1
|
Xue R, Zhang E, Wang Y. Pre-fusion motion state determines the heterogeneity of membrane fusion dynamics for large dense-core vesicles. Acta Physiol (Oxf) 2024; 240:e14115. [PMID: 38353019 DOI: 10.1111/apha.14115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 11/30/2023] [Accepted: 02/02/2024] [Indexed: 04/17/2024]
Abstract
AIM In neuroendocrine cells, large dense-core vesicles (LDCVs) undergo highly regulated pre-fusion processes before releasing hormones via membrane fusion. Significant heterogeneity has been found for LDCV population based on the dynamics of membrane fusion. However, how the pre-fusion status impacts the heterogeneity of LDCVs still remains unclear. Hence, we explored pre-fusion determinants of heterogeneous membrane fusion procedure of LDCV subpopulations. METHODS We assessed the pre-fusion motion of two LDCV subpopulations with distinct membrane fusion dynamics individually, using total internal reflection fluorescence microscopy. These two subpopulations were isolated by blocking Rho GTPase-dependent actin reorganization using Clostridium difficile toxin B (ToxB), which selectively targets the fast fusion vesicle pool. RESULTS We found that the fast fusion subpopulation was in an active motion mode prior to release, termed "active" LDCV pool, while vesicles from the slow fusion subpopulation were also moving but in a significantly more confined status, forming an "inert" pool. The depletion of the active pool by ToxB also eliminated fast fusion vesicles and was not rescued by pre-treatment with phorbol ester. A mild actin reorganization blocker, latrunculin A, that partially disrupted the active pool, only slightly attenuated the fast fusion subpopulation. CONCLUSION The pre-fusion motion state of LDCVs also exhibits heterogeneity and dictates the heterogeneous fusion pore dynamics. Rearrangement of F-actin network mediates vesicle pre-fusion motion and subsequently determines the membrane fusion kinetics.
Collapse
Affiliation(s)
- Renhao Xue
- Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, China
- Department of Gynecology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Enming Zhang
- Department of Clinical Sciences in Malmö, Lund University Diabetes Centre, Lund University, Malmö, Sweden
| | - Yu Wang
- Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, China
- Department of Gynecology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, China
| |
Collapse
|
2
|
High-speed imaging reveals the bimodal nature of dense core vesicle exocytosis. Proc Natl Acad Sci U S A 2023; 120:e2214897120. [PMID: 36574702 PMCID: PMC9910497 DOI: 10.1073/pnas.2214897120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
During exocytosis, the fusion of secretory vesicle with plasma membrane forms a pore that regulates release of neurotransmitter and peptide. Heterogeneity of fusion pore behavior has been attributed to stochastic variation in a common exocytic mechanism, implying a lack of biological control. Using a fluorescent false neurotransmitter (FFN), we imaged dense core vesicle (DCV) exocytosis in primary mouse adrenal chromaffin cells by total internal reflection fluorescence microscopy at millisecond resolution and observed strikingly divergent modes of release, with fast events lasting <30 ms and slow events persisting for seconds. Dual imaging of slow events shows a delay in the entry of external dye relative to FFN release, suggesting exclusion by an extremely narrow pore <1 nm in diameter. Unbiased comprehensive analysis shows that the observed variation cannot be explained by stochasticity alone, but rather involves distinct mechanisms, revealing the bimodal nature of DCV exocytosis. Further, loss of calcium sensor synaptotagmin 7 increases the proportion of slow events without changing the intrinsic properties of either class, indicating the potential for independent regulation. The identification of two distinct mechanisms for release capable of independent regulation suggests a biological basis for the diversity of fusion pore behavior.
Collapse
|
3
|
Qin N, Chen Z, Xue R. A two-subpopulation model that reflects heterogeneity of large dense core vesicles in exocytosis. Cell Cycle 2022; 21:531-546. [PMID: 35067177 PMCID: PMC8942488 DOI: 10.1080/15384101.2022.2026576] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Exocytosis of large dense core vesicles is responsible for hormone secretion in neuroendocrine cells. The population of primed vesicles ready to release upon cell excitation demonstrates large heterogeneity. However, there are currently no models that clearly reflect such heterogeneity. Here, we develop a novel model based on single vesicle release events from amperometry recordings of PC12 cells using carbon fiber microelectrode. In this model, releasable vesicles can be grouped into two subpopulations, namely, SP1 and SP2. SP1 vesicles replenish quickly, with kinetics of ~0.0368 s-1, but likely undergo slow fusion pore expansion (amperometric signals rise at ~2.5 pA/ms), while SP2 vesicles demonstrate slow replenishment (kinetics of ~0.0048 s-1) but prefer fast dilation of fusion pore, with an amperometric signal rising rate of ~9.1 pA/ms. Phorbol ester enlarges the size of SP2 partially via activation of protein kinase C and conveys SP1 vesicles into SP2. Inhibition of Rho GTPase-dependent actin rearrangement almost completely depletes SP2. We also propose that the phorbol ester-sensitive vesicle subpopulation (SP2) is analogous to the subset of superprimed synaptic vesicles in neurons. This model provides a meticulous description of the architecture of the readily releasable vesicle pool and elucidates the heterogeneity of the vesicle priming mechanism.
Collapse
Affiliation(s)
- Nan Qin
- Shanghai Key Laboratory of Maternal Fetal Medicine, Clinical and Translational Research Center of Shanghai First Maternity & Infant Hospital, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Zhixi Chen
- Shanghai Key Laboratory of Maternal Fetal Medicine, Clinical and Translational Research Center of Shanghai First Maternity & Infant Hospital, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Renhao Xue
- Shanghai Key Laboratory of Maternal Fetal Medicine, Clinical and Translational Research Center of Shanghai First Maternity & Infant Hospital, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai, China,CONTACT Renhao Xue Shanghai Key Laboratory of Maternal Fetal Medicine, Clinical and Translational Research Center of Shanghai First Maternity & Infant Hospital, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai, China
| |
Collapse
|
4
|
Rastgar S, Pleis S, Zhang Y, Wittstock G. Dispensing Single Drops as Electrochemical Reactors. ChemElectroChem 2022. [DOI: 10.1002/celc.202200004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Shokoufeh Rastgar
- Carl von Ossietzky University of Oldenburg: Carl von Ossietzky Universitat Oldenburg Institute of Chemistry GERMANY
| | - Sebastian Pleis
- Carl von Ossietzky University of Oldenburg: Carl von Ossietzky Universitat Oldenburg Institute of Chemistry GERMANY
| | - Yanzhen Zhang
- China University of Petroleum Huadong - Qingdao Campus College of Mechanical and Electronic Engineering CHINA
| | - Gunther Wittstock
- Carl von Ossietzky University of Oldenburg: Carl von Ossietzky Universitat Oldenburg Institute of Chemistry Carl von Ossietzky Str. 9-11 W3 1-105 26111 Oldenburg GERMANY
| |
Collapse
|
5
|
Hatamie A, Ren L, Dou H, Gandasi NR, Rorsman P, Ewing A. Nanoscale Amperometry Reveals that Only a Fraction of Vesicular Serotonin Content is Released During Exocytosis from Beta Cells. Angew Chem Int Ed Engl 2021; 60:7593-7596. [PMID: 33340209 PMCID: PMC8049002 DOI: 10.1002/anie.202015902] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Indexed: 12/23/2022]
Abstract
Recent work has shown that chemical release during the fundamental cellular process of exocytosis in model cell lines is not all-or-none. We tested this theory for vesicular release from single pancreatic beta cells. The vesicles in these cells release insulin, but also serotonin, which is detectible with amperometric methods. Traditionally, it is assumed that exocytosis in beta cells is all-or-none. Here, we use a multidisciplinary approach involving nanoscale amperometric chemical methods to explore the chemical nature of insulin exocytosis. We amperometrically quantified the number of serotonin molecules stored inside of individual nanoscale vesicles (39 317±1611) in the cell cytoplasm before exocytosis and the number of serotonin molecules released from single cells (13 310±1127) for each stimulated exocytosis event. Thus, beta cells release only one-third of their granule content, clearly supporting partial release in this system. We discuss these observations in the context of type-2 diabetes.
Collapse
Affiliation(s)
- Amir Hatamie
- Department of Chemistry and Molecular BiologyUniversity of GothenburgKemivägen 1041296GothenburgSweden
| | - Lin Ren
- Department of Chemistry and Molecular BiologyUniversity of GothenburgKemivägen 1041296GothenburgSweden
| | - Haiqiang Dou
- Department of Physiology, Sahlgrenska AcademyUniversity of GothenburgMedicinaregatan 11–1341390GothenburgSweden
| | - Nikhil R. Gandasi
- Department of Physiology, Sahlgrenska AcademyUniversity of GothenburgMedicinaregatan 11–1341390GothenburgSweden
| | - Patrik Rorsman
- Department of Physiology, Sahlgrenska AcademyUniversity of GothenburgMedicinaregatan 11–1341390GothenburgSweden
- Oxford Centre for Diabetes, Endocrinology and MetabolismUniversity of OxfordChurchill HospitalOxfordOX3 7LJUK
| | - Andrew Ewing
- Department of Chemistry and Molecular BiologyUniversity of GothenburgKemivägen 1041296GothenburgSweden
| |
Collapse
|
6
|
Hatamie A, Ren L, Dou H, Gandasi NR, Rorsman P, Ewing A. Nanoscale Amperometry Reveals that Only a Fraction of Vesicular Serotonin Content is Released During Exocytosis from Beta Cells. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202015902] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- Amir Hatamie
- Department of Chemistry and Molecular Biology University of Gothenburg Kemivägen 10 41296 Gothenburg Sweden
| | - Lin Ren
- Department of Chemistry and Molecular Biology University of Gothenburg Kemivägen 10 41296 Gothenburg Sweden
| | - Haiqiang Dou
- Department of Physiology, Sahlgrenska Academy University of Gothenburg Medicinaregatan 11–13 41390 Gothenburg Sweden
| | - Nikhil R. Gandasi
- Department of Physiology, Sahlgrenska Academy University of Gothenburg Medicinaregatan 11–13 41390 Gothenburg Sweden
| | - Patrik Rorsman
- Department of Physiology, Sahlgrenska Academy University of Gothenburg Medicinaregatan 11–13 41390 Gothenburg Sweden
- Oxford Centre for Diabetes, Endocrinology and Metabolism University of Oxford Churchill Hospital Oxford OX3 7LJ UK
| | - Andrew Ewing
- Department of Chemistry and Molecular Biology University of Gothenburg Kemivägen 10 41296 Gothenburg Sweden
| |
Collapse
|
7
|
White KA, Kim BN. Quantifying neurotransmitter secretion at single-vesicle resolution using high-density complementary metal-oxide-semiconductor electrode array. Nat Commun 2021; 12:431. [PMID: 33462204 PMCID: PMC7813837 DOI: 10.1038/s41467-020-20267-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Accepted: 11/17/2020] [Indexed: 11/21/2022] Open
Abstract
Neuronal exocytosis facilitates the propagation of information through the nervous system pertaining to bodily function, memory, and emotions. Using amperometry, the sub-millisecond dynamics of exocytosis can be monitored and the modulation of exocytosis due to drug treatment or neurodegenerative diseases can be studied. Traditional single-cell amperometry is a powerful technique for studying the molecular mechanisms of exocytosis, but it is both costly and labor-intensive to accumulate statistically significant data. To surmount these limitations, we have developed a silicon-based electrode array with 1024 on-chip electrodes that measures oxidative signal in 0.1 millisecond intervals. Using the developed device, we are able to capture the modulation of exocytosis due to Parkinson's disease treatment (L-Dopa), with statistical significance, within 30 total minutes of recording. The validation study proves our device's capability to accelerate the study of many pharmaceutical treatments for various neurodegenerative disorders that affect neurotransmitter secretion to a matter of minutes.
Collapse
Affiliation(s)
- Kevin A White
- Department of Electrical and Computer Engineering, University of Central Florida, Orlando, FL, 32827, USA
| | - Brian N Kim
- Department of Electrical and Computer Engineering, University of Central Florida, Orlando, FL, 32827, USA.
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL, 32827, USA.
| |
Collapse
|
8
|
Kuhn B, Picollo F, Carabelli V, Rispoli G. Advanced real-time recordings of neuronal activity with tailored patch pipettes, diamond multi-electrode arrays and electrochromic voltage-sensitive dyes. Pflugers Arch 2020; 473:15-36. [PMID: 33047171 PMCID: PMC7782438 DOI: 10.1007/s00424-020-02472-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 09/29/2020] [Accepted: 10/02/2020] [Indexed: 12/03/2022]
Abstract
To understand the working principles of the nervous system is key to figure out its electrical activity and how this activity spreads along the neuronal network. It is therefore crucial to develop advanced techniques aimed to record in real time the electrical activity, from compartments of single neurons to populations of neurons, to understand how higher functions emerge from coordinated activity. To record from single neurons, a technique will be presented to fabricate patch pipettes able to seal on any membrane with a single glass type and whose shanks can be widened as desired. This dramatically reduces access resistance during whole-cell recording allowing fast intracellular and, if required, extracellular perfusion. To simultaneously record from many neurons, biocompatible probes will be described employing multi-electrodes made with novel technologies, based on diamond substrates. These probes also allow to synchronously record exocytosis and neuronal excitability and to stimulate neurons. Finally, to achieve even higher spatial resolution, it will be shown how voltage imaging, employing fast voltage-sensitive dyes and two-photon microscopy, is able to sample voltage oscillations in the brain spatially resolved and voltage changes in dendrites of single neurons at millisecond and micrometre resolution in awake animals.
Collapse
Affiliation(s)
- Bernd Kuhn
- Optical Neuroimaging Unit, OIST Graduate University, 1919-1 Tancha, Onna-son, Okinawa, Japan
| | - Federico Picollo
- Department of Physics, NIS Interdepartmental Centre, University of Torino and Italian Institute of Nuclear Physics, via Giuria 1, 10125, Torino, Italy
| | - Valentina Carabelli
- Department of Drug and Science Technology, NIS Interdepartmental Centre, University of Torino, Corso Raffaello 30, 10125, Torino, Italy
| | - Giorgio Rispoli
- Department of Biomedical and Specialist Surgical Sciences, University of Ferrara, Via Luigi Borsari 46, 44121, Ferrara, Italy.
| |
Collapse
|
9
|
Keighron JD, Wang Y, Cans AS. Electrochemistry of Single-Vesicle Events. ANNUAL REVIEW OF ANALYTICAL CHEMISTRY (PALO ALTO, CALIF.) 2020; 13:159-181. [PMID: 32151142 DOI: 10.1146/annurev-anchem-061417-010032] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Neuronal transmission relies on electrical signals and the transfer of chemical signals from one neuron to another. Chemical messages are transmitted from presynaptic neurons to neighboring neurons through the triggered fusion of neurotransmitter-filled vesicles with the cell plasma membrane. This process, known as exocytosis, involves the rapid release of neurotransmitter solutions that are detected with high affinity by the postsynaptic neuron. The type and number of neurotransmitters released and the frequency of vesicular events govern brain functions such as cognition, decision making, learning, and memory. Therefore, to understand neurotransmitters and neuronal function, analytical tools capable of quantitative and chemically selective detection of neurotransmitters with high spatiotemporal resolution are needed. Electrochemistry offers powerful techniques that are sufficiently rapid to allow for the detection of exocytosis activity and provides quantitative measurements of vesicle neurotransmitter content and neurotransmitter release from individual vesicle events. In this review, we provide an overview of the most commonly used electrochemical methods for monitoring single-vesicle events, including recent developments and what is needed for future research.
Collapse
Affiliation(s)
- Jacqueline D Keighron
- Department of Chemical and Biological Sciences, New York Institute of Technology, Old Westbury, New York 11568, USA
| | - Yuanmo Wang
- Department of Chemistry and Chemical Engineering, Chalmers University of Technology, 412 96 Gothenburg, Sweden;
| | - Ann-Sofie Cans
- Department of Chemistry and Chemical Engineering, Chalmers University of Technology, 412 96 Gothenburg, Sweden;
| |
Collapse
|
10
|
Antimalarial drugs impact chemical messenger secretion by blood platelets. Biochem Biophys Rep 2020; 22:100758. [PMID: 32346619 PMCID: PMC7182713 DOI: 10.1016/j.bbrep.2020.100758] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2019] [Revised: 01/14/2020] [Accepted: 03/30/2020] [Indexed: 11/25/2022] Open
Abstract
Background Advances in antimalarial drug development are important for combating malaria. Among the currently identified antimalarial drugs, it is suggested that some interact directly with the malarial parasites while others interact indirectly with the parasites. While this approach leads to parasite elimination, little is known about how these antimalarial drugs impact immune cells that are also critical in malarial response. Methods Herein, the effects of two common antimalarial drugs, chloroquine and quinine, on platelets were explored at both the bulk level, using high performance liquid chromatography, and the single cell level, using carbon-fiber microelectrode amperometry, to characterize any changes in chemical messenger secretion. Results The data reveal that both drugs cause platelet activation and reduce the number of platelet exocytosis events as well as delay fusion pore opening and closing. Conclusions This work demonstrates how chloroquine and quinine quantitatively and qualitatively impact in vitro platelet function. General significance Overall, the goal of this work is to promote understanding about how antimalarial drugs impact platelets as this may affect antimalarial drug development as well as therapeutic approaches to treat malarial infection. Antimalarial drugs impact platelet function by inducing activation. Single cell electrochemistry reveals changes in platelet function. It is important to consider platelet behaviors beyond aggregation to understand the side effects of antimalarial drugs.
Collapse
|
11
|
Tanguy E, Wang Q, Vitale N. Role of Phospholipase D-Derived Phosphatidic Acid in Regulated Exocytosis and Neurological Disease. Handb Exp Pharmacol 2020; 259:115-130. [PMID: 30570690 DOI: 10.1007/164_2018_180] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Lipids play a vital role in numerous cellular functions starting from a structural role as major constituents of membranes to acting as signaling intracellular or extracellular entities. Accordingly, it has been known for decades that lipids, especially those coming from diet, are important to maintain normal physiological functions and good health. On the other side, the exact molecular nature of these beneficial or deleterious lipids, as well as their precise mode of action, is only starting to be unraveled. This recent improvement in our knowledge is largely resulting from novel pharmacological, molecular, cellular, and genetic tools to study lipids in vitro and in vivo. Among these important lipids, phosphatidic acid plays a unique and central role in a great variety of cellular functions. This review will focus on the proposed functions of phosphatidic acid generated by phospholipase D in the last steps of regulated exocytosis with a specific emphasis on hormonal and neurotransmitter release and its potential impact on different neurological diseases.
Collapse
Affiliation(s)
- Emeline Tanguy
- Institut des Neurosciences Cellulaires et Intégratives, CNRS UPR 3212 and Université de Strasbourg, Strasbourg, France
| | - Qili Wang
- Institut des Neurosciences Cellulaires et Intégratives, CNRS UPR 3212 and Université de Strasbourg, Strasbourg, France
| | - Nicolas Vitale
- Institut des Neurosciences Cellulaires et Intégratives, CNRS UPR 3212 and Université de Strasbourg, Strasbourg, France.
- INSERM, Paris, Cedex 13, France.
| |
Collapse
|
12
|
Sangsiri S, Xu H, Fernandes R, Fink GD, Lujan HL, DiCarlo SE, Galligan JJ. Spinal cord injury alters purinergic neurotransmission to mesenteric arteries in rats. Am J Physiol Heart Circ Physiol 2019; 318:H223-H237. [PMID: 31774690 DOI: 10.1152/ajpheart.00525.2019] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Complications associated with spinal cord injury (SCI) result from unregulated reflexes below the lesion level. Understanding neurotransmission distal to the SCI could improve quality of life by mitigating complications. The long-term impact of SCI on neurovascular transmission is poorly understood, but reduced sympathetic activity below the site of SCI enhances arterial neurotransmission (1). We studied sympathetic neurovascular transmission using a rat model of long-term paraplegia (T2-3) and tetraplegia (C6-7). Sixteen weeks after SCI, T2-3 and C6-7 rats had lower blood pressure (BP) than sham rats (103 ± 2 and 97 ± 4 vs. 117 ± 6 mmHg, P < 0.05). T2-3 rats had tachycardia (410 ± 6 beats/min), and C6-7 rats had bradycardia (299 ± 10 beats/min) compared with intact rats (321 ± 4 beats/min, P < 0.05). Purinergic excitatory junction potentials (EJPs) were measured in mesenteric arteries (MA) using microlectrodes, and norepinephrine (NE) release was measured using amperometry. NE release was similar in all groups, while EJP frequency-response curves from T2-3 and C6-7 rats were left-shifted vs. sham rats. EJPs in T2-3 and C6-7 rats showed facilitation followed by run-down during stimulation trains (10 Hz, 50 stimuli). MA reactivity to exogenous NE and ATP was similar in all rats. In T2-3 and C6-7 rats, NE content was increased in left cardiac ventricles compared with intact rats, but was not changed in MA, kidney, or spleen. Our data indicate that peripheral purinergic, but not adrenergic, neurotransmission increases following SCI via enhanced ATP release from periarterial nerves. Sympathetic BP support is reduced after SCI, but improving neurotransmitter release might maintain cardiovascular stability in individuals living with SCI.NEW & NOTEWORTHY This study revealed increased purinergic, but not noradrenergic, neurotransmission to mesenteric arteries in rats with spinal cord injury (SCI). An increased releasable pool of ATP in periarterial sympathetic nerves may contribute to autonomic dysreflexia following SCI, suggesting that purinergic neurotransmission may be a therapeutic target for maintaining stable blood pressure in individuals living with SCI. The selective increase in ATP release suggests that ATP and norepinephrine may be stored in separate synaptic vesicles in periarterial sympathetic varicosities.
Collapse
Affiliation(s)
- Sutheera Sangsiri
- Department of Preclinical Science, Thammasat University, Pathumthani, Thailand.,Department of Pharmacology and Toxicology, Michigan State University, East Lansing, Michigan
| | - Hui Xu
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, Michigan.,Neuroscience Program, Michigan State University, East Lansing, Michigan
| | - Roxanne Fernandes
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, Michigan
| | - Greg D Fink
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, Michigan.,Neuroscience Program, Michigan State University, East Lansing, Michigan
| | - Heidi L Lujan
- Department of Physiology, Michigan State University, East Lansing, Michigan
| | - Stephen E DiCarlo
- Department of Physiology, Michigan State University, East Lansing, Michigan
| | - James J Galligan
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, Michigan.,Neuroscience Program, Michigan State University, East Lansing, Michigan
| |
Collapse
|
13
|
Carbone E, Borges R, Eiden LE, García AG, Hernández‐Cruz A. Chromaffin Cells of the Adrenal Medulla: Physiology, Pharmacology, and Disease. Compr Physiol 2019; 9:1443-1502. [DOI: 10.1002/cphy.c190003] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
14
|
Balaji Ramachandran S, Gillis KD. Estimating amperometric spike parameters resulting from quantal exocytosis using curve fitting seeded by a matched-filter algorithm. J Neurosci Methods 2019; 311:360-368. [PMID: 30253199 DOI: 10.1016/j.jneumeth.2018.09.018] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2018] [Revised: 09/14/2018] [Accepted: 09/16/2018] [Indexed: 10/28/2022]
Abstract
BACKGROUND Quantal exocytosis of oxidizable neurotransmitters can be detected as spikes of amperometric current using electrochemical microelectrodes. Measurements of spike parameters indicate the maximal transmitter flux, flux duration, and amount of transmitter released from individual vesicles. Automated analysis algorithms need to reject spikes that overlap in time. In addition, many spikes are preceded by small amplitude "foot" signals, attributed to slow release of transmitter through a fusion pore. Accurate pre-spike baseline determination is essential for estimating fusion-pore duration and the amount of transmitter released through the fusion pore. NEW METHOD We developed an estimation approach that is based on fitting a multi-exponential function to the data. Our previously described matched-filter algorithm is used to identify the sections of data to fit and provides seed values to facilitate convergence of the iterative fit. The new estimation algorithm includes overlap rejection, a two-step fitting procedure and a novel baseline estimation procedure. RESULTS Histograms of spike parameters demonstrate excellent agreement of the new approach with manually computed parameters. COMPARISON WITH EXISTING METHODS Parameter estimates generated using the new approach are closer to blind manual estimates than commonly used existing methods. The improved performance is due to better detection of valid spikes and rejection of overlapping spikes. Moreover, since the complete time course of the spike is fit to a function, more complete information about the spike time course is captured. CONCLUSIONS The matched-filter seeded algorithm reliably rejects overlaps and estimates spike and foot signal parameters in a fully automated manner.
Collapse
Affiliation(s)
- Supriya Balaji Ramachandran
- Department of Bioengineering, 254 Agricultural Engineering, Columbia, MO, USA; Dalton Cardiovascular Research Center, University of Missouri, Columbia, MO, USA
| | - Kevin D Gillis
- Department of Bioengineering, 254 Agricultural Engineering, Columbia, MO, USA; Department of Medical Pharmacology and Physiology, 1 Hospital Dr., MO, USA; Dalton Cardiovascular Research Center, University of Missouri, Columbia, MO, USA.
| |
Collapse
|
15
|
Clinical implications and electrochemical biosensing of monoamine neurotransmitters in body fluids, in vitro, in vivo, and ex vivo models. Biosens Bioelectron 2018; 121:137-152. [DOI: 10.1016/j.bios.2018.09.002] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Revised: 08/25/2018] [Accepted: 09/01/2018] [Indexed: 12/13/2022]
|
16
|
de Diego AMG, García AG. Altered exocytosis in chromaffin cells from mouse models of neurodegenerative diseases. Acta Physiol (Oxf) 2018; 224:e13090. [PMID: 29742321 DOI: 10.1111/apha.13090] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Revised: 04/19/2018] [Accepted: 04/25/2018] [Indexed: 12/26/2022]
Abstract
Chromaffin cells from the adrenal gland (CCs) have extensively been used to explore the molecular structure and function of the exocytotic machinery, neurotransmitter release and synaptic transmission. The CC is integrated in the sympathoadrenal axis that helps the body maintain homoeostasis during both routine life and in acute stress conditions. This function is exquisitely controlled by the cerebral cortex and the hypothalamus. We propose the hypothesis that damage undergone by the brain during neurodegenerative diseases is also affecting the neurosecretory function of adrenal medullary CCs. In this context, we review here the following themes: (i) How the discharge of catecholamines is centrally and peripherally regulated at the sympathoadrenal axis; (ii) which are the intricacies of the amperometric techniques used to study the quantal release of single-vesicle exocytotic events; (iii) which are the alterations of the exocytotic fusion pore so far reported, in CCs of mouse models of neurodegenerative diseases; (iv) how some proteins linked to neurodegenerative pathologies affect the kinetics of exocytotic events; (v) finally, we try to integrate available data into a hypothesis to explain how the centrally originated neurodegenerative diseases may alter the kinetics of single-vesicle exocytotic events in peripheral adrenal medullary CCs.
Collapse
Affiliation(s)
- A. M. García de Diego
- Instituto Teófilo Hernando; Universidad Autónoma de Madrid; Madrid Spain
- Instituto de Investigación Sanitaria; Hospital Universitario de la Princesa; Universidad Autónoma de Madrid; Madrid Spain
- DNS Neuroscience; Parque Científico de Madrid; Madrid Spain
| | - A. García García
- Instituto Teófilo Hernando; Universidad Autónoma de Madrid; Madrid Spain
- Instituto de Investigación Sanitaria; Hospital Universitario de la Princesa; Universidad Autónoma de Madrid; Madrid Spain
- DNS Neuroscience; Parque Científico de Madrid; Madrid Spain
- Departamento de Farmacología y Terapéutica; Facultad de Medicina; Universidad Autónoma de Madrid; Madrid Spain
| |
Collapse
|
17
|
Barlow ST, Louie M, Hao R, Defnet PA, Zhang B. Electrodeposited Gold on Carbon-Fiber Microelectrodes for Enhancing Amperometric Detection of Dopamine Release from Pheochromocytoma Cells. Anal Chem 2018; 90:10049-10055. [PMID: 30047726 PMCID: PMC10879420 DOI: 10.1021/acs.analchem.8b02750] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Exocytosis is an ultrafast cellular process which facilitates neuron-neuron communication in the brain. Microelectrode electrochemistry has been an essential tool for measuring fast exocytosis events with high temporal resolution and high sensitivity. Due to carbon fiber's irreproducible and inhomogeneous surface conditions, however, it is often desirable to develop simple and reproducible modification schemes to enhance a microelectrode's analytical performance for single-cell analysis. Here we present carbon-fiber microelectrodes (CFEs) modified with a thin film of electrodeposited gold for the detection of exocytosis from rat pheochromocytoma cells (PC12), a model cell line for neurosecretion. These new probes are made by a novel voltage-pulsing deposition procedure and demonstrate improved electron-transfer characteristics for catecholamine oxidation, and their fabrication is tractable for many different probe designs. When we applied the probes to the detection of catecholamine release, we found that they outperformed unmodified CFEs. Further, the improved performance was conserved at cells incubated with L-DOPA (l-3,4-dihydroxyphenylalanine), a precursor to dopamine that increases the quantal size of the release events. Future use of this method may allow nanoelectrodes to be modified for highly sensitive detection of exocytosis from chemical synapses.
Collapse
Affiliation(s)
- Samuel T. Barlow
- Department of Chemistry, University of Washington, Seattle, Washington 98195-1700, United States
| | - Matthew Louie
- Department of Chemistry, University of Washington, Seattle, Washington 98195-1700, United States
| | - Rui Hao
- Department of Chemistry, University of Washington, Seattle, Washington 98195-1700, United States
| | - Peter A. Defnet
- Department of Chemistry, University of Washington, Seattle, Washington 98195-1700, United States
| | - Bo Zhang
- Department of Chemistry, University of Washington, Seattle, Washington 98195-1700, United States
| |
Collapse
|
18
|
Balaji Ramachandran S, Gillis KD. A matched-filter algorithm to detect amperometric spikes resulting from quantal secretion. J Neurosci Methods 2018; 293:338-346. [PMID: 29061344 DOI: 10.1016/j.jneumeth.2017.10.019] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Revised: 10/19/2017] [Accepted: 10/19/2017] [Indexed: 10/18/2022]
Abstract
BACKGROUND Electrochemical microelectrodes located immediately adjacent to the cell surface can detect spikes of amperometric current during exocytosis as the transmitter released from a single vesicle is oxidized on the electrode surface. Automated techniques to detect spikes are needed in order to quantify the spike rate as a measure of the rate of exocytosis. NEW METHOD We have developed a Matched Filter (MF) detection algorithm that scans the data set with a library of prototype spike templates while performing a least-squares fit to determine the amplitude and standard error. The ratio of the fit amplitude to the standard error constitutes a criterion score that is assigned for each time point and for each template. A spike is detected when the criterion score exceeds a threshold and the highest-scoring template and the time of peak score is identified. The search for the next spike commences only after the score falls below a second, lower threshold to reduce false positives. The approach was extended to detect spikes with double-exponential decays with the sum of two templates. RESULTS Receiver Operating Characteristic plots (ROCs) demonstrate that the algorithm detects >95% of manually identified spikes with a false-positive rate of ∼2%. COMPARISON WITH EXISTING METHODS ROCs demonstrate that the MF algorithm performs better than algorithms that detect spikes based on a derivative-threshold approach. CONCLUSIONS The MF approach performs well and leads into approaches to identify spike parameters.
Collapse
Affiliation(s)
- Supriya Balaji Ramachandran
- Department of Bioengineering, 254 Agricultural Engineering, Columbia, MO, USA; Dalton Cardiovascular Research Center, University of Missouri, Columbia, MO, USA
| | - Kevin D Gillis
- Department of Bioengineering, 254 Agricultural Engineering, Columbia, MO, USA; Department of Medical Pharmacology and Physiology, 1 Hospital Dr., Columbia, MO, USA; Dalton Cardiovascular Research Center, University of Missouri, Columbia, MO, USA.
| |
Collapse
|
19
|
Gasman S, Vitale N. Lipid remodelling in neuroendocrine secretion. Biol Cell 2017; 109:381-390. [DOI: 10.1111/boc.201700030] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Revised: 09/18/2017] [Accepted: 09/18/2017] [Indexed: 12/13/2022]
Affiliation(s)
- Stéphane Gasman
- Institut des Neurosciences Cellulaires et Intégratives; CNRS UPR3212; Université de Strasbourg; Strasbourg France
- INSERM; Paris Cedex 75654 France
| | - Nicolas Vitale
- Institut des Neurosciences Cellulaires et Intégratives; CNRS UPR3212; Université de Strasbourg; Strasbourg France
- INSERM; Paris Cedex 75654 France
| |
Collapse
|
20
|
Fathali H, Cans AS. Amperometry methods for monitoring vesicular quantal size and regulation of exocytosis release. Pflugers Arch 2017; 470:125-134. [PMID: 28951968 PMCID: PMC5748430 DOI: 10.1007/s00424-017-2069-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Revised: 09/12/2017] [Accepted: 09/14/2017] [Indexed: 11/30/2022]
Abstract
Chemical signaling strength during intercellular communication can be regulated by secretory cells through controlling the amount of signaling molecules that are released from a secretory vesicle during the exocytosis process. In addition, the chemical signal can also be influenced by the amount of neurotransmitters that is accumulated and stored inside the secretory vesicle compartment. Here, we present the development of analytical methodologies and cell model systems that have been applied in neuroscience research for gaining better insights into the biophysics and the molecular mechanisms, which are involved in the regulatory aspects of the exocytosis machinery affecting the output signal of chemical transmission at neuronal and neuroendocrine cells.
Collapse
Affiliation(s)
- Hoda Fathali
- Department of Chemistry and Chemical Engineering, Chalmers University of Technology, 42196, Gothenburg, Sweden
| | - Ann-Sofie Cans
- Department of Chemistry and Chemical Engineering, Chalmers University of Technology, 42196, Gothenburg, Sweden.
| |
Collapse
|
21
|
Gillis KD, Liu XA, Marcantoni A, Carabelli V. Electrochemical measurement of quantal exocytosis using microchips. Pflugers Arch 2017; 470:97-112. [PMID: 28866728 DOI: 10.1007/s00424-017-2063-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Revised: 08/21/2017] [Accepted: 08/23/2017] [Indexed: 01/30/2023]
Abstract
Carbon-fiber electrodes (CFEs) are the gold standard for quantifying the release of oxidizable neurotransmitters from single vesicles and single cells. Over the last 15 years, microfabricated devices have emerged as alternatives to CFEs that offer the possibility of higher throughput, subcellular spatial resolution of exocytosis, and integration with other techniques for probing exocytosis including microfluidic cell handling and solution exchange, optical imaging and stimulation, and electrophysiological recording and stimulation. Here we review progress in developing electrochemical electrode devices capable of resolving quantal exocytosis that are fabricated using photolithography.
Collapse
Affiliation(s)
- Kevin D Gillis
- Department of Bioengineering, University of Missouri, Columbia, MO, USA.
- Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, MO, USA.
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, MO, USA.
| | - Xin A Liu
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, MO, USA
| | - Andrea Marcantoni
- Department of Drug Science and "NIS" Inter-departmental Centre, University of Torino, Torino, Italy
| | - Valentina Carabelli
- Department of Drug Science and "NIS" Inter-departmental Centre, University of Torino, Torino, Italy
| |
Collapse
|
22
|
Carabelli V, Marcantoni A, Picollo F, Battiato A, Bernardi E, Pasquarelli A, Olivero P, Carbone E. Planar Diamond-Based Multiarrays to Monitor Neurotransmitter Release and Action Potential Firing: New Perspectives in Cellular Neuroscience. ACS Chem Neurosci 2017; 8:252-264. [PMID: 28027435 DOI: 10.1021/acschemneuro.6b00328] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
High biocompatibility, outstanding electrochemical responsiveness, inertness, and transparency make diamond-based multiarrays (DBMs) first-rate biosensors for in vitro detection of electrochemical and electrical signals from excitable cells together, with potential for in vivo applications as neural interfaces and prostheses. Here, we will review the electrochemical and physical properties of various DBMs and how these devices have been employed for recording released neurotransmitter molecules and all-or-none action potentials from living cells. Specifically, we will overview how DBMs can resolve localized exocytotic events from subcellular compartments using high-density microelectrode arrays (MEAs), or monitoring oxidizable neurotransmitter release from populations of cells in culture and tissue slices using low-density MEAs. Interfacing DBMs with excitable cells is currently leading to the promising opportunity of recording electrical signals as well as creating neuronal interfaces through the same device. Given the recent increasingly growing development of newly available DBMs of various geometries to monitor electrical activity and neurotransmitter release in a variety of excitable and neuronal tissues, the discussion will be limited to planar DBMs.
Collapse
Affiliation(s)
- Valentina Carabelli
- Consorzio Nazionale Interuniversitario per le Scienze fisiche della Materia (CNISM), 10125 Torino Unit, Italy
| | - Andrea Marcantoni
- Consorzio Nazionale Interuniversitario per le Scienze fisiche della Materia (CNISM), 10125 Torino Unit, Italy
| | - Federico Picollo
- Consorzio Nazionale Interuniversitario per le Scienze fisiche della Materia (CNISM), 10125 Torino Unit, Italy
- Istituto Nazionale di Fisica Nucleare (INFN), 10125 sez. Torino, Italy
| | - Alfio Battiato
- Consorzio Nazionale Interuniversitario per le Scienze fisiche della Materia (CNISM), 10125 Torino Unit, Italy
- Istituto Nazionale di Fisica Nucleare (INFN), 10125 sez. Torino, Italy
| | - Ettore Bernardi
- Consorzio Nazionale Interuniversitario per le Scienze fisiche della Materia (CNISM), 10125 Torino Unit, Italy
- Istituto Nazionale di Fisica Nucleare (INFN), 10125 sez. Torino, Italy
| | - Alberto Pasquarelli
- Institute
of Electron Devices and Circuits, Ulm University, 89081 Ulm, Germany
| | - Paolo Olivero
- Consorzio Nazionale Interuniversitario per le Scienze fisiche della Materia (CNISM), 10125 Torino Unit, Italy
- Istituto Nazionale di Fisica Nucleare (INFN), 10125 sez. Torino, Italy
| | - Emilio Carbone
- Consorzio Nazionale Interuniversitario per le Scienze fisiche della Materia (CNISM), 10125 Torino Unit, Italy
| |
Collapse
|
23
|
Ganesana M, Lee ST, Wang Y, Venton BJ. Analytical Techniques in Neuroscience: Recent Advances in Imaging, Separation, and Electrochemical Methods. Anal Chem 2017; 89:314-341. [PMID: 28105819 PMCID: PMC5260807 DOI: 10.1021/acs.analchem.6b04278] [Citation(s) in RCA: 93] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
| | | | | | - B. Jill Venton
- Department of Chemistry, PO Box 400319, University of Virginia, Charlottesville, VA 22904
| |
Collapse
|
24
|
Picollo F, Battiato A, Bernardi E, Marcantoni A, Pasquarelli A, Carbone E, Olivero P, Carabelli V. Microelectrode Arrays of Diamond-Insulated Graphitic Channels for Real-Time Detection of Exocytotic Events from Cultured Chromaffin Cells and Slices of Adrenal Glands. Anal Chem 2016; 88:7493-9. [DOI: 10.1021/acs.analchem.5b04449] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Federico Picollo
- Istituto Nazionale di Fisica Nucleare (INFN), 10125 Torino, Italy
- Physics
Department, University of Torino, 10125 Torino, Italy
- “Nanostructured
Interfaces and Surfaces” Inter-departmental Centre, University of Torino, 10125 Torino, Italy
- Consorzio Nazionale Interuniversitario per le Scienze Fisiche della Materia (CNISM), Torino Unit, 10125 Torino, Italy
| | - Alfio Battiato
- Istituto Nazionale di Fisica Nucleare (INFN), 10125 Torino, Italy
- Physics
Department, University of Torino, 10125 Torino, Italy
- “Nanostructured
Interfaces and Surfaces” Inter-departmental Centre, University of Torino, 10125 Torino, Italy
- Consorzio Nazionale Interuniversitario per le Scienze Fisiche della Materia (CNISM), Torino Unit, 10125 Torino, Italy
| | - Ettore Bernardi
- Istituto Nazionale di Fisica Nucleare (INFN), 10125 Torino, Italy
- Physics
Department, University of Torino, 10125 Torino, Italy
- “Nanostructured
Interfaces and Surfaces” Inter-departmental Centre, University of Torino, 10125 Torino, Italy
- Consorzio Nazionale Interuniversitario per le Scienze Fisiche della Materia (CNISM), Torino Unit, 10125 Torino, Italy
| | - Andrea Marcantoni
- “Nanostructured
Interfaces and Surfaces” Inter-departmental Centre, University of Torino, 10125 Torino, Italy
- Consorzio Nazionale Interuniversitario per le Scienze Fisiche della Materia (CNISM), Torino Unit, 10125 Torino, Italy
- Department
of Drug Science and Technology, University of Torino, 10125 Torino, Italy
| | - Alberto Pasquarelli
- Institute
of Electron Devices and Circuits, Ulm University, 89081 Ulm, Germany
| | - Emilio Carbone
- “Nanostructured
Interfaces and Surfaces” Inter-departmental Centre, University of Torino, 10125 Torino, Italy
- Consorzio Nazionale Interuniversitario per le Scienze Fisiche della Materia (CNISM), Torino Unit, 10125 Torino, Italy
- Department
of Drug Science and Technology, University of Torino, 10125 Torino, Italy
| | - Paolo Olivero
- Istituto Nazionale di Fisica Nucleare (INFN), 10125 Torino, Italy
- Physics
Department, University of Torino, 10125 Torino, Italy
- “Nanostructured
Interfaces and Surfaces” Inter-departmental Centre, University of Torino, 10125 Torino, Italy
- Consorzio Nazionale Interuniversitario per le Scienze Fisiche della Materia (CNISM), Torino Unit, 10125 Torino, Italy
| | - Valentina Carabelli
- “Nanostructured
Interfaces and Surfaces” Inter-departmental Centre, University of Torino, 10125 Torino, Italy
- Consorzio Nazionale Interuniversitario per le Scienze Fisiche della Materia (CNISM), Torino Unit, 10125 Torino, Italy
- Department
of Drug Science and Technology, University of Torino, 10125 Torino, Italy
| |
Collapse
|
25
|
Adams RD, Harkins AB. PC12 cells that lack synaptotagmin I exhibit loss of a subpool of small dense core vesicles. Biophys J 2016; 107:2838-2849. [PMID: 25517150 DOI: 10.1016/j.bpj.2014.10.060] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2014] [Revised: 09/30/2014] [Accepted: 10/29/2014] [Indexed: 12/27/2022] Open
Abstract
Neurons communicate by releasing neurotransmitters that are stored in intracellular vesicular compartments. PC12 cells are frequently used as a model secretory cell line that is described to have two subpools of vesicles: small clear vesicles and dense core vesicles. We measured transmitter molecules released from vesicles in NGF-differentiated PC12 cells using carbon-fiber amperometry, and relative diameters of individual vesicles using electron microscopy. Both amperometry and electron micrograph data were analyzed by statistical and machine learning methods for Gaussian mixture models. An electron microscopy size correction algorithm was used to predict and correct for observation bias of vesicle size due to tangential slices through some vesicles. Expectation maximization algorithms were used to perform maximum likelihood estimation for the Gaussian parameters of different populations of vesicles, and were shown to be better than histogram and cumulative distribution function methods for analyzing mixed populations. The Bayesian information criterion was used to determine the most likely number of vesicle subpools observed in the amperometric and electron microscopy data. From this analysis, we show that there are three major subpools, not two, of vesicles stored and released from PC12 cells. The three subpools of vesicles include small clear vesicles and two subpools of dense core vesicles, a small and a large dense core vesicle subpool. Using PC12 cells stably transfected with short-hairpin RNA targeted to synaptotagmin I, an exocytotic Ca(2+) sensor, we show that the presence and release of the small dense core vesicle subpool is dependent on synaptotagmin I. Furthermore, synaptotagmin I also plays a role in the formation and/or maintenance of the small dense core vesicle subpool in PC12 cells.
Collapse
Affiliation(s)
- Robert D Adams
- Department of Pharmacological and Physiological Science, Saint Louis University, St. Louis, Missouri
| | - Amy B Harkins
- Department of Pharmacological and Physiological Science, Saint Louis University, St. Louis, Missouri; Department of Biomedical Engineering, Saint Louis University, St. Louis, Missouri.
| |
Collapse
|
26
|
Balseiro-Gomez S, Flores JA, Acosta J, Ramirez-Ponce MP, Ales E. Identification of a New Exo-Endocytic Mechanism Triggered by Corticotropin-Releasing Hormone in Mast Cells. THE JOURNAL OF IMMUNOLOGY 2015. [PMID: 26202981 DOI: 10.4049/jimmunol.1500253] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The key role of mast cells (MC), either in development of inflammatory pathologies or in response to environmental stress, has been widely reported in recent years. Previous studies have described the effects of corticotropin-releasing hormone (CRH), which is released from inflamed tissues by cellular stress signals, on MC degranulation, a process possibly driven by selective secretion of mediators (piecemeal degranulation). In this study, we introduce a novel granular exo-endocytic pathway induced by CRH on peritoneal MC. We found that CRH triggers substantial exocytosis, which is even stronger than that induced by Ag stimulation and is characterized by large quantal size release events. Membrane fluorescence increases during stimulation in the presence of FM1-43 dye, corroborating the strength of this exocytosis, given that discrete upward fluorescence steps are often observed and suggesting that secretory granules are preferentially released by compound exocytosis. Additionally, the presence of a depot of large tubular organelles in the cytoplasm suggests that the exocytotic process is tightly coupled to a fast compound endocytosis. This CRH-stimulated mechanism is mediated through activation of adenylate cyclase and an increase of cAMP and intracellular Ca(2+), as evidenced by the fact that the effect of CRH is mimicked by forskolin and 8-bromo-cAMP. Thus, these outcomes constitute new evidence for the critical role of MC in pathophysiological conditions within a cellular stress environment and an alternative membrane trafficking route mediated by CRH.
Collapse
Affiliation(s)
- Santiago Balseiro-Gomez
- Departamento de Fisiología Médica y Biofísica, Facultad de Medicina, Universidad de Sevilla, 41009 Seville, Spain
| | - Juan A Flores
- Departamento de Fisiología Médica y Biofísica, Facultad de Medicina, Universidad de Sevilla, 41009 Seville, Spain
| | - Jorge Acosta
- Departamento de Fisiología Médica y Biofísica, Facultad de Medicina, Universidad de Sevilla, 41009 Seville, Spain
| | - M Pilar Ramirez-Ponce
- Departamento de Fisiología Médica y Biofísica, Facultad de Medicina, Universidad de Sevilla, 41009 Seville, Spain
| | - Eva Ales
- Departamento de Fisiología Médica y Biofísica, Facultad de Medicina, Universidad de Sevilla, 41009 Seville, Spain
| |
Collapse
|
27
|
Li YT, Zhang SH, Wang XY, Zhang XW, Oleinick AI, Svir I, Amatore C, Huang WH. Real-time Monitoring of Discrete Synaptic Release Events and Excitatory Potentials within Self-reconstructed Neuromuscular Junctions. Angew Chem Int Ed Engl 2015; 54:9313-8. [PMID: 26079517 DOI: 10.1002/anie.201503801] [Citation(s) in RCA: 81] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2015] [Indexed: 01/09/2023]
Abstract
Chemical synaptic transmission is central to the brain functions. In this regard, real-time monitoring of chemical synaptic transmission during neuronal communication remains a great challenge. In this work, in vivo-like oriented neural networks between superior cervical ganglion (SCG) neurons and their effector smooth muscle cells (SMC) were assembled in a microfluidic device. This allowed amperometric detection of individual neurotransmitter release events inside functional SCG-SMC synapse with carbon fiber nanoelectrodes as well as recording of postsynaptic potential using glass nanopipette electrodes. The high vesicular release activities essentially involved complex events arising from flickering fusion pores as quantitatively established based on simulations. This work allowed for the first time monitoring in situ chemical synaptic transmission under conditions close to those found in vivo, which may yield important and new insights into the nature of neuronal communications.
Collapse
Affiliation(s)
- Yu-Tao Li
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences, and LIA NanoBioCatEchem, Wuhan University, Wuhan 430072 (China)
| | - Shu-Hui Zhang
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences, and LIA NanoBioCatEchem, Wuhan University, Wuhan 430072 (China)
| | - Xue-Ying Wang
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences, and LIA NanoBioCatEchem, Wuhan University, Wuhan 430072 (China)
| | - Xin-Wei Zhang
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences, and LIA NanoBioCatEchem, Wuhan University, Wuhan 430072 (China)
| | - Alexander I Oleinick
- Ecole Normale Supérieure, Département de Chimie, UMR 8640 (CNRS-ENS-UPMC and LIA NanoBioCatEchem, 24 rue Lhomond, 75005 Paris(France)
| | - Irina Svir
- Ecole Normale Supérieure, Département de Chimie, UMR 8640 (CNRS-ENS-UPMC and LIA NanoBioCatEchem, 24 rue Lhomond, 75005 Paris(France)
| | - Christian Amatore
- Ecole Normale Supérieure, Département de Chimie, UMR 8640 (CNRS-ENS-UPMC and LIA NanoBioCatEchem, 24 rue Lhomond, 75005 Paris(France).
| | - Wei-Hua Huang
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences, and LIA NanoBioCatEchem, Wuhan University, Wuhan 430072 (China).
| |
Collapse
|
28
|
Li YT, Zhang SH, Wang XY, Zhang XW, Oleinick AI, Svir I, Amatore C, Huang WH. Real-time Monitoring of Discrete Synaptic Release Events and Excitatory Potentials within Self-reconstructed Neuromuscular Junctions. Angew Chem Int Ed Engl 2015. [DOI: 10.1002/ange.201503801] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
29
|
Bauereiss A, Welzel O, Jung J, Grosse-Holz S, Lelental N, Lewczuk P, Wenzel EM, Kornhuber J, Groemer TW. Surface Trafficking of APP and BACE in Live Cells. Traffic 2015; 16:655-75. [PMID: 25712587 PMCID: PMC6680167 DOI: 10.1111/tra.12270] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2013] [Revised: 02/06/2015] [Accepted: 02/09/2015] [Indexed: 12/22/2022]
Abstract
Amyloid‐β (Aβ)‐peptide, the major constituent of the plaques that develop during Alzheimer's disease, is generated via the cleavage of Aβ precursor protein (APP) by β‐site APP‐cleaving enzyme (BACE). Using live‐cell imaging of APP and BACE labeled with pH‐sensitive proteins, we could detect the release events of APP and BACE and their distinct kinetics. We provide kinetic evidence for the cleavage of APP by α‐secretase on the cellular surface after exocytosis. Furthermore, simultaneous dual‐color evanescent field illumination revealed that the two proteins are trafficked to the surface in separate compartments. Perturbing the membrane lipid composition resulted in a reduced frequency of exocytosis and affected BACE more strongly than APP. We propose that surface fusion frequency is a key factor regulating the aggregation of APP and BACE in the same membrane compartment and that this process can be modulated via pharmacological intervention.
Collapse
Affiliation(s)
- Anna Bauereiss
- Department of Psychiatry and Psychotherapy, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Schwabachanlage 6, 91054, Erlangen, Germany
| | - Oliver Welzel
- Department of Psychiatry and Psychotherapy, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Schwabachanlage 6, 91054, Erlangen, Germany
| | - Jasmin Jung
- Department of Psychiatry and Psychotherapy, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Schwabachanlage 6, 91054, Erlangen, Germany
| | - Simon Grosse-Holz
- Department of Psychiatry and Psychotherapy, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Schwabachanlage 6, 91054, Erlangen, Germany
| | - Natalia Lelental
- Department of Psychiatry and Psychotherapy, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Schwabachanlage 6, 91054, Erlangen, Germany
| | - Piotr Lewczuk
- Department of Psychiatry and Psychotherapy, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Schwabachanlage 6, 91054, Erlangen, Germany
| | - Eva M Wenzel
- Institute for Cancer Research, Department of Biochemistry, The Norwegian Radium Hospital, Montebello, N-0310, Oslo, Norway
| | - Johannes Kornhuber
- Department of Psychiatry and Psychotherapy, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Schwabachanlage 6, 91054, Erlangen, Germany
| | - Teja W Groemer
- Department of Psychiatry and Psychotherapy, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Schwabachanlage 6, 91054, Erlangen, Germany
| |
Collapse
|
30
|
Lemaître F, Guille Collignon M, Amatore C. Recent advances in Electrochemical Detection of Exocytosis. Electrochim Acta 2014. [DOI: 10.1016/j.electacta.2014.02.059] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
31
|
Zhang W, Blackman LM, Hardham AR. Transient fusion and selective secretion of vesicle proteins in Phytophthora nicotianae zoospores. PeerJ 2013; 1:e221. [PMID: 24392285 PMCID: PMC3869178 DOI: 10.7717/peerj.221] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2013] [Accepted: 11/13/2013] [Indexed: 12/25/2022] Open
Abstract
Secretion of pathogen proteins is crucial for the establishment of disease in animals and plants. Typically, early interactions between host and pathogen trigger regulated secretion of pathogenicity factors that function in pathogen adhesion and host penetration. During the onset of plant infection by spores of the Oomycete, Phytophthora nicotianae, proteins are secreted from three types of cortical vesicles. Following induction of spore encystment, two vesicle types undergo full fusion, releasing their entire contents onto the cell surface. However, the third vesicle type, so-called large peripheral vesicles, selectively secretes a small Sushi domain-containing protein, PnCcp, while retaining a large glycoprotein, PnLpv, before moving away from the plasma membrane. Selective secretion of PnCcp is associated with its compartmentalization within the vesicle periphery. Pharmacological inhibition of dynamin function, purportedly in vesicle fission, by dynasore treatment provides evidence that selective secretion of PnCcp requires transient fusion of the large peripheral vesicles. This is the first report of selective protein secretion via transient fusion outside mammalian cells. Selective secretion is likely to be an important aspect of plant infection by this destructive pathogen.
Collapse
Affiliation(s)
- Weiwei Zhang
- Plant Science Division, Research School of Biology, College of Medicine, Biology and Environment, The Australian National University , Canberra, ACT , Australia
| | - Leila M Blackman
- Plant Science Division, Research School of Biology, College of Medicine, Biology and Environment, The Australian National University , Canberra, ACT , Australia
| | - Adrienne R Hardham
- Plant Science Division, Research School of Biology, College of Medicine, Biology and Environment, The Australian National University , Canberra, ACT , Australia
| |
Collapse
|
32
|
Mironov AA, Sesorova IV, Beznoussenko GV. Golgi's way: a long path toward the new paradigm of the intra-Golgi transport. Histochem Cell Biol 2013; 140:383-93. [PMID: 24068461 DOI: 10.1007/s00418-013-1141-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/03/2013] [Indexed: 11/28/2022]
Abstract
The transport of proteins and lipids is one of the main cellular functions. The vesicular model, compartment (or cisterna) maturation model, and the diffusion model compete with each other for the right to be the paradigm within the field of the intra-Golgi transport. These models have significant difficulties explaining the existing experimental data. Recently, we proposed the kiss-and-run (KAR) model of intra-Golgi transport (Mironov and Beznoussenko in Int J Mol Sci 13(6):6800-6819, 2012), which can be symmetric, when fusion and fission occur in the same location, and asymmetric, when fusion and fission take place at different sites. Here, we compare the ability of main models of the intra-Golgi transport to explain the existing results examining the evidence in favor and against each model. We propose that the KAR model has the highest potential for the explanation of the majority of experimental observations existing within the field of intracellular transport.
Collapse
Affiliation(s)
- Alexander A Mironov
- Istituto di Oncologia Molecolare di Fondazione Italiana per la Ricerca sul Cancro, 20139, Milan, Italy,
| | | | | |
Collapse
|
33
|
Trouillon R, Ewing AG. Amperometric measurements at cells support a role for dynamin in the dilation of the fusion pore during exocytosis. Chemphyschem 2013; 14:2295-301. [PMID: 23824748 PMCID: PMC3794367 DOI: 10.1002/cphc.201300319] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2013] [Indexed: 11/10/2022]
Abstract
Dynamin is a GTPase mechanochemical enzyme involved in the late steps of endocytosis, where it separates the endocytotic vesicle from the cell membrane. However, recent reports have emphasized its role in exocytosis. In this case, dynamin may contribute to the control of the exocytotic pore, thus suggesting a direct control on the efflux of neurotransmitters. Dynasore, a selective inhibitor of the GTPase activity of dynamin, was used to investigate the role of dynamin in exocytosis. Exocytosis was analyzed by amperometry, thus revealing that dynasore inhibits exocytosis in a dose-dependent manner. Analysis of the exocytotic peaks shows that the inhibition of the GTPase activity of dynamin leads to shorter, smaller events. This observation, together with the rapid effect of dynasore, suggests that the blocking of the GTPase induces the formation of a more narrow and short-lived fusion pore. These results suggest that the GTPase properties of dynamin are involved in the duration and kinetics of exocytotic release. Interestingly, and in strong contrast with its role in endocytosis, the mechanochemical properties of dynamin appear to contribute to the dilation and stability of the pore during exocytosis.
Collapse
Affiliation(s)
- Raphaël Trouillon
- Department of Chemistry and Molecular Biology, University of Gothenburg, S-41296, Gothenburg, Sweden
| | - Andrew G. Ewing
- Department of Chemistry and Molecular Biology, University of Gothenburg, S-41296, Gothenburg, Sweden
- Department of Chemical and Biological Engineering, Chalmers University of Technology, S-41296 Gothenburg, Sweden
| |
Collapse
|
34
|
Trouillon R, Lin Y, Mellander LJ, Keighron JD, Ewing AG. Evaluating the diffusion coefficient of dopamine at the cell surface during amperometric detection: disk vs ring microelectrodes. Anal Chem 2013; 85:6421-8. [PMID: 23706095 PMCID: PMC3737586 DOI: 10.1021/ac400965d] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
During exocytosis, small quantities of neurotransmitters are released by the cell. These neurotransmitters can be detected quantitatively using electrochemical methods, principally with disk carbon fiber microelectrode amperometry. An exocytotic event then results in the recording of a current peak whose characteristic features are directly related to the mechanisms of exocytosis. We have compared two exocytotic peak populations obtained from PC12 cells with a disk carbon fiber microelectrode and with a pyrolyzed carbon ring microelectrode array, with a 500 nm ring thickness. The specific shape of the ring electrode allows for precise analysis of diffusion processes at the vicinity of the cell membrane. Peaks obtained with a ring microelectrode array show a distorted average shape, owing to increased diffusion pathways. This result has been used to evaluate the diffusion coefficient of dopamine at the surface of a cell, which is up to an order of magnitude smaller than that measured in free buffer. The lower rate of diffusion is discussed as resulting from interactions with the glycocalyx.
Collapse
Affiliation(s)
- Raphaël Trouillon
- Department of Chemistry and Molecular Biology, University of Gothenburg, S-41296, Gothenburg, Sweden
| | - Yuqing Lin
- Department of Chemistry and Molecular Biology, University of Gothenburg, S-41296, Gothenburg, Sweden
| | - Lisa J. Mellander
- Department of Chemistry and Molecular Biology, University of Gothenburg, S-41296, Gothenburg, Sweden
| | - Jacqueline D. Keighron
- Department of Chemical and Biological Engineering, Chalmers University of Technology, S-41296 Gothenburg, Sweden
| | - Andrew G. Ewing
- Department of Chemistry and Molecular Biology, University of Gothenburg, S-41296, Gothenburg, Sweden
- Department of Chemical and Biological Engineering, Chalmers University of Technology, S-41296 Gothenburg, Sweden
| |
Collapse
|
35
|
Trouillon R, Ewing AG. Single cell amperometry reveals glycocalyx hinders the release of neurotransmitters during exocytosis. Anal Chem 2013; 85:4822-8. [PMID: 23544960 PMCID: PMC3696406 DOI: 10.1021/ac4008682] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The diffusional hindrance of the glycocalyx along the cell surface on exocytotic peaks, observed with single cell amperometry, was investigated. Partial digestion of the glycocalyx with neuraminidase led to the observation of faster peaks, as shown by varied peak parameters. This result indicates that diffusion of small molecules in the partially digested glycocalyx is 2.2 faster than in the intact glycocalyx. Similarly, neutralization of the negative charges present in the cell microenvironment led to faster peak kinetics. The analysis of the vesicular efflux indicates that the diffusion coefficient of dopamine at the cell surface is at most 45% of the diffusion coefficient in free solution. This study shows that the glycocalyx plays an important role in the diffusion kinetics of processes along the cell surface, including exocytotic events.
Collapse
Affiliation(s)
- Raphaël Trouillon
- Department of Chemistry and Molecular Biology, University of Gothenburg, S-41296, Gothenburg, Sweden
| | - Andrew G. Ewing
- Department of Chemistry and Molecular Biology, University of Gothenburg, S-41296, Gothenburg, Sweden
- Department of Chemical and Biological Engineering, Chalmers University of Technology, S-41296 Gothenburg, Sweden
| |
Collapse
|
36
|
Trouillon R, Passarelli MK, Wang J, Kurczy ME, Ewing AG. Chemical Analysis of Single Cells. Anal Chem 2012; 85:522-42. [DOI: 10.1021/ac303290s] [Citation(s) in RCA: 152] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Raphaël Trouillon
- University of Gothenburg, Department of Chemistry and Molecular
Biology, 41296 Gothenburg, Sweden
| | - Melissa K. Passarelli
- University of Gothenburg, Department of Chemistry and Molecular
Biology, 41296 Gothenburg, Sweden
| | - Jun Wang
- University of Gothenburg, Department of Chemistry and Molecular
Biology, 41296 Gothenburg, Sweden
| | - Michael E. Kurczy
- Chalmers University, Department of Chemistry
and Biological Engineering, 41296 Gothenburg, Sweden
| | - Andrew G. Ewing
- University of Gothenburg, Department of Chemistry and Molecular
Biology, 41296 Gothenburg, Sweden
- Chalmers University, Department of Chemistry
and Biological Engineering, 41296 Gothenburg, Sweden
| |
Collapse
|
37
|
Multiple roles for the actin cytoskeleton during regulated exocytosis. Cell Mol Life Sci 2012; 70:2099-121. [PMID: 22986507 DOI: 10.1007/s00018-012-1156-5] [Citation(s) in RCA: 135] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2012] [Revised: 08/28/2012] [Accepted: 08/30/2012] [Indexed: 01/01/2023]
Abstract
Regulated exocytosis is the main mechanism utilized by specialized secretory cells to deliver molecules to the cell surface by virtue of membranous containers (i.e., secretory vesicles). The process involves a series of highly coordinated and sequential steps, which include the biogenesis of the vesicles, their delivery to the cell periphery, their fusion with the plasma membrane, and the release of their content into the extracellular space. Each of these steps is regulated by the actin cytoskeleton. In this review, we summarize the current knowledge regarding the involvement of actin and its associated molecules during each of the exocytic steps in vertebrates, and suggest that the overall role of the actin cytoskeleton during regulated exocytosis is linked to the architecture and the physiology of the secretory cells under examination. Specifically, in neurons, neuroendocrine, endocrine, and hematopoietic cells, which contain small secretory vesicles that undergo rapid exocytosis (on the order of milliseconds), the actin cytoskeleton plays a role in pre-fusion events, where it acts primarily as a functional barrier and facilitates docking. In exocrine and other secretory cells, which contain large secretory vesicles that undergo slow exocytosis (seconds to minutes), the actin cytoskeleton plays a role in post-fusion events, where it regulates the dynamics of the fusion pore, facilitates the integration of the vesicles into the plasma membrane, provides structural support, and promotes the expulsion of large cargo molecules.
Collapse
|
38
|
Mironov AA, Beznoussenko GV. The kiss-and-run model of intra-Golgi transport. Int J Mol Sci 2012; 13:6800-6819. [PMID: 22837664 PMCID: PMC3397496 DOI: 10.3390/ijms13066800] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2012] [Revised: 05/09/2012] [Accepted: 05/22/2012] [Indexed: 11/16/2022] Open
Abstract
The Golgi apparatus (GA) is the main station along the secretory pathway. Mechanisms of intra-Golgi transport remain unresolved. Three models compete with each other for the right to be defined as the paradigm. The vesicular model cannot explain the following: (1) lipid droplets and aggregates of procollagen that are larger than coatomer I (COPI)-dependent vesicles are transported across the GA; and (2) most anterograde cargoes are depleted in COPI vesicles. The compartment progression/maturation model has the following problems: (1) most Golgi-resident proteins are depleted in COPI vesicles; (2) there are no COPI vesicles for the recycling of the resident proteins in the trans-most-Golgi cisterna; and (3) different proteins have different rates of intra-Golgi transport. The diffusion model based on permanent inter-cisternal connections cannot explain the existence of lipid, ionic and protein gradients across the Golgi stacks. In contrast, the kiss-and-run model has the potential to explain most of the experimental observations. The kiss-and-run model can be symmetric when fusion and then fission occurs in the same place, and asymmetric when fusion takes place in one location, whereas fission takes place in another. The asymmetric kiss-and-run model resembles the carrier maturation mechanism, and it can be used to explain the transport of large cargo aggregates.
Collapse
Affiliation(s)
- Alexander A. Mironov
- IFOM Foundation, FIRC Institute of Molecular Oncology (IFOM-IEO Campus), Via Adamello 16, 20139, Milan, Italy
| | - Galina V. Beznoussenko
- IFOM Foundation, FIRC Institute of Molecular Oncology (IFOM-IEO Campus), Via Adamello 16, 20139, Milan, Italy
| |
Collapse
|
39
|
Yakushenko A, Schnitker J, Wolfrum B. Printed Carbon Microelectrodes for Electrochemical Detection of Single Vesicle Release from PC12 Cells. Anal Chem 2012; 84:4613-7. [DOI: 10.1021/ac300460s] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Alexey Yakushenko
- Peter Grünberg Institute (PGI-8/ICS-8), Forschungszentrum Jülich,
52425 Jülich,
Germany
- JARA- Fundamentals
of Future
Information Technology, Forschungszentrum Jülich, 52425 Jülich,
Germany
| | - Jan Schnitker
- Peter Grünberg Institute (PGI-8/ICS-8), Forschungszentrum Jülich,
52425 Jülich,
Germany
- JARA- Fundamentals
of Future
Information Technology, Forschungszentrum Jülich, 52425 Jülich,
Germany
| | - Bernhard Wolfrum
- Peter Grünberg Institute (PGI-8/ICS-8), Forschungszentrum Jülich,
52425 Jülich,
Germany
- JARA- Fundamentals
of Future
Information Technology, Forschungszentrum Jülich, 52425 Jülich,
Germany
| |
Collapse
|
40
|
Batchelor-McAuley C, Dickinson EJF, Rees NV, Toghill KE, Compton RG. New Electrochemical Methods. Anal Chem 2011; 84:669-84. [DOI: 10.1021/ac2026767] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Christopher Batchelor-McAuley
- Department of Chemistry, Physical & Theoretical Chemistry Laboratory, Oxford University, South Parks Road, Oxford, OX1 3QZ, United Kingdom
| | - Edmund J. F. Dickinson
- Department of Chemistry, Physical & Theoretical Chemistry Laboratory, Oxford University, South Parks Road, Oxford, OX1 3QZ, United Kingdom
| | - Neil V. Rees
- Department of Chemistry, Physical & Theoretical Chemistry Laboratory, Oxford University, South Parks Road, Oxford, OX1 3QZ, United Kingdom
| | - Kathryn E. Toghill
- Department of Chemistry, Physical & Theoretical Chemistry Laboratory, Oxford University, South Parks Road, Oxford, OX1 3QZ, United Kingdom
| | - Richard G. Compton
- Department of Chemistry, Physical & Theoretical Chemistry Laboratory, Oxford University, South Parks Road, Oxford, OX1 3QZ, United Kingdom
| |
Collapse
|