1
|
Bressloff PC. Close encounters of the sticky kind: Brownian motion at absorbing boundaries. Phys Rev E 2023; 107:064121. [PMID: 37464709 DOI: 10.1103/physreve.107.064121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Accepted: 05/26/2023] [Indexed: 07/20/2023]
Abstract
Encounter-based models of diffusion provide a probabilistic framework for analyzing the effects of a partially absorbing reactive surface, in which the probability of absorption depends upon the amount of surface-particle contact time. In this paper we develop a class of encounter-based models that deal with absorption at sticky boundaries. Sticky boundaries occur in a diverse range of applications, including cell biology, colloidal physics, finance, and human crowd dynamics. They also naturally arise in active matter, where confined active particles tend to spontaneously accumulate at boundaries even in the absence of any particle-particle interactions. We begin by constructing a one-dimensional encounter-based model of sticky Brownian motion (BM), which is based on the zero-range limit of nonsticky BM with a short-range attractive potential well near the origin. In this limit, the boundary-contact time is given by the amount of time (occupation time) that the particle spends at the origin. We calculate the joint probability density or propagator for the particle position and the occupation time, and then identify an absorption event as the first time that the occupation time crosses a randomly generated threshold. We illustrate the theory by considering diffusion in a finite interval with a partially absorbing sticky boundary at one end. We show how various quantities, such as the mean first passage time (MFPT) for single-particle absorption and the relaxation to steady state at the multiparticle level, depend on moments of the random threshold distribution. Finally, we determine how sticky BM can be obtained by taking a particular diffusion limit of a sticky run-and-tumble particle (RTP).
Collapse
Affiliation(s)
- Paul C Bressloff
- Department of Mathematics, University of Utah, 155 South 1400 East, Salt Lake City, Utah 84112, USA
| |
Collapse
|
2
|
Flores-Muñoz C, García-Rojas F, Pérez MA, Santander O, Mery E, Ordenes S, Illanes-González J, López-Espíndola D, González-Jamett AM, Fuenzalida M, Martínez AD, Ardiles ÁO. The Long-Term Pannexin 1 Ablation Produces Structural and Functional Modifications in Hippocampal Neurons. Cells 2022; 11:cells11223646. [PMID: 36429074 PMCID: PMC9688914 DOI: 10.3390/cells11223646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 10/29/2022] [Accepted: 11/10/2022] [Indexed: 11/19/2022] Open
Abstract
Enhanced activity and overexpression of Pannexin 1 (Panx1) channels contribute to neuronal pathologies such as epilepsy and Alzheimer's disease (AD). The Panx1 channel ablation alters the hippocampus's glutamatergic neurotransmission, synaptic plasticity, and memory flexibility. Nevertheless, Panx1-knockout (Panx1-KO) mice still retain the ability to learn, suggesting that compensatory mechanisms stabilize their neuronal activity. Here, we show that the absence of Panx1 in the adult brain promotes a series of structural and functional modifications in the Panx1-KO hippocampal synapses, preserving spontaneous activity. Compared to the wild-type (WT) condition, the adult hippocampal neurons of Panx1-KO mice exhibit enhanced excitability, a more complex dendritic branching, enhanced spine maturation, and an increased proportion of multiple synaptic contacts. These modifications seem to rely on the actin-cytoskeleton dynamics as an increase in the actin polymerization and an imbalance between the Rac1 and the RhoA GTPase activities were observed in Panx1-KO brain tissues. Our findings highlight a novel interaction between Panx1 channels, actin, and Rho GTPases, which appear to be relevant for synapse stability.
Collapse
Affiliation(s)
- Carolina Flores-Muñoz
- Centro Interdisciplinario de Neurociencia de Valparaíso, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso 2360102, Chile
- Centro de Neurología Traslacional, Facultad de Medicina, Universidad de Valparaíso, Valparaíso 2341386, Chile
- Programa de Doctorado en Ciencias, Mención Neurociencia, Universidad de Valparaíso, Valparaíso 2340000, Chile
| | - Francisca García-Rojas
- Programa de Doctorado en Ciencias, Mención Neurociencia, Universidad de Valparaíso, Valparaíso 2340000, Chile
- Centro de Neurobiología y Fisiopatología integrativa, CENFI, Instituto de Fisiología, Universidad de Valparaíso, Valparaíso 2340000, Chile
| | - Miguel A. Pérez
- Centro de Neurobiología y Fisiopatología integrativa, CENFI, Instituto de Fisiología, Universidad de Valparaíso, Valparaíso 2340000, Chile
- Escuela de Ciencias de la Salud, Universidad de Viña del Mar, Viña del Mar 2572007, Chile
| | - Odra Santander
- Programa de Doctorado en Ciencias, Mención Neurociencia, Universidad de Valparaíso, Valparaíso 2340000, Chile
- Centro de Neurobiología y Fisiopatología integrativa, CENFI, Instituto de Fisiología, Universidad de Valparaíso, Valparaíso 2340000, Chile
| | - Elena Mery
- Centro Interdisciplinario de Neurociencia de Valparaíso, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso 2360102, Chile
- Centro de Neurología Traslacional, Facultad de Medicina, Universidad de Valparaíso, Valparaíso 2341386, Chile
| | - Stefany Ordenes
- Centro Interdisciplinario de Neurociencia de Valparaíso, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso 2360102, Chile
- Centro de Neurología Traslacional, Facultad de Medicina, Universidad de Valparaíso, Valparaíso 2341386, Chile
- Programa de Doctorado en Ciencias, Mención Neurociencia, Universidad de Valparaíso, Valparaíso 2340000, Chile
| | - Javiera Illanes-González
- Centro Interdisciplinario de Neurociencia de Valparaíso, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso 2360102, Chile
- Centro de Neurología Traslacional, Facultad de Medicina, Universidad de Valparaíso, Valparaíso 2341386, Chile
- Programa de Doctorado en Ciencias, Mención Neurociencia, Universidad de Valparaíso, Valparaíso 2340000, Chile
| | - Daniela López-Espíndola
- Escuela de Tecnología Médica, Facultad de Medicina, Universidad de Valparaíso, Valparaíso 2529002, Chile
- Centro de Investigaciones Biomédicas, Escuela de Medicina, Facultad de Medicina, Universidad de Valparaíso, Viña del Mar 2529002, Chile
| | - Arlek M. González-Jamett
- Centro Interdisciplinario de Neurociencia de Valparaíso, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso 2360102, Chile
- Escuela de Química y Farmacia, Facultad de Farmacia, Universidad de Valparaíso, Valparaíso 2360102, Chile
| | - Marco Fuenzalida
- Centro de Neurobiología y Fisiopatología integrativa, CENFI, Instituto de Fisiología, Universidad de Valparaíso, Valparaíso 2340000, Chile
- Correspondence: (M.F.); (A.D.M.); (Á.O.A.)
| | - Agustín D. Martínez
- Centro Interdisciplinario de Neurociencia de Valparaíso, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso 2360102, Chile
- Correspondence: (M.F.); (A.D.M.); (Á.O.A.)
| | - Álvaro O. Ardiles
- Centro Interdisciplinario de Neurociencia de Valparaíso, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso 2360102, Chile
- Centro de Neurología Traslacional, Facultad de Medicina, Universidad de Valparaíso, Valparaíso 2341386, Chile
- Centro Interdisciplinario de estudios en salud, Escuela de Medicina, Facultad de Medicina, Universidad de Valparaíso, Viña del Mar 2572007, Chile
- Correspondence: (M.F.); (A.D.M.); (Á.O.A.)
| |
Collapse
|
3
|
Hansen J, Siddiq MM, Yadaw AS, Tolentino RE, Rabinovich V, Jayaraman G, Jain MR, Liu T, Li H, Xiong Y, Goldfarb J, Iyengar R. Whole cell response to receptor stimulation involves many deep and distributed subcellular biochemical processes. J Biol Chem 2022; 298:102325. [PMID: 35926710 PMCID: PMC9520007 DOI: 10.1016/j.jbc.2022.102325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 07/26/2022] [Accepted: 07/27/2022] [Indexed: 11/28/2022] Open
Abstract
Neurite outgrowth is an integrated whole cell response triggered by the cannabinoid-1 receptor. We sought to identify the many different biochemical pathways that contribute to this whole cell response. To understand underlying mechanisms, we identified subcellular processes (SCPs) composed of one or more biochemical pathways and their interactions required for this response. Differentially expressed genes and proteins were obtained from bulk transcriptomics and proteomic analysis of extracts from cells stimulated with a cannabinoid-1 receptor agonist. We used these differentially expressed genes and proteins to build networks of interacting SCPs by combining the expression data with prior pathway knowledge. From these SCP networks, we identified additional genes that when ablated, experimentally validated the SCP involvement in neurite outgrowth. Our experiments and informatics modeling allowed us to identify diverse SCPs such as those involved in pyrimidine metabolism, lipid biosynthesis, and mRNA splicing and stability, along with more predictable SCPs such as membrane vesicle transport and microtubule dynamics. We find that SCPs required for neurite outgrowth are widely distributed among many biochemical pathways required for constitutive cellular functions, several of which are termed ‘deep’, since they are distal to signaling pathways and the key SCPs directly involved in extension of the neurite. In contrast, ‘proximal’ SCPs are involved in microtubule growth and membrane vesicle transport dynamics required for neurite outgrowth. From these bioinformatics and dynamical models based on experimental data, we conclude that receptor-mediated regulation of subcellular functions for neurite outgrowth is both distributed, that is, involves many different biochemical pathways, and deep.
Collapse
Affiliation(s)
- Jens Hansen
- Department of Pharmacological Sciences and Institute for Systems Biomedicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, United States
| | - Mustafa M Siddiq
- Department of Pharmacological Sciences and Institute for Systems Biomedicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, United States
| | - Arjun Singh Yadaw
- Department of Pharmacological Sciences and Institute for Systems Biomedicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, United States
| | - Rosa E Tolentino
- Department of Pharmacological Sciences and Institute for Systems Biomedicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, United States
| | - Vera Rabinovich
- Department of Pharmacological Sciences and Institute for Systems Biomedicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, United States
| | - Gomathi Jayaraman
- Department of Pharmacological Sciences and Institute for Systems Biomedicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, United States
| | - Mohit Raja Jain
- Department of Microbiology, Biochemistry and Molecular Genetics, Rutgers University, New Jersey Medical School, Newark, NY, 07103, United States
| | - Tong Liu
- Department of Microbiology, Biochemistry and Molecular Genetics, Rutgers University, New Jersey Medical School, Newark, NY, 07103, United States
| | - Hong Li
- Department of Microbiology, Biochemistry and Molecular Genetics, Rutgers University, New Jersey Medical School, Newark, NY, 07103, United States
| | - Yuguang Xiong
- Department of Pharmacological Sciences and Institute for Systems Biomedicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, United States
| | - Joseph Goldfarb
- Department of Pharmacological Sciences and Institute for Systems Biomedicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, United States
| | - Ravi Iyengar
- Department of Pharmacological Sciences and Institute for Systems Biomedicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, United States.
| |
Collapse
|
4
|
Lu G, Peng Q, Wu L, Zhang J, Ma L. Identification of de novo mutations for ARID1B haploinsufficiency associated with Coffin-Siris syndrome 1 in three Chinese families via array-CGH and whole exome sequencing. BMC Med Genomics 2021; 14:270. [PMID: 34775996 PMCID: PMC8591803 DOI: 10.1186/s12920-021-01119-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Accepted: 11/05/2021] [Indexed: 11/25/2022] Open
Abstract
Background Coffin–Siris syndrome (CSS) is a multiple malformation syndrome characterized by intellectual disability associated with coarse facial features, hirsutism, sparse scalp hair, and hypoplastic or absent fifth fingernails or toenails. CSS represents a small group of intellectual disability, and could be caused by at least twelve genes. The genetic background is quite heterogenous, making it difficult for clinicians and genetic consultors to pinpoint the exact disease types. Methods Array-Comparative Genomic Hybridization (array-CGH) and whole exome sequencing (WES) were applied for three trios affected with intellectual disability and clinical features similar with those of Coffin–Siris syndrome. Sanger sequencing was used to verify the detected single-nucleotide variants (SNVs). Results All of the three cases were female with normal karyotypes of 46, XX, born of healthy, non-consanguineous parents. A 6q25 microdeletion (arr[hg19]6q25.3(155,966,487–158,803,979) × 1) (2.84 Mb) (case 1) and two loss-of-function (LoF) mutations of ARID1B [c.2332 + 1G > A in case 2 and c.4741C > T (p.Q1581X) in case 3] were identified. All of the three pathogenic abnormalities were de novo, not inherited from their parents. After comparison of publicly available microdeletions containing ARID1B, four types of microdeletions leading to insufficient production of ARID1B were identified, namely deletions covering the whole region of ARID1B, deletions covering the promoter region, deletions covering the termination region or deletions covering enhancer regions. Conclusion Here we identified de novo ARID1B mutations in three Chinese trios. Four types of microdeletions covering ARID1B were identified. This study broadens current knowledge of ARID1B mutations for clinicians and genetic consultors.
Collapse
Affiliation(s)
- Guanting Lu
- Department of Pathology, Laboratory of Translational Medicine Research, Deyang Key Laboratory of Tumor Molecular Research, Deyang People's Hospital, No. 173 First Section of TaishanBei Road, Jiangyang District, Deyang, 618000, China.
| | - Qiongling Peng
- Department of Child Healthcare, Shenzhen Baoan Women's and Children's Hospital, Jinan University, 56 Yulyu Road, Baoan District, Shenzhen, 518000, China
| | - Lianying Wu
- Department of Pathology, Laboratory of Translational Medicine Research, Deyang Key Laboratory of Tumor Molecular Research, Deyang People's Hospital, No. 173 First Section of TaishanBei Road, Jiangyang District, Deyang, 618000, China
| | - Jian Zhang
- Department of Pathology, Laboratory of Translational Medicine Research, Deyang Key Laboratory of Tumor Molecular Research, Deyang People's Hospital, No. 173 First Section of TaishanBei Road, Jiangyang District, Deyang, 618000, China
| | - Liya Ma
- Department of Child Healthcare, Shenzhen Baoan Women's and Children's Hospital, Jinan University, 56 Yulyu Road, Baoan District, Shenzhen, 518000, China.
| |
Collapse
|
5
|
Humpert I, Di Meo D, Püschel AW, Pietschmann JF. On the role of vesicle transport in neurite growth: Modeling and experiments. Math Biosci 2021; 338:108632. [PMID: 34087317 DOI: 10.1016/j.mbs.2021.108632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 04/28/2021] [Accepted: 05/17/2021] [Indexed: 10/21/2022]
Abstract
The processes that determine the establishment of the complex morphology of neurons during development are still poorly understood. Here, we focus on the question how a difference in the length of neurites affects vesicle transport. We performed live imaging experiments and present a lattice-based model to gain a deeper theoretical understanding of intracellular transport in neurons. After a motivation and appropriate scaling of the model we present numerical simulations showing that initial differences in neurite length result in phenomena of biological relevance, i.e. a positive feedback that enhances transport into the longer neurite and oscillation of vesicles concentrations that can be interpreted as cycles of extension and retraction observed in experiments. Thus, our model is a first step towards a better understanding of the interplay between the transport of vesicles and the spatial organization of cells.
Collapse
Affiliation(s)
- Ina Humpert
- Applied Mathematics Münster: Institute for Analysis and Computational Mathematics, Westfälische Wilhelms-Universität (WWU) Münster, Germany.
| | - Danila Di Meo
- Institute for Molecular Biology, Westfälische-Wilhelms-Universität (WWU) Münster, Germany.
| | - Andreas W Püschel
- Institute for Molecular Biology, Westfälische-Wilhelms-Universität (WWU) Münster, Germany.
| | | |
Collapse
|
6
|
Pradeep S, Tasnim T, Zhang H, Zangle TA. Simultaneous measurement of neurite and neural body mass accumulation via quantitative phase imaging. Analyst 2021; 146:1361-1368. [PMID: 33393564 DOI: 10.1039/d0an01961e] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Measurement of neuron behavior is crucial for studying neural development and evaluating the impact of potential therapies on neural regeneration. Conventional approaches to imaging neuronal behavior require labeling and do not separately quantify the growth processes that underlie neural regeneration. In this paper we demonstrate the use of quantitative phase imaging (QPI) as a label-free, quantitative measurement of neuron behavior in vitro. By combining QPI with image processing, our method separately measures the mass accumulation rates of soma and neurites. Additionally, the data provided by QPI can be used to separately measure the processes of maturation and formation of neurites. Overall, our approach has the potential to greatly simplify conventional neurite outgrowth measurements, while providing key data on the resources used to produce neurites during neural development.
Collapse
Affiliation(s)
- Soorya Pradeep
- Department of Chemical Engineering, University of Utah, USA
| | | | | | | |
Collapse
|
7
|
Alzu'bi A, Clowry GJ. Multiple Origins of Secretagogin Expressing Cortical GABAergic Neuron Precursors in the Early Human Fetal Telencephalon. Front Neuroanat 2020; 14:61. [PMID: 32982702 PMCID: PMC7492523 DOI: 10.3389/fnana.2020.00061] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Accepted: 08/10/2020] [Indexed: 01/31/2023] Open
Abstract
Secretagogin (SCGN) which acts as a calcium signaling sensor, has previously been shown to be expressed by a substantial population of cortical GABAergic neurons at mid-gestation in humans but not in mice. The present study traced SCGN expression in cortical GABAergic neurons in human fetal forebrain from earlier stages than previously studied. Multiple potential origins of SCGN-expressing neurons were identified in the caudal ganglionic eminence (CGE) lateral ganglionic eminence (LGE) septum and preoptic area; these cells largely co-expressed SP8 but not the medial ganglionic eminence marker LHX6. They followed various migration routes to reach their target regions in the neocortex, insular and olfactory cortex (OC) and olfactory bulbs. A robust increase in the number of SCGN-expressing GABAergic cortical neurons was observed in the midgestational period; 58% of DLX2+ neurons expressed SCGN in the cortical wall at 19 post-conceptional weeks (PCW), a higher proportion than expressed calretinin, a marker for GABAergic neurons of LGE/CGE origin. Furthermore, although most SCGN+ neurons co-expressed calretinin in the cortical plate (CP) and deeper layers, in the marginal zone (MZ) SCGN+ and calretinin+ cells formed separate populations. In the adult mouse, it has previously been shown that in the rostral migratory stream (RMS), SCGN, annexin V (ANXA5), and matrix metalloprotease 2 (MMP2) are co-expressed forming a functioning complex that exocytoses MMP2 in response to calcium. In the present study, ANXA5 showed widespread expression throughout the cortical wall, although MMP2 expression was very largely limited to the CP. We found co-expression of these proteins in some SCGN+ neurons in the subventricular zones (SVZ) suggesting a limited role for these cells in remodeling the extracellular matrix, perhaps during cell migration.
Collapse
Affiliation(s)
- Ayman Alzu'bi
- Biosciences Institute, Newcastle University, Newcastle upon Tyne, United Kingdom.,Department of Basic Medical Sciences, Faculty of Medicine, Yarmouk University, Irbid, Jordan
| | - Gavin J Clowry
- Biosciences Institute, Newcastle University, Newcastle upon Tyne, United Kingdom
| |
Collapse
|
8
|
Carroll L, Braeutigam S, Dawes JM, Krsnik Z, Kostovic I, Coutinho E, Dewing JM, Horton CA, Gomez-Nicola D, Menassa DA. Autism Spectrum Disorders: Multiple Routes to, and Multiple Consequences of, Abnormal Synaptic Function and Connectivity. Neuroscientist 2020; 27:10-29. [PMID: 32441222 PMCID: PMC7804368 DOI: 10.1177/1073858420921378] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Autism spectrum disorders (ASDs) are a heterogeneous group of
neurodevelopmental disorders of genetic and environmental etiologies.
Some ASD cases are syndromic: associated with clinically defined
patterns of somatic abnormalities and a neurobehavioral phenotype
(e.g., Fragile X syndrome). Many cases, however, are idiopathic or
non-syndromic. Such disorders present themselves during the early
postnatal period when language, speech, and personality start to
develop. ASDs manifest by deficits in social communication and
interaction, restricted and repetitive patterns of behavior across
multiple contexts, sensory abnormalities across multiple modalities
and comorbidities, such as epilepsy among many others. ASDs are
disorders of connectivity, as synaptic dysfunction is common to both
syndromic and idiopathic forms. While multiple theories have been
proposed, particularly in idiopathic ASDs, none address why certain
brain areas (e.g., frontotemporal) appear more vulnerable than others
or identify factors that may affect phenotypic specificity. In this
hypothesis article, we identify possible routes leading to, and the
consequences of, altered connectivity and review the evidence of
central and peripheral synaptic dysfunction in ASDs. We postulate that
phenotypic specificity could arise from aberrant experience-dependent
plasticity mechanisms in frontal brain areas and peripheral sensory
networks and propose why the vulnerability of these areas could be
part of a model to unify preexisting pathophysiological theories.
Collapse
Affiliation(s)
- Liam Carroll
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, Oxfordshire, UK
| | - Sven Braeutigam
- Oxford Centre for Human Brain Activity, Wellcome Centre for Integrative Neuroimaging, Department of Psychiatry, University of Oxford, Oxford, Oxfordshire, UK
| | - John M Dawes
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, Oxfordshire, UK
| | - Zeljka Krsnik
- Croatian Institute for Brain Research, Centre of Research Excellence for Basic, Clinical and Translational Neuroscience, University of Zagreb School of Medicine, Zagreb, Croatia
| | - Ivica Kostovic
- Croatian Institute for Brain Research, Centre of Research Excellence for Basic, Clinical and Translational Neuroscience, University of Zagreb School of Medicine, Zagreb, Croatia
| | - Ester Coutinho
- Maurice Wohl Clinical Neuroscience Institute, King's College London, London, UK
| | - Jennifer M Dewing
- Faculty of Medicine, University of Southampton, Southampton, Hampshire, UK
| | - Christopher A Horton
- Sir William Dunn School of Pathology, University of Oxford, Oxford, Oxfordshire, UK
| | - Diego Gomez-Nicola
- Biological Sciences, Faculty of Environmental and Life Sciences, University of Southampton, Southampton, UK
| | - David A Menassa
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, Oxfordshire, UK.,Biological Sciences, Faculty of Environmental and Life Sciences, University of Southampton, Southampton, UK
| |
Collapse
|
9
|
Bastien R, Porat A, Meroz Y. Towards a framework for collective behavior in growth-driven systems, based on plant-inspired allotropic pairwise interactions. BIOINSPIRATION & BIOMIMETICS 2019; 14:055004. [PMID: 31292284 DOI: 10.1088/1748-3190/ab30d3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
A variety of biological systems are not motile, but sessile in nature, relying on growth as the main driver of their movement. Groups of such growing organisms can form complex structures, such as the functional architecture of growing axons, or the adaptive structure of plant root systems. These processes are not yet understood, however the decentralized growth dynamics bear similarities to the collective behavior observed in groups of motile organisms, such as flocks of birds or schools of fish. Equivalent growth mechanisms make these systems amenable to a theoretical framework inspired by tropic responses of plants, where growth is considered implicitly as the driver of the observed bending towards a stimulus. We introduce two new concepts related to plant tropisms: point tropism, the response of a plant to a nearby point signal source, and allotropism, the growth-driven response of plant organs to neighboring plants. We first analytically and numerically investigate the 2D dynamics of single organs responding to point signals fixed in space. Building on this we study pairs of organs interacting via allotropism, i.e. each organ senses signals emitted at the tip of their neighbor and responds accordingly. In the case of local sensing we find a rich state-space. We describe the different states, as well as the sharp transitions between them. We also find that the form of the state-space depends on initial conditions. This work sets the stage towards a theoretical framework for the investigation and understanding of systems of interacting growth-driven individuals.
Collapse
Affiliation(s)
- Renaud Bastien
- Department of Collective Behaviour, Max Planck Institute for Ornithology and Department of Biology, University of Konstanz, 78464 Konstanz, Germany. These two authors contributed equally
| | | | | |
Collapse
|
10
|
Yadaw AS, Siddiq MM, Rabinovich V, Tolentino R, Hansen J, Iyengar R. Dynamic balance between vesicle transport and microtubule growth enables neurite outgrowth. PLoS Comput Biol 2019; 15:e1006877. [PMID: 31042702 PMCID: PMC6546251 DOI: 10.1371/journal.pcbi.1006877] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Revised: 06/03/2019] [Accepted: 02/18/2019] [Indexed: 11/18/2022] Open
Abstract
Whole cell responses involve multiple subcellular processes (SCPs). To understand how balance between SCPs controls the dynamics of whole cell responses we studied neurite outgrowth in rat primary cortical neurons in culture. We used a combination of dynamical models and experiments to understand the conditions that permitted growth at a specified velocity and when aberrant growth could lead to the formation of dystrophic bulbs. We hypothesized that dystrophic bulb formation is due to quantitative imbalances between SCPs. Simulations predict redundancies between lower level sibling SCPs within each type of high level SCP. In contrast, higher level SCPs, such as vesicle transport and exocytosis or microtubule growth characteristic of each type need to be strictly coordinated with each other and imbalances result in stalling of neurite outgrowth. From these simulations, we predicted the effect of changing the activities of SCPs involved in vesicle exocytosis or microtubule growth could lead to formation of dystrophic bulbs. siRNA ablation experiments verified these predictions. We conclude that whole cell dynamics requires balance between the higher-level SCPs involved and imbalances can terminate whole cell responses such as neurite outgrowth. Mechanisms that cause a change of state of a cell arise from unique patterns of interactions between multiple subcellular processes (SCPs). Neurite outgrowth (NOG) is such a change of cell state where a neuron puts out a long process that eventually becomes the axon. We used a top-down based approach to mathematically model interactions between SCPs involved in NOG. These include membrane production at the cell body, membrane delivery from the cell body to the neurite tip and microtubule growth within the neurite. Our analyses show how the different SCPs interact with each other to enable NOG at a given velocity under physiological conditions. This approach is different from the commonly used bottom-up approaches that focus on predicting cell functions based on the activity of molecular interaction networks. Our simulations predict that lower-level sibling SCPs (e.g. vesicle tethering at and vesicle fusion with the plasma membrane) within a group can compensate for each other under physiological conditions, while such simple relationships do not exist between higher level SCPs (e.g. vesicle exocytosis and vesicle transport along microtubules). We predicted that imbalances of activities between higher-level SCPs induce dystrophic bulbs (a pathological response) and validated these predictions via siRNA ablation experiments.
Collapse
Affiliation(s)
- Arjun Singh Yadaw
- Department of Pharmacological Sciences and Systems Biology Center New York, Icahn School of Medicine at Mount Sinai, New York, NY, United States of America
| | - Mustafa M. Siddiq
- Department of Pharmacological Sciences and Systems Biology Center New York, Icahn School of Medicine at Mount Sinai, New York, NY, United States of America
| | - Vera Rabinovich
- Department of Pharmacological Sciences and Systems Biology Center New York, Icahn School of Medicine at Mount Sinai, New York, NY, United States of America
| | - Rosa Tolentino
- Department of Pharmacological Sciences and Systems Biology Center New York, Icahn School of Medicine at Mount Sinai, New York, NY, United States of America
| | - Jens Hansen
- Department of Pharmacological Sciences and Systems Biology Center New York, Icahn School of Medicine at Mount Sinai, New York, NY, United States of America
- * E-mail: (JH); (RI)
| | - Ravi Iyengar
- Department of Pharmacological Sciences and Systems Biology Center New York, Icahn School of Medicine at Mount Sinai, New York, NY, United States of America
- * E-mail: (JH); (RI)
| |
Collapse
|
11
|
Alzu’bi A, Homman-Ludiye J, Bourne JA, Clowry GJ. Thalamocortical Afferents Innervate the Cortical Subplate much Earlier in Development in Primate than in Rodent. Cereb Cortex 2019; 29:1706-1718. [PMID: 30668846 PMCID: PMC6418397 DOI: 10.1093/cercor/bhy327] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Revised: 10/16/2018] [Accepted: 11/29/2018] [Indexed: 12/21/2022] Open
Abstract
The current model, based on rodent data, proposes that thalamocortical afferents (TCA) innervate the subplate towards the end of cortical neurogenesis. This implies that the laminar identity of cortical neurons is specified by intrinsic instructions rather than information of thalamic origin. In order to determine whether this mechanism is conserved in the primates, we examined the growth of thalamocortical (TCA) and corticofugal afferents in early human and monkey fetal development. In the human, TCA, identified by secretagogin, calbindin, and ROBO1 immunoreactivity, were observed in the internal capsule of the ventral telencephalon as early as 7-7.5 PCW, crossing the pallial/subpallial boundary (PSB) by 8 PCW before the calretinin immunoreactive corticofugal fibers do. Furthermore, TCA were observed to be passing through the intermediate zone and innervating the presubplate of the dorsolateral cortex, and already by 10-12 PCW TCAs were occupying much of the cortex. Observations at equivalent stages in the marmoset confirmed that this pattern is conserved across primates. Therefore, our results demonstrate that in primates, TCAs innervate the cortical presubplate at earlier stages than previously demonstrated by acetylcholinesterase histochemistry, suggesting that pioneer thalamic afferents may contribute to early cortical circuitry that can participate in defining cortical neuron phenotypes.
Collapse
Affiliation(s)
- Ayman Alzu’bi
- Institute of Neuroscience, Newcastle University, Framlington Place, Newcastle upon Tyne, UK
- Institute of Genetic Medicine, Newcastle University, Newcastle upon Tyne, UK
- Department of Basic Medical Sciences, Faculty of Medicine, Yarmouk University, Irbid, Jordan
| | - Jihane Homman-Ludiye
- Australian Regenerative Medicine Institute, Monash University, Clayton, Victoria, Australia
| | - James A Bourne
- Australian Regenerative Medicine Institute, Monash University, Clayton, Victoria, Australia
| | - Gavin J Clowry
- Institute of Neuroscience, Newcastle University, Framlington Place, Newcastle upon Tyne, UK
| |
Collapse
|
12
|
Moffat JJ, Jung EM, Ka M, Smith AL, Jeon BT, Santen GWE, Kim WY. The role of ARID1B, a BAF chromatin remodeling complex subunit, in neural development and behavior. Prog Neuropsychopharmacol Biol Psychiatry 2019; 89:30-38. [PMID: 30149092 PMCID: PMC6249083 DOI: 10.1016/j.pnpbp.2018.08.021] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Revised: 08/22/2018] [Accepted: 08/23/2018] [Indexed: 01/08/2023]
Abstract
Haploinsufficiency of the chromatin remodeling factor ARID1B leads to autism spectrum disorder and intellectual disability. Several independent research groups, including our own, recently examined the effects of heterozygous deletion of Arid1b in mice and reported severe behavioral abnormalities reminiscent of autism spectrum disorders and intellectual disability as well as marked changes in gene expression and decreased body size. Arid1b heterozygous mice also display significant cortical excitatory/inhibitory imbalance due to altered GABAergic neuron numbers and impaired inhibitory synaptic transmission. Abnormal epigenetic modifications, including histone acetylation and methylation, are additionally associated with Arid1b haploinsufficiency in the brain. Treating adult Arid1b mutant mice with a positive GABA allosteric modulator, however, rescues multiple behavioral abnormalities, such as cognitive and social impairments, as well as elevated anxiety. While treating Arid1b haploinsufficient mice with recombinant mouse growth hormone successfully increases body size, it has no effect on aberrant behavior. Here we summarize the recent findings regarding the role of ARID1B in brain development and behavior and discuss the utility of the Arid1b heterozygous mouse model in neurodevelopmental and psychiatric research. We also discuss some of the opportunities and potential challenges in developing translational applications for humans and possible avenues for further research into the mechanisms of ARID1B pathology in the brain.
Collapse
Affiliation(s)
| | - Eui-Man Jung
- University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Minhan Ka
- Research Center for Substance Abuse Pharmacology, Korea Institute of Toxicology, Daejeon, Republic of
Korea
| | | | - Byeong Tak Jeon
- Department of Biological Sciences, Kent State University, Kent, OH 44242, USA
| | - Gijs W. E. Santen
- Department of Clinical Genetics, Leiden University Medical Center, Leiden, Netherlands
| | - Woo-Yang Kim
- Department of Biological Sciences, Kent State University, Kent, OH 44242, USA.
| |
Collapse
|
13
|
Best BT. Single-cell branching morphogenesis in the Drosophila trachea. Dev Biol 2018; 451:5-15. [PMID: 30529233 DOI: 10.1016/j.ydbio.2018.12.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2018] [Revised: 11/23/2018] [Accepted: 12/01/2018] [Indexed: 12/20/2022]
Abstract
The terminal cells of the tracheal epithelium in Drosophila melanogaster are one of the few known cell types that undergo subcellular morphogenesis to achieve a stable, branched shape. During the animal's larval stages, the cells repeatedly sprout new cytoplasmic processes. These grow very long, wrapping around target tissues to which the terminal cells adhere, and are hollowed by a gas-filled subcellular tube for oxygen delivery. Our understanding of this ramification process remains rudimentary. This review aims to provide a comprehensive summary of studies on terminal cells to date, and attempts to extrapolate how terminal branches might be formed based on the known genetic and molecular components. Next to this cell-intrinsic branching mechanism, we examine the extrinsic regulation of terminal branching by the target tissue and the animal's environment. Finally, we assess the degree of similarity between the patterns established by the branching programs of terminal cells and other branched cells and tissues from a mathematical and conceptual point of view.
Collapse
Affiliation(s)
- Benedikt T Best
- Director's Research Unit, European Molecular Biology Laboratory (EMBL), Meyerhofstr. 1, 69117 Heidelberg, Germany; Collaboration for Joint PhD degree from EMBL and Heidelberg University, Faculty of Biosciences, Germany
| |
Collapse
|
14
|
Goodhill GJ. Theoretical Models of Neural Development. iScience 2018; 8:183-199. [PMID: 30321813 PMCID: PMC6197653 DOI: 10.1016/j.isci.2018.09.017] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Revised: 08/06/2018] [Accepted: 09/19/2018] [Indexed: 12/22/2022] Open
Abstract
Constructing a functioning nervous system requires the precise orchestration of a vast array of mechanical, molecular, and neural-activity-dependent cues. Theoretical models can play a vital role in helping to frame quantitative issues, reveal mathematical commonalities between apparently diverse systems, identify what is and what is not possible in principle, and test the abilities of specific mechanisms to explain the data. This review focuses on the progress that has been made over the last decade in our theoretical understanding of neural development.
Collapse
Affiliation(s)
- Geoffrey J Goodhill
- Queensland Brain Institute and School of Mathematics and Physics, The University of Queensland, St Lucia, QLD 4072, Australia.
| |
Collapse
|
15
|
Plaud C, Joshi V, Kajevu N, Poüs C, Curmi PA, Burgo A. Functional differences of short and long isoforms of spastin harboring missense mutation. Dis Model Mech 2018; 11:11/9/dmm033704. [PMID: 30213879 PMCID: PMC6177001 DOI: 10.1242/dmm.033704] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Accepted: 07/03/2018] [Indexed: 01/05/2023] Open
Abstract
Mutations of the SPG4 (SPAST) gene encoding for spastin protein are the main causes of hereditary spastic paraplegia. Spastin binds to microtubules and severs them through the enzymatic activity of its AAA domain. Several missense mutations located in this domain lead to stable, nonsevering spastins that decorate a subset of microtubules, suggesting a possible negative gain-of-function mechanism for these mutants. Of the two main isoforms of spastin, only mutations of the long isoform, M1, are supposed to be involved in the onset of the pathology, leaving the role of the ubiquitously expressed shorter one, M87, not fully investigated and understood. Here, we show that two isoforms of spastin harboring the same missense mutation bind and bundle different subsets of microtubules in HeLa cells, and likely stabilize them by increasing the level of acetylated tubulin. However, only mutated M1 has the ability to interact with wild-type M1, and decorates a subset of perinuclear microtubules associated with the endoplasmic reticulum that display higher resistance to microtubule depolymerization and increased intracellular ionic strength, compared with those decorated by mutated M87. We further show that only mutated M1 decorates microtubules of proximal axons and dendrites, and strongly impairs axonal transport in cortical neurons through a mechanism likely independent of the microtubule-severing activity of this protein. Summary: Long and short isoforms of spastin (SPG4) harboring the same missense mutation show different intracellular localization, resistance to pharmacological treatments and effects on axonal cargo transport.
Collapse
Affiliation(s)
- Clément Plaud
- Structure and Activity of Normal and Pathological Biomolecules, INSERM U1204, Université Paris Saclay, Université d'Evry, 91000 Evry, France
| | - Vandana Joshi
- Structure and Activity of Normal and Pathological Biomolecules, INSERM U1204, Université Paris Saclay, Université d'Evry, 91000 Evry, France
| | - Natallie Kajevu
- Structure and Activity of Normal and Pathological Biomolecules, INSERM U1204, Université Paris Saclay, Université d'Evry, 91000 Evry, France
| | - Christian Poüs
- INSERM UMR-S 1193, Faculty of Pharmacy, Univirsité Paris-Sud, Université Paris-Saclay, 92296 Châtenay-Malabry, France
| | - Patrick A Curmi
- Structure and Activity of Normal and Pathological Biomolecules, INSERM U1204, Université Paris Saclay, Université d'Evry, 91000 Evry, France
| | - Andrea Burgo
- Structure and Activity of Normal and Pathological Biomolecules, INSERM U1204, Université Paris Saclay, Université d'Evry, 91000 Evry, France
| |
Collapse
|
16
|
Moffat JJ, Ka M, Jung EM, Smith AL, Kim WY. The role of MACF1 in nervous system development and maintenance. Semin Cell Dev Biol 2017; 69:9-17. [PMID: 28579452 DOI: 10.1016/j.semcdb.2017.05.020] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2017] [Revised: 05/12/2017] [Accepted: 05/29/2017] [Indexed: 12/14/2022]
Abstract
Microtubule-actin crosslinking factor 1 (MACF1), also known as actin crosslinking factor 7 (ACF7), is essential for proper modulation of actin and microtubule cytoskeletal networks. Most MACF1 isoforms are expressed broadly in the body, but some are exclusively found in the nervous system. Consequentially, MACF1 is integrally involved in multiple neural processes during development and in adulthood, including neurite outgrowth and neuronal migration. Furthermore, MACF1 participates in several signaling pathways, including the Wnt/β-catenin and GSK-3 signaling pathways, which regulate key cellular processes, such as proliferation and cell migration. Genetic mutation or dysregulation of the MACF1 gene has been associated with neurodevelopmental and neurodegenerative diseases, specifically schizophrenia and Parkinson's disease. MACF1 may also play a part in neuromuscular disorders and have a neuroprotective role in the optic nerve. In this review, the authors seek to synthesize recent findings relating to the roles of MACF1 within the nervous system and explore potential novel functions of MACF1 not yet examined.
Collapse
Affiliation(s)
- Jeffrey J Moffat
- Department of Developmental Neuroscience, Munroe-Meyer Institute, University of Nebraska Medical Center, Omaha, NE, USA.
| | - Minhan Ka
- Department of Developmental Neuroscience, Munroe-Meyer Institute, University of Nebraska Medical Center, Omaha, NE, USA.
| | - Eui-Man Jung
- Department of Developmental Neuroscience, Munroe-Meyer Institute, University of Nebraska Medical Center, Omaha, NE, USA.
| | - Amanda L Smith
- Department of Developmental Neuroscience, Munroe-Meyer Institute, University of Nebraska Medical Center, Omaha, NE, USA.
| | - Woo-Yang Kim
- Department of Developmental Neuroscience, Munroe-Meyer Institute, University of Nebraska Medical Center, Omaha, NE, USA.
| |
Collapse
|
17
|
Konietzny A, Bär J, Mikhaylova M. Dendritic Actin Cytoskeleton: Structure, Functions, and Regulations. Front Cell Neurosci 2017; 11:147. [PMID: 28572759 PMCID: PMC5435805 DOI: 10.3389/fncel.2017.00147] [Citation(s) in RCA: 94] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Accepted: 05/05/2017] [Indexed: 12/28/2022] Open
Abstract
Actin is a versatile and ubiquitous cytoskeletal protein that plays a major role in both the establishment and the maintenance of neuronal polarity. For a long time, the most prominent roles that were attributed to actin in neurons were the movement of growth cones, polarized cargo sorting at the axon initial segment, and the dynamic plasticity of dendritic spines, since those compartments contain large accumulations of actin filaments (F-actin) that can be readily visualized using electron- and fluorescence microscopy. With the development of super-resolution microscopy in the past few years, previously unknown structures of the actin cytoskeleton have been uncovered: a periodic lattice consisting of actin and spectrin seems to pervade not only the whole axon, but also dendrites and even the necks of dendritic spines. Apart from that striking feature, patches of F-actin and deep actin filament bundles have been described along the lengths of neurites. So far, research has been focused on the specific roles of actin in the axon, while it is becoming more and more apparent that in the dendrite, actin is not only confined to dendritic spines, but serves many additional and important functions. In this review, we focus on recent developments regarding the role of actin in dendrite morphology, the regulation of actin dynamics by internal and external factors, and the role of F-actin in dendritic protein trafficking.
Collapse
Affiliation(s)
- Anja Konietzny
- DFG Emmy Noether Group 'Neuronal Protein Transport,' Center for Molecular Neurobiology (ZMNH), University Medical Center Hamburg-EppendorfHamburg, Germany
| | - Julia Bär
- DFG Emmy Noether Group 'Neuronal Protein Transport,' Center for Molecular Neurobiology (ZMNH), University Medical Center Hamburg-EppendorfHamburg, Germany
| | - Marina Mikhaylova
- DFG Emmy Noether Group 'Neuronal Protein Transport,' Center for Molecular Neurobiology (ZMNH), University Medical Center Hamburg-EppendorfHamburg, Germany
| |
Collapse
|
18
|
Blumenstock S, Rodrigues EF, Peters F, Blazquez-Llorca L, Schmidt F, Giese A, Herms J. Seeding and transgenic overexpression of alpha-synuclein triggers dendritic spine pathology in the neocortex. EMBO Mol Med 2017; 9:716-731. [PMID: 28351932 PMCID: PMC5412764 DOI: 10.15252/emmm.201607305] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2016] [Revised: 02/27/2017] [Accepted: 03/02/2017] [Indexed: 12/22/2022] Open
Abstract
Although misfolded and aggregated α-synuclein (α-syn) is recognized in the disease progression of synucleinopathies, its role in the impairment of cortical circuitries and synaptic plasticity remains incompletely understood. We investigated how α-synuclein accumulation affects synaptic plasticity in the mouse somatosensory cortex using two distinct approaches. Long-term in vivo imaging of apical dendrites was performed in mice overexpressing wild-type human α-synuclein. Additionally, intracranial injection of preformed α-synuclein fibrils was performed to induce cortical α-syn pathology. We find that α-synuclein overexpressing mice show decreased spine density and abnormalities in spine dynamics in an age-dependent manner. We also provide evidence for the detrimental effects of seeded α-synuclein aggregates on dendritic architecture. We observed spine loss as well as dystrophic deformation of dendritic shafts in layer V pyramidal neurons. Our results provide a link to the pathophysiology underlying dementia associated with synucleinopathies and may enable the evaluation of potential drug candidates on dendritic spine pathology in vivo.
Collapse
Affiliation(s)
- Sonja Blumenstock
- Center for Neuropathology and Prion Research, Ludwig-Maximilians University, Munich, Germany
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
- Munich Cluster of Systems Neurology (SyNergy), Munich, Germany
| | - Eva F Rodrigues
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
| | - Finn Peters
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
| | - Lidia Blazquez-Llorca
- Departamento de Psicobiología, Universidad Nacional de Educación a Distancia (UNED), Madrid, Spain
| | - Felix Schmidt
- Center for Neuropathology and Prion Research, Ludwig-Maximilians University, Munich, Germany
- Department of Neurology, Ludwig-Maximilians University, Munich, Germany
| | - Armin Giese
- Center for Neuropathology and Prion Research, Ludwig-Maximilians University, Munich, Germany
| | - Jochen Herms
- Center for Neuropathology and Prion Research, Ludwig-Maximilians University, Munich, Germany
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
- Munich Cluster of Systems Neurology (SyNergy), Munich, Germany
| |
Collapse
|
19
|
Plaud C, Joshi V, Marinello M, Pastré D, Galli T, Curmi PA, Burgo A. Spastin regulates VAMP7-containing vesicles trafficking in cortical neurons. Biochim Biophys Acta Mol Basis Dis 2017; 1863:1666-1677. [PMID: 28392418 DOI: 10.1016/j.bbadis.2017.04.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2016] [Revised: 04/04/2017] [Accepted: 04/06/2017] [Indexed: 01/03/2023]
Abstract
Alteration of axonal transport has emerged as a common precipitating factor in several neurodegenerative disorders including Human Spastic Paraplegia (HSP). Mutations of the SPAST (SPG4) gene coding for the spastin protein account for 40% of all autosomal dominant uncomplicated HSP. By cleaving microtubules, spastin regulates several cellular processes depending on microtubule dynamics including intracellular membrane trafficking. Axonal transport is fundamental for the viability of motor neurons which often have very long axons and thus require efficient communication between the cell body and its periphery. Here we found that the anterograde velocity of VAMP7 vesicles, but not that of VAMP2, two vesicular-SNARE proteins implicated in neuronal development, is enhanced in SPG4-KO neurons. We showed that this effect is associated with a slight increase of the level of acetylated tubulin in SPG4-KO neurons and correlates with an enhanced activity of kinesin-1 motors. Interestingly, we demonstrated that an artificial increase of acetylated tubulin by drugs reproduces the effect of Spastin KO on VAMP7 axonal dynamics but also increased its retrograde velocity. Finally, we investigated the effect of microtubule targeting agents which rescue axonal swellings, on VAMP7 and microtubule dynamics. Our results suggest that microtubule stabilizing agents, such as taxol, may prevent the morphological defects observed in SPG4-KO neurons not simply by restoring the altered anterograde transport to basal levels but rather by increasing the retrograde velocity of axonal cargoes.
Collapse
Affiliation(s)
- C Plaud
- Structure and Activity of Normal and Pathological Biomolecules, INSERM U1204, Université Paris-Saclay, Université d' Evry, France
| | - V Joshi
- Structure and Activity of Normal and Pathological Biomolecules, INSERM U1204, Université Paris-Saclay, Université d' Evry, France
| | - M Marinello
- Structure and Activity of Normal and Pathological Biomolecules, INSERM U1204, Université Paris-Saclay, Université d' Evry, France
| | - D Pastré
- Structure and Activity of Normal and Pathological Biomolecules, INSERM U1204, Université Paris-Saclay, Université d' Evry, France
| | - T Galli
- Inserm URL U950, Institut Jacques Monod, France
| | - P A Curmi
- Structure and Activity of Normal and Pathological Biomolecules, INSERM U1204, Université Paris-Saclay, Université d' Evry, France
| | - A Burgo
- Structure and Activity of Normal and Pathological Biomolecules, INSERM U1204, Université Paris-Saclay, Université d' Evry, France.
| |
Collapse
|
20
|
Harkin LF, Lindsay SJ, Xu Y, Alzu'bi A, Ferrara A, Gullon EA, James OG, Clowry GJ. Neurexins 1-3 Each Have a Distinct Pattern of Expression in the Early Developing Human Cerebral Cortex. Cereb Cortex 2017; 27:216-232. [PMID: 28013231 PMCID: PMC5654756 DOI: 10.1093/cercor/bhw394] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2016] [Revised: 11/16/2016] [Accepted: 12/02/2016] [Indexed: 12/17/2022] Open
Abstract
Neurexins (NRXNs) are presynaptic terminal proteins and candidate neurodevelopmental disorder susceptibility genes; mutations presumably upset synaptic stabilization and function. However, analysis of human cortical tissue samples by RNAseq and quantitative real-time PCR at 8-12 postconceptional weeks, prior to extensive synapse formation, showed expression of all three NRXNs as well as several potential binding partners. However, the levels of expression were not identical; NRXN1 increased with age and NRXN2 levels were consistently higher than for NRXN3. Immunohistochemistry for each NRXN also revealed different expression patterns at this stage of development. NRXN1 and NRXN3 immunoreactivity was generally strongest in the cortical plate and increased in the ventricular zone with age, but was weak in the synaptogenic presubplate (pSP) and marginal zone. On the other hand, NRXN2 colocalized with synaptophysin in neurites of the pSP, but especially with GAP43 and CASK in growing axons of the intermediate zone. Alternative splicing modifies the role of NRXNs and we found evidence by RNAseq for exon skipping at splice site 4 and concomitant expression of KHDBRS proteins which control this splicing. NRXN2 may play a part in early cortical synaptogenesis, but NRXNs could have diverse roles in development including axon guidance, and intercellular communication between proliferating cells and/or migrating neurons.
Collapse
Affiliation(s)
- Lauren F Harkin
- Institute of Neuroscience, Newcastle University, Framlington Place, Newcastle upon Tyne NE2 4HH, UK
- Institute of Genetic Medicine, Newcastle University, International Centre for Life, Parkway Drive, Newcastle upon Tyne NE1 3BZ, UK
- Present address: School of Healthcare Science, Manchester Metropolitan University, Manchester, M1 5GD, UK
| | - Susan J Lindsay
- Institute of Genetic Medicine, Newcastle University, International Centre for Life, Parkway Drive, Newcastle upon Tyne NE1 3BZ, UK
| | - Yaobo Xu
- Institute of Genetic Medicine, Newcastle University, International Centre for Life, Parkway Drive, Newcastle upon Tyne NE1 3BZ, UK
- Present address: Wellcome Trust, Sanger Institute, Cambridge, CB10 1SA, UK
| | - Ayman Alzu'bi
- Institute of Neuroscience, Newcastle University, Framlington Place, Newcastle upon Tyne NE2 4HH, UK
- Institute of Genetic Medicine, Newcastle University, International Centre for Life, Parkway Drive, Newcastle upon Tyne NE1 3BZ, UK
| | - Alexandra Ferrara
- Institute of Neuroscience, Newcastle University, Framlington Place, Newcastle upon Tyne NE2 4HH, UK
- Institute of Genetic Medicine, Newcastle University, International Centre for Life, Parkway Drive, Newcastle upon Tyne NE1 3BZ, UK
| | - Emily A Gullon
- Institute of Neuroscience, Newcastle University, Framlington Place, Newcastle upon Tyne NE2 4HH, UK
- Institute of Genetic Medicine, Newcastle University, International Centre for Life, Parkway Drive, Newcastle upon Tyne NE1 3BZ, UK
| | - Owen G James
- Institute of Neuroscience, Newcastle University, Framlington Place, Newcastle upon Tyne NE2 4HH, UK
- Institute of Genetic Medicine, Newcastle University, International Centre for Life, Parkway Drive, Newcastle upon Tyne NE1 3BZ, UK
- Present address: MRC Centre for Regenerative Medicine, University of Edinburgh, Edinburgh, EH16 4UU, UK
| | - Gavin J Clowry
- Institute of Neuroscience, Newcastle University, Framlington Place, Newcastle upon Tyne NE2 4HH, UK
| |
Collapse
|
21
|
Khetan N, Athale CA. A Motor-Gradient and Clustering Model of the Centripetal Motility of MTOCs in Meiosis I of Mouse Oocytes. PLoS Comput Biol 2016; 12:e1005102. [PMID: 27706163 PMCID: PMC5051731 DOI: 10.1371/journal.pcbi.1005102] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2015] [Accepted: 08/11/2016] [Indexed: 12/31/2022] Open
Abstract
Asters nucleated by Microtubule (MT) organizing centers (MTOCs) converge on chromosomes during spindle assembly in mouse oocytes undergoing meiosis I. Time-lapse imaging suggests that this centripetal motion is driven by a biased 'search-and-capture' mechanism. Here, we develop a model of a random walk in a drift field to test the nature of the bias and the spatio-temporal dynamics of the search process. The model is used to optimize the spatial field of drift in simulations, by comparison to experimental motility statistics. In a second step, this optimized gradient is used to determine the location of immobilized dynein motors and MT polymerization parameters, since these are hypothesized to generate the gradient of forces needed to move MTOCs. We compare these scenarios to self-organized mechanisms by which asters have been hypothesized to find the cell-center- MT pushing at the cell-boundary and clustering motor complexes. By minimizing the error between simulation outputs and experiments, we find a model of "pulling" by a gradient of dynein motors alone can drive the centripetal motility. Interestingly, models of passive MT based "pushing" at the cortex, clustering by cross-linking motors and MT-dynamic instability gradients alone, by themselves do not result in the observed motility. The model predicts the sensitivity of the results to motor density and stall force, but not MTs per aster. A hybrid model combining a chromatin-centered immobilized dynein gradient, diffusible minus-end directed clustering motors and pushing at the cell cortex, is required to comprehensively explain the available data. The model makes experimentally testable predictions of a spatial bias and self-organized mechanisms by which MT asters can find the center of a large cell.
Collapse
Affiliation(s)
- Neha Khetan
- Division of Biology, Indian Institute of Science Education and Research (IISER) Pune, Pune, Maharashtra, India
| | - Chaitanya A. Athale
- Division of Biology, Indian Institute of Science Education and Research (IISER) Pune, Pune, Maharashtra, India
| |
Collapse
|
22
|
Asymptotic Analysis of First Passage Time Problems Inspired by Ecology. Bull Math Biol 2014; 77:83-125. [DOI: 10.1007/s11538-014-0053-5] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2014] [Accepted: 12/08/2014] [Indexed: 01/31/2023]
|
23
|
Srinivasan P, Zervantonakis IK, Kothapalli CR. Synergistic effects of 3D ECM and chemogradients on neurite outgrowth and guidance: a simple modeling and microfluidic framework. PLoS One 2014; 9:e99640. [PMID: 24914812 PMCID: PMC4051856 DOI: 10.1371/journal.pone.0099640] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2013] [Accepted: 05/17/2014] [Indexed: 12/29/2022] Open
Abstract
During nervous system development, numerous cues within the extracellular matrix microenvironment (ECM) guide the growing neurites along specific pathways to reach their intended targets. Neurite motility is controlled by extracellular signal sensing through the growth cone at the neurite tip, including chemoattractive and repulsive cues. However, it is difficult to regenerate and restore neurite tracts, lost or degraded due to an injury or disease, in the adult central nervous system. Thus, it is important to evaluate the dynamic interplay between ECM and the concentration gradients of these cues, which would elicit robust neuritogenesis. Such information is critical in understanding the processes involved in developmental biology, and in developing high-fidelity neurite regenerative strategies post-injury, and in drug discovery and targeted therapeutics for neurodegenerative conditions. Here, we quantitatively investigated this relationship using a combination of mathematical modeling and in vitro experiments, and determined the synergistic role of guidance cues and ECM on neurite outgrowth and turning. Using a biomimetic microfluidic system, we have shown that cortical neurite outgrowth and turning under chemogradients (IGF-1 or BDNF) within 3D scaffolds is highly regulated by the source concentration of the guidance cue and the physical characteristics of the scaffold. A mechanistic-driven partial differential equation model of neurite outgrowth has been proposed, which could also be used prospectively as a predictive tool. The parameters for the chemotaxis term in the model are determined from the experimental data using our microfluidic assay. Resulting model simulations demonstrate how neurite outgrowth was critically influenced by the experimental variables, which was further supported by experimental data on cell-surface-receptor expressions. The model results are in excellent agreement with the experimental findings. This integrated approach represents a framework for further elucidation of biological mechanisms underlying neuronal responses of specialized cell types, during various stages of development, and under healthy or diseased conditions.
Collapse
Affiliation(s)
- Parthasarathy Srinivasan
- Department of Mathematics, Cleveland State University, Cleveland, Ohio, United States of America
| | - Ioannis K. Zervantonakis
- Department of Cell Biology, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Chandrasekhar R. Kothapalli
- Department of Chemical and Biomedical Engineering, Cleveland State University, Cleveland, Ohio, United States of America
- * E-mail:
| |
Collapse
|
24
|
Mironov VI, Romanov AS, Simonov AY, Vedunova MV, Kazantsev VB. Oscillations in a neurite growth model with extracellular feedback. Neurosci Lett 2014; 570:16-20. [PMID: 24686176 DOI: 10.1016/j.neulet.2014.03.041] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2013] [Revised: 03/03/2014] [Accepted: 03/14/2014] [Indexed: 10/25/2022]
Abstract
We consider the influence of extracellular signalling on neurite elongation in a model of neurite growth mediated by building proteins (e.g., tubulin). The tubulin production dynamics were supplied by a function describing the influence of extracellular signalling, which can promote or depress neurite elongation. We found that this extracellular feedback could generate neurite length oscillations consisting of a periodic sequence of elongations and retractions. The oscillations prevent further outgrowth of the neurite, which becomes trapped in the non-uniform extracellular field. We analysed the characteristics of the elongation process for different distributions of attracting and repelling sources of the extracellular signalling molecules. The model predicts three different scenarios of neurite development in the extracellular field, including monotonic and oscillatory outgrowth, localised limit cycle oscillations and complete growth depression.
Collapse
Affiliation(s)
- V I Mironov
- Nizhny Novgorod Neuroscience Centre, Lobachevsky State University of Nizhny Novgorod, Nizhny Novgorod, Russia.
| | - A S Romanov
- Nizhny Novgorod Neuroscience Centre, Lobachevsky State University of Nizhny Novgorod, Nizhny Novgorod, Russia
| | - A Yu Simonov
- Nizhny Novgorod Neuroscience Centre, Lobachevsky State University of Nizhny Novgorod, Nizhny Novgorod, Russia
| | - M V Vedunova
- Nizhny Novgorod Neuroscience Centre, Lobachevsky State University of Nizhny Novgorod, Nizhny Novgorod, Russia
| | - V B Kazantsev
- Nizhny Novgorod Neuroscience Centre, Lobachevsky State University of Nizhny Novgorod, Nizhny Novgorod, Russia; Laboratory of Nonlinear Dynamics of Living Systems, Institute of Applied Physics of Russian Academy of Science, Nizhny Novgorod, Russia
| |
Collapse
|
25
|
Neuner J, Ovsepian SV, Dorostkar M, Filser S, Gupta A, Michalakis S, Biel M, Herms J. Pathological α-synuclein impairs adult-born granule cell development and functional integration in the olfactory bulb. Nat Commun 2014; 5:3915. [PMID: 24867427 PMCID: PMC4050256 DOI: 10.1038/ncomms4915] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2013] [Accepted: 04/18/2014] [Indexed: 12/21/2022] Open
Abstract
Although the role of noxious α-synuclein (α-SYN) in the degeneration of midbrain dopaminergic
neurons and associated motor deficits of Parkinson’s disease is
recognized, its impact on non-motor brain circuits and related symptoms remains
elusive. Through combining in vivo two-photon imaging with time-coded
labelling of neurons in the olfactory bulb of A30P α-SYN transgenic mice, we show impaired growth and
branching of dendrites of adult-born granule cells (GCs), with reduced gain and
plasticity of dendritic spines. The spine impairments are especially pronounced
during the critical phase of integration of new neurons into existing circuits.
Functionally, retarded dendritic expansion translates into reduced electrical
capacitance with enhanced intrinsic excitability and responsiveness of GCs to
depolarizing inputs, while the spine loss correlates with decreased frequency of
AMPA-mediated miniature EPSCs.
Changes described here are expected to interfere with the functional integration and
survival of new GCs into bulbar networks, contributing towards olfactory deficits
and related behavioural impairments. Aggregation-prone forms of α-synuclein lead to
degeneration of midbrain dopaminergic neurons, as seen in Parkinson’s
disease, but less is known about the effects that the noxious protein has in other brain
regions. Here, the authors investigate the effect of a pathological form of
α-synuclein on the functional integration of new neurons into the olfactory
bulb of adult mice.
Collapse
Affiliation(s)
- Johanna Neuner
- Center for Neuropathology and Prion Research, Department for Translationsal Brain Research, Ludwig Maximilian University, Feodor-Lynen-Strassee 23, Munich 81377, Germany
| | - Saak V Ovsepian
- German Center for Neurodegeneratione Diseases (DZNE), Department for Translational Brain Research, Feodor-Lynen-Strasse 23, Munich 81377, Germany
| | - Mario Dorostkar
- Center for Neuropathology and Prion Research, Department for Translationsal Brain Research, Ludwig Maximilian University, Feodor-Lynen-Strassee 23, Munich 81377, Germany
| | - Severin Filser
- German Center for Neurodegeneratione Diseases (DZNE), Department for Translational Brain Research, Feodor-Lynen-Strasse 23, Munich 81377, Germany
| | - Aayush Gupta
- Center for Neuropathology and Prion Research, Department for Translationsal Brain Research, Ludwig Maximilian University, Feodor-Lynen-Strassee 23, Munich 81377, Germany
| | - Stylianos Michalakis
- Center for Integrated Protein Science Munich, (CiPSM) and Department of Pharmacy-Center for Drug Research, Ludwig Maximilian University, Butenandtstrasse 5-13, Munich 81377, Germany
| | - Martin Biel
- Center for Integrated Protein Science Munich, (CiPSM) and Department of Pharmacy-Center for Drug Research, Ludwig Maximilian University, Butenandtstrasse 5-13, Munich 81377, Germany
| | - Jochen Herms
- 1] German Center for Neurodegeneratione Diseases (DZNE), Department for Translational Brain Research, Feodor-Lynen-Strasse 23, Munich 81377, Germany [2] Munich Cluster of Systems Neurology (SyNergy), Ludwig Maximilian University, Feodor-Lynen-Strasse 23, Munich 81377, Germany
| |
Collapse
|
26
|
Hjorth JJJ, van Pelt J, Mansvelder HD, van Ooyen A. Competitive dynamics during resource-driven neurite outgrowth. PLoS One 2014; 9:e86741. [PMID: 24498280 PMCID: PMC3911915 DOI: 10.1371/journal.pone.0086741] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2013] [Accepted: 12/17/2013] [Indexed: 11/18/2022] Open
Abstract
Neurons form networks by growing out neurites that synaptically connect to other neurons. During this process, neurites develop complex branched trees. Interestingly, the outgrowth of neurite branches is often accompanied by the simultaneous withdrawal of other branches belonging to the same tree. This apparent competitive outgrowth between branches of the same neuron is relevant for the formation of synaptic connectivity, but the underlying mechanisms are unknown. An essential component of neurites is the cytoskeleton of microtubules, long polymers of tubulin dimers running throughout the entire neurite. To investigate whether competition between neurites can emerge from the dynamics of a resource such as tubulin, we developed a multi-compartmental model of neurite growth. In the model, tubulin is produced in the soma and transported by diffusion and active transport to the growth cones at the tip of the neurites, where it is assembled into microtubules to elongate the neurite. Just as in experimental studies, we find that the outgrowth of a neurite branch can lead to the simultaneous retraction of its neighboring branches. We show that these competitive interactions occur in simple neurite morphologies as well as in complex neurite arborizations and that in developing neurons competition for a growth resource such as tubulin can account for the differential outgrowth of neurite branches. The model predicts that competition between neurite branches decreases with path distance between growth cones, increases with path distance from growth cone to soma, and decreases with a higher rate of active transport. Together, our results suggest that competition between outgrowing neurites can already emerge from relatively simple and basic dynamics of a growth resource. Our findings point to the need to test the model predictions and to determine, by monitoring tubulin concentrations in outgrowing neurons, whether tubulin is the resource for which neurites compete.
Collapse
Affiliation(s)
- J J Johannes Hjorth
- Department of Integrative Neurophysiology, Center for Neurogenomics and Cognitive Research, VU University Amsterdam, Amsterdam, The Netherlands
| | - Jaap van Pelt
- Department of Integrative Neurophysiology, Center for Neurogenomics and Cognitive Research, VU University Amsterdam, Amsterdam, The Netherlands
| | - Huibert D Mansvelder
- Department of Integrative Neurophysiology, Center for Neurogenomics and Cognitive Research, VU University Amsterdam, Amsterdam, The Netherlands
| | - Arjen van Ooyen
- Department of Integrative Neurophysiology, Center for Neurogenomics and Cognitive Research, VU University Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
27
|
Holcman D, Schuss Z. Control of flux by narrow passages and hidden targets in cellular biology. REPORTS ON PROGRESS IN PHYSICS. PHYSICAL SOCIETY (GREAT BRITAIN) 2013; 76:074601. [PMID: 23787818 DOI: 10.1088/0034-4885/76/7/074601] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Critical biological processes, such as synaptic plasticity and transmission, activation of genes by transcription factors, or double-strained DNA break repair, are controlled by diffusion in structures that have both large and small spatial scales. These may be small binding sites inside or on the surface of the cell, or narrow passages between subcellular compartments. The great disparity in spatial scales is the key to controlling cell function by structure. We report here recent progress on resolving analytical and numerical difficulties in extracting properties from experimental data, from biophysical models, and from Brownian dynamics simulations of diffusion in multi-scale structures. This progress is achieved by developing an analytical approximation methodology for solving the model equations. The reported results are applied to analysis and simulations of subcellular processes and to the quantification of their biological functions.
Collapse
Affiliation(s)
- D Holcman
- Group of Applied Mathematics and Computational Biology, IBENS, Ecole Normale Supérieure, 46 rue d'Ulm 75005 Paris, France.
| | | |
Collapse
|
28
|
Optically triggering spatiotemporally confined GPCR activity in a cell and programming neurite initiation and extension. Proc Natl Acad Sci U S A 2013; 110:E1565-74. [PMID: 23479634 DOI: 10.1073/pnas.1220697110] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
G-protein-coupled receptor (GPCR) activity gradients evoke important cell behavior but there is a dearth of methods to induce such asymmetric signaling in a cell. Here we achieved reversible, rapidly switchable patterns of spatiotemporally restricted GPCR activity in a single cell. We recruited properties of nonrhodopsin opsins--rapid deactivation, distinct spectral tuning, and resistance to bleaching--to activate native Gi, Gq, or Gs signaling in selected regions of a cell. Optical inputs were designed to spatiotemporally control levels of second messengers, IP3, phosphatidylinositol (3,4,5)-triphosphate, and cAMP in a cell. Spectrally selective imaging was accomplished to simultaneously monitor optically evoked molecular and cellular response dynamics. We show that localized optical activation of an opsin-based trigger can induce neurite initiation, phosphatidylinositol (3,4,5)-triphosphate increase, and actin remodeling. Serial optical inputs to neurite tips can refashion early neuron differentiation. Methods here can be widely applied to program GPCR-mediated cell behaviors.
Collapse
|
29
|
Liu G, Wang P, Li X, Li Y, Xu S, Uéda K, Chan P, Yu S. Alpha-synuclein promotes early neurite outgrowth in cultured primary neurons. J Neural Transm (Vienna) 2013; 120:1331-43. [PMID: 23443897 DOI: 10.1007/s00702-013-0999-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2012] [Accepted: 02/09/2013] [Indexed: 12/28/2022]
Abstract
We previously showed that alpha-synuclein (α-Syn), a protein implicated in the pathogenesis of several neurodegenerative diseases, is a microtubule-associated protein (MAP), facilitating the polymerization of tubulin into microtubules. Therefore, we hypothesized that α-Syn might promote neurite outgrowth, a process that requires microtubule assembly. To test this hypothesis, recombinant human wild type (WT) and mutant (A30P and A53T) α-Syn proteins were added to cultured primary rat cortical neurons, and their effects on early neurite outgrowth were observed. The WT and mutant α-Syn proteins entered the neurons after 1-4 h of incubation. However, a significant increase in neurite outgrowth was observed only in neurons treated with WT α-Syn. MES23.5 dopaminergic neuronal cells overexpressing WT α-Syn also exhibited enhanced neurite outgrowth, indicating that the ability of α-Syn to promote neurite outgrowth was not due to a direct action on the cell membrane or by the membrane translocation process. Co-immunoprecipitation demonstrated that the recombinant human α-Syn was bound to tubulin. In addition, the α-Syn-treated neurons displayed increased levels of polymerized tubulin. Because α-Syn's MAP functionality is mediated by specific domains, we generated N-terminal (a.a. 1-65), non-amyloid-β (non-Aβ) component (NAC) (a.a. 61-95) and C-terminal (a.a. 96-140) fragments and added them to the primary neurons. After 1-4 h of incubation, the various α-Syn fragments had entered the neurons. However, only the NAC and C-terminal fragments, which have been previously shown to mediate MAP functionality, promoted neurite outgrowth. These results suggest that α-Syn promotes neurite outgrowth by facilitating the polymerization of tubulin into microtubules.
Collapse
Affiliation(s)
- Guangwei Liu
- Department of Neurobiology, Beijing Institute of Geriatrics, Xuanwu Hospital of China Capital Medical University, No. 45 Changchun Street, Beijing, 100053, China
| | | | | | | | | | | | | | | |
Collapse
|
30
|
Marten F, Tsaneva-Atanasova K, Giuggioli L. Bacterial secretion and the role of diffusive and subdiffusive first passage processes. PLoS One 2012; 7:e41421. [PMID: 22879888 PMCID: PMC3412870 DOI: 10.1371/journal.pone.0041421] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2012] [Accepted: 06/21/2012] [Indexed: 11/19/2022] Open
Abstract
By funneling protein effectors through needle complexes located on the cellular membrane, bacteria are able to infect host cells during type III secretion events. The spatio-temporal mechanisms through which these events occur are however not fully understood, due in part to the inherent challenges in tracking single molecules moving within an intracellular medium. As a result, theoretical predictions of secretion times are still lacking. Here we provide a model that quantifies, depending on the transport characteristics within bacterial cytoplasm, the amount of time for a protein effector to reach either of the available needle complexes. Using parameters from Shigella flexneri we are able to test the role that translocators might have to activate the needle complexes and offer semi-quantitative explanations of recent experimental observations.
Collapse
Affiliation(s)
- Frank Marten
- Department of Engineering Mathematics, University of Bristol, Bristol, United Kingdom
| | | | - Luca Giuggioli
- Department of Engineering Mathematics, University of Bristol, Bristol, United Kingdom
- School of Biological Sciences, University of Bristol, Bristol, United Kingdom
- Bristol Centre for Complexity Sciences, University of Bristol, Bristol, United Kingdom
- * E-mail:
| |
Collapse
|
31
|
|
32
|
van Ooyen A. Using theoretical models to analyse neural development. Nat Rev Neurosci 2011; 12:311-26. [DOI: 10.1038/nrn3031] [Citation(s) in RCA: 95] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
33
|
Itofusa R, Kamiguchi H. Polarizing membrane dynamics and adhesion for growth cone navigation. Mol Cell Neurosci 2011; 48:332-8. [PMID: 21459144 DOI: 10.1016/j.mcn.2011.03.007] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2011] [Revised: 03/23/2011] [Accepted: 03/24/2011] [Indexed: 10/18/2022] Open
Abstract
Neuronal network formation relies on the motile behavior of growth cones at the tip of navigating axons. Accumulating evidence indicates that growth cone motility requires spatially controlled endocytosis and exocytosis that can redistribute bulk membrane and functional cargos such as cell adhesion molecules. For axon elongation, the growth cone recycles cell adhesion molecules from its rear to its leading front through endosomes, thereby polarizing growth cone adhesiveness along the axis of migration direction. In response to extracellular guidance cues, the growth cone turns by retrieving membrane components from the retractive side or by supplying them to the side facing the new direction. We propose that polarized membrane trafficking creates adhesion gradients along and across the front-to-rear axis of growth cones that are essential for axon elongation and turning, respectively. This review will examine how growth cone adhesiveness can be patterned by spatially coordinated endocytosis and exocytosis of cell adhesion molecules. This article is part of a Special Issue entitled 'Neuronal Function'.
Collapse
Affiliation(s)
- Rurika Itofusa
- Laboratory for Neuronal Growth Mechanisms, RIKEN Brain Science Institute, 2–1 Hirosawa, Wako, Saitama 351–0198, Japan
| | | |
Collapse
|
34
|
Tsaneva-Atanasova K, Osinga HM, Tabak J, Pedersen MG. Modeling mechanisms of cell secretion. Acta Biotheor 2010; 58:315-27. [PMID: 20661627 DOI: 10.1007/s10441-010-9115-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2010] [Accepted: 07/05/2010] [Indexed: 11/25/2022]
Abstract
Secretion is a fundamental cellular process involving the regulated release of intracellular products from cells. Physiological functions such as neurotransmission, or the release of hormones and digestive enzymes, are all governed by cell secretion. Anomalies in the processes involved in secretion contribute to the development and progression of diseases such as diabetes and other hormonal disorders. To unravel the mechanisms that govern such diseases, it is essential to understand how hormones, growth factors and neurotransmitters are synthesized and processed, and how their signals are recognized, amplified and transmitted by intracellular signaling pathways in the target cells. Here, we discuss diverse aspects of the detailed mechanisms involved in secretion based on mathematical models. The models range from stochastic ones describing the trafficking of secretory vesicles to deterministic ones investigating the regulation of cellular processes that underlie hormonal secretion. In all cases, the models are closely related to experimental results and suggest theoretical predictions for the secretion mechanisms.
Collapse
Affiliation(s)
- Krasimira Tsaneva-Atanasova
- Bristol Centre for Applied Nonlinear Mathematics, Department of Engineering Mathematics, University of Bristol, Queen's Building, University Walk, Bristol BS8 1TR, UK.
| | | | | | | |
Collapse
|
35
|
Wissner-Gross ZD, Scott MA, Ku D, Ramaswamy P, Fatih Yanik M. Large-scale analysis of neurite growth dynamics on micropatterned substrates. Integr Biol (Camb) 2010; 3:65-74. [PMID: 20976322 DOI: 10.1039/c0ib00058b] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
During both development and regeneration of the nervous system, neurons display complex growth dynamics, and several neurites compete to become the neuron's single axon. Numerous mathematical and biophysical models have been proposed to explain this competition, which remain experimentally unverified. Large-scale, precise, and repeatable measurements of neurite dynamics have been difficult to perform, since neurons have varying numbers of neurites, which themselves have complex morphologies. To overcome these challenges using a minimal number of primary neurons, we generated repeatable neuronal morphologies on a large scale using laser-patterned micron-wide stripes of adhesive proteins on an otherwise highly non-adherent substrate. By analyzing thousands of quantitative time-lapse measurements of highly reproducible neurite growth dynamics, we show that total neurite growth accelerates until neurons polarize, that immature neurites compete even at very short lengths, and that neuronal polarity exhibits a distinct transition as neurites grow. Proposed neurite growth models agree only partially with our experimental observations. We further show that simple yet specific modifications can significantly improve these models, but still do not fully predict the complex neurite growth behavior. Our high-content analysis puts significant and nontrivial constraints on possible mechanistic models of neurite growth and specification. The methodology presented here could also be employed in large-scale chemical and target-based screens on a variety of complex and subtle phenotypes for therapeutic discoveries using minimal numbers of primary neurons.
Collapse
|
36
|
Gupton SL, Gertler FB. Integrin signaling switches the cytoskeletal and exocytic machinery that drives neuritogenesis. Dev Cell 2010; 18:725-36. [PMID: 20493807 DOI: 10.1016/j.devcel.2010.02.017] [Citation(s) in RCA: 143] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2009] [Revised: 01/14/2010] [Accepted: 02/25/2010] [Indexed: 10/25/2022]
Abstract
Neurons establish their unique morphology by elaborating multiple neurites that subsequently form axons and dendrites. Neurite initiation entails significant surface area expansion, necessitating addition to the plasma membrane. We report that regulated membrane delivery coordinated with the actin cytoskeleton is crucial for neuritogenesis and identify two independent pathways that use distinct exocytic and cytoskeletal machinery to drive neuritogenesis. One pathway uses Ena/VASP-regulated actin dynamics coordinated with VAMP2-mediated exocytosis and involves a novel role for Ena/VASP in exocytosis. A second mechanism occurs in the presence of laminin through integrin-dependent activation of FAK and src and uses coordinated activity of the Arp2/3 complex and VAMP7-mediated exocytosis. We conclude that neuritogenesis can be driven by two distinct pathways that differentially coordinate cytoskeletal dynamics and exocytosis. These regulated changes and coordination of cytoskeletal and exocytic machinery may be used in other physiological contexts involving cell motility and morphogenesis.
Collapse
Affiliation(s)
- Stephanie L Gupton
- The Koch Institute for Integrative Cancer Research at MIT, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | | |
Collapse
|
37
|
Schulte C, Racchetti G, D’Alessandro R, Meldolesi J. A New Form of Neurite Outgrowth Sustained by the Exocytosis of Enlargeosomes Expressed under the Control of REST. Traffic 2010; 11:1304-14. [DOI: 10.1111/j.1600-0854.2010.01095.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
38
|
Meldolesi J. Neurite outgrowth: this process, first discovered by Santiago Ramon y Cajal, is sustained by the exocytosis of two distinct types of vesicles. ACTA ACUST UNITED AC 2010; 66:246-55. [PMID: 20600308 DOI: 10.1016/j.brainresrev.2010.06.004] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2010] [Revised: 05/31/2010] [Accepted: 06/14/2010] [Indexed: 01/26/2023]
Abstract
Neurite outgrowth is a fundamental process in the differentiation of neurons. The first, seminal study documenting the generation of "appendages" (now known as filopodia and lamellipodia) on the "cones d'accroissement," the specialized growth cones at the tips of neurites, was reported by Cajal still in the XIXth century, investigating chicken neurons embryos stained by the Golgi's reazione nera. Since then, studies have continued using, in addition to brain tissues, powerful in vitro models, i.e. primary cultures of pyramidal neurons from the hippocampus and neurosecretory cell lines, in particular PC12 cells. These studies have documented that neuronal neurites, upon sprouting from the cell body, give rise to both axons and dendrites. The specificity of these differentiated neurites depends on the diffusion barrier established at the initial segment of the axon and on the specialized domains, spines and presynaptic boutons, assembled around complexes of scaffold proteins. The two main, coordinate mechanisms that support neurite outgrowth are (a) the rearrangement of the cytoskeleton and (b) the expansion of the plasma membrane due to the exo/endocytosis of specific vesicles, distinct from those filled with neurotransmitters (clear and dense-core vesicles). The latter process is the main task of this review. In axons the surface-expanding exocytoses are concentrated at the growth cones; in dendrites they may be more distributed along the shaft. At least two types of exocytic vesicles appear to be involved, the enlargeosomes, positive for VAMP4, during early phases of development, and Ti-VAMP-positive vesicles later on. Outgrowth studies, that are now intensely pursued, have already yielded results of great importance in brain cell biology and function, and are playing an increasing role in pathology and medicine.
Collapse
Affiliation(s)
- Jacopo Meldolesi
- Department of Neuroscience, Vita-Salute San Raffaele University and San Raffaele Institute, IIT Section of Molecular Neuroscience, via Olgettina 58, 20132 Milano, Italy.
| |
Collapse
|
39
|
Racchetti G, Lorusso A, Schulte C, Gavello D, Carabelli V, D'Alessandro R, Meldolesi J. Rapid neurite outgrowth in neurosecretory cells and neurons is sustained by the exocytosis of a cytoplasmic organelle, the enlargeosome. J Cell Sci 2009; 123:165-70. [PMID: 20026640 DOI: 10.1242/jcs.059634] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Neurite outgrowth is known as a slow (days) process occurring in nerve cells and neurons during neurotrophin treatment and upon transfer to culture, respectively. Using Y27632, a drug that induces activation of Rac1, a downstream step of the neurotrophin signaling cascade, we have identified a new form of outgrowth, which is rapid (<1 hour) and extensive (>500 microm(2) surface enlargement/single cell/first hour). However, this outgrowth takes place only in cells (PC12-27 and SH-SY5Y cells, and embryonic and neonatal neurons) rich in an exocytic organelle, the enlargeosome. Golgi vesicles, TGN vesicles and endosomes are not involved. The need for enlargeosomes for plasma-membrane expansion was confirmed by the appearance of their marker, Ahnak, at the cell surface and by the dependence of neurite outgrowth on VAMP4, the vSNARE of enlargeosome exocytosis. In enlargeosome-rich cells, VAMP4 downregulation also attenuated the slow outgrowth induced by nerve growth factor (NGF). Similar to NGF-induced neurite outgrowth in enlargeosome-lacking cells, the new, rapid, Y27632-induced process required microtubules. Other properties of neurite outgrowth in cells lacking enlargeosomes - such as dependence on VAMP7, on microfilaments, on gene transcription and on protein synthesis, and blockade of mitoses and accumulation of neuronal markers - were not evident. The enlargeosome-sustained process might be useful for the rapid neurite outgrowth at peculiar stages and/or conditions of nerve and neuronal cells. However, its properties and its physiological and pathological role remain to be investigated.
Collapse
Affiliation(s)
- Gabriella Racchetti
- Division of Neuroscience, Vita-Salute San Raffaele University and Scientific Institute San Raffaele, National Institute of Neuroscience-Italy, IIT Network, Research Unit of Molecular Neuroscience, via Olgettina 58, I-20132 Milan, Italy
| | | | | | | | | | | | | |
Collapse
|
40
|
Chaineau M, Danglot L, Galli T. Multiple roles of the vesicular-SNARE TI-VAMP in post-Golgi and endosomal trafficking. FEBS Lett 2009; 583:3817-26. [PMID: 19837067 DOI: 10.1016/j.febslet.2009.10.026] [Citation(s) in RCA: 111] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2009] [Revised: 10/09/2009] [Accepted: 10/13/2009] [Indexed: 01/13/2023]
Abstract
SNARE (Soluble N-ethylmaleimide-sensitive factor attachment protein receptor) proteins are the core machinery of membrane fusion. Vesicular SNAREs (v-SNAREs) interact with their target SNAREs (t-SNAREs) to form SNARE complexes which mediate membrane fusion. Here we review the basic properties and functions of the v-SNARE TI-VAMP/VAMP7 (Tetanus neurotoxin insensitive-vesicle associated membrane protein). TI-VAMP interacts with its t-SNARE partners, particularly plasmalemmal syntaxins, to mediate membrane fusion and with several regulatory proteins especially via its amino-terminal regulatory Longin domain. Partners include AP-3, Hrb/(Human immunodeficiency virus Rev binding) protein, and Varp (Vps9 domain and ankyrin repeats containing protein) and regulate TI-VAMP's function and targeting. TI-VAMP is involved both in secretory and endocytic pathways which mediate neurite outgrowth and synaptic transmission, plasma membrane remodeling and lysosomal secretion.
Collapse
Affiliation(s)
- Mathilde Chaineau
- Membrane Traffic in Neuronal and Epithelial Morphogenesis', INSERM U950, Paris F-75013, France
| | | | | |
Collapse
|
41
|
Burgo A, Sotirakis E, Simmler MC, Verraes A, Chamot C, Simpson JC, Lanzetti L, Proux-Gillardeaux V, Galli T. Role of Varp, a Rab21 exchange factor and TI-VAMP/VAMP7 partner, in neurite growth. EMBO Rep 2009; 10:1117-24. [PMID: 19745841 DOI: 10.1038/embor.2009.186] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2009] [Revised: 07/13/2009] [Accepted: 07/14/2009] [Indexed: 11/09/2022] Open
Abstract
The vesicular soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) tetanus neurotoxin-insensitive vesicle-associated membrane protein (TI-VAMP/VAMP7) was previously shown to mediate an exocytic pathway involved in neurite growth, but its regulation is still largely unknown. Here we show that TI-VAMP interacts with the Vps9 domain and ankyrin-repeat-containing protein (Varp), a guanine nucleotide exchange factor (GEF) of the small GTPase Rab21, through a specific domain herein called the interacting domain (ID). Varp, TI-VAMP and Rab21 co-localize in the perinuclear region of differentiating hippocampal neurons and transiently in transport vesicles in the shaft of neurites. Silencing the expression of Varp by RNA interference or expressing ID or a form of Varp deprived of its Vps9 domain impairs neurite growth. Furthermore, the mutant form of Rab21, defective in GTP hydrolysis, enhances neurite growth. We conclude that Varp is a positive regulator of neurite growth through both its GEF activity and its interaction with TI-VAMP.
Collapse
Affiliation(s)
- Andrea Burgo
- Membrane Traffic in Neuronal & Epithelial Morphogenesis, INSERM U950, University Denis Diderot/Paris 7, France
| | | | | | | | | | | | | | | | | |
Collapse
|