1
|
Kim JH, Kim K, Kim I, Seong S, Koh JT, Kim N. Stanniocalcin 1 and 1,25-dihydroxyvitamin D 3 cooperatively regulate bone mineralization by osteoblasts. Exp Mol Med 2024; 56:1991-2001. [PMID: 39218976 PMCID: PMC11447260 DOI: 10.1038/s12276-024-01302-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 06/06/2024] [Accepted: 06/17/2024] [Indexed: 09/04/2024] Open
Abstract
Stanniocalcin 1 (STC1) is a calcium- and phosphate-regulating hormone that is expressed in all tissues, including bone tissues, and is involved in calcium and phosphate homeostasis. Previously, STC1 expression was found to be increased by 1,25-dihydroxyvitamin D3 [1,25(OH)2D3] administration in renal proximal tubular cells. In this study, we investigated whether STC1 directly regulates osteoblast differentiation or reciprocally controls the effects of 1,25(OH)2D3 on osteoblasts to contribute to bone homeostasis. We found that STC1 inhibited osteoblast differentiation in vitro and bone morphogenetic protein 2 (BMP2)-induced ectopic bone formation in vivo. Moreover, 1,25(OH)2D3 increased STC1 expression through direct binding to the Stc1 promoter of the vitamin D receptor (VDR). STC1 activated the 1,25(OH)2D3-VDR signaling pathway through the upregulation of VDR expression mediated by the inhibition of Akt phosphorylation in osteoblasts. STC1 further increased the effects of 1,25(OH)2D3 on receptor activator of nuclear factor-κB ligand (RANKL) secretion and inhibited osteoblast differentiation by exhibiting a positive correlation with 1,25(OH)2D3. The long-bone phenotype of transgenic mice overexpressing STC1 specifically in osteoblasts was not significantly different from that of wild-type mice. However, compared with that in the wild-type mice, 1,25(OH)2D3 administration significantly decreased bone mass in the STC1 transgenic mice. Collectively, these results suggest that STC1 negatively regulates osteoblast differentiation and bone formation; however, the inhibitory effect of STC1 on osteoblasts is transient and can be reversed under normal conditions. Nevertheless, the synergistic effect of STC1 and 1,25(OH)2D3 through 1,25(OH)2D3 administration may reduce bone mass by inhibiting osteoblast differentiation.
Collapse
Affiliation(s)
- Jung Ha Kim
- Department of Pharmacology, Chonnam National University Medical School, Gwangju, 61469, Republic of Korea
| | - Kabsun Kim
- Department of Pharmacology, Chonnam National University Medical School, Gwangju, 61469, Republic of Korea
| | - Inyoung Kim
- Department of Pharmacology, Chonnam National University Medical School, Gwangju, 61469, Republic of Korea
- Hard-Tissue Biointerface Research Center, School of Dentistry, Chonnam National University, Gwangju, 61186, Republic of Korea
| | - Semun Seong
- Department of Pharmacology, Chonnam National University Medical School, Gwangju, 61469, Republic of Korea
- Hard-Tissue Biointerface Research Center, School of Dentistry, Chonnam National University, Gwangju, 61186, Republic of Korea
| | - Jeong-Tae Koh
- Hard-Tissue Biointerface Research Center, School of Dentistry, Chonnam National University, Gwangju, 61186, Republic of Korea
- Department of Pharmacology and Dental Therapeutics, School of Dentistry, Chonnam National University, Gwangju, 61186, Republic of Korea
| | - Nacksung Kim
- Department of Pharmacology, Chonnam National University Medical School, Gwangju, 61469, Republic of Korea.
- Hard-Tissue Biointerface Research Center, School of Dentistry, Chonnam National University, Gwangju, 61186, Republic of Korea.
| |
Collapse
|
2
|
Yamamoto T, Abe M, Hongo H, Maruoka H, Yoshino H, Haraguchi-Kitakamae M, Udagawa N, Li M, Amizuka N, Hasegawa T. Differential osteoblastic activity in primary metaphyseal trabecular and secondary trabeculae of c-fos deficient mice. J Oral Biosci 2023; 65:265-272. [PMID: 37595744 DOI: 10.1016/j.job.2023.08.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 08/02/2023] [Accepted: 08/10/2023] [Indexed: 08/20/2023]
Abstract
OBJECTIVES It has been highlighted that osteoblastic activities in remodeling-based bone formation are coupled with osteoclastic bone resorption while those in modeling-based bone formation are independent of osteoclasts. This study aimed to verify whether modeling-based bone formation can occur in the absence of osteoclasts. METHODS We performed histochemical analyses on the bone of eight-week-old male wild-type and c-fos-/- mice. Histochemical analyses were conducted on primary trabeculae near the chondro-osseous junction (COJ), sites of modeling-based bone formation, and secondary trabeculae, sites of remodeling-based bone formation, in the femora and tibiae of mice. RESULTS Alkaline phosphatase (ALP) immunoreactivity, a marker of osteoblastic lineages, was observed in the metaphyseal trabeculae of wild-type mice, while ALP was scattered throughout the femora of c-fos-/- mice. PHOSPHO1, an enzyme involved in matrix vesicle-mediated mineralization, was predominantly detected in primary trabeculae and also within short lines of osteoblasts in secondary trabeculae of wild-type mice. In contrast, femora of c-fos-/- mice showed several patches of PHOSPHO1 positivity in the primary trabeculae, but there were hardly any patches of PHOSPHO1 in secondary trabeculae. Calcein labeling was consistently observed in primary trabeculae close to the COJ in both wild-type and c-fos-/- mice; however, calcein labeling in the secondary trabeculae was only detected in wild-type mice. Transmission electron microscopic examination demonstrated abundant rough endoplasmic reticulum in the osteoblasts in secondary trabeculae of wild-type mice, but not in those of c-fos-/- mice. CONCLUSIONS Osteoblastic activities at the sites of modeling-based bone formation may be maintained in the absence of osteoclasts.
Collapse
Affiliation(s)
- Tomomaya Yamamoto
- Developmental Biology of Hard Tissue, Faculty of Dental Medicine, Hokkaido University, Sapporo, Japan; Northern Army Medical Unit, Camp Makomanai, Japan Ground Self-Defense Forces, Sapporo, Japan
| | - Miki Abe
- Developmental Biology of Hard Tissue, Faculty of Dental Medicine, Hokkaido University, Sapporo, Japan
| | - Hiromi Hongo
- Developmental Biology of Hard Tissue, Faculty of Dental Medicine, Hokkaido University, Sapporo, Japan
| | - Haruhi Maruoka
- Developmental Biology of Hard Tissue, Faculty of Dental Medicine, Hokkaido University, Sapporo, Japan
| | - Hirona Yoshino
- Developmental Biology of Hard Tissue, Faculty of Dental Medicine, Hokkaido University, Sapporo, Japan
| | - Mai Haraguchi-Kitakamae
- Developmental Biology of Hard Tissue, Faculty of Dental Medicine, Hokkaido University, Sapporo, Japan; Division of Craniofacial Development and Tissue Biology, Graduate School of Dentistry, Tohoku University, Sendai, Japan
| | - Nobuyuki Udagawa
- Department of Oral Biochemistry, Matsumoto Dental University, Shiojiri, Japan
| | - Minqi Li
- Center of Osteoporosis and Bone Mineral Research, Department of Bone Metabolism, School of Stomatology, Shandong University, Jinan, China
| | - Norio Amizuka
- Developmental Biology of Hard Tissue, Faculty of Dental Medicine, Hokkaido University, Sapporo, Japan
| | - Tomoka Hasegawa
- Developmental Biology of Hard Tissue, Faculty of Dental Medicine, Hokkaido University, Sapporo, Japan.
| |
Collapse
|
3
|
Tzvetkov J, Stephen LA, Dillon S, Millan JL, Roelofs AJ, De Bari C, Farquharson C, Larson T, Genever P. Spatial Lipidomic Profiling of Mouse Joint Tissue Demonstrates the Essential Role of PHOSPHO1 in Growth Plate Homeostasis. J Bone Miner Res 2023; 38:792-807. [PMID: 36824055 PMCID: PMC10946796 DOI: 10.1002/jbmr.4796] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 01/19/2023] [Accepted: 02/21/2023] [Indexed: 02/25/2023]
Abstract
Lipids play a crucial role in signaling and metabolism, regulating the development and maintenance of the skeleton. Membrane lipids have been hypothesized to act as intermediates upstream of orphan phosphatase 1 (PHOSPHO1), a major contributor to phosphate generation required for bone mineralization. Here, we spatially resolve the lipid atlas of the healthy mouse knee and demonstrate the effects of PHOSPHO1 ablation on the growth plate lipidome. Lipids spanning 17 subclasses were mapped across the knee joints of healthy juvenile and adult mice using matrix-assisted laser desorption ionization imaging mass spectrometry (MALDI-IMS), with annotation supported by shotgun lipidomics. Multivariate analysis identified 96 and 80 lipid ions with differential abundances across joint tissues in juvenile and adult mice, respectively. In both ages, marrow was enriched in phospholipid platelet activating factors (PAFs) and related metabolites, cortical bone had a low lipid content, whereas lysophospholipids were strikingly enriched in the growth plate, an active site of mineralization and PHOSPHO1 activity. Spatially-resolved profiling of PHOSPHO1-knockout (KO) mice across the resting, proliferating, and hypertrophic growth plate zones revealed 272, 306, and 296 significantly upregulated, and 155, 220, and 190 significantly downregulated features, respectively, relative to wild-type (WT) controls. Of note, phosphatidylcholine, lysophosphatidylcholine, sphingomyelin, lysophosphatidylethanolamine, and phosphatidylethanolamine derived lipid ions were upregulated in PHOSPHO1-KO versus WT. Our imaging pipeline has established a spatially-resolved lipid signature of joint tissues and has demonstrated that PHOSPHO1 ablation significantly alters the growth plate lipidome, highlighting an essential role of the PHOSPHO1-mediated membrane phospholipid metabolism in lipid and bone homeostasis. © 2023 The Authors. Journal of Bone and Mineral Research published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research (ASBMR).
Collapse
Affiliation(s)
- Jordan Tzvetkov
- York Biomedical Research Institute and Department of BiologyUniversity of YorkYorkUK
| | | | - Scott Dillon
- Wellcome‐Medical Research Council (MRC) Cambridge Stem Cell InstituteUniversity of CambridgeCambridgeUK
| | - Jose Luis Millan
- Sanford Burnham Prebys, Medical Discovery InstituteLa JollaCAUSA
| | - Anke J. Roelofs
- Centre for Arthritis and Musculoskeletal HealthUniversity of AberdeenAberdeenUK
| | - Cosimo De Bari
- Centre for Arthritis and Musculoskeletal HealthUniversity of AberdeenAberdeenUK
| | | | - Tony Larson
- York Biomedical Research Institute and Department of BiologyUniversity of YorkYorkUK
| | - Paul Genever
- York Biomedical Research Institute and Department of BiologyUniversity of YorkYorkUK
| |
Collapse
|
4
|
Sebinelli HG, Andrilli LHS, Favarin BZ, Cruz MAE, Bolean M, Fiore M, Chieffo C, Magne D, Magrini A, Ramos AP, Millán JL, Mebarek S, Buchet R, Bottini M, Ciancaglini P. Shedding Light on the Role of Na,K-ATPase as a Phosphatase during Matrix-Vesicle-Mediated Mineralization. Int J Mol Sci 2022; 23:ijms232315072. [PMID: 36499456 PMCID: PMC9739803 DOI: 10.3390/ijms232315072] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 11/26/2022] [Accepted: 11/29/2022] [Indexed: 12/03/2022] Open
Abstract
Matrix vesicles (MVs) contain the whole machinery necessary to initiate apatite formation in their lumen. We suspected that, in addition to tissue-nonspecific alkaline phosphatase (TNAP), Na,K,-ATPase (NKA) could be involved in supplying phopshate (Pi) in the early stages of MV-mediated mineralization. MVs were extracted from the growth plate cartilage of chicken embryos. Their average mean diameters were determined by Dynamic Light Scattering (DLS) (212 ± 19 nm) and by Atomic Force Microcopy (AFM) (180 ± 85 nm). The MVs had a specific activity for TNAP of 9.2 ± 4.6 U·mg-1 confirming that the MVs were mineralization competent. The ability to hydrolyze ATP was assayed by a colorimetric method and by 31P NMR with and without Levamisole and SBI-425 (two TNAP inhibitors), ouabain (an NKA inhibitor), and ARL-67156 (an NTPDase1, NTPDase3 and Ecto-nucleotide pyrophosphatase/phosphodiesterase 1 (NPP1) competitive inhibitor). The mineralization profile served to monitor the formation of precipitated calcium phosphate complexes, while IR spectroscopy allowed the identification of apatite. Proteoliposomes containing NKA with either dipalmitoylphosphatidylcholine (DPPC) or a mixture of 1:1 of DPPC and dipalmitoylphosphatidylethanolamine (DPPE) served to verify if the proteoliposomes were able to initiate mineral formation. Around 69-72% of the total ATP hydrolysis by MVs was inhibited by 5 mM Levamisole, which indicated that TNAP was the main enzyme hydrolyzing ATP. The addition of 0.1 mM of ARL-67156 inhibited 8-13.7% of the total ATP hydrolysis in MVs, suggesting that NTPDase1, NTPDase3, and/or NPP1 could also participate in ATP hydrolysis. Ouabain (3 mM) inhibited 3-8% of the total ATP hydrolysis by MVs, suggesting that NKA contributed only a small percentage of the total ATP hydrolysis. MVs induced mineralization via ATP hydrolysis that was significantly inhibited by Levamisole and also by cleaving TNAP from MVs, confirming that TNAP is the main enzyme hydrolyzing this substrate, while the addition of either ARL-6715 or ouabain had a lesser effect on mineralization. DPPC:DPPE (1:1)-NKA liposome in the presence of a nucleator (PS-CPLX) was more efficient in mineralizing compared with a DPPC-NKA liposome due to a better orientation of the NKA active site. Both types of proteoliposomes were able to induce apatite formation, as evidenced by the presence of the 1040 cm-1 band. Taken together, the findings indicated that the hydrolysis of ATP was dominated by TNAP and other phosphatases present in MVs, while only 3-8% of the total hydrolysis of ATP could be attributed to NKA. It was hypothesized that the loss of Na/K asymmetry in MVs could be caused by a complete depletion of ATP inside MVs, impairing the maintenance of symmetry by NKA. Our study carried out on NKA-liposomes confirmed that NKA could contribute to mineral formation inside MVs, which might complement the known action of PHOSPHO1 in the MV lumen.
Collapse
Affiliation(s)
- Heitor Gobbi Sebinelli
- Departamento de Química, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto da Universidade de São Paulo (FFCLRP-USP), Ribeirão Preto, São Paulo 14040-900, Brazil
| | - Luiz Henrique Silva Andrilli
- Departamento de Química, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto da Universidade de São Paulo (FFCLRP-USP), Ribeirão Preto, São Paulo 14040-900, Brazil
| | - Bruno Zoccaratto Favarin
- Departamento de Química, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto da Universidade de São Paulo (FFCLRP-USP), Ribeirão Preto, São Paulo 14040-900, Brazil
| | - Marcos Aantonio Eufrasio Cruz
- Departamento de Química, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto da Universidade de São Paulo (FFCLRP-USP), Ribeirão Preto, São Paulo 14040-900, Brazil
| | - Maytê Bolean
- Departamento de Química, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto da Universidade de São Paulo (FFCLRP-USP), Ribeirão Preto, São Paulo 14040-900, Brazil
| | - Michele Fiore
- University Lyon, Université. Claude Bernard Lyon 1, CNRS UMR 5246, ICBMS, F-69622 Lyon, France
| | - Carolina Chieffo
- University Lyon, Université. Claude Bernard Lyon 1, CNRS UMR 5246, ICBMS, F-69622 Lyon, France
| | - David Magne
- University Lyon, Université. Claude Bernard Lyon 1, CNRS UMR 5246, ICBMS, F-69622 Lyon, France
| | - Andrea Magrini
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, 00133 Rome, Italy
| | - Ana Paula Ramos
- Departamento de Química, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto da Universidade de São Paulo (FFCLRP-USP), Ribeirão Preto, São Paulo 14040-900, Brazil
| | | | - Saida Mebarek
- University Lyon, Université. Claude Bernard Lyon 1, CNRS UMR 5246, ICBMS, F-69622 Lyon, France
| | - Rene Buchet
- University Lyon, Université. Claude Bernard Lyon 1, CNRS UMR 5246, ICBMS, F-69622 Lyon, France
| | - Massimo Bottini
- Departamento de Química, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto da Universidade de São Paulo (FFCLRP-USP), Ribeirão Preto, São Paulo 14040-900, Brazil
- Department of Experimental Medicine, University of Rome Tor Vergata, 00133 Rome, Italy
- Correspondence: (M.B.); (P.C.)
| | - Pietro Ciancaglini
- Departamento de Química, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto da Universidade de São Paulo (FFCLRP-USP), Ribeirão Preto, São Paulo 14040-900, Brazil
- Department of Experimental Medicine, University of Rome Tor Vergata, 00133 Rome, Italy
- Correspondence: (M.B.); (P.C.)
| |
Collapse
|
5
|
Kefir peptides promote osteogenic differentiation to enhance bone fracture healing in rats. Life Sci 2022; 310:121090. [DOI: 10.1016/j.lfs.2022.121090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 10/04/2022] [Accepted: 10/12/2022] [Indexed: 11/09/2022]
|
6
|
Veschi EA, Bolean M, da Silva Andrilli LH, Sebinelli HG, Strzelecka-Kiliszek A, Bandorowicz-Pikula J, Pikula S, Granjon T, Mebarek S, Magne D, Millán JL, Ramos AP, Buchet R, Bottini M, Ciancaglini P. Mineralization Profile of Annexin A6-Harbouring Proteoliposomes: Shedding Light on the Role of Annexin A6 on Matrix Vesicle-Mediated Mineralization. Int J Mol Sci 2022; 23:8945. [PMID: 36012211 PMCID: PMC9409191 DOI: 10.3390/ijms23168945] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 08/03/2022] [Accepted: 08/09/2022] [Indexed: 11/16/2022] Open
Abstract
The biochemical machinery involved in matrix vesicles-mediated bone mineralization involves a specific set of lipids, enzymes, and proteins. Annexins, among their many functions, have been described as responsible for the formation and stabilization of the matrix vesicles' nucleational core. However, the specific role of each member of the annexin family, especially in the presence of type-I collagen, remains to be clarified. To address this issue, in vitro mineralization was carried out using AnxA6 (in solution or associated to the proteoliposomes) in the presence or in the absence of type-I collagen, incubated with either amorphous calcium phosphate (ACP) or a phosphatidylserine-calcium phosphate complex (PS-CPLX) as nucleators. Proteoliposomes were composed of 1,2-dipalmitoylphosphatidylcholine (DPPC), 1,2-dipalmitoylphosphatidylcholine: 1,2-dipalmitoylphosphatidylserine (DPPC:DPPS), and DPPC:Cholesterol:DPPS to mimic the outer and the inner leaflet of the matrix vesicles membrane as well as to investigate the effect of the membrane fluidity. Kinetic parameters of mineralization were calculated from time-dependent turbidity curves of free Annexin A6 (AnxA6) and AnxA6-containing proteoliposomes dispersed in synthetic cartilage lymph. The chemical composition of the minerals formed was investigated by Fourier transform infrared spectroscopy (FTIR). Free AnxA6 and AnxA6-proteoliposomes in the presence of ACP were not able to propagate mineralization; however, poorly crystalline calcium phosphates were formed in the presence of PS-CPLX, supporting the role of annexin-calcium-phosphatidylserine complex in the formation and stabilization of the matrix vesicles' nucleational core. We found that AnxA6 lacks nucleation propagation capacity when incorporated into liposomes in the presence of PS-CPLX and type-I collagen. This suggests that AnxA6 may interact either with phospholipids, forming a nucleational core, or with type-I collagen, albeit less efficiently, to induce the nucleation process.
Collapse
Affiliation(s)
- Ekeveliny Amabile Veschi
- Departamento de Química, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto da Universidade de São Paulo (FFCLRP-USP), Ribeirão Preto 14040-901, SP, Brazil
| | - Maytê Bolean
- Departamento de Química, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto da Universidade de São Paulo (FFCLRP-USP), Ribeirão Preto 14040-901, SP, Brazil
| | - Luiz Henrique da Silva Andrilli
- Departamento de Química, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto da Universidade de São Paulo (FFCLRP-USP), Ribeirão Preto 14040-901, SP, Brazil
| | - Heitor Gobbi Sebinelli
- Departamento de Química, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto da Universidade de São Paulo (FFCLRP-USP), Ribeirão Preto 14040-901, SP, Brazil
| | | | | | - Slawomir Pikula
- Nencki Institute of Experimental Biology, 3 Pasteur Street, 02-093 Warsaw, Poland
| | - Thierry Granjon
- University of Lyon, University Claude Bernard Lyon 1, CNRS UMR 5246, ICBMS, F-69622 Lyon, France
| | - Saida Mebarek
- University of Lyon, University Claude Bernard Lyon 1, CNRS UMR 5246, ICBMS, F-69622 Lyon, France
| | - David Magne
- University of Lyon, University Claude Bernard Lyon 1, CNRS UMR 5246, ICBMS, F-69622 Lyon, France
| | | | - Ana Paula Ramos
- Departamento de Química, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto da Universidade de São Paulo (FFCLRP-USP), Ribeirão Preto 14040-901, SP, Brazil
| | - Rene Buchet
- University of Lyon, University Claude Bernard Lyon 1, CNRS UMR 5246, ICBMS, F-69622 Lyon, France
| | - Massimo Bottini
- Departamento de Química, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto da Universidade de São Paulo (FFCLRP-USP), Ribeirão Preto 14040-901, SP, Brazil
- Department of Experimental Medicine, University of Rome Tor Vergata, 00133 Rome, Italy
| | - Pietro Ciancaglini
- Departamento de Química, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto da Universidade de São Paulo (FFCLRP-USP), Ribeirão Preto 14040-901, SP, Brazil
- Department of Experimental Medicine, University of Rome Tor Vergata, 00133 Rome, Italy
| |
Collapse
|
7
|
Staines KA, Myers K, Little K, Ralston SH, Farquharson C. Proton Pump Inhibitors Inhibit PHOSPHO1 Activity and Matrix Mineralisation In Vitro. Calcif Tissue Int 2021; 109:696-705. [PMID: 34213594 PMCID: PMC8531085 DOI: 10.1007/s00223-021-00882-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 06/19/2021] [Indexed: 01/17/2023]
Abstract
Proton pump inhibitors (PPIs) have been associated with an increased risk of fragility fractures in pharmaco-epidemiological studies. The mechanism is unclear, but it has been speculated that by neutralising gastric acid, they may reduce intestinal calcium absorption, causing secondary hyperparathyroidism and bone loss. Here we investigated that hypothesis that the skeletal effects of PPI might be mediated by inhibitory effects on the bone-specific phosphatase PHOSPHO1. We found that the all PPIs tested inhibited the activity of PHOSPHO1 with IC50 ranging between 0.73 µM for esomeprazole to 19.27 µM for pantoprazole. In contrast, these PPIs did not inhibit TNAP activity. We also found that mineralisation of bone matrix in primary osteoblast cultures was inhibited by several PPIs in a concentration dependent manner. In contrast, the histamine-2 receptor antagonists (H2RA) nizatidine, famotidine, cimetidine and ranitidine had no inhibitory effects on PHOSPHO1 activity. Our experiments show for the first time that PPIs inhibit PHOSPHO1 activity and matrix mineralisation in vitro revealing a potential mechanism by which these widely used drugs are associated with the risk of fractures.
Collapse
Affiliation(s)
- Katherine A Staines
- School of Pharmacy and Biomolecular Sciences, University of Brighton, Lewes Road, Brighton, BN2 4GJ, UK.
| | - Katherine Myers
- The Roslin Institute, The University of Edinburgh, Edinburgh, UK
| | - Kirsty Little
- The Roslin Institute, The University of Edinburgh, Edinburgh, UK
| | - Stuart H Ralston
- Centre for Genomic and Experimental Medicine, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, UK
| | | |
Collapse
|
8
|
Role of Metabolism in Bone Development and Homeostasis. Int J Mol Sci 2020; 21:ijms21238992. [PMID: 33256181 PMCID: PMC7729585 DOI: 10.3390/ijms21238992] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 11/22/2020] [Accepted: 11/25/2020] [Indexed: 02/07/2023] Open
Abstract
Carbohydrates, fats, and proteins are the underlying energy sources for animals and are catabolized through specific biochemical cascades involving numerous enzymes. The catabolites and metabolites in these metabolic pathways are crucial for many cellular functions; therefore, an imbalance and/or dysregulation of these pathways causes cellular dysfunction, resulting in various metabolic diseases. Bone, a highly mineralized organ that serves as a skeleton of the body, undergoes continuous active turnover, which is required for the maintenance of healthy bony components through the deposition and resorption of bone matrix and minerals. This highly coordinated event is regulated throughout life by bone cells such as osteoblasts, osteoclasts, and osteocytes, and requires synchronized activities from different metabolic pathways. Here, we aim to provide a comprehensive review of the cellular metabolism involved in bone development and homeostasis, as revealed by mouse genetic studies.
Collapse
|
9
|
Suchacki KJ, Morton NM, Vary C, Huesa C, Yadav MC, Thomas BJ, Turban S, Bunger L, Ball D, Barrios-Llerena ME, Guntur AR, Khavandgar Z, Cawthorn WP, Ferron M, Karsenty G, Murshed M, Rosen CJ, MacRae VE, Millán JL, Farquharson C. PHOSPHO1 is a skeletal regulator of insulin resistance and obesity. BMC Biol 2020; 18:149. [PMID: 33092598 PMCID: PMC7584094 DOI: 10.1186/s12915-020-00880-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Accepted: 09/25/2020] [Indexed: 01/13/2023] Open
Abstract
BACKGROUND The classical functions of the skeleton encompass locomotion, protection and mineral homeostasis. However, cell-specific gene deletions in the mouse and human genetic studies have identified the skeleton as a key endocrine regulator of metabolism. The bone-specific phosphatase, Phosphatase, Orphan 1 (PHOSPHO1), which is indispensable for bone mineralisation, has been recently implicated in the regulation of energy metabolism in humans, but its role in systemic metabolism remains unclear. Here, we probe the mechanism underlying metabolic regulation by analysing Phospho1 mutant mice. RESULTS Phospho1-/- mice exhibited improved basal glucose homeostasis and resisted high-fat-diet-induced weight gain and diabetes. The metabolic protection in Phospho1-/- mice was manifested in the absence of altered levels of osteocalcin. Osteoblasts isolated from Phospho1-/- mice were enriched for genes associated with energy metabolism and diabetes; Phospho1 both directly and indirectly interacted with genes associated with glucose transport and insulin receptor signalling. Canonical thermogenesis via brown adipose tissue did not underlie the metabolic protection observed in adult Phospho1-/- mice. However, the decreased serum choline levels in Phospho1-/- mice were normalised by feeding a 2% choline rich diet resulting in a normalisation in insulin sensitivity and fat mass. CONCLUSION We show that mice lacking the bone mineralisation enzyme PHOSPHO1 exhibit improved basal glucose homeostasis and resist high-fat-diet-induced weight gain and diabetes. This study identifies PHOSPHO1 as a potential bone-derived therapeutic target for the treatment of obesity and diabetes.
Collapse
Affiliation(s)
- Karla J Suchacki
- Roslin Institute, R(D)SVS, University of Edinburgh, Edinburgh, Scotland, UK. .,Centre for Cardiovascular Science, The Queen's Medical Research Institute, University of Edinburgh, 47 Little France Crescent, Edinburgh, EH16 4TJ, Scotland, UK.
| | - Nicholas M Morton
- Centre for Cardiovascular Science, The Queen's Medical Research Institute, University of Edinburgh, 47 Little France Crescent, Edinburgh, EH16 4TJ, Scotland, UK
| | - Calvin Vary
- Center for Molecular Medicine, Maine Medical Center Research Institute, Scarborough, ME, USA
| | - Carmen Huesa
- Roslin Institute, R(D)SVS, University of Edinburgh, Edinburgh, Scotland, UK.,MRC Centre for Reproductive Health, University of Edinburgh, Edinburgh, Scotland, UK
| | - Manisha C Yadav
- Sanford Burnham Prebys Medical Discovery Institute, La Jolla, USA
| | - Benjamin J Thomas
- Centre for Cardiovascular Science, The Queen's Medical Research Institute, University of Edinburgh, 47 Little France Crescent, Edinburgh, EH16 4TJ, Scotland, UK
| | - Sophie Turban
- Centre for Cardiovascular Science, The Queen's Medical Research Institute, University of Edinburgh, 47 Little France Crescent, Edinburgh, EH16 4TJ, Scotland, UK
| | - Lutz Bunger
- Scottish Rural College, Edinburgh, Scotland, UK
| | - Derek Ball
- Medical Sciences and Nutrition, School of Medicine, University of Aberdeen, Aberdeen, Scotland, UK
| | | | - Anyonya R Guntur
- Center for Molecular Medicine, Maine Medical Center Research Institute, Scarborough, ME, USA
| | - Zohreh Khavandgar
- Department of Medicine and Faculty of Dentistry, McGill University, Montreal, Canada
| | - William P Cawthorn
- Centre for Cardiovascular Science, The Queen's Medical Research Institute, University of Edinburgh, 47 Little France Crescent, Edinburgh, EH16 4TJ, Scotland, UK
| | - Mathieu Ferron
- Molecular Physiology Research Unit, Institut de recherches cliniques de Montréal, Montreal, Canada
| | - Gérard Karsenty
- Department of Genetics and Development, Columbia University Medical Center, New York, USA
| | - Monzur Murshed
- Department of Medicine and Faculty of Dentistry, McGill University, Montreal, Canada
| | - Clifford J Rosen
- Center for Molecular Medicine, Maine Medical Center Research Institute, Scarborough, ME, USA
| | - Vicky E MacRae
- Roslin Institute, R(D)SVS, University of Edinburgh, Edinburgh, Scotland, UK
| | - Jose Luis Millán
- Sanford Burnham Prebys Medical Discovery Institute, La Jolla, USA
| | - Colin Farquharson
- Roslin Institute, R(D)SVS, University of Edinburgh, Edinburgh, Scotland, UK
| |
Collapse
|
10
|
Calcinosis in Systemic Sclerosis: Updates in Pathophysiology, Evaluation, and Treatment. Curr Rheumatol Rep 2020; 22:73. [DOI: 10.1007/s11926-020-00951-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
11
|
Phosphocholine accumulation and PHOSPHO1 depletion promote adipose tissue thermogenesis. Proc Natl Acad Sci U S A 2020; 117:15055-15065. [PMID: 32554489 DOI: 10.1073/pnas.1916550117] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Phosphocholine phosphatase-1 (PHOSPHO1) is a phosphocholine phosphatase that catalyzes the hydrolysis of phosphocholine (PC) to choline. Here we demonstrate that the PHOSPHO1 transcript is highly enriched in mature brown adipose tissue (BAT) and is further induced by cold and isoproterenol treatments of BAT and primary brown adipocytes. In defining the functional relevance of PHOPSPHO1 in BAT thermogenesis and energy metabolism, we show that PHOSPHO1 knockout mice are cold-tolerant, with higher expression of thermogenic genes in BAT, and are protected from high-fat diet-induced obesity and development of insulin resistance. Treatment of mice with the PHOSPHO1 substrate phosphocholine is sufficient to induce cold tolerance, thermogenic gene expression, and allied metabolic benefits. Our results reveal a role of PHOSPHO1 as a negative regulator of BAT thermogenesis, and inhibition of PHOSPHO1 or enhancement of phosphocholine represent innovative approaches to manage the metabolic syndrome.
Collapse
|
12
|
Sharma A, Goring A, Staines KA, Emery RJ, Pitsillides AA, Oreffo RO, Mahajan S, Clarkin CE. Raman spectroscopy links differentiating osteoblast matrix signatures to pro-angiogenic potential. Matrix Biol Plus 2020; 5:100018. [PMID: 33543015 PMCID: PMC7852201 DOI: 10.1016/j.mbplus.2019.100018] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Revised: 08/21/2019] [Accepted: 10/09/2019] [Indexed: 01/25/2023] Open
Abstract
Mineralization of bone is achieved by the sequential maturation of the immature amorphous calcium phase to mature hydroxyapatite (HA) and is central in the process of bone development and repair. To study normal and dysregulated mineralization in vitro, substrates are often coated with poly-l-lysine (PLL) which facilitates cell attachment. This study has used Raman spectroscopy to investigate the effect of PLL coating on osteoblast (OB) matrix composition during differentiation, with a focus on collagen specific proline and hydroxyproline and precursors of HA. Deconvolution analysis of murine derived long bone OB Raman spectra revealed collagen species were 4.01-fold higher in OBs grown on PLL. Further, an increase of 1.91-fold in immature mineral species (amorphous calcium phosphate) was coupled with a 9.32-fold reduction in mature mineral species (carbonated apatite) on PLL versus controls. These unique low mineral signatures identified in OBs were linked with reduced alkaline phosphatase enzymatic activity, reduced Alizarin Red staining and altered osteogenic gene expression. The promotion of immature mineral species and restriction of mature mineral species of OB grown on PLL were linked to increased cell viability and pro-angiogenic vascular endothelial growth factor (VEGF) production. These results demonstrate the utility of Raman spectroscopy to link distinct matrix signatures with OB maturation and VEGF release. Importantly, Raman spectroscopy could provide a label-free approach to clinically assess the angiogenic potential of bone during fracture repair or degenerative bone loss.
Collapse
Key Words
- ACP, amorphous calcium phosphate
- ALP, tissue non-specific alkaline phosphatase
- CAP, carbonated apatite
- CCEC, collagenase-collagenase-EDTA-collagenase
- ECM, extracellular matrix
- HA, hydroxyapatite
- HBSS, Hank's balanced salt solution
- MV, matrix vesicles
- OB, osteoblast
- OCP, octacalcium phosphate
- Osteoblast mineralization
- PCA, principle component analysis
- PLL, poly-l-lysine
- Poly-l-lysine
- RT-qPCR, reverse transcription-quantiative PCR
- Raman spectroscopy
- VEGF
- VEGF, vascular endothelial growth factor
Collapse
Affiliation(s)
- Aikta Sharma
- School of Biological Sciences, Highfield Campus, University of Southampton, Southampton, SO17 1BJ, United Kingdom of Great Britain and Northern Ireland
| | - Alice Goring
- School of Biological Sciences, Highfield Campus, University of Southampton, Southampton, SO17 1BJ, United Kingdom of Great Britain and Northern Ireland
| | - Katherine A. Staines
- School of Applied Sciences, Sighthill Campus, Edinburgh Napier University, Edinburgh, EH11 4BN, United Kingdom of Great Britain and Northern Ireland
| | - Roger J.H. Emery
- Department of Surgery and Cancer, Faculty of Medicine, St Mary's Campus, Imperial College London, London, W2 1PG, United Kingdom of Great Britain and Northern Ireland
| | - Andrew A. Pitsillides
- Department of Comparative Biomedical Sciences, Royal Veterinary College, London, NW1 0TU, United Kingdom of Great Britain and Northern Ireland
| | - Richard O.C. Oreffo
- Centre for Human Development, Stem Cell and Regeneration, Institute of Developmental Sciences, Faculty of Medicine, University of Southampton, Southampton General Hospital, Southampton, SO16 6YD, United Kingdom of Great Britain and Northern Ireland
| | - Sumeet Mahajan
- School of Chemistry and Institute for Life Sciences, Highfield Campus, University of Southampton, Southampton, SO17 1BJ, United Kingdom of Great Britain and Northern Ireland
| | - Claire E. Clarkin
- School of Biological Sciences, Highfield Campus, University of Southampton, Southampton, SO17 1BJ, United Kingdom of Great Britain and Northern Ireland
| |
Collapse
|
13
|
Dillon S, Staines KA, Millán JL, Farquharson C. How To Build a Bone: PHOSPHO1, Biomineralization, and Beyond. JBMR Plus 2019; 3:e10202. [PMID: 31372594 PMCID: PMC6659447 DOI: 10.1002/jbm4.10202] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Revised: 04/15/2019] [Accepted: 05/05/2019] [Indexed: 12/11/2022] Open
Abstract
Since its characterization two decades ago, the phosphatase PHOSPHO1 has been the subject of an increasing focus of research. This work has elucidated PHOSPHO1's central role in the biomineralization of bone and other hard tissues, but has also implicated the enzyme in other biological processes in health and disease. During mineralization PHOSPHO1 liberates inorganic phosphate (Pi) to be incorporated into the mineral phase through hydrolysis of its substrates phosphocholine (PCho) and phosphoethanolamine (PEA). Localization of PHOSPHO1 within matrix vesicles allows accumulation of Pi within a protected environment where mineral crystals may nucleate and subsequently invade the organic collagenous scaffold. Here, we examine the evidence for this process, first discussing the discovery and characterization of PHOSPHO1, before considering experimental evidence for its canonical role in matrix vesicle–mediated biomineralization. We also contemplate roles for PHOSPHO1 in disorders of dysregulated mineralization such as vascular calcification, along with emerging evidence of its activity in other systems including choline synthesis and homeostasis, and energy metabolism. © 2019 The Authors. JBMR Plus published by Wiley Periodicals, Inc. on behalf of American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Scott Dillon
- The Roslin Institute and Royal (Dick) School of Veterinary Studies University of Edinburgh, Easter Bush Midlothian UK
| | | | - José Luis Millán
- Sanford Burnham Prebys Medical Discovery Institute, La Jolla CA USA
| | - Colin Farquharson
- The Roslin Institute and Royal (Dick) School of Veterinary Studies University of Edinburgh, Easter Bush Midlothian UK
| |
Collapse
|
14
|
Recent Advances on Relationship Between Inorganic Phosphate and Pathologic Calcification: Is Calcification After Breast Augmentation with Fat Grafting Correlated with Locally Increased Concentration of Inorganic Phosphate? Aesthetic Plast Surg 2019; 43:243-252. [PMID: 30552471 DOI: 10.1007/s00266-018-1285-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Accepted: 11/24/2018] [Indexed: 12/29/2022]
Abstract
BACKGROUND Pathologic calcification has frequently occurred after breast augmentation with fat grafting as well as other conditions such as breast cancer, trauma, myocardial infarction, arteriosclerosis and even after reduction mammoplasty. Inorganic phosphate, correlated with fat metabolism, is an important factor that induces pathologic calcification such as vascular calcification. METHODS A literature search was conducted using PubMed with the keywords: calcification, inorganic phosphate, fat. Studies related to the process of pathologic calcification, correlation between inorganic phosphate and pathologic calcification, between inorganic phosphate and fat metabolism in pathologic calcification were collected. RESULTS Various mechanisms were referred to in pathologic calcification among which inorganic phosphate played an important role. Inorganic phosphate could be liberated, under the effect of various enzymes, in the process of fat metabolism. The authors hypothesized that a large-scale necrotizing zone, which could occur in fat grafting with large amounts per cannula, might provide a high-phosphate environment which might contribute to differentiation of surrounding cells such as stem cells or regenerated vessel cells into osteoblast-like cells that induce pathologic calcification. CONCLUSION Inorganic phosphate, which was correlated with fat metabolism, played a significant role in pathologic calcification. We firstly hypothesize that calcification after fat grafting may be related to locally increasing concentrations of phosphate in a necrotizing zone. Further research should be conducted to verify this hypothesis. LEVEL OF EVIDENCE V This journal requires that authors assign a level of evidence to each article. For a full description of these Evidence-Based Medicine ratings, please refer to the Table of Contents or the online Instructions to Authors www.springer.com/00266 .
Collapse
|
15
|
Boere J, Malda J, van de Lest CHA, van Weeren PR, Wauben MHM. Extracellular Vesicles in Joint Disease and Therapy. Front Immunol 2018; 9:2575. [PMID: 30483255 PMCID: PMC6240615 DOI: 10.3389/fimmu.2018.02575] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Accepted: 10/18/2018] [Indexed: 01/08/2023] Open
Abstract
The use of extracellular vesicles (EVs) as a potential therapy is currently explored for different disease areas. When it comes to the treatment of joint diseases this approach is still in its infancy. As in joint diseases both inflammation and the associated articular tissue destruction are important factors, both the immune-suppressive and the regenerative properties of EVs are potentially advantageous characteristics for future therapy. There is, however, only limited knowledge on the basic features, such as numerical profile and function, of EVs in joint articular tissues in general and their linking medium, the synovial fluid, in particular. Further insight is urgently needed in order to appreciate the full potential of EVs and to exploit these in EV-mediated therapies. Physiologic joint homeostasis is a prerequisite for proper functioning of joints and we postulate that EVs play a key role in the regulation of joint homeostasis and hence can have an important function in re-establishing disturbed joint homeostasis, and, in parallel, in the regeneration of articular tissues. In this mini-review EVs in the joint are explained from a historical perspective in both health and disease, including the potential niche for EVs in articular tissue regeneration. Furthermore, the translational potential of equine models for human joint biology is discussed. Finally, the use of MSC-derived EVs that is recently gaining ground is highlighted and recommendations are given for further EV research in this field.
Collapse
Affiliation(s)
- Janneke Boere
- Department of Equine Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, Netherlands.,Department of Biochemistry & Cell Biology, Faculty of Veterinary Medicine, Utrecht University, Utrecht, Netherlands.,Department of Orthopaedics, University Medical Center Utrecht, Utrecht, Netherlands
| | - Jos Malda
- Department of Equine Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, Netherlands.,Department of Orthopaedics, University Medical Center Utrecht, Utrecht, Netherlands
| | - Chris H A van de Lest
- Department of Equine Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, Netherlands.,Department of Biochemistry & Cell Biology, Faculty of Veterinary Medicine, Utrecht University, Utrecht, Netherlands
| | - P René van Weeren
- Department of Equine Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, Netherlands
| | - Marca H M Wauben
- Department of Biochemistry & Cell Biology, Faculty of Veterinary Medicine, Utrecht University, Utrecht, Netherlands
| |
Collapse
|
16
|
Morcos MW, Al-Jallad H, Li J, Farquharson C, Millán JL, Hamdy RC, Murshed M. PHOSPHO1 is essential for normal bone fracture healing: An Animal Study. Bone Joint Res 2018; 7:397-405. [PMID: 30034793 PMCID: PMC6035360 DOI: 10.1302/2046-3758.76.bjr-2017-0140.r2] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
OBJECTIVES Bone fracture healing is regulated by a series of complex physicochemical and biochemical processes. One of these processes is bone mineralization, which is vital for normal bone development. Phosphatase, orphan 1 (PHOSPHO1), a skeletal tissue-specific phosphatase, has been shown to be involved in the mineralization of the extracellular matrix and to maintain the structural integrity of bone. In this study, we examined how PHOSPHO1 deficiency might affect the healing and quality of fracture callus in mice. METHODS Tibial fractures were created and then stabilized in control wild-type (WT) and Phospho1-/- mice (n = 16 for each group; mixed gender, each group carrying equal number of male and female mice) at eight weeks of age. Fractures were allowed to heal for four weeks and then the mice were euthanized and their tibias analyzed using radiographs, micro-CT (μCT), histology, histomorphometry and three-point bending tests. RESULTS The μCT and radiographic analyses revealed a mild reduction of bone volume in Phospho1-/- callus, although it was not statistically significant. An increase in trabecular number and a decrease in trabecular thickness and separation were observed in Phospho1-/- callus in comparison with the WT callus. Histomorphometric analyses showed that there was a marked increase of osteoid volume over bone volume in the Phospho1-/- callus. The three-point bending test showed that Phospho1-/- fractured bone had more of an elastic characteristic than the WT bone. CONCLUSION Our work suggests that PHOSPHO1 plays an integral role during bone fracture repair and may be a therapeutic target to improve the fracture healing process.Cite this article: M. W. Morcos, H. Al-Jallad, J. Li, C. Farquharson, J. L. Millán, R. C. Hamdy, M. Murshed. PHOSPHO1 is essential for normal bone fracture healing: An Animal Study. Bone Joint Res 2018;7:397-405. DOI: 10.1302/2046-3758.76.BJR-2017-0140.R2.
Collapse
Affiliation(s)
- M. W. Morcos
- Division of Paediatric Orthopaedic Surgery, and Department of Medicine, Shriners Hospital for Children and McGill University, Montreal, Quebec, Canada
| | - H. Al-Jallad
- Division of Paediatric Orthopaedic Surgery, Shriners Hospital for Children, Montreal, Quebec, Canada
| | - J. Li
- Department of Medicine, McGill University, Montreal, Quebec, Canada
| | - C. Farquharson
- Personal Chair of Skeletal Biology, The Roslin Institute, University of Edinburgh, Midlothian, UK
| | - J. L. Millán
- Human Genetics Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California, USA
| | - R. C. Hamdy
- Division of Paediatric Orthopaedic Surgery, and Department of Medicine, Shriners Hospital for Children and McGill University, Montreal, Quebec, Canada
| | - M. Murshed
- Department of Medicine, and Faculty of Dentistry, Shriners Hospital for Children and McGill University, Montreal, Quebec H4A 0A9, Canada
| |
Collapse
|
17
|
Boyde A, Staines KA, Javaheri B, Millan JL, Pitsillides AA, Farquharson C. A distinctive patchy osteomalacia characterises Phospho1-deficient mice. J Anat 2018; 231:298-308. [PMID: 28737011 DOI: 10.1111/joa.12628] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/30/2017] [Indexed: 11/27/2022] Open
Abstract
The phosphatase PHOSPHO1 is involved in the initiation of biomineralisation. Bones in Phospho1 knockout (KO) mice show histological osteomalacia with frequent bowing of long bones and spontaneous fractures: they contain less mineral, with smaller mineral crystals. However, the consequences of Phospho1 ablation on the microscale structure of bone are not yet fully elucidated. Tibias and femurs obtained from wild-type and Phospho1 null (KO) mice (25-32 weeks old) were embedded in PMMA, cut and polished to produce near longitudinal sections. Block surfaces were studied using 20 kV backscattered-electron (BSE) imaging, and again after iodine staining to reveal non-mineralised matrix and cellular components. For 3D characterisation, we used X-ray micro-tomography. Bones opened with carbide milling tools to expose endosteal surfaces were macerated using an alkaline bacterial pronase enzyme detergent, 5% hydrogen peroxide and 7% sodium hypochlorite solutions to produce 3D surfaces for study with 3D BSE scanning electron microscopy (SEM). Extensive regions of both compact cortical and trabecular bone matrix in Phospho1 KO mice contained no significant mineral and/or showed arrested mineralisation fronts, characterised by a failure in the fusion of the calcospherite-like, separately mineralising, individual micro-volumes within bone. Osteoclastic resorption of the uncalcified matrix in Phospho1 KO mice was attenuated compared with surrounding normally mineralised bone. The extent and position of this aberrant biomineralisation varied considerably between animals, contralateral limbs and anatomical sites. The most frequent manifestation lay, however, in the nearly complete failure of mineralisation in the bone surrounding the numerous transverse blood vessel canals in the cortices. In conclusion, SEM disclosed defective mineralising fronts and extensive patchy osteomalacia, which has previously not been recognised. These data further confirm the role of this phosphatase in physiological skeletal mineralisation.
Collapse
Affiliation(s)
- Alan Boyde
- Dental Physical Sciences, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | | | - Behzad Javaheri
- Comparative Biomedical Sciences, Royal Veterinary College, London, UK
| | - Jose Luis Millan
- Sanford Children's Health Research Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| | | | - Colin Farquharson
- Roslin Institute and R(D)SVS, The University of Edinburgh, Midlothian, UK
| |
Collapse
|
18
|
Ripmeester EGJ, Timur UT, Caron MMJ, Welting TJM. Recent Insights into the Contribution of the Changing Hypertrophic Chondrocyte Phenotype in the Development and Progression of Osteoarthritis. Front Bioeng Biotechnol 2018; 6:18. [PMID: 29616218 PMCID: PMC5867295 DOI: 10.3389/fbioe.2018.00018] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Accepted: 02/08/2018] [Indexed: 12/31/2022] Open
Abstract
Osteoarthritis (OA) is an extremely prevalent age-related condition. The economic and societal burden due to the cost of symptomatic treatment, inability to work, joint replacement, and rehabilitation is huge and increasing. Currently, there are no effective medical therapies that delay or reverse the pathological manifestations of OA. Current treatment options are, without exception, focused on slowing down progression of the disease to postpone total joint replacement surgery for as long as possible and keeping the associated pain and joint immobility manageable. Alterations in the articular cartilage chondrocyte phenotype might be fundamental in the pathological mechanisms of OA development. In many ways, the changing chondrocyte phenotype in osteoarthritic cartilage resembles the process of endochondral ossification as seen, for instance, in developing growth plates. However, the relative contribution of endochondral ossification to the changing chondrocyte phenotype in the development and progression of OA remains poorly described. In this review, we will discuss the current knowledge regarding the cartilage endochondral phenotypic changes occurring during OA development and progression, as well as the molecular and environmental effectors driving these changes. Understanding how these molecular mechanisms determine the chondrocyte cell fate in OA will be essential in enabling cartilage regenerative approaches in future treatments of OA.
Collapse
Affiliation(s)
- Ellen G J Ripmeester
- Laboratory for Experimental Orthopedics, Department of Orthopedic Surgery, Maastricht University Medical Center, Maastricht, Netherlands
| | - Ufuk Tan Timur
- Laboratory for Experimental Orthopedics, Department of Orthopedic Surgery, Maastricht University Medical Center, Maastricht, Netherlands
| | - Marjolein M J Caron
- Laboratory for Experimental Orthopedics, Department of Orthopedic Surgery, Maastricht University Medical Center, Maastricht, Netherlands
| | - Tim J M Welting
- Laboratory for Experimental Orthopedics, Department of Orthopedic Surgery, Maastricht University Medical Center, Maastricht, Netherlands
| |
Collapse
|
19
|
|
20
|
Ultrastructure and biological function of matrix vesicles in bone mineralization. Histochem Cell Biol 2018; 149:289-304. [DOI: 10.1007/s00418-018-1646-0] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/30/2018] [Indexed: 10/18/2022]
|
21
|
Bakhshian Nik A, Hutcheson JD, Aikawa E. Extracellular Vesicles As Mediators of Cardiovascular Calcification. Front Cardiovasc Med 2017; 4:78. [PMID: 29322046 PMCID: PMC5732140 DOI: 10.3389/fcvm.2017.00078] [Citation(s) in RCA: 97] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Accepted: 11/23/2017] [Indexed: 01/02/2023] Open
Abstract
Involvement of cell-derived extracellular particles, coined as matrix vesicles (MVs), in biological bone formation was introduced by Bonucci and Anderson in mid-1960s. In 1983, Anderson et al. observed similar structures in atherosclerotic lesion calcification using electron microscopy. Recent studies employing new technologies and high- resolution microscopy have shown that although they exhibit characteristics similar to MVs, calcifying extracellular vesicles (EVs) in cardiovascular tissues are phenotypically distinct from their bone counterparts. EVs released from cells within cardiovascular tissues may contain either inhibitors of calcification in normal physiological conditions or promoters in pathological environments. Pathological conditions characterized by mineral imbalance (e.g., atherosclerosis, chronic kidney disease, diabetes) can cause smooth muscle cells, valvular interstitial cells, and macrophages to release calcifying EVs, which contain specific mineralization-promoting cargo. These EVs can arise from either direct budding of the cell plasma membrane or through the release of exosomes from multivesicular bodies. In contrast, MVs are germinated from specific sites on osteoblast, chondrocyte, or odontoblast membranes. Much like MVs, calcifying EVs in the fibrillar collagen extracellular matrix of cardiovascular tissues serve as calcification foci, but the mineral that forms appears different between the tissues. This review highlights recent studies on mechanisms of calcifying EV formation, release, and mineralization in cardiovascular calcification. Furthermore, we address the MV–EV relationship, and offer insight into therapeutic implications to consider for potential targets for each type of mineralization.
Collapse
Affiliation(s)
- Amirala Bakhshian Nik
- Department of Biomedical Engineering, Florida International University, Miami, FL, United States
| | - Joshua D Hutcheson
- Department of Biomedical Engineering, Florida International University, Miami, FL, United States
| | - Elena Aikawa
- Center for Interdisciplinary Cardiovascular Sciences, Brigham and Women's Hospital, Boston, MA, United States.,Cardiovascular Division, Department of Medicine, Center for Excellence in Vascular Biology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States
| |
Collapse
|
22
|
Zhang D, Wu X, Chen J, Lin K. The development of collagen based composite scaffolds for bone regeneration. Bioact Mater 2017; 3:129-138. [PMID: 29744450 PMCID: PMC5935759 DOI: 10.1016/j.bioactmat.2017.08.004] [Citation(s) in RCA: 225] [Impact Index Per Article: 32.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2017] [Revised: 08/28/2017] [Accepted: 08/29/2017] [Indexed: 01/06/2023] Open
Abstract
Bone is consisted of bone matrix, cells and bioactive factors, and bone matrix is the combination of inorganic minerals and organic polymers. Type I collagen fibril made of five triple-helical collagen chains is the main organic polymer in bone matrix. It plays an important role in the bone formation and remodeling process. Moreover, collagen is one of the most commonly used scaffold materials for bone tissue engineering due to its excellent biocompatibility and biodegradability. However, the low mechanical strength and osteoinductivity of collagen limit its wider applications in bone regeneration field. By incorporating different biomaterials, the properties such as porosity, structural stability, osteoinductivity, osteogenicity of collagen matrixes can be largely improved. This review summarizes and categorizes different kinds of biomaterials including bioceramic, carbon and polymer materials used as components to fabricate collagen based composite scaffolds for bone regeneration. Moreover, the possible directions of future research and development in this field are also proposed. Materials to incorporate collagen scaffolds for bone regeneration are summarized. Bioceramics, carbon and polymer materials can increase the mechanical properties and osteogenesis. The limitation of collagen based materials is analyzed and the prospects of future research are presented.
Collapse
Affiliation(s)
- Dawei Zhang
- School & Hospital of Stomatology, Tongji University, Shanghai Engineering Research Center of Tooth Restoration and Regeneration, Shanghai 200072, China
| | - Xiaowei Wu
- School & Hospital of Stomatology, Tongji University, Shanghai Engineering Research Center of Tooth Restoration and Regeneration, Shanghai 200072, China
| | - Jingdi Chen
- Institute of Biomedical and Pharmaceutical Technology, Fuzhou University, Fuzhou 350002, China
| | - Kaili Lin
- School & Hospital of Stomatology, Tongji University, Shanghai Engineering Research Center of Tooth Restoration and Regeneration, Shanghai 200072, China
| |
Collapse
|
23
|
van Driel M, van Leeuwen JPTM. Vitamin D endocrinology of bone mineralization. Mol Cell Endocrinol 2017; 453:46-51. [PMID: 28606868 DOI: 10.1016/j.mce.2017.06.008] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2017] [Revised: 06/08/2017] [Accepted: 06/08/2017] [Indexed: 12/19/2022]
Abstract
Bone is a dynamic tissue that is strongly influenced by endocrine factors to restore the balance between bone resorption and bone formation. Bone formation involves the mineralization of the extracellular matrix formed by osteoblasts. In this process the role of vitamin D (1α,25(OH)2D3) is both direct and indirect. The direct effects are enabled via the Vitamin D Receptor (VDR); the outcome is dependent on the presence of other factors as well as origin of the osteoblasts, treatment procedures and species differences. Vitamin D stimulates mineralization of human osteoblasts but is often found inhibitory for mineralization of murine osteoblasts. In this review we will overview the current knowledge of the role of the vitamin D endocrine system in controlling the mineralization process in bone.
Collapse
Affiliation(s)
- Marjolein van Driel
- Department of Internal Medicine, Erasmus MC, Wytemaweg 80, 3015 CN Rotterdam, The Netherlands.
| | | |
Collapse
|
24
|
Stewart AJ, Leong DTK, Farquharson C. PLA 2 and ENPP6 may act in concert to generate phosphocholine from the matrix vesicle membrane during skeletal mineralization. FASEB J 2017; 32:20-25. [PMID: 28864658 DOI: 10.1096/fj.201700521r] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2017] [Accepted: 08/21/2017] [Indexed: 01/08/2023]
Abstract
Mineralization is a key process in the formation of bone and cartilage in vertebrates, involving the deposition of calcium- and phosphate-containing hydroxyapatite (HA) mineral within a collagenous matrix. Inorganic phosphate (Pi) accumulation within matrix vesicles (MVs) is a fundamental stage in the precipitation of HA, with PHOSPHO1 being identified as the principal enzyme acting to produce Pi PHOSPHO1 is a dual-specific phosphocholine/phosphoethanolamine phosphatase enriched in mineralizing cells and within MVs. However, the source and mechanism by which PHOSPHO1 substrates are formed before mineralization have not been determined. Here, we propose that 2 enzymes-phospholipase A2 (PLA2) and ectonucleotide pyrophophatase/phosphodiesterase 6 (ENPP6)-act in sequence upon phosphatidylcholine found in MV membranes to produce phosphocholine, which PHOSPHO1 can hydrolyze to liberate Pi This hypothesis is supported by evidence that both enzymes are expressed in mineralizing cells and data showing that phosphatidylcholine is broken down in MVs during mineralization. Therefore, PLA2 and ENPP6 activities may represent a key step in the mineralization process. Further functional studies are urgently required to examine their specific roles in the initiation of skeletal mineralization.-Stewart, A. J., Leong, D. T. K., Farquharson, C. PLA2 and ENPP6 may act in concert to generate phosphocholine from the matrix vesicle membrane during skeletal mineralization.
Collapse
Affiliation(s)
- Alan J Stewart
- School of Medicine, University of St Andrews, Fife, United Kingdom;
| | - Darren T K Leong
- School of Medicine, University of St Andrews, Fife, United Kingdom
| | - Colin Farquharson
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, The University of Edinburgh, Midlothian, United Kingdom
| |
Collapse
|
25
|
Smith SJ, Emery R, Pitsillides A, Clarkin CE, Mahajan S. Detection of early osteogenic commitment in primary cells using Raman spectroscopy. Analyst 2017; 142:1962-1973. [DOI: 10.1039/c6an02469f] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Raman spectroscopy as a simple and sensitive method to measure early osteogenic responses in primary cultures of bone cells is presented.
Collapse
Affiliation(s)
| | - Roger Emery
- Division of Surgery
- Reproductive Biology and Anaesthetics
- Imperial College London
- UK
| | | | | | - Sumeet Mahajan
- Department of Chemistry and the Institute for Life Sciences
- University of Southampton
- UK
| |
Collapse
|
26
|
Houston DA, Myers K, MacRae VE, Staines KA, Farquharson C. The Expression of PHOSPHO1, nSMase2 and TNAP is Coordinately Regulated by Continuous PTH Exposure in Mineralising Osteoblast Cultures. Calcif Tissue Int 2016; 99:510-524. [PMID: 27444010 PMCID: PMC5055575 DOI: 10.1007/s00223-016-0176-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2016] [Accepted: 07/12/2016] [Indexed: 11/25/2022]
Abstract
Sustained exposure to high levels of parathyroid hormone (PTH), as observed in hyperparathyroidism, is catabolic to bone. The increase in the RANKL/OPG ratio in response to continuous PTH, resulting in increased osteoclastogenesis, is well established. However, the effects of prolonged PTH exposure on key regulators of skeletal mineralisation have yet to be investigated. This study sought to examine the temporal expression of PHOSPHO1, TNAP and nSMase2 in mineralising osteoblast-like cell cultures and to investigate the effects of continuous PTH exposure on the expression of these enzymes in vitro. PHOSPHO1, nSMase2 and TNAP expression in cultured MC3T3-C14 cells significantly increased from day 0 to day 10. PTH induced a rapid downregulation of Phospho1 and Smpd3 gene expression in MC3T3-C14 cells and cultured hemi-calvariae. Alpl was differentially regulated by PTH, displaying upregulation in cultured MC3T3-C14 cells and downregulation in hemi-calvariae. PTH was also able to abolish the stimulatory effects of bone morphogenic protein 2 (BMP-2) on Smpd3 and Phospho1 expression. The effects of PTH on Phospho1 expression were mimicked with the cAMP agonist forskolin and blocked by the PKA inhibitor PKI (5-24), highlighting a role for the cAMP/PKA pathway in this regulation. The potent down-regulation of Phospho1 and Smpd3 in osteoblasts in response to continuous PTH may provide a novel explanation for the catabolic effects on the skeleton of such an exposure. Furthermore, our findings support the hypothesis that PHOSPHO1, nSMase2 and TNAP function cooperatively in the initiation of skeletal mineralisation.
Collapse
Affiliation(s)
- D A Houston
- The Roslin Institute and R(D)SVS, University of Edinburgh, Easter Bush, Midlothian, EH25 9RG, Scotland, UK.
| | - K Myers
- The Roslin Institute and R(D)SVS, University of Edinburgh, Easter Bush, Midlothian, EH25 9RG, Scotland, UK
| | - V E MacRae
- The Roslin Institute and R(D)SVS, University of Edinburgh, Easter Bush, Midlothian, EH25 9RG, Scotland, UK
| | - K A Staines
- The Roslin Institute and R(D)SVS, University of Edinburgh, Easter Bush, Midlothian, EH25 9RG, Scotland, UK
| | - C Farquharson
- The Roslin Institute and R(D)SVS, University of Edinburgh, Easter Bush, Midlothian, EH25 9RG, Scotland, UK
| |
Collapse
|
27
|
Fujino Y, Minamizaki T, Yoshioka H, Okada M, Yoshiko Y. Imaging and mapping of mouse bone using MALDI-imaging mass spectrometry. Bone Rep 2016; 5:280-285. [PMID: 28580397 PMCID: PMC5440778 DOI: 10.1016/j.bonr.2016.09.004] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Revised: 09/23/2016] [Accepted: 09/28/2016] [Indexed: 12/14/2022] Open
Abstract
Matrix-assisted laser desorption/ionization-imaging mass spectrometry (MALDI-IMS) is an advanced method used globally to analyze the distribution of biomolecules on tissue cryosections without any probes. In bones, however, hydroxyapatite crystals make it difficult to determine the distribution of biomolecules using MALDI-IMS. Additionally, there is limited information regarding the use of this method to analyze bone tissues. To determine whether MALDI-IMS analysis of bone tissues can facilitate comprehensive mapping of biomolecules in mouse bone, we first dissected femurs and tibiae from 8-week-old male mice and characterized the quality of multiple fixation and decalcification methods for preparation of the samples. Cryosections were mounted on indium tin oxide-coated glass slides, dried, and then a matrix solution was sprayed on the tissue surface. Images were acquired using an iMScope at a mass-to-charge range of 100-1000. Hematoxylin-eosin, Alcian blue, Azan, and periodic acid-Schiff staining of adjacent sections was used to evaluate histological and histochemical features. Among the various fixation and decalcification conditions, sections from trichloroacetic acid-treated samples were most suitable to examine both histology and comprehensive MS images. However, histotypic MS signals were detected in all sections. In addition to the MS images, phosphocholine was identified as a candidate metabolite. These results indicate successful detection of biomolecules in bone using MALDI-IMS. Although analytical procedures and compositional adjustment regarding the performance of the device still require further development, IMS appears to be a powerful tool to determine the distribution of biomolecules in bone tissues.
Collapse
Affiliation(s)
- Yoko Fujino
- Department of Special Care Dentistry, Hiroshima University Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Tomoko Minamizaki
- Department of Calcified Tissue Biology, Hiroshima University Institute of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Hirotaka Yoshioka
- Department of Calcified Tissue Biology, Hiroshima University Institute of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Mitsugi Okada
- Special Care Dentistry, Hiroshima University Hospital, Hiroshima, Japan
| | - Yuji Yoshiko
- Department of Calcified Tissue Biology, Hiroshima University Institute of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
- Corresponding author at: Department of Calcified Tissue Biology, Hiroshima University Institute of Biomedical & Health Sciences, 1-2-3, Kasumi, Minami-ku, Hiroshima 734-8553, Japan.Department of Calcified Tissue BiologyHiroshima University Institute of Biomedical & Health Sciences1-2-3, Kasumi, Minami-kuHiroshima734-8553Japan
| |
Collapse
|
28
|
Loewen TN, Carriere B, Reist JD, Halden NM, Anderson WG. Linking physiology and biomineralization processes to ecological inferences on the life history of fishes. Comp Biochem Physiol A Mol Integr Physiol 2016; 202:123-140. [PMID: 27328377 DOI: 10.1016/j.cbpa.2016.06.017] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2016] [Revised: 06/10/2016] [Accepted: 06/14/2016] [Indexed: 02/07/2023]
Abstract
Biomineral chemistry is frequently used to infer life history events and habitat use in fishes; however, significant gaps remain in our understanding of the underlying mechanisms. Here we have taken a multidisciplinary approach to review the current understanding of element incorporation into biomineralized structures in fishes. Biominerals are primarily composed of calcium-based derivatives such as calcium carbonate found in otoliths and calcium phosphates found in scales, fins and bones. By focusing on non-essential life elements (strontium and barium) and essential life elements (calcium, zinc and magnesium), we attempt to connect several fields of study to synergise how physiology may influence biomineralization and subsequent inference of life history. Data provided in this review indicate that the presence of non-essential elements in biominerals of fish is driven primarily by hypo- and hyper-calcemic environmental conditions. The uptake kinetics between environmental calcium and its competing mimics define what is ultimately incorporated in the biomineral structure. Conversely, circannual hormonally driven variations likely influence essential life elements like zinc that are known to associate with enzyme function. Environmental temperature and pH as well as uptake kinetics for strontium and barium isotopes demonstrate the role of mass fractionation in isotope selection for uptake into fish bony structures. In consideration of calcium mobilisation, the action of osteoclast-like cells on calcium phosphates of scales, fins and bones likely plays a role in fractionation along with transport kinetics. Additional investigations into calcium mobilisation are warranted to understand differing views of strontium, and barium isotope fractionation between calcium phosphates and calcium carbonate structures in fishes.
Collapse
Affiliation(s)
- T N Loewen
- Interdisciplinary Studies (Geological Sciences), University of Manitoba, Winnipeg, MB, Canada; Freshwater Institute, Fisheries & Oceans, Winnipeg, MB, Canada.
| | - B Carriere
- Biological Sciences, University of Manitoba, Winnipeg, MB, Canada
| | - J D Reist
- Freshwater Institute, Fisheries & Oceans, Winnipeg, MB, Canada
| | - N M Halden
- Geological Sciences, University of Manitoba, Winnipeg, MB, Canada
| | - W G Anderson
- Biological Sciences, University of Manitoba, Winnipeg, MB, Canada
| |
Collapse
|
29
|
Sharma T, Radosevich JA, Pachori G, Mandal CC. A Molecular View of Pathological Microcalcification in Breast Cancer. J Mammary Gland Biol Neoplasia 2016; 21:25-40. [PMID: 26769216 DOI: 10.1007/s10911-015-9349-9] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/10/2015] [Accepted: 12/30/2015] [Indexed: 12/11/2022] Open
Abstract
Breast microcalcification is a potential diagnostic indicator for non-palpable breast cancers. Microcalcification type I (calcium oxalate) is restricted to benign tissue, whereas type II (calcium hydroxyapatite) occurs both in benign as well as in malignant lesions. Microcalcification is a pathological complication of the mammary gland. Over the past few decades, much attention has been paid to exploit this property, which forms the basis for advances in diagnostic procedures and imaging techniques. The mechanism of its formation is still poorly understood. Hence, in this paper, we have attempted to address the molecular mechanism of microcalcification in breast cancer. The central theme of this communication is "how a subpopulation of heterogeneous breast tumor cells attains an osteoblast-like phenotype, and what activities drive the process of pathophysiological microcalcification, especially at the invasive or infiltrating front of breast tumors". The role of bone morphogenetic proteins (BMPs) and tumor associated macrophages (TAMs) along with epithelial to mesenchymal transition (EMT) in manipulating this pathological process has been highlighted. Therefore, this review offers a novel insight into the mechanism underlying the development of microcalcification in breast carcinomas.
Collapse
Affiliation(s)
- Tanu Sharma
- Department of Biochemistry, Central University of Rajasthan, NH-8, Bandarsindri, Kishangarh, Ajmer, Rajasthan, 305817, India
| | - James A Radosevich
- Department of Oral Medicine and Diagnostic Sciences, College of Dentistry, University of Illinois at Chicago, Chicago, IL, 60612, USA
| | - Geeta Pachori
- Department of Pathology, J.L.N Medical College, Ajmer, Rajasthan, 305001, India
| | - Chandi C Mandal
- Department of Biochemistry, Central University of Rajasthan, NH-8, Bandarsindri, Kishangarh, Ajmer, Rajasthan, 305817, India.
| |
Collapse
|
30
|
Cui L, Houston DA, Farquharson C, MacRae VE. Characterisation of matrix vesicles in skeletal and soft tissue mineralisation. Bone 2016; 87:147-58. [PMID: 27072517 DOI: 10.1016/j.bone.2016.04.007] [Citation(s) in RCA: 106] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2015] [Revised: 03/25/2016] [Accepted: 04/06/2016] [Indexed: 12/16/2022]
Abstract
The importance of matrix vesicles (MVs) has been repeatedly highlighted in the formation of cartilage, bone, and dentin since their discovery in 1967. These nano-vesicular structures, which are found in the extracellular matrix, are believed to be one of the sites of mineral nucleation that occurs in the organic matrix of the skeletal tissues. In the more recent years, there have been numerous reports on the observation of MV-like particles in calcified vascular tissues that could be playing a similar role. Therefore, here, we review the characteristics MVs possess that enable them to participate in mineral deposition. Additionally, we outline the content of skeletal tissue- and soft tissue-derived MVs, and discuss their key mineralisation mediators that could be targeted for future therapeutic use.
Collapse
Affiliation(s)
- L Cui
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, The University of Edinburgh Easter Bush Campus, Edinburgh, Midlothian, EH25 9RG, UK.
| | - D A Houston
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, The University of Edinburgh Easter Bush Campus, Edinburgh, Midlothian, EH25 9RG, UK
| | - C Farquharson
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, The University of Edinburgh Easter Bush Campus, Edinburgh, Midlothian, EH25 9RG, UK
| | - V E MacRae
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, The University of Edinburgh Easter Bush Campus, Edinburgh, Midlothian, EH25 9RG, UK
| |
Collapse
|
31
|
Zweifler LE, Ao M, Yadav M, Kuss P, Narisawa S, Kolli TN, Wimer HF, Farquharson C, Somerman MJ, Millán JL, Foster BL. Role of PHOSPHO1 in Periodontal Development and Function. J Dent Res 2016; 95:742-51. [PMID: 27016531 DOI: 10.1177/0022034516640246] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The tooth root and periodontal apparatus, including the acellular and cellular cementum, periodontal ligament (PDL), and alveolar bone, are critical for tooth function. Cementum and bone mineralization is regulated by factors including enzymes and extracellular matrix proteins that promote or inhibit hydroxyapatite crystal growth. Orphan Phosphatase 1 (Phospho1, PHOSPHO1) is a phosphatase expressed by chondrocytes, osteoblasts, and odontoblasts that functions in skeletal and dentin mineralization by initiating deposition of hydroxyapatite inside membrane-limited matrix vesicles. The role of PHOSPHO1 in periodontal formation remains unknown and we aimed to determine its functional importance in these tissues. We hypothesized that the enzyme would regulate proper mineralization of the periodontal apparatus. Spatiotemporal expression of PHOSPHO1 was mapped during periodontal development, and Phospho1(-/-) mice were analyzed using histology, immunohistochemistry, in situ hybridization, radiography, and micro-computed tomography. The Phospho1 gene and PHOSPHO1 protein were expressed by active alveolar bone osteoblasts and cementoblasts during cellular cementum formation. In Phospho1(-/-) mice, acellular cementum formation and mineralization were unaffected, whereas cellular cementum deposition increased although it displayed delayed mineralization and cementoid. Phospho1(-/-) mice featured disturbances in alveolar bone mineralization, shown by accumulation of unmineralized osteoid matrix and interglobular patterns of protein deposition. Parallel to other skeletal sites, deposition of mineral-regulating protein osteopontin (OPN) was increased in alveolar bone in Phospho1(-/-) mice. In contrast to the skeleton, genetic ablation of Spp1, the gene encoding OPN, did not ameliorate dentoalveolar defects in Phospho1(-/-) mice. Despite alveolar bone mineralization defects, periodontal attachment and function appeared undisturbed in Phospho1(-/-) mice, with normal PDL architecture and no evidence of bone loss over time. This study highlights the role of PHOSPHO1 in mineralization of alveolar bone and cellular cementum, further revealing that acellular cementum formation is not substantially regulated by PHOSPHO1 and likely does not rely on matrix vesicle-mediated initiation of mineralization.
Collapse
Affiliation(s)
- L E Zweifler
- Division of Biosciences, College of Dentistry, Ohio State University, Columbus, OH, USA
| | - M Ao
- National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD, USA
| | - M Yadav
- Sanford Children's Health Research Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| | - P Kuss
- Sanford Children's Health Research Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| | - S Narisawa
- Sanford Children's Health Research Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| | - T N Kolli
- Division of Biosciences, College of Dentistry, Ohio State University, Columbus, OH, USA
| | - H F Wimer
- Department of Vertebrate Zoology, National Museum of Natural History, Smithsonian Institution, Washington, DC, USA National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, USA
| | - C Farquharson
- Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush, Midlothian, UK
| | - M J Somerman
- National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD, USA
| | - J L Millán
- Sanford Children's Health Research Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| | - B L Foster
- Division of Biosciences, College of Dentistry, Ohio State University, Columbus, OH, USA
| |
Collapse
|
32
|
Filipowska J, Reilly GC, Osyczka AM. A single short session of media perfusion induces osteogenesis in hBMSCs cultured in porous scaffolds, dependent on cell differentiation stage. Biotechnol Bioeng 2016; 113:1814-24. [PMID: 26806539 DOI: 10.1002/bit.25937] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2015] [Revised: 01/20/2016] [Accepted: 01/20/2016] [Indexed: 01/02/2023]
Abstract
Perfusing culture media through porous cell-seeded scaffolds is now a common approach within many tissue engineering strategies. Human bone-marrow derived mesenchymal stem cells (hBMSC) are a clinically valuable source of osteoprogenitors that respond to mechanical stimuli. However, the optimal mechanical conditions for their osteogenic stimulation in vitro have not been defined. Whereas the effects of short durations of media fluid flow have been studied in monolayers of osteoblastic cells, in 3D culture continuous or repeated perfusion is usually applied. Here, we investigated whether a short, single perfusion session applied to hBMSCs cultured in 3D would enhance their osteogenesis in vitro. We cultured hBMSCs on gelatine-coated, porous polyurethane scaffolds with osteogenic supplements and stimulated them with a single 2-h session of unidirectional, steady, 2.5 mL/min media perfusion, at either early or late stages of culture in 3D. Some cells were pre-treated in monolayer with osteogenic supplements to advance cell differentiation, followed by 3D culture also with the osteogenic supplements. We report that this single, short session of media perfusion can markedly enhance the expression of bone-related transcription and growth factors, and matrix components, by hBMSCs but that it is more effective when cells reach the pre-osteoblast or osteoblast differentiation stage. These findings could aid in the optimization of 3D culture protocols for efficient bone tissue engineering. Biotechnol. Bioeng. 2016;113: 1814-1824. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Joanna Filipowska
- Faculty of Biology and Earth Sciences, Department of Cell Biology and Imaging, Jagiellonian University, 30-387 Kraków, Malopolska, Poland
| | - Gwendolen C Reilly
- Department of Materials Science and Engineering, INSIGNEO Institute for In Silico Medicine, University of Sheffield, Sheffield, United Kingdom
| | - Anna M Osyczka
- Faculty of Biology and Earth Sciences, Department of Cell Biology and Imaging, Jagiellonian University, 30-387 Kraków, Malopolska, Poland.
| |
Collapse
|
33
|
Huesa C, Houston D, Kiffer-Moreira T, Yadav MC, Luis Millan J, Farquharson C. The Functional co-operativity of Tissue-Nonspecific Alkaline Phosphatase (TNAP) and PHOSPHO1 during initiation of Skeletal Mineralization. Biochem Biophys Rep 2015; 4:196-201. [PMID: 26457330 PMCID: PMC4594806 DOI: 10.1016/j.bbrep.2015.09.013] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2015] [Revised: 08/31/2015] [Accepted: 09/16/2015] [Indexed: 11/28/2022] Open
Abstract
Phosphatases are recognised to have important functions in the initiation of skeletal mineralization. Tissue-nonspecific alkaline phosphatase (TNAP) and PHOSPHO1 are indispensable for bone and cartilage mineralization but their functional relationship in the mineralization process remains unclear. In this study, we have used osteoblast and ex-vivo metatarsal cultures to obtain biochemical evidence for co-operativity and cross-talk between PHOSPHO1 and TNAP in the initiation of mineralization. Clones 14 and 24 of the MC3T3-E1 cell line were used in the initial studies. Clone 14 cells expressed high levels of PHOSPHO1 and low levels of TNAP and in the presence of β-glycerol phosphate (BGP) or phosphocholine (P-Cho) as substrates and they mineralized their matrix strongly. In contrast clone 24 cells expressed high levels of TNAP and low levels of PHOSPHO1 and mineralized their matrix poorly. Lentiviral Phospho1 overexpression in clone 24 cells resulted in higher PHOSPHO1 and TNAP protein expression and increased levels of matrix mineralization. To uncouple the roles of PHOSPHO1 and TNAP in promoting matrix mineralization we used PHOSPHO1 (MLS-0263839) and TNAP (MLS-0038949) specific inhibitors, which individually reduced mineralization levels of Phospho1 overexpressing C24 cells, whereas the simultaneous addition of both inhibitors essentially abolished matrix mineralization (85 %; P<0.001). Using metatarsals from E15 mice as a physiological ex vivo model of mineralization, the response to both TNAP and PHOSPHO1 inhibitors appeared to be substrate dependent. Nevertheless, in the presence of BGP, mineralization was reduced by the TNAP inhibitor alone and almost completely eliminated by the co-incubation of both inhibitors. These data suggest critical non-redundant roles for PHOSPHO1 and TNAP during the initiation of osteoblast and chondrocyte mineralization.
Collapse
Affiliation(s)
- Carmen Huesa
- The Roslin Institute and R(D)SVS, University of Edinburgh, Easter Bush, Midlothian EH25 9RG, United Kingdom
| | - Dean Houston
- The Roslin Institute and R(D)SVS, University of Edinburgh, Easter Bush, Midlothian EH25 9RG, United Kingdom
| | - Tina Kiffer-Moreira
- Sanford Children's Health Research Center, Sanford‐Burnham Medical Research Institute, La Jolla, CA, USA
| | - Manisha C. Yadav
- Sanford Children's Health Research Center, Sanford‐Burnham Medical Research Institute, La Jolla, CA, USA
| | - Jose Luis Millan
- Sanford Children's Health Research Center, Sanford‐Burnham Medical Research Institute, La Jolla, CA, USA
| | - Colin Farquharson
- The Roslin Institute and R(D)SVS, University of Edinburgh, Easter Bush, Midlothian EH25 9RG, United Kingdom
| |
Collapse
|
34
|
During A, Penel G, Hardouin P. Understanding the local actions of lipids in bone physiology. Prog Lipid Res 2015; 59:126-46. [PMID: 26118851 DOI: 10.1016/j.plipres.2015.06.002] [Citation(s) in RCA: 79] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2015] [Revised: 06/12/2015] [Accepted: 06/18/2015] [Indexed: 12/19/2022]
Abstract
The adult skeleton is a metabolically active organ system that undergoes continuous remodeling to remove old and/or stressed bone (resorption) and replace it with new bone (formation) in order to maintain a constant bone mass and preserve bone strength from micro-damage accumulation. In that remodeling process, cellular balances--adipocytogenesis/osteoblastogenesis and osteoblastogenesis/osteoclastogenesis--are critical and tightly controlled by many factors, including lipids as discussed in the present review. Interest in the bone lipid area has increased as a result of in vivo evidences indicating a reciprocal relationship between bone mass and marrow adiposity. Lipids in bones are usually assumed to be present only in the bone marrow. However, the mineralized bone tissue itself also contains small amounts of lipids which might play an important role in bone physiology. Fatty acids, cholesterol, phospholipids and several endogenous metabolites (i.e., prostaglandins, oxysterols) have been purported to act on bone cell survival and functions, the bone mineralization process, and critical signaling pathways. Thus, they can be regarded as regulatory molecules important in bone health. Recently, several specific lipids derived from membrane phospholipids (i.e., sphingosine-1-phosphate, lysophosphatidic acid and different fatty acid amides) have emerged as important mediators in bone physiology and the number of such molecules will probably increase in the near future. The present paper reviews the current knowledge about: (1°) bone lipid composition in both bone marrow and mineralized tissue compartments, and (2°) local actions of lipids on bone physiology in relation to their metabolism. Understanding the roles of lipids in bone is essential to knowing how an imbalance in their signaling pathways might contribute to bone pathologies, such as osteoporosis.
Collapse
Affiliation(s)
- Alexandrine During
- Université Lille 2, Laboratoire de Physiopathologie des maladies osseuses inflammatoires (PMOI), EA4490, Faculté de Chirurgie dentaire, Lille, France.
| | - Guillaume Penel
- Université Lille 2, Laboratoire de Physiopathologie des maladies osseuses inflammatoires (PMOI), EA4490, Faculté de Chirurgie dentaire, Lille, France
| | - Pierre Hardouin
- Université Lille 2, Laboratoire de Physiopathologie des maladies osseuses inflammatoires (PMOI), EA4490, Faculté de Chirurgie dentaire, Lille, France; Université ULCO, Laboratoire de Physiopathologie des maladies osseuses inflammatoires (PMOI), EA4490, Boulogne-sur-Mer, France
| |
Collapse
|
35
|
Huesa C, Staines KA, Millán JL, MacRae VE. Effects of etidronate on the Enpp1⁻/⁻ mouse model of generalized arterial calcification of infancy. Int J Mol Med 2015; 36:159-65. [PMID: 25975272 PMCID: PMC4494596 DOI: 10.3892/ijmm.2015.2212] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2015] [Accepted: 04/22/2015] [Indexed: 12/23/2022] Open
Abstract
Generalized arterial calcification of infancy (GACI) is an autosomal recessive disorder of spontaneous infantile arterial and periarticular calcification which is attributed to mutations in the ectonucleotide pyrophosphatase/phosphodiesterase 1 (Enpp1) gene. Whilst the bisphosphonate, etidronate, is currently used off-label for the treatment for GACI, recent studies have highlighted its detrimental effects on bone mineralisation. In the present study, we used the Enpp1-/- mouse model of GACI to examine the effects of etidronate treatment (100 µg/kg), on vascular and skeletal calcification. Micro-computed tomography (µCT) analysis revealed a significant decrease in trabecular bone mass, as reflected by the decrease in trabecular bone volume/tissue volume (BV/TV; %), trabecular thickness, trabecular separation, trabecular number and pattern factor (P<0.05) in the Enpp1-/- mice in comparison to the wild-type (WT) mice. Mechanical testing revealed that in the WT mice, treatment with etidronate significantly improved work to fracture and increased work post-failure (P<0.05, in comparison to the vehicle-treated WT mice). This significant increase, however, was not observed in the Enpp1-/- mice. Treatment with etidronate had no effect on bone parameters in the WT mice; however, the Enpp1-/- mice displayed an increased structural model index (SMI; P<0.05). We used a recently developed 3D µCT protocol to reconstruct and quantify the extensive aortic calcification in Enpp1-/- mice in comparison to the WT mice. However, treatment with etidronate did not prevent de novo calcification, and did not arrest the progression of established calcification of the aorta.
Collapse
Affiliation(s)
- Carmen Huesa
- Roslin Institute and R(D)SVS, The University of Edinburgh, Edinburgh, UK
| | | | - Jose Luis Millán
- Sanford Children's Health Research Center, Sanford-Burnham Medical Research Institute, La Jolla, CA, USA
| | - Vicky E MacRae
- Roslin Institute and R(D)SVS, The University of Edinburgh, Edinburgh, UK
| |
Collapse
|
36
|
Rodriguez-Florez N, Garcia-Tunon E, Mukadam Q, Saiz E, Oldknow KJ, Farquharson C, Millán JL, Boyde A, Shefelbine SJ. An investigation of the mineral in ductile and brittle cortical mouse bone. J Bone Miner Res 2015; 30:786-95. [PMID: 25418329 PMCID: PMC4507744 DOI: 10.1002/jbmr.2414] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2014] [Revised: 11/07/2014] [Accepted: 11/20/2014] [Indexed: 12/28/2022]
Abstract
Bone is a strong and tough material composed of apatite mineral, organic matter, and water. Changes in composition and organization of these building blocks affect bone's mechanical integrity. Skeletal disorders often affect bone's mineral phase, either by variations in the collagen or directly altering mineralization. The aim of the current study was to explore the differences in the mineral of brittle and ductile cortical bone at the mineral (nm) and tissue (µm) levels using two mouse phenotypes. Osteogenesis imperfecta model, oim(-/-) , mice have a defect in the collagen, which leads to brittle bone; PHOSPHO1 mutants, Phospho1(-/-) , have ductile bone resulting from altered mineralization. Oim(-/-) and Phospho1(-/-) were compared with their respective wild-type controls. Femora were defatted and ground to powder to measure average mineral crystal size using X-ray diffraction (XRD) and to monitor the bulk mineral to matrix ratio via thermogravimetric analysis (TGA). XRD scans were run after TGA for phase identification to assess the fractions of hydroxyapatite and β-tricalcium phosphate. Tibiae were embedded to measure elastic properties with nanoindentation and the extent of mineralization with backscattered electron microscopy (BSE SEM). Results revealed that although both pathology models had extremely different whole-bone mechanics, they both had smaller apatite crystals, lower bulk mineral to matrix ratio, and showed more thermal conversion to β-tricalcium phosphate than their wild types, indicating deviations from stoichiometric hydroxyapatite in the original mineral. In contrast, the degree of mineralization of bone matrix was different for each strain: brittle oim(-/-) were hypermineralized, whereas ductile Phospho1(-/-) were hypomineralized. Despite differences in the mineralization, nanoscale alterations in the mineral were associated with reduced tissue elastic moduli in both pathologies. Results indicated that alterations from normal crystal size, composition, and structure are correlated with reduced mechanical integrity of bone.
Collapse
|
37
|
Abstract
Recent developments in endocrinology, made possible by the combination of mouse genetics, integrative physiology and clinical observations have resulted in rapid and unanticipated advances in the field of skeletal biology. Indeed, the skeleton, classically viewed as a structural scaffold necessary for mobility, and regulator of calcium-phosphorus homoeostasis and maintenance of the haematopoietic niche has now been identified as an important regulator of male fertility and whole-body glucose metabolism, in addition to the classical insulin target tissues. These seminal findings confirm bone to be a true endocrine organ. This review is intended to detail the key events commencing from the elucidation of osteocalcin (OC) in bone metabolism to identification of new and emerging candidates that may regulate energy metabolism independently of OC.
Collapse
Affiliation(s)
- K J Oldknow
- Developmental BiologyThe Roslin Institute, Edinburgh, UK
| | - V E MacRae
- Developmental BiologyThe Roslin Institute, Edinburgh, UK
| | - C Farquharson
- Developmental BiologyThe Roslin Institute, Edinburgh, UK
| |
Collapse
|
38
|
Khavandgar Z, Murshed M. Sphingolipid metabolism and its role in the skeletal tissues. Cell Mol Life Sci 2015; 72:959-69. [PMID: 25424644 PMCID: PMC11114007 DOI: 10.1007/s00018-014-1778-x] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2014] [Revised: 10/28/2014] [Accepted: 11/10/2014] [Indexed: 02/06/2023]
Abstract
The regulators affecting skeletal tissue formation and its maintenance include a wide array of molecules with very diverse functions. More recently, sphingolipids have been added to this growing list of regulatory molecules in the skeletal tissues. Sphingolipids are integral parts of various lipid membranes present in the cells and organelles. For a long time, these macromolecules were considered as inert structural elements. This view, however, has radically changed in recent years as sphingolipids are now recognized as important second messengers for signal-transduction pathways that affect cell growth, differentiation, stress responses and programmed death. In the current review, we discuss the available data showing the roles of various sphingolipids in three different skeletal cell types-chondrocytes in cartilage and osteoblasts and osteoclasts in bone. We provide an overview of the biology of sphingomyelin phosphodiesterase 3 (SMPD3), an important regulator of sphingolipid metabolism in the skeleton. SMPD3 is localized in the plasma membrane and has been shown to cleave sphingomyelin to generate ceramide, a bioactive lipid second messenger, and phosphocholine, an essential nutrient. SMPD3 deficiency in mice impairs the mineralization in both cartilage and bone extracellular matrices leading to severe skeletal deformities. A detailed understanding of SMPD3 function may provide a novel insight on the role of sphingolipids in the skeletal tissues.
Collapse
Affiliation(s)
| | - Monzur Murshed
- Faculty of Dentistry, McGill University, Montreal, Quebec Canada
- Department of Medicine, McGill University, Montreal, Quebec Canada
- Shriners Hospital for Children, McGill University, Montreal, Quebec Canada
| |
Collapse
|
39
|
Yadav MC, Huesa C, Narisawa S, Hoylaerts MF, Moreau A, Farquharson C, Millán JL. Ablation of osteopontin improves the skeletal phenotype of phospho1(-/-) mice. J Bone Miner Res 2014; 29:2369-81. [PMID: 24825455 PMCID: PMC5247257 DOI: 10.1002/jbmr.2281] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/01/2014] [Revised: 05/01/2014] [Accepted: 05/07/2014] [Indexed: 11/06/2022]
Abstract
PHOSPHO1 and tissue-nonspecific alkaline phosphatase (TNAP) have nonredundant functions during skeletal mineralization. Although TNAP deficiency (Alpl(-/-) mice) leads to hypophosphatasia, caused by accumulation of the mineralization inhibitor inorganic pyrophosphate (PPi ), comparably elevated levels of PPi in Phospho1(-/-) mice do not explain their stunted growth, spontaneous fractures, bowed long bones, osteomalacia, and scoliosis. We have previously shown that elevated PPi in Alpl(-/-) mice is accompanied by elevated osteopontin (OPN), another potent mineralization inhibitor, and that the amount of OPN correlates with the severity of hypophosphatasia in mice. Here we demonstrate that plasma OPN is elevated and OPN expression is upregulated in the skeleton, particularly in the vertebrae, of Phospho1(-/-) mice. Liquid chromatography/tandem mass spectrometry showed an increased proportion of phosphorylated OPN (p-OPN) peptides in Phospho1(-/-) mice, suggesting that accumulation of p-OPN causes the skeletal abnormalities in Phospho1(-/-) mice. We also show that ablation of the OPN gene, Spp1, leads to improvements in the skeletal phenotype in Phospho1(-/-) as they age. In particular, their scoliosis is ameliorated at 1 month of age and is completely rescued at 3 months of age. There is also improvement in the long bone defects characteristic of Phospho1(-/-) mice at 3 months of age. Mineralization assays comparing [Phospho1(-/-) ; Spp1(-/-) ], Phospho1(-/-) , and Spp1(-/-) chondrocytes display corrected mineralization by the double knockout cells. Expression of chondrocyte differentiation markers was also normalized in the [Phospho1(-/-) ; Spp1(-/-) ] mice. Thus, although Alpl and Phospho1 deficiencies lead to similar skeletal phenotypes and comparable changes in the expression levels of PPi and OPN, there is a clear dissociation in the hierarchical roles of these potent inhibitors of mineralization, with elevated PPi and elevated p-OPN levels causing the respective skeletal phenotypes in Alpl(-/-) and Phospho1(-/-) mice.
Collapse
Affiliation(s)
- Manisha C Yadav
- Sanford Children's Health Research Center, Sanford-Burnham Medical Research Institute, La Jolla, CA, USA
| | | | | | | | | | | | | |
Collapse
|
40
|
Kuzynski M, Goss M, Bottini M, Yadav MC, Mobley C, Winters T, Poliard A, Kellermann O, Lee B, Millan JL, Napierala D. Dual role of the Trps1 transcription factor in dentin mineralization. J Biol Chem 2014; 289:27481-93. [PMID: 25128529 DOI: 10.1074/jbc.m114.550129] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
TRPS1 (tricho-rhino-phalangeal syndrome) is a unique GATA-type transcription factor that acts as a transcriptional repressor. TRPS1 deficiency and dysregulated TRPS1 expression result in skeletal and dental abnormalities implicating TRPS1 in endochondral bone formation and tooth development. Moreover, patients with tricho-rhino-phalangeal syndrome frequently present with low bone mass indicating TRPS1 involvement in bone homeostasis. In addition, our previous data demonstrated accelerated mineralization of the perichondrium in Trps1 mutant mice and impaired dentin mineralization in Col1a1-Trps1 transgenic mice, implicating Trps1 in the mineralization process. To understand the role of Trps1 in the differentiation and function of cells producing mineralized matrix, we used a preodontoblastic cell line as a model of dentin mineralization. We generated both Trps1-deficient and Trps1-overexpressing stable cell lines and analyzed the progression of mineralization by alkaline phosphatase and alizarin red staining. As predicted, based on our previous in vivo data, delayed and decreased mineralization of Trps1-overexpressing odontoblastic cells was observed when compared with control cells. This was associated with down-regulation of genes regulating phosphate homeostasis. Interestingly, Trps1-deficient cells lost the ability to mineralize and demonstrated decreased expression of several genes critical for initiating the mineralization process, including Alpl and Phospho1. Based on these data, we have concluded that Trps1 serves two critical and context-dependent functions in odontoblast-regulated mineralization as follows: 1) Trps1 is required for odontoblast maturation by supporting expression of genes crucial for initiating the mineralization process, and 2) Trps1 represses the function of mature cells and, consequently, restricts the extent of extracellular matrix mineralization.
Collapse
Affiliation(s)
- Maria Kuzynski
- From the Institute of Oral Health Research, Department of Oral and Maxillofacial Surgery, School of Dentistry, University of Alabama at Birmingham, Birmingham, Alabama 35294
| | - Morgan Goss
- From the Institute of Oral Health Research, Department of Oral and Maxillofacial Surgery, School of Dentistry, University of Alabama at Birmingham, Birmingham, Alabama 35294
| | - Massimo Bottini
- the Sanford Children's Health Research Center, Sanford-Burnham Medical Research Institute, La Jolla, California 92037, the Department of Experimental Medicine and Surgery, University of Rome Tor Vergata, 00133Rome, Italy
| | - Manisha C Yadav
- the Sanford Children's Health Research Center, Sanford-Burnham Medical Research Institute, La Jolla, California 92037
| | - Callie Mobley
- From the Institute of Oral Health Research, Department of Oral and Maxillofacial Surgery, School of Dentistry, University of Alabama at Birmingham, Birmingham, Alabama 35294
| | - Tony Winters
- From the Institute of Oral Health Research, Department of Oral and Maxillofacial Surgery, School of Dentistry, University of Alabama at Birmingham, Birmingham, Alabama 35294
| | - Anne Poliard
- the EA2496 UFR d'Odontologie, Université Paris Descartes, 92120 Montrouge, France
| | - Odile Kellermann
- INSERM UMR-S 1124, Université René Descartes Paris 5, Centre Universitaire des Saints-Pères, 75270 Paris Cedex 06, France
| | - Brendan Lee
- the Department of Molecular and Human Genetics, Baylor College of Medicine, and the Howard Hughes Medical Institute, Houston, Texas 77030
| | - Jose Luis Millan
- the Sanford Children's Health Research Center, Sanford-Burnham Medical Research Institute, La Jolla, California 92037
| | - Dobrawa Napierala
- From the Institute of Oral Health Research, Department of Oral and Maxillofacial Surgery, School of Dentistry, University of Alabama at Birmingham, Birmingham, Alabama 35294,
| |
Collapse
|
41
|
Bravo Y, Teriete P, Dhanya RP, Dahl R, Lee PS, Kiffer-Moreira T, Ganji SR, Sergienko E, Smith LH, Farquharson C, Millán JL, Cosford NDP. Design, synthesis and evaluation of benzoisothiazolones as selective inhibitors of PHOSPHO1. Bioorg Med Chem Lett 2014; 24:4308-11. [PMID: 25124115 DOI: 10.1016/j.bmcl.2014.07.013] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2014] [Accepted: 07/04/2014] [Indexed: 11/19/2022]
Abstract
We report the discovery and characterization of a series of benzoisothiazolone inhibitors of PHOSPHO1, a newly identified soluble phosphatase implicated in skeletal mineralization and soft tissue ossification abnormalities. High-throughput screening (HTS) of a small molecule library led to the identification of benzoisothiazolones as potent and selective inhibitors of PHOSPHO1. Critical structural requirements for activity were determined, and the compounds were subsequently derivatized and measured for in vitro activity and ADME parameters including metabolic stability and permeability. On the basis of its overall profile the benzoisothiazolone analogue 2q was selected as MLPCN probe ML086.
Collapse
Affiliation(s)
- Yalda Bravo
- Cell Death and Survival Networks Research Program, NCI-Designated Cancer Center, Sanford-Burnham Medical Research Institute, 10901 North Torrey Pines Road, La Jolla, CA 92037, USA; Conrad Prebys Center for Chemical Genomics, Sanford-Burnham Medical Research Institute, 10901 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Peter Teriete
- Cell Death and Survival Networks Research Program, NCI-Designated Cancer Center, Sanford-Burnham Medical Research Institute, 10901 North Torrey Pines Road, La Jolla, CA 92037, USA; Conrad Prebys Center for Chemical Genomics, Sanford-Burnham Medical Research Institute, 10901 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Raveendra-Panickar Dhanya
- Cell Death and Survival Networks Research Program, NCI-Designated Cancer Center, Sanford-Burnham Medical Research Institute, 10901 North Torrey Pines Road, La Jolla, CA 92037, USA; Conrad Prebys Center for Chemical Genomics, Sanford-Burnham Medical Research Institute, 10901 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Russell Dahl
- Cell Death and Survival Networks Research Program, NCI-Designated Cancer Center, Sanford-Burnham Medical Research Institute, 10901 North Torrey Pines Road, La Jolla, CA 92037, USA; Conrad Prebys Center for Chemical Genomics, Sanford-Burnham Medical Research Institute, 10901 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Pooi San Lee
- Cell Death and Survival Networks Research Program, NCI-Designated Cancer Center, Sanford-Burnham Medical Research Institute, 10901 North Torrey Pines Road, La Jolla, CA 92037, USA; Conrad Prebys Center for Chemical Genomics, Sanford-Burnham Medical Research Institute, 10901 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Tina Kiffer-Moreira
- Sanford Children's Health Research Center, Sanford-Burnham Medical Research Institute, 10901 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Santhi Reddy Ganji
- Cell Death and Survival Networks Research Program, NCI-Designated Cancer Center, Sanford-Burnham Medical Research Institute, 10901 North Torrey Pines Road, La Jolla, CA 92037, USA; Conrad Prebys Center for Chemical Genomics, Sanford-Burnham Medical Research Institute, 10901 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Eduard Sergienko
- Conrad Prebys Center for Chemical Genomics, Sanford-Burnham Medical Research Institute, 10901 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Layton H Smith
- Conrad Prebys Center for Chemical Genomics, Sanford-Burnham Medical Research Institute, 10901 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Colin Farquharson
- The Roslin Institute and R(D)SVS, University of Edinburgh, Easter Bush, Midlothian EH25 9RG, Scotland, UK
| | - José Luis Millán
- Sanford Children's Health Research Center, Sanford-Burnham Medical Research Institute, 10901 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Nicholas D P Cosford
- Cell Death and Survival Networks Research Program, NCI-Designated Cancer Center, Sanford-Burnham Medical Research Institute, 10901 North Torrey Pines Road, La Jolla, CA 92037, USA; Conrad Prebys Center for Chemical Genomics, Sanford-Burnham Medical Research Institute, 10901 North Torrey Pines Road, La Jolla, CA 92037, USA.
| |
Collapse
|
42
|
Staines KA, Zhu D, Farquharson C, MacRae VE. Identification of novel regulators of osteoblast matrix mineralization by time series transcriptional profiling. J Bone Miner Metab 2014; 32:240-51. [PMID: 23925391 DOI: 10.1007/s00774-013-0493-2] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2013] [Accepted: 06/17/2013] [Indexed: 12/20/2022]
Abstract
Bone mineralization is a carefully orchestrated process, regulated by a number of promoters and inhibitors that function to ensure effective hydroxyapatite formation. Here we sought to identify new regulators of this process through a time series microarray analysis of mineralising primary osteoblast cultures over a 27 day culture period. To our knowledge this is the first microarray study investigating murine calvarial osteoblasts cultured under conditions that permit both physiological extracellular matrix mineralization through the formation of discrete nodules and the terminal differentiation of osteoblasts into osteocytes. RT-qPCR was used to validate and expand the microarray findings. We demonstrate the significant up-regulation of >6,000 genes during the osteoblast mineralization process, the highest-ranked differentially expressed genes of which were those dominated by members of the PPAR-γ signalling pathway, namely Adipoq, Cd36 and Fabp4. Furthermore, we show that the inhibition of this signalling pathway promotes matrix mineralisation in these primary osteoblast cultures. We also identify Cilp, Phex, Trb3, Sox11, and Psat1 as novel regulators of matrix mineralization. Further studies examining the precise function of the identified genes and their interactions will advance our understanding of the mechanisms underpinning biomineralization.
Collapse
Affiliation(s)
- Katherine Ann Staines
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, The University of Edinburgh, Easter Bush, Midlothian, EH25 9RG, UK,
| | | | | | | |
Collapse
|
43
|
Li Z, Wu G, Sher RB, Khavandgar Z, Hermansson M, Cox GA, Doschak MR, Murshed M, Beier F, Vance DE. Choline kinase beta is required for normal endochondral bone formation. Biochim Biophys Acta Gen Subj 2014; 1840:2112-22. [PMID: 24637075 DOI: 10.1016/j.bbagen.2014.03.008] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2014] [Revised: 03/05/2014] [Accepted: 03/07/2014] [Indexed: 11/28/2022]
Abstract
BACKGROUND Choline kinase has three isoforms encoded by the genes Chka and Chkb. Inactivation of Chka in mice results in embryonic lethality, whereas Chkb(-/-) mice display neonatal forelimb bone deformations. METHODS To understand the mechanisms underlying the bone deformations, we compared the biology and biochemistry of bone formation from embryonic to young adult wild-type (WT) and Chkb(-/-) mice. RESULTS The deformations are specific to the radius and ulna during the late embryonic stage. The radius and ulna of Chkb(-/-) mice display expanded hypertrophic zones, unorganized proliferative columns in their growth plates, and delayed formation of primary ossification centers. The differentiation of chondrocytes of Chkb(-/-) mice was impaired, as was chondrocyte proliferation and expression of matrix metalloproteinases 9 and 13. In chondrocytes from Chkb(-/-) mice, phosphatidylcholine was slightly lower than in WT mice whereas the amount of phosphocholine was decreased by approximately 75%. In addition, the radius and ulna from Chkb(-/-) mice contained fewer osteoclasts along the cartilage/bone interface. CONCLUSIONS Chkb has a critical role in the normal embryogenic formation of the radius and ulna in mice. GENERAL SIGNIFICANCE Our data indicate that choline kinase beta plays an important role in endochondral bone formation by modulating growth plate physiology.
Collapse
Affiliation(s)
- Zhuo Li
- Group on the Molecular and Cell Biology of Lipids and Department of Biochemistry, University of Alberta, Edmonton, Alberta T6G 2S2 Canada
| | - Gengshu Wu
- Group on the Molecular and Cell Biology of Lipids and Department of Biochemistry, University of Alberta, Edmonton, Alberta T6G 2S2 Canada
| | | | | | - Martin Hermansson
- Group on the Molecular and Cell Biology of Lipids and Department of Biochemistry, University of Alberta, Edmonton, Alberta T6G 2S2 Canada
| | | | - Michael R Doschak
- Faculty of Pharmacy & Pharmaceutical Sciences, University of Alberta, Canada
| | - Monzur Murshed
- Faculty of Dentistry, McGill University, Montreal, Quebec, Canada; Department of Medicine, McGill University, Montreal, Quebec, Canada
| | - Frank Beier
- Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, University of Western Ontario, London, Ontario, Canada
| | - Dennis E Vance
- Group on the Molecular and Cell Biology of Lipids and Department of Biochemistry, University of Alberta, Edmonton, Alberta T6G 2S2 Canada.
| |
Collapse
|
44
|
Abstract
Endochondral ossification is a carefully orchestrated process mediated by promoters and inhibitors of mineralization. Phosphatases are implicated, but their identities and functions remain unclear. Mutations in the tissue-nonspecific alkaline phosphatase (TNAP) gene cause hypophosphatasia, a heritable form of rickets and osteomalacia, caused by an arrest in the propagation of hydroxyapatite (HA) crystals onto the collagenous extracellular matrix due to accumulation of extracellular inorganic pyrophosphate (PPi), a physiological TNAP substrate and a potent calcification inhibitor. However, TNAP knockout (Alpl(-/-)) mice are born with a mineralized skeleton and have HA crystals in their chondrocyte- and osteoblast-derived matrix vesicles (MVs). We have shown that PHOSPHO1, a soluble phosphatase with specificity for two molecules present in MVs, phosphoethanolamine and phosphocholine, is responsible for initiating HA crystal formation inside MVs and that PHOSPHO1 and TNAP have nonredundant functional roles during endochondral ossification. Double ablation of PHOSPHO1 and TNAP function leads to the complete absence of skeletal mineralization and perinatal lethality, despite normal systemic phosphate and calcium levels. This strongly suggests that the Pi needed for initiation of MV-mediated mineralization is produced locally in the perivesicular space. As both TNAP and nucleoside pyrophosphohydrolase-1 (NPP1) behave as potent ATPases and pyrophosphatases in the MV compartment, our current model of the mechanisms of skeletal mineralization implicate intravesicular PHOSPHO1 function and Pi influx into MVs in the initiation of mineralization and the functions of TNAP and NPP1 in the extravesicular progression of mineralization.
Collapse
Affiliation(s)
- José Luis Millán
- Sanford Children's Health Research Center, Sanford-Burnham Medical Research Institute, 10901 North Torrey Pines Road, La Jolla, CA, 92037, USA,
| |
Collapse
|
45
|
Farbod K, Nejadnik MR, Jansen JA, Leeuwenburgh SCG. Interactions between inorganic and organic phases in bone tissue as a source of inspiration for design of novel nanocomposites. TISSUE ENGINEERING PART B-REVIEWS 2013; 20:173-88. [PMID: 23902258 DOI: 10.1089/ten.teb.2013.0221] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Mimicking the nanostructure of bone and understanding the interactions between the nanoscale inorganic and organic components of the extracellular bone matrix are crucial for the design of biomaterials with structural properties and a functionality similar to the natural bone tissue. Generally, these interactions involve anionic and/or cationic functional groups as present in the organic matrix, which exhibit a strong affinity for either calcium or phosphate ions from the mineral phase of bone. This study reviews the interactions between the mineral and organic extracellular matrix components in bone tissue as a source of inspiration for the design of novel nanocomposites. After providing a brief description of the various structural levels of bone and its main constituents, a concise overview is presented on the process of bone mineralization as well as the interactions between calcium phosphate (CaP) nanocrystals and the organic matrix of bone tissue. Bioinspired synthetic approaches for obtaining nanocomposites are subsequently addressed, with specific focus on chemical groups that have affinity for CaPs or are involved in stimulating and controlling mineral formation, that is, anionic functional groups, including carboxyl, phosphate, sulfate, hydroxyl, and catechol groups.
Collapse
Affiliation(s)
- Kambiz Farbod
- Department of Biomaterials, Radboud University Nijmegen Medical Centre , Nijmegen, The Netherlands
| | | | | | | |
Collapse
|
46
|
Abstract
Mineralizing matrix vesicles (MVs) are extracellular organelles produced by chondrocytes, osteoblasts, and odontoblasts under physiological conditions and by vascular smooth muscle cells under pathological conditions. MVs are involved in the early stage of mineralization allowing calcium and phosphate to accumulate, and therefore providing an optimal environment facilitating hydroxyapatite formation. Here, we describe the isolation of MVs from osteoblasts and chondrocytes and present their main characteristics.
Collapse
|
47
|
Kiffer-Moreira T, Yadav MC, Zhu D, Narisawa S, Sheen C, Stec B, Cosford ND, Dahl R, Farquharson C, Hoylaerts MF, MacRae VE, Millán JL. Pharmacological inhibition of PHOSPHO1 suppresses vascular smooth muscle cell calcification. J Bone Miner Res 2013; 28:81-91. [PMID: 22887744 PMCID: PMC3562655 DOI: 10.1002/jbmr.1733] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2011] [Revised: 07/20/2012] [Accepted: 07/30/2012] [Indexed: 11/09/2022]
Abstract
Medial vascular calcification (MVC) is common in patients with chronic kidney disease, obesity, and aging. MVC is an actively regulated process that resembles skeletal mineralization, resulting from chondro-osteogenic transformation of vascular smooth muscle cells (VSMCs). Here, we used mineralizing murine VSMCs to study the expression of PHOSPHO1, a phosphatase that participates in the first step of matrix vesicles-mediated initiation of mineralization during endochondral ossification. Wild-type (WT) VSMCs cultured under calcifying conditions exhibited increased Phospho1 gene expression and Phospho1(-/-) VSMCs failed to mineralize in vitro. Using natural PHOSPHO1 substrates, potent and specific inhibitors of PHOSPHO1 were identified via high-throughput screening and mechanistic analysis and two of these inhibitors, designated MLS-0390838 and MLS-0263839, were selected for further analysis. Their effectiveness in preventing VSMC calcification by targeting PHOSPHO1 function was assessed, alone and in combination with a potent tissue-nonspecific alkaline phosphatase (TNAP) inhibitor MLS-0038949. PHOSPHO1 inhibition by MLS-0263839 in mineralizing WT cells (cultured with added inorganic phosphate) reduced calcification in culture to 41.8% ± 2.0% of control. Combined inhibition of PHOSPHO1 by MLS-0263839 and TNAP by MLS-0038949 significantly reduced calcification to 20.9% ± 0.74% of control. Furthermore, the dual inhibition strategy affected the expression of several mineralization-related enzymes while increasing expression of the smooth muscle cell marker Acta2. We conclude that PHOSPHO1 plays a critical role in VSMC mineralization and that "phosphatase inhibition" may be a useful therapeutic strategy to reduce MVC.
Collapse
Affiliation(s)
- Tina Kiffer-Moreira
- Sanford Children’s Health Research Center, Sanford-Burnham Medical Research Institute, La Jolla, CA, USA
| | - Manisha C Yadav
- Sanford Children’s Health Research Center, Sanford-Burnham Medical Research Institute, La Jolla, CA, USA
| | - Dongxing Zhu
- The Roslin Institute, The University of Edinburgh, Easter Bush, Roslin, Midlothian, EH25 9RG, Scotland, UK
| | - Sonoko Narisawa
- Sanford Children’s Health Research Center, Sanford-Burnham Medical Research Institute, La Jolla, CA, USA
| | - Campbell Sheen
- Sanford Children’s Health Research Center, Sanford-Burnham Medical Research Institute, La Jolla, CA, USA
| | - Boguslaw Stec
- Sanford Children’s Health Research Center, Sanford-Burnham Medical Research Institute, La Jolla, CA, USA
| | - Nicholas D. Cosford
- Conrad Prebys Center for Chemical Genomics, Sanford-Burnham Medical Research Institute, La Jolla, CA 92037, USA
| | - Russell Dahl
- Conrad Prebys Center for Chemical Genomics, Sanford-Burnham Medical Research Institute, La Jolla, CA 92037, USA
| | - Colin Farquharson
- The Roslin Institute, The University of Edinburgh, Easter Bush, Roslin, Midlothian, EH25 9RG, Scotland, UK
| | - Marc. F. Hoylaerts
- Center for Molecular and Vascular Biology, University of Leuven, Leuven, Belgium
| | - Vicky E. MacRae
- The Roslin Institute, The University of Edinburgh, Easter Bush, Roslin, Midlothian, EH25 9RG, Scotland, UK
| | - José Luis Millán
- Sanford Children’s Health Research Center, Sanford-Burnham Medical Research Institute, La Jolla, CA, USA
| |
Collapse
|
48
|
Kiffer-Moreira T, Narisawa S. The use of tissue-nonspecific alkaline phosphatase (TNAP) and PHOSPHO1 inhibitors to affect mineralization by cultured cells. Methods Mol Biol 2013; 1053:125-134. [PMID: 23860651 DOI: 10.1007/978-1-62703-562-0_8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Here, we describe methods to evaluate the ability of small molecules inhibitors of TNAP and PHOSPHO1 in preventing mineralization of primary cultures of murine vascular smooth muscle cells. The procedures are also applicable to primary cultures of calvarial osteoblasts. These cell-based assays are used to complement kinetic testing during structure-activity relationship studies aimed at improving scaffolds in the generation of pharmaceuticals for the treatment for medial vascular calcification.
Collapse
Affiliation(s)
- Tina Kiffer-Moreira
- Sanford Children's Health Research Center, Sanford-Burnham Medical Research Institute, La Jolla, CA, USA
| | | |
Collapse
|
49
|
Entpd5 is essential for skeletal mineralization and regulates phosphate homeostasis in zebrafish. Proc Natl Acad Sci U S A 2012; 109:21372-7. [PMID: 23236130 DOI: 10.1073/pnas.1214231110] [Citation(s) in RCA: 81] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Bone mineralization is an essential step during the embryonic development of vertebrates, and bone serves vital functions in human physiology. To systematically identify unique gene functions essential for osteogenesis, we performed a forward genetic screen in zebrafish and isolated a mutant, no bone (nob), that does not form any mineralized bone. Positional cloning of nob identified the causative gene to encode ectonucleoside triphosphate/diphosphohydrolase 5 (entpd5); analysis of its expression pattern demonstrates that entpd5 is specifically expressed in osteoblasts. An additional mutant, dragonfish (dgf), exhibits ectopic mineralization in the craniofacial and axial skeleton and encodes a loss-of-function allele of ectonucleotide pyrophosphatase phosphodiesterase 1 (enpp1). Intriguingly, generation of double-mutant nob/dgf embryos restored skeletal mineralization in nob mutants, indicating that mechanistically, Entpd5 and Enpp1 act as reciprocal regulators of phosphate/pyrophosphate homeostasis in vivo. Consistent with this, entpd5 mutant embryos can be rescued by high levels of inorganic phosphate, and phosphate-regulating factors, such as fgf23 and npt2a, are significantly affected in entpd5 mutant embryos. Our study demonstrates that Entpd5 represents a previously unappreciated essential player in phosphate homeostasis and skeletal mineralization.
Collapse
|
50
|
Chai Y, Carlier A, Bolander J, Roberts S, Geris L, Schrooten J, Van Oosterwyck H, Luyten F. Current views on calcium phosphate osteogenicity and the translation into effective bone regeneration strategies. Acta Biomater 2012; 8:3876-87. [PMID: 22796326 DOI: 10.1016/j.actbio.2012.07.002] [Citation(s) in RCA: 162] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2012] [Revised: 06/28/2012] [Accepted: 07/03/2012] [Indexed: 02/06/2023]
Abstract
Calcium phosphate (CaP) has traditionally been used for the repair of bone defects because of its strong resemblance to the inorganic phase of bone matrix. Nowadays, a variety of natural or synthetic CaP-based biomaterials are produced and have been extensively used for dental and orthopaedic applications. This is justified by their biocompatibility, osteoconductivity and osteoinductivity (i.e. the intrinsic material property that initiates de novo bone formation), which are attributed to the chemical composition, surface topography, macro/microporosity and the dissolution kinetics. However, the exact molecular mechanism of action is unknown. This review paper first summarizes the most important aspects of bone biology in relation to CaP and the mechanisms of bone matrix mineralization. This is followed by the research findings on the effects of calcium (Ca²⁺) and phosphate (PO₄³⁻) ions on the migration, proliferation and differentiation of osteoblasts during in vivo bone formation and in vitro culture conditions. Further, the rationale of using CaP for bone regeneration is explained, focusing thereby specifically on the material's osteoinductive properties. Examples of different material forms and production techniques are given, with the emphasis on the state-of-the art in fine-tuning the physicochemical properties of CaP-based biomaterials for improved bone induction and the use of CaP as a delivery system for bone morphogenetic proteins. The use of computational models to simulate the CaP-driven osteogenesis is introduced as part of a bone tissue engineering strategy in order to facilitate the understanding of cell-material interactions and to gain further insight into the design and optimization of CaP-based bone reparative units. Finally, limitations and possible solutions related to current experimental and computational techniques are discussed.
Collapse
|