1
|
Leng S, Cong R, Xia Y, Kang F. Deferoxamine Accelerates Mandibular Condylar Neck Fracture Early Bone Healing by Promoting Type H Vessel Proliferation. J Oral Rehabil 2024. [PMID: 39363428 DOI: 10.1111/joor.13869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 09/05/2024] [Accepted: 09/15/2024] [Indexed: 10/05/2024]
Abstract
BACKGROUND Condylar fractures (CFs) are a common type of maxillofacial trauma, especially in adolescents. Conservative treatment of CF avoids the possible complications of surgical intervention, but prolongs the patient's suffering because of the requirement for extended intermaxillary fixation. Therefore, the development of a new strategy to accelerate the rate of fracture healing to shorten the period of conservative treatment is of great clinical importance. OBJECTIVE To investigate the potential of deferoxamine (DFO) in promoting the healing process of CF in adolescent mice. METHODS Thirty-two 4-week-old male C57BL/6J mice were randomly assigned to four groups: vehicle + sham group, vehicle + CF group, DFO + sham group and DFO + CF group. After constructing the mandibular CF model, mandibular tissue samples were collected respectively at 1, 2 and 4 weeks postoperatively. Radiographic and histomorphometric analyses were employed to assess bone tissue healing and vascular formation. RESULTS Deferoxamine was observed to promote the early bone healing of fracture, both radiologically and histomorphometrically. Furthermore, this enhancement of condylar neck fracture healing was attributed to the upregulation of the hypoxia-inducible factor-1α (HIF-1α) signalling pathway while facilitating the formation of type H vessels. In addition, DFO did not produce significant effects on the condylar neck between vehicle + sham and DFO + sham group. CONCLUSION The application of the HIF-1α inducer DFO can enhance type H vessels expansion thereby accelerating condylar neck fracture healing.
Collapse
Affiliation(s)
- Sijia Leng
- Department of Oral and Maxillofacial Surgery, Stomatological Hospital and Dental School of Tongji University, Shanghai, China
- Shanghai Engineering Research Center of Tooth Restoration and Regeneration, Shanghai, China
| | - Rong Cong
- Department of Oral and Maxillofacial Surgery, Stomatological Hospital and Dental School of Tongji University, Shanghai, China
- Shanghai Engineering Research Center of Tooth Restoration and Regeneration, Shanghai, China
| | - Yuxing Xia
- Department of Oral and Maxillofacial Surgery, Stomatological Hospital and Dental School of Tongji University, Shanghai, China
- Shanghai Engineering Research Center of Tooth Restoration and Regeneration, Shanghai, China
| | - Feiwu Kang
- Department of Oral and Maxillofacial Surgery, Stomatological Hospital and Dental School of Tongji University, Shanghai, China
- Shanghai Engineering Research Center of Tooth Restoration and Regeneration, Shanghai, China
| |
Collapse
|
2
|
Wang C, Gong S, Liu H, Cui L, Ye Y, Liu D, Liu T, Xie S, Li S. Angiogenesis unveiled: Insights into its role and mechanisms in cartilage injury. Exp Gerontol 2024; 195:112537. [PMID: 39111547 DOI: 10.1016/j.exger.2024.112537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 07/28/2024] [Accepted: 08/02/2024] [Indexed: 09/02/2024]
Abstract
Osteoarthritis (OA) commonly results in compromised mobility and disability, thereby imposing a significant burden on healthcare systems. Cartilage injury is a prevalent pathological manifestation in OA and constitutes a central focus for the development of treatment strategies. Despite the considerable number of studies aimed at delaying this degenerative process, their outcomes remain unvalidated in preclinical settings. Recently, therapeutic strategies focused on angiogenesis have attracted the growing interest from researchers. Thus, we conducted a comprehensive literature review to elucidate the current progress in research and pinpoint research gaps in this domain. Additionally, it provides theoretical guidance for future research endeavors and the development of treatment strategies.
Collapse
Affiliation(s)
- Chenglong Wang
- Spinal Surgery Department, Mianyang Orthopaedic Hospital, Mianyang 621700, Sichuan, China
| | - Shuangquan Gong
- Spinal Surgery Department, Mianyang Orthopaedic Hospital, Mianyang 621700, Sichuan, China
| | - Hongjun Liu
- Spinal Surgery Department, Mianyang Orthopaedic Hospital, Mianyang 621700, Sichuan, China
| | - Liqiang Cui
- Spinal Surgery Department, Mianyang Orthopaedic Hospital, Mianyang 621700, Sichuan, China
| | - Yu Ye
- Spinal Surgery Department, Mianyang Orthopaedic Hospital, Mianyang 621700, Sichuan, China
| | - Dengshang Liu
- Spinal Surgery Department, Mianyang Orthopaedic Hospital, Mianyang 621700, Sichuan, China
| | - Tianzhu Liu
- Neurological Disease Center, Zigong Fourth People's Hospital, Zigong, 643000, Sichuan, China
| | - Shiming Xie
- Spinal Surgery Department, Mianyang Orthopaedic Hospital, Mianyang 621700, Sichuan, China.
| | - Sen Li
- Division of Spine Surgery, Department of Orthopedic Surgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu 210003, China.
| |
Collapse
|
3
|
Wang R, He X, Su S, Bai J, Liu H, Zhou F. Multifunctional tannic acid-based nanocomposite methacrylated silk fibroin hydrogel with the ability to scavenge reactive oxygen species and reduce inflammation for bone regeneration. Int J Biol Macromol 2024; 266:131357. [PMID: 38580010 DOI: 10.1016/j.ijbiomac.2024.131357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 03/18/2024] [Accepted: 04/01/2024] [Indexed: 04/07/2024]
Abstract
The microenvironment of bone defect site is vital for bone regeneration. Severe bone defect is often accompanied with severe inflammation and elevated generation of reactive oxygen species (ROS) during bone repair. In recent years, the unfriendly local microenvironment has been paid more and more attention. Some bioactive materials with the ability to regulate the microenvironment to promote bone regeneration urgently need to be developed. Here, we develop a multifunctional composite hydrogel composed of photo-responsive methacrylate silk fibroin (SFMA), laponite (LAP) nanocomposite and tannic acid (TA), aiming to endow hydrogel with antioxidant, anti-inflammatory and osteogenic induction ability. Characterization results confirmed that the SFMA-LAP@TA hydrogel could significantly improve the mechanical properties of hydrogel. The ROS-Scavenging ability of the hydrogel enabled bone marrow mesenchymal stem cells (BMSCs) to survive against H2O2-induced oxidative stress. In addition, the SFMA-LAP@TA hydrogel effectively decreased the expression of pro-inflammatory factors in RAW264.7. More importantly, the SFMA-LAP@TA hydrogel could enhance the expression of osteogenic markers of BMSCs under inflammatory condition and greatly promote new bone formation in a critical-sized cranial defect model. Above all, the multifunctional hydrogel could effectively promote bone regeneration in vitro and in vivo by scavenging ROS and reducing inflammation, providing a prospective strategy for bone regeneration.
Collapse
Affiliation(s)
- Ruideng Wang
- Department of Orthopedics, Peking University Third Hospital, Beijing, China; Engineering Research Center of Bone and Joint Precision Medicine, Beijing, China
| | - Xi He
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, China
| | - Shilong Su
- Department of Orthopedics, Peking University Third Hospital, Beijing, China; Engineering Research Center of Bone and Joint Precision Medicine, Beijing, China
| | - Jinwu Bai
- Department of Orthopedics, Peking University Third Hospital, Beijing, China; Engineering Research Center of Bone and Joint Precision Medicine, Beijing, China
| | - Haifeng Liu
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, China.
| | - Fang Zhou
- Department of Orthopedics, Peking University Third Hospital, Beijing, China; Engineering Research Center of Bone and Joint Precision Medicine, Beijing, China.
| |
Collapse
|
4
|
Zhao S, Qiao Z, Pfeifer R, Pape HC, Mao K, Tang H, Meng B, Chen S, Liu H. Modulation of fracture healing by senescence-associated secretory phenotype (SASP): a narrative review of the current literature. Eur J Med Res 2024; 29:38. [PMID: 38195489 PMCID: PMC10775505 DOI: 10.1186/s40001-023-01604-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Accepted: 12/19/2023] [Indexed: 01/11/2024] Open
Abstract
The senescence-associated secretory phenotype (SASP) is a generic term for the secretion of cytokines, such as pro-inflammatory factors and proteases. It is a crucial feature of senescent cells. SASP factors induce tissue remodeling and immune cell recruitment. Previous studies have focused on the beneficial role of SASP during embryonic development, wound healing, tissue healing in general, immunoregulation properties, and cancer. However, some recent studies have identified several negative effects of SASP on fracture healing. Senolytics is a drug that selectively eliminates senescent cells. Senolytics can inhibit the function of senescent cells and SASP, which has been found to have positive effects on a variety of aging-related diseases. At the same time, recent data suggest that removing senescent cells may promote fracture healing. Here, we reviewed the latest research progress about SASP and illustrated the inflammatory response and the influence of SASP on fracture healing. This review aims to understand the role of SASP in fracture healing, aiming to provide an important clinical prevention and treatment strategy for fracture. Clinical trials of some senolytics agents are underway and are expected to clarify the effectiveness of their targeted therapy in the clinic in the future. Meanwhile, the adverse effects of this treatment method still need further study.
Collapse
Affiliation(s)
- Shangkun Zhao
- Department of Orthopedic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Zhi Qiao
- Department of Orthopedic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Roman Pfeifer
- Department of Traumatology, University Hospital of Zurich, Zurich, 8091, China
| | - Hans-Christoph Pape
- Department of Traumatology, University Hospital of Zurich, Zurich, 8091, China
| | - Keya Mao
- Chinese PLA General Hospital Beijing, Beijing, 100853, China
| | - Hai Tang
- Beijing Friendship Hospital, Beijing, 100050, China
| | - Bin Meng
- First Affiliated Hospital of Soochow University, Suzhou, 215006, Jiangsu, China
| | - Songfeng Chen
- Department of Orthopedic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Hongjian Liu
- Department of Orthopedic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.
| |
Collapse
|
5
|
Maisenbacher TC, Ehnert S, Histing T, Nüssler AK, Menger MM. Advantages and Limitations of Diabetic Bone Healing in Mouse Models: A Narrative Review. Biomedicines 2023; 11:3302. [PMID: 38137522 PMCID: PMC10741210 DOI: 10.3390/biomedicines11123302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 11/29/2023] [Accepted: 12/09/2023] [Indexed: 12/24/2023] Open
Abstract
Diabetes represents a major risk factor for impaired fracture healing. Type 2 diabetes mellitus is a growing epidemic worldwide, hence an increase in diabetes-related complications in fracture healing can be expected. However, the underlying mechanisms are not yet completely understood. Different mouse models are used in preclinical trauma research for fracture healing under diabetic conditions. The present review elucidates and evaluates the characteristics of state-of-the-art murine diabetic fracture healing models. Three major categories of murine models were identified: Streptozotocin-induced diabetes models, diet-induced diabetes models, and transgenic diabetes models. They all have specific advantages and limitations and affect bone physiology and fracture healing differently. The studies differed widely in their diabetic and fracture healing models and the chosen models were evaluated and discussed, raising concerns in the comparability of the current literature. Researchers should be aware of the presented advantages and limitations when choosing a murine diabetes model. Given the rapid increase in type II diabetics worldwide, our review found that there are a lack of models that sufficiently mimic the development of type II diabetes in adult patients over the years. We suggest that a model with a high-fat diet that accounts for 60% of the daily calorie intake over a period of at least 12 weeks provides the most accurate representation.
Collapse
Affiliation(s)
- Tanja C. Maisenbacher
- Department of Trauma and Reconstructive Surgery, Eberhard Karls University Tübingen, BG Clinic Tübingen, Schnarrenbergstr. 95, D-72076 Tübingen, Germany; (T.H.); (M.M.M.)
- Siegfried Weller Institute at the BG Trauma Center Tübingen, Department of Trauma and Reconstructive Surgery, University of Tübingen, Schnarrenbergstr. 95, D-72076 Tübingen, Germany; (S.E.); (A.K.N.)
| | - Sabrina Ehnert
- Siegfried Weller Institute at the BG Trauma Center Tübingen, Department of Trauma and Reconstructive Surgery, University of Tübingen, Schnarrenbergstr. 95, D-72076 Tübingen, Germany; (S.E.); (A.K.N.)
| | - Tina Histing
- Department of Trauma and Reconstructive Surgery, Eberhard Karls University Tübingen, BG Clinic Tübingen, Schnarrenbergstr. 95, D-72076 Tübingen, Germany; (T.H.); (M.M.M.)
| | - Andreas K. Nüssler
- Siegfried Weller Institute at the BG Trauma Center Tübingen, Department of Trauma and Reconstructive Surgery, University of Tübingen, Schnarrenbergstr. 95, D-72076 Tübingen, Germany; (S.E.); (A.K.N.)
| | - Maximilian M. Menger
- Department of Trauma and Reconstructive Surgery, Eberhard Karls University Tübingen, BG Clinic Tübingen, Schnarrenbergstr. 95, D-72076 Tübingen, Germany; (T.H.); (M.M.M.)
| |
Collapse
|
6
|
Hossain MMN, Hu NW, Abdelhamid M, Singh S, Murfee WL, Balogh P. Angiogenic Microvascular Wall Shear Stress Patterns Revealed Through Three-dimensional Red Blood Cell Resolved Modeling. FUNCTION 2023; 4:zqad046. [PMID: 37753184 PMCID: PMC10519277 DOI: 10.1093/function/zqad046] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 08/18/2023] [Accepted: 08/21/2023] [Indexed: 09/28/2023] Open
Abstract
The wall shear stress (WSS) exerted by blood flowing through microvascular capillaries is an established driver of new blood vessel growth, or angiogenesis. Such adaptations are central to many physiological processes in both health and disease, yet three-dimensional (3D) WSS characteristics in real angiogenic microvascular networks are largely unknown. This marks a major knowledge gap because angiogenesis, naturally, is a 3D process. To advance current understanding, we model 3D red blood cells (RBCs) flowing through rat angiogenic microvascular networks using state-of-the-art simulation. The high-resolution fluid dynamics reveal 3D WSS patterns occurring at sub-endothelial cell (EC) scales that derive from distinct angiogenic morphologies, including microvascular loops and vessel tortuosity. We identify the existence of WSS hot and cold spots caused by angiogenic surface shapes and RBCs, and notably enhancement of low WSS regions by RBCs. Spatiotemporal characteristics further reveal how fluctuations follow timescales of RBC "footprints." Altogether, this work provides a new conceptual framework for understanding how shear stress might regulate EC dynamics in vivo.
Collapse
Affiliation(s)
- Mir Md Nasim Hossain
- Mechanical and Industrial Engineering, New Jersey Institute of Technology, Newark, NJ 07114, USA
| | - Nien-Wen Hu
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL 32611, USA
| | - Maram Abdelhamid
- Mechanical and Industrial Engineering, New Jersey Institute of Technology, Newark, NJ 07114, USA
| | - Simerpreet Singh
- Mechanical and Industrial Engineering, New Jersey Institute of Technology, Newark, NJ 07114, USA
| | - Walter L Murfee
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL 32611, USA
| | - Peter Balogh
- Mechanical and Industrial Engineering, New Jersey Institute of Technology, Newark, NJ 07114, USA
| |
Collapse
|
7
|
Alharbi MA, Graves DT. FOXO 1 deletion in chondrocytes rescues diabetes-impaired fracture healing by restoring angiogenesis and reducing apoptosis. Front Endocrinol (Lausanne) 2023; 14:1136117. [PMID: 37576976 PMCID: PMC10421747 DOI: 10.3389/fendo.2023.1136117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Accepted: 06/12/2023] [Indexed: 08/15/2023] Open
Abstract
Introduction Diabetes mellitus is associated with higher risks of long bone and jaw fractures. It is also associated with a higher incidence of delayed union or non-union. Our previous investigations concluded that a dominant mechanism was the premature loss of cartilage during endochondral bone formation associated with increased osteoclastic activities. We tested the hypothesis that FOXO1 plays a key role in diabetes-impaired angiogenesis and chondrocyte apoptosis. Methods Closed fractures of the femur were induced in mice with lineage-specific FOXO1 deletion in chondrocytes. The control group consisted of mice with the FOXO1 gene present. Mice in the diabetic group were rendered diabetic by multiple streptozotocin injections, while mice in the normoglycemic group received vehicle. Specimens were collected 16 days post fracture. The samples were fixed, decalcified, and embedded in paraffin blocks for immunostaining utilizing anti cleaved caspase-3 or CD31 specific antibodies compared with matched control IgG antibody, and apoptosis by the TUNEL assay. Additionally, ATDC5 chondrocytes were examined in vitro by RT-PCR, luciferase reporter and chromatin immunoprecipitation assays. Results Diabetic mice had ~ 50% fewer blood vessels compared to normoglycemic mice FOXO1 deletion in diabetic mice partially rescued the low number of blood vessels (p < 0.05). Additionally, diabetes increased caspase-3 positive and apoptotic chondrocytes by 50%. FOXO1 deletion in diabetic animals blocked the increase in both to levels comparable to normoglycemic animals (p < 0.05). High glucose (HG) and high advanced glycation end products (AGE) levels stimulated FOXO1 association with the caspase-3 promoter in vitro, and overexpression of FOXO1 increased caspase-3 promoter activity in luciferase reporter assays. Furthermore, we review previous mechanistic studies demonstrating that tumor necrosis factor (TNF) inhibition reverses impaired angiogenesis and reverses high levels of chondrocyte apoptosis that occur in fracture healing. Discussion New results presented here, in combination with recent studies, provide a comprehensive overview of how diabetes, through high glucose levels, AGEs, and increased inflammation, impair the healing process by interfering with angiogenesis and stimulating chondrocyte apoptosis. FOXO1 in diabetic fractures plays a negative role by reducing new blood vessel formation and increasing chondrocyte cell death which is distinct from its role in normal fracture healing.
Collapse
Affiliation(s)
- Mohammed A. Alharbi
- Department of Endodontics, Faculty of Dentistry, King Abdulaziz University, Jeddah, Saudi Arabia
- Department of Periodontics, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Dana T. Graves
- Department of Periodontics, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, United States
| |
Collapse
|
8
|
Chen Z, Zhao H, Meng L, Yu S, Liu Z, Xue J. Microfibril-Associated Glycoprotein-2 Promoted Fracture Healing via Integrin αvβ3/PTK2/AKT Signaling. J Transl Med 2023; 103:100121. [PMID: 36934797 DOI: 10.1016/j.labinv.2023.100121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 02/08/2023] [Accepted: 02/16/2023] [Indexed: 03/19/2023] Open
Abstract
Fracture healing is a complex physiological process in which angiogenesis plays an essential role. Microfibril-associated glycoprotein-2 (MAGP2) has been reported to possess a proangiogenic activity via integrin αvβ3, yet its role in bone repair is unexplored. In this study, a critical-sized femoral defect (2 mm) was created in mice, followed by the delivery of an adenovirus-based MAGP2 overexpression vector or its negative control at the fracture site. At days 7, 14, 21, and 28 postfracture, bone fracture healing was evaluated by radiography, micro-computed tomography, and histopathologic analysis. Adenovirus-based MAGP2 overexpression vector-treated mice exhibited increased bone mineral density and bone volume fraction. MAGP2 overexpression contributed to an advanced stage of endochondral ossification and induced cartilage callus into the bony callus. Further analysis indicated that MAGP2 was associated with enhanced angiogenesis, as evidenced by marked MAGP2 and integrin αvβ3 costaining and increased endothelial cell markers such as endomucin and CD31 levls, as well as elevated phosphorylation of protein tyrosine kinase 2 (PTK2) and AKT serine/threonine kinase 1 (AKT) in the callus. In vitro, recombinant human MAGP2 treatment enhanced the viability, migration, and tube formation ability of human microvascular endothelial cells, which was partially reversed by integrin αvβ3 inhibition or MK-2206, a specific AKT inhibitor. Inhibition of integrin αvβ3 abolished MAGP2-induced PTK2 and AKT activation. Taken together, our data provide the first evidence that MAGP2 promotes angiogenesis and bone formation by activating the integrin αvβ3/PTK2/AKT signaling pathway.
Collapse
Affiliation(s)
- Zhiguang Chen
- Department of Emergency Medicine, Shengjing Hospital of China Medical University, Shenyang, China
| | - Haibin Zhao
- Department of Emergency Medicine, Shengjing Hospital of China Medical University, Shenyang, China
| | - Lingshuai Meng
- Department of Emergency Medicine, Shengjing Hospital of China Medical University, Shenyang, China
| | - Shengwei Yu
- Department of Emergency Medicine, Shengjing Hospital of China Medical University, Shenyang, China
| | - Zhenning Liu
- Department of Emergency Medicine, Shengjing Hospital of China Medical University, Shenyang, China
| | - Jinqi Xue
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang, China.
| |
Collapse
|
9
|
Xu Z, Zhang Y, Lu D, Zhang G, Li Y, Lu Z, Wang F, Wang G. Antisenescence ZIF-8/Resveratrol Nanoformulation with Potential for Enhancement of Bone Fracture Healing in the Elderly. ACS Biomater Sci Eng 2023; 9:2636-2646. [PMID: 37036053 DOI: 10.1021/acsbiomaterials.3c00090] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/11/2023]
Abstract
Accumulation of senescent cells in the elderly impairs bone homeostasis. It is important to alleviate cell senescence and scavenge excessive oxidative stress for enhanced bone fracture healing in elderly patients. In this study, resveratrol (RSV), an antioxidant drug, was encapsulated in a biocompatible zeolitic imidazolate framework-8 (ZIF-8) nanoparticle to protect it from oxidation and improve its bioavailability. Cells responsible for bone healing, including osteoblasts, bone marrow-derived mesenchymal stem cells (BMSCs), macrophages, and endothelial cells, were used to evaluate the regulatory role of the nanoformulation in the alleviation of cellular senescence and promotion of cell functions. It was proved that the nanoformulation sustainably released RSV with well-preserved bioactivity and improved bioavailability. Cell experiments confirmed that ZIF-8/RSV was capable of alleviating the senescence of cells [human osteoblasts (HOBs), BMSCs, H2O2-induced senescent vascular endothelial cells (HUVECs)] and scavenging excessive intracellular reactive oxygen species (ROS). Excitingly, the ZIF-8/RSV improved the osteogenic ability of senescent osteoblasts and promoted macrophage M2 polarization. In addition, the ZIF-8/RSV also enhanced the angiogenic function of senescent HUVECs. More importantly, the ZIF-8/RSV nanoformulation outperformed the REV alone, indicating the critical role of encapsulation using ZIF-8. These findings suggest that the ZIF-8/RSV nanoformulation exhibits potential for bone fracture treatment in elderly patients.
Collapse
Affiliation(s)
- Zhengjiang Xu
- Research Center for Human Tissues & Organs Degeneration, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Guangdong 518055, Shenzhen, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yuan Zhang
- Research Center for Human Tissues & Organs Degeneration, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Guangdong 518055, Shenzhen, China
| | - Danping Lu
- Research Center for Human Tissues & Organs Degeneration, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Guangdong 518055, Shenzhen, China
| | - Guofang Zhang
- Laboratory of Immunology and Nanomedicine, Laboratory of Inflammation and Vaccines, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Guangdong 518055, Shenzhen, China
| | - Yang Li
- Laboratory of Immunology and Nanomedicine, Laboratory of Inflammation and Vaccines, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Guangdong 518055, Shenzhen, China
| | - Zufu Lu
- Tissue Engineering & Biomaterials Research Unit, School of Biomedical Engineering, The University of Sydney, Sydney 2006, NSW, Australia
| | - Fei Wang
- Department of Spine Surgery, Shenzhen University General Hospital, Shenzhen 518055, China
| | - Guocheng Wang
- Research Center for Human Tissues & Organs Degeneration, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Guangdong 518055, Shenzhen, China
| |
Collapse
|
10
|
Zhang QY, Tan J, Huang K, Nie R, Feng ZY, Zou CY, Li QJ, Chen J, Sheng N, Qin BQ, Gu ZP, Liu LM, Xie HQ. Polyphenolic-modified cellulose acetate membrane for bone regeneration through immunomodulation. Carbohydr Polym 2023; 305:120546. [PMID: 36737196 DOI: 10.1016/j.carbpol.2023.120546] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Revised: 11/27/2022] [Accepted: 01/02/2023] [Indexed: 01/07/2023]
Abstract
To enhance the bioactivity of cellulosic derivatives has become an important strategy to promote their value for clinical applications. Herein, protocatechualdehyde (PCA), a polyphenolic molecule, was used to modify a cellulose acetate (CA) membrane by combining with metal ions to confer an immunomodulatory activity. The PCA-modified CA membrane has shown a significant radical scavenging activity, thereby suppressed the inflammatory response and created a favorable immune microenvironment for osteogenesis and mineralization. Moreover, addition of metal ions could further stimulate the osteogenic differentiation of stem cells and accelerate bone regeneration both in vitro and in vivo. This study may provide a strategy to promote the immunomodulatory activity of cellulose-based biomaterials for bone regeneration.
Collapse
Affiliation(s)
- Qing-Yi Zhang
- Laboratory of Stem Cell and Tissue Engineering, Orthopedic Research Institute, Med-X Center for Materials, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, PR China
| | - Jie Tan
- Department of Spine Surgery, Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen 518052, PR China
| | - Kai Huang
- Laboratory of Stem Cell and Tissue Engineering, Orthopedic Research Institute, Med-X Center for Materials, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, PR China
| | - Rong Nie
- Laboratory of Stem Cell and Tissue Engineering, Orthopedic Research Institute, Med-X Center for Materials, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, PR China
| | - Zi-Yuan Feng
- Laboratory of Stem Cell and Tissue Engineering, Orthopedic Research Institute, Med-X Center for Materials, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, PR China
| | - Chen-Yu Zou
- Laboratory of Stem Cell and Tissue Engineering, Orthopedic Research Institute, Med-X Center for Materials, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, PR China
| | - Qian-Jin Li
- Laboratory of Stem Cell and Tissue Engineering, Orthopedic Research Institute, Med-X Center for Materials, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, PR China
| | - Jun Chen
- Laboratory of Stem Cell and Tissue Engineering, Orthopedic Research Institute, Med-X Center for Materials, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, PR China
| | - Ning Sheng
- Laboratory of Stem Cell and Tissue Engineering, Orthopedic Research Institute, Med-X Center for Materials, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, PR China
| | - Bo-Quan Qin
- Laboratory of Stem Cell and Tissue Engineering, Orthopedic Research Institute, Med-X Center for Materials, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, PR China
| | - Zhi-Peng Gu
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, PR China
| | - Li-Min Liu
- Department of Orthopedics Surgery, West China Hospital, Sichuan University, Chengdu 610041, PR China
| | - Hui-Qi Xie
- Laboratory of Stem Cell and Tissue Engineering, Orthopedic Research Institute, Med-X Center for Materials, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, PR China.
| |
Collapse
|
11
|
Zhang Z, Ji C, Wang D, Wang M, Song D, Xu X, Zhang D. The burden of diabetes on the soft tissue seal surrounding the dental implants. Front Physiol 2023; 14:1136973. [PMID: 36875028 PMCID: PMC9978121 DOI: 10.3389/fphys.2023.1136973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Accepted: 02/08/2023] [Indexed: 02/18/2023] Open
Abstract
Soft tissue seal around implant prostheses is considered the primary barrier against adverse external stimuli and is a critical factor in maintaining dental implants' stability. Soft tissue seal is formed mainly by the adhesion of epithelial tissue and fibrous connective tissue to the transmembrane portion of the implant. Type 2 diabetes mellitus (T2DM) is one of the risk factors for peri-implant inflammation, and peri-implant disease may be triggered by dysfunction of the soft tissue barrier around dental implants. This is increasingly considered a promising target for disease treatment and management. However, many studies have demonstrated that pathogenic bacterial infestation, gingival immune inflammation, overactive matrix metalloproteinases (MMPs), impaired wound healing processes and excessive oxidative stress may trigger poor peri-implant soft tissue sealing, which may be more severe in the T2DM state. This article reviews the structure of peri-implant soft tissue seal, peri-implant disease and treatment, and moderating mechanisms of impaired soft tissue seal around implants due to T2DM to inform the development of treatment strategies for dental implants in patients with dental defects.
Collapse
Affiliation(s)
- Zhanwei Zhang
- Department of Implantology, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Shandong Provincial Clinical Research Center for Oral, Shandong University , Jinan, China
| | - Chonghao Ji
- Department of Implantology, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Shandong Provincial Clinical Research Center for Oral, Shandong University , Jinan, China
| | | | - Maoshan Wang
- Department of Implantology, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Shandong Provincial Clinical Research Center for Oral, Shandong University , Jinan, China
| | - Dawei Song
- School of Stomatology, Shandong First Medical University, Shandong Academy of Medical Sciences, Jinan, China
| | - Xin Xu
- Department of Implantology, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Shandong Provincial Clinical Research Center for Oral, Shandong University , Jinan, China
| | - Dongjiao Zhang
- Department of Implantology, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Shandong Provincial Clinical Research Center for Oral, Shandong University , Jinan, China
| |
Collapse
|
12
|
Jiang TM. Unveiling the Time Course Mechanism of Bone Fracture Healing by Transcriptional Profiles. Comb Chem High Throughput Screen 2023; 26:149-162. [PMID: 35418283 DOI: 10.2174/1386207325666220412134311] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 02/03/2022] [Accepted: 02/14/2022] [Indexed: 11/22/2022]
Abstract
BACKGROUND Bone fracture healing is a time-consuming and high-priority orthopedic problem worldwide. OBJECTIVE Discovering the potential mechanism of bone healing at a time course and transcriptional level may better help manage bone fracture. METHODS In this study, we analyze a time-course bone fracture healing transcriptional dataset in a rat model (GSE592, GSE594, and GSE1371) of Gene Expression Omnibus (GEO). RNA was obtained from female Sprague-Dawley rats with a femoral fracture at the initial time (day 3) as well as early (week 1), middle (week 2), and late (week 4) time periods, with nonfracture rats used as control. Gene Ontology (GO) functional analysis and pathway examinations were performed for further measurements of GSEA and hub genes. RESULTS Results indicated that the four stages of bone fracture healing at the initial, early, middle, and late time periods represent the phases of hematoma formation, callus formation, callus molding, and mature lamellar bone formation, respectively. Extracellular organization was positively employed throughout the four stages. At the hematoma formation phase, the muscle contraction process was downregulated. Antibacterial peptide pathway was downregulated at all phases. The upregulation of Fn1 (initial, early, middle, and late time periods), Col3a1 (initial, early, and middle time periods), Col11a1 (initial and early time periods), Mmp9 (middle and late time periods), Mmp13 (early, middle, and late time periods) and the downregulation of RatNP-3b (initial, early, middle, and late time periods) were possible symbols for bone fracture healing and may be used as therapeutic targets. CONCLUSION These findings suggest some new potential pathways and genes in the process of bone fracture healing and further provide insights that can be used in targeted molecular therapy for bone fracture healing.
Collapse
Affiliation(s)
- Tong-Meng Jiang
- School of Materials Science and Engineering, Zhejiang University, Hangzhou, 310027, China
| |
Collapse
|
13
|
Heng BC, Bai Y, Li X, Lim LW, Li W, Ge Z, Zhang X, Deng X. Electroactive Biomaterials for Facilitating Bone Defect Repair under Pathological Conditions. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2204502. [PMID: 36453574 PMCID: PMC9839869 DOI: 10.1002/advs.202204502] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Revised: 10/24/2022] [Indexed: 06/02/2023]
Abstract
Bone degeneration associated with various diseases is increasing due to rapid aging, sedentary lifestyles, and unhealthy diets. Living bone tissue has bioelectric properties critical to bone remodeling, and bone degeneration under various pathological conditions results in significant changes to these bioelectric properties. There is growing interest in utilizing biomimetic electroactive biomaterials that recapitulate the natural electrophysiological microenvironment of healthy bone tissue to promote bone repair. This review first summarizes the etiology of degenerative bone conditions associated with various diseases such as type II diabetes, osteoporosis, periodontitis, osteoarthritis, rheumatoid arthritis, osteomyelitis, and metastatic osteolysis. Next, the diverse array of natural and synthetic electroactive biomaterials with therapeutic potential are discussed. Putative mechanistic pathways by which electroactive biomaterials can mitigate bone degeneration are critically examined, including the enhancement of osteogenesis and angiogenesis, suppression of inflammation and osteoclastogenesis, as well as their anti-bacterial effects. Finally, the limited research on utilization of electroactive biomaterials in the treatment of bone degeneration associated with the aforementioned diseases are examined. Previous studies have mostly focused on using electroactive biomaterials to treat bone traumatic injuries. It is hoped that this review will encourage more research efforts on the use of electroactive biomaterials for treating degenerative bone conditions.
Collapse
Affiliation(s)
- Boon Chin Heng
- Central LaboratoryPeking University School and Hospital of StomatologyBeijing100081P. R. China
- School of Medical and Life SciencesSunway UniversityDarul EhsanSelangor47500Malaysia
| | - Yunyang Bai
- Department of Geriatric DentistryPeking University School and Hospital of StomatologyBeijing100081P. R. China
| | - Xiaochan Li
- Department of Geriatric DentistryPeking University School and Hospital of StomatologyBeijing100081P. R. China
| | - Lee Wei Lim
- Neuromodulation LaboratorySchool of Biomedical SciencesLi Ka Shing Faculty of MedicineThe University of Hong KongPokfulamHong KongP. R. China
| | - Wang Li
- Department of Biomedical EngineeringPeking UniversityBeijing100871P. R. China
| | - Zigang Ge
- Department of Biomedical EngineeringPeking UniversityBeijing100871P. R. China
| | - Xuehui Zhang
- Department of Dental Materials & Dental Medical Devices Testing CenterPeking University School and Hospital of StomatologyBeijing100081P. R. China
- National Engineering Research Center of Oral Biomaterials and Digital Medical DevicesNMPA Key Laboratory for Dental MaterialsBeijing Laboratory of Biomedical Materials & Beijing Key Laboratory of Digital StomatologyPeking University School and Hospital of StomatologyBeijing100081P. R. China
| | - Xuliang Deng
- Department of Geriatric DentistryPeking University School and Hospital of StomatologyBeijing100081P. R. China
- Department of Dental Materials & Dental Medical Devices Testing CenterPeking University School and Hospital of StomatologyBeijing100081P. R. China
- National Engineering Research Center of Oral Biomaterials and Digital Medical DevicesNMPA Key Laboratory for Dental MaterialsBeijing Laboratory of Biomedical Materials & Beijing Key Laboratory of Digital StomatologyPeking University School and Hospital of StomatologyBeijing100081P. R. China
| |
Collapse
|
14
|
Saul D, Khosla S. Fracture Healing in the Setting of Endocrine Diseases, Aging, and Cellular Senescence. Endocr Rev 2022; 43:984-1002. [PMID: 35182420 PMCID: PMC9695115 DOI: 10.1210/endrev/bnac008] [Citation(s) in RCA: 42] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Indexed: 11/19/2022]
Abstract
More than 2.1 million age-related fractures occur in the United States annually, resulting in an immense socioeconomic burden. Importantly, the age-related deterioration of bone structure is associated with impaired bone healing. Fracture healing is a dynamic process which can be divided into four stages. While the initial hematoma generates an inflammatory environment in which mesenchymal stem cells and macrophages orchestrate the framework for repair, angiogenesis and cartilage formation mark the second healing period. In the central region, endochondral ossification favors soft callus development while next to the fractured bony ends, intramembranous ossification directly forms woven bone. The third stage is characterized by removal and calcification of the endochondral cartilage. Finally, the chronic remodeling phase concludes the healing process. Impaired fracture healing due to aging is related to detrimental changes at the cellular level. Macrophages, osteocytes, and chondrocytes express markers of senescence, leading to reduced self-renewal and proliferative capacity. A prolonged phase of "inflammaging" results in an extended remodeling phase, characterized by a senescent microenvironment and deteriorating healing capacity. Although there is evidence that in the setting of injury, at least in some tissues, senescent cells may play a beneficial role in facilitating tissue repair, recent data demonstrate that clearing senescent cells enhances fracture repair. In this review, we summarize the physiological as well as pathological processes during fracture healing in endocrine disease and aging in order to establish a broad understanding of the biomechanical as well as molecular mechanisms involved in bone repair.
Collapse
Affiliation(s)
- Dominik Saul
- Kogod Center on Aging and Division of Endocrinology, Mayo Clinic, Rochester, Minnesota 55905, USA.,Department of Trauma, Orthopedics and Reconstructive Surgery, Georg-August-University of Goettingen, 37073 Goettingen, Germany
| | - Sundeep Khosla
- Kogod Center on Aging and Division of Endocrinology, Mayo Clinic, Rochester, Minnesota 55905, USA
| |
Collapse
|
15
|
Kan T, He Z, Du J, Xu M, Cui J, Han X, Tong D, Li H, Yan M, Yu Z. Irisin promotes fracture healing by improving osteogenesis and angiogenesis. J Orthop Translat 2022; 37:37-45. [PMID: 36196152 PMCID: PMC9513699 DOI: 10.1016/j.jot.2022.07.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Revised: 06/27/2022] [Accepted: 07/15/2022] [Indexed: 11/08/2022] Open
Abstract
Background Osteogenesis and angiogenesis are important for bone fracture healing. Irisin is a muscle-derived monokine that is associated with bone formation. Methods To demonstrate the effect of irisin on bone fracture healing, closed mid-diaphyseal femur fractures were produced in 8-week-old C57BL/6 mice. Irisin was administrated intraperitoneally every other day after surgery, fracture healing was assessed by using X-rays. Bone morphometry of the fracture callus were assessed by using micro-computed tomography. Femurs of mice from each group were assessed by the three-point bending testing. Effect of irisin on osteogenic differentiation in mesenchymal stem cells in vitro was evaluated by quantitative real-time polymerase chain reaction (qRT-PCR), alkaline phosphatase staining and alizarin red staining. Angiogenesis of human umbilical vein endothelial cells (HUVECs) were evaluated by qRT-PCR, migration tests, and tube formation assays. Results Increased callus formation, mineralization and tougher fracture healing were observed in the irisin-treated group than in the control group, indicating the better fracture callus healing due to Irisin treatment. The vessel surface and vessel volume fraction of the callus also increased in the irisin-treated group. The expression of BMP2, CD31, and VEGF in callus were enhanced in the irisin-treated group. In mouse bone mesenchymal stem cells, irisin promoted ALP expression and mineralization, and increased the expression of osteogenic genes, including OSX, Runx2, OPG, ALP, OCN and BMP2. Irisin also promoted HUVEC migration and tube formation. Expression of angiogenic genes, including ANGPT1, ANGPT2, VEGFb, CD31, FGF2, and PDGFRB in HUVECs were increased by irisin. Conclusion All the results indicate irisin can promote fracture healing through osteogenesis and angiogenesis. These findings help in the understanding of muscle–bone interactions during fracture healing. The Translational Potential of this Article Irisin was one of the most important monokine secreted by skeletal muscle. Studies have found that irisin have anabolic effect one bone remodeling through affecting osteocyte and osteoblast. Based on our study, irisin could promote bone fracture healing by increasing bone mass and vascularization, which provide a potential usage of irisin to promote fracture healing and improve clinical outcomes.
Collapse
|
16
|
Behl T, Wadhwa M, Sehgal A, Singh S, Sharma N, Bhatia S, Al-Harrasi A, Aleya L, Bungau S. Mechanistic insights into the role of FOXO in diabetic retinopathy. Am J Transl Res 2022; 14:3584-3602. [PMID: 35836845 PMCID: PMC9274583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Accepted: 04/28/2022] [Indexed: 06/15/2023]
Abstract
Diabetes mellitus (DM), a metabolic disorder characterized by insulin-deficiency or insulin-resistant conditions. The foremost microvascular complication of diabetes is diabetic retinopathy (DR). This is a multifaceted ailment mainly caused by the enduring adverse effects of hyperglycaemia. Inflammation, oxidative stress, and advanced glycation products (AGES) are part and parcel of DR pathogenesis. In regulating many cellular and biological processes, the family of fork-head transcription factors plays a key role. The current review highlights that FOXO is a requisite regulator of pathways intricate in diabetic retinopathy on account of its effect on microvascular cells inflammatory and apoptotic gene expression, and FOXO also has the foremost province in regulating cell cycle, proliferation, apoptosis, and metabolism. Blockage of insulin turns into an exaggerated level of glucose in the bloodstream and can upshot into the exaggerated triggering of FOXO1, which can ultimately uplift the production of several factors of apoptosis and inflammation, such as TNF-α, NF-kB, and various others, as well as reactive oxygen species, which can also come up with diabetic retinopathy. The current review also focuses on various therapies which can be used in the future, like SIRT1 signalling, resveratrol, retinal VEGF, etc., which can be used to suppress FOXO over activation and can prevent the progression of diabetic complications viz. diabetic retinopathy.
Collapse
Affiliation(s)
- Tapan Behl
- Chitkara College of Pharmacy, Chitkara UniversityPunjab 140401, India
| | - Muskan Wadhwa
- Chitkara College of Pharmacy, Chitkara UniversityPunjab 140401, India
| | - Aayush Sehgal
- Chitkara College of Pharmacy, Chitkara UniversityPunjab 140401, India
| | - Sukhbir Singh
- Chitkara College of Pharmacy, Chitkara UniversityPunjab 140401, India
| | - Neelam Sharma
- Chitkara College of Pharmacy, Chitkara UniversityPunjab 140401, India
| | - Saurabh Bhatia
- Natural & Medical Sciences Research Centre, University of NizwaNizwa 342001, Oman
- School of Health Science, University of Petroleum and Energy StudiesDehradun-248007, Uttarakhand, India
| | - Ahmed Al-Harrasi
- Natural & Medical Sciences Research Centre, University of NizwaNizwa 342001, Oman
| | - Lotfi Aleya
- Chrono-Environment Laboratory, UMR CNRS 6249, Bourgogne Franche-Comté UniversityFrance
| | - Simona Bungau
- Department of Pharmacy, Faculty of Medicine and Pharmacy, University of OradeaOradea 410028, Romania
| |
Collapse
|
17
|
Abdel-Aziz AM, Ibrahim YF, Ahmed RF, Mohamed ASM, Welson NN, Abdelzaher WY. Potential role of carvedilol in intestinal toxicity through NF-κB/iNOS/COX-2/TNF-α inflammatory signaling pathway in rats. Immunopharmacol Immunotoxicol 2022; 44:613-620. [PMID: 35506611 DOI: 10.1080/08923973.2022.2072327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
BACKGROUND The increased use of indomethacin (IND) is associated with gastrointestinal injury. This research aims to investigate the effects of a beta-blocker, carvedilol (CAR) on a rat model of IND-induced acute intestinal damage and clarify the probable underlying protective mechanisms. MATERIALS AND METHODS Twenty-four male Wistar rats were divided into four groups. Control group: given vehicles; CAR-treated group: given 10 mg/kg/day CAR PO daily by gastric gavage for 10 consecutive days; IND-treated group: given a single Sc dose of 10 mg/kg IND at the end of the ninth day of the experiment; combined CAR/IND-treated group: given both IND and CAR. RESULTS In the rats that received IND, severe intestinal histopathological changes together with oxidative and nitrosative intestinal stress were present biochemically and immunohistochemically. Obvious inflammatory and tissue damage were represented by the significant intestinal increases in TNF-α, COX-2, and caspase-3 together with the elevated expression of VCAM-1 adhesion molecules. Intestinal gene expression of NF-kB and COX-2 was also increased. Pretreatment with CAR significantly reversed the IND-induced intestinal toxic manifestations. CONCLUSION CAR has beneficial intestinal protective effects. Its ameliorative action is conferred through its antioxidant, antinitrosative, anti-inflammatory, and antiapoptotic properties.
Collapse
Affiliation(s)
| | - Yasmine F Ibrahim
- Department of Pharmacology, Faculty of Medicine, Minia University, Minia, Egypt
| | - Rasha Fouad Ahmed
- Department of Medical Biochemistry, Faculty of Medicine, Minia University, Minia, Egypt
| | | | - Nermeen N Welson
- Department of Forensic Medicine and Clinical Toxicology, Faculty of Medicine, Beni-Suef University, Beni-Suef, Egypt
| | | |
Collapse
|
18
|
Zhang Z, Deng M, Hao M, Tang J. Stem Cell Therapy in Chronic Periodontitis: Host Limitations and Strategies. FRONTIERS IN DENTAL MEDICINE 2022. [DOI: 10.3389/fdmed.2021.833033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The treatment of chronic periodontitis is undergoing a transition from simple plaque removal and replacement with substitute materials to regenerative therapy, in which stem cells play an important role. Although stem cell-based periodontal reconstruction has been widely explored, few clinical regeneration studies have been reported. The inflammatory lesions under the impact of host factors such as local microbial–host responses, may impede the regenerative properties of stem cells and destroy their living microenvironment. Furthermore, systemic diseases, in particular diabetes mellitus, synergistically shape the disordered host-bacterial responses and exacerbate the dysfunction of resident periodontal ligament stem cells (PDLSCs), which ultimately restrain the capacity of mesenchymal stromal cells (MSCs) to repair the damaged periodontal tissue. Accordingly, precise regulation of an instructive niche has become a promising approach to facilitate stem cell-based therapeutics for ameliorating periodontitis and for periodontal tissue regeneration. This review describes host limitations and coping strategies that influence resident or transplanted stem cell-mediated periodontal regeneration, such as the management of local microbial–host responses and rejuvenation of endogenous PDLSCs. More importantly, we recommend that active treatments for systemic diseases would also assist in recovering the limited stem cell function on the basis of amelioration of the inflammatory periodontal microenvironment.
Collapse
|
19
|
Yang Y, Xu Q, Li T, Shao S. Trimetazidine ameliorates hindlimb ischaemic damage in type 2 diabetic mice. Ann Med 2021; 53:1099-1107. [PMID: 34259103 PMCID: PMC8281072 DOI: 10.1080/07853890.2021.1925147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Accepted: 04/27/2021] [Indexed: 11/24/2022] Open
Abstract
BACKGROUND Ischaemia caused by lower extremity artery stenosis is the main cause of peripheral artery disease (PAD) in patients with diabetes. Trimetazidine (TMZ) has traditionally been used as an anti-ischaemic drug for coronary artery disease. The effect of TMZ on PAD in a diabetic animal model and the underlying molecular mechanisms remain unclear. METHODS The db/db mice were challenged with femoral artery ligation (FAL), followed by TMZ treatment for 2 weeks. Scores on hindlimb ischaemia and function were evaluated. Histological and capillary density analyses of gastrocnemius were performed. The expression of vascular endothelial growth factor (VEGF) and myogenic regulators was also confirmed by Western blotting. We also detected serum intercellular adhesion molecule 1 (ICAM-1) level through ELISA. RESULTS Diabetic mice exhibited limb ulceration and motor dysfunction after FAL while TMZ-treated db/db mice exhibited milder ischaemic impairment. Furthermore, decreased capillary density in the gastrocnemius muscles of ischaemic hindlimb and reduced expressions of VEGF, myogenic markers, and serum ICAM-1 could be partially reversed by TMZ treatment. CONCLUSION TMZ may alleviate hindlimb ischaemic damage in db/db mice, at least partly, through enhancing angiogenesis and promoting myogenesis in ischaemia region.Key messagesTMZ intervention could alleviate hindlimb ischaemic damage in db/db mice.TMZ intervention could enhance angiogenesis and stimulate myogenesis in ischaemia region.
Collapse
Affiliation(s)
- Yan Yang
- Division of Endocrinology, Tongji Hospital, Huazhong University of Science & Technology, Wuhan, PR China
- Branch of national clinical research center for metabolic diseases, Hubei, PR China
| | - Qinqin Xu
- Division of Endocrinology, Tongji Hospital, Huazhong University of Science & Technology, Wuhan, PR China
- Branch of national clinical research center for metabolic diseases, Hubei, PR China
| | - Tao Li
- Division of Ophthalmology, Tongji Hospital, Huazhong University of Science & Technology, Wuhan, PR China
| | - Shiying Shao
- Division of Endocrinology, Tongji Hospital, Huazhong University of Science & Technology, Wuhan, PR China
- Branch of national clinical research center for metabolic diseases, Hubei, PR China
| |
Collapse
|
20
|
Chinipardaz Z, Liu M, Graves D, Yang S. Diabetes impairs fracture healing through disruption of cilia formation in osteoblasts. Bone 2021; 153:116176. [PMID: 34508881 PMCID: PMC9160738 DOI: 10.1016/j.bone.2021.116176] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 08/22/2021] [Accepted: 09/05/2021] [Indexed: 02/06/2023]
Abstract
Diabetes-associated fracture risk and impaired fracture healing represents a serious health threat. It is well known that type 1 diabetes mellitus (T1DM) impairs fracture healing due to its effect on osteoblasts and their progenitor cells. Previous studies have showed that primary cilia and intraflagellar transport protein 80 (IFT80) are critical for bone formation. However, whether TIDM impairs fracture healing due to influencing ciliary gene expression and cilia formation is unknown. Here, we investigated the effect of T1DM on primary cilia in a streptozotocin induced diabetes mouse model and examined the impact of cilia on fracture healing in osteoblasts by deletion of IFT80 in osteoblast linage using osterix (OSX)-cre (OSXcretTAIFT80f/f). The results showed that diabetes inhibited ciliary gene expression and primary cilia formation to an extent that was similar to normoglycemic mice with IFT80 deletion. Moreover, diabetic mice and normoglycemic mice with cilia loss in osteoblasts (OSXcretTAIFT80f/f) both exhibited delayed fracture healing with significantly reduced bone density and mechanical strength as well as with reduced expression of osteoblast markers, decreased angiogenesis and proliferation of bone lining cells at the fracture sites. In vitro studies showed that advanced glycation end products (AGEs) downregulated IFT80 expression in osteoblast progenitors. Moreover, AGEs and IFT80 deletion significantly reduced cilia number and length which inhibited differentiation of primary osteoblast precursors. Thus, this study for the first time report that primary cilia are essential for bone regeneration during fracture healing and loss of cilia caused by diabetes in osteoblasts resulted in defective diabetic fracture healing.
Collapse
Affiliation(s)
- Zahra Chinipardaz
- Department of Basic and Translation Sciences, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Periodontics, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Min Liu
- Department of Periodontics, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Dana Graves
- Department of Periodontics, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| | - Shuying Yang
- Department of Basic and Translation Sciences, University of Pennsylvania, Philadelphia, PA 19104, USA; Center for Innovation & Precision Dentistry, School of Dental Medicine, School of Engineering and Applied Sciences, University of Pennsylvania, PA 19104, USA; The Penn Center for Musculoskeletal Disorders, School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
21
|
Ko KI, Sculean A, Graves DT. Diabetic wound healing in soft and hard oral tissues. Transl Res 2021; 236:72-86. [PMID: 33992825 PMCID: PMC8554709 DOI: 10.1016/j.trsl.2021.05.001] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 05/06/2021] [Accepted: 05/06/2021] [Indexed: 12/17/2022]
Abstract
There is significant interest in understanding the cellular mechanisms responsible for expedited healing response in various oral tissues and how they are impacted by systemic diseases. Depending upon the types of oral tissue, wound healing may occur by predominantly re-eptihelialization, by re-epithelialization with substantial new connective tissue formation, or by a a combination of both plus new bone formation. As a result, the cells involved differ and are impacted by systemic diaseses in various ways. Diabetes mellitus is a prevalent metabolic disorder that impairs barrier function and healing responses throughout the human body. In the oral cavity, diabetes is a known risk factor for exacerbated periodontal disease and delayed wound healing, which includes both soft and hard tissue components. Here, we review the mechanisms of diabetic oral wound healing, particularly on impaired keratinocyte proliferation and migration, altered level of inflammation, and reduced formation of new connective tissue and bone. In particular, diabetes inhibits the expression of mitogenic growth factors whereas that of pro-inflammatory cytokines is elevated through epigenetic mechanisms. Moreover, hyperglycemia and oxidative stress induced by diabetes prevents the expansion of mesengenic cells that are involved in both soft and hard tissue oral wounds. A better understanding of how diabetes influences the healing processes is crucial for the prevention and treatment of diabetes-associated oral complications.
Collapse
Affiliation(s)
- Kang I Ko
- Department of Periodontics, School of Dental Medicine, University of Pennsylvania, Philadelphia, 19104
| | - Anton Sculean
- Department of Periodontology, School of Dental Medicine, University of Bern, Freiburgstrasse 7, CH-3010, Bern, Switzerland
| | - Dana T Graves
- Department of Periodontics, School of Dental Medicine, University of Pennsylvania, Philadelphia, 19104.
| |
Collapse
|
22
|
Newman H, Shih YV, Varghese S. Resolution of inflammation in bone regeneration: From understandings to therapeutic applications. Biomaterials 2021; 277:121114. [PMID: 34488119 DOI: 10.1016/j.biomaterials.2021.121114] [Citation(s) in RCA: 107] [Impact Index Per Article: 35.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 07/10/2021] [Accepted: 08/28/2021] [Indexed: 12/12/2022]
Abstract
Impaired bone healing occurs in 5-10% of cases following injury, leading to a significant economic and clinical impact. While an inflammatory response upon injury is necessary to facilitate healing, its resolution is critical for bone tissue repair as elevated acute or chronic inflammation is associated with impaired healing in patients and animal models. This process is governed by important crosstalk between immune cells through mediators that contribute to resolution of inflammation in the local healing environment. Approaches modulating the initial inflammatory phase followed by its resolution leads to a pro-regenerative environment for bone regeneration. In this review, we discuss the role of inflammation in bone repair, the negative impact of dysregulated inflammation on bone tissue regeneration, and how timely resolution of inflammation is necessary to achieve normal healing. We will discuss applications of biomaterials to treat large bone defects with a specific focus on resolution of inflammation to modulate the immune environment following bone injury, and their observed functional benefits. We conclude the review by discussing future strategies that could lead to the realization of anti-inflammatory therapeutics for bone tissue repair.
Collapse
Affiliation(s)
- Hunter Newman
- Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC, 27710, USA
| | - Yuru Vernon Shih
- Department of Orthopaedic Surgery, Duke University School of Medicine, Durham, NC, 27710, USA
| | - Shyni Varghese
- Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC, 27710, USA; Department of Orthopaedic Surgery, Duke University School of Medicine, Durham, NC, 27710, USA; Department of Biomedical Engineering, Duke University, Durham, NC, 27710, USA.
| |
Collapse
|
23
|
Chow SKH, Cui C, Cheng KYK, Chim YN, Wang J, Wong CHW, Ng KW, Wong RMY, Cheung WH. Acute Inflammatory Response in Osteoporotic Fracture Healing Augmented with Mechanical Stimulation is Regulated In Vivo through the p38-MAPK Pathway. Int J Mol Sci 2021; 22:ijms22168720. [PMID: 34445423 PMCID: PMC8395718 DOI: 10.3390/ijms22168720] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 08/11/2021] [Accepted: 08/12/2021] [Indexed: 01/01/2023] Open
Abstract
Low-magnitude high-frequency vibration (LMHFV) has previously been reported to modulate the acute inflammatory response of ovariectomy-induced osteoporotic fracture healing. However, the underlying mechanisms are not clear. In the present study, we investigated the effect of LMHFV on the inflammatory response and the role of the p38 MAPK mechanical signaling pathway in macrophages during the healing process. A closed femoral fracture SD rat model was used. In vivo results showed that LMHFV enhanced activation of the p38 MAPK pathway at the fracture site. The acute inflammatory response, expression of inflammatory cytokines, and callus formation were suppressed in vivo by p38 MAPK inhibition. However, LMHFV did not show direct in vitro enhancement effects on the polarization of RAW264.7 macrophage from the M1 to M2 phenotype, but instead promoted macrophage enlargement and transformation to dendritic monocytes. The present study demonstrated that p38 MAPK modulated the enhancement effects of mechanical stimulation in vivo only. LMHFV may not have exerted its enhancement effects directly on macrophage, but the exact mechanism may have taken a different pathway that requires further investigation in the various subsets of immune cells.
Collapse
Affiliation(s)
- Simon Kwoon Ho Chow
- Correspondence: (S.K.H.C.); (W.H.C.); Tel.: +852-3505-1559 (S.K.H.C.); +852-3505-2715 (W.H.C.)
| | | | | | | | | | | | | | | | - Wing Hoi Cheung
- Correspondence: (S.K.H.C.); (W.H.C.); Tel.: +852-3505-1559 (S.K.H.C.); +852-3505-2715 (W.H.C.)
| |
Collapse
|
24
|
Li XQ, Huang TY. Notoginsenoside R1 alleviates high glucose-induced inflammation and oxidative stress in HUVECs via upregulating miR-147a. Kaohsiung J Med Sci 2021; 37:1101-1112. [PMID: 34369659 DOI: 10.1002/kjm2.12433] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 06/06/2021] [Accepted: 06/24/2021] [Indexed: 01/22/2023] Open
Abstract
Endothelial dysfunction in atherosclerotic cardiovascular diseases has become one of the main characteristics in patients with diabetes mellitus, which is usually caused by abnormal inflammation and oxidative stress response. Presently, we focused on the role of Notoginsenoside R1 (NR1), a major component isolated from Panax notoginseng, in endothelial dysfunction caused by high glucose (HG). Human umbilical vein endothelial cells (HUVECs) were treated with HG and then dealt with NR1. Cell counting kit-8 assay and 5-bromo-2'-dexoyuridine assay were conducted to examine cell proliferation and viability. Flow cytometry was used to measure apoptosis. The angiogenesis of HUVECs was determined by tube formation assay. Moreover, the expressions of miR-147a, inflammatory cytokines (TNF-α, IL-6, and IL-10) and oxidative stress markers malondialdehyde, superoxide dismutase, and glutathione peroxidase were measured. The protein levels of MyD88/TRAF6/NF-κB axis, Bax, Bcl2, and Caspase3 were detected by Western blot. Furthermore, gain and loss of functional assays of miR-147a were performed to verify the role of miR-147a in NR1-mediated effects. Our data confirmed that NR1 (at 10-40 μM) reduces HG-induced HUVECs proliferation and viability inhibition, mitigates apoptosis, and enhances tube formation ability. Meanwhile, NR1 inhibited oxidative stress and inflammatory response and blocked the activation of the MyD88/TRAF6/NF-κB pathway induced by HG. In addition, NR1 promoted the expression of miR-147a, which targeted MyD88. Overexpression of miR-147a markedly inactivated MyD88/TRAF6/NF-κB pathway, while the miR-147a inhibitors reversed NR1-mediated protective effect in HG-induced HUVECs through activating MyD88/TRAF6/NF-κB pathway. In conclusion, NR1 relieves HG-induced endothelial cell injury by downregulating the MyD88/TRAF6/NF-κB pathway via upregulating miR-147a.
Collapse
Affiliation(s)
- Xiao-Qing Li
- Department of Chinese Medicine Surgery, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, China
| | - Tian-Yi Huang
- Department of Peripheral Vascular, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
25
|
Hu P, McKenzie JA, Buettmann EG, Migotsky N, Gardner MJ, Silva MJ. Type 1 diabetic Akita mice have low bone mass and impaired fracture healing. Bone 2021; 147:115906. [PMID: 33662611 PMCID: PMC8546917 DOI: 10.1016/j.bone.2021.115906] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 02/15/2021] [Accepted: 02/26/2021] [Indexed: 12/16/2022]
Abstract
Type 1 diabetes (T1DM) impairs bone formation and fracture healing in humans. Akita mice carry a mutation in one allele of the insulin-2 (Ins2) gene, which leads to pancreatic beta cell dysfunction and hyperglycemia by 5-6 weeks age. We hypothesized that T1DM in Akita mice is associated with decreased bone mass, weaker bones, and impaired fracture healing. Ins2 ± (Akita) and wildtype (WT) males were subjected to femur fracture at 18-weeks age and healing assessed 3-21 days post-fracture. Non-fractured left femurs were assessed for morphology (microCT) and strength (bending or torsion) at 19-21 weeks age. Fractured right femurs were assessed for callus mechanics (torsion), morphology and composition (microCT and histology) and gene expression (qPCR). Both Akita and WT mice gained weight from 3 to 18 weeks age, but Akita mice weighed less starting at 5 weeks (-5.2%, p < 0.05). At 18-20 weeks age Akita mice had reduced serum osteocalcin (-30%), cortical bone area (-16%), and thickness (-17%) compared to WT, as well as reduced cancellous BV/TV (-39%), trabecular thickness (-23%) and vBMD (-31%). Mechanical testing of non-fractured femurs showed decreased structural (stiffness, ultimate load) and material (ultimate stress) properties of Akita bones. At 14 and 21 days post fracture Akita mice had a significantly smaller callus than WT mice (~30%), with less cartilage and bone area. Assessment of torsional strength showed a weaker callus in Akita mice with lower stiffness (-42%), maximum torque (-44%) and work to fracture (-44%). In summary, cortical and cancellous bone mass were reduced in Akita mice, with lower bone mechanical properties. Fracture healing in Akita mice was impaired by T1DM, with a smaller, weaker fracture callus due to decreased cartilage and bone formation. In conclusion, the Akita mouse mimics some of the skeletal features of T1DM in humans, including osteopenia and impaired fracture healing, and may be useful to test interventions.
Collapse
Affiliation(s)
- Pei Hu
- State Key Laboratory of Oral Diseases, West China School of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China; Department of Orthopaedic Surgery and Musculoskeletal Research Center, Washington University School of Medicine, Saint Louis, MO, United States
| | - Jennifer A McKenzie
- Department of Orthopaedic Surgery and Musculoskeletal Research Center, Washington University School of Medicine, Saint Louis, MO, United States
| | - Evan G Buettmann
- Department of Orthopaedic Surgery and Musculoskeletal Research Center, Washington University School of Medicine, Saint Louis, MO, United States; Department of Biomedical Engineering, Washington University, Saint Louis, MO, United States
| | - Nicole Migotsky
- Department of Orthopaedic Surgery and Musculoskeletal Research Center, Washington University School of Medicine, Saint Louis, MO, United States; Department of Biomedical Engineering, Washington University, Saint Louis, MO, United States
| | - Michael J Gardner
- Department of Orthopaedic Surgery, Stanford University School of Medicine, Stanford, CA, United States
| | - Matthew J Silva
- Department of Orthopaedic Surgery and Musculoskeletal Research Center, Washington University School of Medicine, Saint Louis, MO, United States; Department of Biomedical Engineering, Washington University, Saint Louis, MO, United States.
| |
Collapse
|
26
|
El-Jawhari JJ, Ganguly P, Jones E, Giannoudis PV. Bone Marrow Multipotent Mesenchymal Stromal Cells as Autologous Therapy for Osteonecrosis: Effects of Age and Underlying Causes. Bioengineering (Basel) 2021; 8:69. [PMID: 34067727 PMCID: PMC8156020 DOI: 10.3390/bioengineering8050069] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2021] [Revised: 04/29/2021] [Accepted: 05/13/2021] [Indexed: 12/21/2022] Open
Abstract
Bone marrow (BM) is a reliable source of multipotent mesenchymal stromal cells (MSCs), which have been successfully used for treating osteonecrosis. Considering the functional advantages of BM-MSCs as bone and cartilage reparatory cells and supporting angiogenesis, several donor-related factors are also essential to consider when autologous BM-MSCs are used for such regenerative therapies. Aging is one of several factors contributing to the donor-related variability and found to be associated with a reduction of BM-MSC numbers. However, even within the same age group, other factors affecting MSC quantity and function remain incompletely understood. For patients with osteonecrosis, several underlying factors have been linked to the decrease of the proliferation of BM-MSCs as well as the impairment of their differentiation, migration, angiogenesis-support and immunoregulatory functions. This review discusses the quality and quantity of BM-MSCs in relation to the etiological conditions of osteonecrosis such as sickle cell disease, Gaucher disease, alcohol, corticosteroids, Systemic Lupus Erythematosus, diabetes, chronic renal disease and chemotherapy. A clear understanding of the regenerative potential of BM-MSCs is essential to optimize the cellular therapy of osteonecrosis and other bone damage conditions.
Collapse
Affiliation(s)
- Jehan J El-Jawhari
- Department of Biosciences, School of Science and Technology, Nottingham Trent University, Nottingham NG11 8NS, UK
- Clinical Pathology Department, Mansoura University, Mansoura 35516, Egypt
| | - Payal Ganguly
- Leeds Institute of Rheumatic and Musculoskeletal Medicine, School of Medicine, University of Leeds, Leeds LS2 9JT, UK; (P.G.); (E.J.); (P.V.G.)
| | - Elena Jones
- Leeds Institute of Rheumatic and Musculoskeletal Medicine, School of Medicine, University of Leeds, Leeds LS2 9JT, UK; (P.G.); (E.J.); (P.V.G.)
| | - Peter V Giannoudis
- Leeds Institute of Rheumatic and Musculoskeletal Medicine, School of Medicine, University of Leeds, Leeds LS2 9JT, UK; (P.G.); (E.J.); (P.V.G.)
- Academic Department of Trauma and Orthopedic, School of Medicine, University of Leeds, Leeds LS2 9JT, UK
| |
Collapse
|
27
|
Jeon HH, Yu Q, Witek L, Lu Y, Zhang T, Stepanchenko O, Son VJ, Spencer E, Oshilaja T, Shin MK, Alawi F, Coelho PG, Graves DT. Clinical application of a FOXO1 inhibitor improves connective tissue healing in a diabetic minipig model. Am J Transl Res 2021; 13:781-791. [PMID: 33594326 PMCID: PMC7868841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Accepted: 12/01/2020] [Indexed: 06/12/2023]
Abstract
The forkhead box O1 (FOXO1) transcription factor plays a key role in wound healing process. Recently it has been reported that lineage-specific genetic ablation of FOXO1 significantly improves diabetic wound healing in a mouse model. To investigate the clinical usefulness of these findings, translational preclinical studies with a large animal model are needed. We report for the first time that the local application of a FOXO1 inhibitor (AS1842856) significantly improves connective tissue healing in a preclinical T2DM minipig model, reflected by increased collagen matrix formation, increased myofibroblast numbers, improved angiogenesis, and a shift in cell populations from pro-inflammatory (IL-1β+, TNF-α+ and iNOS+) to pro-healing (CD163+). Our results set up the basis for the clinical application of a FOXO1 antagonist in early diabetic wounds where there is impaired connective tissue healing.
Collapse
Affiliation(s)
- Hyeran H Jeon
- Department of Orthodontics, School of Dental Medicine, University of PennsylvaniaPhiladelphia, PA, USA
- Department of Periodontics, School of Dental Medicine, University of PennsylvaniaPhiladelphia, PA, USA
| | - Quan Yu
- Department of Periodontics, School of Dental Medicine, University of PennsylvaniaPhiladelphia, PA, USA
- Department of Orthodontics, Ninth People’s Hospital, School of Medicine, Shanghai Jiao Tong UniversityShanghai, China
| | - Lukasz Witek
- Biomaterials and Biomimetics, College of Dentistry, New York UniversityNew York, NY, USA
| | - Yongjian Lu
- Department of Periodontics, School of Dental Medicine, University of PennsylvaniaPhiladelphia, PA, USA
- Department of Stomatology, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong UniversityShanghai, China
| | - Tianshou Zhang
- Department of Periodontics, School of Dental Medicine, University of PennsylvaniaPhiladelphia, PA, USA
- Department of Implantology, School and Hospital of Stomatology, Jilin UniversityChangchun, China
| | - Olga Stepanchenko
- Department of Periodontics, School of Dental Medicine, University of PennsylvaniaPhiladelphia, PA, USA
| | - Victoria J Son
- Department of Periodontics, School of Dental Medicine, University of PennsylvaniaPhiladelphia, PA, USA
| | - Evelyn Spencer
- Department of Periodontics, School of Dental Medicine, University of PennsylvaniaPhiladelphia, PA, USA
| | - Temitope Oshilaja
- Department of Periodontics, School of Dental Medicine, University of PennsylvaniaPhiladelphia, PA, USA
| | - Min K Shin
- Department of Periodontics, School of Dental Medicine, University of PennsylvaniaPhiladelphia, PA, USA
| | - Faizan Alawi
- Department of Basic & Translational Sciences, School of Dental Medicine, University of PennsylvaniaPhiladelphia, PA, USA
| | - Paulo G Coelho
- Biomaterials and Biomimetics, College of Dentistry, New York UniversityNew York, NY, USA
- Hansjörg Wyss Department of Plastic Surgery, Langone Medical Center, New York UniversityNew York, NY, USA
| | - Dana T Graves
- Department of Periodontics, School of Dental Medicine, University of PennsylvaniaPhiladelphia, PA, USA
| |
Collapse
|
28
|
Ding Y, Wei J, Hettinghouse A, Li G, Li X, Einhorn TA, Liu CJ. Progranulin promotes bone fracture healing via TNFR pathways in mice with type 2 diabetes mellitus. Ann N Y Acad Sci 2021; 1490:77-89. [PMID: 33543485 DOI: 10.1111/nyas.14568] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 01/08/2021] [Accepted: 01/15/2021] [Indexed: 12/12/2022]
Abstract
Type 2 diabetes mellitus (T2DM) significantly increases bone fragility and fracture risk. Progranulin (PGRN) promotes bone fracture healing in both physiological and type 1 diabetic conditions. The present study aimed to investigate the role of PGRN in T2DM bone fracture healing. MKR mice (with an FVB/N genetic background) were used as the T2DM model. Drill-hole and Bonnarens and Einhorn models were used to investigate the role of PGRN in T2DM fracture healing in vivo. Primary bone marrow cells were isolated for molecular and signaling studies, and reverse transcription-polymerase chain reaction, immunohistochemical staining, and western blotting were performed to assess PGRN effects in vitro. PGRN mRNA and protein expression were upregulated in the T2DM model. Local administration of recombinant PGRN effectively promoted T2DM bone fracture healing in vivo. Additionally, PGRN could induce anabolic metabolism during endochondral ossification through the TNFR2-Akt and Erk1/2 pathways. Furthermore, PGRN showed anti-inflammatory activity in the T2DM bone regeneration process. These findings suggest that local administration of exogenous PGRN may be an alternative strategy to support bone regeneration in patients with T2DM. Additionally, PGRN might hold therapeutic potential for other TNFR-related metabolic disorders.
Collapse
Affiliation(s)
- Yuanjing Ding
- Department of Orthopaedic Surgery, New York University Medical Center, New York, New York.,Department of Orthopaedic Surgery, Jinan Central Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Jianlu Wei
- Department of Orthopaedic Surgery, New York University Medical Center, New York, New York.,Department of Orthopaedic Surgery, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Aubryanna Hettinghouse
- Department of Orthopaedic Surgery, New York University Medical Center, New York, New York
| | - Guangfei Li
- Department of Orthopaedic Surgery, New York University Medical Center, New York, New York
| | - Xin Li
- College of Dentistry, New York University, New York, New York
| | - Thomas A Einhorn
- Department of Orthopaedic Surgery, New York University Medical Center, New York, New York
| | - Chuan-Ju Liu
- Department of Orthopaedic Surgery, New York University Medical Center, New York, New York.,Department of Cell Biology, New York University School of Medicine, New York, New York
| |
Collapse
|
29
|
Liu JH, Yue T, Luo ZW, Cao J, Yan ZQ, Jin L, Wan TF, Shuai CJ, Wang ZG, Zhou Y, Xu R, Xie H. Akkermansia muciniphila promotes type H vessel formation and bone fracture healing by reducing gut permeability and inflammation. Dis Model Mech 2020; 13:dmm043620. [PMID: 33033107 PMCID: PMC7725610 DOI: 10.1242/dmm.043620] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Accepted: 09/19/2020] [Indexed: 12/16/2022] Open
Abstract
Improving revascularization is one of the major measures in fracture treatment. Moderate local inflammation triggers angiogenesis, whereas systemic inflammation hampers angiogenesis. Previous studies showed that Akkermansia muciniphila, a gut probiotic, ameliorates systemic inflammation by tightening the intestinal barrier. In this study, fractured mice intragastrically administrated with A. muciniphila were found to display better fracture healing than mice treated with vehicle. Notably, more preosteclasts positive for platelet-derived growth factor-BB (PDGF-BB) were induced by A. muciniphila at 2 weeks post fracture, coinciding with increased formation of type H vessels, a specific vessel subtype that couples angiogenesis and osteogenesis, and can be stimulated by PDGF-BB. Moreover, A. muciniphila treatment significantly reduced gut permeability and inflammation at the early stage. Dextran sulfate sodium (DSS) was used to disrupt the gut barrier to determine its role in fracture healing and whether A. muciniphila still can stimulate bone fracture healing. As expected, A. muciniphila evidently improved gut barrier, reduced inflammation and restored the impaired bone healing and angiogenesis in DSS-treated mice. Our results suggest that A. muciniphila reduces intestinal permeability and alleviates inflammation, which probably induces more PDGF-BB+ preosteoclasts and type H vessel formation in callus, thereby promoting fracture healing. This study provides the evidence for the involvement of type H vessels in fracture healing and suggests the potential of A. muciniphila as a promising strategy for bone healing.This article has an associated First Person interview with the first author of the paper.
Collapse
Affiliation(s)
- Jiang-Hua Liu
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
- Movement System Injury and Repair Research Center, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Tao Yue
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
- Movement System Injury and Repair Research Center, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Zhong-Wei Luo
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
- Movement System Injury and Repair Research Center, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Jia Cao
- Movement System Injury and Repair Research Center, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Zi-Qi Yan
- Movement System Injury and Repair Research Center, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
- Department of Stomatology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Ling Jin
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
- Movement System Injury and Repair Research Center, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Teng-Fei Wan
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
- Movement System Injury and Repair Research Center, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Ci-Jun Shuai
- State Key Laboratory of High Performance Complex Manufacturing, College of Mechanical and Electrical Engineering, Central South University, Changsha, Hunan 410008, China
| | - Zheng-Guang Wang
- Department of Orthopedics, The Third Xiangya Hospital, Central South University, Changsha, Hunan 410013, China
| | - Yong Zhou
- Department of Orthopedics, The Third Xiangya Hospital, Central South University, Changsha, Hunan 410013, China
| | - Ran Xu
- Department of Urology, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Hui Xie
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
- Movement System Injury and Repair Research Center, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
- Department of Sports Medicine, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
- Hunan Key Laboratory of Organ Injury, Aging and Regenerative Medicine, Changsha, Hunan 410008 China
- Hunan Key Laboratory of Bone Joint Degeneration and Injury, Changsha, Hunan 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| |
Collapse
|
30
|
Oda T, Niikura T, Fukui T, Oe K, Kuroiwa Y, Kumabe Y, Sawauchi K, Yoshikawa R, Mifune Y, Hayashi S, Matsumoto T, Matsushita T, Kawamoto T, Sakai Y, Akisue T, Kuroda R. Transcutaneous CO 2 application accelerates fracture repair in streptozotocin-induced type I diabetic rats. BMJ Open Diabetes Res Care 2020; 8:8/2/e001129. [PMID: 33323458 PMCID: PMC7745327 DOI: 10.1136/bmjdrc-2019-001129] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 10/29/2020] [Accepted: 11/11/2020] [Indexed: 12/13/2022] Open
Abstract
INTRODUCTION Diabetes mellitus (DM) negatively affects fracture repair by inhibiting endochondral ossification, chondrogenesis, callus formation, and angiogenesis. We previously reported that transcutaneous CO2 application accelerates fracture repair by promoting endochondral ossification and angiogenesis. The present study aimed to determine whether CO2 treatment would promote fracture repair in cases with type I DM. RESEARCH DESIGN AND METHODS A closed femoral shaft fracture was induced in female rats with streptozotocin-induced type I DM. CO2 treatment was performed five times a week for the CO2 group. Sham treatment, where CO2 was replaced with air, was performed for the control group. Radiographic, histologic, genetic, and biomechanical measurements were taken at several time points. RESULTS Radiographic assessment demonstrated that fracture repair was induced in the CO2 group. Histologically, accelerated endochondral ossification and capillary formation were observed in the CO2 group. Immunohistochemical assessment indicated that early postfracture proliferation of chondrocytes in callus was enhanced in the CO2 group. Genetic assessment results suggested that cartilage and bone formation, angiogenesis, and vasodilation were upregulated in the CO2 group. Biomechanical assessment revealed enhanced mechanical strength in the CO2 group. CONCLUSIONS Our findings suggest that CO2 treatment accelerates fracture repair in type I DM rats. CO2 treatment could be an effective strategy for delayed fracture repair due to DM.
Collapse
Affiliation(s)
- Takahiro Oda
- Orthopaedic Surgery, Kobe University Graduate School of Medicine School of Medicine, Kobe, Hyogo, Japan
| | - Takahiro Niikura
- Orthopaedic Surgery, Kobe University Graduate School of Medicine School of Medicine, Kobe, Hyogo, Japan
| | - Tomoaki Fukui
- Orthopaedic Surgery, Kobe University Graduate School of Medicine School of Medicine, Kobe, Hyogo, Japan
| | - Keisuke Oe
- Orthopaedic Surgery, Kobe University Graduate School of Medicine School of Medicine, Kobe, Hyogo, Japan
| | - Yu Kuroiwa
- Orthopaedic Surgery, Kobe University Graduate School of Medicine School of Medicine, Kobe, Hyogo, Japan
| | - Yohei Kumabe
- Orthopaedic Surgery, Kobe University Graduate School of Medicine School of Medicine, Kobe, Hyogo, Japan
| | - Kenichi Sawauchi
- Orthopaedic Surgery, Kobe University Graduate School of Medicine School of Medicine, Kobe, Hyogo, Japan
| | - Ryo Yoshikawa
- Orthopaedic Surgery, Kobe University Graduate School of Medicine School of Medicine, Kobe, Hyogo, Japan
| | - Yutaka Mifune
- Orthopaedic Surgery, Kobe University Graduate School of Medicine School of Medicine, Kobe, Hyogo, Japan
| | - Shinya Hayashi
- Orthopaedic Surgery, Kobe University Graduate School of Medicine School of Medicine, Kobe, Hyogo, Japan
| | - Tomoyuki Matsumoto
- Orthopaedic Surgery, Kobe University Graduate School of Medicine School of Medicine, Kobe, Hyogo, Japan
| | - Takehiko Matsushita
- Orthopaedic Surgery, Kobe University Graduate School of Medicine School of Medicine, Kobe, Hyogo, Japan
| | - Teruya Kawamoto
- Orthopaedic Surgery, Kobe University Graduate School of Medicine School of Medicine, Kobe, Hyogo, Japan
| | - Yoshitada Sakai
- Division of Rehabilitation Medicine, Kobe University Graduate School of Medicine School of Medicine, Kobe, Hyogo, Japan
| | - Toshihiro Akisue
- Department of Rehabilitation Science, Kobe University Faculty of Health Sciences and Graduate School of Medicine Faculty of Health Sciences, Kobe, Hyogo, Japan
| | - Ryosuke Kuroda
- Orthopaedic Surgery, Kobe University Graduate School of Medicine School of Medicine, Kobe, Hyogo, Japan
| |
Collapse
|
31
|
Li PH, Zhang R, Cheng LQ, Liu JJ, Chen HZ. Metabolic regulation of immune cells in proinflammatory microenvironments and diseases during ageing. Ageing Res Rev 2020; 64:101165. [PMID: 32898718 DOI: 10.1016/j.arr.2020.101165] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 08/21/2020] [Accepted: 08/26/2020] [Indexed: 02/07/2023]
Abstract
The process of ageing includes molecular changes within cells and interactions between cells, eventually resulting in age-related diseases. Although various cells (immune cells, parenchymal cells, fibroblasts and endothelial cells) in tissues secrete proinflammatory signals in age-related diseases, immune cells are the major contributors to inflammation. Many studies have emphasized the role of metabolic dysregulation in parenchymal cells in age-related inflammatory diseases. However, few studies have discussed metabolic modifications in immune cells during ageing. In this review, we introduce the metabolic dysregulation of major nutrients (glucose, lipids, and amino acids) within immune cells during ageing, which leads to dysfunctional NAD + metabolism that increases immune cell senescence and leads to the acquisition of the corresponding senescence-associated secretory phenotype (SASP). We then focus on senescent immune cell interactions with parenchymal cells and the extracellular matrix and their involvement in angiogenesis, which lead to proinflammatory microenvironments in tissues and inflammatory diseases at the systemic level. Elucidating the roles of metabolic modifications in immune cells during ageing will provide new insights into the mechanisms of ageing and therapeutic directions for age-related inflammatory diseases.
Collapse
Affiliation(s)
- Pei-Heng Li
- Department of Internal Medicine, Peking Union Medical college Hospital, Beijing, China; State Key Laboratory of Medical Molecular Biology, Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Ran Zhang
- Buck Institute for Research on Ageing, Novato, United States
| | - Li-Qin Cheng
- Department of Microbiology, Tumor and Cell Biology, Centre for Translational Microbiome Research, Karolinska Institutet, Stockholm, Sweden
| | - Jin-Jing Liu
- Department of Rheumatology and Clinical Immunology, Peking Union Medical College Hospital, Beijing, China.
| | - Hou-Zao Chen
- State Key Laboratory of Medical Molecular Biology, Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China.
| |
Collapse
|
32
|
Hellwinkel JE, Miclau T, Provencher MT, Bahney CS, Working ZM. The Life of a Fracture: Biologic Progression, Healing Gone Awry, and Evaluation of Union. JBJS Rev 2020; 8:e1900221. [PMID: 32796195 PMCID: PMC11147169 DOI: 10.2106/jbjs.rvw.19.00221] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
New knowledge about the molecular biology of fracture-healing provides opportunities for intervention and reduction of risk for specific phases that are affected by disease and medications. Modifiable and nonmodifiable risk factors can prolong healing, and the informed clinician should optimize each patient to provide the best chance for union. Techniques to monitor progression of fracture-healing have not changed substantially over time; new objective modalities are needed.
Collapse
Affiliation(s)
- Justin E Hellwinkel
- Department of Orthopedic Surgery, New York Presbyterian Hospital, Columbia University Irving Medical Center, New York, NY
- Center for Regenerative Sports Medicine, The Steadman Clinic and Steadman Philippon Research Institute, Vail, Colorado
| | - Theodore Miclau
- Orthopaedic Trauma Institute, University of California, San Francisco (UCSF) and Zuckerberg San Francisco General Hospital (ZSFG), San Francisco, California
| | - Matthew T Provencher
- Center for Regenerative Sports Medicine, The Steadman Clinic and Steadman Philippon Research Institute, Vail, Colorado
| | - Chelsea S Bahney
- Center for Regenerative Sports Medicine, The Steadman Clinic and Steadman Philippon Research Institute, Vail, Colorado
- Orthopaedic Trauma Institute, University of California, San Francisco (UCSF) and Zuckerberg San Francisco General Hospital (ZSFG), San Francisco, California
| | - Zachary M Working
- Orthopaedic Trauma Institute, University of California, San Francisco (UCSF) and Zuckerberg San Francisco General Hospital (ZSFG), San Francisco, California
- Oregon Health & Science University, Portland, Oregon
| |
Collapse
|
33
|
Abstract
A balanced inflammatory response is important for successful fracture healing. The response of osteoporotic fracture healing is deranged and an altered inflammatory response can be one underlying cause. The objectives of this review were to compare the inflammatory responses between normal and osteoporotic fractures and to examine the potential effects on different healing outcomes. A systematic literature search was conducted with relevant keywords in PubMed, Embase, and Web of Science independently. Original preclinical studies and clinical studies involving the investigation of inflammatory response in fracture healing in ovariectomized (OVX) animals or osteoporotic/elderly patients with available full text and written in English were included. In total, 14 articles were selected. Various inflammatory factors were reported; of those tumour necrosis factor-α (TNF-α) and interleukin (IL)-6 are two commonly studied markers. Preclinical studies showed that OVX animals generally demonstrated higher systemic inflammatory response and poorer healing outcomes compared to normal controls (SHAM). However, it is inconclusive if the local inflammatory response is higher or lower in OVX animals. As for clinical studies, they mainly examine the temporal changes of the inflammatory stage or perform comparison between osteoporotic/fragility fracture patients and normal subjects without fracture. Our review of these studies emphasizes the lack of understanding that inflammation plays in the altered fracture healing response of osteoporotic/elderly patients. Taken together, it is clear that additional studies, preclinical and clinical, are required to dissect the regulatory role of inflammatory response in osteoporotic fracture healing. Cite this article: Bone Joint Res 2020;9(7):368–385.
Collapse
Affiliation(s)
- Simon K-H Chow
- Department of Orthopaedics and Traumatology, The Chinese University of Hong Kong, Hong Kong, Hong Kong.,The CUHK-ACC Space Medicine Centre on Health Maintenance of Musculoskeletal System, The Chinese University of Hong Kong Shenzhen Research Institute, Shenzhen, China
| | - Yu-Ning Chim
- Department of Orthopaedics and Traumatology, The Chinese University of Hong Kong, Hong Kong, Hong Kong
| | - Jin-Yu Wang
- Department of Orthopaedics and Traumatology, The Chinese University of Hong Kong, Hong Kong, Hong Kong
| | - Ronald M-Y Wong
- Department of Orthopaedics and Traumatology, The Chinese University of Hong Kong, Hong Kong, Hong Kong
| | - Victoria M-H Choy
- Department of Orthopaedics and Traumatology, The Chinese University of Hong Kong, Hong Kong, Hong Kong
| | - Wing-Hoi Cheung
- Department of Orthopaedics and Traumatology, The Chinese University of Hong Kong, Hong Kong, Hong Kong.,The CUHK-ACC Space Medicine Centre on Health Maintenance of Musculoskeletal System, The Chinese University of Hong Kong Shenzhen Research Institute, Shenzhen, China
| |
Collapse
|
34
|
Zamarioli A, de Andrade Staut C, Volpon JB. Review of Secondary Causes of Osteoporotic Fractures Due to Diabetes and Spinal Cord Injury. Curr Osteoporos Rep 2020; 18:148-156. [PMID: 32147752 DOI: 10.1007/s11914-020-00571-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
PURPOSE OF REVIEW The aim of this review is to gain a better understanding of osteoporotic fractures and the different mechanisms that are driven in the scenarios of bone disuse due to spinal cord injury and osteometabolic disorders due to diabetes. RECENT FINDINGS Despite major advances in understanding the pathogenesis, prevention, and treatment of osteoporosis, the high incidence of impaired fracture healing remains an important complication of bone loss, leading to marked impairment of the health of an individual and economic burden to the medical system. This review underlines several pathways leading to bone loss and increased risk for fractures. Specifically, we addressed the different mechanisms leading to bone loss after a spinal cord injury and diabetes. Finally, it also encompasses the changes responsible for impaired bone repair in these scenarios, which may be of great interest for future studies on therapeutic approaches to treat osteoporosis and osteoporotic fractures.
Collapse
Affiliation(s)
- Ariane Zamarioli
- Ribeirão Preto Medical School, University of São Paulo, São Paulo, Brazil.
| | - Caio de Andrade Staut
- Department of Orthopaedic Surgery, Indiana University School of Medicine, Indianapolis, IN, USA
| | - José B Volpon
- Ribeirão Preto Medical School, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
35
|
Alder KD, White AH, Chung YH, Lee I, Back J, Kwon HK, Cahill SV, Hao Z, Li L, Chen F, Lee S, Riedel MD, Lee FY. Systemic Parathyroid Hormone Enhances Fracture Healing in Multiple Murine Models of Type 2 Diabetes Mellitus. JBMR Plus 2020; 4:e10359. [PMID: 32382692 PMCID: PMC7202418 DOI: 10.1002/jbm4.10359] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Revised: 02/28/2020] [Accepted: 03/07/2020] [Indexed: 12/30/2022] Open
Abstract
Type 2 diabetes mellitus (T2DM) is a multisystemic disease that afflicts more than 415 million people globally-the incidence and prevalence of T2DM continues to rise. It is well-known that T2DM has detrimental effects on bone quality that increase skeletal fragility, which predisposes subjects to an increased risk of fracture and fracture healing that results in non- or malunion. Diabetics have been found to have perturbations in metabolism, hormone production, and calcium homeostasis-particularly PTH expression-that contribute to the increased risk of fracture and decreased fracture healing. Given the perturbations in PTH expression and the establishment of hPTH (1-34) for use in age-related osteoporosis, it was determined logical to attempt to ameliorate the bone phenotype found in T2DM using hPTH (1-34). Therefore, the present study had two aims: (i) to establish a suitable murine model of the skeletal fragility present in T2DM because no current consensus model exists; and (ii) to determine the effects of hPTH (1-34) on bone fractures in T2DM. The results of the present study suggest that the polygenic mouse of T2DM, TALLYHO/JngJ, most accurately recapitulates the diabetic osteoporotic phenotype seen in humans and that the intermittent systemic administration of hPTH (1-34) increases fracture healing in T2DM murine models by increasing the proliferation of mesenchymal stem cells. © 2020 The Authors. JBMR Plus published by Wiley Periodicals, Inc. on behalf of American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Kareme D Alder
- Department of Orthopædics & Rehabilitation Yale University, School of Medicine New Haven CT USA
| | - Andrew Ha White
- Department of Orthopædics & Rehabilitation Yale University, School of Medicine New Haven CT USA
| | - Yeon-Ho Chung
- Department of Orthopædics & Rehabilitation Yale University, School of Medicine New Haven CT USA
| | - Inkyu Lee
- Department of Orthopædics & Rehabilitation Yale University, School of Medicine New Haven CT USA.,Department of Life Science Chung-Ang University Seoul Republic of Korea
| | - JungHo Back
- Department of Orthopædics & Rehabilitation Yale University, School of Medicine New Haven CT USA
| | - Hyuk-Kwon Kwon
- Department of Orthopædics & Rehabilitation Yale University, School of Medicine New Haven CT USA
| | - Sean V Cahill
- Department of Orthopædics & Rehabilitation Yale University, School of Medicine New Haven CT USA
| | - Zichen Hao
- Department of Orthopædics & Rehabilitation Yale University, School of Medicine New Haven CT USA
| | - Lu Li
- Department of Orthopædics & Rehabilitation Yale University, School of Medicine New Haven CT USA
| | - Fancheng Chen
- Department of Orthopædics & Rehabilitation Yale University, School of Medicine New Haven CT USA
| | - Saelim Lee
- Department of Orthopædics & Rehabilitation Yale University, School of Medicine New Haven CT USA
| | - Matthew D Riedel
- Department of Orthopædics & Rehabilitation Yale University, School of Medicine New Haven CT USA
| | - Francis Y Lee
- Department of Orthopædics & Rehabilitation Yale University, School of Medicine New Haven CT USA
| |
Collapse
|
36
|
Schall N, Garcia JJ, Kalyanaraman H, China SP, Lee JJ, Sah RL, Pfeifer A, Pilz RB. Protein kinase G1 regulates bone regeneration and rescues diabetic fracture healing. JCI Insight 2020; 5:135355. [PMID: 32315291 DOI: 10.1172/jci.insight.135355] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Accepted: 04/08/2020] [Indexed: 01/16/2023] Open
Abstract
Bone fractures are a major cause of morbidity and mortality, particularly in patients with diabetes, who have a high incidence of fractures and exhibit poor fracture healing. Coordinated expression of osteoblast-derived vascular endothelial growth factor (VEGF) and bone morphogenic proteins (BMPs) is essential for fracture repair. The NO/cGMP/protein kinase G (PKG) signaling pathway mediates osteoblast responses to estrogens and mechanical stimulation, but the pathway's role in bone regeneration is unknown. Here, we used a mouse cortical-defect model to simulate bone fractures and studied osteoblast-specific PKG1-knockout and diabetic mice. The knockout mice had normal bone microarchitecture but after injury exhibited poor bone regeneration, with decreased osteoblasts, collagen deposition, and microvessels in the bone defect area. Primary osteoblasts and tibiae from the knockout mice expressed low amounts of Vegfa and Bmp2/4 mRNAs, and PKG1 was required for cGMP-stimulated expression of these genes. Diabetic mice also demonstrated low Vegfa and Bmp2/4 expression in bone and impaired bone regeneration after injury; notably, the cGMP-elevating agent cinaciguat restored Vegfa and BMP2/4 expression and full bone healing. We conclude that PKG1 is a key orchestrator of VEGF and BMP signaling during bone regeneration and propose pharmacological PKG activation as a novel therapeutic approach to enhance fracture healing.
Collapse
Affiliation(s)
- Nadine Schall
- Department of Medicine, University of California, San Diego, La Jolla, California, USA.,Institute for Pharmacology and Toxicology, University of Bonn, Bonn, Germany
| | - Julian J Garcia
- Department of Medicine, University of California, San Diego, La Jolla, California, USA.,Department of Bioengineering, University of California, San Diego, La Jolla, California, USA
| | - Hema Kalyanaraman
- Department of Medicine, University of California, San Diego, La Jolla, California, USA
| | - Shyamsundar Pal China
- Department of Medicine, University of California, San Diego, La Jolla, California, USA
| | - Jenna J Lee
- Department of Bioengineering, University of California, San Diego, La Jolla, California, USA
| | - Robert L Sah
- Department of Bioengineering, University of California, San Diego, La Jolla, California, USA
| | - Alexander Pfeifer
- Institute for Pharmacology and Toxicology, University of Bonn, Bonn, Germany
| | - Renate B Pilz
- Department of Medicine, University of California, San Diego, La Jolla, California, USA
| |
Collapse
|
37
|
Abstract
The susceptibility and severity of periodontal diseases is made more severe by diabetes, with the impact on the disease process inversely proportional to the level of glycemic control. Although type 1 diabetes mellitus and type 2 diabetes mellitus have different etiologies, and their impact on bone is not identical, they share many of the same complications. Studies in animals and humans agree that both forms of diabetes increase inflammatory events in periodontal tissue, impair new bone formation, and increase expression of RANKL in response to bacterial challenge. High levels of glucose, reactive oxygen species, and advanced glycation end-products are found in the periodontium of diabetic individuals and lead to increased activation of nuclear factor-kappa B and expression of inflammatory cytokines such as tumor necrosis factor and interleukin-1. Studies in animals, moreover, suggest that there are multiple cell types in periodontal tissues that are affected by diabetes, including leukocytes, vascular cells, mesenchymal stem cells, periodontal ligament fibroblasts, osteoblasts, and osteocytes. The etiology of periodontal disease involves the host response to bacterial challenge that is affected by diabetes, which increases the expression of RANKL and reduces coupled bone formation. In addition, the inflammatory response also modifies the oral microbiota to render it more pathogenic, as demonstrated by increased inflammation and bone loss in animals where bacteria are transferred from diabetic donors to germ-free hosts compared with transfer from normoglycemic donors. This approach has the advantage of not relying upon limited knowledge of the specific bacterial taxa to determine pathogenicity, and examines the overall impact of the microbiota rather than the presumed pathogenicity of a few bacterial groups. Thus, animal studies have provided new insights into pathogenic mechanisms that identify cause-and-effect relationships that are difficult to perform in human studies.
Collapse
Affiliation(s)
- Dana T Graves
- Department of Periodontics, School of Dental Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Zhenjiang Ding
- Department of Periodontics, School of Dental Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA.,Department of Pediatric Dentistry, School of Stomatology, China Medical University, Shenyang, China
| | - Yingming Yang
- Department of Periodontics, School of Dental Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA.,State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, Department of Preventive Dentistry, West China School of Stomatology, Sichuan University, Chengdu, China
| |
Collapse
|
38
|
Retamal I, Hernández R, Velarde V, Oyarzún A, Martínez C, Julieta González M, Martínez J, Smith PC. Diabetes alters the involvement of myofibroblasts during periodontal wound healing. Oral Dis 2020; 26:1062-1071. [DOI: 10.1111/odi.13325] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2019] [Revised: 02/06/2020] [Accepted: 02/18/2020] [Indexed: 12/20/2022]
Affiliation(s)
- Ignacio Retamal
- Faculty of Dentistry Universidad de los Andes Santiago Chile
| | - Romina Hernández
- School of Dentistry Faculty of Medicine Pontificia Universidad Católica de Chile Santiago Chile
| | - Victoria Velarde
- Faculty of Biological Sciences Pontificia Universidad Católica de Chile Santiago Chile
| | | | - Constanza Martínez
- School of Dentistry Faculty of Medicine Pontificia Universidad Católica de Chile Santiago Chile
| | - María Julieta González
- Institute of Biomedical Sciences Faculty of Medicine Universidad de Chile Santiago Chile
| | - Jorge Martínez
- Cell Biology Laboratory Institute of Nutrition and Food Technology Universidad de Chile Santiago Chile
| | - Patricio C. Smith
- School of Dentistry Faculty of Medicine Pontificia Universidad Católica de Chile Santiago Chile
| |
Collapse
|
39
|
Gulbrandsen TR, Hulick RM, Polk AJ, Weldy JM, Howell KL, Spitler CA, Crist BD. Does surgical approach affect sagittal plane alignment and pilon fracture outcomes? Injury 2020; 51:750-758. [PMID: 32008815 DOI: 10.1016/j.injury.2020.01.020] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Revised: 01/07/2020] [Accepted: 01/19/2020] [Indexed: 02/02/2023]
Abstract
PURPOSE Sagittal plane alignment beyond articular reduction and its effect on clinical outcomes has not been emphasized. Surgical approach may influence a surgeon's ability to correct the sagittal plane alignment. The purpose of our study was to evaluate how surgical approach impacts anterior distal tibial angle (ADTA) and lateral talar station (LTS). Our hypothesis was that the anterolateral (AL) approach would improve the sagittal plane parameters due to the primary plate placement. PATIENTS AND METHODS A retrospective review was performed on patients who underwent operative management for pilon fractures at 2 ACS Level 1 Academic Trauma Centers. Clinical data points including demographics, comorbidities, AO/OTA classification, surgical approach, and complications were recorded. Quality of reduction was measured using the ADTA, lateral distal tibia angle (LDTA), and lateral talar station (LTS) from radiographs. RESULTS 580 pilon fractures met inclusion criteria. When compared to the AL approach, the modified anteromedial (AM) approach had decreased rates of local wound care, and unplanned reoperations. The AM approach had increased rates of superficial infection, deep infection, non-union, and amputations. There was no difference in ADTA, LDTA, or LTS between the AM and AL approach (P = 0.49, P = 0.41, P = 0.85). There was a difference in LTS with tobacco users (P = 0.02). CONCLUSIONS The sagittal plane alignment does not appear to be affected by the surgical approach. Therefore, the surgical approach to pilon fractures should be based on the fracture pattern and the patient's soft tissue envelope. This study shows that the AM is a relatively safe and effective approach to complex fractures and the surgeon should consider the specific fracture pattern and patient soft tissue envelope when choosing the specific approach.
Collapse
Affiliation(s)
- Trevor R Gulbrandsen
- University of Iowa Hospitals and Clinics, Department of Orthopedic Surgery, Iowa City, IA, United States
| | - Robert M Hulick
- University of Mississippi Medical Center, Department of Orthopaedic Surgery, Jackson, MS, United States
| | - Andrew J Polk
- University of Missouri School of Medicine, Columbia, MO, United States
| | - John M Weldy
- University of Mississippi Medical Center, Department of Orthopaedic Surgery, Jackson, MS, United States
| | - Kathryn L Howell
- Tulane University, Department of Orthopaedic Surgery, New Orleans, LA, United States
| | - Clay A Spitler
- University of Mississippi Medical Center, Department of Internal Medicine, Jackson, MS, United States; University of Alabama-Birmingham, Department of Orthopaedic Surgery, Birmingham, AL, United States
| | - Brett D Crist
- University of Missouri, Department of Orthopaedic Surgery, Columbia, MO, United States.
| |
Collapse
|
40
|
Park J, Yan G, Kwon KC, Liu M, Gonnella PA, Yang S, Daniell H. Oral delivery of novel human IGF-1 bioencapsulated in lettuce cells promotes musculoskeletal cell proliferation, differentiation and diabetic fracture healing. Biomaterials 2020; 233:119591. [PMID: 31870566 PMCID: PMC6990632 DOI: 10.1016/j.biomaterials.2019.119591] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Revised: 10/16/2019] [Accepted: 10/30/2019] [Indexed: 12/16/2022]
Abstract
Human insulin-like growth factor-1 (IGF-1) plays important roles in development and regeneration of skeletal muscles and bones but requires daily injections or surgical implantation. Current clinical IGF-1 lacks e-peptide and is glycosylated, reducing functional efficacy. In this study, codon-optimized Pro-IGF-1 with e-peptide (fused to GM1 receptor binding protein CTB or cell penetrating peptide PTD) was expressed in lettuce chloroplasts to facilitate oral delivery. Pro-IGF-1 was expressed at high levels in the absence of the antibiotic resistance gene in lettuce chloroplasts and was maintained in subsequent generations. In lyophilized plant cells, Pro-IGF-1 maintained folding, assembly, stability and functionality up to 31 months, when stored at ambient temperature. CTB-Pro-IGF-1 stimulated proliferation of human oral keratinocytes, gingiva-derived mesenchymal stromal cells and mouse osteoblasts in a dose-dependent manner and promoted osteoblast differentiation through upregulation of ALP, OSX and RUNX2 genes. Mice orally gavaged with the lyophilized plant cells significantly increased IGF-1 levels in sera, skeletal muscles and was stable for several hours. When bioencapsulated CTB-Pro-IGF-1 was gavaged to femoral fractured diabetic mice, bone regeneration was significantly promoted with increase in bone volume, density and area. This novel delivery system should increase affordability and patient compliance, especially for treatment of musculoskeletal diseases.
Collapse
Affiliation(s)
- J Park
- Department of Basic and Translational Sciences, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - G Yan
- Department of Basic and Translational Sciences, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - K-C Kwon
- Department of Basic and Translational Sciences, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - M Liu
- Department of Basic and Translational Sciences, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - P A Gonnella
- Department of Basic and Translational Sciences, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - S Yang
- Department of Basic and Translational Sciences, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; The Penn Center for Musculoskeletal Disorders, School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| | - H Daniell
- Department of Basic and Translational Sciences, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
41
|
Sanz‐París A, Martín‐Palmero A, Gomez‐Candela C, García‐Almeida JM, Burgos‐Pelaez R, Sanz‐Arque A, Espina S, Arbones‐Mainar JM. GLIM Criteria at Hospital Admission Predict 8‐Year All‐Cause Mortality in Elderly Patients With Type 2 Diabetes Mellitus: Results From VIDA Study. JPEN J Parenter Enteral Nutr 2020; 44:1492-1500. [DOI: 10.1002/jpen.1781] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Revised: 11/27/2019] [Accepted: 12/17/2019] [Indexed: 01/10/2023]
Affiliation(s)
| | | | | | | | - Rosa Burgos‐Pelaez
- Nutritional Support Unit University Hospital Vall d'Hebron Barcelona Spain
| | - Alejandro Sanz‐Arque
- Adipocyte and Fat Biology Laboratory (AdipoFat) Translational Research Unit University Hospital Miguel Servet, Instituto Aragonés de Ciencias de la Salud (IACS) Instituto de Investigación Sanitaria Aragón (IIS‐Aragón) Zaragoza Spain
| | - Silvia Espina
- Adipocyte and Fat Biology Laboratory (AdipoFat) Translational Research Unit University Hospital Miguel Servet, Instituto Aragonés de Ciencias de la Salud (IACS) Instituto de Investigación Sanitaria Aragón (IIS‐Aragón) Zaragoza Spain
| | - Jose M. Arbones‐Mainar
- Adipocyte and Fat Biology Laboratory (AdipoFat) Translational Research Unit University Hospital Miguel Servet, Instituto Aragonés de Ciencias de la Salud (IACS) Instituto de Investigación Sanitaria Aragón (IIS‐Aragón) Zaragoza Spain
- Centro de Investigación Biomédica en Red Fisiopatología Obesidad y Nutricion (CIBERObn) Instituto Salud Carlos III Madrid Spain
| | | |
Collapse
|
42
|
Abstract
PURPOSE OF REVIEW Diabetes has a detrimental effect on bone, increasing the risk of fracture and formation of osteolytic lesions such as those seen in periodontitis. Several diabetic complications are caused by diabetes-enhanced inflammation. This review examines mechanisms by which IL-17 contributes to diabetes-enhanced periodontitis and other effects of IL-17 on bone. RECENT FINDINGS IL-17 upregulates anti-bacterial defenses, yet its expression is also linked to a destructive host response in the periodontium. Periodontal disease is caused by bacteria that stimulate an inflammatory response. Diabetes-enhanced IL-17 increases gingival inflammation, which alters the composition of the oral microbiota to increase its pathogenicity. In addition, IL-17 can induce osteoclastogenesis by upregulation of TNF and RANKL in a number of cell types, and IL-17 has differential effects on osteoblasts and their progenitors. Increased IL-17 production caused by diabetes alters the pathogenicity of the oral microbiota and can promote periodontal bone resorption.
Collapse
Affiliation(s)
- Zhen Huang
- Department of Periodontology, Peking University School and Hospital of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Digital and Material Technology of Stomatology & Beijing Key Laboratory of Digital Stomatology, 22 Zhongguancun South Avenue, Haidian District, Beijing, 100081, China
- Department of Periodontics, School of Dental Medicine, University of Pennsylvania, 240 S 40th St, Philadelphia, PA, 19104, USA
| | - Xiyan Pei
- Department of Periodontics, School of Dental Medicine, University of Pennsylvania, 240 S 40th St, Philadelphia, PA, 19104, USA
- First Clinical Division, Peking University School and Hospital of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Digital and Material Technology of Stomatology & Beijing Key Laboratory of Digital Stomatology, 37 Xishiku Avenue, Xicheng District, Beijing, 100034, China
| | - Dana T Graves
- Department of Periodontics, School of Dental Medicine, University of Pennsylvania, 240 S 40th St, Philadelphia, PA, 19104, USA.
| |
Collapse
|
43
|
Wang Y, Graves DT. Keratinocyte Function in Normal and Diabetic Wounds and Modulation by FOXO1. J Diabetes Res 2020; 2020:3714704. [PMID: 33195703 PMCID: PMC7641706 DOI: 10.1155/2020/3714704] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2020] [Revised: 10/12/2020] [Accepted: 10/14/2020] [Indexed: 02/08/2023] Open
Abstract
Diabetes has a significant and negative impact on wound healing, which involves complex interactions between multiple cell types. Keratinocytes play a crucial role in the healing process by rapidly covering dermal and mucosal wound surfaces to reestablish an epithelial barrier with the outside environment. Keratinocytes produce multiple factors to promote reepithelialization and produce factors that enhance connective tissue repair through the elaboration of mediators that stimulate angiogenesis and production of connective tissue matrix. Among the factors that keratinocytes produce to aid healing are transforming growth factor-β (TGF-β), vascular endothelial growth factor-A (VEGF-A), connective tissue growth factor (CTGF), and antioxidants. In a diabetic environment, this program is disrupted, and keratinocytes fail to produce growth factors and instead switch to a program that is detrimental to healing. Changes in keratinocyte behavior have been linked to high glucose and advanced glycation end products that alter the activities of the transcription factor, FOXO1. This review examines reepithelialization and factors produced by keratinocytes that upregulate connective tissue healing and angiogenesis and how they are altered by diabetes.
Collapse
Affiliation(s)
- Yulan Wang
- State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, 430079 Hubei, China
- Department of Periodontics, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, 19104 Pennsylvania, USA
- Department of Implantology, School and Hospital of Stomatology, Wuhan University, Wuhan, 430079 Hubei, China
| | - Dana T. Graves
- Department of Periodontics, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, 19104 Pennsylvania, USA
| |
Collapse
|
44
|
Maruyama M, Rhee C, Utsunomiya T, Zhang N, Ueno M, Yao Z, Goodman SB. Modulation of the Inflammatory Response and Bone Healing. Front Endocrinol (Lausanne) 2020; 11:386. [PMID: 32655495 PMCID: PMC7325942 DOI: 10.3389/fendo.2020.00386] [Citation(s) in RCA: 214] [Impact Index Per Article: 53.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Accepted: 05/14/2020] [Indexed: 01/08/2023] Open
Abstract
The optimal treatment for complex fractures and large bone defects is an important unsolved issue in orthopedics and related specialties. Approximately 5-10% of fractures fail to heal and develop non-unions. Bone healing can be characterized by three partially overlapping phases: the inflammatory phase, the repair phase, and the remodeling phase. Eventual healing is highly dependent on the initial inflammatory phase, which is affected by both the local and systemic responses to the injurious stimulus. Furthermore, immune cells and mesenchymal stromal cells (MSCs) participate in critical inter-cellular communication or crosstalk to modulate bone healing. Deficiencies in this inter-cellular exchange, inhibition of the natural processes of acute inflammation, and its resolution, or chronic inflammation due to a persistent adverse stimulus can lead to impaired fracture healing. Thus, an initial and optimal transient stage of acute inflammation is one of the key factors for successful, robust bone healing. Recent studies demonstrated the therapeutic potential of immunomodulation for bone healing by the preconditioning of MSCs to empower their immunosuppressive properties. Preconditioned MSCs (also known as "primed/ licensed/ activated" MSCs) are cultured first with pro-inflammatory cytokines (e.g., TNFα and IL17A) or exposed to hypoxic conditions to mimic the inflammatory environment prior to their intended application. Another approach of immunomodulation for bone healing is the resolution of inflammation with anti-inflammatory cytokines such as IL4, IL10, and IL13. In this review, we summarize the principles of inflammation and bone healing and provide an update on cellular interactions and immunomodulation for optimal bone healing.
Collapse
Affiliation(s)
- Masahiro Maruyama
- Department of Orthopaedic Surgery, Stanford University, Stanford, CA, United States
| | - Claire Rhee
- Department of Orthopaedic Surgery, Stanford University, Stanford, CA, United States
| | - Takeshi Utsunomiya
- Department of Orthopaedic Surgery, Stanford University, Stanford, CA, United States
| | - Ning Zhang
- Department of Orthopaedic Surgery, Stanford University, Stanford, CA, United States
| | - Masaya Ueno
- Department of Orthopaedic Surgery, Stanford University, Stanford, CA, United States
| | - Zhenyu Yao
- Department of Orthopaedic Surgery, Stanford University, Stanford, CA, United States
| | - Stuart B. Goodman
- Department of Orthopaedic Surgery, Stanford University, Stanford, CA, United States
- Department of Bioengineering, Stanford University, Stanford, CA, United States
- *Correspondence: Stuart B. Goodman
| |
Collapse
|
45
|
Huang H, Luo L, Liu Z, Li Y, Tong Z, Liu Z. Role of TNF-α and FGF-2 in the Fracture Healing Disorder of Type 2 Diabetes Model Induced by High Fat Diet Followed by Streptozotocin. Diabetes Metab Syndr Obes 2020; 13:2279-2288. [PMID: 32636662 PMCID: PMC7335275 DOI: 10.2147/dmso.s231735] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Accepted: 05/02/2020] [Indexed: 11/23/2022] Open
Abstract
PURPOSE To investigate the effect of TNF-α and FGF-2 in the fracture healing disorder of type 2 diabetes. DESIGN/METHODOLOGY/APPROACH Rat diabetes-bone traction model was established to investigate the effect of type 2 diabetes on the fracture healing and the association of TNF-α and FGF-2 with the process. Serological examination was performed to detect the related diabetes indexes. The proliferation activity of the cells was detected by MTT assay. The expressions of FGF-2 and TNF-α of osteoblasts in high glucose culture environment were detected by histochemistry and Western blotting. FINDINGS Serological examination showed that in rats fed with high fat and sugar diet for 8 weeks, the serum total cholesterol (TC), triglyceride (TG), fasting insulin (FINs) significantly increased, but fasting blood glucose (FBG) had no significant change. Two weeks after intraperitoneal injection of STZ, rat serum TG, TC, and FBG increased significantly, while FINs did not change obviously. Two weeks after traction osteogenesis, X-ray examination and HE staining showed that the area of osteotylus in the diabetes group was significantly smaller than that in the control group. The number of PCNA positive cells in the osteotylus of diabetes group was significantly decreased. In the osteotylus of diabetes group, the expression of TNF-α was significantly increased and the expression of FGF-2 was significantly decreased. MTT assay showed that the proliferation activity of MC3T3-E1 cells in high glucose culture medium groups was significantly decreased at 24th hour of the culture, compared with the normal culture medium group. qPCR results showed that the expression of FGF-2 was significantly decreased while the expression of TNF-α was significantly increased in high glucose culture medium groups. ORIGINALITY/VALUE It was concluded that type 2 diabetes mellitus affected the fracture healing by causing osteoblast proliferation disorder. TNF-α and FGF-2 were important related factors for the process.
Collapse
Affiliation(s)
- Heqing Huang
- Department of Orthopaedics and Traumatology, Third Xiangya Hospital of Central South University, Changsha410013, Hunan Province, People’s Republic of China
| | - Ling Luo
- Department of Orthopaedics and Traumatology, Third Xiangya Hospital of Central South University, Changsha410013, Hunan Province, People’s Republic of China
| | - Zhitao Liu
- Department of Orthopaedics and Traumatology, Third Xiangya Hospital of Central South University, Changsha410013, Hunan Province, People’s Republic of China
| | - Yan Li
- Department of Orthopaedics and Traumatology, Third Xiangya Hospital of Central South University, Changsha410013, Hunan Province, People’s Republic of China
| | - Zhaochen Tong
- Department of Orthopaedics and Traumatology, Third Xiangya Hospital of Central South University, Changsha410013, Hunan Province, People’s Republic of China
| | - Zhendong Liu
- Department of Orthopaedics and Traumatology, Third Xiangya Hospital of Central South University, Changsha410013, Hunan Province, People’s Republic of China
- Correspondence: Zhendong Liu Department of Orthopaedics and Traumatology, Third Xiangya Hospital of Central South University, No. 138 Tongzipo Road, Changsha410013, Hunan Province, People’s Republic of China Tel/Fax +8673188638888 Email
| |
Collapse
|
46
|
Abdel-Aziz AM, Naguib Abdel Hafez SM. Sitagliptin protects male albino rats with testicular ischaemia/reperfusion damage: Modulation of VCAM-1 and VEGF-A. Andrologia 2019; 52:e13472. [PMID: 31773790 DOI: 10.1111/and.13472] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2019] [Revised: 09/17/2019] [Accepted: 10/14/2019] [Indexed: 12/13/2022] Open
Abstract
Twisting of the spermatic cord is considered a popular problem in the urological field, which may lead to testicular necrosis and male infertility. Sitagliptin, a glucose-lowering agent, proved to have a vindicatory function in myocardial and renal ischaemia/reperfusion (I/R), but its role in testicular I/R has not yet been studied. The current work investigates its capability to recover the testicular I/R injury with shedding more light on the mechanism of its action. Four groups were used: sham, sham pretreated with sitagliptin, I/R and sitagliptin/I/R-pretreated groups. The outcomes proved that I/R significantly decreased the serum testosterone, with a major increase in oxidative, inflammatory and nitrosative stress, along with a reduction in testicular vascular endothelial growth factor-A level with marked germinal cell apoptosis. However, pretreatment with sitagliptin significantly reversed the profound testicular I/R damaging effects, on the basis of its antioxidant, anti-inflammatory and anti-apoptotic activities with the ability of recuperation of the testicular vascularity.
Collapse
|
47
|
Wei J, Zhang L, Ding Y, Liu R, Guo Y, Hettinghouse A, Buza J, De La Croix J, Li X, Einhorn TA, Liu CJ. Progranulin promotes diabetic fracture healing in mice with type 1 diabetes. Ann N Y Acad Sci 2019; 1460:43-56. [PMID: 31423598 DOI: 10.1111/nyas.14208] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Accepted: 07/18/2019] [Indexed: 12/21/2022]
Abstract
Type 1 diabetes mellitus (T1DM) is an autoimmune disease characterized by insulin deficiency, and patients with diabetes have an increased risk of bone fracture and significantly impaired fracture healing. Proinflammatory cytokine tumor necrosis factor-alpha is significantly upregulated in diabetic fractures and is believed to underlie delayed fracture healing commonly observed in diabetes. Our previous genetic screen for the binding partners of progranulin (PGRN), a growth factor-like molecule that induces chondrogenesis, led to the identification of tumor necrosis factor receptors (TNFRs) as the PGRN-binding receptors. In this study, we employed several in vivo models to ascertain whether PGRN has therapeutic effects in diabetic fracture healing. Here, we report that deletion of PGRN significantly delayed bone fracture healing and aggravated inflammation in the fracture models of mice with T1DM. In contrast, recombinant PGRN effectively promoted diabetic fracture healing by inhibiting inflammation and enhancing chondrogenesis. In addition, both TNFR1 proinflammatory and TNFR2 anti-inflammatory signaling pathways are involved in PGRN-stimulated diabetic fracture healing. Collectively, these findings illuminate a novel understanding concerning the role of PGRN in diabetic fracture healing and may have an application in the development of novel therapeutic intervention strategies for diabetic and other types of impaired fracture healing.
Collapse
Affiliation(s)
- Jianlu Wei
- Department of Orthopaedic Surgery, New York University School of Medicine, New York University Medical Center, New York, New York.,Department of Orthopaedic Surgery, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Lei Zhang
- Department of Orthopaedic Surgery, New York University School of Medicine, New York University Medical Center, New York, New York.,Department of Orthopaedics, Shandong Provincial Qianfoshan Hospital, the First Hospital Affiliated with Shandong First Medical University, Jinan, Shandong, China
| | - Yuanjing Ding
- Department of Orthopaedic Surgery, New York University School of Medicine, New York University Medical Center, New York, New York
| | - Ronghan Liu
- Department of Orthopaedic Surgery, New York University School of Medicine, New York University Medical Center, New York, New York
| | - Yuqi Guo
- College of Dentistry, New York University, New York, New York
| | - Aubryanna Hettinghouse
- Department of Orthopaedic Surgery, New York University School of Medicine, New York University Medical Center, New York, New York
| | - John Buza
- Department of Orthopaedic Surgery, New York University School of Medicine, New York University Medical Center, New York, New York
| | - Jean De La Croix
- Department of Orthopaedic Surgery, New York University School of Medicine, New York University Medical Center, New York, New York
| | - Xin Li
- College of Dentistry, New York University, New York, New York
| | - Thomas A Einhorn
- Department of Orthopaedic Surgery, New York University School of Medicine, New York University Medical Center, New York, New York
| | - Chuan-Ju Liu
- Department of Orthopaedic Surgery, New York University School of Medicine, New York University Medical Center, New York, New York.,Department of Cell Biology, New York University School of Medicine, New York, New York
| |
Collapse
|
48
|
Zhang H, Tai H, Ma Y, Li Y, Dang Z, Wang J, Zhao L. Postoperative Serum Levels of Interleukin-1β (IL-1β), Interleukin-17 (IL-17), and Tumor Necrosis Factor-α (TNF-α) in Patients Following Hip Replacement Surgery for Traumatic Fractured Femoral Neck: A Retrospective Study. Med Sci Monit 2019; 25:6120-6127. [PMID: 31417072 PMCID: PMC6708283 DOI: 10.12659/msm.915369] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Background This study aimed to investigate the clinical significance of postoperative serum levels of interleukin-1β (IL-1β), interleukin-17 (IL-17), and tumor necrosis factor-α (TNF-α) in patients who required hip replacement surgery for traumatic fractured neck of femur. Material/Methods A retrospective study included 180 patients who had hip replacement surgery for traumatic fractured neck of femur and a control group of 100 patients. Differences between the two groups were compared for serum levels of IL-1β, IL-17, and TNF-α, and the Harris Hip Score (HHS) (maximum 100 points) using Pearson’s correlation. Results Serum levels of IL-1β, IL-17, and TNF-α in the control group were significantly lower than those in the study group (P<0.05). According to the HHS, there were 53 patients in the excellent group, 65 patients in the good group, 43 patients in the fair group and 19 patients in the poor group. Postoperative indicator analysis showed significant differences in IL-1β, IL-17, and TNF-α levels between the four groups (P<0.05). Clinical indicators increased from the excellent group to the poor group, with significant differences between the four groups (P<0.05). Postoperative levels of IL-1β, IL-17, and TNF-α were significantly decreased (P<0.05). Pearson’s correlation analysis showed a significant correlation with the clinical indicators (P<0.05). Conclusions In patients with hip replacement surgery for traumatic fractured neck of femur, measurement of postoperative serum levels of IL-1β, IL-17, and TNF-α were shown to be potential prognostic indicators.
Collapse
Affiliation(s)
- Hui Zhang
- Department of Orthopedics, Gansu Provincial Hospital West Campus, Lanzhou, Gansu, China (mainland)
| | - Huiping Tai
- Department of Orthopedics, Gansu Provincial Hospital West Campus, Lanzhou, Gansu, China (mainland)
| | - Yuhong Ma
- The Second Department of Orthopedics, Gansu Provincial Hospital, Lanzhou, Gansu, China (mainland)
| | - Yan Li
- Department of Orthopedics, Gansu Provincial Hospital West Campus, Lanzhou, Gansu, China (mainland)
| | - Zongping Dang
- Department of Orthopedics, Gansu Provincial Hospital West Campus, Lanzhou, Gansu, China (mainland)
| | - Junkai Wang
- Department of Orthopedics, Gansu Provincial Hospital West Campus, Lanzhou, Gansu, China (mainland)
| | - Lin Zhao
- Department of Orthopedics, Gansu Provincial Hospital West Campus, Lanzhou, Gansu, China (mainland)
| |
Collapse
|
49
|
Xie Y, Zhang L, Xiong Q, Gao Y, Ge W, Tang P. Bench-to-bedside strategies for osteoporotic fracture: From osteoimmunology to mechanosensation. Bone Res 2019; 7:25. [PMID: 31646015 PMCID: PMC6804735 DOI: 10.1038/s41413-019-0066-7] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Revised: 06/20/2019] [Accepted: 06/21/2019] [Indexed: 12/16/2022] Open
Abstract
Osteoporosis is characterized by a decrease in bone mass and strength, rendering people prone to osteoporotic fractures caused by low-energy forces. The primary treatment strategy for osteoporotic fractures is surgery; however, the compromised and comminuted bones in osteoporotic fracture sites are not conducive to optimum reduction and rigid fixation. In addition, these patients always exhibit accompanying aging-related disorders, including high inflammatory status, decreased mechanical loading and abnormal skeletal metabolism, which are disadvantages for fracture healing around sites that have undergone orthopedic procedures. Since the incidence of osteoporosis is expected to increase worldwide, orthopedic surgeons should pay more attention to comprehensive strategies for improving the poor prognosis of osteoporotic fractures. Herein, we highlight the molecular basis of osteoimmunology and bone mechanosensation in different healing phases of elderly osteoporotic fractures, guiding perioperative management to alleviate the unfavorable effects of insufficient mechanical loading, high inflammatory levels and pathogen infection. The well-informed pharmacologic and surgical intervention, including treatment with anti-inflammatory drugs and sufficient application of antibiotics, as well as bench-to-bedside strategies for bone augmentation and hardware selection, should be made according to a comprehensive understanding of bone biomechanical properties in addition to the remodeling status of osteoporotic bones, which is necessary for creating proper biological and mechanical environments for bone union and remodeling. Multidisciplinary collaboration will facilitate the improvement of overall osteoporotic care and reduction of secondary fracture incidence.
Collapse
Affiliation(s)
- Yong Xie
- Department of Orthopedics, Chinese PLA General Hospital, Beijing, China
| | - Licheng Zhang
- Department of Orthopedics, Chinese PLA General Hospital, Beijing, China
| | - Qi Xiong
- Department of Oncology, Chinese PLA General Hospital, Beijing, China
| | - Yanpan Gao
- State Key Laboratory of Medical Molecular Biology and Department of Immunology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, Beijing, China
| | - Wei Ge
- State Key Laboratory of Medical Molecular Biology and Department of Immunology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, Beijing, China
| | - Peifu Tang
- Department of Orthopedics, Chinese PLA General Hospital, Beijing, China
| |
Collapse
|
50
|
Henderson S, Ibe I, Cahill S, Chung YH, Lee FY. Bone Quality and Fracture-Healing in Type-1 and Type-2 Diabetes Mellitus. J Bone Joint Surg Am 2019; 101:1399-1410. [PMID: 31393433 DOI: 10.2106/jbjs.18.01297] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Shasta Henderson
- Department of Orthopaedics, Pennsylvania State University, Hershey, Pennsylvania
| | - Izuchukwu Ibe
- Department of Orthopaedics and Rehabilitation (I.I.), Yale School of Medicine (S.C., Y.-H.C., and F.Y.L.), New Haven, Connecticut
| | - Sean Cahill
- Department of Orthopaedics and Rehabilitation (I.I.), Yale School of Medicine (S.C., Y.-H.C., and F.Y.L.), New Haven, Connecticut
| | - Yeon-Ho Chung
- Department of Orthopaedics and Rehabilitation (I.I.), Yale School of Medicine (S.C., Y.-H.C., and F.Y.L.), New Haven, Connecticut
| | - Francis Y Lee
- Department of Orthopaedics and Rehabilitation (I.I.), Yale School of Medicine (S.C., Y.-H.C., and F.Y.L.), New Haven, Connecticut
| |
Collapse
|