1
|
Wang Z, Felstead HR, Troup RI, Linclau B, Williamson PTF. Lipophilicity Modulations by Fluorination Correlate with Membrane Partitioning. Angew Chem Int Ed Engl 2023; 62:e202301077. [PMID: 36932824 PMCID: PMC10946813 DOI: 10.1002/anie.202301077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 03/16/2023] [Accepted: 03/16/2023] [Indexed: 03/19/2023]
Abstract
Bioactive compounds generally need to cross membranes to arrive at their site of action. The octanol-water partition coefficient (lipophilicity, logPOW ) has proven to be an excellent proxy for membrane permeability. In modern drug discovery, logPOW and bioactivity are optimized simultaneously, for which fluorination is one of the relevant strategies. The question arises as to which extent the often subtle logP modifications resulting from different aliphatic fluorine-motif introductions also lead to concomitant membrane permeability changes, given the difference in molecular environment between octanol and (anisotropic) membranes. It was found that for a given compound class, there is excellent correlation between logPOW values with the corresponding membrane molar partitioning coefficients (logKp ); a study enabled by novel solid-state 19 F NMR MAS methodology using lipid vesicles. Our results show that the factors that cause modulation of octanol-water partition coefficients similarly affect membrane permeability.
Collapse
Affiliation(s)
- Zhong Wang
- School of ChemistryUniversity of Southampton HighfieldSouthamptonSO17 1BJUK
| | - Hannah R. Felstead
- School of ChemistryUniversity of Southampton HighfieldSouthamptonSO17 1BJUK
| | - Robert I. Troup
- School of ChemistryUniversity of Southampton HighfieldSouthamptonSO17 1BJUK
| | - Bruno Linclau
- School of ChemistryUniversity of Southampton HighfieldSouthamptonSO17 1BJUK
- Department of Organic and Macromolecular ChemistryGhent University Campus SterreKrijgslaan 281-S49000GhentBelgium
| | | |
Collapse
|
2
|
Zimmerberg J, Soubias O, Pastor RW. Special issue for Klaus Gawrisch. Biophys J 2023; 122:E1-E8. [PMID: 36921597 PMCID: PMC10111273 DOI: 10.1016/j.bpj.2023.02.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 02/15/2023] [Accepted: 02/15/2023] [Indexed: 03/17/2023] Open
Affiliation(s)
- Joshua Zimmerberg
- Section on Integrative Biophysics, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | - Olivier Soubias
- Macromolecular NMR Section, Center for Structural Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD, USA
| | - Richard W Pastor
- Laboratory of Computational Biology, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
3
|
Garza DL, Hanashima S, Umegawa Y, Murata M, Kinoshita M, Matsumori N, Greimel P. Behavior of Triterpenoid Saponin Ginsenoside Rh2 in Ordered and Disordered Phases in Model Membranes Consisting of Sphingomyelin, Phosphatidylcholine, and Cholesterol. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:10478-10491. [PMID: 35984899 DOI: 10.1021/acs.langmuir.2c01261] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The ginsenoside Rh2 (Rh2) is a saponin of medicinal ginseng, and it has attracted much attention for its pharmacological activities. In this study, we investigated the interaction of Rh2 with biological membranes using model membranes. We examined the effects of various lipids on the membrane-disrupting activity of Rh2 and found that cholesterol and sphingomyelin (SM) had no significant effect. Furthermore, the effects of Rh2 on acyl chain packing (DPH anisotropy) and water molecule permeability (GP340 values) did not differ significantly between bilayers containing SM and saturated phosphatidylcholine. These results suggest that the formation of the liquid-ordered (Lo) phase affects the behavior of Rh2 in the membrane rather than a specific interaction of Rh2 with a particular lipid. We investigated the effects of Rh2 on the Lo and liquid-disordered (Ld) phases using surface tension measurements and fluorescence experiments. In the surface tension-area isotherms, we compared the monolayers of the Ld and Lo lipid compositions and found that Rh2 is abundantly bound to both monolayers, with the amount being greater in the Ld phase than in the Lo phase. In addition, the hydration state of the bilayers, mainly consisting of the Lo or Ld phase, showed that Rh2 tends to bind to the surface of the bilayer in both phases. At higher concentrations, Rh2 tends to bind more abundantly to the relatively shallow interior of the Ld phase than the Lo phase. The phase-dependent membrane behavior of Rh2 is probably due to the phase-selective affinity and binding mode of Rh2.
Collapse
Affiliation(s)
- Darcy Lacanilao Garza
- Department of Chemistry, Graduate School of Science, Osaka University, 1-1 Machikaneyama-cho, Toyonaka, Osaka 560-0043, Japan
| | - Shinya Hanashima
- Department of Chemistry, Graduate School of Science, Osaka University, 1-1 Machikaneyama-cho, Toyonaka, Osaka 560-0043, Japan
| | - Yuichi Umegawa
- Department of Chemistry, Graduate School of Science, Osaka University, 1-1 Machikaneyama-cho, Toyonaka, Osaka 560-0043, Japan
| | - Michio Murata
- Department of Chemistry, Graduate School of Science, Osaka University, 1-1 Machikaneyama-cho, Toyonaka, Osaka 560-0043, Japan
- Forefront Research Center, Graduate School of Science, Osaka University, 1-1 Machikaneyama-cho, Toyonaka, Osaka 560-0043, Japan
| | - Masanao Kinoshita
- Department of Chemistry, Graduate School of Science, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Nobuaki Matsumori
- Department of Chemistry, Graduate School of Science, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Peter Greimel
- Laboratory for Cell Function Dynamics, RIKEN Center for Brain Science, Wako, Saitama 351-0198 Japan
| |
Collapse
|
4
|
Ausili A, Clemente J, Pons-Belda ÓD, de Godos A, Corbalán-García S, Torrecillas A, Teruel JA, Gomez-Fernández JC. Interaction of Vitamin K 1 and Vitamin K 2 with Dimyristoylphosphatidylcholine and Their Location in the Membrane. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:1062-1073. [PMID: 31927934 DOI: 10.1021/acs.langmuir.9b03552] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Vitamin K1 and vitamin K2 play very important biological roles as members of chains of electron transport as antioxidants in membranes and as cofactors for the posttranslational modification of proteins that participate in a number of physiological functions such as coagulation. The interaction of these vitamins with dimyristoylphosphatidylcholine (DMPC) model membranes has been studied by using a biophysical approach. It was observed by using differential scanning calorimetry that both vitamins have a very limited miscibility with DMPC and they form domains rich in the vitamins at high concentrations. Experiments using X-ray diffraction also showed the formation of different phases as a consequence of the inclusion of either vitamin K at temperatures below the phase transition. However, in the fluid state, a homogeneous phase was detected, and a decrease in the thickness of the membrane was accompanied by an increase in the water layer thickness. 2H NMR spectroscopy showed that both vitamins K induced a decrease in the onset of the phase transition, which was bigger for vitamin K1, and both vitamins decreased the order of the membrane as seen through the first moment (M1). 1H NOESY MAS-NMR showed that protons located at the rings or at the beginning of the lateral chain of both vitamins K interacted with a clear preference with protons located in the polar part of DMPC. On the other hand, protons located on the lateral chain have a nearer proximity with the methyl end of the myristoyl chains of DMPC. In agreement with the 2H NMR, ATR-FTIR (attenuated total reflectance Fourier transform infrared spectroscopy) indicated that both vitamins decreased the order parameters of DMPC. It was additionally deduced that the lateral chains of both vitamins were oriented almost in parallel to the myristoyl chains of the phospholipid.
Collapse
Affiliation(s)
- Alessio Ausili
- Departamento de Bioquı́mica y Biologı́a Molecular "A", Facultad de Veterinaria, Regional Campus of International Excellence "Campus Mare Nostrum" , Universidad de Murcia , Apartado de Correos 4021 , E-30080 Murcia , Spain
| | - Javier Clemente
- Departamento de Bioquı́mica y Biologı́a Molecular "A", Facultad de Veterinaria, Regional Campus of International Excellence "Campus Mare Nostrum" , Universidad de Murcia , Apartado de Correos 4021 , E-30080 Murcia , Spain
| | - Óscar D Pons-Belda
- Departamento de Bioquı́mica y Biologı́a Molecular "A", Facultad de Veterinaria, Regional Campus of International Excellence "Campus Mare Nostrum" , Universidad de Murcia , Apartado de Correos 4021 , E-30080 Murcia , Spain
| | - Ana de Godos
- Departamento de Bioquı́mica y Biologı́a Molecular "A", Facultad de Veterinaria, Regional Campus of International Excellence "Campus Mare Nostrum" , Universidad de Murcia , Apartado de Correos 4021 , E-30080 Murcia , Spain
| | - Senena Corbalán-García
- Departamento de Bioquı́mica y Biologı́a Molecular "A", Facultad de Veterinaria, Regional Campus of International Excellence "Campus Mare Nostrum" , Universidad de Murcia , Apartado de Correos 4021 , E-30080 Murcia , Spain
| | - Alejandro Torrecillas
- Departamento de Bioquı́mica y Biologı́a Molecular "A", Facultad de Veterinaria, Regional Campus of International Excellence "Campus Mare Nostrum" , Universidad de Murcia , Apartado de Correos 4021 , E-30080 Murcia , Spain
| | - José A Teruel
- Departamento de Bioquı́mica y Biologı́a Molecular "A", Facultad de Veterinaria, Regional Campus of International Excellence "Campus Mare Nostrum" , Universidad de Murcia , Apartado de Correos 4021 , E-30080 Murcia , Spain
| | - Juan C Gomez-Fernández
- Departamento de Bioquı́mica y Biologı́a Molecular "A", Facultad de Veterinaria, Regional Campus of International Excellence "Campus Mare Nostrum" , Universidad de Murcia , Apartado de Correos 4021 , E-30080 Murcia , Spain
| |
Collapse
|
5
|
Kiriakidi S, Chatzigiannis C, Papaemmanouil C, Tzakos AG, Mavromoustakos T. Exploring the role of the membrane bilayer in the recognition of candesartan by its GPCR AT1 receptor. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2019; 1862:183142. [PMID: 31830465 DOI: 10.1016/j.bbamem.2019.183142] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 11/13/2019] [Accepted: 11/28/2019] [Indexed: 01/20/2023]
Abstract
Cardiovascular diseases and hypertension in particular are major health risks worldwide and the improvement on their treatment will be beneficial for the human health. AT1R antagonists belong to the sartans family that targets the renin-angiotensin aldosterone system (RAAS) through blocking the hormone angiotensin II to exert its detrimental effects in pathological states. As a consequence, they are beneficial to treat hypertension, diabetes related kidney failure and hyperaemic episodes. Long unbiased Molecular Dynamics (MD) simulations are performed in order to explore candesartan's possible 2D and 3D diffusion mechanisms towards AT1R receptor. 3D diffusion mechanism is referred to the direct binding of the AT1 antagonist candesartan to the AT1R 3D structure (PDB ID: 4YAY). 2D diffusion mechanism involves first, the incorporation of candesartan in the bilayer core and then its localization on the AT1R binding cavity, through a diffusion mechanism. The obtained results indicate that membranes interact significantly with the neutral form of candesartan, which is indeed approaching the receptors' active site through diffusion via the lipids. On the other hand, the deprotonated form of the drug is interacting with AT1R's extracellular loop and fails to enter the membrane, pointing out the importance of the pH microenvironment around the receptor. To validate the calculated diffusion coefficients of the drug in the lipid bilayers 2D DOSY NMR experiments were recorded and they were in good agreement. Information on the impact that has the interaction of candesartan with the membrane is very important for the rationally design and development of potent ARBs. Thus, its conformational features as well as its localization in the membrane core have to be thoroughly explored.
Collapse
Affiliation(s)
- Sofia Kiriakidi
- National and Kapodistrian University of Athens, Department of Chemistry, Athens, Greece
| | - Christos Chatzigiannis
- University of Ioannina, Department of Chemistry, Section of Organic Chemistry and Biochemistry, Ioannina, Greece
| | - Christina Papaemmanouil
- University of Ioannina, Department of Chemistry, Section of Organic Chemistry and Biochemistry, Ioannina, Greece
| | - Andreas G Tzakos
- University of Ioannina, Department of Chemistry, Section of Organic Chemistry and Biochemistry, Ioannina, Greece
| | - Thomas Mavromoustakos
- National and Kapodistrian University of Athens, Department of Chemistry, Athens, Greece.
| |
Collapse
|
6
|
Peroza CA, Chen F, Wurster DE, Velupillai SM. Solubilization of organics I: 1 H NMR chemical shift perturbations, diffusometry, and NOESY indicate biphenyls internalize in micelles formed by cetyltrimethylammonium bromide. MAGNETIC RESONANCE IN CHEMISTRY : MRC 2019; 57:1097-1106. [PMID: 31090226 DOI: 10.1002/mrc.4891] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Revised: 05/02/2019] [Accepted: 05/08/2019] [Indexed: 05/27/2023]
Abstract
Polychlorinated biphenyls are a class of persistent environmental contaminants, and micellar solubilization can be applied to remediate them. The intermolecular aggregates of biphenyl (BP) analogs and cetyltrimethyl ammonium bromide (CTAB) were studied by chemical shift perturbation, nuclear magnetic resonance (NMR) diffusometry, quantitative proton NMR, and nuclear Overhauser effect (NOE) spectroscopy to understand the structural determinants of their solubilization. The micelles of CTAB solubilized BPs readily, but its capacity depended strongly on the nature of the functional group (BPCH2 OH > > BPCHO > BPCOOH ≈ BPCl ≈ BP). Upon internalization, the BPs diffused much slower, introduced significant low-frequency 1 H chemical shift changes for CTAB, and displayed strong intermolecular NOEs. The semiquantitative analysis of NOEs revealed further that the BPs are located in the palisade layer closer to the N+ (CH3 )3 head group, away from the hydrophobic core. 1 H NMR offers a simple high-throughput screening assay for evaluating and quantitating the solubilization of organics in micelles. The intermolecular NOEs and site-specific perturbation of chemical shifts add further insights on the location of solubilizates in micelles, which may be important for designing surfactants specific for environmental pollutants.
Collapse
Affiliation(s)
- Carlos A Peroza
- Department of Pharmaceutics, College of Pharmacy, University of Iowa, Iowa City, IA, U.S.A
| | - Fu Chen
- Department of Chemistry, College of Liberal Arts and Sciences, University of Iowa, Iowa City, IA, U.S.A
| | - Dale E Wurster
- Department of Pharmaceutics, College of Pharmacy, University of Iowa, Iowa City, IA, U.S.A
| | - Santhana Mariappan Velupillai
- Department of Chemistry, College of Liberal Arts and Sciences, University of Iowa, Iowa City, IA, U.S.A
- University of Iowa Central NMR Facility, Department of Chemistry, University of Iowa, Iowa City, IA, U.S.A
| |
Collapse
|
7
|
Small structural alterations greatly influence the membrane affinity of lipophilic ligands: Membrane interactions of bafilomycin A1 and its desmethyl derivative bearing 19F-labeling. Bioorg Med Chem 2019; 27:1677-1682. [DOI: 10.1016/j.bmc.2019.03.017] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Revised: 03/06/2019] [Accepted: 03/07/2019] [Indexed: 11/20/2022]
|
8
|
Cooper AG, Oyagawa CRM, Manning JJ, Singh S, Hook S, Grimsey NL, Glass M, Tyndall JDA, Vernall AJ. Development of selective, fluorescent cannabinoid type 2 receptor ligands based on a 1,8-naphthyridin-2-(1 H)-one-3-carboxamide scaffold. MEDCHEMCOMM 2018; 9:2055-2067. [PMID: 30647881 PMCID: PMC6301273 DOI: 10.1039/c8md00448j] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Accepted: 10/18/2018] [Indexed: 12/16/2022]
Abstract
Cannabinoid type 2 (CB2) receptor has been implicated in several diseases and conditions, however no CB2 receptor selective drugs have made it to market. The aim of this study was to develop fluorescent ligands as CB2 receptor tools, to enable an increased understanding of CB2 receptor expression and signalling and thereby accelerate drug discovery. Fluorescent ligands have been successfully developed for other receptors, however none with adequate subtype selectivity or imaging properties have been reported for CB2 receptor. A series of 1,8-naphthyridin-2-(1H)-one-3-carboxamides with linkers and fluorophores appended in the N1 and C3-positions were developed. Molecular modelling indicated the C3 cis-cyclohexanol-linked compounds directed the linker out of the CB2 receptor between transmembrane helices 1 and 7. Herein we report fluorescent ligand 32 (hCB2 pK i = 6.33 ± 0.02) as one of the highest affinity, selective CB2 receptor fluorescent ligands reported. Despite 32 displaying poor specific labelling of CB2 receptor, the naphthyridine scaffold with this linker remains highly promising for future development of CB2 receptor tools.
Collapse
Affiliation(s)
- Anna G Cooper
- School of Pharmacy , University of Otago , 18 Frederick Street , Dunedin 9054 , New Zealand . ; Tel: +64 3 479 4518
| | - Caitlin R M Oyagawa
- Department of Pharmacology and Clinical Pharmacology, and Centre for Brain Research , School of Medical Sciences , University of Auckland , Auckland , New Zealand
| | - Jamie J Manning
- Department of Pharmacology and Clinical Pharmacology, and Centre for Brain Research , School of Medical Sciences , University of Auckland , Auckland , New Zealand
| | - Sameek Singh
- School of Pharmacy , University of Otago , 18 Frederick Street , Dunedin 9054 , New Zealand . ; Tel: +64 3 479 4518
| | - Sarah Hook
- School of Pharmacy , University of Otago , 18 Frederick Street , Dunedin 9054 , New Zealand . ; Tel: +64 3 479 4518
| | - Natasha L Grimsey
- Department of Pharmacology and Clinical Pharmacology, and Centre for Brain Research , School of Medical Sciences , University of Auckland , Auckland , New Zealand
| | - Michelle Glass
- Department of Pharmacology and Clinical Pharmacology, and Centre for Brain Research , School of Medical Sciences , University of Auckland , Auckland , New Zealand
| | - Joel D A Tyndall
- School of Pharmacy , University of Otago , 18 Frederick Street , Dunedin 9054 , New Zealand . ; Tel: +64 3 479 4518
| | - Andrea J Vernall
- School of Pharmacy , University of Otago , 18 Frederick Street , Dunedin 9054 , New Zealand . ; Tel: +64 3 479 4518
| |
Collapse
|
9
|
Busquets-Garcia A, Bains J, Marsicano G. CB 1 Receptor Signaling in the Brain: Extracting Specificity from Ubiquity. Neuropsychopharmacology 2018; 43:4-20. [PMID: 28862250 PMCID: PMC5719111 DOI: 10.1038/npp.2017.206] [Citation(s) in RCA: 193] [Impact Index Per Article: 32.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/21/2017] [Revised: 07/22/2017] [Accepted: 08/14/2017] [Indexed: 02/07/2023]
Abstract
Endocannabinoids (eCBs) are amongst the most ubiquitous signaling molecules in the nervous system. Over the past few decades, observations based on a large volume of work, first examining the pharmacological effects of exogenous cannabinoids, and then the physiological functions of eCBs, have directly challenged long-held and dogmatic views about communication, plasticity and behavior in the central nervous system (CNS). The eCBs and their cognate cannabinoid receptors exhibit a number of unique properties that distinguish them from the widely studied classical amino-acid transmitters, neuropeptides, and catecholamines. Although we now have a loose set of mechanistic rules based on experimental findings, new studies continue to reveal that our understanding of the eCB system (ECS) is continuously evolving and challenging long-held conventions. Here we will briefly summarize findings on the current canonical view of the 'ECS' and will address novel aspects that reveal how a nearly ubiquitous system can determine highly specific functions in the brain. In particular, we will focus on findings that push for an expansion of our ideas around long-held beliefs about eCB signaling that, while clearly true, may be contributing to an oversimplified perspective on how cannabinoid signaling at the microscopic level impacts behavior at the macroscopic level.
Collapse
Affiliation(s)
- Arnau Busquets-Garcia
- INSERM U1215, NeuroCentre Magendie, Team ‘Endocannabinoids and Neuroadaptation’, Bordeaux, France
- Université de Bordeaux, Bordeaux, France
| | - Jaideep Bains
- Department of Physiology and Pharmacology, Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
| | - Giovanni Marsicano
- INSERM U1215, NeuroCentre Magendie, Team ‘Endocannabinoids and Neuroadaptation’, Bordeaux, France
- Université de Bordeaux, Bordeaux, France
| |
Collapse
|
10
|
Martella A, Sijben H, Rufer AC, Grether U, Fingerle J, Ullmer C, Hartung T, IJzerman AP, van der Stelt M, Heitman LH. A Novel Selective Inverse Agonist of the CB2 Receptor as a Radiolabeled Tool Compound for Kinetic Binding Studies. Mol Pharmacol 2017; 92:389-400. [DOI: 10.1124/mol.117.108605] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2017] [Accepted: 07/21/2017] [Indexed: 01/14/2023] Open
|
11
|
Melser S, Pagano Zottola AC, Serrat R, Puente N, Grandes P, Marsicano G, Hebert-Chatelain E. Functional Analysis of Mitochondrial CB1 Cannabinoid Receptors (mtCB1) in the Brain. Methods Enzymol 2017; 593:143-174. [PMID: 28750801 DOI: 10.1016/bs.mie.2017.06.023] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Recent evidence indicates that, besides its canonical localization at cell plasma membranes, the type-1 cannabinoid receptor, CB1 is functionally present at brain and muscle mitochondrial membranes (mtCB1). Through mtCB1 receptors, cannabinoids can directly regulate intramitochondrial signaling and respiration. This new and surprising discovery paves the way to new potential fields of research, dealing with the direct impact of G protein-coupled receptors on bioenergetic processes and its functional implications. In this chapter, we summarize some key experimental approaches established in our laboratories to identify anatomical, biochemical, and functional features of mtCB1 receptors in the brain. In particular, we describe the procedures to obtain reliable and controlled detection of mtCB1 receptors by immunogold electromicroscopy and by immunoblotting methods. Then, we address the study of direct cannabinoid effects on the electron transport system and oxidative phosphorylation. Finally, we present a functional example of the impact of mtCB1 receptors on mitochondrial mobility in cultured neurons. Considering the youth of the field, these methodological approaches will very likely be improved and refined in the future, but this chapter aims at presenting the methods that are currently used and, in particular, at underlining the need of rigorous controls to obtain reliable results. We hope that this chapter might help scientists becoming interested in this new and exciting field of research.
Collapse
Affiliation(s)
- Su Melser
- INSERM U1215, NeuroCentre Magendie, Team "Endocannabinoids and Neuroadaptation", Bordeaux, France; Université de Bordeaux, Bordeaux, France
| | - Antonio C Pagano Zottola
- INSERM U1215, NeuroCentre Magendie, Team "Endocannabinoids and Neuroadaptation", Bordeaux, France; Université de Bordeaux, Bordeaux, France
| | - Roman Serrat
- INSERM U1215, NeuroCentre Magendie, Team "Endocannabinoids and Neuroadaptation", Bordeaux, France; Université de Bordeaux, Bordeaux, France
| | - Nagore Puente
- Faculty of Medicine and Nursing, University of the Basque Country UPV/EHU, Leioa, Spain; Achucarro Basque Center for Neuroscience, Science Park of the UPV/EHU, Leioa, Spain
| | - Pedro Grandes
- Faculty of Medicine and Nursing, University of the Basque Country UPV/EHU, Leioa, Spain; Achucarro Basque Center for Neuroscience, Science Park of the UPV/EHU, Leioa, Spain; University of Victoria, Victoria, BC, Canada
| | - Giovanni Marsicano
- INSERM U1215, NeuroCentre Magendie, Team "Endocannabinoids and Neuroadaptation", Bordeaux, France; Université de Bordeaux, Bordeaux, France.
| | | |
Collapse
|
12
|
Lynch DL, Hurst DP, Shore DM, Pitman MC, Reggio PH. Molecular Dynamics Methodologies for Probing Cannabinoid Ligand/Receptor Interaction. Methods Enzymol 2017; 593:449-490. [PMID: 28750815 PMCID: PMC5802876 DOI: 10.1016/bs.mie.2017.05.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The cannabinoid type 1 and 2 G-protein-coupled receptors are currently important pharmacological targets with significant drug discovery potential. These receptors have been shown to display functional selectivity or biased agonism, a property currently thought to have substantial therapeutic potential. Although recent advances in crystallization techniques have provided a wealth of structural information about this important class of membrane-embedded proteins, these structures lack dynamical information. In order to fully understand the interplay of structure and function for this important class of proteins, complementary techniques that address the dynamical aspects of their function are required such as NMR as well as a variety of other spectroscopies. Complimentary to these experimental approaches is molecular dynamics, which has been effectively used to help unravel, at the atomic level, the dynamics of ligand binding and activation of these membrane-bound receptors. Here, we discuss and present several representative examples of the application of molecular dynamics simulations to the understanding of the signatures of ligand-binding and -biased signaling at the cannabinoid type 1 and 2 receptors.
Collapse
Affiliation(s)
- Diane L Lynch
- University of North Carolina at Greensboro, Greensboro, NC, United States.
| | - Dow P Hurst
- University of North Carolina at Greensboro, Greensboro, NC, United States
| | - Derek M Shore
- University of North Carolina at Greensboro, Greensboro, NC, United States
| | - Mike C Pitman
- University of North Carolina at Greensboro, Greensboro, NC, United States
| | - Patricia H Reggio
- University of North Carolina at Greensboro, Greensboro, NC, United States
| |
Collapse
|
13
|
In-vitro anti-proliferative and anti-oxidant activity of galangin, fisetin and quercetin: Role of localization and intermolecular interaction in model membrane. Eur J Med Chem 2014; 79:102-9. [DOI: 10.1016/j.ejmech.2014.04.002] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2013] [Revised: 03/31/2014] [Accepted: 04/01/2014] [Indexed: 11/19/2022]
|
14
|
Sinha R, Joshi A, Joshi UJ, Srivastava S, Govil G. Localization and interaction of hydroxyflavones with lipid bilayer model membranes: a study using DSC and multinuclear NMR. Eur J Med Chem 2014; 80:285-94. [PMID: 24793879 DOI: 10.1016/j.ejmech.2014.04.054] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2013] [Revised: 04/17/2014] [Accepted: 04/19/2014] [Indexed: 11/18/2022]
Abstract
The localization and interaction of six naturally occurring flavones (FLV, 5HF, 6HF, 7HF, CHY and BLN) in DPPC bilayers were studied using DSC and multi-nuclear NMR. DSC results indicate that FLV and 6HF interact with alkyl chains. The (1)H NMR shows interaction of flavones with the sn-glycero region. Ring current induced chemical shifts indicate that 6HF and BLN acquire parallel orientation in bilayers. 2D NOESY spectra indicate partitioning of the B-ring into the alkyl chain region. The DSC, NMR and binding studies indicate that 5HF and 7HF are located near head group region, while 6HF, CHY and BLN are located in the vicinity of sn-glycero region, and FLV is inserted deepest in the membrane.
Collapse
Affiliation(s)
- Ragini Sinha
- National Facility for High Field NMR, Tata Institute of Fundamental Research, Homi Bhabha Road, Mumbai 400 005, India
| | - Akshada Joshi
- Principal K.M. Kundnani College of Pharmacy, Cuffe Parade, Mumbai 400 005, India
| | - Urmila J Joshi
- Principal K.M. Kundnani College of Pharmacy, Cuffe Parade, Mumbai 400 005, India.
| | - Sudha Srivastava
- National Facility for High Field NMR, Tata Institute of Fundamental Research, Homi Bhabha Road, Mumbai 400 005, India
| | - Girjesh Govil
- National Facility for High Field NMR, Tata Institute of Fundamental Research, Homi Bhabha Road, Mumbai 400 005, India
| |
Collapse
|
15
|
Kimura T, Vukoti K, Lynch DL, Hurst DP, Grossfield A, Pitman MC, Reggio PH, Yeliseev AA, Gawrisch K. Global fold of human cannabinoid type 2 receptor probed by solid-state 13C-, 15N-MAS NMR and molecular dynamics simulations. Proteins 2013; 82:452-65. [PMID: 23999926 DOI: 10.1002/prot.24411] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2013] [Revised: 08/12/2013] [Accepted: 08/21/2013] [Indexed: 12/12/2022]
Abstract
The global fold of human cannabinoid type 2 (CB2 ) receptor in the agonist-bound active state in lipid bilayers was investigated by solid-state (13)C- and (15)N magic-angle spinning (MAS) NMR, in combination with chemical-shift prediction from a structural model of the receptor obtained by microsecond-long molecular dynamics (MD) simulations. Uniformly (13)C- and (15)N-labeled CB2 receptor was expressed in milligram quantities by bacterial fermentation, purified, and functionally reconstituted into liposomes. (13)C MAS NMR spectra were recorded without sensitivity enhancement for direct comparison of Cα, Cβ, and C=O bands of superimposed resonances with predictions from protein structures generated by MD. The experimental NMR spectra matched the calculated spectra reasonably well indicating agreement of the global fold of the protein between experiment and simulations. In particular, the (13) C chemical shift distribution of Cα resonances was shown to be very sensitive to both the primary amino acid sequence and the secondary structure of CB2. Thus the shape of the Cα band can be used as an indicator of CB2 global fold. The prediction from MD simulations indicated that upon receptor activation a rather limited number of amino acid residues, mainly located in the extracellular Loop 2 and the second half of intracellular Loop 3, change their chemical shifts significantly (≥ 1.5 ppm for carbons and ≥ 5.0 ppm for nitrogens). Simulated two-dimensional (13) Cα(i)-(13)C=O(i) and (13)C=O(i)-(15)NH(i + 1) dipolar-interaction correlation spectra provide guidance for selective amino acid labeling and signal assignment schemes to study the molecular mechanism of activation of CB2 by solid-state MAS NMR.
Collapse
Affiliation(s)
- Tomohiro Kimura
- Laboratory of Membrane Biochemistry and Biophysics, NIAAA, NIH, Bethesda, Maryland, 20892
| | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Kurz R, Cobo MF, de Azevedo ER, Sommer M, Wicklein A, Thelakkat M, Hempel G, Saalwächter K. Avoiding bias effects in NMR experiments for heteronuclear dipole-dipole coupling determinations: principles and application to organic semiconductor materials. Chemphyschem 2013; 14:3146-55. [PMID: 23780575 DOI: 10.1002/cphc.201300255] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2013] [Revised: 05/03/2013] [Indexed: 11/06/2022]
Abstract
Carbon-proton dipole-dipole couplings between bonded atoms represent a popular probe of molecular dynamics in soft materials or biomolecules. Their site-resolved determination, for example, by using the popular DIPSHIFT experiment, can be challenged by spectral overlap with nonbonded carbon atoms. The problem can be solved by using very short cross-polarization (CP) contact times, however, the measured modulation curves then deviate strongly from the theoretically predicted shape, which is caused by the dependence of the CP efficiency on the orientation of the CH vector, leading to an anisotropic magnetization distribution even for isotropic samples. Herein, we present a detailed demonstration and explanation of this problem, as well as providing a solution. We combine DIPSHIFT experiments with the rotor-directed exchange of orientations (RODEO) method, and modifications of it, to redistribute the magnetization and obtain undistorted modulation curves. Our strategy is general in that it can also be applied to other types of experiments for heteronuclear dipole-dipole coupling determinations that rely on dipolar polarization transfer. It is demonstrated with perylene-bisimide-based organic semiconductor materials, as an example, in which measurements of dynamic order parameters reveal correlations of the molecular dynamics with the phase structure and functional properties.
Collapse
Affiliation(s)
- Ricardo Kurz
- Institut für Physik-NMR, Martin-Luther-Universität Halle-Wittenberg, Betty-Heimann-Str. 7, 06120 Halle (Germany)
| | | | | | | | | | | | | | | |
Collapse
|
17
|
NMR methods for measuring lateral diffusion in membranes. Chem Phys Lipids 2013; 166:31-44. [DOI: 10.1016/j.chemphyslip.2012.12.004] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2012] [Revised: 12/11/2012] [Accepted: 12/12/2012] [Indexed: 02/07/2023]
|
18
|
Stabilization of functional recombinant cannabinoid receptor CB(2) in detergent micelles and lipid bilayers. PLoS One 2012; 7:e46290. [PMID: 23056277 PMCID: PMC3463599 DOI: 10.1371/journal.pone.0046290] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2012] [Accepted: 08/28/2012] [Indexed: 11/19/2022] Open
Abstract
Elucidation of the molecular mechanisms of activation of G protein-coupled receptors (GPCRs) is among the most challenging tasks for modern membrane biology. For studies by high resolution analytical methods, these integral membrane receptors have to be expressed in large quantities, solubilized from cell membranes and purified in detergent micelles, which may result in a severe destabilization and a loss of function. Here, we report insights into differential effects of detergents, lipids and cannabinoid ligands on stability of the recombinant cannabinoid receptor CB2, and provide guidelines for preparation and handling of the fully functional receptor suitable for a wide array of downstream applications. While we previously described the expression in Escherichia coli, purification and liposome-reconstitution of multi-milligram quantities of CB2, here we report an efficient stabilization of the recombinant receptor in micelles - crucial for functional and structural characterization. The effects of detergents, lipids and specific ligands on structural stability of CB2 were assessed by studying activation of G proteins by the purified receptor reconstituted into liposomes. Functional structure of the ligand binding pocket of the receptor was confirmed by binding of 2H-labeled ligand measured by solid-state NMR. We demonstrate that a concerted action of an anionic cholesterol derivative, cholesteryl hemisuccinate (CHS) and high affinity cannabinoid ligands CP-55,940 or SR-144,528 are required for efficient stabilization of the functional fold of CB2 in dodecyl maltoside (DDM)/CHAPS detergent solutions. Similar to CHS, the negatively charged phospholipids with the serine headgroup (PS) exerted significant stabilizing effects in micelles while uncharged phospholipids were not effective. The purified CB2 reconstituted into lipid bilayers retained functionality for up to several weeks enabling high resolution structural studies of this GPCR at physiologically relevant conditions.
Collapse
|
19
|
Lateral diffusion of bilayer lipids measured via 31P CODEX NMR. Chem Phys Lipids 2012; 165:721-30. [DOI: 10.1016/j.chemphyslip.2012.08.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2012] [Revised: 08/17/2012] [Accepted: 08/18/2012] [Indexed: 11/18/2022]
|
20
|
Fay JF, Farrens DL. A key agonist-induced conformational change in the cannabinoid receptor CB1 is blocked by the allosteric ligand Org 27569. J Biol Chem 2012; 287:33873-82. [PMID: 22846992 DOI: 10.1074/jbc.m112.352328] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Allosteric ligands that modulate how G protein-coupled receptors respond to traditional orthosteric drugs are an exciting and rapidly expanding field of pharmacology. An allosteric ligand for the cannabinoid receptor CB1, Org 27569, exhibits an intriguing effect; it increases agonist binding, yet blocks agonist-induced CB1 signaling. Here we explored the mechanism behind this behavior, using a site-directed fluorescence labeling approach. Our results show that Org 27569 blocks conformational changes in CB1 that accompany G protein binding and/or activation, and thus inhibit formation of a fully active CB1 structure. The underlying mechanism behind this behavior is that simultaneous binding of Org 27569 produces a unique agonist-bound conformation, one that may resemble an intermediate structure formed on the pathway to full receptor activation.
Collapse
Affiliation(s)
- Jonathan F Fay
- Department of Biochemistry and Molecular Biology, Oregon Health and Science University, Portland, Oregon 97239-3098, USA
| | | |
Collapse
|
21
|
Low brain penetrant CB1 receptor agonists for the treatment of neuropathic pain. Bioorg Med Chem Lett 2012; 22:2932-7. [DOI: 10.1016/j.bmcl.2012.02.048] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2012] [Revised: 02/15/2012] [Accepted: 02/16/2012] [Indexed: 12/18/2022]
|
22
|
Kimura T, Yeliseev AA, Vukoti K, Rhodes SD, Cheng K, Rice KC, Gawrisch K. Recombinant cannabinoid type 2 receptor in liposome model activates g protein in response to anionic lipid constituents. J Biol Chem 2012; 287:4076-87. [PMID: 22134924 PMCID: PMC3281699 DOI: 10.1074/jbc.m111.268425] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2011] [Revised: 11/29/2011] [Indexed: 11/06/2022] Open
Abstract
Human cannabinoid type 2 (CB(2)) receptor expressed in Escherichia coli was purified and successfully reconstituted in the functional form into lipid bilayers composed of POPC, 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine, 1-palmitoyl-2-oleoyl-sn-glycero-3-phospho-L-serine (POPS), and cholesteryl hemisuccinate (CHS). Reconstitution was performed by detergent removal from the protein/lipid/detergent mixed micelles either on an adsorbent column, or by rapid dilution to below the critical micelle concentration of detergent followed by removal of detergent monomers on a concentrator. Proteoliposomes prepared at a protein/phospholipid/CHS molar ratio of 1/620-650/210-220 are free of detergent as shown by (1)H NMR, have a homogeneous protein/lipid ratio shown by isopycnic gradient ultracentrifugation, and are small in size with a mean diameter of 150-200 nm as measured by dynamic light scattering. Functional integrity of the reconstituted receptor was confirmed by quantitative binding of (2)H-labeled agonist CP-55,940-d(6) measured by (2)H magic angle spinning NMR, as well as by activation of G protein. The efficiency of G protein activation by agonist-bound CB(2) receptor was affected by negative electric surface potentials of proteoliposomes controlled by the content of anionic CHS or POPS. The activation was highest at an anionic lipid content of about 50 mol %. There was no correlation between the efficiency of G protein activation and an increase of hydrocarbon chain order induced by CHS or cholesterol. The results suggest the importance of anionic lipids in regulating signal transduction by CB(2) receptor and other class A GPCR. The successful reconstitution of milligram quantities of pure, functional CB(2) receptor enables a wide variety of structural studies.
Collapse
Affiliation(s)
- Tomohiro Kimura
- From the Laboratory of Membrane Biochemistry and Biophysics, NIAAA, and
| | | | - Krishna Vukoti
- From the Laboratory of Membrane Biochemistry and Biophysics, NIAAA, and
| | - Steven D. Rhodes
- From the Laboratory of Membrane Biochemistry and Biophysics, NIAAA, and
| | - Kejun Cheng
- the Chemical Biology Research Branch, NIDA and NIAAA, National Institutes of Health, Bethesda, Maryland 20852
| | - Kenner C. Rice
- the Chemical Biology Research Branch, NIDA and NIAAA, National Institutes of Health, Bethesda, Maryland 20852
| | - Klaus Gawrisch
- From the Laboratory of Membrane Biochemistry and Biophysics, NIAAA, and
| |
Collapse
|
23
|
Howlett AC, Reggio PH, Childers SR, Hampson RE, Ulloa NM, Deutsch DG. Endocannabinoid tone versus constitutive activity of cannabinoid receptors. Br J Pharmacol 2012; 163:1329-43. [PMID: 21545414 DOI: 10.1111/j.1476-5381.2011.01364.x] [Citation(s) in RCA: 94] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
This review evaluates the cellular mechanisms of constitutive activity of the cannabinoid (CB) receptors, its reversal by inverse agonists, and discusses the pitfalls and problems in the interpretation of the research data. The notion is presented that endogenously produced anandamide (AEA) and 2-arachidonoylglycerol (2-AG) serve as autocrine or paracrine stimulators of the CB receptors, giving the appearance of constitutive activity. It is proposed that one cannot interpret inverse agonist studies without inference to the receptors' environment vis-à-vis the endocannabinoid agonists which themselves are highly lipophilic compounds with a preference for membranes. The endocannabinoid tone is governed by a combination of synthetic pathways and inactivation involving transport and degradation. The synthesis and degradation of 2-AG is well characterized, and 2-AG has been strongly implicated in retrograde signalling in neurons. Data implicating endocannabinoids in paracrine regulation have been described. Endocannabinoid ligands can traverse the cell's interior and potentially be stored on fatty acid-binding proteins (FABPs). Molecular modelling predicts that the endocannabinoids derived from membrane phospholipids can laterally diffuse to enter the CB receptor from the lipid bilayer. Considering that endocannabinoid signalling to CB receptors is a much more likely scenario than is receptor activation in the absence of agonist ligands, researchers are advised to refrain from assuming constitutive activity except for experimental models known to be devoid of endocannabinoid ligands.
Collapse
Affiliation(s)
- Allyn C Howlett
- Department of Physiology and Pharmacology, Wake Forest University Health Sciences, Winston-Salem, NC 27157, USA.
| | | | | | | | | | | |
Collapse
|
24
|
Shintani M, Matsuo Y, Sakuraba S, Matubayasi N. Interaction of naphthalene derivatives with lipids in membranes studied by the 1H-nuclear Overhauser effect and molecular dynamics simulation. Phys Chem Chem Phys 2012; 14:14049-60. [DOI: 10.1039/c2cp41984j] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
25
|
Durdagi S, Papadopoulos MG, Mavromoustakos T. An effort to discover the preferred conformation of the potent AMG3 cannabinoid analog when reaching the active sites of the cannabinoid receptors. Eur J Med Chem 2012; 47:44-51. [DOI: 10.1016/j.ejmech.2011.10.015] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2011] [Revised: 08/29/2011] [Accepted: 10/06/2011] [Indexed: 11/26/2022]
|
26
|
Shim JY, Bertalovitz AC, Kendall DA. Identification of essential cannabinoid-binding domains: structural insights into early dynamic events in receptor activation. J Biol Chem 2011; 286:33422-35. [PMID: 21795705 PMCID: PMC3190901 DOI: 10.1074/jbc.m111.261651] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2011] [Revised: 07/20/2011] [Indexed: 12/16/2022] Open
Abstract
The classical cannabinoid agonist HU210, a structural analog of (-)-Δ(9)-tetrahydrocannabinol, binds to brain cannabinoid (CB1) receptors and activates signal transduction pathways. To date, an exact molecular description of the CB1 receptor is not yet available. Utilizing the minor binding pocket of the CB1 receptor as the primary ligand interaction site, we explored HU210 binding using lipid bilayer molecular dynamics (MD) simulations. Among the potential ligand contact residues, we identified residues Phe-174(2.61), Phe-177(2.64), Leu-193(3.29), and Met-363(6.55) as being critical for HU210 binding by mutational analysis. Using these residues to guide the simulations, we determined essential cannabinoid-binding domains in the CB1 receptor, including the highly sought after hydrophobic pocket important for the binding of the C3 alkyl chain of classical and nonclassical cannabinoids. Analyzing the simulations of the HU210-CB1 receptor complex, the CP55940-CB1 receptor complex, and the (-)-Δ(9)-tetrahydrocannabinol-CB1 receptor complex, we found that the positioning of the C3 alkyl chain and the aromatic stacking between Trp-356(6.48) and Trp-279(5.43) is crucial for the Trp-356(6.48) rotamer change toward receptor activation through the rigid-body movement of H6. The functional data for the mutant receptors demonstrated reductions in potency for G protein activation similar to the reductions seen in ligand binding affinity for HU210.
Collapse
Affiliation(s)
- Joong-Youn Shim
- JL Chambers Biomedical/Biotechnology Research Institute, North Carolina Central University, Durham, North Carolina 27707, USA.
| | | | | |
Collapse
|
27
|
Abstract
This minireview focuses on diffusion NMR studies in bicelles. Following a discourse on diffusion fundamentals, and a comparative overview of fluorescence and NMR-based techniques for measuring diffusion, the pulsed field gradient (PFG) NMR diffusion method is introduced, emphasizing its specific advantages and limitations when applied to diffusion measurements in macroscopically oriented lamellar systems such as magnetically aligned bicelles. The utility of PFG NMR diffusion measurements in bicellar model membrane systems for examining lateral diffusion of membrane-bound molecular species is demonstrated, along with certain features of lateral diffusion that such studies illuminate. Further, those aspects of bicelle morphology that have been resolved using PFG NMR diffusion studies of various molecular weight soluble polymeric species are reviewed. The discussion concludes with an outline of future prospects for diffusion NMR studies in bicelles.
Collapse
Affiliation(s)
- Peter M. Macdonald
- Department of Chemistry, University of Toronto, Toronto, ON, Canada
- Department of Chemical and Physical Sciences, University of Toronto Mississauga, 3359 Mississauga Road North, Mississauga, ON L5L 1C6, Canada
| | - Ronald Soong
- Department of Chemistry, University of Toronto, Toronto, ON, Canada
- Department of Chemical and Physical Sciences, University of Toronto Mississauga, 3359 Mississauga Road North, Mississauga, ON L5L 1C6, Canada
| |
Collapse
|
28
|
Fotakis C, Christodouleas D, Zoumpoulakis P, Kritsi E, Benetis NP, Mavromoustakos T, Reis H, Gili A, Papadopoulos MG, Zervou M. Comparative Biophysical Studies of Sartan Class Drug Molecules Losartan and Candesartan (CV-11974) with Membrane Bilayers. J Phys Chem B 2011; 115:6180-92. [DOI: 10.1021/jp110371k] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Charalambos Fotakis
- Institute of Organic and Pharmaceutical Chemistry, National Hellenic Research Foundation, Vas. Constantinou 48, Athens 11635, Greece
- Chemistry Department, National and Kapodistrian University of Athens, Panepistimiopolis Zographou 15771, Greece
| | - Dionysios Christodouleas
- Institute of Organic and Pharmaceutical Chemistry, National Hellenic Research Foundation, Vas. Constantinou 48, Athens 11635, Greece
- Chemistry Department, National and Kapodistrian University of Athens, Panepistimiopolis Zographou 15771, Greece
| | - Panagiotis Zoumpoulakis
- Institute of Organic and Pharmaceutical Chemistry, National Hellenic Research Foundation, Vas. Constantinou 48, Athens 11635, Greece
| | - Eftichia Kritsi
- Institute of Organic and Pharmaceutical Chemistry, National Hellenic Research Foundation, Vas. Constantinou 48, Athens 11635, Greece
- Chemistry Department, National and Kapodistrian University of Athens, Panepistimiopolis Zographou 15771, Greece
| | - Nikolas-Ploutarch Benetis
- Institute of Organic and Pharmaceutical Chemistry, National Hellenic Research Foundation, Vas. Constantinou 48, Athens 11635, Greece
| | - Thomas Mavromoustakos
- Institute of Organic and Pharmaceutical Chemistry, National Hellenic Research Foundation, Vas. Constantinou 48, Athens 11635, Greece
- Chemistry Department, National and Kapodistrian University of Athens, Panepistimiopolis Zographou 15771, Greece
| | - Heribert Reis
- Institute of Organic and Pharmaceutical Chemistry, National Hellenic Research Foundation, Vas. Constantinou 48, Athens 11635, Greece
| | - Argiro Gili
- Institute of Organic and Pharmaceutical Chemistry, National Hellenic Research Foundation, Vas. Constantinou 48, Athens 11635, Greece
- School of Applied Mathematical and Physical Science, National Technical University of Athens, Zographou Campus, 15700 Athens, Greece
| | - Manthos G. Papadopoulos
- Institute of Organic and Pharmaceutical Chemistry, National Hellenic Research Foundation, Vas. Constantinou 48, Athens 11635, Greece
| | - Maria Zervou
- Institute of Organic and Pharmaceutical Chemistry, National Hellenic Research Foundation, Vas. Constantinou 48, Athens 11635, Greece
| |
Collapse
|
29
|
Cannabinoid potentiation of glycine receptors contributes to cannabis-induced analgesia. Nat Chem Biol 2011; 7:296-303. [PMID: 21460829 DOI: 10.1038/nchembio.552] [Citation(s) in RCA: 117] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2010] [Accepted: 02/16/2011] [Indexed: 02/07/2023]
Abstract
Cannabinoids enhance the function of glycine receptors (GlyRs). However, little is known about the mechanisms and behavioral implication of cannabinoid-GlyR interaction. Using mutagenesis and NMR analysis, we have identified a serine at 296 in the GlyR protein critical for the potentiation of I(Gly) by Δ(9)-tetrahydrocannabinol (THC), a major psychoactive component of marijuana. The polarity of the amino acid residue at 296 and the hydroxyl groups of THC are critical for THC potentiation. Removal of the hydroxyl groups of THC results in a compound that does not affect I(Gly) when applied alone but selectively antagonizes cannabinoid-induced potentiating effect on I(Gly) and analgesic effect in a tail-flick test in mice. The cannabinoid-induced analgesia is absent in mice lacking α3GlyRs but not in those lacking CB1 and CB2 receptors. These findings reveal a new mechanism underlying cannabinoid potentiation of GlyRs, which could contribute to some of the cannabis-induced analgesic and therapeutic effects.
Collapse
|
30
|
Tian X, Pavlopoulos S, Yang DP, Makriyannis A. The interaction of cannabinoid receptor agonists, CP55940 and WIN55212-2 with membranes using solid state 2H NMR. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2010; 1808:2095-101. [PMID: 21129361 DOI: 10.1016/j.bbamem.2010.11.026] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2010] [Revised: 11/18/2010] [Accepted: 11/22/2010] [Indexed: 11/27/2022]
Abstract
Two key commonly used cannabinergic agonists, CP55940 and WIN55212-2, are investigated for their effects on the lipid membrane bilayer using (2)H solid state NMR, and the results are compared with our earlier work with delta-9-tetrahydrocannabinol (Δ(9)-THC). To study the effects of these ligands we used hydrated bilayers of dipalmitoylphosphatidylcholine (DPPC) deuterated at the 2' and 16' positions of both acyl chains with deuterium atoms serving as probes for the dynamic and phase changes at the membrane interface and at the bilayer center respectively. All three cannabinergic ligands lower the phospholipid membrane phase transition temperature, increase the lipid sn-2 chain order parameter at the membrane interface and decrease the order at the center of the bilayer. Our studies show that the cannabinoid ligands induce lateral phase separation in the lipid membrane at physiological temperatures. During the lipid membrane phase transition, the cooperative dynamic process whereby the C-(2)H segments at the interface and center of the bilayer spontaneously reach the fast exchange regime ((2)H NMR timescale) is distinctively modulated by the two cannabinoids. Specifically, CP55940 is slightly more efficient at inducing liquid crystalline-type (2)H NMR spectral features at the membrane interface compared to WIN55212-2. In contrast, WIN55212-2 has a far superior ability to induce liquid crystalline-type spectral features at the center of the bilayer, and it increases the order parameter of the sn-1 chain in addition to the sn-2 chain of the lipids. These observations suggest the cannabinoid ligands may influence lipid membrane domain formations and there may be contributions to their cannabinergic activities through lipid membrane microdomain related mechanisms. Our work demonstrates that experimental design strategies utilizing specifically deuterium labeled lipids yield more detailed insights concerning the properties of lipid bilayers.
Collapse
Affiliation(s)
- Xiaoyu Tian
- Center for Drug Discovery, Northeastern University, Boston, MA 02115, USA
| | | | | | | |
Collapse
|
31
|
Hurst DP, Grossfield A, Lynch DL, Feller S, Romo TD, Gawrisch K, Pitman MC, Reggio PH. A lipid pathway for ligand binding is necessary for a cannabinoid G protein-coupled receptor. J Biol Chem 2010; 285:17954-64. [PMID: 20220143 PMCID: PMC2878557 DOI: 10.1074/jbc.m109.041590] [Citation(s) in RCA: 176] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2009] [Revised: 02/13/2010] [Indexed: 11/06/2022] Open
Abstract
Recent isothiocyanate covalent labeling studies have suggested that a classical cannabinoid, (-)-7'-isothiocyanato-11-hydroxy-1',1'dimethylheptyl-hexahydrocannabinol (AM841), enters the cannabinoid CB2 receptor via the lipid bilayer (Pei, Y., Mercier, R. W., Anday, J. K., Thakur, G. A., Zvonok, A. M., Hurst, D., Reggio, P. H., Janero, D. R., and Makriyannis, A. (2008) Chem. Biol. 15, 1207-1219). However, the sequence of steps involved in such a lipid pathway entry has not yet been elucidated. Here, we test the hypothesis that the endogenous cannabinoid sn-2-arachidonoylglycerol (2-AG) attains access to the CB2 receptor via the lipid bilayer. To this end, we have employed microsecond time scale all-atom molecular dynamics (MD) simulations of the interaction of 2-AG with CB2 via a palmitoyl-oleoyl-phosphatidylcholine lipid bilayer. Results suggest the following: 1) 2-AG first partitions out of bulk lipid at the transmembrane alpha-helix (TMH) 6/7 interface; 2) 2-AG then enters the CB2 receptor binding pocket by passing between TMH6 and TMH7; 3) the entrance of the 2-AG headgroup into the CB2 binding pocket is sufficient to trigger breaking of the intracellular TMH3/6 ionic lock and the movement of the TMH6 intracellular end away from TMH3; and 4) subsequent to protonation at D3.49/D6.30, further 2-AG entry into the ligand binding pocket results in both a W6.48 toggle switch change and a large influx of water. To our knowledge, this is the first demonstration via unbiased molecular dynamics that a ligand can access the binding pocket of a class A G protein-coupled receptor via the lipid bilayer and the first demonstration via molecular dynamics of G protein-coupled receptor activation triggered by a ligand binding event.
Collapse
Affiliation(s)
- Dow P. Hurst
- From the Department of Chemistry and Biochemistry, Center for Drug Discovery, University of North Carolina, Greensboro, North Carolina 27402
| | - Alan Grossfield
- the Department of Biochemistry and Biophysics, University of Rochester Medical Center, Rochester, New York 14642
| | - Diane L. Lynch
- From the Department of Chemistry and Biochemistry, Center for Drug Discovery, University of North Carolina, Greensboro, North Carolina 27402
| | - Scott Feller
- the Department of Chemistry, Wabash College, Crawfordsville, Indiana 47933
| | - Tod D. Romo
- the Department of Biochemistry and Biophysics, University of Rochester Medical Center, Rochester, New York 14642
| | - Klaus Gawrisch
- Membrane Biochemistry/Biophysics, NIAAA, National Institutes of Health, Bethesda, Maryland 20892, and
| | - Michael C. Pitman
- the Computational Biology Center, IBM Thomas J. Watson Research Center, Yorktown Heights, New York 10598
| | - Patricia H. Reggio
- From the Department of Chemistry and Biochemistry, Center for Drug Discovery, University of North Carolina, Greensboro, North Carolina 27402
| |
Collapse
|