05) significantly. At the endocortical surface, the effects of both loading and ONO-4819 were significant on all three parameters (for loading; FS/BS P < 0.01, MAR P < 0.05, BFR/BS P < 0.03, for ONO-4819 all P < 0.001). It was concluded that ONO-4819 increased cortical bone formation in rats and there was an additive effect on the bone response to external loading by 4-point bending.
Collapse
Affiliation(s)
- H Hagino
- Rehabilitation Division, Tottori University Hospital, Yonago, Tottori 683-8504, Japan.
| | | | | | | | | |
Collapse
|