1
|
Ingham JR, Donati GL, Douvris L, Bartzas G, Bussan DD, Douvris C. Commercially available mouthguards: Unearthing trace elements for the first time. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 930:172790. [PMID: 38677440 DOI: 10.1016/j.scitotenv.2024.172790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 04/08/2024] [Accepted: 04/24/2024] [Indexed: 04/29/2024]
Abstract
The use of mouthguards is advocated by the American Dental Association for orofacial injury prevention and teeth protection. However, the chemical environment in the mouth may cause harmful substances within the mouthguard's polymer material to leach out and be absorbed by the user. Considering this, the present study for the first time analyzed commercially available mouthguards and disclosed the presence of trace elements. Specifically, an analytical method was developed based on closed-vessel microwave-assisted digestion and plasma-based atomic spectrometry for determining toxic trace elements in mouthguard samples. Initially, 75 elements were assessed and, thereafter, quantified cadmium (Cd), copper (Cu) and lead (Pb) in each sample by inductively coupled plasma mass spectrometry (ICP-MS). Method validation was carried out by analyzing a certified reference material of Low-Density Polyethylene, and by addition and recovery experiments. Results for copper were further validated by ICP optical emission spectrometry (ICP-OES). While most samples exhibited elemental levels beneath the method's limit of quantification, Cd, Cu and Pb were detected in four samples. Remarkably, one sample had Cu levels exceeding safe limits by 109 times, highlighting potential toxicity risks. This initial research underscores the need for stricter contamination control in mouthguard materials to minimize potentially health hazards.
Collapse
Affiliation(s)
- Jesse R Ingham
- Department of Chemistry, Wake Forest University, Salem Hall, Box 7486, Winston-Salem, NC 27109, USA
| | - George L Donati
- Department of Chemistry, Wake Forest University, Salem Hall, Box 7486, Winston-Salem, NC 27109, USA
| | - Liliya Douvris
- Theobald Science Center, Department of Biological and Chemical Sciences, New York Institute of Technology, Old Westbury, NY 11568, USA
| | - Georgios Bartzas
- School of Mining and Metallurgical Engineering, National Technical University of Athens, 9 Heroon Polytechniou str., 157 80 Zografos, Athens, Greece
| | - Derek D Bussan
- Nistler College of Business and Public Administration, Department of Marketing, University of North Dakota, Grand Forks, ND 58202, USA
| | - Chris Douvris
- Theobald Science Center, Department of Biological and Chemical Sciences, New York Institute of Technology, Old Westbury, NY 11568, USA.
| |
Collapse
|
2
|
Liu Z, Wu J, Dong Z, Wang Y, Wang G, Chen C, Wang H, Yang Y, Sun Y, Yang M, Fu J, Li J, Zhang Q, Xu Y, Pi J. Prolonged Cadmium Exposure and Osteoclastogenesis: A Mechanistic Mouse and in Vitro Study. ENVIRONMENTAL HEALTH PERSPECTIVES 2024; 132:67009. [PMID: 38896780 PMCID: PMC11218709 DOI: 10.1289/ehp13849] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Revised: 03/28/2024] [Accepted: 05/24/2024] [Indexed: 06/21/2024]
Abstract
BACKGROUND Cadmium (Cd) is a highly toxic and widespread environmental oxidative stressor that causes a myriad of health problems, including osteoporosis and bone damage. Although nuclear factor erythroid 2-related factor 2 (NRF2) and its Cap 'n' Collar and basic region Leucine Zipper (CNC-bZIP) family member nuclear factor erythroid 2-related factor 1 (NRF1) coordinate various stress responses by regulating the transcription of a variety of antioxidant and cytoprotective genes, they play distinct roles in bone metabolism and remodeling. However, the precise roles of both transcription factors in bone loss induced by prolonged Cd exposure remain unclear. OBJECTIVES We aimed to understand the molecular mechanisms underlying Cd-induced bone loss, focusing mainly on the roles of NRF2 and NRF1 in osteoclastogenesis provoked by Cd. METHODS Male wild-type (WT), global Nrf2-knockout (N r f 2 - / - ) and myeloid-specific Nrf2 knockout [Nrf2(M)-KO] mice were administered Cd (50 or 100 ppm ) via drinking water for 8 or 16 wk, followed by micro-computed tomography, histological analyses, and plasma biochemical testing. Osteoclastogenesis was evaluated using bone marrow-derived osteoclast progenitor cells (BM-OPCs) and RAW 264.7 cells in the presence of Cd (10 or 20 nM ) with a combination of genetic and chemical modulations targeting NRF2 and NRF1. RESULTS Compared with relevant control mice, global N r f 2 - / - or Nrf2(M)-KO mice showed exacerbated bone loss and augmented osteoclast activity following exposure to 100 ppm Cd in drinking water for up to 16 wk. In vitro osteoclastogenic analyses suggested that Nrf2-deficient BM-OPCs and RAW 264.7 cells responded more robustly to low levels of Cd (up to 20 nM ) with regard to osteoclast differentiation compared with WT cells. Further mechanistic studies supported a compensatory up-regulation of long isoform of NRF1 (L-NRF1) and subsequent induction of nuclear factor of activated T cells, cytoplasmic, calcineurin dependent 1 (NFATc1) as the key molecular events in the Nrf2 deficiency-worsened and Cd-provoked osteoclastogenesis. L-Nrf1 silenced (via lentiviral means) Nrf2-knockdown (KD) RAW cells exposed to Cd showed dramatically different NFATc1 and subsequent osteoclastogenesis outcomes compared with the cells of Nrf2-KD alone exposed to Cd, suggesting a mitigating effect of the Nrf1 silencing. In addition, suppression of reactive oxygen species by exogenous antioxidants N -acetyl-l-cysteine (2 mM ) and mitoquinone mesylate (MitoQ; 0.2 μ M ) mitigated the L-NRF1-associated effects on NFATc1-driven osteoclastogenesis outcomes in Cd-exposed Nrf2-KD cells. CONCLUSIONS This in vivo and in vitro study supported the authors' hypothesis that Cd exposure caused bone loss, in which NRF2 and L-NRF1 responded to Cd and osteoclastogenic stimuli in a cooperative, but contradictive, manner to coordinate Nfatc1 expression, osteoclastogenesis and thus bone homeostasis. Our study suggests a novel strategy targeting NRF2 and L-NRF1 to prevent and treat the bone toxicity of Cd. https://doi.org/10.1289/EHP13849.
Collapse
Affiliation(s)
- Zhiyuan Liu
- Key Laboratory of Environmental Stress and Chronic Disease Control and Prevention, Ministry of Education, China Medical University, Shenyang, Liaoning, P.R. China
- Key Laboratory of Liaoning Province on Toxic and Biological Effects of Arsenic, China Medical University, Shenyang, Liaoning, P.R. China
- Program of Environmental Toxicology, School of Public Health, China Medical University, Shenyang, Liaoning, P.R. China
| | - Jinzhi Wu
- Key Laboratory of Environmental Stress and Chronic Disease Control and Prevention, Ministry of Education, China Medical University, Shenyang, Liaoning, P.R. China
- Key Laboratory of Liaoning Province on Toxic and Biological Effects of Arsenic, China Medical University, Shenyang, Liaoning, P.R. China
- Program of Environmental Toxicology, School of Public Health, China Medical University, Shenyang, Liaoning, P.R. China
| | - Zhe Dong
- Key Laboratory of Environmental Stress and Chronic Disease Control and Prevention, Ministry of Education, China Medical University, Shenyang, Liaoning, P.R. China
- Key Laboratory of Liaoning Province on Toxic and Biological Effects of Arsenic, China Medical University, Shenyang, Liaoning, P.R. China
- Program of Environmental Toxicology, School of Public Health, China Medical University, Shenyang, Liaoning, P.R. China
| | - Yanshuai Wang
- Key Laboratory of Environmental Stress and Chronic Disease Control and Prevention, Ministry of Education, China Medical University, Shenyang, Liaoning, P.R. China
- Key Laboratory of Liaoning Province on Toxic and Biological Effects of Arsenic, China Medical University, Shenyang, Liaoning, P.R. China
- Program of Environmental Toxicology, School of Public Health, China Medical University, Shenyang, Liaoning, P.R. China
| | - Gang Wang
- Key Laboratory of Environmental Stress and Chronic Disease Control and Prevention, Ministry of Education, China Medical University, Shenyang, Liaoning, P.R. China
- Key Laboratory of Liaoning Province on Toxic and Biological Effects of Arsenic, China Medical University, Shenyang, Liaoning, P.R. China
- Experimental and Teaching Center, School of Public Health, China Medical University, Shenyang, Liaoning, P.R. China
| | - Chengjie Chen
- Key Laboratory of Environmental Stress and Chronic Disease Control and Prevention, Ministry of Education, China Medical University, Shenyang, Liaoning, P.R. China
- Key Laboratory of Liaoning Province on Toxic and Biological Effects of Arsenic, China Medical University, Shenyang, Liaoning, P.R. China
- Program of Environmental Toxicology, School of Public Health, China Medical University, Shenyang, Liaoning, P.R. China
| | - Huihui Wang
- Key Laboratory of Environmental Stress and Chronic Disease Control and Prevention, Ministry of Education, China Medical University, Shenyang, Liaoning, P.R. China
- Key Laboratory of Liaoning Province on Toxic and Biological Effects of Arsenic, China Medical University, Shenyang, Liaoning, P.R. China
- Group of Chronic Disease and Environmental Genomics, School of Public Health, China Medical University, Shenyang, Liaoning, P.R. China
| | - Yang Yang
- Department of Rehabilitation Medicine, First Hospital of China Medical University, Shenyang, Liaoning, P.R. China
| | - Yongxin Sun
- Department of Rehabilitation Medicine, First Hospital of China Medical University, Shenyang, Liaoning, P.R. China
| | - Maowei Yang
- Department of Orthopedics, First Hospital of China Medical University, Shenyang, Liaoning, P.R. China
| | - Jingqi Fu
- Key Laboratory of Environmental Stress and Chronic Disease Control and Prevention, Ministry of Education, China Medical University, Shenyang, Liaoning, P.R. China
- Key Laboratory of Liaoning Province on Toxic and Biological Effects of Arsenic, China Medical University, Shenyang, Liaoning, P.R. China
- Program of Environmental Toxicology, School of Public Health, China Medical University, Shenyang, Liaoning, P.R. China
| | - Jiliang Li
- Department of Biology, Indiana University Indianapolis, Indianapolis, Indiana, USA
| | - Qiang Zhang
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, Georgia, USA
| | - Yuanyuan Xu
- Key Laboratory of Environmental Stress and Chronic Disease Control and Prevention, Ministry of Education, China Medical University, Shenyang, Liaoning, P.R. China
- Key Laboratory of Liaoning Province on Toxic and Biological Effects of Arsenic, China Medical University, Shenyang, Liaoning, P.R. China
- Group of Chronic Disease and Environmental Genomics, School of Public Health, China Medical University, Shenyang, Liaoning, P.R. China
| | - Jingbo Pi
- Key Laboratory of Environmental Stress and Chronic Disease Control and Prevention, Ministry of Education, China Medical University, Shenyang, Liaoning, P.R. China
- Key Laboratory of Liaoning Province on Toxic and Biological Effects of Arsenic, China Medical University, Shenyang, Liaoning, P.R. China
- Program of Environmental Toxicology, School of Public Health, China Medical University, Shenyang, Liaoning, P.R. China
| |
Collapse
|
3
|
Lei Y, Guo M, Xie J, Liu X, Li X, Wang H, Xu Y, Zheng D. Relationship between blood cadmium levels and bone mineral density in adults: a cross-sectional study. Front Endocrinol (Lausanne) 2024; 15:1354577. [PMID: 38577568 PMCID: PMC10991703 DOI: 10.3389/fendo.2024.1354577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 03/08/2024] [Indexed: 04/06/2024] Open
Abstract
Introduction Osteoporosis, a disease of reduced bone mass and microstructural deterioration leading to fragility fractures, is becoming more prevalent as aging progresses, significantly increasing the socioeconomic burden. In past studies, there has been a growing awareness of the harmful effects of heavy metals on bone, with cadmium being a significant exposure factor. The purpose of this study was to look into the association between adult bone mineral density(BMD) and blood cadmium levels. Methods Based on information from the 2013-2014, 2017-2018 NHANES, weighted multiple regression, generalized weighted modeling, and smoothed curve fitting were utilized to investigate the association between blood cadmium and femur BMD. Furthermore, subgroup analyses were conducted to investigate any differences in the associations between age, sex, race, chronic kidney disease, and diabetes. Results In 2,146 participants, blood cadmium levels and total femur [-0.02 (-0.03, -0.01), 0.0027], femoral neck [-0.01 (-0.02, -0.00), 0.0240], femoral trochanter [-0.01 (-0.02, -0.00), 0.0042], and intertrochanteric femoral trochanter [-0.02 (-0.03, -0.00), 0.0101] BMD were negatively correlated. Subgroup analyses showed that this association was more pronounced in women, non-Hispanic white people and other Hispanics, and those with chronic kidney disease and diabetes. Our results pointed to a negative relationship between femoral BMD and blood cadmium. This negative association varied by age, sex, race, diabetes, and chronic kidney disease. In particular, bone mineral density was more significantly negatively affected by blood cadmium levels in groups with diabetes and chronic kidney disease. Conclusion Our findings demonstrated a significant negative association between blood cadmium levels and bone mineral density in a population of U.S. adults.
Collapse
Affiliation(s)
- Yi Lei
- Department of Nephrology, The Affiliated Huai’an Hospital of Xuzhou Medical University and Huai’an Second People’s Hospital, Huai’an, China
- Department of Clinical Laboratory, The Affiliated Huai’an Hospital of Xuzhou Medical University and Huai’an Second People’s Hospital, Huai’an, China
- Huai’an Key Laboratory of Chronic Kidney Disease, The Affiliated Huai’an Hospital of Xuzhou Medical University and Huai’an Second People’s Hospital, Huai’an, China
| | - Meiqian Guo
- Department of Nephrology, The Affiliated Huai’an Hospital of Xuzhou Medical University and Huai’an Second People’s Hospital, Huai’an, China
- Department of Clinical Laboratory, The Affiliated Huai’an Hospital of Xuzhou Medical University and Huai’an Second People’s Hospital, Huai’an, China
- Huai’an Key Laboratory of Chronic Kidney Disease, The Affiliated Huai’an Hospital of Xuzhou Medical University and Huai’an Second People’s Hospital, Huai’an, China
| | - Juan Xie
- Department of Nephrology, The Affiliated Huai’an Hospital of Xuzhou Medical University and Huai’an Second People’s Hospital, Huai’an, China
- Department of Clinical Laboratory, The Affiliated Huai’an Hospital of Xuzhou Medical University and Huai’an Second People’s Hospital, Huai’an, China
- Huai’an Key Laboratory of Chronic Kidney Disease, The Affiliated Huai’an Hospital of Xuzhou Medical University and Huai’an Second People’s Hospital, Huai’an, China
| | - Xueqing Liu
- Department of Nephrology, The Affiliated Huai’an Hospital of Xuzhou Medical University and Huai’an Second People’s Hospital, Huai’an, China
- Department of Clinical Laboratory, The Affiliated Huai’an Hospital of Xuzhou Medical University and Huai’an Second People’s Hospital, Huai’an, China
- Huai’an Key Laboratory of Chronic Kidney Disease, The Affiliated Huai’an Hospital of Xuzhou Medical University and Huai’an Second People’s Hospital, Huai’an, China
| | - Xiang Li
- Department of Nephrology, The Affiliated Huai’an Hospital of Xuzhou Medical University and Huai’an Second People’s Hospital, Huai’an, China
- Department of Clinical Laboratory, The Affiliated Huai’an Hospital of Xuzhou Medical University and Huai’an Second People’s Hospital, Huai’an, China
- Huai’an Key Laboratory of Chronic Kidney Disease, The Affiliated Huai’an Hospital of Xuzhou Medical University and Huai’an Second People’s Hospital, Huai’an, China
| | - Hongwu Wang
- Department of Nephrology, The Affiliated Huai’an Hospital of Xuzhou Medical University and Huai’an Second People’s Hospital, Huai’an, China
- Department of Clinical Laboratory, The Affiliated Huai’an Hospital of Xuzhou Medical University and Huai’an Second People’s Hospital, Huai’an, China
- Huai’an Key Laboratory of Chronic Kidney Disease, The Affiliated Huai’an Hospital of Xuzhou Medical University and Huai’an Second People’s Hospital, Huai’an, China
| | - Yong Xu
- Department of Nephrology, The Affiliated Huai’an Hospital of Xuzhou Medical University and Huai’an Second People’s Hospital, Huai’an, China
- Department of Clinical Laboratory, The Affiliated Huai’an Hospital of Xuzhou Medical University and Huai’an Second People’s Hospital, Huai’an, China
- Huai’an Key Laboratory of Chronic Kidney Disease, The Affiliated Huai’an Hospital of Xuzhou Medical University and Huai’an Second People’s Hospital, Huai’an, China
| | - Donghui Zheng
- Department of Nephrology, The Affiliated Huai’an Hospital of Xuzhou Medical University and Huai’an Second People’s Hospital, Huai’an, China
- Department of Clinical Laboratory, The Affiliated Huai’an Hospital of Xuzhou Medical University and Huai’an Second People’s Hospital, Huai’an, China
- Huai’an Key Laboratory of Chronic Kidney Disease, The Affiliated Huai’an Hospital of Xuzhou Medical University and Huai’an Second People’s Hospital, Huai’an, China
| |
Collapse
|
4
|
Wallin M, Andersson EM, Engström G. Blood cadmium is associated with increased fracture risk in never-smokers - results from a case-control study using data from the Malmö Diet and Cancer cohort. Bone 2024; 179:116989. [PMID: 38072370 DOI: 10.1016/j.bone.2023.116989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 12/06/2023] [Accepted: 12/07/2023] [Indexed: 12/24/2023]
Abstract
BACKGROUND Several studies have shown associations between cadmium (Cd) exposure and an increased risk of fractures. However, the size of the risk is still unclear and proper adjustment for smoking is a challenge. The aim of this study was to quantify the association between dietary cadmium measured in blood and fracture risk in the general Swedish population through a large population-based case-control study in never-smokers. METHODS The study included 2113 incident cases with osteoporosis-related fractures and the same number of age- and sex-matched controls in never-smokers from the Swedish population-based Malmö Diet and Cancer study cohort. Cd in blood (B-Cd) was analyzed at baseline (1991-1996). Incident osteoporosis-related fractures (of the hip, distal radius, and proximal humerus) up to the year 2014 were identified using the National Patient Register. Associations between B-Cd and fractures were analyzed using logistic regression. RESULTS Median B-Cd was 0.22 μg/L (P25 = 0.16, P75 = 0.31) among 2103 cases and 0.21 (P25 = 0.15, P75 = 0.30) among 2105 controls. The risk of fracture was significantly increased (OR 1.58; 95 % confidence interval 1.08-2.31, per μg/L of B-Cd), after adjustment for age, sex, BMI, physical activity, and fiber consumption. In analyses by cadmium quartiles, the OR increased monotonically and was significant in the highest quartile of B-Cd (for B-Cd > 0.31 versus B-Cd < 0.15 μg/L; OR 1.21; 95 % confidence interval 1.01-1.45). CONCLUSION Even modestly increased blood cadmium in never-smokers is associated with increased risk of incident osteoporosis-related fractures.
Collapse
Affiliation(s)
- Maria Wallin
- Department of Occupational and Environmental Medicine, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Sahlgrenska University Hospital, Gothenburg, Sweden.
| | - Eva M Andersson
- Department of Occupational and Environmental Medicine, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Gunnar Engström
- Department of Clinical Science, Lund University, Malmö, Sweden
| |
Collapse
|
5
|
Dong A, He H, Zhang T, Jing X, Ma Y, Wang X, Dong H, Liu W, Fan K, Huo J. Effects of cadmium on liver function in turtle Mauremys reevesii. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:123827-123831. [PMID: 37991618 DOI: 10.1007/s11356-023-31030-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 11/08/2023] [Indexed: 11/23/2023]
Abstract
This research was designed to investigate the effects of cadmium (Cd) on liver function in turtle Mauremys reevesii. Turtles were divided into 4 groups at random. The turtles were injected intraperitoneally with Cd at 0, 7.5, 15, 30 mg kg-1 Cd chloride separately. Liver index was calculated. The activities of alanine aminotransferase (ALT), aspartate aminotransferase (AST) and the content of TP in liver were examined with biochemical methods. The results indicated that the liver index of turtles changed obviously only at higher dose and longer time. The activities of ALT and AST in liver increased with prolongation of exposure time in a dose-dependent manner. TP content in liver was lower than that in the control. In summary, Cd had an obvious toxic effect on liver tissues of freshwater turtle Mauremys reevesii, and it was dose dependent with the extension of exposure time. But the results also showed that the turtle had strong tolerance to Cd.
Collapse
Affiliation(s)
- Aiguo Dong
- Shanxi University of Chinese Medicine, Taiyuan, Shanxi Province, China
| | - Hui He
- Shanxi University of Chinese Medicine, Taiyuan, Shanxi Province, China
| | - Tianmiao Zhang
- Shanxi University of Chinese Medicine, Taiyuan, Shanxi Province, China
| | - Xuejie Jing
- Shanxi University of Chinese Medicine, Taiyuan, Shanxi Province, China
| | - Yingying Ma
- Shanxi University of Chinese Medicine, Taiyuan, Shanxi Province, China
| | - Xinling Wang
- Shanxi University of Chinese Medicine, Taiyuan, Shanxi Province, China
| | - Huidong Dong
- Shanxi University of Chinese Medicine, Taiyuan, Shanxi Province, China
| | - Wei Liu
- Shanxi University of Chinese Medicine, Taiyuan, Shanxi Province, China
| | - Kaifang Fan
- Shanxi University of Chinese Medicine, Taiyuan, Shanxi Province, China
| | - Junfeng Huo
- Shanxi University of Chinese Medicine, Taiyuan, Shanxi Province, China.
| |
Collapse
|
6
|
Mo L, Chen L, Wan Y, Huang H, Mo L, Zhu W, Yang G, Li Z, Wei Q, Song J, Yang X. An aqueous extract of Prunella vulgaris L. ameliorates cadmium-induced bone loss by promoting osteogenic differentiation in female rats. Food Chem Toxicol 2023; 180:114005. [PMID: 37640280 DOI: 10.1016/j.fct.2023.114005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 08/16/2023] [Accepted: 08/25/2023] [Indexed: 08/31/2023]
Abstract
Cadmium (Cd) causes bone loss, concerning inhibiting osteogenic differentiation of bone marrow mesenchymal stem cells (BMSCs). Prunella vulgaris L. (PV) has the potential for promoting osteogenic differentiation, but its influence on Cd-induced bone loss is unclear. This study investigated the effect of PV aqueous extract (PVE) on Cd-induced bone loss and its underlying mechanisms. Eight-week-old female SD rats were randomly assigned into four groups and treated for 16 weeks: Control, Cd (50 mg/L of Cd chloride), Cd + PV Low (125 mg/kg bw of PVE), and Cd + PV High (250 mg/kg bw of PVE). PV ameliorated femoral bone loss in Cd-treated rats manifested as increases in bone mineral density, bone volume, trabecular thickness, number, and area, and decreases in trabecular separation. Compared with Cd group, PV-treatment groups had higher serum levels of bone formation markers (ALP, BGP). Additionally, in PV-treatment groups, expressions of bone formation markers (Osterix, Runx2) and molecules involved in osteogenic differentiation signal pathway BMP/Smad (BMP4, Smad1/5/9) in the tibia of rats and isolated rat primary BMSCs were upregulated. These results suggest that PV alleviates Cd-induced bone loss by promoting osteogenic differentiation, which is likely associated with BMP/Smad pathway.
Collapse
Affiliation(s)
- Lijun Mo
- Food Safety and Health Research Center, NMPA Key Laboratory for Safety Evaluation of Cosmetics, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, 510515, PR China
| | - Linquan Chen
- Food Safety and Health Research Center, NMPA Key Laboratory for Safety Evaluation of Cosmetics, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, 510515, PR China
| | - Yu Wan
- Food Safety and Health Research Center, NMPA Key Laboratory for Safety Evaluation of Cosmetics, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, 510515, PR China
| | - Haibin Huang
- Food Safety and Health Research Center, NMPA Key Laboratory for Safety Evaluation of Cosmetics, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, 510515, PR China
| | - Lifen Mo
- Food Safety and Health Research Center, NMPA Key Laboratory for Safety Evaluation of Cosmetics, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, 510515, PR China
| | - Wei Zhu
- Guangzhou Center for Disease Control and Prevention, Guangzhou, 510440, PR China
| | - Guangyu Yang
- Guangzhou Center for Disease Control and Prevention, Guangzhou, 510440, PR China
| | - Ziyin Li
- Affiliated Dongguan Hospital, Southern Medical University (Dongguan People's Hospital), Dongguan, 523059, PR China
| | - Qinzhi Wei
- Food Safety and Health Research Center, NMPA Key Laboratory for Safety Evaluation of Cosmetics, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, 510515, PR China
| | - Jia Song
- Food Safety and Health Research Center, NMPA Key Laboratory for Safety Evaluation of Cosmetics, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, 510515, PR China.
| | - Xingfen Yang
- Food Safety and Health Research Center, NMPA Key Laboratory for Safety Evaluation of Cosmetics, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, 510515, PR China.
| |
Collapse
|
7
|
Liu W, Wang X, Zhong H, Wang Z, Yang D, Xie C, Wang E, Sui H. Risk assessment of eighteen elements leaching from ceramic tableware in China. FOOD ADDITIVES & CONTAMINANTS. PART B, SURVEILLANCE 2023; 16:209-218. [PMID: 37102322 DOI: 10.1080/19393210.2023.2202195] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Accepted: 04/10/2023] [Indexed: 04/28/2023]
Abstract
Ceramic products are among the most frequently used food contact materials. Health risks associated with ceramic tableware usually arise from the migration of heavy metals. In this study, 767 pieces of ceramic tableware of different shapes and types were collected across China, and the migration levels of 18 elements were determined using inductively coupled plasma mass spectrometry. Migration tests were conducted according to the Chinese National Food Safety Standard - Ceramic Ware (GB 4806.4) with microwaveable and non-microwavable samples under different conditions. The food consumption of consumers via different shapes of ceramic tableware was obtained through a self-reported web-based survey, and the estimated dietary intakes of the studied elements were calculated accordingly. The exposure assessment showed that certain metals leached from the ceramic tableware at levels of concern. In addition, the applicability of the migration experiment conditions for microwaveable ceramic ware in GB 4806.4 needs to be further investigated.
Collapse
Affiliation(s)
- Wei Liu
- Institute of Nutrition and Food Hygiene, Beijing Center for Disease Control and Prevention, Beijing, China
- NHC Key Laboratory of Food Safety Risk Assessment, China National Center for Food Safety Risk Assessment, Beijing, China
| | - Xiuli Wang
- Laboratory of Chemical Detection, Anhui Provincial Center for Disease Control and Prevention , Hefei , China
| | - Huaining Zhong
- National Reference Laboratory for Food Contact Material (Guangdong), Guangzhou Customs Technology Center , Guangzhou , China
| | - Zhaohui Wang
- Institute of Packaging and Daily-use Chemical Testing, Beijing Products Quality Supervision and Inspection Institute , Beijing , China
| | - Daoyuan Yang
- NHC Key Laboratory of Food Safety Risk Assessment, China National Center for Food Safety Risk Assessment, Beijing, China
| | - Canghao Xie
- National Reference Laboratory for Food Contact Material (Guangdong), Guangzhou Customs Technology Center , Guangzhou , China
| | - Ee Wang
- Institute of Packaging and Daily-use Chemical Testing, Beijing Products Quality Supervision and Inspection Institute , Beijing , China
| | - Haixia Sui
- NHC Key Laboratory of Food Safety Risk Assessment, China National Center for Food Safety Risk Assessment, Beijing, China
| |
Collapse
|
8
|
Marini HR, Bellone F, Catalano A, Squadrito G, Micali A, Puzzolo D, Freni J, Pallio G, Minutoli L. Nutraceuticals as Alternative Approach against Cadmium-Induced Kidney Damage: A Narrative Review. Metabolites 2023; 13:722. [PMID: 37367879 DOI: 10.3390/metabo13060722] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 05/08/2023] [Accepted: 05/29/2023] [Indexed: 06/28/2023] Open
Abstract
Cadmium (Cd) represents a public health risk due to its non-biodegradability and long biological half-life. The main target of Cd is the kidney, where it accumulates. In the present narrative review, we assessed experimental and clinical data dealing with the mechanisms of kidney morphological and functional damage caused by Cd and the state of the art about possible therapeutic managements. Intriguingly, skeleton fragility related to Cd exposure has been demonstrated to be induced both by a direct Cd toxic effect on bone mineralization and by renal failure. Our team and other research groups studied the possible pathophysiological molecular pathways induced by Cd, such as lipid peroxidation, inflammation, programmed cell death, and hormonal kidney discrepancy, that, through further molecular crosstalk, trigger serious glomerular and tubular injury, leading to chronic kidney disease (CKD). Moreover, CKD is associated with the presence of dysbiosis, and the results of recent studies have confirmed the altered composition and functions of the gut microbial communities in CKD. Therefore, as recent knowledge demonstrates a strong connection between diet, food components, and CKD management, and also taking into account that gut microbiota are very sensitive to these biological factors and environmental pollutants, nutraceuticals, mainly present in foods typical of the Mediterranean diet, can be considered a safe therapeutic strategy in Cd-induced kidney damage and, accordingly, could help in the prevention and treatment of CKD.
Collapse
Affiliation(s)
- Herbert Ryan Marini
- Department of Clinical and Experimental Medicine, University of Messina, 98125 Messina, Italy
| | - Federica Bellone
- Department of Clinical and Experimental Medicine, University of Messina, 98125 Messina, Italy
| | - Antonino Catalano
- Department of Clinical and Experimental Medicine, University of Messina, 98125 Messina, Italy
| | - Giovanni Squadrito
- Department of Clinical and Experimental Medicine, University of Messina, 98125 Messina, Italy
| | - Antonio Micali
- Department of Human Pathology of Adult and Childhood, University of Messina, 98125 Messina, Italy
| | - Domenico Puzzolo
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, 98125 Messina, Italy
| | - José Freni
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, 98125 Messina, Italy
| | - Giovanni Pallio
- Department of Clinical and Experimental Medicine, University of Messina, 98125 Messina, Italy
| | - Letteria Minutoli
- Department of Clinical and Experimental Medicine, University of Messina, 98125 Messina, Italy
| |
Collapse
|
9
|
Xu K, Gao B, Liu T, Li J, Xiang Y, Fu Y, Zhao M. Association of blood mercury levels with bone mineral density in adolescents aged 12-19. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:46933-46939. [PMID: 36735129 DOI: 10.1007/s11356-023-25701-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Accepted: 01/30/2023] [Indexed: 06/18/2023]
Abstract
Bone mass increases rapidly in adolescence, and achieving higher bone mineral density (BMD) during this period can help prevent osteoporosis. However, the effects of metallic mercury on bone health remain controversial. Previous studies have discussed perimenopausal women and older adults, while the association of blood mercury with BMD in adolescents is yet to be studied. Date was collected from the National Health and Nutrition Examination Survey (NHANES) 2011-2018. Weighted multiple linear regression models were used to explore the association of blood mercury levels with BMD in adolescents, while smooth curve fittings and weighted generalized additive models were used to identify the potential nonlinear association. We found that blood mercury levels were negatively associated with BMD in adolescents, though not significantly, based on the results of statistical analyses of 2818 participants. Additionally, the trend in BMD with changes in blood mercury was different in male and female adolescents. We also found an inverted U-shaped association between blood mercury and BMD in male and Mexican-American adolescents. This suggests that increased blood mercury levels within a range may benefit bone health in male adolescents (inflection point: 5.44 nmol/L) and Mexican-American adolescents (inflection point: 5.49 nmol/L), while higher blood mercury levels may harm bone health. More prospective research is needed to confirm our findings.
Collapse
Affiliation(s)
- Ke Xu
- Department of Pediatrics, The Third Xiangya Hospital, Central South University, Changsha, 410013, Hunan, China
- Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Bingqian Gao
- Department of Pediatrics, The Third Xiangya Hospital, Central South University, Changsha, 410013, Hunan, China
- Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Tingfeng Liu
- Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Jiayi Li
- Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Yixin Xiang
- Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Yicheng Fu
- Department of Pediatrics, Wuhan University Renmin Hospital, Wuhan University, Wuhan, 430060, Hubei, China
| | - Mingyi Zhao
- Department of Pediatrics, The Third Xiangya Hospital, Central South University, Changsha, 410013, Hunan, China.
| |
Collapse
|
10
|
Skrajnowska D, Idkowiak J, Szterk A, Ofiara K, Augustyniak K, Bobrowska-Korczak B. Effect of Nano- and Microzinc Supplementation on the Mineral Composition of Bones of Rats with Induced Mammary Gland Cancer. Foods 2023; 12:foods12061348. [PMID: 36981273 PMCID: PMC10047967 DOI: 10.3390/foods12061348] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 03/15/2023] [Accepted: 03/20/2023] [Indexed: 03/30/2023] Open
Abstract
BACKGROUND The aim of this study was to determine changes in the mineral composition of the bones of rats with chemically induced mammary gland cancer and to attempt to establish whether a specific diet modification involving the inclusion of zinc ions in two forms-nano and micro-will affect the mineral composition of the bones. METHODS Female Sprague-Dawley rats were used for the research. The animals were randomly assigned to three experimental groups. All animals were fed a standard diet (Labofeed H), and selected groups additionally received zinc nanoparticles or microparticles in the amount of 4.6 mg/mL. To induce mammary cancer, the animals were given 7,12-dimethyl-1,2-benz[a]anthracene. The content of Ag, As, B, Ba, Cd, Cr, Cu, Mn, Ni, Pb, Rb, Se, Sr, Tl, U, and V was determined using ICP-MS, while that of Ca, Fe, K, Mg, Na, and Zn was determined using FAAS. RESULTS The use of a diet enriched with zinc nano- or microparticles significantly influenced the content of the elements tested. In the bones of rats fed a diet with zinc nanoparticles, changes were found in the content of Ca, Mg, Zn, Cd, U, V, and Tl, while in the case of the diet supplemented with zinc microparticles, there were differences in six elements-Ca, Mg, B, Cd, Ag, and Pb-compared to animals receiving an unsupplemented diet. CONCLUSIONS The content of elements in the bone tissue of rats in the experimental model indicates disturbances of mineral metabolism in the tissue at an early stage of mammary cancer.
Collapse
Affiliation(s)
- Dorota Skrajnowska
- Department of Toxicology and Food Science, Faculty of Pharmacy, Medical University of Warsaw, Banacha 1, 02-097 Warsaw, Poland
| | - Jakub Idkowiak
- Department of Analytical Chemistry, Faculty of Chemical Technology, University of Pardubice, Studentská 573, CZ-532 10 Pardubice, Czech Republic
| | - Arkadiusz Szterk
- Transfer of Science sp. z o. o., Strzygłowska 15, 04-872 Warsaw, Poland
| | - Karol Ofiara
- Transfer of Science sp. z o. o., Strzygłowska 15, 04-872 Warsaw, Poland
| | - Kinga Augustyniak
- Department of Toxicology and Food Science, Faculty of Pharmacy, Medical University of Warsaw, Banacha 1, 02-097 Warsaw, Poland
| | - Barbara Bobrowska-Korczak
- Department of Toxicology and Food Science, Faculty of Pharmacy, Medical University of Warsaw, Banacha 1, 02-097 Warsaw, Poland
| |
Collapse
|
11
|
Ciosek Ż, Kot K, Rotter I. Iron, Zinc, Copper, Cadmium, Mercury, and Bone Tissue. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:2197. [PMID: 36767564 PMCID: PMC9915283 DOI: 10.3390/ijerph20032197] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 01/13/2023] [Accepted: 01/24/2023] [Indexed: 06/18/2023]
Abstract
The paper presents the current understanding on the effects of five metals on bone tissue, namely iron, zinc, copper, cadmium, and mercury. Iron, zinc, and copper contribute significantly to human and animal metabolism when present in sufficient amounts, but their excess or shortage increases the risk of developing bone disorders. In contrast, cadmium and mercury serve no physiological purpose and their long-term accumulation damages the osteoarticular system. We discuss the methods of action and interactions between the discussed elements as well as the concentrations of each element in distinct bone structures.
Collapse
Affiliation(s)
- Żaneta Ciosek
- Chair and Department of Medical Rehabilitation and Clinical Physiotherapy, Pomeranian Medical University in Szczecin, Żołnierska 54, 70-210 Szczecin, Poland
| | - Karolina Kot
- Department of Biology and Medical Parasitology, Pomeranian Medical University in Szczecin, Powstańców Wielkopolskich 72, 70-111 Szczecin, Poland
| | - Iwona Rotter
- Chair and Department of Medical Rehabilitation and Clinical Physiotherapy, Pomeranian Medical University in Szczecin, Żołnierska 54, 70-210 Szczecin, Poland
| |
Collapse
|
12
|
Lawless L, Xie L, Zhang K. The inter- and multi- generational epigenetic alterations induced by maternal cadmium exposure. Front Cell Dev Biol 2023; 11:1148906. [PMID: 37152287 PMCID: PMC10157395 DOI: 10.3389/fcell.2023.1148906] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 04/12/2023] [Indexed: 05/09/2023] Open
Abstract
Exposure to cadmium during pregnancy, from environmental or lifestyle factors, has been shown to have detrimental fetal and placental developmental effects, along with negatively impacting maternal health during gestation. Additionally, prenatal cadmium exposure places the offspring at risk for developing diseases in infancy, adolescence, and adulthood. Although given much attention, the underlying mechanisms of cadmium-induced teratogenicity and disease development remain largely unknown. Epigenetic changes in DNA, RNA and protein modifications have been observed during cadmium exposure, which implies a scientific premise as a conceivable mode of cadmium toxicity for developmental origins of health and disease (DOHaD). This review aims to examine the literature and provide a comprehensive overview of epigenetic alterations induced by prenatal cadmium exposure, within the developing fetus and placenta, and the continued effects observed in childhood and across generations.
Collapse
Affiliation(s)
- Lauren Lawless
- Institute of Bioscience and Technology, Texas A&M University, Houston, TX, United States
- Department of Nutrition, Texas A&M University, College Station, TX, United States
| | - Linglin Xie
- Department of Nutrition, Texas A&M University, College Station, TX, United States
| | - Ke Zhang
- Institute of Bioscience and Technology, Texas A&M University, Houston, TX, United States
- Department of Nutrition, Texas A&M University, College Station, TX, United States
- *Correspondence: Ke Zhang,
| |
Collapse
|
13
|
Kunioka CT, Manso MC, Carvalho M. Association between Environmental Cadmium Exposure and Osteoporosis Risk in Postmenopausal Women: A Systematic Review and Meta-Analysis. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 20:485. [PMID: 36612804 PMCID: PMC9820024 DOI: 10.3390/ijerph20010485] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 12/21/2022] [Accepted: 12/22/2022] [Indexed: 06/17/2023]
Abstract
Osteoporosis is a common and serious health issue among postmenopausal women. We conducted a systematic review and meta-analysis study to determine whether environmental exposure to cadmium (Cd) is a risk factor for postmenopausal osteoporosis. A PROSPERO-registered review of the literature was performed on studies evaluating the relationship between urinary Cd (UCd) concentration, an indicator of long-term Cd exposure, and bone mineral density or osteoporosis in women aged 50 years and older. PubMed, Embase, Science Direct, Web of Science, and B-on databases were searched for articles published between 2008 and 2021. The association between UCd levels and osteoporosis risk was assessed by pooled odds ratio (OR) and 95% confidence interval (CI) using random-effect models. Ten cross-sectional studies were included in the qualitative analysis, of which five were used for meta-analysis. We separately assessed the risk of osteoporosis in women exposed to Cd at low environmental levels (n = 5895; UCd ≥ 0.5 μg/g creatinine versus UCd < 0.5 μg/g creatinine) and high environmental levels (n = 1864; UCd ≥ 5 μg/g creatinine versus UCd < 5 μg/g creatinine). The pooled OR for postmenopausal osteoporosis was 1.95 (95% CI: 1.39−2.73, p < 0.001) in the low exposure level group and 1.99 (95% CI: 1.04−3.82, p = 0.040) in the high exposure level group. This study indicates that environmental Cd exposure, even at low levels, may be a risk factor for osteoporosis in postmenopausal women. Further research based on prospective studies is needed to validate these findings.
Collapse
Affiliation(s)
- Carlos Tadashi Kunioka
- FP-I3ID, FP-BHS, University Fernando Pessoa, 4249-004 Porto, Portugal
- Western Paraná State University (UNIOESTE), Cascavel 85819-110, Paraná, Brazil
| | - Maria Conceição Manso
- FP-I3ID, FP-BHS, University Fernando Pessoa, 4249-004 Porto, Portugal
- Faculty of Health Sciences, University Fernando Pessoa, 4200-150 Porto, Portugal
- LAQV, REQUIMTE, University of Porto, 4050-313 Porto, Portugal
| | - Márcia Carvalho
- FP-I3ID, FP-BHS, University Fernando Pessoa, 4249-004 Porto, Portugal
- Faculty of Health Sciences, University Fernando Pessoa, 4200-150 Porto, Portugal
- Associate Laboratory i4HB-Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
- UCIBIO-REQUIMTE, Laboratory of Toxicology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
| |
Collapse
|
14
|
Elturki MA. Using Peromyscus leucopus as a biomonitor to determine the impact of heavy metal exposure on the kidney and bone mineral density: results from the Tar Creek Superfund Site. PeerJ 2022; 10:e14605. [PMID: 36570008 PMCID: PMC9774004 DOI: 10.7717/peerj.14605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Accepted: 11/29/2022] [Indexed: 12/23/2022] Open
Abstract
Background Human population growth and industrialization contribute to increased pollution of wildlife habitats. Heavy metal exposure from industrial and environmental sources is still a threat to public health, increasing disease susceptibility. In this study, I investigated the effects of heavy metals (cadmium (Cd), lead (Pb), and zinc (Zn)) on kidney and bone density. Objective This study aims to determine the concentrations of Cd, Pb, and Zn in soil and compare them to the levels of the same metals in Peromyscus leucopus kidney tissue. Furthermore, the study seeks to investigate the impact of heavy metals on bone density and fragility using the fourth lumbar vertebra (L4) of P. leucopus. Methods Cd, Pb, and Zn concentrations in soil specimens collected from Tar Creek Superfund Site (TCSFS), Beaver Creek (BC), and two reference sites (Oologah Wildlife Management Area (OWMA) and Sequoyah National Wildlife Refuge (SNWR)). Heavy metal concentrations were analyzed using inductively coupled plasma-mass spectroscopy (ICP-MS). Micro-computed tomography (µCT) was used to assess the influence of heavy metals on bone fragility and density. Results On the one hand, soil samples revealed that Pb is the most common pollutant in the sediment at all of the investigated sites (the highest contaminated site with Pb was TCSFS). Pb levels in the soil of TCSFS, BC, OWMA, and SNWR were found to be 1,132 ± 278, 6.4 ± 1.1, and 2.3 ± 0.3 mg/kg in the soil of TCSFS, BC and OWMA and SNWR, respectively. This is consistent with the fact that Pb is one of the less mobile heavy metals, causing its compounds to persist in soils and sediments and being barely influenced by microbial decomposition. On the other hand, the kidney samples revealed greater Cd levels, even higher than those found in the soil samples from the OWMA and SNWR sites. Cd concentrations in the kidney specimens were found to be 4.62 ± 0.71, 0.53 ± 0.08, and 0.53 ± 0.06 µg/kg, respectively. In addition, micro-CT analysis of L4 from TCSFS showed significant Pearson's correlation coefficients between Cd concentrations and trabecular bone number (-0.67, P ≤ 0.05) and trabecular separation (0.72, P ≤ 0.05). The results showed no correlation between bone parameters and metal concentrations at reference sites. This study is one of the few that aims to employ bone architecture as an endpoint in the field of biomonitoring. Furthermore, this study confirmed some earlier research by demonstrating substantial levels of heavy metal contamination in soil samples, kidney samples, and P. leucopus L4 trabecular bone separations from TCSFS. Moreover, this is the first study to record information regarding bone microarchitecture parameters in P. leucopus in North America.
Collapse
Affiliation(s)
- Maha Abdulftah Elturki
- Department of Environmental Sciences, Oklahoma State University, Stillwater, Oklahoma, United States,Department of Integrative Biology, Oklahoma State University, Stillwater, Oklahoma, United States,Zoology Department, Faculty of Science, University of Benghazi, Benghazi, Libya
| |
Collapse
|
15
|
Zhu K, Zhang Y, Lu Q, Geng T, Li R, Wan Z, Zhang X, Liu Y, Li L, Qiu Z, He M, Liu L, Pan A, Liu G. Associations of exposure to lead and cadmium with risk of all-cause and cardiovascular disease mortality among patients with type 2 diabetes. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:76805-76815. [PMID: 35670945 DOI: 10.1007/s11356-022-21273-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 05/31/2022] [Indexed: 06/15/2023]
Abstract
The aim of this paper is to investigate the associations of lead and cadmium exposure with all-cause and cardiovascular disease (CVD) mortality among adults with type 2 diabetes (T2D). The prospective cohort study included participants with T2D (n = 7420 for blood lead; n = 5113 for blood cadmium) from the National Health and Nutrition Examination Survey (NHANES) III and NHANES 1999-2014. Death outcomes were ascertained through linkage with the National Death Index records. The geometric mean (interquartile range) concentrations of blood lead and cadmium were 19.6 (11.8, 35.0) μg/L and 0.39 (0.21, 0.60) μg/L, respectively. During 72,279 and 37,017 person-years of followup, 2818 all-cause deaths (including 832 CVD deaths) for blood lead and 1237 all-cause deaths (including 319 CVD deaths) for blood cadmium were documented, respectively. Comparing extreme quartiles, the multivariable-adjusted hazard ratios (HRs) and 95% confidence intervals (CIs) of all-cause mortality were 1.51 (1.25, 1.82) for blood lead (Ptrend < 0.001) and 1.58 (1.22, 2.03) for blood cadmium (Ptrend < 0.001); and the HRs (95% CIs) of CVD mortality were 2.27 (1.54, 3.34) for blood lead (Ptrend < 0.001) and 1.78 (1.04, 3.03) for blood cadmium (Ptrend = 0.07). In the joint analysis, compared with participants in the lowest tertiles of blood lead and cadmium, participants in the highest tertiles had a HR (95% CI) of 2.09 (1.35, 3.24) for all-cause mortality. Exposure to lead and cadmium alone or in combination was significantly associated with higher risk of mortality among patients with T2D. These findings imply that minimizing exposure to lead and cadmium may aid in the prevention of premature death among individuals with diabetes.
Collapse
Affiliation(s)
- Kai Zhu
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, Ministry of Education Key Lab of Environment and Health, and State Key Laboratory of Environment Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan, 430030, China
| | - Yuge Zhang
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, Ministry of Education Key Lab of Environment and Health, and State Key Laboratory of Environment Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan, 430030, China
- Department of Epidemiology, School of Public Health, Fudan University, Shanghai, China
| | - Qi Lu
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, Ministry of Education Key Lab of Environment and Health, and State Key Laboratory of Environment Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan, 430030, China
| | - Tingting Geng
- Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Rui Li
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, Ministry of Education Key Lab of Environment and Health, and State Key Laboratory of Environment Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan, 430030, China
| | - Zhenzhen Wan
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, Ministry of Education Key Lab of Environment and Health, and State Key Laboratory of Environment Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan, 430030, China
| | - Xuena Zhang
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, Ministry of Education Key Lab of Environment and Health, and State Key Laboratory of Environment Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan, 430030, China
| | - Yujie Liu
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, Ministry of Education Key Lab of Environment and Health, and State Key Laboratory of Environment Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan, 430030, China
| | - Lin Li
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, Ministry of Education Key Lab of Environment and Health, and State Key Laboratory of Environment Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan, 430030, China
| | - Zixin Qiu
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, Ministry of Education Key Lab of Environment and Health, and State Key Laboratory of Environment Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan, 430030, China
| | - Meian He
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Liegang Liu
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, Ministry of Education Key Lab of Environment and Health, and State Key Laboratory of Environment Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan, 430030, China
| | - An Pan
- Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Gang Liu
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, Ministry of Education Key Lab of Environment and Health, and State Key Laboratory of Environment Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan, 430030, China.
| |
Collapse
|
16
|
Schaefer HR, Flannery BM, Crosby L, Jones-Dominic OE, Punzalan C, Middleton K. A systematic review of adverse health effects associated with oral cadmium exposure. Regul Toxicol Pharmacol 2022; 134:105243. [PMID: 35981600 DOI: 10.1016/j.yrtph.2022.105243] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 07/22/2022] [Accepted: 07/25/2022] [Indexed: 10/15/2022]
Abstract
Scientific data characterizing the adverse health effects associated with dietary cadmium (Cd) exposure were identified in order to make informed decisions about the most appropriate toxicological reference value (TRV) for use in assessing dietary Cd exposure. Several TRVs are available for Cd and regulatory organizations have used epidemiologic studies to derive these reference values; however, risk of bias (RoB) evaluations were not included in the assessments. We performed a systematic review by conducting a thorough literature search (through January 4, 2020). There were 1714 references identified by the search strings and 328 studies identified in regulatory assessments. After applying the specific inclusion and exclusion criteria, 208 studies (Human: 105, Animal: 103) were considered eligible for further review and data extraction. For the epidemiologic and animal studies, the critical effects identified for oral Cd exposure from the eligible studies were a decrease in bone mineral density (BMD) and renal tubular degeneration. A RoB analysis was completed for 49 studies (30 epidemiological and 19 animal) investigating these endpoints. The studies identified through the SR that were considered high quality and low RoB (2 human and 5 animal) can be used to characterize dose-response relationships and inform the derivation of a Cd TRV.
Collapse
Affiliation(s)
- Heather R Schaefer
- US Food and Drug Administration, Center for Food Safety and Applied Nutrition, College Park, MD, USA.
| | - Brenna M Flannery
- US Food and Drug Administration, Center for Food Safety and Applied Nutrition, College Park, MD, USA
| | - Lynn Crosby
- US Food and Drug Administration, Center for Food Safety and Applied Nutrition, College Park, MD, USA
| | - Olivia E Jones-Dominic
- US Food and Drug Administration, Center for Food Safety and Applied Nutrition, College Park, MD, USA
| | - Cecile Punzalan
- US Food and Drug Administration, Center for Food Safety and Applied Nutrition, College Park, MD, USA
| | - Karlyn Middleton
- US Food and Drug Administration, Center for Food Safety and Applied Nutrition, College Park, MD, USA
| |
Collapse
|
17
|
Li R, Yu S, Liang X, Li Y, Lai KP. Vitamin C exerts anti-cadmium induced fracture functions/targets: bioinformatic and biostructural findings. FOOD SCIENCE AND HUMAN WELLNESS 2022. [DOI: 10.1016/j.fshw.2022.04.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
18
|
Pouillot R, Santillana Farakos S, Van Doren JM. Modeling the risk of low bone mass and osteoporosis as a function of urinary cadmium in U.S adults aged 50-79 years. ENVIRONMENTAL RESEARCH 2022; 212:113315. [PMID: 35436451 DOI: 10.1016/j.envres.2022.113315] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 03/03/2022] [Accepted: 04/11/2022] [Indexed: 06/14/2023]
Abstract
We developed an association model to estimate the risk of femoral neck low bone mass and osteoporosis from exposure to cadmium for women and men aged 50-79 in the U.S, as a function of the urinary cadmium (U-Cd) levels. We analyzed data from the NHANES 2005-2014 surveys and evaluated the relationship between U-Cd and femoral neck bone mineral density (BMD) using univariate and multivariate regression models with a combination of NHANES cycle, gender, age, smoking, race/ethnicity, height, body weight, body mass index, lean body mass, diabetes, kidney disease, physical activity, menopausal status, hormone replacement therapy, urinary lead, and prednisone intake as confounding variables. The regression coefficient between U-Cd and femoral neck BMD obtained with the best multivariate regression was used to develop an association model that can estimate the additional risk of low bone mass or osteoporosis in the population given a certain level of U-Cd. Results showed a linear relationship between U-Cd and BMD, conditional to body weight, where individuals with higher U-Cd had decreased BMD values. Our results do not support the hypothesis of a threshold for the effect of Cd on bone. Our model estimates that exposure to Cd results in an increase of 0.51 percentage points (CI95% 0.00, 0.92) of the population diagnosed with osteoporosis, compared to a theoretical absence of exposure. We estimate that 16% (CI95%: 0.00, 40%) of osteoporosis cases in the U.S. 50-79 aged population are a result of Cd exposure. This study presents the first continuous model estimating low bone mass and osteoporosis risk in the U.S. population given actual or potential changes in U-Cd levels. Our model will provide information to inform FDA's Closer to Zero initiative goal to reduce exposure to toxic elements.
Collapse
Affiliation(s)
- Régis Pouillot
- Division of Risk and Decision Analysis, Center for Food Safety and Applied Nutrition, U.S. Food and Drug Administration, College Park, MD, United States
| | - Sofia Santillana Farakos
- Division of Risk and Decision Analysis, Center for Food Safety and Applied Nutrition, U.S. Food and Drug Administration, College Park, MD, United States.
| | - Jane M Van Doren
- Division of Risk and Decision Analysis, Center for Food Safety and Applied Nutrition, U.S. Food and Drug Administration, College Park, MD, United States
| |
Collapse
|
19
|
Habibian Sezavar A, Abyareh M, Fahimi R, Nyasulu PS, Abyadeh M. The association between maternal cadmium exposure and small for gestational age: a systematic review and meta-analysis. INTERNATIONAL JOURNAL OF ENVIRONMENTAL HEALTH RESEARCH 2022; 32:1469-1477. [PMID: 33656412 DOI: 10.1080/09603123.2021.1892035] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Accepted: 02/13/2021] [Indexed: 06/12/2023]
Abstract
Several observational studies have found an association between maternal Cadmium (Cd) exposure and Small for Gestational Age (SGA). However, these findings are inconsistent. We conducted this meta-analysis to evaluate the relationship between maternal cadmium exposure and SGA risk. A comprehensive search was performed through PubMed, Scopus, Embase, Web of Science, Cochrane Library and OpenGrey to retrieve all pertinent studies published before October 2020. A combined odds ratio (OR) and corresponding 95% confidence interval (CI) were employed to examine this correlation. As a result, nine eligible studies met the inclusion criteria and were included in a systematic review, of those six studies containing sample type of blood were included in meta-analysis, and present meta-analysis showed that maternal cadmium exposure increased the risk of SGA 1.31 times (OR = 1.31; 95% CI = 1.16-1.47 for highest versus lowest category of cadmium). This meta-analysis suggests that maternal Cd exposure may be a risk factor for SGA. However, large prospective studies from different ethnic populations with consideration of other influencing parameters are needed to confirm this finding.
Collapse
Affiliation(s)
- Ahmad Habibian Sezavar
- Department of Toxicology & Pharmacology, Faculty of Pharmacy, Tehran University of Medical Sciences (TUMS), Tehran, Iran
| | - Mostafa Abyareh
- Department of Environment, Faculty of Natural Resources, Yazd University, Yazd, Iran
| | - Reza Fahimi
- Medical Research Center, Kateb University, Kabul, Afghanistan
| | - Peter Suwirakwenda Nyasulu
- Division of Epidemiology & Biostatistics, Faculty of Medicine & Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Morteza Abyadeh
- Department of Molecular Systems Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| |
Collapse
|
20
|
He S, Zhang K, Cao Y, Liu G, Zou H, Song R, Liu Z. Effect of cadmium on Rho GTPases signal transduction during osteoclast differentiation. ENVIRONMENTAL TOXICOLOGY 2022; 37:1608-1617. [PMID: 35257471 DOI: 10.1002/tox.23510] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 02/14/2022] [Accepted: 02/19/2022] [Indexed: 06/14/2023]
Abstract
Osteoclasts are the key target cells for cadmium (Cd)-induced bone metabolism diseases, while Rho GTPases play an important role in osteoclast differentiation and bone resorption. To identify new therapeutic targets of Cd-induced bone diseases; we evaluated signal transduction through Rho GTPases during osteoclast differentiation under the influence of Cd. In osteoclastic precursor cells, 10 nM Cd induced pseudopodia stretching, promoted cell migration, upregulated the levels of Cdc42, and RhoQ mRNAs and downstream Rho-associated coiled-coil kinase 1 (ROCK1) and ROCK2 proteins, and downregulated the actin-related protein 2/3 (ARP2/3) levels. Cd at 2 and 5 μM shortened the pseudopodia, inhibited cell migration, and decreased ROCK1, ROCK2, and ARP2/3 protein levels; Cd at 5 μM also reduced the mRNA expression levels of Rac1, Rac2, and RhoU mRNAs and decreased the level of phosphorylated (p)-cofilin. In osteoclasts, 10 nM Cd induced the formation of sealing zones, slightly upregulated Cdc42 mRNA levels and ROCK2 and ARP2/3 protein levels and significantly reduced p-cofilin levels. Cd at 2 μM and 5 μM Cd blocked the fusion of precursor cells; and 5 μM Cd downregulated the expression levels of RhoB, Rac1, Rac3, and RhoU mRNAs, and ROCK1, p-cofilin and ARP2/3 protein levels, significantly. In vivo, Cd (at 5 or 25 mg/L) increased the levels of key proteins RhoA, Rac1/2/3, Cdc42, and RhoU and their mRNAs in bone marrow cells. In summary, the results suggested that Cd affected the differentiation process of osteoclast and altered the expression of several Rho GTPases, which might be crucial targets of Cd during the differentiation of osteoclasts.
Collapse
Affiliation(s)
- Shuangjiang He
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu, China
| | - Kanglei Zhang
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu, China
| | - Ying Cao
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu, China
| | - Gang Liu
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu, China
| | - Hui Zou
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu, China
| | - Ruilong Song
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu, China
| | - Zongping Liu
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu, China
| |
Collapse
|
21
|
Long-Term Sex-Specific Effects of Cadmium Exposure on Osteoporosis and Bone Density: A 10-Year Community-Based Cohort Study. J Clin Med 2022; 11:jcm11102899. [PMID: 35629026 PMCID: PMC9145052 DOI: 10.3390/jcm11102899] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 05/16/2022] [Accepted: 05/18/2022] [Indexed: 11/17/2022] Open
Abstract
This study explored the long-term effects of cadmium (Cd) exposure on osteoporosis incidence and bone mineral density (BMD). This retrospective cohort study included men aged ≥50 years and post-menopausal women from the 2001−2002 Korea Genome and Epidemiology Study. Participants previously diagnosed with osteoporosis were excluded. Blood Cd concentrations were measured and categorized as <0.5, 0.5−1.0, and >1.0 μg/L. BMD was measured using quantitative ultrasound. Osteoporosis was diagnosed when the T-score was ≤−2.5. Confounders that affect exposure and outcome were controlled. Osteoporosis incidence and differences in BMD (ΔBMD) were assessed until 2012. The osteoporosis incidence among 243 participants who were followed up for an average of 6.3 years was 22.2%. In all the participants, a dose−response relationship was observed between blood Cd and incident osteoporosis and ΔBMD (both p-for-trend < 0.01). After adjusting for age, sex, smoking, physical activity, body mass index, creatinine, and baseline BMD, a blood Cd concentration of >1.0 μg/L was an independent risk factor for incident osteoporosis and decrements in ΔBMD. In women, blood Cd concentrations of >0.5 μg/L increased the risk for osteoporosis. Exposure to Cd prospectively increases the risk for osteoporosis and decrements of ΔBMD, particularly in women, even in lower doses of Cd.
Collapse
|
22
|
Human Biomonitoring Data in Health Risk Assessments Published in Peer-Reviewed Journals between 2016 and 2021: Confronting Reality after a Preliminary Review. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19063362. [PMID: 35329058 PMCID: PMC8955248 DOI: 10.3390/ijerph19063362] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 03/09/2022] [Accepted: 03/11/2022] [Indexed: 02/01/2023]
Abstract
Human biomonitoring (HBM) is a rapidly developing field that is emphasized as an important approach for the assessment of health risks. However, its value for health risk assessment (HRA) remains to be clarified. We performed a review of publications concerned with applications of HBM in the assessment of health risks. The selection of publications for this review was limited by the search engines used (only PubMed and Scopus) and a timeframe of the last five years. The review focused on the clarity of 10 HRA elements, which influence the quality of HRA. We show that the usage of HBM data in HRA is limited and unclear. Primarily, the key HRA elements are not consistently applied or followed when using HBM in such assessments, and secondly, there are inconsistencies regarding the understanding of fundamental risk analysis principles and good practices in risk analysis. Our recommendations are as follows: (i) potential usage of HBM data in HRA should not be non-critically overestimated but rather limited and aligned to a specific value for exposure assessment or for the interpretation of health damage; (ii) improvements to HRA approaches, using HBM information or not, are needed and should strictly follow theoretical foundations of risk analysis.
Collapse
|
23
|
Conley TE, Richardson C, Pacheco J, Dave N, Jursa T, Guazzetti S, Lucchini RG, Fendorf S, Ritchie RO, Smith DR. Bone manganese is a sensitive biomarker of ongoing elevated manganese exposure, but does not accumulate across the lifespan. ENVIRONMENTAL RESEARCH 2022; 204:112355. [PMID: 34774504 PMCID: PMC10413361 DOI: 10.1016/j.envres.2021.112355] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 10/10/2021] [Accepted: 11/06/2021] [Indexed: 06/13/2023]
Abstract
Studies have established associations between environmental and occupational manganese (Mn) exposure and executive and motor function deficits in children, adolescents, and adults. These health risks from elevated Mn exposure underscore the need for effective exposure biomarkers to improve exposure classification and help detect/diagnose Mn-related impairments. Here, neonate rats were orally exposed to 0, 25, or 50 mg Mn/kg/day during early life (PND 1-21) or lifelong through ∼ PND 500 to determine the relationship between oral Mn exposure and blood, brain, and bone Mn levels over the lifespan, whether Mn accumulates in bone, and whether elevated bone Mn altered the local atomic and mineral structure of bone, or its biomechanical properties. Additionally, we assessed levels of bone Mn compared to bone lead (Pb) in aged humans (age 41-91) living in regions impacted by historic industrial ferromanganese activity. The animal studies show that blood, brain, and bone Mn levels naturally decrease across the lifespan without elevated Mn exposure. With elevated exposure, bone Mn levels were strongly associated with blood Mn levels, bone Mn was more sensitive to elevated exposures than blood or brain Mn, and Mn did not accumulate with lifelong elevated exposure. Elevated early life Mn exposure caused some changes in bone mineral properties, including altered local atomic structure of hydroxyapatite, along with some biomechanical changes in bone stiffness in weanlings or young adult animals. In aged humans, blood Mn ranged from 5.4 to 23.5 ng/mL; bone Mn was universally low, and decreased with age, but did not vary based on sex or female parity history. Unlike Pb, bone Mn showed no evidence of accumulation over the lifespan, and may not be a biomarker of cumulative long-term exposure. Thus, bone may be a useful biomarker of recent ongoing Mn exposure in humans, and may be a relatively minor target of elevated exposure.
Collapse
Affiliation(s)
- Travis E Conley
- Department of Microbiology and Environmental Toxicology, University of California, Santa Cruz, CA, 95064, USA.
| | - Cardius Richardson
- Department of Microbiology and Environmental Toxicology, University of California, Santa Cruz, CA, 95064, USA
| | - Juan Pacheco
- Department of Earth System Science, Stanford University, Stanford, CA, 94305, USA
| | - Neil Dave
- Department of Materials Science & Engineering, University of California, Berkeley, CA, 94720, USA
| | - Thomas Jursa
- Department of Microbiology and Environmental Toxicology, University of California, Santa Cruz, CA, 95064, USA
| | - Stefano Guazzetti
- Department of Occupational and Environmental Medicine, University of Brescia, Spedali Civili 1, 25125, Brescia, Italy
| | - Roberto G Lucchini
- Department of Occupational and Environmental Medicine, University of Brescia, Spedali Civili 1, 25125, Brescia, Italy; Department of Environmental Health, Florida International University, Miami, FL, 33139, USA
| | - Scott Fendorf
- Department of Earth System Science, Stanford University, Stanford, CA, 94305, USA
| | - Robert O Ritchie
- Department of Materials Science & Engineering, University of California, Berkeley, CA, 94720, USA
| | - Donald R Smith
- Department of Microbiology and Environmental Toxicology, University of California, Santa Cruz, CA, 95064, USA.
| |
Collapse
|
24
|
Zhang H, Zhu K, Du J, Ou M, Hou J, Wang D, Wang J, Zhang W, Sun G. Serum concentrations of neonicotinoids and their characteristic metabolites in elderly population from South China: Association with osteoporosis. ENVIRONMENTAL RESEARCH 2022; 203:111772. [PMID: 34324851 DOI: 10.1016/j.envres.2021.111772] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 07/16/2021] [Accepted: 07/24/2021] [Indexed: 06/13/2023]
Abstract
Neonicotinoids (NEOs) are extensively applied in global agricultural production for pest control but have adverse effects on human health. In this study, the concentrations of six NEOs and three characteristic metabolites were investigated by collecting 200 serum samples from an elderly population in China. Results showed that the NEOs and their metabolites were widely detected (89%-98 %) in the serum samples from the osteoporosis (OP) (n = 120) and non-OP (n = 80) population, and their median concentrations ranged from 0.04 ng/mL to 5.99 ng/mL and 0.01 ng/mL to 2.02 ng/mL, respectively. N-desmethyl-acetamiprid (ACE-dm) was the most abundant NEOs in the serum samples. Gender-related differences were found in concentrations of most NEOs and their metabolites in serum, with males having higher target analytes than females. Significantly (p < 0.05) positive correlations were observed among most NEO concentrations, suggesting that exposure source of these substances is common or related. However, associations between the concentrations of characteristic metabolites and their corresponding NEOs were insignificant, probably because the exogenous intake are the primary sources of metabolites of NEOs instead of the internal biotransformation. The associations between NEO concentrations (i.e., ACE-dm, dinotefuran, and olefin-imidacloprid) and OP (OR = 2.33-6.92, 95 % CI = 0.37-16.9, p-trend < 0.05) indicate that NEO exposure is correlated with increased odds of prevalent OP. This study is the first to document the profiles of NEOs and their metabolites in serum samples collected from an elderly population in South China and examine the relationships between NEO exposure and OP.
Collapse
Affiliation(s)
- Hua Zhang
- The Biomedical Translational Research Institute, Jinan University Faculty of Medical Science, Jinan University, Guangzhou, 510632, PR China
| | - Kairui Zhu
- Department of Orthopedics, The First Affiliated Hospital Jinan University, Guangzhou, 510632, China
| | - Jiang Du
- Department of Orthopedics, The First Affiliated Hospital Jinan University, Guangzhou, 510632, China
| | - Maota Ou
- Department of Orthopedics, The First Affiliated Hospital Jinan University, Guangzhou, 510632, China
| | - Junlong Hou
- Department of Orthopedics, The First Affiliated Hospital Jinan University, Guangzhou, 510632, China
| | - Desheng Wang
- School of Environmental Science and Engineering, Sun Yat-Sen University, Guangzhou, 510275, PR China
| | - Jing Wang
- Department of Orthopedics, The First Affiliated Hospital Jinan University, Guangzhou, 510632, China.
| | - Wencai Zhang
- Department of Orthopedics, The First Affiliated Hospital Jinan University, Guangzhou, 510632, China.
| | - Guodong Sun
- The Fifth Affiliated Hospital (Heyuan Shenhe People's Hospital) Jinan University, Heyuan, 517000, China; Department of Orthopedics, The First Affiliated Hospital Jinan University, Guangzhou, 510632, China.
| |
Collapse
|
25
|
Torres-Rodríguez HF, Graniel-Amador MA, Cruz-Camacho CJ, Cantú-Martínez AA, Martínez-Martínez A, Petricevich VL, Montes S, Castañeda-Corral G, Jiménez-Andrade JM. Characterization of pain-related behaviors, changes in bone microarchitecture and sensory innervation induced by chronic cadmium exposure in adult mice. Neurotoxicology 2022; 89:99-109. [DOI: 10.1016/j.neuro.2022.01.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 01/05/2022] [Accepted: 01/19/2022] [Indexed: 11/25/2022]
|
26
|
Sun J, Fang R, Wang H, Xu DX, Yang J, Huang X, Cozzolino D, Fang M, Huang Y. A review of environmental metabolism disrupting chemicals and effect biomarkers associating disease risks: Where exposomics meets metabolomics. ENVIRONMENT INTERNATIONAL 2022; 158:106941. [PMID: 34689039 DOI: 10.1016/j.envint.2021.106941] [Citation(s) in RCA: 74] [Impact Index Per Article: 37.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 09/03/2021] [Accepted: 10/12/2021] [Indexed: 05/27/2023]
Abstract
Humans are exposed to an ever-increasing number of environmental toxicants, some of which have gradually been elucidated to be important risk factors for metabolic diseases, such as diabetes and obesity. These metabolism-sensitive diseases typically occur when key metabolic and signaling pathways were disrupted, which can be influenced by the exposure to contaminants such as endocrine disrupting chemicals (EDCs), along with genetic and lifestyle factors. This promotes the concept and research on environmental metabolism disrupting chemicals (MDCs). In addition, identifying endogenous biochemical markers of effect linked to disease states is becoming an important tool to screen the biological targets following environmental contaminant exposure, as well as to provide an overview of toxicity risk assessment. As such, the current review aims to contribute to the further understanding of exposome and human health and disease by characterizing environmental exposure and effect metabolic biomarkers. We summarized MDC-associated metabolic biomarkers in laboratory animal and human cohort studies using high throughput targeted and nontargeted metabolomics techniques. Contaminants including heavy metals and organohalogen compounds, especially EDCs, have been repetitively associated with metabolic disorders, whereas emerging contaminants such as perfluoroalkyl substances and microplastics have also been found to disrupt metabolism. In addition, we found major limitations in the effective identification of metabolic biomarkers especially in human studies, toxicological research on the mixed effect of environmental exposure has also been insufficient compared to the research on single chemicals. Thus, it is timely to call for research efforts dedicated to the study of combined effect and metabolic alterations for the better assessment of exposomic toxicology and health risks. Moreover, advanced computational and prediction tools, further validation of metabolic biomarkers, as well as systematic and integrative investigations are also needed in order to reliably identify novel biomarkers and elucidate toxicity mechanisms, and to further utilize exposome and metabolome profiling in public health and safety management.
Collapse
Affiliation(s)
- Jiachen Sun
- College of Marine Life Science, Ocean University of China, Qingdao, China
| | - Runcheng Fang
- Department of Toxicology, School of Public Health, Anhui Medical University, Hefei, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Hefei, China
| | - Hua Wang
- Department of Toxicology, School of Public Health, Anhui Medical University, Hefei, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Hefei, China
| | - De-Xiang Xu
- Department of Toxicology, School of Public Health, Anhui Medical University, Hefei, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Hefei, China
| | - Jing Yang
- State Environmental Protection Key Laboratory of Quality Control in Environmental, Monitoring, China National Environmental Monitoring Center, Beijing, China
| | - Xiaochen Huang
- School of Agriculture, Sun Yat-sen University, Guangzhou, China
| | - Daniel Cozzolino
- ARC Industrial Transformation Training Centre for Uniquely Australian Foods, Centre for Nutrition and Food Sciences, Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Coopers Plans, Australia
| | - Mingliang Fang
- School of Civil and Environmental Engineering, Nanyang Technological University, Singapore
| | - Yichao Huang
- Department of Toxicology, School of Public Health, Anhui Medical University, Hefei, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Hefei, China.
| |
Collapse
|
27
|
Luo H, Gu R, Ouyang H, Wang L, Shi S, Ji Y, Bao B, Liao G, Xu B. Cadmium exposure induces osteoporosis through cellular senescence, associated with activation of NF-κB pathway and mitochondrial dysfunction. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 290:118043. [PMID: 34479166 DOI: 10.1016/j.envpol.2021.118043] [Citation(s) in RCA: 62] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2020] [Revised: 08/03/2021] [Accepted: 08/23/2021] [Indexed: 06/13/2023]
Abstract
Cadmium (Cd) is a heavy metal toxicant as a common pollutant derived from many agricultural and industrial sources. The absorption of Cd takes place primarily through Cd-contaminated food and water and, to a significant extent, via inhalation of Cd-contaminated air and cigarette smoking. Epidemiological data suggest that occupational or environmental exposure to Cd increases the health risk for osteoporosis and spontaneous fracture such as itai-itai disease. However, the direct effects and underlying mechanism(s) of Cd exposure on bone damage are largely unknown. We used primary bone marrow-derived mesenchymal stromal cells (BMMSCs) and found that Cd significantly induced BMMSC cellular senescence through over-activation of NF-κB signaling pathway. Increased cell senescence was determined by production of senescence-associated secretory phenotype (SASP), cell cycle arrest and upregulation of p21/p53/p16INK4a protein expression. Additionally, Cd impaired osteogenic differentiation and increased adipogenesis of BMMSCs, and significantly induced cellular senescence-associated defects such as mitochondrial dysfunction and DNA damage. Sprague-Dawley (SD) rats were chronically exposed to Cd to verify that Cd significantly increased adipocyte number, and decreased mineralization tissues of bone marrow in vivo. Interestingly, we observed that Cd exposure remarkably retarded bone repair and regeneration after operation of skull defect. Notably, pretreatment of melatonin is able to partially prevent Cd-induced some senescence-associated defects of BMMSCs including mitochondrial dysfunction and DNA damage. Although Cd activated mammalian target of rapamycin (mTOR) pathway, rapamycin only partially ameliorated Cd-induced cell apoptosis rather than cellular senescence phenotypes of BMMSCs. In addition, a selective NF-κB inhibitor moderately alleviated Cd-caused the senescence-related defects of the BMMSCs. The study shed light on the action and mechanism of Cd on osteoporosis and bone ageing, and may provide a novel option to ameliorate the harmful effects of Cd exposure.
Collapse
Affiliation(s)
- Huigen Luo
- Hospital of Stomatology, Guanghua School of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Institute of Stomatological Research, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Renjie Gu
- Hospital of Stomatology, Guanghua School of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Institute of Stomatological Research, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Huiya Ouyang
- Hospital of Stomatology, Guanghua School of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Institute of Stomatological Research, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Lihong Wang
- Hospital of Stomatology, Guanghua School of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Institute of Stomatological Research, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Shanwei Shi
- Hospital of Stomatology, Guanghua School of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Institute of Stomatological Research, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Yuna Ji
- Hospital of Stomatology, Guanghua School of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Institute of Stomatological Research, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Baicheng Bao
- Hospital of Stomatology, Guanghua School of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Institute of Stomatological Research, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Guiqing Liao
- Hospital of Stomatology, Guanghua School of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Institute of Stomatological Research, Sun Yat-sen University, Guangzhou, Guangdong, China; Department of Oral and Maxillofacial Surgery, Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-sen University, Guangzhou, China
| | - Baoshan Xu
- Hospital of Stomatology, Guanghua School of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Institute of Stomatological Research, Sun Yat-sen University, Guangzhou, Guangdong, China.
| |
Collapse
|
28
|
Pollution and Risk Assessment of Heavy Metals in the Sediments and Soils around Tiegelongnan Copper Deposit, Northern Tibet, China. J CHEM-NY 2021. [DOI: 10.1155/2021/8925866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
The surface sediments of the Rongna River and the surface soils around the Tiegelongnan copper deposit were collected, and the heavy metals Cu, Zn, Pb, Cr, Cd, As, Hg, and Ni were measured for their concentrations and health risk assessment. When the Rongna River passed through the Cu deposit area, the concentrations of Cu, Zn, As, Cd, Ni, and Hg in the surface sediments increased significantly, and the concentrations of Cu, Zn, and As exceeded the corresponding Grade II environmental quality standard. The heavy metals in the soil of the mining area were greater than the background value of the soil in Tibet. The geoaccumulation index indicated that the sediments of the river entering the mining area were very highly polluted by Cu and moderately polluted by Cd and Zn, and the soils in the mining area were moderately polluted by Cu. The potential ecological risk (PER) indices revealed that the sediments of the river entering the mining area had significantly high ecological risks, while the PER of the sediments away from the river section of the mining area was low, and the PER of the soils around the Cu deposit was moderate. The results of the health risk assessment indicated that the noncarcinogenic risks of heavy metals in sediments and soil of the mining area were within the acceptable range for adults and children. However, the carcinogenic risk of As and Cd in the sediment and As in the soil exceeds the relevant national standards, which may pose a certain risk to human health.
Collapse
|
29
|
Wang M, Zhou H, Cui W, Wang Z, Zhu G, Chen X, Jin T. Nomogram to Predict Cadmium-Induced Osteoporosis and Fracture in a Chinese Female Population. Biol Trace Elem Res 2021; 199:4028-4035. [PMID: 33415584 DOI: 10.1007/s12011-020-02533-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Accepted: 12/06/2020] [Indexed: 10/22/2022]
Abstract
Cadmium exposure may increase the risk of osteoporosis. However, there is no quick method to get bone mineral density (BMD) unless dual-energy X-ray absorptiometry (DXA) examinations were performed. In the present study, we aimed to identify associated factors to osteoporosis and fracture in a Chinese female population with cadmium exposure and develop nomograms to predict the risk. A total of 488 women was included in this study. Cadmium in blood (BCd) and urine (UCd) were determined as exposure biomarkers. BMD was determined using single-photon absorptiometry. Urinary N-acetyl-β-d-glucosaminidase (UNAG) and urinary albumin (UALB) were determined as renal function biomarkers. Osteoporosis was defined if T-score < - 2.5. Multiple logistic regression showed that age, BCd, and menopausal status were independent risk factors for osteoporosis. The odds (OR) value was 1.19 (95% confidence interval (CI): 1.14-1.25) for age, 1.05 (95% CI: 1.004-1.10) for BCd, and 4.75 (95% CI: 1.65-13.69) for menopausal status after adjusting with cofounders. Age and UCd were the independent risk factors for bone fracture. Nomograms were developed based on the associated factors. Age was the main determinant for osteoporosis or fracture. Receiver operating curve showed acceptable performance in predicting osteoporosis (area under the curve (AUC) = 0.93, 95CI: 0.90-0.96) and fracture (AUC = 0.67, 95% CI: 0.58-0.75). Linear discriminant analysis (LDA) further showed that 88.9% of osteoporosis and 68.4% of fractures were correctly classified. Our study develops nomograms that may be used to predict cadmium-induced osteoporosis or fracture if BMD data is not available.
Collapse
Affiliation(s)
- Miaomiao Wang
- Department of Radiology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210029, China
| | - Hao Zhou
- Department of Radiology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210029, China
| | - Wenjing Cui
- Department of Radiology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210029, China
| | - Zhongqiu Wang
- Department of Radiology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210029, China
| | - Guoying Zhu
- Institute of Radiation Medicine, Fudan University, 2094 Xietu Road, Shanghai, 200032, China
| | - Xiao Chen
- Department of Radiology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210029, China.
| | - Taiyi Jin
- Department of Occupational Medicine, School of Public Health, Shanghai Medical College of Fudan University, 150 Dongan Road, Shanghai, 200032, China
| |
Collapse
|
30
|
Gade M, Comfort N, Re DB. Sex-specific neurotoxic effects of heavy metal pollutants: Epidemiological, experimental evidence and candidate mechanisms. ENVIRONMENTAL RESEARCH 2021; 201:111558. [PMID: 34224706 PMCID: PMC8478794 DOI: 10.1016/j.envres.2021.111558] [Citation(s) in RCA: 62] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 05/14/2021] [Accepted: 06/17/2021] [Indexed: 05/19/2023]
Abstract
The heavy metals lead (Pb), mercury (Hg), and cadmium (Cd) are ubiquitous environmental pollutants and are known to exert severe adverse impacts on the nervous system even at low concentrations. In contrast, the heavy metal manganese (Mn) is first and foremost an essential nutrient, but it becomes neurotoxic at high levels. Neurotoxic metals also include the less prevalent metalloid arsenic (As) which is found in excessive concentrations in drinking water and food sources in many regions of the world. Males and females often differ in how they respond to environmental exposures and adverse effects on their nervous systems are no exception. Here, we review the different types of sex-specific neurotoxic effects, such as cognitive and motor impairments, that have been attributed to Pb, Hg, Mn, Cd, and As exposure throughout the life course in epidemiological as well as in experimental toxicological studies. We also discuss differential vulnerability to these metals such as distinctions in behaviors and occupations across the sexes. Finally, we explore the different mechanisms hypothesized to account for sex-based differential susceptibility including hormonal, genetic, metabolic, anatomical, neurochemical, and epigenetic perturbations. An understanding of the sex-specific effects of environmental heavy metal neurotoxicity can aid in the development of more efficient systematic approaches in risk assessment and better exposure mitigation strategies with regard to sex-linked susceptibilities and vulnerabilities.
Collapse
Affiliation(s)
- Meethila Gade
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, NY, USA
| | - Nicole Comfort
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, NY, USA
| | - Diane B Re
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, NY, USA; NIEHS Center of Northern Manhattan, Columbia University, New York, NY, USA; Motor Neuron Center for Biology and Disease, Columbia University, New York, NY, USA.
| |
Collapse
|
31
|
Garcia-Garin O, Borrell A, Vighi M, Aguilar A, Valdivia M, González EM, Drago M. Long-term assessment of trace elements in franciscana dolphins from the Río de la Plata estuary and adjacent Atlantic waters. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 788:147797. [PMID: 34134375 DOI: 10.1016/j.scitotenv.2021.147797] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 05/07/2021] [Accepted: 05/09/2021] [Indexed: 06/12/2023]
Abstract
The estuary of Río de la Plata, in the eastern coast of South America, is a highly anthropized area that brings a high load of contaminants to the surrounding waters, which may have detrimental effects on the local marine fauna. The franciscana dolphin (Pontoporia blainvillei) is a small cetacean species endemic of the southwestern Atlantic Ocean listed as Vulnerable in the IUCN red list. In this study, we assessed the concentrations of 13 trace elements in bone samples from 100 franciscana dolphins that were found stranded dead or incidentally bycaught in the Río de la Plata and adjacent coast between 1953 and 2015. Elements were, in decreasing order of mean concentrations: Zn > Sr > Fe > Al > Mn > Cu > Pb > Cr > Ni > As > Hg > Cd > Se. The concentrations of Al, Cr and Fe were slightly higher in females than in males. The concentrations of As, Ni, and Pb significantly decreased with body length. Throughout the study period, the concentrations of Al, Cr, Cu, Fe, Mn and Ni significantly increased, while the concentrations of As, Pb and Sr significantly decreased. The increasing trends may be due to increased inputs from river discharges, the leather industry and petroleum refineries, while the decrease in Pb may be due to the ban in the use of this element as an additive in gasoline and as component of car batteries. This investigation supports the validity of analysing trace element in bone, a tissue available in scientific collections and museums, to retrospectively examine variation over long temporal scales and thus assess long-term trends in pollution.
Collapse
Affiliation(s)
- Odei Garcia-Garin
- Department of Evolutionary Biology, Ecology and Environmental Sciences, and Biodiversity Research Institute (IRBio), Faculty of Biology, University of Barcelona, 08028 Barcelona, Spain.
| | - Asunción Borrell
- Department of Evolutionary Biology, Ecology and Environmental Sciences, and Biodiversity Research Institute (IRBio), Faculty of Biology, University of Barcelona, 08028 Barcelona, Spain
| | - Morgana Vighi
- Department of Evolutionary Biology, Ecology and Environmental Sciences, and Biodiversity Research Institute (IRBio), Faculty of Biology, University of Barcelona, 08028 Barcelona, Spain
| | - Alex Aguilar
- Department of Evolutionary Biology, Ecology and Environmental Sciences, and Biodiversity Research Institute (IRBio), Faculty of Biology, University of Barcelona, 08028 Barcelona, Spain
| | - Meica Valdivia
- National Museum of Natural History (MNHN), 11000 Montevideo, Uruguay
| | | | - Massimiliano Drago
- Department of Evolutionary Biology, Ecology and Environmental Sciences, and Biodiversity Research Institute (IRBio), Faculty of Biology, University of Barcelona, 08028 Barcelona, Spain
| |
Collapse
|
32
|
Osorio-Yáñez C, Sanchez-Guerra M, Solano M, Baccarelli A, Wright R, Sanders AP, Tellez-Rojo MM, Tamayo-Ortiz M. Metal exposure and bone remodeling during pregnancy: Results from the PROGRESS cohort study. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 282:116962. [PMID: 33823308 PMCID: PMC11064930 DOI: 10.1016/j.envpol.2021.116962] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2020] [Revised: 02/20/2021] [Accepted: 03/15/2021] [Indexed: 06/12/2023]
Abstract
Pregnancy is characterized by high bone remodeling and might be a window of susceptibility to the toxic effects of metals on bone tissue. The aim of this study was to assess associations between metals in blood [lead (Pb), cadmium (Cd)and arsenic (As)] and bone remodeling during pregnancy. We studied pregnant woman from the PROGRESS Cohort (Programming Research in Obesity, Growth, and Environment and Social Stress). We measured concentrations of metals in blood and obtained measures of bone remodeling by quantitative ultrasound (QUS) at the radius in the second and third trimester of pregnancy. To account for chronic lead exposure, we measured lead in tibia and patella one-month postpartum with K-shell X-ray fluorescence. We assessed cross-sectional and longitudinal associations between multiple-metal concentrations and QUS z-scores using linear regression models and linear mixed models adjusted for potential confounders. Third trimester blood Cd concentrations were marginal associated with lower QUS z-scores [-0.16 (95% CI: -0.33, 0.007); P-Value = 0.06]. Mixed models showed that blood Cd was longitudinally and marginally associated with an average of -0.10 z-score (95% CI: -0.21, 0.002; P-Value = 0.06) over the course of pregnancy. Associations for Pb and As were all inverse however none reached significance. Additionally, bone Pb concentrations in patella, an index of cumulative exposure, were significantly associated with -0.06 z-score at radius (95% CI: -0.10, -0.01; P-Value = 0.03) during pregnancy. Pb and Cd blood levels are associated with lower QUS distal radius z-scores in pregnant women. Bone Pb concentrations in patella were negatively associated with z-score at radius showing the long-term effects of Pb on bone tissue. However, we cannot exclude the possibility of reverse causality for patella Pb and radius z-score associations. Our results support the importance of reducing women's metal exposure during pregnancy, as metals exposure during pregnancy may have consequences for bone strength later in life. The main finding of our study is the association between Cd blood levels and radius z-score during pregnancy. Bone lead in patella was also negatively associated with radius z-scores.
Collapse
Affiliation(s)
- Citlalli Osorio-Yáñez
- Center for Nutrition and Health Research, National Institute of Public Health, Cuernavaca, Morelos, Mexico; Instituto de Investigaciones Biomedicas, Universidad Nacional Autonoma de Mexico (UNAM), Ciudad Universitaria S/N, Mexico
| | - Marco Sanchez-Guerra
- Department of Developmental Neurobiology, National Institute of Perinatology, Montes Urales 800, Lomas Virreyes, Mexico City, 1100, Mexico
| | - Maritsa Solano
- Center for Evaluation Research & Surveys, National Institute of Public Health, Cuernavaca, Morelos, 62100, Mexico
| | - Andrea Baccarelli
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, NY, USA
| | - Robert Wright
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, NY, 10029, USA; Department of Pediatrics, Icahn School of Medicine at Mount Sinai, NY, 10029, USA
| | - Alison P Sanders
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, NY, 10029, USA; Department of Pediatrics, Icahn School of Medicine at Mount Sinai, NY, 10029, USA
| | - Martha Maria Tellez-Rojo
- Center for Evaluation Research & Surveys, National Institute of Public Health, Cuernavaca, Morelos, 62100, Mexico.
| | - Marcela Tamayo-Ortiz
- Occupational Research Unit, Mexican Social Security Institute (IMSS), Mexico City, Mexico
| |
Collapse
|
33
|
Qing Y, Yang J, Zhu Y, Li Y, Zheng W, Wu M, He G. Dose-response evaluation of urinary cadmium and kidney injury biomarkers in Chinese residents and dietary limit standards. Environ Health 2021; 20:75. [PMID: 34193170 PMCID: PMC8247151 DOI: 10.1186/s12940-021-00760-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Accepted: 06/18/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND Cadmium (Cd) is a common heavy metal that mainly causes renal damage. There is a lack of research on the large-scale and systematic evaluation of the association between urinary Cd (U-Cd) and various effect biomarkers among Chinese residents. METHODS Based on the establishment process of dietary Cd limit standards by European Food Safety Authority (EFSA), the dose-response relationships between U-Cd and four biomarkers, β2-microglobulin (β2-MG), N-acetyl-β-glucosidase (NAG), microalbumin (mALB), and retinol binding Protein (RBP) were explored, respectively. Toxicokinetic model was used to derive the dietary Cd exposure limit for Chinese residents after critical U-Cd concentration was calculated. RESULTS As the sensitive biomarkers of renal injury, β2-MG and NAG were selected to estimate the 95% confidence interval lower limit of the U-Cd benchmark dose (BMDL5) to be 3.07 and 2.98 μg/g Cr, respectively. Dietary Cd exposure limit was calculated to be 0.28 μg/kg bw/day (16.8 μg/day, based on the body weight of 60 kg), which was lower than the average Chinese Cd exposure (30.6 μg/day) by the China National Nutrient and Health Survey. CONCLUSION This study established an overall association between U-Cd and renal injury biomarkers, and explored the Chinese dietary Cd exposure limits, which helps improve Chinese Cd exposure risk assessment and provides a reference basis for formulating reasonable exposure standards.
Collapse
Affiliation(s)
- Ying Qing
- School of Public Health/Key Laboratory of Public Health Safety, Ministry of Education, Department of Nutrition and Food Science, Fudan University, No. 130 Dongan Road, Shanghai, 200032 China
| | - Jiaqi Yang
- School of Public Health/Key Laboratory of Public Health Safety, Ministry of Education, Department of Nutrition and Food Science, Fudan University, No. 130 Dongan Road, Shanghai, 200032 China
| | - Yuanshen Zhu
- School of Public Health/Key Laboratory of Public Health Safety, Ministry of Education, Department of Nutrition and Food Science, Fudan University, No. 130 Dongan Road, Shanghai, 200032 China
| | - Yongzhen Li
- School of Public Health/Key Laboratory of Public Health Safety, Ministry of Education, Department of Nutrition and Food Science, Fudan University, No. 130 Dongan Road, Shanghai, 200032 China
| | - Weiwei Zheng
- Department of Environmental Health, School of Public Health, Fudan University, Shanghai, 200032 China
| | - Min Wu
- School of Public Health/Key Laboratory of Public Health Safety, Ministry of Education, Department of Nutrition and Food Science, Fudan University, No. 130 Dongan Road, Shanghai, 200032 China
| | - Gengsheng He
- School of Public Health/Key Laboratory of Public Health Safety, Ministry of Education, Department of Nutrition and Food Science, Fudan University, No. 130 Dongan Road, Shanghai, 200032 China
| |
Collapse
|
34
|
The Monitoring of Selected Heavy Metals Content and Bioavailability in the Soil-Plant System and Its Impact on Sustainability in Agribusiness Food Chains. SUSTAINABILITY 2021. [DOI: 10.3390/su13137021] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
This study assisted in identifying and preventing the increase in heavy metals in soil and winter wheat. Its accumulation can affect cultivated crops, quality and crop yields, and consumers’ health. Selected heavy metals were analyzed using the GTAAS method. They were undertaken on selected heavy metals content (Cd, Cu, Pb, and Zn) in arable soils at three sites in Slovakia and their accumulation in parts of cultivated winter wheat. Our study showed that the limit value of Cd in soil samples was exceeded in the monitored arable soils from 2017–2019. The average content values of Cu and Zn did not exceed the limit values, even in Pb values (except for the spring period). The analyses also showed that the heavy metals content for plants bioavailable in soil did not exceed the statutory critical values for Cd, Cu, and Zn’s average content values. However, Pb content exceeded permitted critical values. Heavy metals bioaccumulation (Zn, Cu) was within the limit values in wheat. Analyzed Cd content in wheat roots and Pb content were determined in all parts of wheat except grain. The study showed that grain from cultivated winter wheat in monitored arable soils is not a risk for consumers.
Collapse
|
35
|
Burden of osteoporosis and costs associated with human biomonitored cadmium exposure in three European countries: France, Spain and Belgium. Int J Hyg Environ Health 2021; 234:113747. [PMID: 33862487 DOI: 10.1016/j.ijheh.2021.113747] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 03/24/2021] [Accepted: 03/24/2021] [Indexed: 11/23/2022]
Abstract
Cadmium (Cd) is a toxic heavy metal widespread in the environment leading to human exposure in particular through diet (when smoking is excluded), as documented by recent human biomonitoring (HBM) surveys. Exposure to Cd at environmental low-exposure levels has been associated with adverse effects such as renal toxicity and more recently bone effects. The implication, even if limited, of Cd in the etiology of osteoporosis can be of high importance at the population level given the significant prevalence of osteoporosis and the ubiquitous and life-long exposure to Cd. Therefore, the osteoporosis cases attributable to Cd exposure was estimated in three European countries (Belgium, France and Spain), based on measured urinary Cd levels from HBM studies conducted in these countries. The targeted population was women over 55 years old, for which risk levels associated with environmental Cd exposure were available. Around 23% of the cases were attributed to Cd exposure. Moreover, in a prospective simulation approach of lifelong urinary Cd concentrations assuming different intakes scenarios, future osteoporosis attributable cases were calculated, based on urinary Cd levels measured in women aged under 55. Between 6 and 34% of the considered populations under 55 years were at risk for osteoporosis. Finally, the costs associated to the burden of osteoporosis-related fractures attributable to Cd for each country targeted in this paper were assessed, standing for a major contributing role of Cd exposure in the overall social costs related to osteoporosis. Absolute costs ranged between 0.12 (low estimate in Belgium) and 2.6 billion Euros (high estimate in France) in women currently over 55 years old and at risk for fractures. Our results support the importance of reducing exposure of the general population to Cd.
Collapse
|
36
|
Lv YJ, Song J, Xiong LL, Huang R, Zhu P, Wang P, Liang XX, Tan JB, Wang J, Wu SX, Wei QZ, Yang XF. Association of environmental cadmium exposure and bone remodeling in women over 50 years of age. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 211:111897. [PMID: 33493719 DOI: 10.1016/j.ecoenv.2021.111897] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 12/31/2020] [Accepted: 01/02/2021] [Indexed: 06/12/2023]
Abstract
Chronic cadmium (Cd) toxicity is a significant health concern, and the mechanism of long-term low-dose Cd exposure on bone has not been fully elucidated yet. This study aimed to assess the association between long-term environmental Cd exposure and bone remodeling in women who aged over 50. A total of 278 non-smoking subjects from Cd-polluted group (n = 191) and non-Cd polluted group (n = 87) were investigated. Bone mineral density (BMD), the levels of three bone turnover markers (BTMs), including total procollagen type 1 amino-terminal propeptide (P1NP), collagen type 1 cross-linked C-telopeptide (β-CTX), bone-specific alkaline phosphatase (BALP), together with serum soluble receptor activator of nuclear factor-κB ligand (sRANKL) and osteoprotegerin (OPG) were determined. Early markers of renal dysfunction were measured as well. Urinary Cd concentrations ranged from 0.41 to 87.31 μg/g creatinine, with a median of 4.91 μg/g creatinine. Age, BMD, T-score, and prevalence of osteoporosis showed no statistical differences among the quartiles of urinary Cd concentrations, while serum levels of P1NP, β-CTX, and OPG were higher in the upper quartiles. Multivariate linear regression models indicated significantly positive associations of urinary Cd concentration with serum levels of P1NP, β-CTX, BALP, sRANKL, and OPG. A ridge regression analysis with T-score and the three BTMs, sRANKL, and OPG, adjusted for age and body mass index (BMI), indicated that except for age and Cd exposure, β-CTX was a predictor of T-score. These findings demonstrated that Cd may directly accelerate bone remodeling. Serum β-CTX might be an appropriate biochemical marker for evaluating and monitoring Cd-related bone loss. Capsule: Cadmium (Cd) may directly accelerate bone remodeling and serum β-CTX is a valuable biochemical marker for evaluating Cd-related bone loss.
Collapse
Affiliation(s)
- Ying-Jian Lv
- Shenzhen Center for Disease Control and Prevention, Shenzhen, Guangdong, China
| | - Jia Song
- Food Safety and Health Research Center, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, Guangdong, China; Guangdong Provincial Center for Disease Control and Prevention, Guangzhou, Guangdong, China
| | - Li-Li Xiong
- Food Safety and Health Research Center, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, Guangdong, China
| | - Rui Huang
- Guangdong Provincial Institute of Public Health, Guangzhou, Guangdong, China
| | - Pan Zhu
- Guangdong Provincial Center for Disease Control and Prevention, Guangzhou, Guangdong, China
| | - Ping Wang
- Guangdong Provincial Institute of Public Health, Guangzhou, Guangdong, China
| | - Xu-Xia Liang
- Guangdong Provincial institute of biological products and materia medica, Guangzhou, Guangdong, China
| | - Jian-Bin Tan
- Guangdong Provincial Center for Disease Control and Prevention, Guangzhou, Guangdong, China
| | - Jing Wang
- Guangdong Provincial Center for Disease Control and Prevention, Guangzhou, Guangdong, China
| | - Shi-Xuan Wu
- School of public health, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Qin-Zhi Wei
- Food Safety and Health Research Center, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, Guangdong, China
| | - Xing-Fen Yang
- Food Safety and Health Research Center, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, Guangdong, China.
| |
Collapse
|
37
|
Ma Y, Ran D, Cao Y, Zhao H, Song R, Zou H, Gu J, Yuan Y, Bian J, Zhu J, Liu Z. The effect of P2X7 on cadmium-induced osteoporosis in mice. JOURNAL OF HAZARDOUS MATERIALS 2021; 405:124251. [PMID: 33168313 DOI: 10.1016/j.jhazmat.2020.124251] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2020] [Revised: 09/05/2020] [Accepted: 10/08/2020] [Indexed: 06/11/2023]
Abstract
Cadmium (Cd), an environmental pollutant, induces osteoporosis by directly destroying bone tissue, but its direct damaging effect on bone cells is not fully illustrated. Here, we treated mouse bone marrow stem cells (BMSC) and bone marrow macrophages (BMM) with Cd, and gave BALB/c mice Cd in water. Long-term Cd exposure significantly inhibited BMSC osteogenesis and osteoclast differentiation in vitro, and induced osteoporosis in vivo. Cd exposure also reduced P2X7 expression dramatically. However, P2X7 deletion significantly inhibited osteoblast and osteoclast differentiation; P2X7 overexpression obviously reduced the suppression effect of Cd on osteoblast and osteoclast differentiation. The suppression of P2X7-PI3K-AKT signaling aggravated the effect of Cd. In mice, short-term Cd exposure did not result in osteoporosis, but bone formation was inhibited, RANKL expression was increased, and osteoclasts were significantly increased in vivo. In vitro, short-term Cd exposure not only increased osteoclast numbers, but also promoted osteoclast adhesion function at late-stage osteoclast differentiation. Cd exposure also reduced P2X7 expression in vivo and in vitro. Our results demonstrate that short-term Cd exposure does not affect osteoblast and osteoclast apoptosis in vivo and in vitro, but long-term Cd exposure significantly increases bone tissue apoptosis. Overall, our results describe a novel mechanism for Cd-induced osteoporosis.
Collapse
Affiliation(s)
- Yonggang Ma
- College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009 Jiangsu, PR China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009 Jiangsu, PR China; Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Yangzhou University, Yangzhou, 225009 Jiangsu, PR China
| | - Di Ran
- College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009 Jiangsu, PR China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009 Jiangsu, PR China
| | - Ying Cao
- College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009 Jiangsu, PR China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009 Jiangsu, PR China; Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Yangzhou University, Yangzhou, 225009 Jiangsu, PR China
| | - Hongyan Zhao
- College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009 Jiangsu, PR China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009 Jiangsu, PR China; Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Yangzhou University, Yangzhou, 225009 Jiangsu, PR China
| | - Ruilong Song
- College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009 Jiangsu, PR China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009 Jiangsu, PR China; Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Yangzhou University, Yangzhou, 225009 Jiangsu, PR China
| | - Hui Zou
- College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009 Jiangsu, PR China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009 Jiangsu, PR China; Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Yangzhou University, Yangzhou, 225009 Jiangsu, PR China
| | - Jianhong Gu
- College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009 Jiangsu, PR China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009 Jiangsu, PR China; Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Yangzhou University, Yangzhou, 225009 Jiangsu, PR China
| | - Yan Yuan
- College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009 Jiangsu, PR China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009 Jiangsu, PR China; Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Yangzhou University, Yangzhou, 225009 Jiangsu, PR China
| | - Jianchun Bian
- College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009 Jiangsu, PR China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009 Jiangsu, PR China; Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Yangzhou University, Yangzhou, 225009 Jiangsu, PR China
| | - Jiaqiao Zhu
- College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009 Jiangsu, PR China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009 Jiangsu, PR China; Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Yangzhou University, Yangzhou, 225009 Jiangsu, PR China.
| | - Zongping Liu
- College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009 Jiangsu, PR China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009 Jiangsu, PR China; Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Yangzhou University, Yangzhou, 225009 Jiangsu, PR China.
| |
Collapse
|
38
|
Ratajczak AE, Rychter AM, Zawada A, Dobrowolska A, Krela-Kaźmierczak I. Do Only Calcium and Vitamin D Matter? Micronutrients in the Diet of Inflammatory Bowel Diseases Patients and the Risk of Osteoporosis. Nutrients 2021; 13:nu13020525. [PMID: 33562891 PMCID: PMC7914453 DOI: 10.3390/nu13020525] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 01/27/2021] [Accepted: 02/03/2021] [Indexed: 02/07/2023] Open
Abstract
Osteoporosis is one of the most common extraintestinal complications among patients suffering from inflammatory bowel diseases. The role of vitamin D and calcium in the prevention of a decreased bone mineral density is well known, although other nutrients, including micronutrients, are also of extreme importance. Despite the fact that zinc, copper, selenium, iron, cadmium, silicon and fluorine have not been frequently discussed with regard to the prevention of osteoporosis, it is possible that a deficiency or excess of the abovementioned elements may affect bone mineralization. Additionally, the risk of malnutrition, which is common in patients with ulcerative colitis or Crohn's disease, as well as the composition of gut microbiota, may be associated with micronutrients status.
Collapse
Affiliation(s)
- Alicja Ewa Ratajczak
- Correspondence: (A.E.R.); (I.K.-K.); Tel.: +48-667-385-996 (A.E.R.); +48-8691-343 (I.K.-K.); Fax: +48-8691-686 (A.E.R.)
| | | | | | | | - Iwona Krela-Kaźmierczak
- Correspondence: (A.E.R.); (I.K.-K.); Tel.: +48-667-385-996 (A.E.R.); +48-8691-343 (I.K.-K.); Fax: +48-8691-686 (A.E.R.)
| |
Collapse
|
39
|
Malmsten A, Dalin AM, Pettersson J, Persson S. Concentrations of cadmium, lead, arsenic, and some essential metals in wild boar from Sweden. EUR J WILDLIFE RES 2021. [DOI: 10.1007/s10344-021-01460-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
AbstractThe wild boar (Sus scrofa) is becoming more common in Europe and has potential to be used as sentinel species for local contamination of heavy metals. Concentrations of nine trace elements (arsenic (As), cadmium (Cd), copper (Cu), iron (Fe), lead (Pb), magnesium (Mg), manganese (Mn), selenium (Se), and zinc (Zn)) were examined in kidney tissue of 104 female wild boars hunted at three sites in Sweden. The interrelationships between the trace elements and age dependency were investigated. Reproductive health was previously known to differ among animals at the different study sites, but could not be explained by heavy metal concentrations and no associations were found between heavy metals and reproductive parameters. Kidney concentrations of Cd (mean 4.16 mg/kg wet weight (w.w.), range 0.16–12.8) were higher than the permissible level for human consumption in 99.9% of the samples. Pb concentrations were generally intermediate or low (mean 0.14 mg/kg w.w., range 0.03–1.01) and exceeded the levels accepted for human consumption in 0.02% of the samples. Age class was significantly associated with the concentrations of Cd, Mg, and Mn. Concentrations of As were low (mean 0.02 mg/kg w.w., range <0.0001–0.08) and Cu and Se concentrations were within the ranges of suspected deficiency for 10% and 4% of the wild boars, respectively.
Collapse
|
40
|
Wallin M, Barregard L, Sallsten G, Lundh T, Sundh D, Lorentzon M, Ohlsson C, Mellström D. Low-level cadmium exposure is associated with decreased cortical thickness, cortical area and trabecular bone volume fraction in elderly men: The MrOS Sweden study. Bone 2021; 143:115768. [PMID: 33232837 DOI: 10.1016/j.bone.2020.115768] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 11/02/2020] [Accepted: 11/19/2020] [Indexed: 12/17/2022]
Abstract
It is well known that high-level exposure to cadmium can cause bone disease such as osteoporosis, osteomalacia and fractures. However, the effect of low-level exposure, as found in the general population (mainly derived from diet and smoking), has only been assessed recently. The aim of this study was to examine if cadmium exposure in the general Swedish population causes other bone changes than decreased areal bone mineral density as measured by traditional DXA technology, e.g. changes in microstructure and geometry, such as cortical thickness or area, cortical porosity and trabecular bone volume. The study population consisted of 444 men, aged 70-81 years at inclusion year 2002-2004, from the Swedish cohort of the Osteoporotic Fractures in Men Study (MrOS). Cadmium was analyzed in baseline urine samples (U-Cd). Different parameters of bone geometry and microstructure were measured at the distal tibia at follow-up in 2009, including examination with high-resolution peripheral quantitative computed tomography (HR-pQCT). Associations between bone parameters and U-Cd in tertiles were estimated in multivariable analyses, including potential confounding factors (age, smoking, BMI, and physical activity). We found significant associations between U-Cd and several bone geometry or microstructure parameters, with 9% lower cortical thickness (p = 0.03), 7% lower cortical area (p = 0.04), and 5% lower trabecular bone volume fraction (p = 0.02) in the third tertile of U-Cd, using the first tertile as the reference. Furthermore, significant negative associations were found between log-transformed U-Cd and cortical thickness, cortical area, trabecular number and trabecular bone volume fraction, and a significant positive association with trabecular separation. The results indicate that low-level Cd exposure in the general population has negative effects on both cortical and trabecular bone.
Collapse
Affiliation(s)
- Maria Wallin
- Department of Occupational and Environmental Medicine, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, and Sahlgrenska University Hospital, Gothenburg, Sweden.
| | - Lars Barregard
- Department of Occupational and Environmental Medicine, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, and Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Gerd Sallsten
- Department of Occupational and Environmental Medicine, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, and Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Thomas Lundh
- Department of Occupational and Environmental Medicine, Skåne University Hospital, Lund, Sweden
| | - Daniel Sundh
- Department of Geriatric Medicine, Internal Medicine, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden; Centre for Bone and Arthritis Research (CBAR), Department of Internal Medicine, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Mattias Lorentzon
- Department of Geriatric Medicine, Internal Medicine, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden; Centre for Bone and Arthritis Research (CBAR), Department of Internal Medicine, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden; Geriatric Medicine Clinic, Sahlgrenska University Hospital Mölndal, Sweden
| | - Claes Ohlsson
- Department of Geriatric Medicine, Internal Medicine, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Dan Mellström
- Department of Geriatric Medicine, Internal Medicine, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden; Centre for Bone and Arthritis Research (CBAR), Department of Internal Medicine, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
41
|
Lamkarkach F, Ougier E, Garnier R, Viau C, Kolossa-Gehring M, Lange R, Apel P. Human biomonitoring initiative (HBM4EU): Human biomonitoring guidance values (HBM-GVs) derived for cadmium and its compounds. ENVIRONMENT INTERNATIONAL 2021; 147:106337. [PMID: 33385924 DOI: 10.1016/j.envint.2020.106337] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 11/05/2020] [Accepted: 12/11/2020] [Indexed: 05/25/2023]
Abstract
AIMS The methodology agreed within the framework of the HBM4EU project is used in this work to derive HBM-GVs for the general population (HBM-GVGenPop) and for workers (HBM-GVWorker) exposed to cadmium (Cd) and its compounds. METHODS For Cd, a significant number of epidemiological studies with dose-response relationships are available, in particular for kidney effects. These effects are described in terms of a relation between urinary Cd (U-Cd) or blood Cd (B-Cd) levels and low molecular weight proteinuria (LMWP) markers like beta-2-microglobulin (β2M) and retinol-binding protein (RBP). In order to derive HBM-GVs for the general population and workers, an assessment of data from evaluations conducted by national or international organisations was undertaken. In this work, it appeared relevant to select renal effects as the critical effect for the both groups, however, differences between general population (including sensitive people) and workers (considered as an homogenous population of adults who should not be exposed to Cd if they suffer from renal diseases) required the selection of different key studies (i.e. conducted in general population for HBM-GVGenPop and at workplace for HBM-GVWorker). RESULTS AND CONCLUSIONS For U-Cd, a HBM-GVGenPop of 1 µg/g creatinine (creat) is recommended for adults older than 50 years, based on a robust meta-analysis performed by EFSA (EFSA, 2009a). To take into account the accumulation of Cd in the human body throughout life, threshold or 'alert' values according to age were estimated for U-Cd. At workplace, a HBM-GVWorker of 2 μg/g creat is derived from the study of Chaumont et al., (2011) for U-Cd, and in addition to this recommendation a HBM-GVworker for B-Cd of 5 µg/L is also proposed. The HBM-GVWorker for U-Cd is similar to the biological limit value (BLV) set by the new amendment of the European Carcinogens and Mutagens Directive in June 2019 (2 µg/g creat for U-Cd).
Collapse
Affiliation(s)
- Farida Lamkarkach
- ANSES, 14 rue Pierre et Marie Curie, 94701 Maisons-Alfort Cedex, France.
| | - Eva Ougier
- ANSES, 14 rue Pierre et Marie Curie, 94701 Maisons-Alfort Cedex, France
| | - Robert Garnier
- Paris Poison Centre, Toxicology Department (FeTox), APHP, Lariboisière-Fernand-Widal Hospital, Paris, France
| | - Claude Viau
- Department of Environmental and Occupational Health, School of Public Health, University of Montreal, Canada
| | | | - Rosa Lange
- German Environment Agency (UBA), Corrensplatz 1, 14195 Berlin, Germany
| | - Petra Apel
- German Environment Agency (UBA), Corrensplatz 1, 14195 Berlin, Germany
| |
Collapse
|
42
|
Bjørklund G, Pivina L, Dadar M, Semenova Y, Chirumbolo S, Aaseth J. Long-Term Accumulation of Metals in the Skeleton as Related to Osteoporotic Derangements. Curr Med Chem 2021; 27:6837-6848. [PMID: 31333081 DOI: 10.2174/0929867326666190722153305] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Revised: 07/01/2019] [Accepted: 07/09/2019] [Indexed: 11/22/2022]
Abstract
The concentrations of metals in the environment are still not within the recommended limits as set by the regulatory authorities in various countries because of human activities. They can enter the food chain and bioaccumulate in soft and hard tissues/organs, often with a long half-life of the metal in the body. Metal exposure has a negative impact on bone health and may result in osteoporosis and increased fracture risk depending on concentration and duration of metal exposure and metal species. Bones are a long-term repository for lead and some other metals, and may approximately contain 90% of the total body burden in birds and mammals. The present review focuses on the most common metals found in contaminated areas (mercury, cadmium, lead, nickel, chromium, iron, and aluminum) and their effects on bone tissue, considering the possibility of the long-term bone accumulation, and also some differences that might exist between different age groups in the whole population.
Collapse
Affiliation(s)
- Geir Bjørklund
- Council for Nutritional and Environmental Medicine (CONEM), Toften 24, 8610 Mo i Rana, Norway
| | - Lyudmila Pivina
- Department of Internal Medicine, Semey Medical University, Semey, Kazakhstan,CONEM Kazakhstan Environmental Health and Safety Research Group, Semey Medical University, Semey, Kazakhstan
| | - Maryam Dadar
- Razi Vaccine and Serum Research Institute, Agricultural Research, Education and Extension Organization (AREEO), Karaj, Iran
| | - Yuliya Semenova
- Department of Internal Medicine, Semey Medical University, Semey, Kazakhstan,CONEM Kazakhstan Environmental Health and Safety Research Group, Semey Medical University, Semey, Kazakhstan
| | - Salvatore Chirumbolo
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Italy,CONEM Scientific Secretary, Verona, Italy
| | - Jan Aaseth
- Research Department, Innlandet Hospital Trust, Brumunddal, Norway,Faculty of Health and Social Science, Inland Norway University of Applied Sciences,
Elverum, Norway
| |
Collapse
|
43
|
Environmental Substances Associated with Osteoporosis-A Scoping Review. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph18020738. [PMID: 33467108 PMCID: PMC7830627 DOI: 10.3390/ijerph18020738] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 01/11/2021] [Accepted: 01/13/2021] [Indexed: 11/23/2022]
Abstract
Introduction: Osteoporosis is a disease having adverse effects on bone health and causing fragility fractures. Osteoporosis affects approximately 200 million people worldwide, and nearly 9 million fractures occur annually. Evidence exists that, in addition to traditional risk factors, certain environmental substances may increase the risk of osteoporosis. Methods: The European Human Biomonitoring Initiative (HBM4EU) is a joint program coordinating and advancing human biomonitoring in Europe. HBM4EU investigates citizens’ exposure to several environmental substances and their plausible health effects aiming to contribute to policymaking. In HBM4EU, 18 priority substances or substance groups were selected. For each, a scoping document was prepared summarizing existing knowledge and health effects. This scoping review is based on these chemical-specific scoping documents and complementary literature review. Results: A possible link between osteoporosis and the body burden of heavy metals, such as cadmium (Cd) and lead (Pb), and industrial chemicals such as phthalates and per- and poly-fluoroalkyl substances (PFASs) was identified. Conclusions: Evidence shows that environmental substances may be related to osteoporosis as an adverse health effect. Nevertheless, more epidemiological research on the relationship between health effects and exposure to these chemicals is needed. Study results are incoherent, and pervasive epidemiological studies regarding the chemical exposure are lacking.
Collapse
|
44
|
Amuno S, Shekh K, Kodzhahinchev V, Niyogi S, Al Kaissi A. Skeletal pathology and bone mineral density changes in wild muskrats (Ondatra zibethicus) and red squirrels (Tamiasciurus hudsonicus) inhabiting arsenic polluted areas of Yellowknife, Northwest Territories (Canada): A radiographic densitometry study. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 208:111721. [PMID: 33396052 DOI: 10.1016/j.ecoenv.2020.111721] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 11/22/2020] [Accepted: 11/23/2020] [Indexed: 06/12/2023]
Abstract
The City of Yellowknife is a known hotspot of arsenic contamination and there is a growing body of evidence suggesting that local wildlife in the vicinity of the abandoned Giant Mine site may be at risk of decreased bone mineralization and various bone disorders. The purpose of this study was to preliminarily measure bone mineral density (BMD) changes and investigate the incidence, pattern, and severity of bone lesions in wild muskrats and red squirrels breeding in three (3) catchment areas at different distances from the Giant Mine Site in Yellowknife, Northwest Territories (Canada): ~2 km (location 1), ~18 km (location 2), and ~40-100 km (location 3). Full femoral bones of 15 muskrats and 15 red squirrels were collected from the three sampling locations (5 from each location) and subjected to radiographic analysis and densitometric measurements. The patterns and severities of bone lesions, including changes in bone mineral density, were evaluated and compared between groups. As levels were significantly higher in the bones of muskrats caught from location 1 and 2, relative to location 3. Further, As and Cd levels were significantly higher in the bones of squirrels caught from locations 1 and 2 relative to squirrels caught from location 3. The preliminary results from bones revealed that radiographic abnormalities such as bone rarefaction, osteopenia, and thinning of the femoral shafts with significant ossific cystic lesions and bowing were the most common skeletal pathologies found in bones of red squirrels from the three locations. Radiographic appearances of massive sclerosis and dysplasia, including severe osteocondensation and osteopathia striata-like abnormalities, were found in the bones of muskrats from all the sampling locations. Densitometric evaluation showed no significant differences between the three locations in the bone parameters measured. However, there was a statistically significant correlation between As content in the bones of muskrats and percent fat content in the femur samples, which suggests that accumulation of As could have been a causal factor for a change in percent fat in femurs of muskrats.
Collapse
Affiliation(s)
- S Amuno
- School of Environment and Sustainability, University of Saskatchewan, Saskatoon, Canada.
| | - K Shekh
- Department of Biology, University of Saskatchewan, Saskatoon, Canada; Toxicology Centre, University of Saskatchewan, Saskatoon, Canada
| | - V Kodzhahinchev
- Department of Biology, University of Saskatchewan, Saskatoon, Canada
| | - S Niyogi
- Department of Biology, University of Saskatchewan, Saskatoon, Canada; Toxicology Centre, University of Saskatchewan, Saskatoon, Canada
| | - A Al Kaissi
- Ludwig Boltzmann Institute of Osteology, at the Hanusch Hospital of OEGK and, AUVA Trauma Centre Meidling, First Medical Department, Hanusch Hospital, Vienna, Austria and Orthopedic Hospital of Speising, Vienna, Austria
| |
Collapse
|
45
|
Ou L, Wang H, Wu Z, Wang P, Yang L, Li X, Sun K, Zhu X, Zhang R. Effects of cadmium on osteoblast cell line: Exportin 1 accumulation, p-JNK activation, DNA damage and cell apoptosis. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 208:111668. [PMID: 33396178 DOI: 10.1016/j.ecoenv.2020.111668] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 11/10/2020] [Accepted: 11/12/2020] [Indexed: 05/11/2023]
Abstract
Cadmium is an environmental metal pollutant that has been a focus of research in recent years, which is reported to cause bone disease; however, its skeletal toxicity and the mechanism involved are not yet fully known. Therefore, this study used MC3T3-E1 subclone 14 cells to determine the mechanism of cadmium toxicity on bone. Cadmium chloride (Cd) significantly reduced cell viability in a concentration-dependent manner. Exposure to Cd inhibited osteoblast-related proteins (Runx2, Col-1, STC2) and decreased alkaline phosphatase (ALP) activity. Cd caused Exportin-1 accumulation and induced DNA damage. Cd significantly down-regulated caspase 9 and induced cleaved-PARP, cleaved-caspase 3 protein level. Treatment with JNK inhibitor, SP600125, suppressed cadmium-induced elevation in the ratio of phosphorylation of JNK to JNK. Inhibition of caspase with pan-caspase inhibitor, Z-VAD-FMK, prevented MC3T3-E1 subclone 14 cells from cadmium-induced reduction of Runx2, STC2, caspase 9, and accumulation of cleaved PARP and cleaved caspase 3. Cd-induced cell survival enhanced by SP600125 but rescued by Z-VAD-FMK or KPT-335. These results suggest that cadmium cytotoxicity on bone involved exportin 1 accumulation, phosphorylation of JNK, induction of DNA damage and pro-apoptosis, which was induced by activation of caspase-dependent pathways.
Collapse
Affiliation(s)
- Ling Ou
- Jinan University, Guangzhou, China; Department of traditional Chinese medicine, First Affiliated Hospital of Jinan University, Guangzhou, Guangdong, China; The second Clinical Medical College of Jinan University, Shenzhen, Guangdong, China
| | | | - Zhidi Wu
- Jinan University, Guangzhou, China
| | - Panpan Wang
- Department of traditional Chinese medicine, First Affiliated Hospital of Jinan University, Guangzhou, Guangdong, China
| | - Li Yang
- Jinan University, Guangzhou, China
| | | | | | - Xiaofeng Zhu
- Jinan University, Guangzhou, China; Department of traditional Chinese medicine, First Affiliated Hospital of Jinan University, Guangzhou, Guangdong, China.
| | - Ronghua Zhang
- Jinan University, Guangzhou, China; Department of traditional Chinese medicine, First Affiliated Hospital of Jinan University, Guangzhou, Guangdong, China.
| |
Collapse
|
46
|
Leconte S, Rousselle C, Bodin L, Clinard F, Carne G. Refinement of health-based guidance values for cadmium in the French population based on modelling. Toxicol Lett 2021; 340:43-51. [PMID: 33440227 DOI: 10.1016/j.toxlet.2020.12.021] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 12/30/2020] [Accepted: 12/31/2020] [Indexed: 01/15/2023]
Abstract
In France, part of the population is overexposed to cadmium by the diet. In our work, we first revised the tolerable daily intake (TDI) of 0.36 μg Cd.kg bw.d.-1 proposed by the European Food Safety Authority (EFSA), derived from effects on kidneys and based on the critical urinary Cd concentration of 1.0 μg Cd.g-1 creatinine for humans. After reviewing the epidemiological data on Cd toxicity published after 2011, bone effects were selected as the critical effects. Body burden data of 0.5 μg.g-1 creatinine was chosen for the critical threshold for human urinary cadmium concentrations. To be used for the derivation of the new oral toxicological reference value, we used a modified physiologically based pharmacokinetic model (PBPK). The reverse calculation on the PBPK model gave a TDI of 0.35 μg Cd.kg bw-1.day-1. This TDI is compatible with a urinary Cd concentrations not exceeding 0.5 μg Cd.g-1 creatinine, in a 60 year-old adult, assuming that ingestion is the only source of exposure to Cd at 60 years. After implementing the PBPK model with French physiological data, Cd biological reference values as a function of age were modelled so as to remain below the revised health-based guidance values.
Collapse
Affiliation(s)
- Stéphane Leconte
- French Agency for Food, Environmental and Occupational Health & Safety (ANSES), Risk Assessment Department, 14 rue Pierre et Marie Curie, F-94701 Maisons-Alfort Cedex, France.
| | - Christophe Rousselle
- French Agency for Food, Environmental and Occupational Health & Safety (ANSES), Risk Assessment Department, 14 rue Pierre et Marie Curie, F-94701 Maisons-Alfort Cedex, France
| | - Laurent Bodin
- French Agency for Food, Environmental and Occupational Health & Safety (ANSES), Risk Assessment Department, 14 rue Pierre et Marie Curie, F-94701 Maisons-Alfort Cedex, France
| | - François Clinard
- Sante publique France - National Public Health Agency (ANSP) - Bourgogne-Franche-Comté Regional Unit, France
| | - Géraldine Carne
- French Agency for Food, Environmental and Occupational Health & Safety (ANSES), Risk Assessment Department, 14 rue Pierre et Marie Curie, F-94701 Maisons-Alfort Cedex, France
| |
Collapse
|
47
|
Galvez-Fernandez M, Grau-Perez M, Garcia-Barrera T, Ramirez-Acosta S, Gomez-Ariza JL, Perez-Gomez B, Galan-Labaca I, Navas-Acien A, Redon J, Briongos-Figuero LS, Dueñas-Laita A, Perez-Castrillon JL, Tellez-Plaza M, Martin-Escudero JC. Arsenic, cadmium, and selenium exposures and bone mineral density-related endpoints: The HORTEGA study. Free Radic Biol Med 2021; 162:392-400. [PMID: 33137469 PMCID: PMC9019194 DOI: 10.1016/j.freeradbiomed.2020.10.318] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 10/14/2020] [Accepted: 10/27/2020] [Indexed: 10/23/2022]
Abstract
BACKGROUND AND OBJECTIVES Experimental data suggest that trace elements, such as arsenic (As), cadmium (Cd), and selenium (Se) can influence the bone remodeling process. We evaluated the cross-sectional association between As, Cd, and Se biomarkers with bone mineral density (BMD) measured at the calcaneus, in a representative sample of a general population from Spain. As secondary analyses we evaluated the associations of interest in subgroups defined by well-established BMD determinants, and also conducted prospective analysis of osteoporosis-related incident bone fractures restricted to participants older than 50 years-old. METHODS In N = 1365 Hortega Study participants >20 years-old, urine As and Cd were measured by inductively coupled-plasma mass spectrometry (ICPMS); plasma Se was measured by atomic absorption spectrometry (AAS) with graphite furnace; and BMD at the calcaneus was measured using the Peripheral Instaneuous X-ray Imaging system (PIXI). As levels were corrected for arsenobetaine (Asb) to account for inorganic As exposure. RESULTS The median of total urine As, Asb-corrected urine As, urine Cd, and plasma Se was 61.3, 6.53 and 0.39 μg/g creatinine, and 84.9 μg/L, respectively. In cross-sectional analysis, urine As and Cd were not associated with reduced BMD (T-score < -1 SD). We observed a non-linear dose-response of Se and reduced BMD, showing an inverse association below ~105 μg/L, which became increasingly positive above ~105 μg/L. The evaluated subgroups did not show differential associations. In prospective analysis, while we also observed a U-shape dose-response of Se with the incidence of osteoporosis-related bone fractures, the positive association above ~105 μg/L was markedly stronger, compared to the cross-sectional analysis. CONCLUSIONS Our results support that Se, but not As and Cd, was associated to BMD-related disease. The association of Se and BMD-related disease was non-linear, including a strong positive association with osteoporosis-related bone fractures risk at the higher Se exposure range. Considering the substantial burden of bone loss in elderly populations, additional large prospective studies are needed to confirm the relevance of our findings to bone loss prevention in the population depending on Se exposure levels.
Collapse
Affiliation(s)
- Marta Galvez-Fernandez
- Department of Preventive Medicine and Microbiology, Universidad Autonoma de Madrid, Calle Arzobispo Morcillo, 4, 28029, Madrid, Spain; Department of Preventive Medicine, Hospital Severo Ochoa, Avenida de Orellana, 28914, Madrid, Spain; Department of Chronic Diseases Epidemiology, National Center for Epidemiology, Carlos III Health Institute, Calle de Melchor Fernández Almagro, 5, 28029, Madrid, Spain
| | - Maria Grau-Perez
- Department of Preventive Medicine and Microbiology, Universidad Autonoma de Madrid, Calle Arzobispo Morcillo, 4, 28029, Madrid, Spain; Area of Renal Risk and Cardiometabolic Disease, Instituto de Investigación Sanitaria Hospital Clinic de Valencia (INCLIVA), Avinguda de Menéndez y Pelayo, 4, 46010, Valencia, Spain; Department of Statistics and Operational Research, University of Valencia, Calle Dr. Moliner, 50, 46100, Valencia, Spain
| | - Tamara Garcia-Barrera
- Department of Chemistry, University of Huelva, Avenida de las Fuerzas Armadas, 21007, Huelva, Spain
| | - Sara Ramirez-Acosta
- Department of Chemistry, University of Huelva, Avenida de las Fuerzas Armadas, 21007, Huelva, Spain
| | - Jose L Gomez-Ariza
- Department of Chemistry, University of Huelva, Avenida de las Fuerzas Armadas, 21007, Huelva, Spain
| | - Beatriz Perez-Gomez
- Department of Chronic Diseases Epidemiology, National Center for Epidemiology, Carlos III Health Institute, Calle de Melchor Fernández Almagro, 5, 28029, Madrid, Spain
| | - Iñaki Galan-Labaca
- Department of Preventive Medicine and Microbiology, Universidad Autonoma de Madrid, Calle Arzobispo Morcillo, 4, 28029, Madrid, Spain; Department of Chronic Diseases Epidemiology, National Center for Epidemiology, Carlos III Health Institute, Calle de Melchor Fernández Almagro, 5, 28029, Madrid, Spain
| | - Ana Navas-Acien
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, 722W, 168th Street, NY, 10032, USA
| | - Josep Redon
- Area of Renal Risk and Cardiometabolic Disease, Instituto de Investigación Sanitaria Hospital Clinic de Valencia (INCLIVA), Avinguda de Menéndez y Pelayo, 4, 46010, Valencia, Spain
| | - Laisa S Briongos-Figuero
- Departments of Internal Medicine and Toxicology, University Hospital Rio Hortega, Calle Dulzaina, 2, 47012, Valladolid. University of Valladolid, Spain
| | - Antonio Dueñas-Laita
- Departments of Internal Medicine and Toxicology, University Hospital Rio Hortega, Calle Dulzaina, 2, 47012, Valladolid. University of Valladolid, Spain
| | - Jose Luis Perez-Castrillon
- Departments of Internal Medicine and Toxicology, University Hospital Rio Hortega, Calle Dulzaina, 2, 47012, Valladolid. University of Valladolid, Spain
| | - Maria Tellez-Plaza
- Department of Preventive Medicine and Microbiology, Universidad Autonoma de Madrid, Calle Arzobispo Morcillo, 4, 28029, Madrid, Spain; Department of Chronic Diseases Epidemiology, National Center for Epidemiology, Carlos III Health Institute, Calle de Melchor Fernández Almagro, 5, 28029, Madrid, Spain; Area of Renal Risk and Cardiometabolic Disease, Instituto de Investigación Sanitaria Hospital Clinic de Valencia (INCLIVA), Avinguda de Menéndez y Pelayo, 4, 46010, Valencia, Spain.
| | - Juan Carlos Martin-Escudero
- Departments of Internal Medicine and Toxicology, University Hospital Rio Hortega, Calle Dulzaina, 2, 47012, Valladolid. University of Valladolid, Spain
| |
Collapse
|
48
|
Ximenez JPB, Zamarioli A, Kacena MA, Barbosa RM, Barbosa F. Association of Urinary and Blood Concentrations of Heavy Metals with Measures of Bone Mineral Density Loss: a Data Mining Approach with the Results from the National Health and Nutrition Examination Survey. Biol Trace Elem Res 2021; 199:92-101. [PMID: 32356206 DOI: 10.1007/s12011-020-02150-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Accepted: 04/07/2020] [Indexed: 12/12/2022]
Abstract
Osteoporosis and its consequence of fragility fracture represent a major public health problem. Human exposure to heavy metals has received considerable attention over the last decades. However, little is known about the influence of co-exposure to multiple heavy metals on bone density. The present study aimed to examine the association between exposure to metals and bone mineral density (BMD) loss. Blood and urine concentrations of 20 chemical elements were selected from 3 cycles (2005-2010) NHANES (National Health and Nutrition Examination Survey), in which we included white women over 50 years of age and previously selected for BMD testing (N = 1892). The bone loss group was defined as participants having T-score < - 1.0, and the normal group was defined as participants having T-score ≥ - 1.0. We developed classification models based on support vector machines capable of determining which factors could best predict BMD loss. The model which included the five-best features-selected from the random forest were age, body mass index, urinary concentration of arsenic (As), cadmium (Cd), and tungsten (W), which have achieved high scores for accuracy (92.18%), sensitivity (90.50%), and specificity (93.35%). These data demonstrate the importance of these factors and metals to the classification since they alone were capable of generating a classification model with a high prediction of accuracy without requiring the other variables. In summary, our findings provide insight into the important, yet overlooked impact that arsenic, cadmium, and tungsten have on overall bone health.
Collapse
Affiliation(s)
- João Paulo B Ximenez
- Laboratório de Toxicologia Analítica e de Sistemas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP, 14040-903, Brazil.
| | - Ariane Zamarioli
- Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Melissa A Kacena
- Department of Orthopaedic Surgery, Indiana University School of Medicine, Indianapolis, IN, USA
| | | | - Fernando Barbosa
- Laboratório de Toxicologia Analítica e de Sistemas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP, 14040-903, Brazil
| |
Collapse
|
49
|
Inadera H, Takamori A, Matsumura K, Tsuchida A, Cui ZG, Hamazaki K, Tanaka T, Ito M, Kigawa M, Origasa H, Michikawa T, Nakayama SF, Isobe T, Takeuchi A, Sato T, Nitta H, Yamazaki S. Association of blood cadmium levels in pregnant women with infant birth size and small for gestational age infants: The Japan Environment and Children's study. ENVIRONMENTAL RESEARCH 2020; 191:110007. [PMID: 32768474 DOI: 10.1016/j.envres.2020.110007] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Revised: 07/16/2020] [Accepted: 07/24/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND There is growing evidence of an association between cadmium (Cd) and unfavorable birth outcomes. The effect of Cd exposure on anthropometric measures at birth or small for gestational age (SGA) infants in a large, nationwide Japanese cohort remains to be clarified. OBJECTIVES To analyze the association between maternal blood Cd levels at different sampling times and sex-dependent infant birth size, weight, body length, chest, and head circumferences, in addition to SGA. METHODS Data of 17,584 pregnant women in the Japan Environment and Children's Study were analyzed for anthropometric measurements. For SGA determination, 13,969 cases of vaginal delivery were analyzed after excluding infants born by cesarean section. Maternal blood Cd levels were categorized into quartiles (Q1-Q4), and the Q1 was used as a reference. Multiple linear regression analysis was performed for anthropometric measurements, and multiple logistic regression analysis was used to investigate the association of maternal blood Cd levels with the risk of SGA. RESULTS Birth weight tended to decrease according to the increase in quartiles of blood Cd levels (15.63 g decrease [95% confidence level (CI): -33.26, 2.01] for Q4). The overall analysis revealed no decreases in body length and head and chest circumference, but subgroup analysis revealed that chest circumference tended to decrease according to the increase in quartiles in the female sex/third-trimester stratification (0.16 cm decrease [95% CI: -0.32, 0.00] for Q4). SGA risk was also higher and paralleled the increase in blood Cd levels associated with the female sex/third-trimester group (Odds Ratio 1.90 [95% CI: 1.23, 2.94] for Q4). CONCLUSION Our results provide further evidence of sex-specific health risks associated with Cd exposure in early life in a large Japanese pregnancy cohort.
Collapse
Affiliation(s)
- Hidekuni Inadera
- Department of Public Health, Faculty of Medicine, University of Toyama, Toyama, Japan; Toyama Regional Center for JECS, University of Toyama, Toyama, Japan
| | - Ayako Takamori
- Toyama Regional Center for JECS, University of Toyama, Toyama, Japan; Clinical Research Center, Saga University Hospital, Saga, Japan
| | - Kenta Matsumura
- Toyama Regional Center for JECS, University of Toyama, Toyama, Japan
| | - Akiko Tsuchida
- Department of Public Health, Faculty of Medicine, University of Toyama, Toyama, Japan; Toyama Regional Center for JECS, University of Toyama, Toyama, Japan
| | - Zheng-Guo Cui
- Department of Public Health, Faculty of Medicine, University of Toyama, Toyama, Japan
| | - Kei Hamazaki
- Department of Public Health, Faculty of Medicine, University of Toyama, Toyama, Japan; Toyama Regional Center for JECS, University of Toyama, Toyama, Japan
| | - Tomomi Tanaka
- Toyama Regional Center for JECS, University of Toyama, Toyama, Japan; Department of Pediatrics, Faculty of Medicine, University of Toyama, Toyama, Japan
| | - Mika Ito
- Department of Obstetrics and Gynecology, Faculty of Medicine, University of Toyama, Toyama, Japan
| | - Mika Kigawa
- Department of Public Health, Faculty of Medicine, University of Toyama, Toyama, Japan; Department of Liberal Arts and Human Development, Kanagawa University of Human Services, Yokosuka, Japan
| | - Hideki Origasa
- Department of Biostatistics and Clinical Epidemiology, Faculty of Medicine, University of Toyama, Toyama, Japan
| | - Takehiro Michikawa
- Japan Environment and Children's Study Programme Office, National Institute for Environmental Studies, Tsukuba, Japan
| | - Shoji F Nakayama
- Japan Environment and Children's Study Programme Office, National Institute for Environmental Studies, Tsukuba, Japan
| | - Tomohiko Isobe
- Japan Environment and Children's Study Programme Office, National Institute for Environmental Studies, Tsukuba, Japan
| | - Ayano Takeuchi
- Department of Preventive Medicine and Public Health, Keio University, Tokyo, Japan
| | - Tosiya Sato
- Department of Biostatistics, Kyoto University School of Public Health, Kyoto, Japan
| | - Hiroshi Nitta
- Japan Environment and Children's Study Programme Office, National Institute for Environmental Studies, Tsukuba, Japan
| | - Shin Yamazaki
- Japan Environment and Children's Study Programme Office, National Institute for Environmental Studies, Tsukuba, Japan.
| |
Collapse
|
50
|
Dal Ulutas A, Turgut Cosan D, Mutlu F. Protective and curative role of vitamin D and hormones on the cadmium-induced inhibition of proliferation of human osteoblast cells. J Basic Clin Physiol Pharmacol 2020; 32:995-1000. [PMID: 33185573 DOI: 10.1515/jbcpp-2020-0134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Accepted: 08/29/2020] [Indexed: 11/15/2022]
Abstract
Objectives Exposure to cadmium (Cd), which causes environmental and industrial pollution, causes toxicity in many tissues and organs, especially bone, lung and kidney. Hormones, growth factors and other stimuli act on bone tissue through osteoblasts. In this study, it was aimed to determine the effects of Cd on hFOB1.19 osteoblast cells and the protective and healing potentials of estrogen, androgen and vitamin D against the inhibitory effect of Cd on the proliferation. Methods hFOB1.19 cells were cultivated in our laboratory using Dulbecco's Modified Eagle's Medium-F12, HEPES medium, containing 10% fetal bovine serum, 1% penicillin/streptomycin in 34.5 °C 5%CO2 incubator. To determine its protective potentials for the toxicity of CdCl2, it was previously applied 1,25(OH) 2D vitamin, 17β-estradiol, and 5α-androstane for 72 h to cells. To determine their curative potential, osteoblast cells, which were previously exposed to CdCl2 for 72 h, were administered 1,25(OH) 2D vitamin, 17β-estradiol, and 5α-androstane. Following these applications were determined proliferation by XTT analysis and, the amounts of androgen receptor, estrogen receptor, vitamin D receptor, alkaline phosphatase, osteocalcin and osteoprotegerin by ELISA analysis. Results Vitamin D has been both preventive and curative effective to increase cell proliferation, which Cd reduces. Interestingly, estrogen had a preventive effect and androgen had a curative effect. Conclusions In addition to showing the negative effects of cadmium on the proliferation of osteoblast cells, this study provides an overview of the effects of hormone and vitamin D applications before and after Cd, and these results may serve as a guide for future studies.
Collapse
Affiliation(s)
- Aylin Dal Ulutas
- Eskişehir Osmangazi University, Graduate School of Natural and Applied Sciences, Department of Biotechnology and Biosafety, Eskişehir, Turkey
| | - Didem Turgut Cosan
- Eskişehir Osmangazi University, Faculty of Medicine, Department of Medical Biology, Eskişehir, Turkey
| | - Fezan Mutlu
- Eskişehir Osmangazi University, Faculty of Medicine, Department of Biostatistics, Eskişehir, Turkey
| |
Collapse
|