1
|
Briolay A, Duboeuf F, Delplace S, Brizuela L, Peyruchaud O, Magne D, Bougault C. Voluntary exercise in mice triggers an anti-osteogenic and pro-tenogenic response in the ankle joint without affecting long bones. Bone Rep 2024; 23:101810. [PMID: 39493871 PMCID: PMC11530850 DOI: 10.1016/j.bonr.2024.101810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Accepted: 10/09/2024] [Indexed: 11/05/2024] Open
Abstract
Biomechanical stimulation is proposed to occupy a central place in joint homeostasis, but the precise contribution of exercise remains elusive. We aimed to characterize in vivo the impact of mechanical stimulation on the cell-controlled regulation of ossification within the ankles of healthy mice undergoing mild physical activity. DBA/1 male mice were subjected to voluntary running exercise for two weeks, and compared to mice housed in standard conditions (n = 20 per group). Free access to activity wheels resulted in a running exercise of 5.5 ± 0.8 km/day at 14.5 ± 0.5 m/min. Serum levels of alkaline phosphatase, IL-6, IL-8/Kc, IL-17a, and TNF-α were measured. No change in systemic inflammation was detected. The bone architecture of the femur and the calcaneus was unchanged, as revealed by μCT and histology of the enthesis of the Achilles tendon. mRNAs were extracted from femurs, tibias, and ankle joints before RT-qPCR analysis. The expression of the mechanosensitive genes Sclerostin (Sost) and Periostin (Postn) was not impacted by the exercise in long bones. Oppositely, Sost and Postn levels were modulated by exercise in joints, and osteogenic markers (Col10a1, Runx2, Osx, and Dmp1) were downregulated in the exercise group. In addition, the tenogenic markers Scx, Mkx, and Tnmd were upregulated by exercise. Thus, voluntary exercise affected the phenotype of joint cells without impacting long bones. As gene expression of Bmp2, Bmp4, and Id1 was also reduced in these cells, an off-regulation of BMP signaling could be partly responsible for their mechanosensitive response. Running exercise seemed to preserve the tendon from its progressive ossification, as seen in numerous enthesopathies. This study paves the way to future experiments for investigating the effects of mechanical stimulation in various mouse models.
Collapse
Affiliation(s)
- Anne Briolay
- Universite Claude Bernard Lyon 1, CNRS, UMR 5246, ICBMS, F-69622 Villeurbanne, France
| | - François Duboeuf
- Universite Claude Bernard Lyon 1, INSERM, UMR 1033, LYOS, F-69372 Lyon, France
| | - Séverine Delplace
- Universite Littoral-Côte d'Opale, ULR 4490, MABLab, F-62327 Boulogne/Mer, France
| | - Leyre Brizuela
- Universite Claude Bernard Lyon 1, CNRS, UMR 5246, ICBMS, F-69622 Villeurbanne, France
| | - Olivier Peyruchaud
- Universite Claude Bernard Lyon 1, INSERM, UMR 1033, LYOS, F-69372 Lyon, France
| | - David Magne
- Universite Claude Bernard Lyon 1, CNRS, UMR 5246, ICBMS, F-69622 Villeurbanne, France
| | - Carole Bougault
- Universite Claude Bernard Lyon 1, CNRS, UMR 5246, ICBMS, F-69622 Villeurbanne, France
| |
Collapse
|
2
|
Wang Z, Lin M, Pan Y, Liu Y, Yang C, Wu J, Wang Y, Yan B, Zhou J, Chen R, Liu C. Periostin + myeloid cells improved long bone regeneration in a mechanosensitive manner. Bone Res 2024; 12:59. [PMID: 39406726 PMCID: PMC11480347 DOI: 10.1038/s41413-024-00361-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 07/06/2024] [Accepted: 08/01/2024] [Indexed: 10/19/2024] Open
Abstract
Myeloid cells are pivotal in the inflammatory and remodeling phases of fracture repair. Here, we investigate the effect of periostin expressed by myeloid cells on bone regeneration in a monocortical tibial defect (MTD) model. In this study, we show that periostin is expressed by periosteal myeloid cells, primarily the M2 macrophages during bone regeneration. Knockout of periostin in myeloid cells reduces cortical bone thickness, disrupts trabecular bone connectivity, impairs repair impairment, and hinders M2 macrophage polarization. Mechanical stimulation is a regulator of periostin in macrophages. By activating transforming growth factor-β (TGF-β), it increases periostin expression in macrophages and induces M2 polarization. This mechanosensitive effect also reverses the delayed bone repair induced by periostin deficiency in myeloid cells by strengthening the angiogenesis-osteogenesis coupling. In addition, transplantation of mechanically conditioned macrophages into the periosteum over a bone defect results in substantially enhanced repair, confirming the critical role of macrophage-secreted periostin in bone repair. In summary, our findings suggest that mechanical stimulation regulates periostin expression and promotes M2 macrophage polarization, highlighting the potential of mechanically conditioned macrophages as a therapeutic strategy for enhancing bone repair.
Collapse
Affiliation(s)
- Ziyan Wang
- Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, China
| | - Minmin Lin
- Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, China
| | - Yonghao Pan
- Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, China
| | - Yang Liu
- Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, China
| | - Chengyu Yang
- Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, China
| | - Jianqun Wu
- Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, China
| | - Yan Wang
- Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, China
| | - Bingtong Yan
- Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, China
| | - Jingjing Zhou
- Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, China
| | - Rouxi Chen
- Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, China
| | - Chao Liu
- Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, China.
- Guangdong Provincial Key Laboratory of Advanced Biomaterials, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, China.
| |
Collapse
|
3
|
Liu Y, Jia F, Li K, Liang C, Lin X, Geng W, Li Y. Critical signaling molecules in the temporomandibular joint osteoarthritis under different magnitudes of mechanical stimulation. Front Pharmacol 2024; 15:1419494. [PMID: 39055494 PMCID: PMC11269110 DOI: 10.3389/fphar.2024.1419494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 06/14/2024] [Indexed: 07/27/2024] Open
Abstract
The mechanical stress environment in the temporomandibular joint (TMJ) is constantly changing due to daily mandibular movements. Therefore, TMJ tissues, such as condylar cartilage, the synovial membrane and discs, are influenced by different magnitudes of mechanical stimulation. Moderate mechanical stimulation is beneficial for maintaining homeostasis, whereas abnormal mechanical stimulation leads to degeneration and ultimately contributes to the development of temporomandibular joint osteoarthritis (TMJOA), which involves changes in critical signaling molecules. Under abnormal mechanical stimulation, compensatory molecules may prevent degenerative changes while decompensatory molecules aggravate. In this review, we summarize the critical signaling molecules that are stimulated by moderate or abnormal mechanical loading in TMJ tissues, mainly in condylar cartilage. Furthermore, we classify abnormal mechanical stimulation-induced molecules into compensatory or decompensatory molecules. Our aim is to understand the pathophysiological mechanism of TMJ dysfunction more deeply in the ever-changing mechanical environment, and then provide new ideas for discovering effective diagnostic and therapeutic targets in TMJOA.
Collapse
Affiliation(s)
| | | | | | | | | | - Wei Geng
- Department of Dental Implant Center, Beijing Stomatological Hospital, School of Stomatology, Capital Medical University, Beijing, China
| | - Yanxi Li
- Department of Dental Implant Center, Beijing Stomatological Hospital, School of Stomatology, Capital Medical University, Beijing, China
| |
Collapse
|
4
|
Yan J, Wang Z, Xian L, Wang D, Chen Y, Bai J, Liu HJ. Periostin Promotes the Proliferation, Differentiation and Mineralization of Osteoblasts from Ovariectomized Rats. Horm Metab Res 2024; 56:526-535. [PMID: 38307091 DOI: 10.1055/a-2238-2553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2024]
Abstract
Perimenopausal period causes a significant amount of bone loss, which results in primary osteoporosis (OP). The Periostin (Postn) may play important roles in the pathogenesis of OP after ovariectomized (OVX) rats. To identify the roles of Postn in the bone marrow mesenchymal stem cell derived osteoblasts (BMSC-OB) in OVX rats, we investigated the expression of Wnt/β-catenin signaling pathways in BMSC-OB and the effects of Postn on bone formation by development of BMSC-OB cultures. Twenty-four female Sprague-Dawley rats at 6 months were randomized into 3 groups: sham-operated (SHAM) group, OVX group and OVX+Postn group. The rats were killed after 3 months, and their bilateral femora and tibiae were collected for BMSC-OB culture, Micro-CT Analysis, Bone Histomorphometric Measurement, Transmission Electron Microscopy and Immunohistochemistry Staining. The dose/time-dependent effects of Postn on the proliferation, differentiation and mineralization of BMSC-OB and the expression of osteoblastic markers were measured in in vitro experiments. We found increased Postn increased bone mass, promoted bone formation of trabeculae, Wnt signaling and the osteogenic activity in osteoblasts in sublesional femur. Postn have the function to enhance cell proliferation, differentiation and mineralization at a proper concentration and incubation time. Interestingly, in BMSC-OB from OVX rats treated with the different dose of Postn, the osteoblastic markers expression and Wnt/β-catenin signaling pathways were significantly promoted. The direct effect of Postn may lead to inhibit excessive bone resorption and increase bone formation through the Wnt/β-catenin signaling pathways after OVX. Postn may play a very important role in the pathogenesis of OP after OVX.
Collapse
Affiliation(s)
- Jun Yan
- Department of Orthopaedic Surgery, Liaocheng People's Hospital, Liaocheng City, China
| | - Zidong Wang
- Department of Orthopaedic Surgery, Liaocheng People's Hospital, Liaocheng City, China
| | - Li Xian
- School of Clinical Medicine, Weifang Medical University, Weifang, China
| | - Dawei Wang
- Department of Orthopaedic Surgery, Liaocheng People's Hospital, Liaocheng City, China
| | - Yunzhen Chen
- Department of Spine, Qilu Hospital of Shandong University, Jinan, China
| | - Jie Bai
- Department of Endocrinology, Liaocheng People's Hospital, Liaocheng City, China
| | - Hai-Juan Liu
- Department of Endocrinology, Liaocheng People's Hospital, Liaocheng City, China
| |
Collapse
|
5
|
Yuan C, Li J. Research progress of periostin and osteoporosis. Front Endocrinol (Lausanne) 2024; 15:1356297. [PMID: 38487345 PMCID: PMC10938139 DOI: 10.3389/fendo.2024.1356297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 02/05/2024] [Indexed: 03/17/2024] Open
Abstract
Periostin, as a unique extracellular matrix, is mainly produced during ontogeny and in adult connective tissues that bear mechanical loads, such as heart valves, skin, periodontal ligaments, tendons, and bones. By binding to the integrin on the cell surface and activating Wnt/β-catenin, NF-κB, Fak and other signaling pathways, it regulates the tissues in vivo positively or negatively, and also has different effects on the occurrence and development of various diseases. Periostin is an important factor, which can promote cell proliferation, stimulate tissue repair and maintain the integrity of the structure and function of connective tissue. It also promotes the formation, regeneration and repairation of bone. Recent studies have shown that periostin is important in bone metabolic diseases. The increased expression of periostin can affect bone mineral density at different sites, and its relationship with traditional biochemical markers of bone turnover has not been conclusively established. This article reviews the research results and potential applications of periostin in osteoporosis.
Collapse
Affiliation(s)
| | - Junyan Li
- Department of Endocrinology and Metabolism, Heji Hospital Affiliated to Changzhi Medical College, Changzhi, China
| |
Collapse
|
6
|
Maïmoun L, Gelis A, Serrand C, Mura T, Brabant S, Garnero P, Mariano-Goulart D, Fattal C. Whole-body vibration may not affect bone mineral density and bone turnover in persons with chronic spinal cord injury: A preliminary study. J Spinal Cord Med 2023:1-13. [PMID: 37930641 DOI: 10.1080/10790268.2023.2268893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/07/2023] Open
Abstract
CONTEXT Spinal-cord injury (SCI) induces bone loss and dramatically increases the risk of fracture. OBJECTIVES Determine the effects of whole-body vibration (WBV) on areal bone mineral density (aBMD), whole body composition and bone biological parameters in individuals with chronic-state SCI. DESIGN Randomized study. SETTING Centre Neurologique PROPARA. PARTICIPANTS Fourteen subjects were randomly assigned to a WBV or a control group. INTERVENTIONS WBV (20-45 min, 30-45 Hz, 0.5 g) was performed in verticalized persons twice weekly for 6 months. OUTCOME MEASURES aBMD was measured by DXA at baseline and 6 months and bone biological parameters at baseline, 1, 3 and 6 months. RESULTS No significant aBMD change was found in either the WBV or control group after 6 months of follow-up. Similarly, periostin, sclerostin and bone turnover markers remained relatively stable throughout follow-up and no difference in variation was observed within-group and between groups. Except for whole-body fat mass, which showed a significant decrease in the WBV group compared to controls, no difference in changes was observed, whatever the localization for fat and lean body mass. CONCLUSIONS During the chronic phase, aBMD and bone remodeling reach a new steady state. However, the DXA technique and the bone markers, including sclerostin and periostin, both of which reflect bone cell activity influenced by mechanical strain, showed that the bone tissue of individuals with SCI was insensitive to 6 months of WBV training at the study dose. Nevertheless, results of this preliminary study that was underpowered need to be confirmed and other modalities of WBV may be more effective in improving aBMD of this population. TRIALS REGISTRATION N°IDRCB:2011-A00224-37.
Collapse
Affiliation(s)
- Laurent Maïmoun
- Département de Médecine Nucléaire, Hôpital Lapeyronie, CHU Montpellier, Montpellier, France
- PhyMedExp, INSERM, CNRS, Université de Montpellier, Montpellier, France
| | | | - Chris Serrand
- Unité de Recherche Clinique et Epidémiologie, Hôpital La Colombière, CHU Montpellier, Montpellier, France
| | - Thibault Mura
- BESPIM -Hôpital Caremeau, CHRU de Nîmes, Nîmes, France
| | - Severine Brabant
- Laboratoire des Explorations Fonctionnelles, Hôpital Necker, Paris, France
| | | | - Denis Mariano-Goulart
- Département de Médecine Nucléaire, Hôpital Lapeyronie, CHU Montpellier, Montpellier, France
- PhyMedExp, INSERM, CNRS, Université de Montpellier, Montpellier, France
| | | |
Collapse
|
7
|
Yoshihara T, Morimoto T, Hirata H, Murayama M, Nonaka T, Tsukamoto M, Toda Y, Kobayashi T, Izuhara K, Mawatari M. Mechanisms of tissue degeneration mediated by periostin in spinal degenerative diseases and their implications for pathology and diagnosis: a review. Front Med (Lausanne) 2023; 10:1276900. [PMID: 38020106 PMCID: PMC10645150 DOI: 10.3389/fmed.2023.1276900] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Accepted: 09/18/2023] [Indexed: 12/01/2023] Open
Abstract
Periostin (POSTN) serves a dual role as both a matricellular protein and an extracellular matrix (ECM) protein and is widely expressed in various tissues and cells. As an ECM protein, POSTN binds to integrin receptors, transduces signals to cells, enabling cell activation. POSTN has been linked with various diseases, including atopic dermatitis, asthma, and the progression of multiple cancers. Recently, its association with orthopedic diseases, such as osteoporosis, osteoarthritis resulting from cartilage destruction, degenerative diseases of the intervertebral disks, and ligament degenerative diseases, has also become apparent. Furthermore, POSTN has been shown to be a valuable biomarker for understanding the pathophysiology of orthopedic diseases. In addition to serum POSTN, synovial fluid POSTN in joints has been reported to be useful as a biomarker. Risk factors for spinal degenerative diseases include aging, mechanical stress, trauma, genetic predisposition, obesity, and metabolic syndrome, but the cause of spinal degenerative diseases (SDDs) remains unclear. Studies on the pathophysiological effects of POSTN may significantly contribute toward the diagnosis and treatment of spinal degenerative diseases. Therefore, in this review, we aim to examine the mechanisms of tissue degeneration caused by mechanical and inflammatory stresses in the bones, cartilage, intervertebral disks, and ligaments, which are crucial components of the spine, with a focus on POSTN.
Collapse
Affiliation(s)
- Tomohito Yoshihara
- Department of Orthopaedic Surgery, Faculty of Medicine, Saga University, Saga, Japan
| | - Tadatsugu Morimoto
- Department of Orthopaedic Surgery, Faculty of Medicine, Saga University, Saga, Japan
| | - Hirohito Hirata
- Department of Orthopaedic Surgery, Faculty of Medicine, Saga University, Saga, Japan
| | - Masatoshi Murayama
- Department of Orthopaedic Surgery, Faculty of Medicine, Saga University, Saga, Japan
| | - Toshihiro Nonaka
- Department of Orthopaedic Surgery, Faculty of Medicine, Saga University, Saga, Japan
| | - Masatsugu Tsukamoto
- Department of Orthopaedic Surgery, Faculty of Medicine, Saga University, Saga, Japan
| | - Yu Toda
- Department of Orthopaedic Surgery, Faculty of Medicine, Saga University, Saga, Japan
| | - Takaomi Kobayashi
- Department of Orthopaedic Surgery, Faculty of Medicine, Saga University, Saga, Japan
| | - Kenji Izuhara
- Division of Medical Biochemistry, Department of Biomolecular Sciences, Saga Medical School, Saga, Japan
| | - Masaaki Mawatari
- Department of Orthopaedic Surgery, Faculty of Medicine, Saga University, Saga, Japan
| |
Collapse
|
8
|
Maïmoun L, Aouinti S, Puech M, Lefebvre P, Deloze M, de Santa Barbara P, Cristol JP, Brabant S, Gautier T, Nedelcu M, Renard E, Picot MC, Mariano-Goulart D, Nocca D. Effect of Nutritional Deprivation after Sleeve Gastrectomy on Bone Mass, Periostin, Sclerostin and Semaphorin 4D: A Two-Year Longitudinal Study. Nutrients 2023; 15:4310. [PMID: 37892386 PMCID: PMC10610316 DOI: 10.3390/nu15204310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 10/06/2023] [Accepted: 10/08/2023] [Indexed: 10/29/2023] Open
Abstract
Bariatric surgery induces bone loss, but the exact mechanisms by which this process occurs are not fully known. The aims of this 2-year longitudinal study were to (i) investigate the changes in areal bone mineral density (aBMD) and bone turnover markers following sleeve gastrectomy (SG) and (ii) determine the parameters associated with the aBMD variations. Bone turnover markers, sclerostin, periostin and semaphorin 4D were assessed before and 1, 12 and 24 months after SG, and aBMD was determined by DXA at baseline and after 12 and 24 months in 83 patients with obesity. Bone turnover increased from 1 month, peaked at 12 months and remained elevated at 24 months. Periostin and sclerostin presented only modest increases at 1 month, whereas semaphorin 4D showed increases only at 12 and 24 months. A significant aBMD decrease was observed only at total hip regions at 12 and 24 months. This demineralisation was mainly related to body weight loss. In summary, reduced aBMD was observed after SG in the hip region (mechanical-loading bone sites) due to an increase in bone turnover in favour of bone resorption. Periostin, sclerostin and semaphorin 4D levels varied after SG, showing different time lags, but contrary to weight loss, these biological parameters did not seem to be directly implicated in the skeletal deterioration.
Collapse
Affiliation(s)
- Laurent Maïmoun
- Département de Biophysique, Université Montpellier, Service de Médecine Nucléaire, Hôpital Lapeyronie, 371, Avenue du Doyen Gaston Giraud, CHU de Montpellier, CEDEX 5, 34295 Montpellier, France;
- Physiology and Experimental Medecine of the Heart and Muscles (PhyMedExp), Université de Montpellier, INSERM, CNRS, 34295 Montpellier, France;
| | - Safa Aouinti
- Unité de Recherche Clinique et Epidémiologie, CHU de Montpellier, Université de Montpellier, 34295 Montpellier, France; (S.A.); (M.-C.P.)
| | - Marion Puech
- Service de Chirurgie Digestive A, Hôpital Saint Eloi, CHU de Montpellier, 34295 Montpellier, France; (M.P.); (M.D.); (D.N.)
| | - Patrick Lefebvre
- Department of Endocrinology and Diabetes, Lapeyronie Hospital, CHU de Montpellier, University of Montpellier, INSERM, CNRS, 34295 Montpellier, France; (P.L.); (E.R.)
| | - Mélanie Deloze
- Service de Chirurgie Digestive A, Hôpital Saint Eloi, CHU de Montpellier, 34295 Montpellier, France; (M.P.); (M.D.); (D.N.)
| | - Pascal de Santa Barbara
- Physiology and Experimental Medecine of the Heart and Muscles (PhyMedExp), Université de Montpellier, INSERM, CNRS, 34295 Montpellier, France;
| | - Jean-Paul Cristol
- Laboratoire de Biochimie, Hôpital Lapeyronie, CHU de Montpellier, 34295 Montpellier, France;
| | - Séverine Brabant
- Laboratoire des Explorations Fonctionnelles, Hôpital Necker Enfants Malades, APHP, 75015 Paris, France;
| | | | | | - Eric Renard
- Department of Endocrinology and Diabetes, Lapeyronie Hospital, CHU de Montpellier, University of Montpellier, INSERM, CNRS, 34295 Montpellier, France; (P.L.); (E.R.)
| | - Marie-Christine Picot
- Unité de Recherche Clinique et Epidémiologie, CHU de Montpellier, Université de Montpellier, 34295 Montpellier, France; (S.A.); (M.-C.P.)
| | - Denis Mariano-Goulart
- Département de Biophysique, Université Montpellier, Service de Médecine Nucléaire, Hôpital Lapeyronie, 371, Avenue du Doyen Gaston Giraud, CHU de Montpellier, CEDEX 5, 34295 Montpellier, France;
- Physiology and Experimental Medecine of the Heart and Muscles (PhyMedExp), Université de Montpellier, INSERM, CNRS, 34295 Montpellier, France;
| | - David Nocca
- Service de Chirurgie Digestive A, Hôpital Saint Eloi, CHU de Montpellier, 34295 Montpellier, France; (M.P.); (M.D.); (D.N.)
| |
Collapse
|
9
|
Yigitdol I, Gulumsek E, Ozturk HA, Arici FN, Akbal K, Pirinci O, Karacay M, Cihan TN, Totik ZG, Akyildiz MA, Avci BS, Avci A, Sumbul HE. Serum Periostin Levels are Significantly Higher in Patients with Primary Hyperparathyroidism and Closely Related to Osteoporosis. Exp Clin Endocrinol Diabetes 2023; 131:449-455. [PMID: 37276863 DOI: 10.1055/a-2053-8090] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
BACKGROUND Periostin is an emerging biomarker that plays a role in bone metabolism and may be associated with bone mineral density (BMD). This study is aimed to investigate serum periostin levels in patients with primary hyperparathyroidism (PHPT) and its correlation with BMD in these patients. METHODS Forty patients with newly diagnosed PHPT without co-morbidities and 30 healthy controls were included. Laboratory tests for the diagnosis of PHPT and serum levels of periostin were measured for all patients. BMD was measured on lumbar spines L1 and L4 by dual-energy X-ray absorptiometry (DEXA). Serum periostin levels were detected using an enzyme-linked immunosorbent assay (ELISA). RESULTS Serum periostin levels were significantly higher in patients with PHPT than in healthy controls (p<0.001). Serum periostin levels were also significantly higher (mean 59.7±11.0 ng/mL) in PHPT patients with osteoporosis than those without osteoporosis (p=0.004). In logistic regression analysis, only serum periostin levels independently predicted the patients with osteoporosis. According to this analysis, every 1 ng/mL increase in serum periostin increased the risk of having osteoporosis by 20.6%. When the cut-off for serum periostin level was 49.75 ng/mL, the patients with osteoporosis were predicted with 71.4% sensitivity and 69.2% specificity. Multivariate regression analysis revealed a negative correlation between serum periostin levels and L1-L4 T scores on DEXA. CONCLUSION This is the first study to determine that serum periostin levels are higher in PHPT patients than those without PHPT and to demonstrate a significant association between serum periostin levels and T scores on DEXA in patients with PHPT. These findings will aid in detecting osteoporosis in patients with PHPT and making the decision for surgery in PHPT patients with no need for DEXA imaging that involves radiation.
Collapse
Affiliation(s)
- Ismail Yigitdol
- Department of Internal Medicine, University of Health Sciences - Adana Health Practice and Research Center, Adana, Turkey
| | - Erdinc Gulumsek
- Department of Internal Medicine, University of Health Sciences - Adana Health Practice and Research Center, Adana, Turkey
| | - Huseyin Ali Ozturk
- Department of Internal Medicine, University of Health Sciences - Adana Health Practice and Research Center, Adana, Turkey
| | - Fatih Necip Arici
- Department of Internal Medicine, University of Health Sciences - Adana Health Practice and Research Center, Adana, Turkey
| | - Kubilay Akbal
- Department of Internal Medicine, University of Health Sciences - Adana Health Practice and Research Center, Adana, Turkey
| | - Okan Pirinci
- Department of Internal Medicine, University of Health Sciences - Adana Health Practice and Research Center, Adana, Turkey
| | - Mert Karacay
- Department of Internal Medicine, University of Health Sciences - Adana Health Practice and Research Center, Adana, Turkey
| | - Tutku Naz Cihan
- Department of Internal Medicine, University of Health Sciences - Adana Health Practice and Research Center, Adana, Turkey
| | - Zeynep Gizem Totik
- Department of Internal Medicine, University of Health Sciences - Adana Health Practice and Research Center, Adana, Turkey
| | - Mustafa Aykut Akyildiz
- Department of Internal Medicine, University of Health Sciences - Adana Health Practice and Research Center, Adana, Turkey
| | - Begum Seyda Avci
- Department of Internal Medicine, University of Health Sciences - Adana Health Practice and Research Center, Adana, Turkey
| | - Akkan Avci
- Department of Emergency Medicine, University of Health Sciences - Adana Health Practice and Research Center, Adana, Turkey
| | - Hilmi Erdem Sumbul
- Department of Internal Medicine, University of Health Sciences - Adana Health Practice and Research Center, Adana, Turkey
| |
Collapse
|
10
|
Gan J, Deng X, Le Y, Lai J, Liao X. The Development of Naringin for Use against Bone and Cartilage Disorders. Molecules 2023; 28:3716. [PMID: 37175126 PMCID: PMC10180405 DOI: 10.3390/molecules28093716] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Revised: 04/17/2023] [Accepted: 04/24/2023] [Indexed: 05/15/2023] Open
Abstract
Bone and cartilage disorders are the leading causes of musculoskeletal disability. There is no absolute cure for all bone and cartilage disorders. The exploration of natural compounds for the potential therapeutic use against bone and cartilage disorders is proving promising. Among these natural chemicals, naringin, a flavanone glycoside, is a potential candidate due to its multifaceted pharmacological activities in bone and cartilage tissues. Emerging studies indicate that naringin may promote osteogenic differentiation, inhibit osteoclast formation, and exhibit protective effects against osteoporosis in vivo and in vitro. Many signaling pathways, such as BMP-2, Wnt/β-catenin, and VEGF/VEGFR, participate in the biological actions of naringin in mediating the pathological development of osteoporosis. In addition, the anti-inflammatory, anti-oxidative stress, and anti-apoptosis abilities of naringin also demonstrate its beneficial effects against bone and cartilage disorders, including intervertebral disc degeneration, osteoarthritis, rheumatoid arthritis, bone and cartilage tumors, and tibial dyschondroplasia. Naringin exhibits protective effects against bone and cartilage disorders. However, more efforts are still needed due to, at least in part, the uncertainty of drug targets. Further biological and pharmacological evaluations of naringin and its applications in bone tissue engineering, particularly its therapeutic effects against osteoporosis, might result in developing potential drug candidates.
Collapse
Affiliation(s)
- Juwen Gan
- Department of Pulmonary and Critical Care Medicine, Ganzhou People’s Hospital, Ganzhou 341000, China
| | - Xiaolan Deng
- Department of Pharmacy, Haikou Affiliated Hospital, Xiangya School of Medicine, Central South University, Haikou 570208, China
| | - Yonghong Le
- Department of Pulmonary and Critical Care Medicine, Ganzhou People’s Hospital, Ganzhou 341000, China
| | - Jun Lai
- Department of Pharmacy, Ganzhou People’s Hospital, Ganzhou 341000, China
| | - Xiaofei Liao
- Department of Pharmacy, Ganzhou People’s Hospital, Ganzhou 341000, China
| |
Collapse
|
11
|
Marques FC, Boaretti D, Walle M, Scheuren AC, Schulte FA, Müller R. Mechanostat parameters estimated from time-lapsed in vivo micro-computed tomography data of mechanically driven bone adaptation are logarithmically dependent on loading frequency. Front Bioeng Biotechnol 2023; 11:1140673. [PMID: 37113673 PMCID: PMC10126906 DOI: 10.3389/fbioe.2023.1140673] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Accepted: 03/27/2023] [Indexed: 04/29/2023] Open
Abstract
Mechanical loading is a key factor governing bone adaptation. Both preclinical and clinical studies have demonstrated its effects on bone tissue, which were also notably predicted in the mechanostat theory. Indeed, existing methods to quantify bone mechanoregulation have successfully associated the frequency of (re)modeling events with local mechanical signals, combining time-lapsed in vivo micro-computed tomography (micro-CT) imaging and micro-finite element (micro-FE) analysis. However, a correlation between the local surface velocity of (re)modeling events and mechanical signals has not been shown. As many degenerative bone diseases have also been linked to impaired bone (re)modeling, this relationship could provide an advantage in detecting the effects of such conditions and advance our understanding of the underlying mechanisms. Therefore, in this study, we introduce a novel method to estimate (re)modeling velocity curves from time-lapsed in vivo mouse caudal vertebrae data under static and cyclic mechanical loading. These curves can be fitted with piecewise linear functions as proposed in the mechanostat theory. Accordingly, new (re)modeling parameters can be derived from such data, including formation saturation levels, resorption velocity moduli, and (re)modeling thresholds. Our results revealed that the norm of the gradient of strain energy density yielded the highest accuracy in quantifying mechanoregulation data using micro-finite element analysis with homogeneous material properties, while effective strain was the best predictor for micro-finite element analysis with heterogeneous material properties. Furthermore, (re)modeling velocity curves could be accurately described with piecewise linear and hyperbola functions (root mean square error below 0.2 µm/day for weekly analysis), and several (re)modeling parameters determined from these curves followed a logarithmic relationship with loading frequency. Crucially, (re)modeling velocity curves and derived parameters could detect differences in mechanically driven bone adaptation, which complemented previous results showing a logarithmic relationship between loading frequency and net change in bone volume fraction over 4 weeks. Together, we expect this data to support the calibration of in silico models of bone adaptation and the characterization of the effects of mechanical loading and pharmaceutical treatment interventions in vivo.
Collapse
Affiliation(s)
| | | | | | | | | | - Ralph Müller
- Institute for Biomechanics, ETH Zurich, Zurich, Switzerland
| |
Collapse
|
12
|
Ferrari S, Langdahl B. Mechanisms underlying the long-term and withdrawal effects of denosumab therapy on bone. Nat Rev Rheumatol 2023; 19:307-317. [PMID: 37024711 DOI: 10.1038/s41584-023-00935-3] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/28/2023] [Indexed: 04/08/2023]
Abstract
Denosumab, a human monoclonal antibody against receptor activator of nuclear factor-κB ligand (RANKL), is a potent inhibitor of osteoclast differentiation and activity. As the first biologic drug used to treat osteoporosis, denosumab has shown potent anti-resorptive properties and anti-fracture efficacy. The effects of this drug are also unique compared with the effects of bisphosphonates: namely, long-term treatment with this drug results in a continuous gain of bone mineral density, whereas withdrawal of the drug results in a transient overshoot in bone turnover and rapid bone loss. Although the mechanisms for these specific effects remain incompletely understood, emerging experimental and clinical data have started to highlight potential biological and pharmacological mechanisms by which denosumab might affect osteoclasts, as well as osteoblasts, and cause both sustained bone gain and bone loss upon treatment cessation. This Perspective discusses those potential mechanisms and the future studies and clinical implications that might ensue from these findings.
Collapse
Affiliation(s)
- Serge Ferrari
- Service of Bone Diseases, Department of Medicine, Geneva University Hospital and Faculty of Medicine, Geneva, Switzerland.
| | - Bente Langdahl
- Department of Endocrinology and Internal Medicine, Aarhus University Hospital, Aarhus, Denmark
| |
Collapse
|
13
|
Solidum JGN, Jeong Y, Heralde F, Park D. Differential regulation of skeletal stem/progenitor cells in distinct skeletal compartments. Front Physiol 2023; 14:1137063. [PMID: 36926193 PMCID: PMC10013690 DOI: 10.3389/fphys.2023.1137063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Accepted: 02/16/2023] [Indexed: 03/06/2023] Open
Abstract
Skeletal stem/progenitor cells (SSPCs), characterized by self-renewal and multipotency, are essential for skeletal development, bone remodeling, and bone repair. These cells have traditionally been known to reside within the bone marrow, but recent studies have identified the presence of distinct SSPC populations in other skeletal compartments such as the growth plate, periosteum, and calvarial sutures. Differences in the cellular and matrix environment of distinct SSPC populations are believed to regulate their stemness and to direct their roles at different stages of development, homeostasis, and regeneration; differences in embryonic origin and adjacent tissue structures also affect SSPC regulation. As these SSPC niches are dynamic and highly specialized, changes under stress conditions and with aging can alter the cellular composition and molecular mechanisms in place, contributing to the dysregulation of local SSPCs and their activity in bone regeneration. Therefore, a better understanding of the different regulatory mechanisms for the distinct SSPCs in each skeletal compartment, and in different conditions, could provide answers to the existing knowledge gap and the impetus for realizing their potential in this biological and medical space. Here, we summarize the current scientific advances made in the study of the differential regulation pathways for distinct SSPCs in different bone compartments. We also discuss the physical, biological, and molecular factors that affect each skeletal compartment niche. Lastly, we look into how aging influences the regenerative capacity of SSPCs. Understanding these regulatory differences can open new avenues for the discovery of novel treatment approaches for calvarial or long bone repair.
Collapse
Affiliation(s)
- Jea Giezl Niedo Solidum
- Department of Biochemistry and Molecular Biology, College of Medicine, University of the Philippines Manila, Manila, Philippines
- Department of Molecular and Human Genetics, Houston, TX, United States
| | - Youngjae Jeong
- Department of Molecular and Human Genetics, Houston, TX, United States
| | - Francisco Heralde
- Department of Biochemistry and Molecular Biology, College of Medicine, University of the Philippines Manila, Manila, Philippines
| | - Dongsu Park
- Department of Molecular and Human Genetics, Houston, TX, United States
- Center for Skeletal Biology, Baylor College of Medicine, Houston, TX, United States
| |
Collapse
|
14
|
Ma Q, Miri Z, Haugen HJ, Moghanian A, Loca D. Significance of mechanical loading in bone fracture healing, bone regeneration, and vascularization. J Tissue Eng 2023; 14:20417314231172573. [PMID: 37251734 PMCID: PMC10214107 DOI: 10.1177/20417314231172573] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Accepted: 04/13/2023] [Indexed: 05/31/2023] Open
Abstract
In 1892, J.L. Wolff proposed that bone could respond to mechanical and biophysical stimuli as a dynamic organ. This theory presents a unique opportunity for investigations on bone and its potential to aid in tissue repair. Routine activities such as exercise or machinery application can exert mechanical loads on bone. Previous research has demonstrated that mechanical loading can affect the differentiation and development of mesenchymal tissue. However, the extent to which mechanical stimulation can help repair or generate bone tissue and the related mechanisms remain unclear. Four key cell types in bone tissue, including osteoblasts, osteoclasts, bone lining cells, and osteocytes, play critical roles in responding to mechanical stimuli, while other cell lineages such as myocytes, platelets, fibroblasts, endothelial cells, and chondrocytes also exhibit mechanosensitivity. Mechanical loading can regulate the biological functions of bone tissue through the mechanosensor of bone cells intraosseously, making it a potential target for fracture healing and bone regeneration. This review aims to clarify these issues and explain bone remodeling, structure dynamics, and mechano-transduction processes in response to mechanical loading. Loading of different magnitudes, frequencies, and types, such as dynamic versus static loads, are analyzed to determine the effects of mechanical stimulation on bone tissue structure and cellular function. Finally, the importance of vascularization in nutrient supply for bone healing and regeneration was further discussed.
Collapse
Affiliation(s)
- Qianli Ma
- Department of Biomaterials, Institute
of Clinical Dentistry, University of Oslo, Norway
- Department of Immunology, School of
Basic Medicine, Fourth Military Medical University, Xi’an, PR China
| | - Zahra Miri
- Department of Materials Engineering,
Isfahan University of Technology, Isfahan, Iran
| | - Håvard Jostein Haugen
- Department of Biomaterials, Institute
of Clinical Dentistry, University of Oslo, Norway
| | - Amirhossein Moghanian
- Department of Materials Engineering,
Imam Khomeini International University, Qazvin, Iran
| | - Dagnjia Loca
- Rudolfs Cimdins Riga Biomaterials
Innovations and Development Centre, Institute of General Chemical Engineering,
Faculty of Materials Science and Applied Chemistry, Riga Technical University, Riga,
Latvia
- Baltic Biomaterials Centre of
Excellence, Headquarters at Riga Technical University, Riga, Latvia
| |
Collapse
|
15
|
Profiling the Spatial Expression Pattern and ceRNA Network of lncRNA, miRNA, and mRNA Associated with the Development of Intermuscular Bones in Zebrafish. BIOLOGY 2022; 12:biology12010075. [PMID: 36671767 PMCID: PMC9855694 DOI: 10.3390/biology12010075] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 12/26/2022] [Accepted: 12/28/2022] [Indexed: 01/03/2023]
Abstract
Intermuscular bones (IBs) are small spicule-like bones in the muscular septum of fish, which affect their edible and economic value. The molecular mechanism of IB development is still uncertain. Numerous studies have shown that the ceRNA network, which is composed of mRNA, lncRNA, and miRNA, plays an important regulatory role in bone development. In this study, we compared the mRNA, lncRNA, and miRNA expression profiles in different IB development segments of zebrafish. The development of IBs includes two main processes, which are formation and growth. A series of genes implicated in the formation and growth of IBs were identified through gene differential expression analysis and expression pattern analysis. Functional enrichment analysis showed that the functions of genes implicated in the regulation of the formation and growth of IBs were quite different. Ribosome and oxidative phosphorylation signaling pathways were significantly enriched during the formation of IBs, suggesting that many proteins are required to form IBs. Several pathways known to be associated with bone development have been shown to play an important role in the growth of IBs, including calcium, ECM-receptor interaction, Wnt, TGF-β, and hedgehog signaling pathways. According to the targeting relationship and expression correlation of mRNA, lncRNA, and miRNA, the ceRNA networks associated with the growth of IBs were constructed, which comprised 33 mRNAs, 9 lncRNAs, and 7 miRNAs. This study provides new insight into the molecular mechanism of the development of IBs.
Collapse
|
16
|
Differential Expression of Dickkopf 1 and Periostin in Mouse Strains with High and Low Bone Mass. BIOLOGY 2022; 11:biology11121840. [PMID: 36552348 PMCID: PMC9775221 DOI: 10.3390/biology11121840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 12/01/2022] [Accepted: 12/14/2022] [Indexed: 12/24/2022]
Abstract
By expressing different genes and proteins that regulate osteoclast as well as osteoblast formation, osteocytes orchestrate bone metabolism. The aim of this project was the evaluation of the differences in the osteocytes’ secretory activity in the low bone mass mouse strain C57BL/6J and the high bone mass strain C3H/J. The femura of eight- and sixteen-week-old male C57BL/6J and C3H/J mice—six animals per group—were analyzed. Using immunohistochemistry, osteocytes expressing dickkopf 1, sclerostin, periostin, fibroblast growth factor 23 (FGF23), and osteoprotegerin were detected. By means of the OsteoMeasure-System, 92.173 osteocytes were counted. At the age of eight weeks, approximately twice as many cortical and trabecular osteocytes from the C57BL/6J mice compared to the C3H/J mice expressed dickkopf 1 (p < 0.005). The number of cortical osteocytes expressing sclerostin was also higher in the C57BL/6J mice (p < 0.05). In contrast, the cortical and trabecular osteocytes expressing periostin were twice as high in the C3H/J mice (p < 0.005). The dickkopf 1 expressing osteocytes of the C57BL/6J mice decreased with age and showed a strain-specific difference only in cortical bone by 16 weeks of age (p < 0.05). In the C3H/J mice, the amount of osteocytes expressing periostin tended to increase with age. Thus, strain-related differences were maintained in 16-week-old rodents (p < 0.005). No strain-specific differences in the expression of FGF23 or osteoprotegerin in the cortical compartment could be detected. This experimental study showed that the osteocytes’ protein expression reflects differences in bone characteristics and strain-related differences during skeletal maturation. Besides the osteocytes’ expression of sclerostin, their expression of dickkopf 1 and periostin seems to be important for bone properties as well.
Collapse
|
17
|
Salehiamin M, Toolee H, Azami M, Tafti SHA, Mojaverrostami S, Halimi S, Barakzai S, Sobhani A, Abbasi Y. Chitosan Scaffold Containing Periostin Enhances Sternum Bone Healing and Decreases Serum Level of TNF-α and IL-6 after Sternotomy in Rat. Tissue Eng Regen Med 2022; 19:839-852. [PMID: 35199306 PMCID: PMC9294132 DOI: 10.1007/s13770-022-00434-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 01/11/2022] [Accepted: 01/12/2022] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND In the aftermath of bone injuries, such as cranium and sternum, bone wax (BW) is used to control bleeding from the bone surfaces during surgery. Made up of artificial substances, however, it is associated with many complications such as inflammation, increased risk for infection, and bone repair delay. We, therefore, in this study set out to design and evaluate a novel BW without the above-mentioned side-effects reported for other therapies. METHODS The pastes (new BW(s)) were prepared in the laboratory and examined by MTT, MIC, MBC, and degradability tests. Then, 60 adult male Wistar rats, divided into six equal groups including chitosan (CT), CT-octacalcium phosphate (OCP), CT-periostin (Post), CT-OCP-Post, Control (Ctrl), and BW, underwent sternotomy surgery. Once the surgeries were completed, the bone repair was assessed radiologically and thereafter clinically in vivo and in vitro using CT-scan, H&E, ELISA, and qRT-PCR. RESULTS All pastes displayed antibacterial properties and the CT-Post group had the highest cell viability compared to the control group. In contrast to the BW, CT-Post group demonstrated weight changes in the degradability test. In the CT-Post group, more number of osteocyte cells, high trabeculae percentage, and the least fibrous connective tissue were observed compared to other groups. Additionally, in comparison to the CT and Ctrl groups, higher alkaline phosphatase activity, as well as decreased level of serum tumor necrosis factor-α, interleukin-6, and OCN in the CT-Post group was evident. Finally, Runx2, OPG, and RANKL genes' expression was significantly higher in the CT-Post group than in other groups. CONCLUSION Our results provide insights into the desirability of pastes in terms of cellular viability, degradability, antibacterial properties, and surgical site restoration compared to the BW group. Besides, Periostin could enhance the osteogenic properties of bone tissue defect site.
Collapse
Affiliation(s)
- Mehdi Salehiamin
- Department of Anatomy, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Heidar Toolee
- School of Allied Medical Sciences, Shahroud University of Medical Sciences, Shahroud, Iran
| | - Mahmoud Azami
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Seyed Hossein Ahmadi Tafti
- Research Center for Advanced Technologies in Cardiovascular Medicine, Tehran Heart Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Sina Mojaverrostami
- Department of Anatomy, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Shahnaz Halimi
- Department of Microbiology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Shogoofa Barakzai
- Department of Anatomy, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Aligholi Sobhani
- Department of Anatomy, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| | - Yasaman Abbasi
- School of Dentistry, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
18
|
Mechanical regulation of bone remodeling. Bone Res 2022; 10:16. [PMID: 35181672 PMCID: PMC8857305 DOI: 10.1038/s41413-022-00190-4] [Citation(s) in RCA: 166] [Impact Index Per Article: 55.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 11/04/2021] [Accepted: 12/13/2021] [Indexed: 12/17/2022] Open
Abstract
Bone remodeling is a lifelong process that gives rise to a mature, dynamic bone structure via a balance between bone formation by osteoblasts and resorption by osteoclasts. These opposite processes allow the accommodation of bones to dynamic mechanical forces, altering bone mass in response to changing conditions. Mechanical forces are indispensable for bone homeostasis; skeletal formation, resorption, and adaptation are dependent on mechanical signals, and loss of mechanical stimulation can therefore significantly weaken the bone structure, causing disuse osteoporosis and increasing the risk of fracture. The exact mechanisms by which the body senses and transduces mechanical forces to regulate bone remodeling have long been an active area of study among researchers and clinicians. Such research will lead to a deeper understanding of bone disorders and identify new strategies for skeletal rejuvenation. Here, we will discuss the mechanical properties, mechanosensitive cell populations, and mechanotransducive signaling pathways of the skeletal system.
Collapse
|
19
|
Trivedi T, Guise TA. Systemic effects of abnormal bone resorption on muscle, metabolism, and cognition. Bone 2022; 154:116245. [PMID: 34718221 DOI: 10.1016/j.bone.2021.116245] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 10/21/2021] [Accepted: 10/25/2021] [Indexed: 12/11/2022]
Abstract
Skeletal tissue is dynamic, undergoing constant remodeling to maintain musculoskeletal integrity and balance in the human body. Recent evidence shows that apart from maintaining homeostasis in the local microenvironment, the skeleton systemically affects other tissues. Several cancer-associated and noncancer-associated bone disorders can disrupt the physiological homeostasis locally in the bone microenvironment and indirectly contribute to dysregulation of systemic body function. The systemic effects of bone on the regulation of distant organ function have not been widely explored. Recent evidence suggests that bone can interact with skeletal muscle, pancreas, and brain by releasing factors from mineralized bone matrix. Currently available bone-targeting therapies such as bisphosphonates and denosumab inhibit bone resorption, decrease morbidity associated with bone destruction, and improve survival. Bisphosphonates have been a standard treatment for bone metastases, osteoporosis, and cancer treatment-induced bone diseases. The extraskeletal effects of bisphosphonates on inhibition of tumor growth are known. However, our knowledge of the effects of bisphosphonates on muscle weakness, hyperglycemia, and cognitive defects is currently evolving. To be able to identify the molecular link between bone and distant organs during abnormal bone resorption and then treat these abnormalities and prevent their systemic effects could improve survival benefits. The current review highlights the link between bone resorption and its systemic effects on muscle, pancreas, and brain.
Collapse
Affiliation(s)
- Trupti Trivedi
- Department of Endocrine Neoplasia and Hormonal Disorders, The University of Texas MD Anderson Cancer Center, Houston, TX, United States of America
| | - Theresa A Guise
- Department of Endocrine Neoplasia and Hormonal Disorders, The University of Texas MD Anderson Cancer Center, Houston, TX, United States of America.
| |
Collapse
|
20
|
Abstract
Understanding the properties of bone is of both fundamental and clinical relevance. The basis of bone’s quality and mechanical resilience lies in its nanoscale building blocks (i.e., mineral, collagen, non-collagenous proteins, and water) and their complex interactions across length scales. Although the structure–mechanical property relationship in healthy bone tissue is relatively well characterized, not much is known about the molecular-level origin of impaired mechanics and higher fracture risks in skeletal disorders such as osteoporosis or Paget’s disease. Alterations in the ultrastructure, chemistry, and nano-/micromechanics of bone tissue in such a diverse group of diseased states have only been briefly explored. Recent research is uncovering the effects of several non-collagenous bone matrix proteins, whose deficiencies or mutations are, to some extent, implicated in bone diseases, on bone matrix quality and mechanics. Herein, we review existing studies on ultrastructural imaging—with a focus on electron microscopy—and chemical, mechanical analysis of pathological bone tissues. The nanometric details offered by these reports, from studying knockout mice models to characterizing exact disease phenotypes, can provide key insights into various bone pathologies and facilitate the development of new treatments.
Collapse
|
21
|
Abstract
PURPOSE OF REVIEW Osteocytes are considered to be the cells responsible for mastering the remodeling process that follows the exposure to unloading conditions. Given the invasiveness of bone biopsies in humans, both rodents and in vitro culture systems are largely adopted as models for studies in space missions or in simulated microgravity conditions models on Earth. RECENT FINDINGS After a brief recall of the main changes in bone mass and osteoclastic and osteoblastic activities in space-related models, this review focuses on the potential role of osteocytes in directing these changes. The role of the best-known signalling molecules is questioned, in particular in relation to osteocyte apoptosis. The mechanotransduction actors identified in spatial conditions and the problems related to fluid flow and shear stress changes, probably enhanced by the alteration in fluid flow and lack of convection during spaceflight, are recalled and discussed.
Collapse
Affiliation(s)
- Donata Iandolo
- U1059 INSERM - SAINBIOSE (SAnté INgéniérie BIOlogie St-Etienne) Campus Santé Innovation, Université Jean Monnet, Saint-Priest-en-Jarez, France
| | - Maura Strigini
- U1059 INSERM - SAINBIOSE (SAnté INgéniérie BIOlogie St-Etienne) Campus Santé Innovation, Université Jean Monnet, Saint-Priest-en-Jarez, France
| | - Alain Guignandon
- U1059 INSERM - SAINBIOSE (SAnté INgéniérie BIOlogie St-Etienne) Campus Santé Innovation, Université Jean Monnet, Saint-Priest-en-Jarez, France
| | - Laurence Vico
- U1059 INSERM - SAINBIOSE (SAnté INgéniérie BIOlogie St-Etienne) Campus Santé Innovation, Université Jean Monnet, Saint-Priest-en-Jarez, France.
| |
Collapse
|
22
|
Vollersen N, Zhao W, Rolvien T, Lange F, Schmidt FN, Sonntag S, Shmerling D, von Kroge S, Stockhausen KE, Sharaf A, Schweizer M, Karsak M, Busse B, Bockamp E, Semler O, Amling M, Oheim R, Schinke T, Yorgan TA. The WNT1 G177C mutation specifically affects skeletal integrity in a mouse model of osteogenesis imperfecta type XV. Bone Res 2021; 9:48. [PMID: 34759273 PMCID: PMC8580994 DOI: 10.1038/s41413-021-00170-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 05/28/2021] [Accepted: 06/27/2021] [Indexed: 12/27/2022] Open
Abstract
The recent identification of homozygous WNT1 mutations in individuals with osteogenesis imperfecta type XV (OI-XV) has suggested that WNT1 is a key ligand promoting the differentiation and function of bone-forming osteoblasts. Although such an influence was supported by subsequent studies, a mouse model of OI-XV remained to be established. Therefore, we introduced a previously identified disease-causing mutation (G177C) into the murine Wnt1 gene. Homozygous Wnt1G177C/G177C mice were viable and did not display defects in brain development, but the majority of 24-week-old Wnt1G177C/G177C mice had skeletal fractures. This increased bone fragility was not fully explained by reduced bone mass but also by impaired bone matrix quality. Importantly, the homozygous presence of the G177C mutation did not interfere with the osteoanabolic influence of either parathyroid hormone injection or activating mutation of LRP5, the latter mimicking the effect of sclerostin neutralization. Finally, transcriptomic analyses revealed that short-term administration of WNT1 to osteogenic cells induced not only the expression of canonical WNT signaling targets but also the expression of genes encoding extracellular matrix modifiers. Taken together, our data demonstrate that regulating bone matrix quality is a primary function of WNT1. They further suggest that individuals with WNT1 mutations should profit from existing osteoanabolic therapies.
Collapse
Affiliation(s)
- Nele Vollersen
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, 20246, Hamburg, Germany
| | - Wenbo Zhao
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, 20246, Hamburg, Germany
| | - Tim Rolvien
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, 20246, Hamburg, Germany
| | - Fabiola Lange
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, 20246, Hamburg, Germany
| | - Felix Nikolai Schmidt
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, 20246, Hamburg, Germany
| | - Stephan Sonntag
- PolyGene AG, 8153, Rümlang, Switzerland.,ETH Phenomics Center (EPIC), ETH Zürich, 8092, Zürich, Switzerland
| | | | - Simon von Kroge
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, 20246, Hamburg, Germany
| | - Kilian Elia Stockhausen
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, 20246, Hamburg, Germany
| | - Ahmed Sharaf
- Neuronal and Cellular Signal Transduction, Center for Molecular Neurobiology Hamburg (ZMNH), University Medical Center Hamburg-Eppendorf, 20246, Hamburg, Germany
| | - Michaela Schweizer
- Center for Molecular Neurobiology Hamburg (ZMNH), University Medical Center, Hamburg-Eppendorf, 20246, Hamburg, Germany
| | - Meliha Karsak
- Neuronal and Cellular Signal Transduction, Center for Molecular Neurobiology Hamburg (ZMNH), University Medical Center Hamburg-Eppendorf, 20246, Hamburg, Germany
| | - Björn Busse
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, 20246, Hamburg, Germany
| | - Ernesto Bockamp
- Institute for Translational Immunology and Research Center for Immunotherapy, University Medical Center, Johannes Gutenberg University, D 55131, Mainz, Germany
| | - Oliver Semler
- Faculty of Medicine and University Hospital Cologne, Department of Pediatrics, University of Cologne, 50937, Cologne, Germany
| | - Michael Amling
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, 20246, Hamburg, Germany
| | - Ralf Oheim
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, 20246, Hamburg, Germany
| | - Thorsten Schinke
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, 20246, Hamburg, Germany.
| | - Timur Alexander Yorgan
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, 20246, Hamburg, Germany.
| |
Collapse
|
23
|
Wang Z, Liu Y, Zhang J, Lin M, Xiao C, Bai H, Liu C. Mechanical loading alleviated the inhibition of β2-adrenergic receptor agonist terbutaline on bone regeneration. FASEB J 2021; 35:e22033. [PMID: 34739146 DOI: 10.1096/fj.202101045rr] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 10/19/2021] [Accepted: 10/22/2021] [Indexed: 12/14/2022]
Abstract
The long-term use of adrenergic medication in treating various conditions, such as asthma, increases the chances of bone fracture. Dynamic mechanical loading at a specific time is a method for improving bone quality and promoting healing. Therefore, we hypothesized that precisely controlling the mechanical environment can contribute to the alleviation of the negative effects of chronic treatment with the common asthma drug terbutaline, which is a β2-adrenergic receptor agonist that facilitates bone homeostasis and defect repair through its anabolic effect on osteogenic cells. Our in vitro results showed that terbutaline can directly inhibit osteogenesis by impairing osteogenic differentiation and mineralization. Chronic treatment in vivo was simulated by administering terbutaline to C57BL/6J mice for 4 weeks before bone defect surgery and mechanical loading. We utilized a stabilized tibial defect model, which allowed the application of anabolic mechanical loading. During homeostasis, chronic terbutaline treatment reduced the bone formation rate, the fracture toughness of long bones, and the concentrations of bone formation markers in the sera. During defect repair, terbutaline decreased the bone volume, type H vessel, and total blood vessel volume. Terbutaline treatment reduced the number of osteogenic cells. Periostin, which was secreted mainly by Prrx1+ osteoprogenitors and F4/80+ macrophages, was inhibited by treating the bone defect with terbutaline. Interestingly, controlled mechanical loading facilitated the recovery of bone volume and periostin expression and the number of osteogenic cells within the defect. In conclusion, mechanical loading can rescue negative effects on new bone accrual and repair induced by chronic terbutaline treatment.
Collapse
Affiliation(s)
- Ziyan Wang
- Department of Biomedical Engineering, College of Engineering, Southern University of Science and Technology, Shenzhen, China
| | - Yang Liu
- Department of Biomedical Engineering, College of Engineering, Southern University of Science and Technology, Shenzhen, China
| | - Jianing Zhang
- Department of Biomedical Engineering, College of Engineering, Southern University of Science and Technology, Shenzhen, China
| | - Minmin Lin
- Department of Biomedical Engineering, College of Engineering, Southern University of Science and Technology, Shenzhen, China
| | - Chufan Xiao
- Department of Biomedical Engineering, College of Engineering, Southern University of Science and Technology, Shenzhen, China
| | - Haoying Bai
- Department of Biomedical Engineering, College of Engineering, Southern University of Science and Technology, Shenzhen, China
| | - Chao Liu
- Department of Biomedical Engineering, College of Engineering, Southern University of Science and Technology, Shenzhen, China
| |
Collapse
|
24
|
Spatz JM, Ko FC, Ayturk UM, Warman ML, Bouxsein ML. RNAseq and RNA molecular barcoding reveal differential gene expression in cortical bone following hindlimb unloading in female mice. PLoS One 2021; 16:e0250715. [PMID: 34637435 PMCID: PMC8509868 DOI: 10.1371/journal.pone.0250715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Accepted: 04/12/2021] [Indexed: 11/24/2022] Open
Abstract
Disuse-induced bone loss is seen following spinal cord injury, prolonged bed rest, and exposure to microgravity. We performed whole transcriptomic profiling of cortical bone using RNA sequencing (RNAseq) and RNA molecular barcoding (NanoString) on a hindlimb unloading (HLU) mouse model to identify genes whose mRNA transcript abundances change in response to disuse. Eleven-week old female C57BL/6 mice were exposed to ambulatory loading or HLU for 7 days (n = 8/group). Total RNA from marrow-flushed femoral cortical bone was analyzed on HiSeq and NanoString platforms. The expression of several previously reported genes associated with Wnt signaling and metabolism was altered by HLU. Furthermore, the increased abundance of transcripts, such as Pfkfb3 and Mss51, after HLU imply these genes also have roles in the cortical bone’s response to altered mechanical loading. Our study demonstrates that an unbiased approach to assess the whole transcriptomic profile of cortical bone can reveal previously unidentified mechanosensitive genes and may eventually lead to novel targets to prevent disuse-induced osteoporosis.
Collapse
Affiliation(s)
- Jordan M Spatz
- Center for Advanced Orthopedic Studies, Beth Israel Deaconess Medical Center, Boston, Massachusetts, United States of America.,University of California San Francisco School of Medicine, San Francisco, California, United States of America.,Harvard Medical School, Boston, Massachusetts, United States of America
| | - Frank C Ko
- Center for Advanced Orthopedic Studies, Beth Israel Deaconess Medical Center, Boston, Massachusetts, United States of America.,Harvard Medical School, Boston, Massachusetts, United States of America
| | - Ugur M Ayturk
- Harvard Medical School, Boston, Massachusetts, United States of America.,Boston Children's Hospital, Boston, Massachusetts, United States of America
| | - Matthew L Warman
- Harvard Medical School, Boston, Massachusetts, United States of America.,Boston Children's Hospital, Boston, Massachusetts, United States of America
| | - Mary L Bouxsein
- Center for Advanced Orthopedic Studies, Beth Israel Deaconess Medical Center, Boston, Massachusetts, United States of America.,Harvard Medical School, Boston, Massachusetts, United States of America
| |
Collapse
|
25
|
Zhu D, Zhou W, Wang Z, Wang Y, Liu M, Zhang G, Guo X, Kang X. Periostin: An Emerging Molecule With a Potential Role in Spinal Degenerative Diseases. Front Med (Lausanne) 2021; 8:694800. [PMID: 34513869 PMCID: PMC8430223 DOI: 10.3389/fmed.2021.694800] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Accepted: 07/23/2021] [Indexed: 12/22/2022] Open
Abstract
Periostin, an extracellular matrix protein, is widely expressed in a variety of tissues and cells. It has many biological functions and is related to many diseases: for example, it promotes cell proliferation and differentiation in osteoblasts, which are closely related to osteoporosis, and mediates cell senescence and apoptosis in chondrocytes, which are involved in osteoarthritis. Furthermore, it also plays an important role in mediating inflammation and reconstruction during bronchial asthma, as well as in promoting bone development, reconstruction, repair, and strength. Therefore, periostin has been explored as a potential biomarker for various diseases. Recently, periostin has also been found to be expressed in intervertebral disc cells as a component of the intervertebral extracellular matrix, and to play a crucial role in the maintenance and degeneration of intervertebral discs. This article reviews the biological role of periostin in bone marrow-derived mesenchymal stem cells, osteoblasts, osteoclasts, chondrocytes, and annulus fibrosus and nucleus pulposus cells, which are closely related to spinal degenerative diseases. The study of its pathophysiological effects is of great significance for the diagnosis and treatment of spinal degeneration, although additional studies are needed.
Collapse
Affiliation(s)
- Daxue Zhu
- Lanzhou University Second Hospital, Lanzhou, China.,Orthopaedics Key Laboratory of Gansu Province, Lanzhou, China
| | - Wupin Zhou
- The 947th Army Hospital of the Chinese PLA, Kashgar, China
| | - Zhen Wang
- People's Hospital of Ningxia Hui Autonomous Region, Yinchuan, China
| | - Yidian Wang
- Lanzhou University Second Hospital, Lanzhou, China.,Orthopaedics Key Laboratory of Gansu Province, Lanzhou, China
| | - Mingqiang Liu
- Lanzhou University Second Hospital, Lanzhou, China.,Orthopaedics Key Laboratory of Gansu Province, Lanzhou, China
| | - Guangzhi Zhang
- Lanzhou University Second Hospital, Lanzhou, China.,Orthopaedics Key Laboratory of Gansu Province, Lanzhou, China
| | - Xudong Guo
- Lanzhou University Second Hospital, Lanzhou, China.,Orthopaedics Key Laboratory of Gansu Province, Lanzhou, China
| | - Xuewen Kang
- Lanzhou University Second Hospital, Lanzhou, China.,Orthopaedics Key Laboratory of Gansu Province, Lanzhou, China
| |
Collapse
|
26
|
Bonnet N, Douni E, Perréard Lopreno G, Besse M, Biver E, Ferrari S. RANKL-Induced Increase in Cathepsin K Levels Restricts Cortical Expansion in a Periostin-Dependent Fashion: A Potential New Mechanism of Bone Fragility. J Bone Miner Res 2021; 36:1636-1645. [PMID: 33856714 DOI: 10.1002/jbmr.4307] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 03/26/2021] [Accepted: 04/08/2021] [Indexed: 12/12/2022]
Abstract
Receptor activator of nuclear factor-κΒ ligand (RANKL) is necessary and sufficient to promote osteoclastogenesis and a key pathogenic factor in osteoporosis. Failure of periosteal apposition to compensate for bone loss due to endosteal resorption further contributes to bone fragility. Whether these two processes are biologically related, however, remains unknown. Using high-resolution peripheral quantitative computed tomography (HR-pQCT), we first examined cortical bone parameters at distal radius and tibia in postmenopausal women (PMW) as well as in cadaveric human adult humeri. Increases in medullary area were negatively correlated with cortical bone volume but positively with total bone volume, and this relationship was stronger in the dominant arm, suggesting a mechanically driven process. To investigate the role of RANKL in this dual process, we used mice overexpressing huRANKL (huRANKLTg+ ). Trabecular and cortical bone volume (Ct.BV) are reduced in these mice, whereas cortical total volume (Ct.TV) is increased. In these bones, Sost mRNA levels are downregulated and periostin (Postn) mRNA levels upregulated, hence providing a positive message for periosteal bone formation. In turn, genetic deletion of Postn in huRANKLTg+ mice prevented the increase in Ct.TV and aggravated bone fragility. In contrast, cathepsin K (Ctsk) ablation improved Ct.TV in both huRANKLTg+ and wild-type (WT) mice and stimulated periosteal bone formation, while augmenting Postn protein levels. Therefore, bone strength in huRANKLTg+ /Ctsk-/- mice was restored to WT levels. These findings suggest that high levels of RANKL not only induce endosteal bone loss but may somewhat restrict periosteal bone formation by triggering periostin degradation through cathepsin K, hence providing a biological mechanism for the observed limited increase in cortical area in postmenopausal women. © 2021 American Society for Bone and Mineral Research (ASBMR).
Collapse
Affiliation(s)
- Nicolas Bonnet
- Division of Bone Diseases, Department of Internal Medicine Specialties, Geneva University Hospital and Faculty of Medicine, Geneva, Switzerland
| | - Eleni Douni
- Department of Biotechnology, Agricultural University of Athens, Iera Odos, Athens, Greece.,Biomedical Sciences Research Center "Alexander Fleming", Vari, Greece
| | - Geneviève Perréard Lopreno
- Laboratory of Prehistoric Archaeology and Anthropology, F.-A. Forel Department, Section of Earth and Environmental Sciences, University of Geneva, Uni Carl Vogt, Geneva, Switzerland
| | - Marie Besse
- Laboratory of Prehistoric Archaeology and Anthropology, F.-A. Forel Department, Section of Earth and Environmental Sciences, University of Geneva, Uni Carl Vogt, Geneva, Switzerland
| | - Emmanuel Biver
- Division of Bone Diseases, Department of Internal Medicine Specialties, Geneva University Hospital and Faculty of Medicine, Geneva, Switzerland
| | - Serge Ferrari
- Division of Bone Diseases, Department of Internal Medicine Specialties, Geneva University Hospital and Faculty of Medicine, Geneva, Switzerland
| |
Collapse
|
27
|
Watanabe-Takano H, Ochi H, Chiba A, Matsuo A, Kanai Y, Fukuhara S, Ito N, Sako K, Miyazaki T, Tainaka K, Harada I, Sato S, Sawada Y, Minamino N, Takeda S, Ueda HR, Yasoda A, Mochizuki N. Mechanical load regulates bone growth via periosteal Osteocrin. Cell Rep 2021; 36:109380. [PMID: 34260913 DOI: 10.1016/j.celrep.2021.109380] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Revised: 04/15/2021] [Accepted: 06/21/2021] [Indexed: 12/20/2022] Open
Abstract
Mechanical stimuli including loading after birth promote bone growth. However, little is known about how mechanical force triggers biochemical signals to regulate bone growth. Here, we identified a periosteal-osteoblast-derived secretory peptide, Osteocrin (OSTN), as a mechanotransducer involved in load-induced long bone growth. OSTN produced by periosteal osteoblasts regulates growth plate growth by enhancing C-type natriuretic peptide (CNP)-dependent proliferation and maturation of chondrocytes, leading to elongation of long bones. Additionally, OSTN cooperates with CNP to regulate bone formation. CNP stimulates osteogenic differentiation of periosteal osteoprogenitors to induce bone formation. OSTN binds to natriuretic peptide receptor 3 (NPR3) in periosteal osteoprogenitors, thereby preventing NPR3-mediated clearance of CNP and consequently facilitating CNP-signal-mediated bone growth. Importantly, physiological loading induces Ostn expression in periosteal osteoblasts by suppressing Forkhead box protein O1 (FoxO1) transcription factor. Thus, this study reveals a crucial role of OSTN as a mechanotransducer converting mechanical loading to CNP-dependent bone formation.
Collapse
Affiliation(s)
- Haruko Watanabe-Takano
- Department of Cell Biology, National Cerebral and Cardiovascular Center Research Institute, 6-1 Kishibe-shimmachi, Suita, Osaka 564-8565, Japan.
| | - Hiroki Ochi
- Department of Clinical Research, National Rehabilitation Center for Persons with Disabilities, 4-1 Namiki, Tokorozawa, Saitama 359-8555, Japan
| | - Ayano Chiba
- Department of Cell Biology, National Cerebral and Cardiovascular Center Research Institute, 6-1 Kishibe-shimmachi, Suita, Osaka 564-8565, Japan
| | - Ayaka Matsuo
- Omics Research Center, National Cerebral and Cardiovascular Center Research Institute, 6-1 Kishibe-shinmachi, Suita, Osaka 564-8565, Japan
| | - Yugo Kanai
- Department of Diabetes, Endocrinology and Nutrition, Graduate School of Medicine and Faculty of Medicine, Kyoto University, Yoshida-Konoe-cho, Sakyo-ku, Kyoto 606-8501, Japan
| | - Shigetomo Fukuhara
- Department of Molecular Pathophysiology, Institute of Advanced Medical Sciences, Nippon Medical School, 1-1-5 Sendagi, Bunkyo-ku, Tokyo 113-8602, Japan
| | - Naoki Ito
- Laboratory of Molecular Life Science, Institute of Biomedical Research and Innovation, Foundation for Biomedical Research and Innovation at Kobe, 6-7-6 Minatojima-Minamimachi, Chuo-ku, Kobe 650-0047, Japan
| | - Keisuke Sako
- Department of Cell Biology, National Cerebral and Cardiovascular Center Research Institute, 6-1 Kishibe-shimmachi, Suita, Osaka 564-8565, Japan
| | - Takahiro Miyazaki
- Department of Cell Biology, National Cerebral and Cardiovascular Center Research Institute, 6-1 Kishibe-shimmachi, Suita, Osaka 564-8565, Japan
| | - Kazuki Tainaka
- Department of System Pathology for Neurological Disorders, Center for Bioresources, Brain Research Institute, Niigata University, 1-757 Asahimachidori, Chuo-ku, Niigata 951-8585, Japan
| | - Ichiro Harada
- Medical Products Technology, Development Center, R&D headquarters, Canon Inc., 3-30-2, Shimomaruko, Ohta-ku, Tokyo 146-8501, Japan
| | - Shingo Sato
- Center for Innovative Cancer Treatment, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8519, Japan
| | - Yasuhiro Sawada
- Department of Cell Biology, National Cerebral and Cardiovascular Center Research Institute, 6-1 Kishibe-shimmachi, Suita, Osaka 564-8565, Japan; Department of Clinical Research, National Rehabilitation Center for Persons with Disabilities, 4-1 Namiki, Tokorozawa, Saitama 359-8555, Japan; Department of Rehabilitation for Motor Functions, National Rehabilitation Center for Persons with Disabilities, 4-1 Namiki, Tokorozawa, Saitama 359-8555, Japan
| | - Naoto Minamino
- Omics Research Center, National Cerebral and Cardiovascular Center Research Institute, 6-1 Kishibe-shinmachi, Suita, Osaka 564-8565, Japan
| | - Shu Takeda
- Division of Endocrinology, Toranomon Hospital Endocrine Center, 2-2-2 Toranomon, Minato-ku, Tokyo 105-8470, Japan
| | - Hiroki R Ueda
- CREST, Japan Science and Technology Agency, 4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan; Department of Systems Pharmacology, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan; Laboratory for Synthetic Biology, RIKEN Center for Biosystems Dynamics Research, 1-3 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Akihiro Yasoda
- Clinical Research Center, National Hospital Organization Kyoto Medical Center, 1-1 Fukakusa-Mukaihatacho, Fushimi-ku, Kyoto 612-8555, Japan
| | - Naoki Mochizuki
- Department of Cell Biology, National Cerebral and Cardiovascular Center Research Institute, 6-1 Kishibe-shimmachi, Suita, Osaka 564-8565, Japan; CREST, Japan Science and Technology Agency, 4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan.
| |
Collapse
|
28
|
Li J, Niu X, Si Q, Song Q, Jin M, Zhou R, Sun Y, Li J, Wang Q. Plasma periostin as a biomarker of osteoporosis in postmenopausal women with type 2 diabetes. J Bone Miner Metab 2021; 39:631-638. [PMID: 33566208 DOI: 10.1007/s00774-020-01200-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Accepted: 12/16/2020] [Indexed: 10/22/2022]
Abstract
INTRODUCTION Periostin, as an emerging biomarker, is involved in multiple steps in bone metabolism. This study aimed to investigate the correlation between periostin levels and bone mineral density as well as bone turnover markers in postmenopausal women with type 2 diabetes (T2DM). MATERIALS AND METHODS This study was a cross-sectional study that included 164 postmenopausal women with T2DM as study subjects and 32 age-matched nondiabetic postmenopausal women with normal bone mineral density (BMD) as healthy control subjects. A total of 164 subjects with T2DM were then divided into three groups according to BMD: the normal BMD group (n = 29), the osteopenia group (n = 70), and the osteoporosis group (n = 65). The clinical data of all subjects along with the relevant biochemical parameter data were collected. Plasma periostin was detected using an enzyme-linked immunosorbent assay (ELISA). RESULTS Plasma periostin levels were significantly increased in T2DM patients with normal BMD compared with healthy controls (p < 0.05). In the diabetic group, plasma periostin levels were significantly elevated with decreased BMD, were positively correlated with osteocalcin levels (r = 0.162, p = 0.039) and were inversely associated with femoral neck BMD (r = - 0.308, p < 0.001) and total femur BMD (r = - 0.295, p < 0.001). In the case of chronic complications, periostin levels were slightly increased in individuals with complications of diabetic retinopathy, diabetic nephropathy and fracture (p > 0.05). CONCLUSIONS The current study demonstrated that plasma periostin levels were significantly associated with BMD in patients with T2DM, and periostin might act as a novel biochemical marker of osteoporosis in postmenopausal women with type 2 diabetes.
Collapse
Affiliation(s)
- Junyan Li
- Changzhi Medical College Affiliated Heji Hospital, Endocrinology and Metabolism, Changzhi, China
| | - Xiaohong Niu
- Changzhi Medical College Affiliated Heji Hospital, Endocrinology and Metabolism, Changzhi, China
| | - Qinqin Si
- Changzhi Medical College Affiliated Heji Hospital, Endocrinology and Metabolism, Changzhi, China
| | - Qi Song
- Changzhi Medical College Affiliated Heji Hospital, Endocrinology and Metabolism, Changzhi, China
| | - Miaomiao Jin
- Changzhi Medical College Affiliated Heji Hospital, Endocrinology and Metabolism, Changzhi, China
| | - Ruijun Zhou
- Changzhi Medical College Affiliated Heji Hospital, Endocrinology and Metabolism, Changzhi, China
| | - Yan Sun
- Changzhi Medical College Affiliated Heji Hospital, Endocrinology and Metabolism, Changzhi, China
| | - Jianbo Li
- Department of Endocrinology and Metabolism, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China.
| | - Qingzhong Wang
- Shanghai Key Laboratory of Compound Chinese Medicines, The MOE Key Laboratory for Standardization of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| |
Collapse
|
29
|
Fan B, Liu X, Chen X, Xu W, Zhao H, Yang C, Zhang S. Periostin Mediates Condylar Resorption via the NF-κB-ADAMTS5 Pathway. Inflammation 2021; 43:455-465. [PMID: 31840212 DOI: 10.1007/s10753-019-01129-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Although the up-regulation of periostin in osteoarthritic (OA) is found, its function on OA condyle caused by disc displacement is not clear. Our objective was to explore whether periostin has any effect on condylar resorption. We initially identified periostin-positive cells in temporomandibular joint osteoarthritic (TMJ-OA) cartilage. Furthermore, the vitro analysis confirmed that the expression of periostin in chondrocytes treated with a static pressure of 150 kpa and 200 kpa for 3 h by an in-house-designed pressure chamber. To explore the underlying mechanism, we found that periostin can induce IκBα phosphorylation and its subsequent degradation, leading to consequent p65 nuclear translocation and subsequent induction of ADAMTS5 expression, which is known to be detrimental to cartilage extracellular matrix production. Importantly, inhibiting NF-κB signaling, by BAY 11-7082 treatment, rescued periostin-induced ADAMTS5 up-regulation. This study elucidated the direct role of periostin in condylar resorption, which was found to occur via NF-κB-ADAMTS5 signaling. Inhibition of this pathway might provide a new strategy for TMJ-OA treatment.
Collapse
Affiliation(s)
- Baoting Fan
- Department of Oral Surgery, Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai Key laboratory of Stomatology & Shanghai Research Institute of Stomatology, 639 Zhizaoju Road, Shanghai, 200011, People's Republic of China
- National Clinical Research Center of Stomatology, Shanghai, 200011, People's Republic of China
| | - Xiaohan Liu
- Department of Oral Surgery, Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai Key laboratory of Stomatology & Shanghai Research Institute of Stomatology, 639 Zhizaoju Road, Shanghai, 200011, People's Republic of China
- National Clinical Research Center of Stomatology, Shanghai, 200011, People's Republic of China
| | - Xinwei Chen
- Department of Oral Surgery, Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai Key laboratory of Stomatology & Shanghai Research Institute of Stomatology, 639 Zhizaoju Road, Shanghai, 200011, People's Republic of China
- National Clinical Research Center of Stomatology, Shanghai, 200011, People's Republic of China
| | - Weifeng Xu
- Department of Oral Surgery, Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai Key laboratory of Stomatology & Shanghai Research Institute of Stomatology, 639 Zhizaoju Road, Shanghai, 200011, People's Republic of China
- National Clinical Research Center of Stomatology, Shanghai, 200011, People's Republic of China
| | - Huaqiang Zhao
- Shandong Provincial Key Laboratory of Oral Tissue Regeneration, Department of Oral and Maxillofacial Surgery, School of Stomatology, Shandong University, Shandong, 250012, People's Republic of China
| | - Chi Yang
- Department of Oral Surgery, Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai Key laboratory of Stomatology & Shanghai Research Institute of Stomatology, 639 Zhizaoju Road, Shanghai, 200011, People's Republic of China
- National Clinical Research Center of Stomatology, Shanghai, 200011, People's Republic of China
| | - Shanyong Zhang
- Department of Oral Surgery, Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai Key laboratory of Stomatology & Shanghai Research Institute of Stomatology, 639 Zhizaoju Road, Shanghai, 200011, People's Republic of China.
- National Clinical Research Center of Stomatology, Shanghai, 200011, People's Republic of China.
| |
Collapse
|
30
|
Gerbaix M, Ammann P, Ferrari S. Mechanically Driven Counter-Regulation of Cortical Bone Formation in Response to Sclerostin-Neutralizing Antibodies. J Bone Miner Res 2021; 36:385-399. [PMID: 33049076 DOI: 10.1002/jbmr.4193] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 09/29/2020] [Accepted: 10/07/2020] [Indexed: 12/31/2022]
Abstract
Sclerostin (Scl) antibodies (Scl-Ab) potently stimulate bone formation, but these effects are transient. Whether the rapid inhibition of Scl-Ab anabolic effects is due to a loss of bone cells' capacity to form new bone or to a mechanostatic downregulation of Wnt signaling once bone strength exceeds stress remains unclear. We hypothesized that bone formation under Scl-Ab could be reactivated by increasing the dose of Scl-Ab and/or by adding mechanical stimuli, and investigated the molecular mechanisms involved in this response, in particular the role of periostin (Postn), a co-activator of the Wnt pathway in bone. For this purpose, C57Bl/6, Postn-/- and Postn+/+ mice were treated with vehicle or Scl-Ab (50 to 100 mg/kg/wk) for various durations and subsequently subjected to tibia axial compressive loading. In wild-type (WT) mice, Scl-Ab anabolic effects peaked between 2 and 4 weeks and declined thereafter, with no further increase in bone volume and strength between 7 and 10 weeks. Doubling the dose of Scl-Ab did not rescue the decline in bone formation. In contrast, mechanical stimulation was able to restore cortical bone formation concomitantly to Scl-Ab treatment at both doses. Several Wnt inhibitors, including Dkk1, Sost, and Twist1, were upregulated, whereas Postn was markedly downregulated by 2 to 4 weeks of Scl-Ab. Mechanical loading specifically upregulated Postn gene expression. In turn, Scl-Ab effects on cortical bone were more rapidly downregulated in Postn-/- mice. These results indicate that bone formation is not exhausted by Scl-Ab but inhibited by a mechanically driven downregulation of Wnt signaling. Hence, increasing mechanical loads restores bone formation on cortical surfaces, in parallel with Postn upregulation. © 2020 American Society for Bone and Mineral Research (ASBMR).
Collapse
Affiliation(s)
- Maude Gerbaix
- Service of Bone Diseases, Department of Medicine, University Hospital of Geneva, Geneva, Switzerland
| | - Patrick Ammann
- Service of Bone Diseases, Department of Medicine, University Hospital of Geneva, Geneva, Switzerland
| | - Serge Ferrari
- Service of Bone Diseases, Department of Medicine, University Hospital of Geneva, Geneva, Switzerland
| |
Collapse
|
31
|
Liang S, Ling S, Du R, Li Y, Liu C, Shi J, Gao J, Sun W, Li J, Zhong G, Liu Z, Zhao D, Sun H, Li Y, Yuan X, Qu H, Jin X, Li D, Shi D, Li Y. The coupling of reduced type H vessels with unloading-induced bone loss and the protection role of Panax quinquefolium saponin in the male mice. Bone 2021; 143:115712. [PMID: 33164873 DOI: 10.1016/j.bone.2020.115712] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 10/20/2020] [Accepted: 10/21/2020] [Indexed: 12/18/2022]
Abstract
Unloading-induced bone loss is a critical complication characterized by the imbalance of bone formation and resorption induced by long-term confinement in bed or spaceflight. CD31hiEmcnhi (type H) vessel is a specific subtype of capillary, which was coupled with osteogenesis. However, the change of type H vessel and its contributions to the unloading-induced bone loss remains undisclosed. Herein, we found that bone formation and the number of type H vessels were synchronously reduced in the hindlimb-unloading (HU) mice. Panax quinquefolium saponin (PQS) could increase bone mass, osteoblast function and the number of type H vessels in the HU mice. In vitro, PQS treatment accelerated HMECs migration, augmented the total tube loops and increased the secretion of VEGF and Noggin. Primary osteoblasts function was obviously increased when treated with supernatant from PQS-treated HMECs. These effects of PQS were substantially counteracted when VEGF and Noggin in HMECs were knocked down by siRNA. These results demonstrated that unloading-induced bone loss is coupled with reduction of type H vessels and PQS performs preventive function via promoting type H vessel angiogenesis, which is closely associated with endothelial cell-derived VEGF and Noggin.
Collapse
Affiliation(s)
- Shuai Liang
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China; State Key Lab of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center, Beijing, China; Dongfang Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Shukuan Ling
- State Key Lab of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center, Beijing, China
| | - Ruikai Du
- State Key Lab of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center, Beijing, China
| | - Yuheng Li
- State Key Lab of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center, Beijing, China
| | - Caizhi Liu
- State Key Lab of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center, Beijing, China
| | - Junhe Shi
- Center for Wound Healing and Tissue Regeneration, College of Dentistry, University of Illinois at Chicago, 801 S. Paulina Street, Chicago, IL 60612, USA
| | - Jie Gao
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Weijia Sun
- State Key Lab of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center, Beijing, China
| | - Jianwei Li
- State Key Lab of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center, Beijing, China
| | - Guohui Zhong
- State Key Lab of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center, Beijing, China
| | - Zizhong Liu
- State Key Lab of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center, Beijing, China
| | - Dingsheng Zhao
- State Key Lab of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center, Beijing, China
| | - Huiyuan Sun
- Beijing University of Chinese Medicine Third Affiliated Hospital, Beijing, China
| | - Yang Li
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences Beijing, Beijing Institute of Lifeomics, Beijing, China
| | - Xinxin Yuan
- State Key Lab of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center, Beijing, China
| | - Hua Qu
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Xiaoyan Jin
- State Key Lab of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center, Beijing, China
| | - Dong Li
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences Beijing, Beijing Institute of Lifeomics, Beijing, China
| | - Dazhuo Shi
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China.
| | - Yingxian Li
- State Key Lab of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center, Beijing, China.
| |
Collapse
|
32
|
Han L, Gong S, Wang R, Liu S, Wang B, Chen G, Gong T, Xu W. Knockdown of POSTN Inhibits Osteogenic Differentiation of Mesenchymal Stem Cells From Patients With Steroid-Induced Osteonecrosis. Front Cell Dev Biol 2021; 8:606289. [PMID: 33409280 PMCID: PMC7779561 DOI: 10.3389/fcell.2020.606289] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Accepted: 12/03/2020] [Indexed: 12/12/2022] Open
Abstract
Steroid-induced osteonecrosis of femoral head (SONFH) is a common and serious complication caused by long-term and/or excessive use of glucocorticoids (GCs). The decreased activity and abnormal differentiation of bone marrow mesenchymal stem cells (BMSCs) are considered to be one of the major reasons for the onset and progression of this disease. Periostin (POSTN) is a matricellular protein which plays an important role in regulating osteoblast function and bone formation. Sclerostin (SOST) is a secreted antagonist of Wnt signaling that is mainly expressed in osteocytes to inhibit bone formation. However, the exact role of POSTN and SOST in SONFH has not been reported yet. Therefore, we detected the differential expression of POSTN and SOST in BMSCs of SONFH Group patients, and Control Group was patients with traumatic ONFH (TONFH) and developmental dysplasia of the hip (DDH). Furthermore, we used lentiviral transfection to knockdown POSTN expression in BMSCs of patients with SONFH to study the effect of POSTN knockdown on the SOST expression and osteogenic differentiation of BMSCs. The results indicated that the endogenous expression of POSTN and SOST in BMSCs of SONFH Group was upregulated, compared with Control Group. POSTN was upregulated gradually while SOST was downregulated gradually at days 0, 3, and 7 of osteogenic differentiation of BMSCs in Control Group. Contrarily, POSTN was gradually downregulated while SOST was gradually upregulated during osteogenic differentiation of BMSCs in SONFH Group. This could be due to increased expression of SOST in BMSCs, which was caused by excessive GCs. In turn, the increased expression of POSTN in BMSCs may play a role in antagonizing the continuous rising of SOST during the osteogenic differentiation of BMSCs in patients with SONFH. POSTN knockdown significantly attenuated osteo-specific gene expression, alkaline phosphatase activity, and calcium nodule formation in vitro; thus inhibiting the osteogenic differentiation of BMSCs in patients with SONFH. Besides, POSTN knockdown upregulated SOST expression, increased GSK-3β activity, and downregulated β-catenin. These findings suggest that POSTN have an essential role in regulating the expression of SOST and osteogenic differentiation of BMSCs in patients with SONFH, and POSTN knockdown suppresses osteogenic differentiation by upregulating SOST and partially inactivating Wnt/β-catenin signaling pathway. Therefore, targeting POSTN and SOST may serve as a promising therapeutic target for the prevention and treatment of SONFH.
Collapse
Affiliation(s)
- Lizhi Han
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Song Gong
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ruoyu Wang
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shaokai Liu
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Bo Wang
- Department of Rehabilitation, Wuhan No.1 Hospital, Wuhan Hospital of Traditional Chinese and Western Medicine, Wuhan, China
| | - Guo Chen
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Tianlun Gong
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Weihua Xu
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
33
|
Effect of periostin silencing on Runx2, RANKL and OPG expression in osteoblasts. J Orofac Orthop 2020; 82:82-91. [PMID: 33141273 DOI: 10.1007/s00056-020-00253-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Accepted: 05/27/2020] [Indexed: 10/23/2022]
Abstract
OBJECTIVE Normal tooth eruption is closely related to relevant genes and the dynamic balance between osteoblasts and osteoclasts. If secretion of RANKL and OPG by osteoblasts is disordered, relevant gene deficiencies or mutations will result in serious tooth eruption disturbances, e.g., cleidocranial dysplasia (CCD). Thus, we examined changes in Runx2, RANKL, and OPG protein expression in MC3T3-E1 cells after silencing the periostin gene, thus, providing an experimental basis to study tooth eruption mechanisms. METHODS Based on previous research, cells were divided into two groups according to the virus number: the contrast group (NC group; pFU-GW-016 PSC53349-1) and the experimental group (KD group; LVpFU-GW-016PSC66473-1). Cells were infected with the lentiviral vector (multiplicity of infection = 100) and assessed by image cytometry 72 h after infection. After screening cells for the strongest gene silencing effect, Runx2, RANKL and OPG protein expression were detected by western blotting. RESULTS Based on quantitative PCR, the periostin gene silencing efficiency in the KD group was over 90% (P < 0.01). After periostin gene silencing, compared with the control group, Runx2 and RANKL expression in the KD group was reduced (P < 0.01 and P < 0.05, respectively), but OPG protein expression showed no significant change (P > 0.05). The RANKL/OPG ratios in the KD group were lower than those in the NC group after periostin gene silencing (P < 0.05). CONCLUSIONS Silencing periostin may reduce the expression of Runx2, suggesting that there may be a synergistic relationship between periostin and Runx2 in their effects on osteoblast differentiation, while reducing RANKL expression obviously confirms that the NF-κB (nuclear factor κB) pathway plays an important role in this process and that periostin silencing changes the underlying tendency toward bone metabolism. This method could even provide an experimental basis for using exogenous periostin protein to treat some abnormal bone metabolism diseases, as it could be used as a supplement for the treatment of tooth eruption abnormalities caused by Runx2 gene deficiencies or mutations (CCD).
Collapse
|
34
|
Bone regeneration and mineralisation was promoted during distraction osteogenesis by human periostin gene in rabbit mandibular model. JOURNAL OF STOMATOLOGY, ORAL AND MAXILLOFACIAL SURGERY 2020; 121:506-511. [DOI: 10.1016/j.jormas.2019.12.016] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Accepted: 12/27/2019] [Indexed: 01/28/2023]
|
35
|
Carina V, Della Bella E, Costa V, Bellavia D, Veronesi F, Cepollaro S, Fini M, Giavaresi G. Bone's Response to Mechanical Loading in Aging and Osteoporosis: Molecular Mechanisms. Calcif Tissue Int 2020; 107:301-318. [PMID: 32710266 DOI: 10.1007/s00223-020-00724-0] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Accepted: 07/08/2020] [Indexed: 02/07/2023]
Abstract
Mechanotransduction is pivotal in the maintenance of homeostasis in different tissues and involves multiple cell signaling pathways. In bone, mechanical stimuli regulate the balance between bone formation and resorption; osteocytes play a central role in this regulation. Dysfunctions in mechanotransduction signaling or in osteocytes response lead to an imbalance in bone homeostasis. This alteration is very relevant in some conditions such as osteoporosis and aging. Both are characterized by increased bone weakness due to different causes, for example, the increase of osteocyte apoptosis that cause an alteration of fluid space, or the alteration of molecular pathways. There are intertwined yet very different mechanisms involved among the cell-intrinsic effects of aging on bone, the cell-intrinsic and tissue-level effects of estrogen/androgen withdrawal on bone, and the effects of reduced mechanical loading on bone, which are all involved to some degree in how aged bone fails to respond properly to stress/strain compared to younger bone. This review aims at clarifying how the cellular and molecular pathways regulated and induced in bone by mechanical stimulation are altered with aging and in osteoporosis, to highlight new possible targets for antiresorptive or anabolic bone therapeutic approaches.
Collapse
Affiliation(s)
- Valeria Carina
- IRCCS Istituto Ortopedico Rizzoli, SC Scienze e Tecnologie Chirurgiche - SS Piattaforma Scienze Omiche per Ortopedia Personalizzata, Via Di Barbiano, 1/10, 40136, Bologna, Italy.
| | | | - Viviana Costa
- IRCCS Istituto Ortopedico Rizzoli, SC Scienze e Tecnologie Chirurgiche - SS Piattaforma Scienze Omiche per Ortopedia Personalizzata, Via Di Barbiano, 1/10, 40136, Bologna, Italy
| | - Daniele Bellavia
- IRCCS Istituto Ortopedico Rizzoli, SC Scienze e Tecnologie Chirurgiche - SS Piattaforma Scienze Omiche per Ortopedia Personalizzata, Via Di Barbiano, 1/10, 40136, Bologna, Italy
| | - Francesca Veronesi
- IRCCS Istituto Ortopedico Rizzoli, SC Scienze e Tecnologie Chirurgiche - SS Piattaforma Scienze Omiche per Ortopedia Personalizzata, Via Di Barbiano, 1/10, 40136, Bologna, Italy
| | - Simona Cepollaro
- IRCCS Istituto Ortopedico Rizzoli, SC Scienze e Tecnologie Chirurgiche - SS Piattaforma Scienze Omiche per Ortopedia Personalizzata, Via Di Barbiano, 1/10, 40136, Bologna, Italy
| | - Milena Fini
- IRCCS Istituto Ortopedico Rizzoli, SC Scienze e Tecnologie Chirurgiche - SS Piattaforma Scienze Omiche per Ortopedia Personalizzata, Via Di Barbiano, 1/10, 40136, Bologna, Italy
| | - Gianluca Giavaresi
- IRCCS Istituto Ortopedico Rizzoli, SC Scienze e Tecnologie Chirurgiche - SS Piattaforma Scienze Omiche per Ortopedia Personalizzata, Via Di Barbiano, 1/10, 40136, Bologna, Italy
| |
Collapse
|
36
|
Invernizzi M, de Sire A, Carda S, Venetis K, Renò F, Cisari C, Fusco N. Bone Muscle Crosstalk in Spinal Cord Injuries: Pathophysiology and Implications for Patients' Quality of Life. Curr Osteoporos Rep 2020; 18:422-431. [PMID: 32519284 DOI: 10.1007/s11914-020-00601-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
PURPOSE OF REVIEW The goal of this review is to provide a comprehensive overview of (i) bone and muscle tissue modifications pathophysiology in spinal cord injury (SCI), (ii) experimental data on the physiopathological mechanisms underpinning these modifications and their similarities with the aging process, and (iii) potential clinical implications in the management of the disabling sequelae of SCI. RECENT FINDINGS Several studies attempted to describe the biology underpinning the links between bone and muscle tissues in the setting of highly disabling conditions, such as osteoporosis, sarcopenia, and neurodegenerative disorders, although these bidirectional connections remain still unclear. SCI could be considered an in vivo paradigmatic model of the bone muscle interactions in unloading conditions that might be expanded in the field of neurodegenerative disorders or cancer studies. Future studies should take into consideration the newer insights into bone muscle crosstalk in order to develop multitargeted and therapeutic interventions.
Collapse
Affiliation(s)
- Marco Invernizzi
- Physical and Rehabilitative Medicine, Department of Health Sciences, University of Eastern Piedmont, Novara, Italy.
| | - Alessandro de Sire
- Physical and Rehabilitative Medicine, Department of Health Sciences, University of Eastern Piedmont, Novara, Italy
- Rehabilitation Unit, "Mons. L. Novarese" Hospital, Moncrivello, Vercelli, Italy
| | - Stefano Carda
- Neuropsychology and Neurorehabilitation Service, Department of Clinical Neuroscience, Lausanne University Hospital (CHUV), Lausanne, Switzerland
| | - Konstantinos Venetis
- Ph.D. Program in Translational Medicine, University of Milan, Milan, Italy
- Division of Pathology, IRCCS European Institute of Oncology (IEO), Milan, Italy
| | - Filippo Renò
- Innovative Research Laboratory for Wound Healing, Department of Health Sciences, University of Eastern Piedmont, Novara, Italy
| | - Carlo Cisari
- Physical and Rehabilitative Medicine, Department of Health Sciences, University of Eastern Piedmont, Novara, Italy
- Physical Medicine and Rehabilitation Unit, University Hospital "Maggiore della Carità", Novara, Italy
| | - Nicola Fusco
- Division of Pathology, IRCCS European Institute of Oncology (IEO), Milan, Italy
- Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
| |
Collapse
|
37
|
Abstract
The objective of the present work was to investigate the effect of Periostin (POSTN) silencing on autophagy in osteoblasts, and provide an experimental basis for studying the mechanism of dental eruption. The cells were divided into the following four groups according to their viral number: the NC group, pFU-GW-016PSC53349-1; group KD1, LVpFU-GW-016PSC66471-1; group KD2, LVpFU-GW-016PSC66472-1; and group KD3, LVpFU-GW-016PSC66473-1. The lentiviral vector was infected at MOI = 100 in the ENi.S medium containing 5 g/mL Polybrene. The target gene expression was observed by a Celigo® Image Cytometer at 72 hours after infection, and the positive rate of fluorescence was noted. A two-step method of quantitative real-time PCR (qRT-PCR) was used to detect the silencing effect of POSTN. Western blotting was then performed to assess the expression of autophagy-related proteins Beclin-1 and LC3 in the group showing the best gene silencing effects. The experimental results showed that there was strong green fluorescence in group KD3. As confirmed via qRT-PCR analysis, the POSTN silencing efficiency in group KD3 reached 92.1%. The Western blotting revealed that the expression of Beclin-1 protein in group KD3 was significantly higher than that in the NC group. However, the LC3 protein expression was not significantly different from that of the control group. The lentiviral vector targeting POSTN in osteoblasts was constructed successfully. In addition, the expression of autophagy protein in mouse osteoblasts increased after POSTN silencing. This finding may provide new approaches for understanding the molecular signal transduction of POSTN during the tooth eruption process.
Collapse
Affiliation(s)
- Han Qin
- 1 Department of Stomatology, The Lianyungang Affiliated Hospital of Xuzhou Medical University, Liangyungang, China
| | - Jun Cai
- 2 Department of Anesthesia, The Maternal and Child Health Hospital of Lianyungang City, Liangyungang, China
| |
Collapse
|
38
|
Arfat Y, Rani A, Jingping W, Hocart CH. Calcium homeostasis during hibernation and in mechanical environments disrupting calcium homeostasis. J Comp Physiol B 2020; 190:1-16. [DOI: 10.1007/s00360-019-01255-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Revised: 11/21/2019] [Accepted: 12/16/2019] [Indexed: 12/22/2022]
|
39
|
Maïmoun L, Ben Bouallègue F, Gelis A, Aouinti S, Mura T, Philibert P, Souberbielle JC, Piketty M, Garnero P, Mariano-Goulart D, Fattal C. Periostin and sclerostin levels in individuals with spinal cord injury and their relationship with bone mass, bone turnover, fracture and osteoporosis status. Bone 2019; 127:612-619. [PMID: 31351195 DOI: 10.1016/j.bone.2019.07.019] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Revised: 07/16/2019] [Accepted: 07/16/2019] [Indexed: 10/26/2022]
Abstract
BACKGROUND Spinal cord injury (SCI) induces an acute alteration in bone metabolism. Although the aetiology of the bone disturbances is not precisely known, immobilisation reduces mechanical loading and the morphology of osteocytes, which are the primary mechanosensors. Periostin and sclerostin are secreted mostly by osteocytes and are involved in bone's mechanical response. OBJECTIVE The present study was conducted to determine whether individuals with SCI present alterations in serum periostin and sclerostin and to assess their relationships with bone mineral density, bone turnover markers, fracture status, time since injury, densitometric osteoporosis and paraplegic vs. tetraplegic status. SUBJECTS AND METHODS One hundred and thirty-one individuals with SCI (96 males and 35 females; 42.8 ± 13.7 yr old) with a mean 14.2 ± 12.1 years since the time of injury were evaluated and compared with 40 able-bodied controls in a cross-sectional study. Periostin and sclerostin were assayed by ELISA from Biomedica® (Vienna, Austria), and bone turnover markers and areal bone mineral density (aBMD) were concomitantly analysed. RESULTS Compared with controls, individuals with SCI presented higher periostin (p < 0.01), lower sclerostin (p < 0.001), similar markers of bone turnover levels and lower aBMD at the hip. Compared with chronic individuals, bone turnover markers, sclerostin excepted, values were higher as well as aBMD at hip in individuals with acute SCI. Moreover, the aBMD differences were more marked in tetraplegic than paraplegic individuals. Bone mineral density, fracture status, densitometric osteoporosis and paraplegia vs. tetraplegia did not seem to substantially influence the values of biological markers, sclerostin excepted. CONCLUSION This study showed for the first time that individuals with SCI presented higher periostin levels than healthy controls only during the acute phase. Conversely, sclerostin levels are lower whatever the post-injury time. Fractures and densitometric osteoporosis were not associated with differences in these two biological markers, whereas paraplegia vs. tetraplegia and fragility fracture status seemed to influence sclerostin levels only.
Collapse
Affiliation(s)
- Laurent Maïmoun
- Département de Médecine Nucléaire, Hôpital Lapeyronie, CHU Montpellier, Montpellier, France; PhyMedExp, INSERM, CNRS, Université de Montpellier, France.
| | - Fayçal Ben Bouallègue
- Département de Médecine Nucléaire, Hôpital Lapeyronie, CHU Montpellier, Montpellier, France; PhyMedExp, INSERM, CNRS, Université de Montpellier, France
| | | | - Safa Aouinti
- Unité de Recherche Clinique et Epidémiologie, Hôpital La Colombière, CHU Montpellier, Montpellier, France
| | - Thibault Mura
- Unité de Recherche Clinique et Epidémiologie, Hôpital La Colombière, CHU Montpellier, Montpellier, France
| | - Pascal Philibert
- Departement de Biochimie et d'Hormonologie, Hôpital Lapeyronie, CHU Montpellier, Montpellier, France
| | | | - Marie Piketty
- Laboratoire des Explorations Fonctionnelles, Hôpital Necker, Paris, France
| | | | - Denis Mariano-Goulart
- Département de Médecine Nucléaire, Hôpital Lapeyronie, CHU Montpellier, Montpellier, France; PhyMedExp, INSERM, CNRS, Université de Montpellier, France
| | - Charles Fattal
- Centre de Rééducation et Réadaptation Fonctionnelle La Châtaigneraie, Menucourt, France
| |
Collapse
|
40
|
Functions of Periostin in Dental Tissues and Its Role in Periodontal Tissue Regeneration. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1132:63-72. [PMID: 31037625 DOI: 10.1007/978-981-13-6657-4_7] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The goal of periodontal regeneration therapy is to reliably restore teeth's supporting periodontal tissue, while aiding the formation of new connective tissue attached to the periodontal ligament (PDL) fibers and new alveolar bone. Periostin is a matricellular protein, primarily expressed in the periosteum and PDL of adult mice. Its biological functions have been extensively studied in the fields of cardiovascular physiology and oncology. Despite being initially identified in bone and dental tissue, the function of Periostin in PDL and the pathophysiology associated with alveolar bone are scarcely studied. Recently, several studies have suggested that Periostin may be an important regulator of periodontal tissue formation. By promoting collagen fibrillogenesis and the migration of fibroblasts and osteoblasts, Periostin might play a key role in the regeneration of PDL and alveolar bone after periodontal surgery. In this chapter, the implications of Periostin in periodontal tissue biology and its potential use in periodontal tissue regeneration are reviewed.
Collapse
|
41
|
Tascher G, Gerbaix M, Maes P, Chazarin B, Ghislin S, Antropova E, Vassilieva G, Ouzren-Zarhloul N, Gauquelin-Koch G, Vico L, Frippiat JP, Bertile F. Analysis of femurs from mice embarked on board BION-M1 biosatellite reveals a decrease in immune cell development, including B cells, after 1 wk of recovery on Earth. FASEB J 2018; 33:3772-3783. [PMID: 30521760 DOI: 10.1096/fj.201801463r] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Bone loss and immune dysregulation are among the main adverse outcomes of spaceflight challenging astronauts' health and safety. However, consequences on B-cell development and responses are still under-investigated. To fill this gap, we used advanced proteomics analysis of femur bone and marrow to compare mice flown for 1 mo on board the BION-M1 biosatellite, followed or not by 1 wk of recovery on Earth, to control mice kept on Earth. Our data revealed an adverse effect on B lymphopoiesis 1 wk after landing. This phenomenon was associated with a 41% reduction of B cells in the spleen. These reductions may contribute to explain increased susceptibility to infection even if our data suggest that flown animals can mount a humoral immune response. Future studies should investigate the quality/efficiency of produced antibodies and whether longer missions worsen these immune alterations.-Tascher, G., Gerbaix, M., Maes, P., Chazarin, B., Ghislin, S., Antropova, E., Vassilieva, G., Ouzren-Zarhloul, N., Gauquelin-Koch, G., Vico, L., Frippiat, J.-P., Bertile, F. Analysis of femurs from mice embarked on board BION-M1 biosatellite reveals a decrease in immune cell development, including B cells, after 1 wk of recovery on Earth.
Collapse
Affiliation(s)
- Georg Tascher
- Centre National de la Recherche Scientifique (CNRS), Institut Pluridisciplinaire Hubert Curien (IPHC) Unité Mixte de Recherche (UMR) 7178, Université de Strasbourg, Strasbourg, France.,Centre National d'Etudes Spatiales (CNES), Paris, France
| | - Maude Gerbaix
- Centre National d'Etudes Spatiales (CNES), Paris, France.,INSERM, Unité 1059 Sainbiose, Faculté de Médecine, Université de Lyon-Université Jean Monnet, Campus Santé Innovation, Saint-Étienne, France
| | - Pauline Maes
- Centre National de la Recherche Scientifique (CNRS), Institut Pluridisciplinaire Hubert Curien (IPHC) Unité Mixte de Recherche (UMR) 7178, Université de Strasbourg, Strasbourg, France
| | - Blandine Chazarin
- Centre National de la Recherche Scientifique (CNRS), Institut Pluridisciplinaire Hubert Curien (IPHC) Unité Mixte de Recherche (UMR) 7178, Université de Strasbourg, Strasbourg, France.,Centre National d'Etudes Spatiales (CNES), Paris, France
| | - Stéphanie Ghislin
- Equipe d'Accueil 7300, Stress Immunity Pathogens Laboratory, Faculty of Medicine, Lorraine University, Vandoeuvre-lès-Nancy, France
| | - Evgenia Antropova
- Institute of Biomedical Problems, Russian Academy of Sciences, Moscow, Russia
| | - Galina Vassilieva
- Institute of Biomedical Problems, Russian Academy of Sciences, Moscow, Russia
| | - Nassima Ouzren-Zarhloul
- Equipe d'Accueil 7300, Stress Immunity Pathogens Laboratory, Faculty of Medicine, Lorraine University, Vandoeuvre-lès-Nancy, France
| | | | - Laurence Vico
- INSERM, Unité 1059 Sainbiose, Faculté de Médecine, Université de Lyon-Université Jean Monnet, Campus Santé Innovation, Saint-Étienne, France
| | - Jean-Pol Frippiat
- Equipe d'Accueil 7300, Stress Immunity Pathogens Laboratory, Faculty of Medicine, Lorraine University, Vandoeuvre-lès-Nancy, France
| | - Fabrice Bertile
- Centre National de la Recherche Scientifique (CNRS), Institut Pluridisciplinaire Hubert Curien (IPHC) Unité Mixte de Recherche (UMR) 7178, Université de Strasbourg, Strasbourg, France
| |
Collapse
|
42
|
Gineyts E, Bonnet N, Bertholon C, Millet M, Pagnon-Minot A, Borel O, Geraci S, Bonnelye E, Croset M, Suhail A, Truica C, Lamparella N, Leitzel K, Hartmann D, Chapurlat R, Lipton A, Garnero P, Ferrari S, Clézardin P, Rousseau JC. The C-Terminal Intact Forms of Periostin (iPTN) Are Surrogate Markers for Osteolytic Lesions in Experimental Breast Cancer Bone Metastasis. Calcif Tissue Int 2018; 103:567-580. [PMID: 29916127 DOI: 10.1007/s00223-018-0444-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Accepted: 06/14/2018] [Indexed: 12/17/2022]
Abstract
Periostin is an extracellular matrix protein that actively contributes to tumor progression and metastasis. Here, we hypothesized that it could be a marker of bone metastasis formation. To address this question, we used two polyclonal antibodies directed against the whole molecule or its C-terminal domain to explore the expression of intact and truncated forms of periostin in the serum and tissues (lung, heart, bone) of wild-type and periostin-deficient mice. In normal bones, periostin was expressed in the periosteum and specific periostin proteolytic fragments were found in bones, but not in soft tissues. In animals bearing osteolytic lesions caused by 4T1 cells, C-terminal intact periostin (iPTN) expression disappeared at the invasive front of skeletal tumors where bone-resorbing osteoclasts were present. In vitro, we found that periostin was a substrate for osteoclast-derived cathepsin K, generating proteolytic fragments that were not recognized by anti-periostin antibodies directed against iPTN. In vivo, using an in-house sandwich immunoassay aimed at detecting iPTN only, we observed a noticeable reduction of serum periostin levels (- 26%; P < 0.002) in animals bearing osteolytic lesions caused by 4T1 cells. On the contrary, this decrease was not observed in women with breast cancer and bone metastases when periostin was measured with a human assay detecting total periostin. Collectively, these data showed that mouse periostin was degraded at the bone metastatic sites, potentially by cathepsin K, and that the specific measurement of iPTN in serum should assist in detecting bone metastasis formation in breast cancer.
Collapse
Affiliation(s)
- Evelyne Gineyts
- INSERM 1033, Pavillon F, Hôpital Edouard Herriot, Lyon, 69437, France
- Univ. Lyon, UFR de Médecine Lyon-Est, Lyon, France
| | - Nicolas Bonnet
- Division of Bone Diseases, Geneva University Hospital, Geneva, Switzerland
| | - Cindy Bertholon
- INSERM 1033, Pavillon F, Hôpital Edouard Herriot, Lyon, 69437, France
- Univ. Lyon, UFR de Médecine Lyon-Est, Lyon, France
| | - Marjorie Millet
- INSERM 1033, Pavillon F, Hôpital Edouard Herriot, Lyon, 69437, France
- Univ. Lyon, UFR de Médecine Lyon-Est, Lyon, France
| | | | - Olivier Borel
- INSERM 1033, Pavillon F, Hôpital Edouard Herriot, Lyon, 69437, France
- Univ. Lyon, UFR de Médecine Lyon-Est, Lyon, France
- Rheumatology Department, Hôpital Edouard Herriot, Hospices Civils de Lyon, Lyon, France
| | - Sandra Geraci
- INSERM 1033, Pavillon F, Hôpital Edouard Herriot, Lyon, 69437, France
- Univ. Lyon, UFR de Médecine Lyon-Est, Lyon, France
| | - Edith Bonnelye
- INSERM 1033, Pavillon F, Hôpital Edouard Herriot, Lyon, 69437, France
- Univ. Lyon, UFR de Médecine Lyon-Est, Lyon, France
| | - Martine Croset
- INSERM 1033, Pavillon F, Hôpital Edouard Herriot, Lyon, 69437, France
- Univ. Lyon, UFR de Médecine Lyon-Est, Lyon, France
| | - Ali Suhail
- Penn State Hershey Medical Center, Hershey, PA, USA
| | | | | | - Kim Leitzel
- Penn State Hershey Medical Center, Hershey, PA, USA
| | | | - Roland Chapurlat
- INSERM 1033, Pavillon F, Hôpital Edouard Herriot, Lyon, 69437, France
- Univ. Lyon, UFR de Médecine Lyon-Est, Lyon, France
- Rheumatology Department, Hôpital Edouard Herriot, Hospices Civils de Lyon, Lyon, France
| | - Allan Lipton
- Penn State Hershey Medical Center, Hershey, PA, USA
| | - Patrick Garnero
- INSERM 1033, Pavillon F, Hôpital Edouard Herriot, Lyon, 69437, France
- Univ. Lyon, UFR de Médecine Lyon-Est, Lyon, France
| | - Serge Ferrari
- Division of Bone Diseases, Geneva University Hospital, Geneva, Switzerland
| | - Philippe Clézardin
- INSERM 1033, Pavillon F, Hôpital Edouard Herriot, Lyon, 69437, France
- Univ. Lyon, UFR de Médecine Lyon-Est, Lyon, France
| | - Jean-Charles Rousseau
- INSERM 1033, Pavillon F, Hôpital Edouard Herriot, Lyon, 69437, France.
- Univ. Lyon, UFR de Médecine Lyon-Est, Lyon, France.
| |
Collapse
|
43
|
Bettis T, Kim BJ, Hamrick MW. Impact of muscle atrophy on bone metabolism and bone strength: implications for muscle-bone crosstalk with aging and disuse. Osteoporos Int 2018; 29:1713-1720. [PMID: 29777277 PMCID: PMC7861141 DOI: 10.1007/s00198-018-4570-1] [Citation(s) in RCA: 92] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Accepted: 03/28/2018] [Indexed: 02/07/2023]
Abstract
Bone fractures in older adults are often preceded by a loss of muscle mass and strength. Likewise, bone loss with prolonged bed rest, spinal cord injury, or with exposure to microgravity is also preceded by a rapid loss of muscle mass. Recent studies using animal models in the setting of hindlimb unloading or botulinum toxin (Botox) injection also reveal that muscle loss can induce bone loss. Moreover, muscle-derived factors such as irisin and leptin can inhibit bone loss with unloading, and knockout of catabolic factors in muscle such as the ubiquitin ligase Murf1 or the myokine myostatin can reduce osteoclastogenesis. These findings suggest that therapies targeting muscle in the setting of disuse atrophy may potentially attenuate bone loss, primarily by reducing bone resorption. These potential therapies not only include pharmacological approaches but also interventions such as whole-body vibration coupled with resistance exercise and functional electric stimulation of muscle.
Collapse
Affiliation(s)
- T Bettis
- Department of Cellular Biology and Anatomy, Medical College of Georgia, Augusta University, Laney Walker Blvd. CB2915, Augusta, GA, 30912, USA
| | - B-J Kim
- Department of Cellular Biology and Anatomy, Medical College of Georgia, Augusta University, Laney Walker Blvd. CB2915, Augusta, GA, 30912, USA
- ASAN Medical Center, College of Medicine, University of Ulsan, Seoul, Republic of Korea
| | - M W Hamrick
- Department of Cellular Biology and Anatomy, Medical College of Georgia, Augusta University, Laney Walker Blvd. CB2915, Augusta, GA, 30912, USA.
| |
Collapse
|
44
|
Nakazeki F, Nishiga M, Horie T, Nishi H, Nakashima Y, Baba O, Kuwabara Y, Nishino T, Nakao T, Ide Y, Koyama S, Kimura M, Tsuji S, Sowa N, Yoshida S, Conway SJ, Yanagita M, Kimura T, Ono K. Loss of periostin ameliorates adipose tissue inflammation and fibrosis in vivo. Sci Rep 2018; 8:8553. [PMID: 29867212 PMCID: PMC5986813 DOI: 10.1038/s41598-018-27009-9] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Accepted: 05/23/2018] [Indexed: 12/13/2022] Open
Abstract
Recent evidence suggests that the accumulation of macrophages as a result of obesity-induced adipose tissue hypoxia is crucial for the regulation of tissue fibrosis, but the molecular mechanisms underlying adipose tissue fibrosis are still unknown. In this study, we revealed that periostin (Postn) is produced at extraordinary levels by adipose tissue after feeding with a high-fat diet (HFD). Postn was secreted at least from macrophages in visceral adipose tissue during the development of obesity, possibly due to hypoxia. Postn-/- mice had lower levels of crown-like structure formation and fibrosis in adipose tissue and were protected from liver steatosis. These mice also showed amelioration in systemic insulin resistance compared with HFD-fed WT littermates. Mice deficient in Postn in their hematopoietic compartment also had lower levels of inflammation in adipose tissue, in parallel with a reduction in ectopic lipid accumulation compared with the controls. Our data indicated that the regulation of Postn in visceral fat could be beneficial for the maintenance of healthy adipose tissue in obesity.
Collapse
Affiliation(s)
- Fumiko Nakazeki
- Department of Cardiovascular Medicine, Graduate School of Medicine, Kyoto University, Kyoto, 606-8507, Japan
| | - Masataka Nishiga
- Department of Cardiovascular Medicine, Graduate School of Medicine, Kyoto University, Kyoto, 606-8507, Japan
| | - Takahiro Horie
- Department of Cardiovascular Medicine, Graduate School of Medicine, Kyoto University, Kyoto, 606-8507, Japan
| | - Hitoo Nishi
- Department of Cardiovascular Medicine, Graduate School of Medicine, Kyoto University, Kyoto, 606-8507, Japan
| | - Yasuhiro Nakashima
- Department of Cardiovascular Medicine, Graduate School of Medicine, Kyoto University, Kyoto, 606-8507, Japan
| | - Osamu Baba
- Department of Cardiovascular Medicine, Graduate School of Medicine, Kyoto University, Kyoto, 606-8507, Japan
| | - Yasuhide Kuwabara
- Department of Cardiovascular Medicine, Graduate School of Medicine, Kyoto University, Kyoto, 606-8507, Japan
| | - Tomohiro Nishino
- Department of Cardiovascular Medicine, Graduate School of Medicine, Kyoto University, Kyoto, 606-8507, Japan
| | - Tetsushi Nakao
- Department of Cardiovascular Medicine, Graduate School of Medicine, Kyoto University, Kyoto, 606-8507, Japan
| | - Yuya Ide
- Department of Cardiovascular Medicine, Graduate School of Medicine, Kyoto University, Kyoto, 606-8507, Japan
| | - Satoshi Koyama
- Department of Cardiovascular Medicine, Graduate School of Medicine, Kyoto University, Kyoto, 606-8507, Japan
| | - Masahiro Kimura
- Department of Cardiovascular Medicine, Graduate School of Medicine, Kyoto University, Kyoto, 606-8507, Japan
| | - Shuhei Tsuji
- Department of Cardiovascular Medicine, Graduate School of Medicine, Kyoto University, Kyoto, 606-8507, Japan
| | - Naoya Sowa
- Department of Cardiovascular Medicine, Graduate School of Medicine, Kyoto University, Kyoto, 606-8507, Japan
| | - Shigeo Yoshida
- Department of Ophthalmology, Kyushu University Graduate School of Medical Sciences, Fukuoka, 812-8582, Japan
| | - Simon J Conway
- Herman B Wells Center for Pediatric Research, Indiana University of Medicine, Indianapolis, Indiana, USA
| | - Motoko Yanagita
- Department of Nephrology, Graduate School of Medicine, Kyoto University, Kyoto, 606-8507, Japan
| | - Takeshi Kimura
- Department of Cardiovascular Medicine, Graduate School of Medicine, Kyoto University, Kyoto, 606-8507, Japan
| | - Koh Ono
- Department of Cardiovascular Medicine, Graduate School of Medicine, Kyoto University, Kyoto, 606-8507, Japan.
| |
Collapse
|
45
|
Wen L, Chen J, Duan L, Li S. Vitamin K‑dependent proteins involved in bone and cardiovascular health (Review). Mol Med Rep 2018; 18:3-15. [PMID: 29749440 PMCID: PMC6059683 DOI: 10.3892/mmr.2018.8940] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Accepted: 02/13/2018] [Indexed: 12/19/2022] Open
Abstract
In postmenopausal women and elderly men, bone density decreases with age and vascular calcification is aggravated. This condition is closely associated with vitamin K2 deficiency. A total of 17 different vitamin K-dependent proteins have been identified to date. Vitamin K-dependent proteins are located within the bone, heart and blood vessels. For instance, carboxylated osteocalcin is beneficial for bone and aids the deposition of calcium into the bone matrix. Carboxylated matrix Gla protein effectively protects blood vessels and may prevent calcification within the vascular wall. Furthermore, carboxylated Gla-rich protein has been reported to act as an inhibitor in the calcification of the cardiovascular system, while growth arrest-specific protein-6 protects endothelial cells and vascular smooth muscle cells, resists apoptosis and inhibits the calcification of blood vessels by inhibiting the apoptosis of vascular smooth muscle cells. In addition, periostin may promote the differentiation, aggregation, adhesion and proliferation of osteoblasts. Periostin also occurs in the heart and may be associated with the reconstruction of heart function. These vitamin K-dependent proteins may exert their functions following γ-carboxylation with vitamin K, and different vitamin K-dependent proteins may exhibit synergistic effects or antagonistic effects on each other. In the cardiovascular system with vitamin K antagonist supplement or vitamin K deficiency, calcification occurs in the endothelium of blood vessels and vascular smooth muscle cells are transformed into osteoblast-like cells, a phenomenon that resembles bone growth. Both the bone and cardiovascular system are closely associated during embryonic development. Thus, the present study hypothesized that embryonic developmental position and tissue calcification may have a certain association for the bone and the cardiovascular system. This review describes and briefly discusses several important vitamin K-dependent proteins that serve an important role in bone and the cardiovascular system. The results of the review suggest that the vascular calcification and osteogenic differentiation of vascular smooth muscle cells may be associated with the location of the bone and cardiovascular system during embryonic development.
Collapse
Affiliation(s)
- Lianpu Wen
- Department of Physiology, Dalian Medical University, Dalian, Liaoning 116044, P.R. China
| | - Jiepeng Chen
- Sungen Bioscience Co., Ltd., Shantou, Guangdong 515000, P.R. China
| | - Lili Duan
- Sungen Bioscience Co., Ltd., Shantou, Guangdong 515000, P.R. China
| | - Shuzhuang Li
- Department of Physiology, Dalian Medical University, Dalian, Liaoning 116044, P.R. China
| |
Collapse
|
46
|
|
47
|
|
48
|
Du J, Li M. Functions of Periostin in dental tissues and its role in periodontal tissues' regeneration. Cell Mol Life Sci 2017; 74:4279-4286. [PMID: 28889194 PMCID: PMC11107504 DOI: 10.1007/s00018-017-2645-3] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Accepted: 09/04/2017] [Indexed: 02/08/2023]
Abstract
The goal of periodontal regenerative therapy is to predictably restore the tooth's supporting periodontal tissues and form a new connective tissue attachment of periodontal ligament (PDL) fibers and new alveolar bone. Periostin is a matricellular protein so named for its expression primarily in the periosteum and PDL of adult mice. Its biological functions have been widely studied in areas such as cardiovascular physiology and oncology. Despite being initially identified in the dental tissues and bone, investigations of Periostin functions in PDL and alveolar-bone-related physiopathology are less abundant. Recently, several studies have suggested that Periostin may be an important regulator of periodontal tissue formation. By promoting collagen fibrillogenesis and the migration of fibroblasts and osteoblasts, Periostin might play a pivotal part in regeneration of the PDL and alveolar bone following periodontal surgery. The aim of this article is to provide an extensive review of the implications of Periostin in periodontal tissue biology and its potential use in periodontal tissue regeneration.
Collapse
Affiliation(s)
- Juan Du
- Department of Bone Metabolism, School of Stomatology, Shandong Provincial Key Laboratory of Oral Tissue Regeneration, Shandong University, Jinan, 250012, China
| | - Minqi Li
- Department of Bone Metabolism, School of Stomatology, Shandong Provincial Key Laboratory of Oral Tissue Regeneration, Shandong University, Jinan, 250012, China.
| |
Collapse
|
49
|
Garnero P, Bonnet N, Ferrari SL. Development of a New Immunoassay for Human Cathepsin K-Generated Periostin Fragments as a Serum Biomarker for Cortical Bone. Calcif Tissue Int 2017; 101:501-509. [PMID: 28725907 DOI: 10.1007/s00223-017-0302-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Accepted: 07/06/2017] [Indexed: 12/13/2022]
Abstract
Periostin is a matricellular protein mainly expressed by periosteal cells and osteocytes in bone, but is also present in several other tissues. Available immunoassays use antibodies of unclear specificity. The aim of the study was to develop a bone-specific periostin ELISA based on the detection of fragments generated by the osteoclastic and osteocytic protease cathepsin K. In vitro digestion of human recombinant intact periostin by cathepsin K leads to the generation of multiple fragments. Using LS-MS/MS, it was found that the GSLQPIIK peptide was the most efficiently and abundantly generated periostin fragment. A rabbit polyclonal antibody directed against the synthetic GSLQPIIK sequence was produced. Immunohistochemistry experiments of the tibia showed that the GSLQPIIK fragments localized at the periosteal surface and within the osteocytes. Using the same antibody, we developed an ELISA for the measurement of GSLQPIIK in the serum. This ELISA demonstrated intra- and interassay variability below 14% with a sensitivity allowing accurate determinations in the serum of healthy individuals. Serum GSLQPIIK was measured in 160 healthy postmenopausal women (mean age 65 year) participating in the Geneva Retiree Cohort. Serum GSLQPIIK levels did not correlate with total periostin, hip BMD, and the bone markers PINP and CTX. However, GSLQPIIK was negatively correlated (p values ranging from 0.007 to 0.03) with Hr-pQCT measures of tibia and radius cortical bone, but not with trabecular parameters. We have developed the first assay for the detection of periostin fragments generated by cathepsin K. Because serum levels of this new marker significantly correlated with cortical bone measurements in postmenopausal women, it may prove to be useful for the clinical investigation of patients with osteoporosis.
Collapse
Affiliation(s)
- Patrick Garnero
- Division of Bone Diseases, Geneva University Hospital, Faculty of Medicine, Geneva, Switzerland.
| | - Nicolas Bonnet
- Division of Bone Diseases, Geneva University Hospital, Faculty of Medicine, Geneva, Switzerland
| | - Serge L Ferrari
- Division of Bone Diseases, Geneva University Hospital, Faculty of Medicine, Geneva, Switzerland
| |
Collapse
|
50
|
Vico L, van Rietbergen B, Vilayphiou N, Linossier MT, Locrelle H, Normand M, Zouch M, Gerbaix M, Bonnet N, Novikov V, Thomas T, Vassilieva G. Cortical and Trabecular Bone Microstructure Did Not Recover at Weight-Bearing Skeletal Sites and Progressively Deteriorated at Non-Weight-Bearing Sites During the Year Following International Space Station Missions. J Bone Miner Res 2017; 32:2010-2021. [PMID: 28574653 DOI: 10.1002/jbmr.3188] [Citation(s) in RCA: 70] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Revised: 05/15/2017] [Accepted: 05/31/2017] [Indexed: 12/14/2022]
Abstract
Risk for premature osteoporosis is a major health concern in astronauts and cosmonauts; the reversibility of the bone lost at the weight-bearing bone sites is not established, although it is suspected to take longer than the mission length. The bone three-dimensional structure and strength that could be uniquely affected by weightlessness is currently unknown. Our objective is to evaluate bone mass, microarchitecture, and strength of weight-bearing and non-weight-bearing bone in 13 cosmonauts before and for 12 months after a 4-month to 6-month sojourn in the International Space Station (ISS). Standard and advanced evaluations of trabecular and cortical parameters were performed using high-resolution peripheral quantitative computed tomography. In particular, cortical analyses involved determination of the largest common volume of each successive individual scan to improve the precision of cortical porosity and density measurements. Bone resorption and formation serum markers, and markers reflecting osteocyte activity or periosteal metabolism (sclerostin, periostin) were evaluated. At the tibia, in addition to decreased bone mineral densities at cortical and trabecular compartments, a 4% decrease in cortical thickness and a 15% increase in cortical porosity were observed at landing. Cortical size and density subsequently recovered and serum periostin changes were associated with cortical recovery during the year after landing. However, tibial cortical porosity or trabecular bone failed to recover, resulting in compromised strength. The radius, preserved at landing, unexpectedly developed postflight fragility, from 3 months post-landing onward, particularly in its cortical structure. Remodeling markers, uncoupled in favor of bone resorption at landing, returned to preflight values within 6 months, then declined farther to lower than preflight values. Our findings highlight the need for specific protective measures not only during, but also after spaceflight, because of continuing uncertainties regarding skeletal recovery long after landing. © 2017 American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Laurence Vico
- University of Lyon, INSERM, UMR 1059, F-42000 Saint Etienne, France
| | | | | | | | - Hervé Locrelle
- University of Lyon, INSERM, UMR 1059, F-42000 Saint Etienne, France
| | - Myriam Normand
- University of Lyon, INSERM, UMR 1059, F-42000 Saint Etienne, France
| | - Mohamed Zouch
- Laboratory of Exercise Physiology and Pathophysiology, Faculty of Medicine, Université de Sousse, Sousse, Tunisia.,Higher Institute of Sport and Physical Education of Sfax, Université de Sfax, Sfax, Tunisia
| | - Maude Gerbaix
- University of Lyon, INSERM, UMR 1059, F-42000 Saint Etienne, France
| | - Nicolas Bonnet
- Division of Bone Diseases, Department of Internal Medicine Specialties, Geneva University Hospital and Faculty of Medicine, Geneva, Switzerland
| | - Valery Novikov
- Institute of Biomedical Problems of the Russian Academy of Sciences, Moscow, Russia
| | - Thierry Thomas
- University of Lyon, INSERM, UMR 1059, F-42000 Saint Etienne, France
| | - Galina Vassilieva
- Institute of Biomedical Problems of the Russian Academy of Sciences, Moscow, Russia
| |
Collapse
|