1
|
Na J, Tai C, Wang Z, Yang Z, Chen X, Zhang J, Zheng L, Fan Y. Stiff extracellular matrix drives the differentiation of mesenchymal stem cells toward osteogenesis by the multiscale 3D genome reorganization. Biomaterials 2025; 312:122715. [PMID: 39094522 DOI: 10.1016/j.biomaterials.2024.122715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 07/17/2024] [Accepted: 07/26/2024] [Indexed: 08/04/2024]
Abstract
Extracellular matrix (ECM) stiffness is a major driver of stem cell fate. However, the involvement of the three-dimensional (3D) genomic reorganization in response to ECM stiffness remains unclear. Here, we generated comprehensive 3D chromatin landscapes of mesenchymal stem cells (MSCs) exposed to various ECM stiffness. We found that there were more long-range chromatin interactions, but less compartment A in MSCs cultured on stiff ECM than those cultured on soft ECM. However, the switch from compartment B in MSCs cultured on soft ECM to compartment A in MSCs cultured on stiff ECM included genes encoding proteins primarily enriched in cytoskeleton organization. At the topologically associating domains (TADs) level, stiff ECM tends to have merged TADs on soft ECM. These merged TADs on stiff ECM include upregulated genes encoding proteins enriched in osteogenesis, such as SP1, ETS1, and DCHS1, which were validated by quantitative real-time polymerase chain reaction and found to be consistent with the increase of alkaline phosphatase staining. Knockdown of SP1 or ETS1 led to the downregulation of osteogenic marker genes, including COL1A1, RUNX2, ALP, and OCN in MSCs cultured on stiff ECM. Our study provides an important insight into the stiff ECM-mediated promotion of MSC differentiation towards osteogenesis, emphasizing the influence of mechanical cues on the reorganization of 3D genome architecture and stem cell fate.
Collapse
Affiliation(s)
- Jing Na
- Key Laboratory of Biomechanics and Mechanobiology (Beihang University), Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, 100083, China
| | - Chengzheng Tai
- Key Laboratory of Biomechanics and Mechanobiology (Beihang University), Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, 100083, China
| | - Ziyi Wang
- Key Laboratory of Biomechanics and Mechanobiology (Beihang University), Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, 100083, China
| | - Zhijie Yang
- Key Laboratory of Biomechanics and Mechanobiology (Beihang University), Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, 100083, China
| | - Xinyuan Chen
- Key Laboratory of Biomechanics and Mechanobiology (Beihang University), Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, 100083, China
| | - Jing Zhang
- Key Laboratory of Biomechanics and Mechanobiology (Beihang University), Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, 100083, China; Key Laboratory of Biomechanics and Mechanobiology (Beihang University), Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Engineering Medicine, Beihang University, Beijing, 100083, China.
| | - Lisha Zheng
- Key Laboratory of Biomechanics and Mechanobiology (Beihang University), Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, 100083, China.
| | - Yubo Fan
- Key Laboratory of Biomechanics and Mechanobiology (Beihang University), Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, 100083, China.
| |
Collapse
|
2
|
Lu R, Lin B, Lin Z, Xiong H, Liu J, Li L, Gong Z, Wang S, Zhang M, Ding J, Hang C, Guo H, Xie D, Liu Y, Shi D, Liang D, Liu Z, Yang J, Chen YH. Hypo-osmolarity promotes naive pluripotency by reshaping cytoskeleton and increasing chromatin accessibility. J Adv Res 2024:S2090-1232(24)00556-3. [PMID: 39643114 DOI: 10.1016/j.jare.2024.11.037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 11/28/2024] [Accepted: 11/29/2024] [Indexed: 12/09/2024] Open
Abstract
INTRODUCTION Cell fate determination and transition are of paramount importance in biology and medicine. Naive pluripotency could be achieved by reprogramming differentiated cells. However, the mechanism is less clear. Osmolarity is an essential physical factor that acts on living cells, especially for pluripotent cells, but its significance in cell fate transition remains unexplored. OBJECTIVES To investigate the role of osmolarity in cell fate transition and its underlying mechanism. METHODS Flow cytometry, quantitative real-time PCR, teratoma and chimeric mice assays were performed to assess reprogramming efficiency and characterize iPSCs. TEM, immunofluorescence staining, western blot, chemical treatment and genetic modification were utilized to evaluate cell morphology, signaling pathways, cytoskeleton and nuclear structure. Multiomic sequencings were applied to unveil the transcriptome, histone markers and chromatin accessibility of EpiSCs in hypo-osmotic condition. RESULTS In hypo-osmotic condition, the reprogramming efficiency of hypo-osmotic EpiSCs increased over 60-fold than that of iso-osmotic cells (1100 vs 18 colonies per 3 × 105 cells), whereas no colony formed in hyper-osmotic cells. As expected, the converted cells displayed naive pluripotency. The hypo-osmotic EpiSCs exhibited larger cell size, nuclear area and less heterochromatin; ATAC-seq and ChIP-seq confirmed the increased accessibility of naive pluripotent gene loci with more H3K27ac. Mechanistically, hypo-osmolarity activated PI3K-AKT-SP1 signaling in EpiSCs, which reshaped cytoskeleton and nucleoskeleton, resulting in genome reorganization and pluripotent gene expression. In contrast, hypo-osmolarity delayed the ESCs' exit from naive pluripotency. Moreover, in MEFs reprograming, hypo-osmolarity promoted the conversion to naive pluripotency. CONCLUSION Hypo-osmolarity promotes cell fate transition by remodeling cytoskeleton, nucleoskeleton and genome via PI3K-AKT-SP1 pathway.
Collapse
Affiliation(s)
- Renhong Lu
- State Key Laboratory of Cardiology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai 200120, China; Clinical Center for Heart Disease Research, School of Medicine, Tongji University, Shanghai 200120, China; Shanghai Arrhythmia Research Center, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai 200120, China; Department of Cardiology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai 200120, China; Shanghai Frontiers Center of Nanocatalytic Medicine, Shanghai, 200092, China
| | - Bowen Lin
- State Key Laboratory of Cardiology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai 200120, China; Clinical Center for Heart Disease Research, School of Medicine, Tongji University, Shanghai 200120, China; Shanghai Arrhythmia Research Center, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai 200120, China; Department of Cardiology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai 200120, China; Shanghai Frontiers Center of Nanocatalytic Medicine, Shanghai, 200092, China
| | - Zheyi Lin
- State Key Laboratory of Cardiology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai 200120, China; Clinical Center for Heart Disease Research, School of Medicine, Tongji University, Shanghai 200120, China; Shanghai Arrhythmia Research Center, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai 200120, China; Department of Cardiology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai 200120, China; Shanghai Frontiers Center of Nanocatalytic Medicine, Shanghai, 200092, China
| | - Hui Xiong
- State Key Laboratory of Cardiology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai 200120, China; Clinical Center for Heart Disease Research, School of Medicine, Tongji University, Shanghai 200120, China; Shanghai Arrhythmia Research Center, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai 200120, China; Shanghai Frontiers Center of Nanocatalytic Medicine, Shanghai, 200092, China; Department of Pathology and Pathophysiology, School of Medicine, Tongji University, Shanghai 200092, China; Department of Cell Biology, School of Medicine, Tongji University, Shanghai 200092, China
| | - Junyang Liu
- State Key Laboratory of Cardiology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai 200120, China; Clinical Center for Heart Disease Research, School of Medicine, Tongji University, Shanghai 200120, China; Shanghai Arrhythmia Research Center, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai 200120, China; Shanghai Frontiers Center of Nanocatalytic Medicine, Shanghai, 200092, China; Department of Pathology and Pathophysiology, School of Medicine, Tongji University, Shanghai 200092, China; Department of Cell Biology, School of Medicine, Tongji University, Shanghai 200092, China
| | - Li Li
- Institute of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, CAS Key Laboratory of Primate Neurobiology, State Key Laboratory of Neuroscience, Chinese Academy of Sciences, Shanghai 200031, China
| | - Zheng Gong
- State Key Laboratory of Cardiology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai 200120, China; Jinzhou Medical University, Jinzhou, Liaoning 121000, China
| | - Siyu Wang
- State Key Laboratory of Cardiology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai 200120, China; Jinzhou Medical University, Jinzhou, Liaoning 121000, China
| | - Mingshuai Zhang
- State Key Laboratory of Cardiology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai 200120, China; Clinical Center for Heart Disease Research, School of Medicine, Tongji University, Shanghai 200120, China; Shanghai Arrhythmia Research Center, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai 200120, China; Shanghai Frontiers Center of Nanocatalytic Medicine, Shanghai, 200092, China; Department of Pathology and Pathophysiology, School of Medicine, Tongji University, Shanghai 200092, China; Department of Cell Biology, School of Medicine, Tongji University, Shanghai 200092, China
| | - Jie Ding
- State Key Laboratory of Cardiology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai 200120, China; Clinical Center for Heart Disease Research, School of Medicine, Tongji University, Shanghai 200120, China; Shanghai Arrhythmia Research Center, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai 200120, China; Department of Cardiology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai 200120, China; Shanghai Frontiers Center of Nanocatalytic Medicine, Shanghai, 200092, China
| | - Chengwen Hang
- State Key Laboratory of Cardiology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai 200120, China; Clinical Center for Heart Disease Research, School of Medicine, Tongji University, Shanghai 200120, China; Shanghai Arrhythmia Research Center, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai 200120, China; Department of Cardiology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai 200120, China; Shanghai Frontiers Center of Nanocatalytic Medicine, Shanghai, 200092, China
| | - Huixin Guo
- Department of Cardiology, The Second Hospital of Shanxi Medical University, Taiyuan 030001, China
| | - Duanyang Xie
- State Key Laboratory of Cardiology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai 200120, China; Clinical Center for Heart Disease Research, School of Medicine, Tongji University, Shanghai 200120, China; Shanghai Arrhythmia Research Center, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai 200120, China; Department of Cardiology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai 200120, China; Shanghai Frontiers Center of Nanocatalytic Medicine, Shanghai, 200092, China; Department of Pathology and Pathophysiology, School of Medicine, Tongji University, Shanghai 200092, China; Department of Cell Biology, School of Medicine, Tongji University, Shanghai 200092, China
| | - Yi Liu
- State Key Laboratory of Cardiology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai 200120, China; Clinical Center for Heart Disease Research, School of Medicine, Tongji University, Shanghai 200120, China; Shanghai Arrhythmia Research Center, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai 200120, China; Department of Cardiology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai 200120, China; Shanghai Frontiers Center of Nanocatalytic Medicine, Shanghai, 200092, China
| | - Dan Shi
- State Key Laboratory of Cardiology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai 200120, China; Clinical Center for Heart Disease Research, School of Medicine, Tongji University, Shanghai 200120, China; Shanghai Arrhythmia Research Center, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai 200120, China; Department of Cardiology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai 200120, China; Shanghai Frontiers Center of Nanocatalytic Medicine, Shanghai, 200092, China
| | - Dandan Liang
- State Key Laboratory of Cardiology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai 200120, China; Clinical Center for Heart Disease Research, School of Medicine, Tongji University, Shanghai 200120, China; Shanghai Arrhythmia Research Center, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai 200120, China; Department of Cardiology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai 200120, China; Shanghai Frontiers Center of Nanocatalytic Medicine, Shanghai, 200092, China; Department of Pathology and Pathophysiology, School of Medicine, Tongji University, Shanghai 200092, China; Research Units of Origin and Regulation of Heart Rhythm, Chinese Academy of Medical Sciences, Shanghai 200092, China
| | - Zhen Liu
- Institute of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, CAS Key Laboratory of Primate Neurobiology, State Key Laboratory of Neuroscience, Chinese Academy of Sciences, Shanghai 200031, China
| | - Jian Yang
- State Key Laboratory of Cardiology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai 200120, China; Clinical Center for Heart Disease Research, School of Medicine, Tongji University, Shanghai 200120, China; Shanghai Arrhythmia Research Center, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai 200120, China; Department of Cardiology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai 200120, China; Shanghai Frontiers Center of Nanocatalytic Medicine, Shanghai, 200092, China; Department of Pathology and Pathophysiology, School of Medicine, Tongji University, Shanghai 200092, China; Department of Cell Biology, School of Medicine, Tongji University, Shanghai 200092, China; Research Units of Origin and Regulation of Heart Rhythm, Chinese Academy of Medical Sciences, Shanghai 200092, China.
| | - Yi-Han Chen
- State Key Laboratory of Cardiology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai 200120, China; Clinical Center for Heart Disease Research, School of Medicine, Tongji University, Shanghai 200120, China; Shanghai Arrhythmia Research Center, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai 200120, China; Department of Cardiology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai 200120, China; Shanghai Frontiers Center of Nanocatalytic Medicine, Shanghai, 200092, China; Department of Pathology and Pathophysiology, School of Medicine, Tongji University, Shanghai 200092, China; Department of Cell Biology, School of Medicine, Tongji University, Shanghai 200092, China; Research Units of Origin and Regulation of Heart Rhythm, Chinese Academy of Medical Sciences, Shanghai 200092, China.
| |
Collapse
|
3
|
Attar AG, Paturej J, Banigan EJ, Erbaş A. Chromatin phase separation and nuclear shape fluctuations are correlated in a polymer model of the nucleus. Nucleus 2024; 15:2351957. [PMID: 38753956 PMCID: PMC11407394 DOI: 10.1080/19491034.2024.2351957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 04/22/2024] [Accepted: 04/28/2024] [Indexed: 05/18/2024] Open
Abstract
Abnormal cell nuclear shapes are hallmarks of diseases, including progeria, muscular dystrophy, and many cancers. Experiments have shown that disruption of heterochromatin and increases in euchromatin lead to nuclear deformations, such as blebs and ruptures. However, the physical mechanisms through which chromatin governs nuclear shape are poorly understood. To investigate how heterochromatin and euchromatin might govern nuclear morphology, we studied chromatin microphase separation in a composite coarse-grained polymer and elastic shell simulation model. By varying chromatin density, heterochromatin composition, and heterochromatin-lamina interactions, we show how the chromatin phase organization may perturb nuclear shape. Increasing chromatin density stabilizes the lamina against large fluctuations. However, increasing heterochromatin levels or heterochromatin-lamina interactions enhances nuclear shape fluctuations by a "wetting"-like interaction. In contrast, fluctuations are insensitive to heterochromatin's internal structure. Our simulations suggest that peripheral heterochromatin accumulation could perturb nuclear morphology, while nuclear shape stabilization likely occurs through mechanisms other than chromatin microphase organization.
Collapse
Affiliation(s)
- Ali Goktug Attar
- UNAM-National Nanotechnology Research Center and Institute of Materials Science & Nanotechnology, Bilkent University, Ankara, Turkey
| | | | - Edward J Banigan
- Institute for Medical Engineering and Science and Department of Physics, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Aykut Erbaş
- UNAM-National Nanotechnology Research Center and Institute of Materials Science & Nanotechnology, Bilkent University, Ankara, Turkey
- Institute of Physics, University of Silesia, Chorzów, Poland
| |
Collapse
|
4
|
Garau Paganella L, Badolato A, Labouesse C, Fischer G, Sänger CS, Kourouklis A, Giampietro C, Werner S, Mazza E, Tibbitt MW. Variations in fluid chemical potential induce fibroblast mechano-response in 3D hydrogels. BIOMATERIALS ADVANCES 2024; 163:213933. [PMID: 38972277 DOI: 10.1016/j.bioadv.2024.213933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 05/28/2024] [Accepted: 06/25/2024] [Indexed: 07/09/2024]
Abstract
Mechanical deformation of skin creates variations in fluid chemical potential, leading to local changes in hydrostatic and osmotic pressure, whose effects on mechanobiology remain poorly understood. To study these effects, we investigate the specific influences of hydrostatic and osmotic pressure on primary human dermal fibroblasts in three-dimensional hydrogel culture models. Cyclic hydrostatic pressure and hyperosmotic stress enhanced the percentage of cells expressing the proliferation marker Ki67 in both collagen and PEG-based hydrogels. Osmotic pressure also activated the p38 MAPK stress response pathway and increased the expression of the osmoresponsive genes PRSS35 and NFAT5. When cells were cultured in two-dimension (2D), no change in proliferation was observed with either hydrostatic or osmotic pressure. Furthermore, basal, and osmotic pressure-induced expression of osmoresponsive genes differed in 2D culture versus 3D hydrogels, highlighting the role of dimensionality in skin cell mechanotransduction and stressing the importance of 3D tissue-like models that better replicate in vivo conditions. Overall, these results indicate that fluid chemical potential changes affect dermal fibroblast mechanobiology, which has implications for skin function and for tissue regeneration strategies.
Collapse
Affiliation(s)
- Lorenza Garau Paganella
- Macromolecular Engineering Laboratory, Institute of Energy and Process Engineering, Department of Mechanical and Process Engineering, ETH Zurich, Zurich, Switzerland; Institute for Mechanical Systems, Department of Mechanical and Process Engineering, ETH Zurich, Zurich, Switzerland
| | - Asia Badolato
- Macromolecular Engineering Laboratory, Institute of Energy and Process Engineering, Department of Mechanical and Process Engineering, ETH Zurich, Zurich, Switzerland
| | - Céline Labouesse
- Macromolecular Engineering Laboratory, Institute of Energy and Process Engineering, Department of Mechanical and Process Engineering, ETH Zurich, Zurich, Switzerland
| | - Gabriel Fischer
- Macromolecular Engineering Laboratory, Institute of Energy and Process Engineering, Department of Mechanical and Process Engineering, ETH Zurich, Zurich, Switzerland
| | - Catharina S Sänger
- Institute of Molecular Health Sciences, Department of Biology, ETH Zurich, Zurich, Switzerland
| | - Andreas Kourouklis
- Institute for Mechanical Systems, Department of Mechanical and Process Engineering, ETH Zurich, Zurich, Switzerland
| | - Costanza Giampietro
- Institute for Mechanical Systems, Department of Mechanical and Process Engineering, ETH Zurich, Zurich, Switzerland; EMPA, Swiss Federal Laboratories for Material Science and Technologies, Dubendorf, Switzerland
| | - Sabine Werner
- Institute of Molecular Health Sciences, Department of Biology, ETH Zurich, Zurich, Switzerland
| | - Edoardo Mazza
- Institute for Mechanical Systems, Department of Mechanical and Process Engineering, ETH Zurich, Zurich, Switzerland; EMPA, Swiss Federal Laboratories for Material Science and Technologies, Dubendorf, Switzerland
| | - Mark W Tibbitt
- Macromolecular Engineering Laboratory, Institute of Energy and Process Engineering, Department of Mechanical and Process Engineering, ETH Zurich, Zurich, Switzerland.
| |
Collapse
|
5
|
Biswas P, Roy P, Jana S, Ray D, Das J, Chaudhuri B, Basunia RR, Sinha B, Sinha DK. Exploring the role of macromolecular crowding and TNFR1 in cell volume control. eLife 2024; 13:e92719. [PMID: 39297502 PMCID: PMC11581439 DOI: 10.7554/elife.92719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 09/18/2024] [Indexed: 11/22/2024] Open
Abstract
The excessive cosolute densities in the intracellular fluid create a physicochemical condition called macromolecular crowding (MMC). Intracellular MMC entropically maintains the biochemical thermodynamic equilibria by favoring associative reactions while hindering transport processes. Rapid cell volume shrinkage during extracellular hypertonicity elevates the MMC and disrupts the equilibria, potentially ushering cell death. Consequently, cells actively counter the hypertonic stress through regulatory volume increase (RVI) and restore the MMC homeostasis. Here, we establish fluorescence anisotropy of EGFP as a reliable tool for studying cellular MMC and explore the spatiotemporal dynamics of MMC during cell volume instabilities under multiple conditions. Our studies reveal that the actin cytoskeleton enforces spatially varying MMC levels inside adhered cells. Within cell populations, MMC is uncorrelated with nuclear DNA content but anti-correlated with the cell spread area. Although different cell lines have statistically similar MMC distributions, their responses to extracellular hypertonicity vary. The intensity of the extracellular hypertonicity determines a cell's ability for RVI, which correlates with nuclear factor kappa beta (NFkB) activation. Pharmacological inhibition and knockdown experiments reveal that tumor necrosis factor receptor 1 (TNFR1) initiates the hypertonicity-induced NFkB signaling and RVI. At severe hypertonicities, the elevated MMC amplifies cytoplasmic microviscosity and hinders receptor interacting protein kinase 1 (RIPK1) recruitment at the TNFR1 complex, incapacitating the TNFR1-NFkB signaling and consequently, RVI. Together, our studies unveil the involvement of TNFR1-NFkB signaling in modulating RVI and demonstrate the pivotal role of MMC in determining cellular osmoadaptability.
Collapse
Affiliation(s)
- Parijat Biswas
- School of Biological Sciences, Indian Association for the Cultivation of ScienceKolkataIndia
| | - Priyanka Roy
- School of Biological Sciences, Indian Association for the Cultivation of ScienceKolkataIndia
| | - Subhamoy Jana
- School of Biological Sciences, Indian Association for the Cultivation of ScienceKolkataIndia
| | - Dipanjan Ray
- School of Biological Sciences, Indian Association for the Cultivation of ScienceKolkataIndia
| | - Jibitesh Das
- Department of Biological Sciences, Indian Institute of Science Education and Research KolkataKolkataIndia
| | - Bipasa Chaudhuri
- School of Biological Sciences, Indian Association for the Cultivation of ScienceKolkataIndia
| | - Ridita Ray Basunia
- School of Biological Sciences, Indian Association for the Cultivation of ScienceKolkataIndia
| | - Bidisha Sinha
- Department of Biological Sciences, Indian Institute of Science Education and Research KolkataKolkataIndia
| | - Deepak Kumar Sinha
- School of Biological Sciences, Indian Association for the Cultivation of ScienceKolkataIndia
| |
Collapse
|
6
|
Keuper K, Bartek J, Maya-Mendoza A. The nexus of nuclear envelope dynamics, circular economy and cancer cell pathophysiology. Eur J Cell Biol 2024; 103:151394. [PMID: 38340500 DOI: 10.1016/j.ejcb.2024.151394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Revised: 02/01/2024] [Accepted: 02/02/2024] [Indexed: 02/12/2024] Open
Abstract
The nuclear envelope (NE) is a critical component in maintaining the function and structure of the eukaryotic nucleus. The NE and lamina are disassembled during each cell cycle to enable an open mitosis. Nuclear architecture construction and deconstruction is a prime example of a circular economy, as it fulfills a highly efficient recycling program bound to continuous assessment of the quality and functionality of the building blocks. Alterations in the nuclear dynamics and lamina structure have emerged as important contributors to both oncogenic transformation and cancer progression. However, the knowledge of the NE breakdown and reassembly is still limited to a fraction of participating proteins and complexes. As cancer cells contain highly diverse nuclei in terms of DNA content, but also in terms of nuclear number, size, and shape, it is of great interest to understand the intricate relationship between these nuclear features in cancer cell pathophysiology. In this review, we provide insights into how those NE dynamics are regulated, and how lamina destabilization processes may alter the NE circular economy. Moreover, we expand the knowledge of the lamina-associated domain region by using strategic algorithms, including Artificial Intelligence, to infer protein associations, assess their function and location, and predict cancer-type specificity with implications for the future of cancer diagnosis, prognosis and treatment. Using this approach we identified NUP98 and MECP2 as potential proteins that exhibit upregulation in Acute Myeloid Leukemia (LAML) patients with implications for early diagnosis.
Collapse
Affiliation(s)
- Kristina Keuper
- DNA Replication and Cancer Group, Danish Cancer Institute, Copenhagen, Denmark; Genome Integrity Group, Danish Cancer Institute, Copenhagen, Denmark
| | - Jiri Bartek
- Genome Integrity Group, Danish Cancer Institute, Copenhagen, Denmark; Division of Genome Biology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, SciLifeLab, Stockholm, Sweden
| | | |
Collapse
|
7
|
Ni Q, Ge Z, Li Y, Shatkin G, Fu J, Bera K, Yang Y, Wang Y, Sen A, Wu Y, Vasconcelos ACN, Feinberg AP, Konstantopoulos K, Sun SX. Cytoskeletal activation of NHE1 regulates mechanosensitive cell volume adaptation and proliferation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.08.31.555808. [PMID: 37693593 PMCID: PMC10491192 DOI: 10.1101/2023.08.31.555808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/12/2023]
Abstract
Mammalian cells can rapidly respond to osmotic and hydrostatic pressure imbalances during an environmental change, generating large fluxes of water and ions that alter cell volume within minutes. While the role of ion pump and leak in cell volume regulation has been well-established, the potential contribution of the actomyosin cytoskeleton and its interplay with ion transporters is unclear. We discovered a cell volume regulation system that is controlled by cytoskeletal activation of ion transporters. After a hypotonic shock, normal-like cells (NIH-3T3, MCF-10A, and others) display a slow secondary volume increase (SVI) following the immediate regulatory volume decrease. We show that SVI is initiated by hypotonic stress induced Ca 2+ influx through stretch activated channel Piezo1, which subsequently triggers actomyosin remodeling. The actomyosin network further activates NHE1 through their synergistic linker ezrin, inducing SVI after the initial volume recovery. We find that SVI is absent in cancer cell lines such as HT1080 and MDA-MB-231, where volume regulation is dominated by intrinsic response of ion transporters. A similar cytoskeletal activation of NHE1 can also be achieved by mechanical stretching. On compliant substrates where cytoskeletal contractility is attenuated, SVI generation is abolished. Moreover, cytoskeletal activation of NHE1 during SVI triggers nuclear deformation, leading to a significant, immediate transcriptomic change in 3T3 cells, a phenomenon that is again absent in HT1080 cells. While hypotonic shock hinders ERK-dependent cell growth, cells deficient in SVI are unresponsive to such inhibitory effects. Overall, our findings reveal the critical role of Ca 2+ and actomyosin-mediated mechanosensation in the regulation of ion transport, cell volume, transcriptomics, and cell proliferation.
Collapse
|
8
|
Hu S, Chapski DJ, Gehred ND, Kimball TH, Gromova T, Flores A, Rowat AC, Chen J, Packard RRS, Olszewski E, Davis J, Rau CD, McKinsey TA, Rosa-Garrido M, Vondriska TM. Histone H1.0 couples cellular mechanical behaviors to chromatin structure. NATURE CARDIOVASCULAR RESEARCH 2024; 3:441-459. [PMID: 38765203 PMCID: PMC11101354 DOI: 10.1038/s44161-024-00460-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 03/06/2024] [Indexed: 05/21/2024]
Abstract
Tuning of genome structure and function is accomplished by chromatin-binding proteins, which determine the transcriptome and phenotype of the cell. Here we investigate how communication between extracellular stress and chromatin structure may regulate cellular mechanical behaviors. We demonstrate that histone H1.0, which compacts nucleosomes into higher-order chromatin fibers, controls genome organization and cellular stress response. We show that histone H1.0 has privileged expression in fibroblasts across tissue types and that its expression is necessary and sufficient to induce myofibroblast activation. Depletion of histone H1.0 prevents cytokine-induced fibroblast contraction, proliferation and migration via inhibition of a transcriptome comprising extracellular matrix, cytoskeletal and contractile genes, through a process that involves locus-specific H3K27 acetylation. Transient depletion of histone H1.0 in vivo prevents fibrosis in cardiac muscle. These findings identify an unexpected role of linker histones to orchestrate cellular mechanical behaviors, directly coupling force generation, nuclear organization and gene transcription.
Collapse
Affiliation(s)
- Shuaishuai Hu
- Department of Anesthesiology & Perioperative Medicine, David Geffen School of Medicine at University of California, Los Angeles, Los Angeles, CA USA
| | - Douglas J. Chapski
- Department of Anesthesiology & Perioperative Medicine, David Geffen School of Medicine at University of California, Los Angeles, Los Angeles, CA USA
| | - Natalie D. Gehred
- Department of Anesthesiology & Perioperative Medicine, David Geffen School of Medicine at University of California, Los Angeles, Los Angeles, CA USA
| | - Todd H. Kimball
- Department of Anesthesiology & Perioperative Medicine, David Geffen School of Medicine at University of California, Los Angeles, Los Angeles, CA USA
| | - Tatiana Gromova
- Department of Anesthesiology & Perioperative Medicine, David Geffen School of Medicine at University of California, Los Angeles, Los Angeles, CA USA
| | - Angelina Flores
- Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, CA USA
| | - Amy C. Rowat
- Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, CA USA
| | - Junjie Chen
- Department of Medicine, Division of Cardiology, David Geffen School of Medicine at University of California, Los Angeles, Los Angeles, CA USA
| | - René R. Sevag Packard
- Department of Medicine, Division of Cardiology, David Geffen School of Medicine at University of California, Los Angeles, Los Angeles, CA USA
- Department of Physiology, David Geffen School of Medicine at University of California, Los Angeles, Los Angeles, CA USA
| | - Emily Olszewski
- Department of Bioengineering, University of Washington, Seattle, WA USA
| | - Jennifer Davis
- Department of Bioengineering, University of Washington, Seattle, WA USA
| | - Christoph D. Rau
- Department of Genetics and McAllister Heart Institute, University of North Carolina, Chapel Hill, NC USA
| | - Timothy A. McKinsey
- Department of Medicine, Division of Cardiology and Consortium for Fibrosis Research & Translation, University of Colorado Anschutz Medical Campus, Aurora, CO USA
| | - Manuel Rosa-Garrido
- Department of Biomedical Engineering, School of Medicine and School of Engineering, University of Alabama at Birmingham, Birmingham, AL USA
| | - Thomas M. Vondriska
- Department of Anesthesiology & Perioperative Medicine, David Geffen School of Medicine at University of California, Los Angeles, Los Angeles, CA USA
- Department of Medicine, Division of Cardiology, David Geffen School of Medicine at University of California, Los Angeles, Los Angeles, CA USA
- Department of Physiology, David Geffen School of Medicine at University of California, Los Angeles, Los Angeles, CA USA
| |
Collapse
|
9
|
Mishra J, Chakraborty S, Niharika, Roy A, Manna S, Baral T, Nandi P, Patra SK. Mechanotransduction and epigenetic modulations of chromatin: Role of mechanical signals in gene regulation. J Cell Biochem 2024; 125:e30531. [PMID: 38345428 DOI: 10.1002/jcb.30531] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 01/08/2024] [Accepted: 01/26/2024] [Indexed: 03/12/2024]
Abstract
Mechanical forces may be generated within a cell due to tissue stiffness, cytoskeletal reorganization, and the changes (even subtle) in the cell's physical surroundings. These changes of forces impose a mechanical tension within the intracellular protein network (both cytosolic and nuclear). Mechanical tension could be released by a series of protein-protein interactions often facilitated by membrane lipids, lectins and sugar molecules and thus generate a type of signal to drive cellular processes, including cell differentiation, polarity, growth, adhesion, movement, and survival. Recent experimental data have accentuated the molecular mechanism of this mechanical signal transduction pathway, dubbed mechanotransduction. Mechanosensitive proteins in the cell's plasma membrane discern the physical forces and channel the information to the cell interior. Cells respond to the message by altering their cytoskeletal arrangement and directly transmitting the signal to the nucleus through the connection of the cytoskeleton and nucleoskeleton before the information despatched to the nucleus by biochemical signaling pathways. Nuclear transmission of the force leads to the activation of chromatin modifiers and modulation of the epigenetic landscape, inducing chromatin reorganization and gene expression regulation; by the time chemical messengers (transcription factors) arrive into the nucleus. While significant research has been done on the role of mechanotransduction in tumor development and cancer progression/metastasis, the mechanistic basis of force-activated carcinogenesis is still enigmatic. Here, in this review, we have discussed the various cues and molecular connections to better comprehend the cellular mechanotransduction pathway, and we also explored the detailed role of some of the multiple players (proteins and macromolecular complexes) involved in mechanotransduction. Thus, we have described an avenue: how mechanical stress directs the epigenetic modifiers to modulate the epigenome of the cells and how aberrant stress leads to the cancer phenotype.
Collapse
Affiliation(s)
- Jagdish Mishra
- Epigenetics and Cancer Research Laboratory, Department of Life Science, Biochemistry and Molecular Biology Group, National Institute of Technology, Rourkela, Odisha, India
| | - Subhajit Chakraborty
- Epigenetics and Cancer Research Laboratory, Department of Life Science, Biochemistry and Molecular Biology Group, National Institute of Technology, Rourkela, Odisha, India
| | - Niharika
- Epigenetics and Cancer Research Laboratory, Department of Life Science, Biochemistry and Molecular Biology Group, National Institute of Technology, Rourkela, Odisha, India
| | - Ankan Roy
- Epigenetics and Cancer Research Laboratory, Department of Life Science, Biochemistry and Molecular Biology Group, National Institute of Technology, Rourkela, Odisha, India
| | - Soumen Manna
- Epigenetics and Cancer Research Laboratory, Department of Life Science, Biochemistry and Molecular Biology Group, National Institute of Technology, Rourkela, Odisha, India
| | - Tirthankar Baral
- Epigenetics and Cancer Research Laboratory, Department of Life Science, Biochemistry and Molecular Biology Group, National Institute of Technology, Rourkela, Odisha, India
| | - Piyasa Nandi
- Epigenetics and Cancer Research Laboratory, Department of Life Science, Biochemistry and Molecular Biology Group, National Institute of Technology, Rourkela, Odisha, India
| | - Samir K Patra
- Epigenetics and Cancer Research Laboratory, Department of Life Science, Biochemistry and Molecular Biology Group, National Institute of Technology, Rourkela, Odisha, India
| |
Collapse
|
10
|
Schneider SE, Scott AK, Seelbinder B, Elzen CVD, Wilson RL, Miller EY, Beato QI, Ghosh S, Barthold JE, Bilyeu J, Emery NC, Pierce DM, Neu CP. Dynamic biophysical responses of neuronal cell nuclei and cytoskeletal structure following high impulse loading. Acta Biomater 2023; 163:339-350. [PMID: 35811070 PMCID: PMC10019187 DOI: 10.1016/j.actbio.2022.07.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 06/11/2022] [Accepted: 07/01/2022] [Indexed: 12/28/2022]
Abstract
Cells are continuously exposed to dynamic environmental cues that influence their behavior. Mechanical cues can influence cellular and genomic architecture, gene expression, and intranuclear mechanics, providing evidence of mechanosensing by the nucleus, and a mechanoreciprocity between the nucleus and environment. Force disruption at the tissue level through aging, disease, or trauma, propagates to the nucleus and can have lasting consequences on proper functioning of the cell and nucleus. While the influence of mechanical cues leading to axonal damage has been well studied in neuronal cells, the mechanics of the nucleus following high impulse loading is still largely unexplored. Using an in vitro model of traumatic neural injury, we show a dynamic nuclear behavioral response to impulse stretch (up to 170% strain per second) through quantitative measures of nuclear movement, including tracking of rotation and internal motion. Differences in nuclear movement were observed between low and high strain magnitudes. Increased exposure to impulse stretch exaggerated the decrease in internal motion, assessed by particle tracking microrheology, and intranuclear displacements, assessed through high-resolution deformable image registration. An increase in F-actin puncta surrounding nuclei exposed to impulse stretch additionally demonstrated a corresponding disruption of the cytoskeletal network. Our results show direct biophysical nuclear responsiveness in neuronal cells through force propagation from the substrate to the nucleus. Understanding how mechanical forces perturb the morphological and behavioral response can lead to a greater understanding of how mechanical strain drives changes within the cell and nucleus, and may inform fundamental nuclear behavior after traumatic axonal injury. STATEMENT OF SIGNIFICANCE: The nucleus of the cell has been implicated as a mechano-sensitive organelle, courting molecular sensors and transmitting physical cues in order to maintain cellular and tissue homeostasis. Disruption of this network due to disease or high velocity forces (e.g., trauma) can not only result in orchestrated biochemical cascades, but also biophysical perturbations. Using an in vitro model of traumatic neural injury, we aimed to provide insight into the neuronal nuclear mechanics and biophysical responses at a continuum of strain magnitudes and after repetitive loads. Our image-based methods demonstrate mechanically-induced changes in cellular and nuclear behavior after high intensity loading and have the potential to further define mechanical thresholds of neuronal cell injury.
Collapse
Affiliation(s)
- Stephanie E Schneider
- Paul M. Rady Department of Mechanical Engineering, University of Colorado Boulder, Boulder, CO, USA
| | - Adrienne K Scott
- Paul M. Rady Department of Mechanical Engineering, University of Colorado Boulder, Boulder, CO, USA
| | - Benjamin Seelbinder
- Paul M. Rady Department of Mechanical Engineering, University of Colorado Boulder, Boulder, CO, USA
| | - Courtney Van Den Elzen
- Department of Ecology and Evolutionary Biology, University of Colorado Boulder, Boulder, CO, USA
| | - Robert L Wilson
- Paul M. Rady Department of Mechanical Engineering, University of Colorado Boulder, Boulder, CO, USA
| | - Emily Y Miller
- Biomedical Engineering Program, University of Colorado Boulder, Boulder, CO, USA
| | - Quinn I Beato
- Paul M. Rady Department of Mechanical Engineering, University of Colorado Boulder, Boulder, CO, USA
| | - Soham Ghosh
- Paul M. Rady Department of Mechanical Engineering, University of Colorado Boulder, Boulder, CO, USA; Department of Mechanical Engineering, Colorado State University, Fort Collins, CO, USA; School of Biomedical Engineering, Colorado State University, Fort Collins, CO, USA
| | - Jeanne E Barthold
- Paul M. Rady Department of Mechanical Engineering, University of Colorado Boulder, Boulder, CO, USA
| | - Jason Bilyeu
- Paul M. Rady Department of Mechanical Engineering, University of Colorado Boulder, Boulder, CO, USA
| | - Nancy C Emery
- Department of Ecology and Evolutionary Biology, University of Colorado Boulder, Boulder, CO, USA
| | - David M Pierce
- Department of Mechanical Engineering, University of Connecticut, Storrs, CT, USA; Department of Biomedical Engineering, University of Connecticut, Storrs, CT, USA
| | - Corey P Neu
- Paul M. Rady Department of Mechanical Engineering, University of Colorado Boulder, Boulder, CO, USA; Biomedical Engineering Program, University of Colorado Boulder, Boulder, CO, USA; BioFrontiers Institute, University of Colorado Boulder, Boulder, CO, USA.
| |
Collapse
|
11
|
Hsia CR, Melters DP, Dalal Y. The Force is Strong with This Epigenome: Chromatin Structure and Mechanobiology. J Mol Biol 2023; 435:168019. [PMID: 37330288 PMCID: PMC10567996 DOI: 10.1016/j.jmb.2023.168019] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 02/13/2023] [Accepted: 02/15/2023] [Indexed: 06/19/2023]
Abstract
All life forms sense and respond to mechanical stimuli. Throughout evolution, organisms develop diverse mechanosensing and mechanotransduction pathways, leading to fast and sustained mechanoresponses. Memory and plasticity characteristics of mechanoresponses are thought to be stored in the form of epigenetic modifications, including chromatin structure alterations. These mechanoresponses in the chromatin context share conserved principles across species, such as lateral inhibition during organogenesis and development. However, it remains unclear how mechanotransduction mechanisms alter chromatin structure for specific cellular functions, and if altered chromatin structure can mechanically affect the environment. In this review, we discuss how chromatin structure is altered by environmental forces via an outside-in pathway for cellular functions, and the emerging concept of how chromatin structure alterations can mechanically affect nuclear, cellular, and extracellular environments. This bidirectional mechanical feedback between chromatin of the cell and the environment can potentially have important physiological implications, such as in centromeric chromatin regulation of mechanobiology in mitosis, or in tumor-stroma interactions. Finally, we highlight the current challenges and open questions in the field and provide perspectives for future research.
Collapse
Affiliation(s)
- Chieh-Ren Hsia
- Chromatin Structure and Epigenetic Mechanisms, Laboratory of Receptor Biology and Gene Expression, Center for Cancer Research, NCI, NIH, Bethesda, MD, United States. https://twitter.com/JeremiahHsia
| | - Daniël P Melters
- Chromatin Structure and Epigenetic Mechanisms, Laboratory of Receptor Biology and Gene Expression, Center for Cancer Research, NCI, NIH, Bethesda, MD, United States. https://twitter.com/dpmelters
| | - Yamini Dalal
- Chromatin Structure and Epigenetic Mechanisms, Laboratory of Receptor Biology and Gene Expression, Center for Cancer Research, NCI, NIH, Bethesda, MD, United States. https://twitter.com/NCIYaminiDalal
| |
Collapse
|
12
|
Xu Y, Liu J, Song W, Wang Q, Sun X, Zhao Q, Huang Y, Li H, Peng Y, Yuan J, Ji B, Ren L. Biomimetic Convex Implant for Corneal Regeneration Through 3D Printing. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2205878. [PMID: 36775872 PMCID: PMC10104657 DOI: 10.1002/advs.202205878] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 01/24/2023] [Indexed: 06/18/2023]
Abstract
Blindness caused by corneal damage affects millions of people worldwide, and this number continues to rise. However, rapid epithelization and a stable epithelium process are the two biggest challenges for traditional corneal materials. These processes are related to corneal curvature, which is an important factor in determination of the corneal healing process and epithelial behavior during corneal damage. In this study, smooth 3D-printed convex corneal implants based on gelatin methacrylate and collagen are generated. As epithelium distribution and adhesion vary in different regions of the natural cornea, this work separates the surfaces into four regions and studies how cells sense topological cues on curvature. It is found that rabbit corneal epithelial cells (RCECs) seeded on steeper slope gradient surfaces on convex structures result in more aligned cell organization and tighter cell-substrate adhesion, which can also be verified through finite element simulation and signaling pathway analysis. In vivo transplantation of convex implants result in a better fit with adjacent tissue and stronger cell adhesion than flat implants, thereby accelerating corneal epithelialization and promoting collagen fibers and neural regeneration within 180 days. Taken together, printed convex corneal implants that facilitate corneal regeneration may offer a translational strategy for the treatment of corneal damage.
Collapse
Affiliation(s)
- Yingni Xu
- School of Materials Science and EngineeringNational Engineering Research Center for Tissue Restoration and ReconstructionKey Laboratory of Biomedical Engineering of Guangdong ProvinceKey Laboratory of Biomedical Materials and Engineering of the Ministry of EducationInnovation Center for Tissue Restoration and ReconstructionSouth China University of TechnologyGuangzhou510006P. R. China
| | - Jia Liu
- School of Materials Science and EngineeringNational Engineering Research Center for Tissue Restoration and ReconstructionKey Laboratory of Biomedical Engineering of Guangdong ProvinceKey Laboratory of Biomedical Materials and Engineering of the Ministry of EducationInnovation Center for Tissue Restoration and ReconstructionSouth China University of TechnologyGuangzhou510006P. R. China
| | - Wenjing Song
- School of Materials Science and EngineeringNational Engineering Research Center for Tissue Restoration and ReconstructionKey Laboratory of Biomedical Engineering of Guangdong ProvinceKey Laboratory of Biomedical Materials and Engineering of the Ministry of EducationInnovation Center for Tissue Restoration and ReconstructionSouth China University of TechnologyGuangzhou510006P. R. China
| | - Qianchun Wang
- Wenzhou InstituteUniversity of Chinese Academy of SciencesWenzhou325001P. R. China
| | - Xiaomin Sun
- School of Materials Science and EngineeringNational Engineering Research Center for Tissue Restoration and ReconstructionKey Laboratory of Biomedical Engineering of Guangdong ProvinceKey Laboratory of Biomedical Materials and Engineering of the Ministry of EducationInnovation Center for Tissue Restoration and ReconstructionSouth China University of TechnologyGuangzhou510006P. R. China
| | - Qi Zhao
- School of Materials Science and EngineeringNational Engineering Research Center for Tissue Restoration and ReconstructionKey Laboratory of Biomedical Engineering of Guangdong ProvinceKey Laboratory of Biomedical Materials and Engineering of the Ministry of EducationInnovation Center for Tissue Restoration and ReconstructionSouth China University of TechnologyGuangzhou510006P. R. China
| | - Yongrui Huang
- School of Materials Science and EngineeringNational Engineering Research Center for Tissue Restoration and ReconstructionKey Laboratory of Biomedical Engineering of Guangdong ProvinceKey Laboratory of Biomedical Materials and Engineering of the Ministry of EducationInnovation Center for Tissue Restoration and ReconstructionSouth China University of TechnologyGuangzhou510006P. R. China
| | - Haochen Li
- School of Materials Science and EngineeringNational Engineering Research Center for Tissue Restoration and ReconstructionKey Laboratory of Biomedical Engineering of Guangdong ProvinceKey Laboratory of Biomedical Materials and Engineering of the Ministry of EducationInnovation Center for Tissue Restoration and ReconstructionSouth China University of TechnologyGuangzhou510006P. R. China
| | - Yuehai Peng
- National Engineering Research Center for Tissue Restoration and ReconstructionKey Laboratory of Biomedical Engineering of Guangdong ProvinceKey Laboratory of Biomedical Materials and Engineering of the Ministry of EducationInnovation Center for Tissue Restoration and ReconstructionSouth China University of TechnologyGuangzhou510006P. R. China
- Guangzhou Proud Seeing Biotechnology Co., LtdGuangzhou510320P. R. China
| | - Jin Yuan
- State Key Laboratory of OphthalmologyZhongshan Ophthalmic CenterSun Yat‐sen UniversityGuangzhou510623P. R. China
| | - Baohua Ji
- Institute of Biomechanics and Applications, Department of Engineering MechanicsZhejiang UniversityHangzhou310027P. R. China
| | - Li Ren
- School of Materials Science and EngineeringNational Engineering Research Center for Tissue Restoration and ReconstructionKey Laboratory of Biomedical Engineering of Guangdong ProvinceKey Laboratory of Biomedical Materials and Engineering of the Ministry of EducationInnovation Center for Tissue Restoration and ReconstructionSouth China University of TechnologyGuangzhou510006P. R. China
- Bioland LaboratoryGuangzhou Regenerative Medicine and Health Guangdong LaboratoryGuangzhou510005P. R. China
| |
Collapse
|
13
|
Mechanotransduction pathways in articular chondrocytes and the emerging role of estrogen receptor-α. Bone Res 2023; 11:13. [PMID: 36869045 PMCID: PMC9984452 DOI: 10.1038/s41413-023-00248-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 12/05/2022] [Accepted: 01/06/2023] [Indexed: 03/05/2023] Open
Abstract
In the synovial joint, mechanical force creates an important signal that influences chondrocyte behavior. The conversion of mechanical signals into biochemical cues relies on different elements in mechanotransduction pathways and culminates in changes in chondrocyte phenotype and extracellular matrix composition/structure. Recently, several mechanosensors, the first responders to mechanical force, have been discovered. However, we still have limited knowledge about the downstream molecules that enact alterations in the gene expression profile during mechanotransduction signaling. Recently, estrogen receptor α (ERα) has been shown to modulate the chondrocyte response to mechanical loading through a ligand-independent mechanism, in line with previous research showing that ERα exerts important mechanotransduction effects on other cell types, such as osteoblasts. In consideration of these recent discoveries, the goal of this review is to position ERα into the mechanotransduction pathways known to date. Specifically, we first summarize our most recent understanding of the mechanotransduction pathways in chondrocytes on the basis of three categories of actors, namely mechanosensors, mechanotransducers, and mechanoimpactors. Then, the specific roles played by ERα in mediating the chondrocyte response to mechanical loading are discussed, and the potential interactions of ERα with other molecules in mechanotransduction pathways are explored. Finally, we propose several future research directions that may advance our understanding of the roles played by ERα in mediating biomechanical cues under physiological and pathological conditions.
Collapse
|
14
|
Kourouklis AP, Wahlsten A, Stracuzzi A, Martyts A, Paganella LG, Labouesse C, Al-Nuaimi D, Giampietro C, Ehret AE, Tibbitt MW, Mazza E. Control of hydrostatic pressure and osmotic stress in 3D cell culture for mechanobiological studies. BIOMATERIALS ADVANCES 2023; 145:213241. [PMID: 36529095 DOI: 10.1016/j.bioadv.2022.213241] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 10/25/2022] [Accepted: 12/09/2022] [Indexed: 12/15/2022]
Abstract
Hydrostatic pressure (HP) and osmotic stress (OS) play an important role in various biological processes, such as cell proliferation and differentiation. In contrast to canonical mechanical signals transmitted through the anchoring points of the cells with the extracellular matrix, the physical and molecular mechanisms that transduce HP and OS into cellular functions remain elusive. Three-dimensional cell cultures show great promise to replicate physiologically relevant signals in well-defined host bioreactors with the goal of shedding light on hidden aspects of the mechanobiology of HP and OS. This review starts by introducing prevalent mechanisms for the generation of HP and OS signals in biological tissues that are subject to pathophysiological mechanical loading. We then revisit various mechanisms in the mechanotransduction of HP and OS, and describe the current state of the art in bioreactors and biomaterials for the control of the corresponding physical signals.
Collapse
Affiliation(s)
- Andreas P Kourouklis
- Institute for Mechanical Systems, Department of Mechanical and Process Engineering, ETH Zurich, Leonhardstrasse 21, 8092 Zurich, Switzerland.
| | - Adam Wahlsten
- Institute for Mechanical Systems, Department of Mechanical and Process Engineering, ETH Zurich, Leonhardstrasse 21, 8092 Zurich, Switzerland
| | - Alberto Stracuzzi
- Institute for Mechanical Systems, Department of Mechanical and Process Engineering, ETH Zurich, Leonhardstrasse 21, 8092 Zurich, Switzerland; Empa, Swiss Federal Laboratories for Materials Science and Technology, Überlandstrasse 129, 8600 Dübendorf, Switzerland
| | - Anastasiya Martyts
- Institute for Mechanical Systems, Department of Mechanical and Process Engineering, ETH Zurich, Leonhardstrasse 21, 8092 Zurich, Switzerland
| | - Lorenza Garau Paganella
- Institute for Mechanical Systems, Department of Mechanical and Process Engineering, ETH Zurich, Leonhardstrasse 21, 8092 Zurich, Switzerland; Macromolecular Engineering Laboratory, Department of Mechanical and Process Engineering, ETH Zurich, Sonneggstrasse 3, 8092 Zurich, Switzerland
| | - Celine Labouesse
- Macromolecular Engineering Laboratory, Department of Mechanical and Process Engineering, ETH Zurich, Sonneggstrasse 3, 8092 Zurich, Switzerland
| | - Dunja Al-Nuaimi
- Institute for Mechanical Systems, Department of Mechanical and Process Engineering, ETH Zurich, Leonhardstrasse 21, 8092 Zurich, Switzerland
| | - Costanza Giampietro
- Institute for Mechanical Systems, Department of Mechanical and Process Engineering, ETH Zurich, Leonhardstrasse 21, 8092 Zurich, Switzerland; Empa, Swiss Federal Laboratories for Materials Science and Technology, Überlandstrasse 129, 8600 Dübendorf, Switzerland
| | - Alexander E Ehret
- Institute for Mechanical Systems, Department of Mechanical and Process Engineering, ETH Zurich, Leonhardstrasse 21, 8092 Zurich, Switzerland; Empa, Swiss Federal Laboratories for Materials Science and Technology, Überlandstrasse 129, 8600 Dübendorf, Switzerland
| | - Mark W Tibbitt
- Macromolecular Engineering Laboratory, Department of Mechanical and Process Engineering, ETH Zurich, Sonneggstrasse 3, 8092 Zurich, Switzerland
| | - Edoardo Mazza
- Institute for Mechanical Systems, Department of Mechanical and Process Engineering, ETH Zurich, Leonhardstrasse 21, 8092 Zurich, Switzerland; Empa, Swiss Federal Laboratories for Materials Science and Technology, Überlandstrasse 129, 8600 Dübendorf, Switzerland
| |
Collapse
|
15
|
Characteristics of Root Cells during In Vitro Rhizogenesis under Action of NaCl in Two Tomato Genotypes Differing in Salt Tolerance. INTERNATIONAL JOURNAL OF PLANT BIOLOGY 2023. [DOI: 10.3390/ijpb14010010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Understanding the mechanisms of plant salt tolerance as a complex trait is an integral part of many studies, the results of which have been used in the breeding process. The aim of this study was to compare the root response of two tomato (Solanum lycopersicum L.) genotypes (breeding line YaLF and cultivar Recordsmen) differing in salt tolerance. Rhizogenesis was induced in tomato shoots in vitro with different concentrations of NaCl in the culture medium. A number of morphobiological and cytological parameters were evaluated at the organ, tissue, and cellular levels for possible use in a comprehensive assessment of genotypes for salt tolerance. The influence of NaCl caused disruption of the cell cycle and redistribution of cells in the phases of the cell cycle. An increase in the degree of vacuolization was shown in cv Recordsmen at 75 and 150 mM NaCl and in the YaLF line at 150 mM NaCl. Under salt action, an increase/decrease in the length of cells such as columella cells (both genotypes) and epidermal cells (in cv Recordsmen at 75 and 150 mM NaCl) was shown. Differences between genotypes were demonstrated by changes in the area of the central cylinder and primary root cortex cells, as well as by changes of the Snucleolus/Snucleus ratio in these cells. Transmission electron microscopy (TEM) showed the modification of the chromatin structure in the root cells of these genotypes. Various cytoskeletal disorders were revealed in interphase cells of the tomato root of cv Recordsmen and the YaLF line by immunofluorescent staining under saline conditions. These morphometric and cytological parameters can be used for a comparative evaluation of genotypes differing in salt tolerance in a comprehensive assessment of varieties.
Collapse
|
16
|
Markov P, Zhu H, Boote C, Blain EJ. Delayed reorganisation of F-actin cytoskeleton and reversible chromatin condensation in scleral fibroblasts under simulated pathological strain. Biochem Biophys Rep 2022; 32:101338. [PMID: 36123992 PMCID: PMC9482111 DOI: 10.1016/j.bbrep.2022.101338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 08/25/2022] [Accepted: 08/27/2022] [Indexed: 11/06/2022] Open
Abstract
Mechanical loading regulates the functional capabilities of the ocular system, particularly in the sclera (‘white of the eye’) – the principal load-bearing tissue of the ocular globe. Resident fibroblasts of the scleral eye wall are continuously subjected to fluctuating mechanical strains arising from eye movements, cerebrospinal fluid pressure and, most influentially, intra-ocular pressure (IOP). Whilst fibroblasts are hypothesised to actively participate in scleral biomechanics, to date limited information has been reported on how the macroscopic stresses and strains are transmitted via their cytoskeletal networks. In this study, the effect of applying either a ‘physiological load’ (simulating healthy IOP) or a ‘pathological load’ (simulating an elevated glaucomatous IOP) to bovine scleral fibroblasts, as a model of human glaucoma, was conducted to characterise cytoskeletal organisation, chromatin condensation and cell dimensions using immunofluorescence confocal microscopy. Quantification of cell parameters and cytoskeletal element anisotropy were subsequently performed using FibrilTool, and chromatin condensation parameter assessment through a bespoke MATLAB script. The novel findings suggest that physiological load-induced F-actin rearrangement is transient, whereas pathological load, recapitulating in vivo glaucomatous IOP levels, had a reversible and inhibitory influence on remodelling of the cytoskeletal architecture and, further, induction of chromatin condensation. Ultimately, this could compromise cell behaviour. These findings could provide valuable insight into the mechanism(s) used by scleral fibroblasts to mechanically adapt to support biomechanical tissue integrity, and how it could be potentially modified for therapeutic avenues targeting mechanically mediated ocular pathologies such as glaucoma. Physiological strain induced a transient F-actin rearrangement in scleral fibroblasts. In contrast, pathological strain reversibly delayed F-actin rearrangement. Vimentin and β-tubulin networks were largely unaffected by strain regimens. Pathological strain reversibly increased chromatin condensation parameter. Pathological strain may induce ‘inhibition delay’ to confer cytoprotection.
Collapse
|
17
|
Efremov AK, Hovan L, Yan J. Nucleus size and its effect on nucleosome stability in living cells. Biophys J 2022; 121:4189-4204. [PMID: 36146936 PMCID: PMC9675033 DOI: 10.1016/j.bpj.2022.09.019] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 08/15/2022] [Accepted: 09/16/2022] [Indexed: 11/25/2022] Open
Abstract
DNA architectural proteins play a major role in organization of chromosomal DNA in living cells by packaging it into chromatin, whose spatial conformation is determined by an intricate interplay between the DNA-binding properties of architectural proteins and physical constraints applied to the DNA by a tight nuclear space. Yet, the exact effects of the nucleus size on DNA-protein interactions and chromatin structure currently remain obscure. Furthermore, there is even no clear understanding of molecular mechanisms responsible for the nucleus size regulation in living cells. To find answers to these questions, we developed a general theoretical framework based on a combination of polymer field theory and transfer-matrix calculations, which showed that the nucleus size is mainly determined by the difference between the surface tensions of the nuclear envelope and the endoplasmic reticulum membrane as well as the osmotic pressure exerted by cytosolic macromolecules on the nucleus. In addition, the model demonstrated that the cell nucleus functions as a piezoelectric element, changing its electrostatic potential in a size-dependent manner. This effect has been found to have a profound impact on stability of nucleosomes, revealing a previously unknown link between the nucleus size and chromatin structure. Overall, our study provides new insights into the molecular mechanisms responsible for regulation of the nucleus size, as well as the potential role of nuclear organization in shaping the cell response to environmental cues.
Collapse
Affiliation(s)
- Artem K Efremov
- Institute of Systems and Physical Biology, Shenzhen Bay Laboratory, Shenzhen, China; Mechanobiology Institute, National University of Singapore, Singapore, Singapore.
| | - Ladislav Hovan
- School of Pharmaceutical Sciences, University of Geneva, Geneva, Switzerland
| | - Jie Yan
- Mechanobiology Institute, National University of Singapore, Singapore, Singapore
| |
Collapse
|
18
|
Walker CJ, Batan D, Bishop CT, Ramirez D, Aguado BA, Schroeder ME, Crocini C, Schwisow J, Moulton K, Macdougall L, Weiss RM, Allen MA, Dowell R, Leinwand LA, Anseth KS. Extracellular matrix stiffness controls cardiac valve myofibroblast activation through epigenetic remodeling. Bioeng Transl Med 2022; 7:e10394. [PMID: 36176599 PMCID: PMC9472021 DOI: 10.1002/btm2.10394] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 07/11/2022] [Accepted: 07/27/2022] [Indexed: 11/29/2022] Open
Abstract
Aortic valve stenosis (AVS) is a progressive fibrotic disease that is caused by thickening and stiffening of valve leaflets. At the cellular level, quiescent valve interstitial cells (qVICs) activate to myofibroblasts (aVICs) that persist within the valve tissue. Given the persistence of myofibroblasts in AVS, epigenetic mechanisms have been implicated. Here, we studied changes that occur in VICs during myofibroblast activation by using a hydrogel matrix to recapitulate different stiffnesses in the valve leaflet during fibrosis. We first compared the chromatin landscape of qVICs cultured on soft hydrogels and aVICs cultured on stiff hydrogels, representing the native and diseased phenotypes respectively. Using assay for transposase-accessible chromatin sequencing (ATAC-Seq), we found that open chromatin regions in aVICs were enriched for transcription factor binding motifs associated with mechanosensing pathways compared to qVICs. Next, we used RNA-Seq to show that the open chromatin regions in aVICs correlated with pro-fibrotic gene expression, as aVICs expressed higher levels of contractile fiber genes, including myofibroblast markers such as alpha smooth muscle actin (αSMA), compared to qVICs. In contrast, chromatin remodeling genes were downregulated in aVICs compared to qVICs, indicating qVICs may be protected from myofibroblast activation through epigenetic mechanisms. Small molecule inhibition of one of these remodelers, CREB Binding Protein (CREBBP), prevented qVICs from activating to aVICs. Notably, CREBBP is more abundant in valves from healthy patients compared to fibrotic valves. Our findings reveal the role of mechanical regulation in chromatin remodeling during VIC activation and quiescence and highlight one potential therapeutic target for treating AVS.
Collapse
Affiliation(s)
- Cierra J. Walker
- Materials Science and Engineering ProgramUniversity of Colorado BoulderBoulderColoradoUSA
- BioFrontiers Institute, University of Colorado BoulderBoulderColoradoUSA
| | - Dilara Batan
- BioFrontiers Institute, University of Colorado BoulderBoulderColoradoUSA
- Biochemistry DepartmentUniversity of Colorado BoulderBoulderColoradoUSA
| | - Carrie T. Bishop
- Chemical and Biological Engineering DepartmentUniversity of Colorado BoulderBoulderColoradoUSA
| | - Daniel Ramirez
- BioFrontiers Institute, University of Colorado BoulderBoulderColoradoUSA
- Molecular, Cellular, and Developmental Biology DepartmentUniversity of Colorado BoulderBoulderColoradoUSA
| | - Brian A. Aguado
- BioFrontiers Institute, University of Colorado BoulderBoulderColoradoUSA
- Chemical and Biological Engineering DepartmentUniversity of Colorado BoulderBoulderColoradoUSA
| | - Megan E. Schroeder
- BioFrontiers Institute, University of Colorado BoulderBoulderColoradoUSA
- Chemical and Biological Engineering DepartmentUniversity of Colorado BoulderBoulderColoradoUSA
| | - Claudia Crocini
- BioFrontiers Institute, University of Colorado BoulderBoulderColoradoUSA
- Molecular, Cellular, and Developmental Biology DepartmentUniversity of Colorado BoulderBoulderColoradoUSA
| | - Jessica Schwisow
- Division of CardiologyUniversity of Colorado Anschutz Medical CampusAuroraColoradoUSA
| | - Karen Moulton
- Division of CardiologyUniversity of Colorado Anschutz Medical CampusAuroraColoradoUSA
| | - Laura Macdougall
- BioFrontiers Institute, University of Colorado BoulderBoulderColoradoUSA
- Chemical and Biological Engineering DepartmentUniversity of Colorado BoulderBoulderColoradoUSA
| | - Robert M. Weiss
- Department of Internal MedicineUniversity of IowaIowa CityIowaUSA
| | - Mary A. Allen
- BioFrontiers Institute, University of Colorado BoulderBoulderColoradoUSA
- Molecular, Cellular, and Developmental Biology DepartmentUniversity of Colorado BoulderBoulderColoradoUSA
| | - Robin Dowell
- BioFrontiers Institute, University of Colorado BoulderBoulderColoradoUSA
- Molecular, Cellular, and Developmental Biology DepartmentUniversity of Colorado BoulderBoulderColoradoUSA
| | - Leslie A. Leinwand
- BioFrontiers Institute, University of Colorado BoulderBoulderColoradoUSA
- Molecular, Cellular, and Developmental Biology DepartmentUniversity of Colorado BoulderBoulderColoradoUSA
| | - Kristi S. Anseth
- BioFrontiers Institute, University of Colorado BoulderBoulderColoradoUSA
- Chemical and Biological Engineering DepartmentUniversity of Colorado BoulderBoulderColoradoUSA
| |
Collapse
|
19
|
Shen Z, Lengyel M, Niethammer P. The yellow brick road to nuclear membrane mechanotransduction. APL Bioeng 2022; 6:021501. [PMID: 35382443 PMCID: PMC8967412 DOI: 10.1063/5.0080371] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 03/09/2022] [Indexed: 02/06/2023] Open
Abstract
The nuclear membrane may function as a mechanosensory surface alongside the plasma membrane. In this Review, we discuss how this idea emerged, where it currently stands, and point out possible implications, without any claim of comprehensiveness.
Collapse
Affiliation(s)
| | - Miklós Lengyel
- Cell Biology Program, Memorial Sloan Kettering Cancer Center, New York, New York 10065, USA
| | - Philipp Niethammer
- Cell Biology Program, Memorial Sloan Kettering Cancer Center, New York, New York 10065, USA
| |
Collapse
|
20
|
Deviri D, Safran SA. Balance of osmotic pressures determines the nuclear-to-cytoplasmic volume ratio of the cell. Proc Natl Acad Sci U S A 2022; 119:e2118301119. [PMID: 35580183 PMCID: PMC9173802 DOI: 10.1073/pnas.2118301119] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Accepted: 04/05/2022] [Indexed: 01/06/2023] Open
Abstract
The volume of the cell nucleus varies across cell types and species and is commonly thought to be determined by the size of the genome and degree of chromatin compaction. However, this notion has been challenged over the years by much experimental evidence. Here, we consider the physical condition of mechanical force balance as a determining condition of the nuclear volume and use quantitative, order-of-magnitude analysis to estimate the forces from different sources of nuclear and cytoplasmic pressure. Our estimates suggest that the dominant pressure within the nucleus and cytoplasm of nonstriated muscle cells originates from the osmotic pressure of proteins and RNA molecules that are localized to the nucleus or cytoplasm by out-of-equilibrium, active nucleocytoplasmic transport rather than from chromatin or its associated ions. This motivates us to formulate a physical model for the ratio of the cell and nuclear volumes in which osmotic pressures of localized proteins determine the relative volumes. In accordance with unexplained observations that are a century old, our model predicts that the ratio of the cell and nuclear volumes is a constant, robust to a wide variety of biochemical and biophysical manipulations, and is changed only if gene expression or nucleocytoplasmic transport is modulated.
Collapse
Affiliation(s)
- Dan Deviri
- Department of Chemical and Biological Physics, Weizmann Institute of Science, Rehovet 76100, Israel
| | - Samuel A. Safran
- Department of Chemical and Biological Physics, Weizmann Institute of Science, Rehovet 76100, Israel
| |
Collapse
|
21
|
Xu Z, Li K, Xin Y, Tan K, Yang M, Wang G, Tan Y. Fluid shear stress regulates the survival of circulating tumor cells via nuclear expansion. J Cell Sci 2022; 135:275517. [PMID: 35510498 DOI: 10.1242/jcs.259586] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Accepted: 04/27/2022] [Indexed: 11/20/2022] Open
Abstract
Distant metastasis mainly occurs through hematogenous dissemination, where suspended circulating tumor cells (CTCs) experience a considerable level of fluid shear stress. We recently reported that shear flow induced substantial apoptosis of CTCs, although a small subpopulation could still persist. However, how suspended tumor cells survive in shear flow remains poorly understood. This study finds that fluid shear stress eliminates the majority of suspended CTCs and increases nuclear size, whereas it has no effect on the viability of adherent tumor cells and decreases their nuclear size. Shear flow promotes histone acetylation in suspended tumor cells, the inhibition of which using one drug suppresses shear-induced nuclear expansion, suggesting that shear stress might increase nuclear size through histone acetylation. Suppressing histone acetylation-mediated nuclear expansion enhances shear-induced apoptosis of CTCs. These findings suggest that suspended tumor cells respond to shear stress through histone acetylation-mediated nuclear expansion, which protects CTCs from shear-induced destruction. Our study elucidates a unique mechanism underlying the mechanotransduction of suspended CTCs to shear flow, which might hold therapeutic promise for CTC eradication.
Collapse
Affiliation(s)
- Zichen Xu
- The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen 518000, China.,Research Institute for Smart Ageing, The Hong Kong Polytechnic University, Hong Kong 999077, China.,Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hong Kong 999077, China.,Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing 400030, China
| | - Keming Li
- The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen 518000, China.,Research Institute for Smart Ageing, The Hong Kong Polytechnic University, Hong Kong 999077, China.,Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hong Kong 999077, China
| | - Ying Xin
- The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen 518000, China.,Research Institute for Smart Ageing, The Hong Kong Polytechnic University, Hong Kong 999077, China.,Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hong Kong 999077, China
| | - Kai Tan
- The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen 518000, China.,Research Institute for Smart Ageing, The Hong Kong Polytechnic University, Hong Kong 999077, China.,Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hong Kong 999077, China
| | - Mo Yang
- Research Institute for Smart Ageing, The Hong Kong Polytechnic University, Hong Kong 999077, China
| | - Guixue Wang
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing 400030, China
| | - Youhua Tan
- The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen 518000, China.,Research Institute for Smart Ageing, The Hong Kong Polytechnic University, Hong Kong 999077, China.,Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hong Kong 999077, China
| |
Collapse
|
22
|
Lorber D, Volk T. Evaluation of chromatin mesoscale organization. APL Bioeng 2022; 6:010902. [PMID: 35071965 PMCID: PMC8758204 DOI: 10.1063/5.0069286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Accepted: 11/29/2021] [Indexed: 11/21/2022] Open
Abstract
Chromatin organization in the nucleus represents an important aspect of transcription regulation. Most of the studies so far focused on the chromatin structure in cultured cells or in fixed tissue preparations. Here, we discuss the various approaches for deciphering chromatin 3D organization with an emphasis on the advantages of live imaging approaches.
Collapse
Affiliation(s)
- Dana Lorber
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Talila Volk
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| |
Collapse
|
23
|
Codjoe JM, Miller K, Haswell ES. Plant cell mechanobiology: Greater than the sum of its parts. THE PLANT CELL 2022; 34:129-145. [PMID: 34524447 PMCID: PMC8773992 DOI: 10.1093/plcell/koab230] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Accepted: 09/09/2021] [Indexed: 05/04/2023]
Abstract
The ability to sense and respond to physical forces is critical for the proper function of cells, tissues, and organisms across the evolutionary tree. Plants sense gravity, osmotic conditions, pathogen invasion, wind, and the presence of barriers in the soil, and dynamically integrate internal and external stimuli during every stage of growth and development. While the field of plant mechanobiology is growing, much is still poorly understood-including the interplay between mechanical and biochemical information at the single-cell level. In this review, we provide an overview of the mechanical properties of three main components of the plant cell and the mechanoperceptive pathways that link them, with an emphasis on areas of complexity and interaction. We discuss the concept of mechanical homeostasis, or "mechanostasis," and examine the ways in which cellular structures and pathways serve to maintain it. We argue that viewing mechanics and mechanotransduction as emergent properties of the plant cell can be a useful conceptual framework for synthesizing current knowledge and driving future research.
Collapse
Affiliation(s)
- Jennette M Codjoe
- Department of Biology and Center for Engineering Mechanobiology, Washington University in St Louis, St Louis, Missouri, 63130, USA
| | - Kari Miller
- Department of Biology and Center for Engineering Mechanobiology, Washington University in St Louis, St Louis, Missouri, 63130, USA
| | | |
Collapse
|
24
|
Transient nuclear lamin A/C accretion aids in recovery from vapor nanobubble-induced permeabilisation of the plasma membrane. Cell Mol Life Sci 2022; 79:23. [PMID: 34984553 PMCID: PMC8727414 DOI: 10.1007/s00018-021-04099-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 11/23/2021] [Accepted: 12/15/2021] [Indexed: 01/14/2023]
Abstract
Vapor nanobubble (VNB) photoporation is a physical method for intracellular delivery that has gained significant interest in the past decade. It has successfully been used to introduce molecular cargo of diverse nature into different cell types with high throughput and minimal cytotoxicity. For translational purposes, it is important to understand whether and how photoporation affects cell homeostasis. To obtain a comprehensive view on the transcriptional rewiring that takes place after VNB photoporation, we performed a longitudinal shotgun RNA-sequencing experiment. Six hours after photoporation, we found a marked upregulation of LMNA transcripts as well as their protein products, the A-type lamins. At the same time point, we observed a significant increase in several heterochromatin marks, suggesting a global stiffening of the nucleus. These molecular features vanished 24 h after photoporation. Since VNB-induced chromatin condensation was prolonged in LMNA knockout cells, A-type lamins may be required for restoring the nucleus to its original state. Selective depletion of A-type lamins reduced cell viability after VNB photoporation, while pharmacological stimulation of LMNA transcription increased the percentage of successfully transfected cells that survived after photoporation. Therefore, our results suggest that cells respond to VNB photoporation by temporary upregulation of A-type lamins to facilitate their recovery.
Collapse
|
25
|
Mechanosignalling in cartilage: an emerging target for the treatment of osteoarthritis. Nat Rev Rheumatol 2021; 18:67-84. [PMID: 34934171 DOI: 10.1038/s41584-021-00724-w] [Citation(s) in RCA: 139] [Impact Index Per Article: 34.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/18/2021] [Indexed: 12/12/2022]
Abstract
Mechanical stimuli have fundamental roles in articular cartilage during health and disease. Chondrocytes respond to the physical properties of the cartilage extracellular matrix (ECM) and the mechanical forces exerted on them during joint loading. In osteoarthritis (OA), catabolic processes degrade the functional ECM and the composition and viscoelastic properties of the ECM produced by chondrocytes are altered. The abnormal loading environment created by these alterations propagates cell dysfunction and inflammation. Chondrocytes sense their physical environment via an array of mechanosensitive receptors and channels that activate a complex network of downstream signalling pathways to regulate several cell processes central to OA pathology. Advances in understanding the complex roles of specific mechanosignalling mechanisms in healthy and OA cartilage have highlighted molecular processes that can be therapeutically targeted to interrupt pathological feedback loops. The potential for combining these mechanosignalling targets with the rapidly expanding field of smart mechanoresponsive biomaterials and delivery systems is an emerging paradigm in OA treatment. The continued advances in this field have the potential to enable restoration of healthy mechanical microenvironments and signalling through the development of precision therapeutics, mechanoregulated biomaterials and drug systems in the near future.
Collapse
|
26
|
Zhang M, Wu X, Du G, Chen W, Zhang Q. Substrate stiffness-dependent regulatory volume decrease and calcium signaling in chondrocytes. Acta Biochim Biophys Sin (Shanghai) 2021; 54:113-125. [PMID: 35130619 PMCID: PMC9909316 DOI: 10.3724/abbs.2021008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
The pericellular matrix stiffness is strongly associated with its biochemical and structural changes during the aging and osteoarthritis progress of articular cartilage. However, how substrate stiffness modulates the chondrocyte regulatory volume decrease (RVD) and calcium signaling in chondrocytes remains unknown. This study aims to investigate the effects of substrate stiffness on the chondrocyte RVD and calcium signaling by recapitulating the physiologically relevant substrate stiffness. Our results showed that substrate stiffness induces completely different dynamical deformations between the cell swelling and recovering progresses. Chondrocytes swell faster on the soft substrate but recovers slower than the stiff substrate during the RVD response induced by the hypo-osmotic challenge. We found that stiff substrate enhances the cytosolic Ca oscillation of chondrocytes in the iso-osmotic medium. Furthermore, chondrocytes exhibit a distinctive cytosolic Ca oscillation during the RVD response. Soft substrate significantly improves the Ca oscillation in the cell swelling process whereas stiff substrate enhances the cytosolic Ca oscillation in the cell recovering process. Our work also suggests that the TRPV4 channel is involved in the chondrocyte sensing substrate stiffness by mediating Ca signaling in a stiffness-dependent manner. This helps to understand a previously unidentified relationship between substrate stiffness and RVD response under the hypo-osmotic challenge. A better understanding of substrate stiffness regulating chondrocyte volume and calcium signaling will aid the development of novel cell-instructive biomaterial to restore cellular functions.
Collapse
Affiliation(s)
- Min Zhang
- 1.College of Biomedical EngineeringTaiyuan University of TechnologyTaiyuan030024China
| | - Xiaoan Wu
- 2.Department of Physiology and BiophysicsMiller School of MedicineUniversity of MiamiMiamiFL33136USA
| | - Genlai Du
- 3.Department of Cell Biology and Medical GeneticsSchool of Basic Medical ScienceShanxi Medical UniversityTaiyuan030001China
| | - Weiyi Chen
- 1.College of Biomedical EngineeringTaiyuan University of TechnologyTaiyuan030024China,Correspondence address: +86-13700500252; E-mail: (Q.Z.) / Tel: +86-13015477101; E-mail: (W.C.)@tyut.edu.cn
| | - Quanyou Zhang
- 1.College of Biomedical EngineeringTaiyuan University of TechnologyTaiyuan030024China,4.Department of Orthopaedicsthe Second Hospital of Shanxi Medical UniversityShanxi Key Laboratory of Bone and Soft Tissue Injury RepairShanxi Medical UniversityTaiyuan030001China,Correspondence address: +86-13700500252; E-mail: (Q.Z.) / Tel: +86-13015477101; E-mail: (W.C.)@tyut.edu.cn
| |
Collapse
|
27
|
Vertii A. Stress as a Chromatin Landscape Architect. Front Cell Dev Biol 2021; 9:790138. [PMID: 34970548 PMCID: PMC8712864 DOI: 10.3389/fcell.2021.790138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Accepted: 11/19/2021] [Indexed: 11/16/2022] Open
Abstract
The exponential development of methods investigating different levels of spatial genome organization leads to the appreciation of the chromatin landscape's contribution to gene regulation and cell fate. Multiple levels of 3D chromatin organization include chromatin loops and topologically associated domains, followed by euchromatin and heterochromatin compartments, chromatin domains associated with nuclear bodies, and culminate with the chromosome territories. 3D chromatin architecture is exposed to multiple factors such as cell division and stress, including but not limited to mechanical, inflammatory, and environmental challenges. How exactly the stress exposure shapes the chromatin landscape is a new and intriguing area of research. In this mini-review, the developments that motivate the exploration of this field are discussed.
Collapse
Affiliation(s)
- Anastassiia Vertii
- Department of Molecular, Cellular and Cancer Biology, University of Massachusetts Medical School, Worcester, MA, United States
| |
Collapse
|
28
|
Hobson CM, Falvo MR, Superfine R. A survey of physical methods for studying nuclear mechanics and mechanobiology. APL Bioeng 2021; 5:041508. [PMID: 34849443 PMCID: PMC8604565 DOI: 10.1063/5.0068126] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Accepted: 10/20/2021] [Indexed: 12/23/2022] Open
Abstract
It is increasingly appreciated that the cell nucleus is not only a home for DNA but also a complex material that resists physical deformations and dynamically responds to external mechanical cues. The molecules that confer mechanical properties to nuclei certainly contribute to laminopathies and possibly contribute to cellular mechanotransduction and physical processes in cancer such as metastasis. Studying nuclear mechanics and the downstream biochemical consequences or their modulation requires a suite of complex assays for applying, measuring, and visualizing mechanical forces across diverse length, time, and force scales. Here, we review the current methods in nuclear mechanics and mechanobiology, placing specific emphasis on each of their unique advantages and limitations. Furthermore, we explore important considerations in selecting a new methodology as are demonstrated by recent examples from the literature. We conclude by providing an outlook on the development of new methods and the judicious use of the current techniques for continued exploration into the role of nuclear mechanobiology.
Collapse
Affiliation(s)
| | - Michael R. Falvo
- Department of Physics and Astronomy, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
| | - Richard Superfine
- Department of Applied Physical Science, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
| |
Collapse
|
29
|
Walker CJ, Crocini C, Ramirez D, Killaars AR, Grim JC, Aguado BA, Clark K, Allen MA, Dowell RD, Leinwand LA, Anseth KS. Nuclear mechanosensing drives chromatin remodelling in persistently activated fibroblasts. Nat Biomed Eng 2021; 5:1485-1499. [PMID: 33875841 PMCID: PMC9102466 DOI: 10.1038/s41551-021-00709-w] [Citation(s) in RCA: 80] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Accepted: 03/07/2021] [Indexed: 02/02/2023]
Abstract
Fibrotic disease is caused by the continuous deposition of extracellular matrix by persistently activated fibroblasts (also known as myofibroblasts), even after the resolution of the injury. Using fibroblasts from porcine aortic valves cultured on hydrogels that can be softened via exposure to ultraviolet light, here we show that increased extracellular stiffness activates the fibroblasts, and that cumulative tension on the nuclear membrane and increases in the activity of histone deacetylases transform transiently activated fibroblasts into myofibroblasts displaying condensed chromatin with genome-wide alterations. The condensed structure of the myofibroblasts is associated with cytoskeletal stability, as indicated by the inhibition of chromatin condensation and myofibroblast persistence after detachment of the nucleus from the cytoskeleton via the displacement of endogenous nesprins from the nuclear envelope. We also show that the chromatin structure of myofibroblasts from patients with aortic valve stenosis is more condensed than that of myofibroblasts from healthy donors. Our findings suggest that nuclear mechanosensing drives distinct chromatin signatures in persistently activated fibroblasts.
Collapse
Affiliation(s)
- Cierra J Walker
- Materials Science and Engineering Program, University of Colorado Boulder, Boulder, CO, USA
- BioFrontiers Institute, University of Colorado Boulder, Boulder, CO, USA
| | - Claudia Crocini
- BioFrontiers Institute, University of Colorado Boulder, Boulder, CO, USA
- Department of Molecular, Cellular and Developmental Biology, University of Colorado Boulder, Boulder, CO, USA
| | - Daniel Ramirez
- BioFrontiers Institute, University of Colorado Boulder, Boulder, CO, USA
- Department of Molecular, Cellular and Developmental Biology, University of Colorado Boulder, Boulder, CO, USA
| | - Anouk R Killaars
- Materials Science and Engineering Program, University of Colorado Boulder, Boulder, CO, USA
- BioFrontiers Institute, University of Colorado Boulder, Boulder, CO, USA
| | - Joseph C Grim
- BioFrontiers Institute, University of Colorado Boulder, Boulder, CO, USA
- Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, CO, USA
| | - Brian A Aguado
- BioFrontiers Institute, University of Colorado Boulder, Boulder, CO, USA
- Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, CO, USA
| | - Kyle Clark
- Department of Molecular, Cellular and Developmental Biology, University of Colorado Boulder, Boulder, CO, USA
| | - Mary A Allen
- BioFrontiers Institute, University of Colorado Boulder, Boulder, CO, USA
| | - Robin D Dowell
- BioFrontiers Institute, University of Colorado Boulder, Boulder, CO, USA
- Department of Molecular, Cellular and Developmental Biology, University of Colorado Boulder, Boulder, CO, USA
| | - Leslie A Leinwand
- BioFrontiers Institute, University of Colorado Boulder, Boulder, CO, USA.
- Department of Molecular, Cellular and Developmental Biology, University of Colorado Boulder, Boulder, CO, USA.
| | - Kristi S Anseth
- BioFrontiers Institute, University of Colorado Boulder, Boulder, CO, USA.
- Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, CO, USA.
| |
Collapse
|
30
|
Cantwell H, Dey G. Nuclear size and shape control. Semin Cell Dev Biol 2021; 130:90-97. [PMID: 34776332 DOI: 10.1016/j.semcdb.2021.10.013] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 10/26/2021] [Accepted: 10/29/2021] [Indexed: 11/27/2022]
Abstract
The nucleus displays a wide range of sizes and shapes in different species and cell types, yet its size scaling and many of the key structural constituents that determine its shape are highly conserved. In this review, we discuss the cellular properties and processes that contribute to nuclear size and shape control, drawing examples from across eukaryotes and highlighting conserved themes and pathways. We then outline physiological roles that have been uncovered for specific nuclear morphologies and disease pathologies associated with aberrant nuclear morphology. We argue that a comparative approach, assessing and integrating observations from different systems, will be a powerful way to help us address the open questions surrounding functional roles of nuclear size and shape in cell physiology.
Collapse
Affiliation(s)
- Helena Cantwell
- Department of Molecular and Cell Biology, University of California Berkeley, Berkeley, CA 94720, USA.
| | - Gautam Dey
- Cell Biology and Biophysics, European Molecular Biology Laboratory, Meyerhofstr.1, 69117 Heidelberg, Germany.
| |
Collapse
|
31
|
Balakrishnan S, Raju SR, Barua A, Pradeep RP, Ananthasuresh GK. Two nondimensional parameters for characterizing the nuclear morphology. Biophys J 2021; 120:4698-4709. [PMID: 34624272 DOI: 10.1016/j.bpj.2021.09.035] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 09/09/2021] [Accepted: 09/15/2021] [Indexed: 11/16/2022] Open
Abstract
Nuclear morphology is an important indicator of cell function. It is regulated by a variety of factors such as the osmotic pressure difference between the nucleoplasm and cytoplasm, cytoskeletal forces, elasticity of the nuclear envelope and chromosomes. Nucleus shape and size are typically quantified using multiple geometrical quantities that are not necessarily independent of one another. This interdependence makes it difficult to decipher the implications of changes in nuclear morphology. We resolved this by analyzing nucleus shapes of populations for multiple cell lines using a mechanics-based model. We deduced two independent nondimensional parameters, namely, flatness index and isometric scale factor. We show that nuclei in a cell population have similar flatness but variable scale factor. Furthermore, nuclei of different cell lines segregate according to flatness. Cellular perturbations using biochemical and biomechanical techniques suggest that the flatness index correlates with actin tension and the scale factor anticorrelates with elastic modulus of nuclear envelope. We argue that nuclear morphology measures such as volume, projected area, height etc., are subsumed by flatness and scale factor, which can unambiguously characterize nuclear morphology.
Collapse
Affiliation(s)
| | - Shilpa R Raju
- Mechanical Engineering, Indian Institute of Science, Bengaluru, Karnataka, India
| | - Anwesha Barua
- BioSystems Science and Engineering, Indian Institute of Science, Bengaluru, Karnataka, India
| | - Reshma P Pradeep
- School of Physical Sciences, Indian Institute of Science Education and Research Thiruvananthapuram, Thiruvananthapuram, Kerala, India
| | - Gondi Kondaiah Ananthasuresh
- Mechanical Engineering, Indian Institute of Science, Bengaluru, Karnataka, India; BioSystems Science and Engineering, Indian Institute of Science, Bengaluru, Karnataka, India
| |
Collapse
|
32
|
Amiad-Pavlov D, Lorber D, Bajpai G, Reuveny A, Roncato F, Alon R, Safran S, Volk T. Live imaging of chromatin distribution reveals novel principles of nuclear architecture and chromatin compartmentalization. SCIENCE ADVANCES 2021; 7:7/23/eabf6251. [PMID: 34078602 PMCID: PMC8172175 DOI: 10.1126/sciadv.abf6251] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2020] [Accepted: 04/15/2021] [Indexed: 05/12/2023]
Abstract
Live imaging of chromatin in an intact organism reveals a novel mode of mesoscale chromatin organization at nuclear periphery.
Collapse
Affiliation(s)
- Daria Amiad-Pavlov
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Dana Lorber
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Gaurav Bajpai
- Department of Chemical and Biological Physics, Weizmann Institute of Science, Rehovot, Israel
| | - Adriana Reuveny
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Francesco Roncato
- Department of Immunology Weizmann Institute of Science, Rehovot, Israel
| | - Ronen Alon
- Department of Immunology Weizmann Institute of Science, Rehovot, Israel
| | - Samuel Safran
- Department of Chemical and Biological Physics, Weizmann Institute of Science, Rehovot, Israel
| | - Talila Volk
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| |
Collapse
|
33
|
Hedley JG, Teif VB, Kornyshev AA. Nucleosome-induced homology recognition in chromatin. J R Soc Interface 2021; 18:20210147. [PMID: 34129789 PMCID: PMC8205524 DOI: 10.1098/rsif.2021.0147] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Accepted: 05/04/2021] [Indexed: 02/07/2023] Open
Abstract
One of the least understood properties of chromatin is the ability of its similar regions to recognize each other through weak interactions. Theories based on electrostatic interactions between helical macromolecules suggest that the ability to recognize sequence homology is an innate property of the non-ideal helical structure of DNA. However, this theory does not account for the nucleosomal packing of DNA. Can homologous DNA sequences recognize each other while wrapped up in the nucleosomes? Can structural homology arise at the level of nucleosome arrays? Here, we present a theoretical model for the recognition potential well between chromatin fibres sliding against each other. This well is different from the one predicted for bare DNA; the minima in energy do not correspond to literal juxtaposition, but are shifted by approximately half the nucleosome repeat length. The presence of this potential well suggests that nucleosome positioning may induce mutual sequence recognition between chromatin fibres and facilitate the formation of chromatin nanodomains. This has implications for nucleosome arrays enclosed between CTCF-cohesin boundaries, which may form stiffer stem-like structures instead of flexible entropically favourable loops. We also consider switches between chromatin states, e.g. through acetylation/deacetylation of histones, and discuss nucleosome-induced recognition as a precursory stage of genetic recombination.
Collapse
Affiliation(s)
- Jonathan G. Hedley
- Department of Chemistry, Faculty of Natural Sciences, Imperial College London, Molecular Sciences Research Hub, White City Campus, Wood Lane, London W12 0BZ, UK
| | - Vladimir B. Teif
- School of Life Sciences, University of Essex, Wivenhoe Park, Colchester CO4 3SQ, UK
| | - Alexei A. Kornyshev
- Department of Chemistry, Faculty of Natural Sciences, Imperial College London, Molecular Sciences Research Hub, White City Campus, Wood Lane, London W12 0BZ, UK
| |
Collapse
|
34
|
Berg IC, Mohagheghian E, Habing K, Wang N, Underhill GH. Microtissue Geometry and Cell-Generated Forces Drive Patterning of Liver Progenitor Cell Differentiation in 3D. Adv Healthc Mater 2021; 10:e2100223. [PMID: 33890430 PMCID: PMC8222189 DOI: 10.1002/adhm.202100223] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 03/27/2021] [Indexed: 01/13/2023]
Abstract
3D microenvironments provide a unique opportunity to investigate the impact of intrinsic mechanical signaling on progenitor cell differentiation. Using a hydrogel-based microwell platform, arrays of 3D, multicellular microtissues in constrained geometries, including toroids and cylinders are produced. These generated distinct mechanical profiles to investigate the impact of geometry and stress on early liver progenitor cell fate using a model liver development system. Image segmentation allows the tracking of individual cell fate and the characterization of distinct patterning of hepatocytic makers to the outer shell of the microtissues, and the exclusion from the inner diameter surface of the toroids. Biliary markers are distributed throughout the interior regions of micropatterned tissues and are increased in toroidal tissues when compared with those in cylindrical tissues. Finite element models of predicted stress distributions, combined with mechanical measurements, demonstrates that intercellular tension correlates with increased hepatocytic fate, while compression correlates with decreased hepatocytic and increased biliary fate. This system, which integrates microfabrication, imaging, mechanical modeling, and quantitative analysis, demonstrates how microtissue geometry can drive patterning of mechanical stresses that regulate cell differentiation trajectories. This approach may serve as a platform for further investigation of signaling mechanisms in the liver and other developmental systems.
Collapse
Affiliation(s)
- Ian C. Berg
- University of Illinois at Urbana-Champaign Department of Bioengineering, 1102 Everitt Lab, MC-278, 1406 W. Green Street, Urbana, IL 61801, USA
| | - Erfan Mohagheghian
- University of Illinois at Urbana-Champaign Department of Mechanical Science and Engineering, Mechanical Engineering Building, 1206 W. Green St. MC 244, Urbana, IL, 61801, USA
| | - Krista Habing
- University of Illinois at Urbana-Champaign Department of Bioengineering, 1102 Everitt Lab, MC-278, 1406 W. Green Street, Urbana, IL 61801, USA
| | - Ning Wang
- University of Illinois at Urbana-Champaign Department of Mechanical Science and Engineering, Mechanical Engineering Building, 1206 W. Green St. MC 244, Urbana, IL, 61801, USA
| | - Gregory H. Underhill
- University of Illinois at Urbana-Champaign Department of Bioengineering, 1102 Everitt Lab, MC-278, 1406 W. Green Street, Urbana, IL 61801, USA
| |
Collapse
|
35
|
Xu X, Smaczniak C, Muino JM, Kaufmann K. Cell identity specification in plants: lessons from flower development. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:4202-4217. [PMID: 33865238 PMCID: PMC8163053 DOI: 10.1093/jxb/erab110] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Accepted: 04/12/2021] [Indexed: 05/15/2023]
Abstract
Multicellular organisms display a fascinating complexity of cellular identities and patterns of diversification. The concept of 'cell type' aims to describe and categorize this complexity. In this review, we discuss the traditional concept of cell types and highlight the impact of single-cell technologies and spatial omics on the understanding of cellular differentiation in plants. We summarize and compare position-based and lineage-based mechanisms of cell identity specification using flower development as a model system. More than understanding ontogenetic origins of differentiated cells, an important question in plant science is to understand their position- and developmental stage-specific heterogeneity. Combinatorial action and crosstalk of external and internal signals is the key to cellular heterogeneity, often converging on transcription factors that orchestrate gene expression programs.
Collapse
Affiliation(s)
- Xiaocai Xu
- Plant Cell and Molecular Biology, Institute of Biology, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Cezary Smaczniak
- Plant Cell and Molecular Biology, Institute of Biology, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Jose M Muino
- Systems Biology of Gene Regulation, Humboldt-Universität zu Berlin, Institute of Biology, Berlin, Germany
| | - Kerstin Kaufmann
- Plant Cell and Molecular Biology, Institute of Biology, Humboldt-Universität zu Berlin, Berlin, Germany
| |
Collapse
|
36
|
Bajpai G, Amiad Pavlov D, Lorber D, Volk T, Safran S. Mesoscale phase separation of chromatin in the nucleus. eLife 2021; 10:e63976. [PMID: 33942717 PMCID: PMC8139833 DOI: 10.7554/elife.63976] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Accepted: 04/30/2021] [Indexed: 12/22/2022] Open
Abstract
Intact-organism imaging of Drosophila larvae reveals and quantifies chromatin-aqueous phase separation. The chromatin can be organized near the lamina layer of the nuclear envelope, conventionally fill the nucleus, be organized centrally, or as a wetting droplet. These transitions are controlled by changes in nuclear volume and the interaction of chromatin with the lamina (part of the nuclear envelope) at the nuclear periphery. Using a simple polymeric model that includes the key features of chromatin self-attraction and its binding to the lamina, we demonstrate theoretically that it is the competition of these two effects that determines the mode of chromatin distribution. The qualitative trends as well as the composition profiles obtained in our simulations compare well with the observed intact-organism imaging and quantification. Since the simulations contain only a small number of physical variables we can identify the generic mechanisms underlying the changes in the observed phase separations.
Collapse
|
37
|
Cosgrove BD, Loebel C, Driscoll TP, Tsinman TK, Dai EN, Heo SJ, Dyment NA, Burdick JA, Mauck RL. Nuclear envelope wrinkling predicts mesenchymal progenitor cell mechano-response in 2D and 3D microenvironments. Biomaterials 2021; 270:120662. [PMID: 33540172 PMCID: PMC7936657 DOI: 10.1016/j.biomaterials.2021.120662] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 08/24/2020] [Accepted: 01/03/2021] [Indexed: 12/21/2022]
Abstract
Exogenous mechanical cues are transmitted from the extracellular matrix to the nuclear envelope (NE), where mechanical stress on the NE mediates shuttling of transcription factors and other signaling cascades that dictate downstream cellular behavior and fate decisions. To systematically study how nuclear morphology can change across various physiologic microenvironmental contexts, we cultured mesenchymal progenitor cells (MSCs) in engineered 2D and 3D hyaluronic acid hydrogel systems. Across multiple contexts we observed highly 'wrinkled' nuclear envelopes, and subsequently developed a quantitative single-cell imaging metric to better evaluate how wrinkles in the nuclear envelope relate to progenitor cell mechanotransduction. We determined that in soft 2D environments the NE is predominately wrinkled, and that increases in cellular mechanosensing (indicated by cellular spreading, adhesion complex growth, and nuclear localization of YAP/TAZ) occurred only in absence of nuclear envelope wrinkling. Conversely, in 3D hydrogel and tissue contexts, we found NE wrinkling occurred along with increased YAP/TAZ nuclear localization. We further determined that these NE wrinkles in 3D were largely generated by actin impingement, and compared to other nuclear morphometrics, the degree of nuclear wrinkling showed the greatest correlation with nuclear YAP/TAZ localization. These findings suggest that the degree of nuclear envelope wrinkling can predict mechanotransduction state in mesenchymal progenitor cells and highlights the differential mechanisms of NE stress generation operative in 2D and 3D microenvironmental contexts.
Collapse
Affiliation(s)
- Brian D Cosgrove
- McKay Orthopaedic Research Laboratory, Department of Orthopaedic Surgery Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA; Department of Bioengineering, University of Pennsylvania Philadelphia, PA, 19104, USA; Translational Musculoskeletal Research Center, Corporal Michael Crescenz VA Medical Center, Philadelphia, PA, 19104, USA
| | - Claudia Loebel
- Department of Bioengineering, University of Pennsylvania Philadelphia, PA, 19104, USA; Translational Musculoskeletal Research Center, Corporal Michael Crescenz VA Medical Center, Philadelphia, PA, 19104, USA
| | - Tristan P Driscoll
- McKay Orthopaedic Research Laboratory, Department of Orthopaedic Surgery Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA; Department of Bioengineering, University of Pennsylvania Philadelphia, PA, 19104, USA; Translational Musculoskeletal Research Center, Corporal Michael Crescenz VA Medical Center, Philadelphia, PA, 19104, USA
| | - Tonia K Tsinman
- McKay Orthopaedic Research Laboratory, Department of Orthopaedic Surgery Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA; Department of Bioengineering, University of Pennsylvania Philadelphia, PA, 19104, USA; Translational Musculoskeletal Research Center, Corporal Michael Crescenz VA Medical Center, Philadelphia, PA, 19104, USA
| | - Eric N Dai
- McKay Orthopaedic Research Laboratory, Department of Orthopaedic Surgery Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA; Department of Bioengineering, University of Pennsylvania Philadelphia, PA, 19104, USA; Translational Musculoskeletal Research Center, Corporal Michael Crescenz VA Medical Center, Philadelphia, PA, 19104, USA
| | - Su-Jin Heo
- McKay Orthopaedic Research Laboratory, Department of Orthopaedic Surgery Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA; Department of Bioengineering, University of Pennsylvania Philadelphia, PA, 19104, USA; Translational Musculoskeletal Research Center, Corporal Michael Crescenz VA Medical Center, Philadelphia, PA, 19104, USA
| | - Nathaniel A Dyment
- McKay Orthopaedic Research Laboratory, Department of Orthopaedic Surgery Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA; Department of Bioengineering, University of Pennsylvania Philadelphia, PA, 19104, USA
| | - Jason A Burdick
- Department of Bioengineering, University of Pennsylvania Philadelphia, PA, 19104, USA
| | - Robert L Mauck
- McKay Orthopaedic Research Laboratory, Department of Orthopaedic Surgery Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA; Department of Bioengineering, University of Pennsylvania Philadelphia, PA, 19104, USA; Translational Musculoskeletal Research Center, Corporal Michael Crescenz VA Medical Center, Philadelphia, PA, 19104, USA.
| |
Collapse
|
38
|
Maki K, Nava MM, Villeneuve C, Chang M, Furukawa KS, Ushida T, Wickström SA. Hydrostatic pressure prevents chondrocyte differentiation through heterochromatin remodeling. J Cell Sci 2021; 134:224090. [PMID: 33310912 PMCID: PMC7860130 DOI: 10.1242/jcs.247643] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Accepted: 12/01/2020] [Indexed: 01/03/2023] Open
Abstract
Articular cartilage protects and lubricates joints for smooth motion and transmission of loads. Owing to its high water content, chondrocytes within the cartilage are exposed to high levels of hydrostatic pressure, which has been shown to promote chondrocyte identity through unknown mechanisms. Here, we investigate the effects of hydrostatic pressure on chondrocyte state and behavior, and discover that application of hydrostatic pressure promotes chondrocyte quiescence and prevents maturation towards the hypertrophic state. Mechanistically, hydrostatic pressure reduces the amount of trimethylated H3K9 (K3K9me3)-marked constitutive heterochromatin and concomitantly increases H3K27me3-marked facultative heterochromatin. Reduced levels of H3K9me3 attenuates expression of pre-hypertrophic genes, replication and transcription, thereby reducing replicative stress. Conversely, promoting replicative stress by inhibition of topoisomerase II decreases Sox9 expression, suggesting that it enhances chondrocyte maturation. Our results reveal how hydrostatic pressure triggers chromatin remodeling to impact cell fate and function. This article has an associated First Person interview with the first author of the paper. Highlighted Article: Hydrostatic pressure promotes chondrocyte quiescence and immature chondrocyte state through reducing the amount of H3K9me3-marked heterochromatin.
Collapse
Affiliation(s)
- Koichiro Maki
- Helsinki Institute of Life Science, Biomedicum, University of Helsinki, 00290 Helsinki, Finland.,Wihuri Research Institute, Biomedicum, University of Helsinki, 00290 Helsinki, Finland.,Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, 00290 Helsinki, Finland.,Department of Mechanical Engineering, The University of Tokyo, Tokyo 113-0033, Japan
| | - Michele M Nava
- Helsinki Institute of Life Science, Biomedicum, University of Helsinki, 00290 Helsinki, Finland.,Wihuri Research Institute, Biomedicum, University of Helsinki, 00290 Helsinki, Finland.,Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, 00290 Helsinki, Finland.,Max Planck Institute for Biology of Ageing, 50931 Cologne, Germany
| | - Clémentine Villeneuve
- Helsinki Institute of Life Science, Biomedicum, University of Helsinki, 00290 Helsinki, Finland.,Wihuri Research Institute, Biomedicum, University of Helsinki, 00290 Helsinki, Finland.,Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, 00290 Helsinki, Finland
| | - Minki Chang
- Department of Mechanical Engineering, The University of Tokyo, Tokyo 113-0033, Japan
| | - Katsuko S Furukawa
- Department of Mechanical Engineering, The University of Tokyo, Tokyo 113-0033, Japan
| | - Takashi Ushida
- Department of Mechanical Engineering, The University of Tokyo, Tokyo 113-0033, Japan
| | - Sara A Wickström
- Helsinki Institute of Life Science, Biomedicum, University of Helsinki, 00290 Helsinki, Finland .,Wihuri Research Institute, Biomedicum, University of Helsinki, 00290 Helsinki, Finland.,Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, 00290 Helsinki, Finland.,Max Planck Institute for Biology of Ageing, 50931 Cologne, Germany.,Cologne Excellence Cluster for Stress Responses in Ageing-associated diseases (CECAD), University of Cologne, 50931 Cologne, Germany
| |
Collapse
|
39
|
Abstract
Dehydration of cells by acute hyperosmotic stress has profound effects upon cell structure and function. Interphase chromatin and mitotic chromosomes collapse ("congelation"). HL-60/S4 cells remain ~100% viable for, at least, 1 hour, exhibiting shrinkage to ~2/3 their original volume, when placed in 300mM sucrose in tissue culture medium. Fixed cells were imaged by immunostaining confocal and STED microscopy. At a "global" structural level (μm), mitotic chromosomes congeal into a residual gel with apparent (phase) separations of Ki67, CTCF, SMC2, RAD21, H1 histones and HMG proteins. At an "intermediate" level (sub-μm), radial distribution analysis of STED images revealed a most probable peak DNA density separation of ~0.16 μm, essentially unchanged by hyperosmotic stress. At a "local" structural level (~1-2 nm), in vivo crosslinking revealed essentially unchanged crosslinked products between H1, HMG and inner histones. Hyperosmotic cellular stress is discussed in terms of concepts of mitotic chromosome structure and liquid-liquid phase separation.
Collapse
Affiliation(s)
- Ada L Olins
- Department of Pharmaceutical Sciences, College of Pharmacy, University of New England, Portland, ME, USA
| | - Travis J Gould
- Department of Physics & Astronomy, Bates College, Lewiston, ME,USA
| | - Logan Boyd
- Department of Physics & Astronomy, Bates College, Lewiston, ME,USA
| | - Bettina Sarg
- Division of Clinical Biochemistry, Biocenter, Innsbruck Medical University, Innsbruck, Austria
| | - Donald E Olins
- Department of Pharmaceutical Sciences, College of Pharmacy, University of New England, Portland, ME, USA
| |
Collapse
|
40
|
Viscoelasticity and Volume of Cortical Neurons under Glutamate Excitotoxicity and Osmotic Challenges. Biophys J 2020; 119:1712-1723. [PMID: 33086042 DOI: 10.1016/j.bpj.2020.09.022] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 08/28/2020] [Accepted: 09/21/2020] [Indexed: 01/15/2023] Open
Abstract
Neural activity depends on the maintenance of ionic and osmotic homeostasis. Under these conditions, the cell volume must be regulated to maintain optimal neural function. A disturbance in the neuronal volume regulation often occurs in pathological conditions such as glutamate excitotoxicity. The cell volume, mechanical properties, and actin cytoskeleton structure are tightly connected to achieve the cell homeostasis. Here, we studied the effects of glutamate-induced excitotoxicity, external osmotic pressure, and inhibition of actin polymerization on the viscoelastic properties and volume of neurons. Atomic force microscopy was used to map the viscoelastic properties of neurons in time-series experiments to observe the dynamical changes and a possible recovery. The data obtained on cultured rat cortical neurons were compared with the data obtained on rat fibroblasts. The neurons were found to be more responsive to the osmotic challenges but less sensitive to the inhibition of actin polymerization than fibroblasts. The alterations of the viscoelastic properties caused by glutamate excitotoxicity were similar to those induced by the hypoosmotic stress, but, in contrast to the latter, they did not recover after the glutamate removal. These data were consistent with the dynamic volume changes estimated using ratiometric fluorescent dyes. The recovery after the glutamate-induced excitotoxicity was slow or absent because of a steady increase in intracellular calcium and sodium concentrations. The viscoelastic parameters and their changes were related to such parameters as the actin cortex stiffness, tension, and cytoplasmic viscosity.
Collapse
|
41
|
Krull CM, Lutton AD, Olesik JW, Walter BA. A method for measuring intra-tissue swelling pressure using a needle micro-osmometer. Eur Cell Mater 2020; 40:146-159. [PMID: 32981028 PMCID: PMC8653509 DOI: 10.22203/ecm.v040a09] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
The intervertebral disc's ability to resist load and facilitate motion arises largely from osmotic swelling pressures that develop within the tissue. Changes in the disc's osmotic environment, diurnally and with disease, have been suggested to regulate cellular activity, yet knowledge of in vivo osmotic environments is limited. Therefore, the first objective of this study was to demonstrate proof-of-concept for a method to measure intra-tissue swelling pressure and osmolality, modeling micro-osmometer fluid flux using Darcy's law. The second objective was to compare flux-based measurements of the swelling pressure within nucleus pulposus (NP) tissue against ionic swelling pressures predicted by Gibbs-Donnan theory. Pressures (0.03- 0.57 MPa) were applied to NP tissue (n = 25) using equilibrium dialysis, and intra-tissue swelling pressures were measured using flux. Ionic swelling pressures were determined from inductively coupled plasma optical emission spectrometry measurements of intra-tissue sodium using Gibbs-Donnan calculations of fixed charge density and intra-tissue chloride. Concordance of 0.93 was observed between applied pressures and flux- based measurements of swelling pressure. Equilibrium bounds for effective tissue osmolalities engendered by a simulated diurnal loading cycle (0.2-0.6 MPa) were 376 and 522 mOsm/kg H2O. Significant differences between flux and Gibbs-Donnan measures of swelling pressure indicated that total tissue water normalization and non-ionic contributions to swelling pressure were significant, which suggested that standard constitutive models may underestimate intra-tissue swelling pressure. Overall, this micro-osmometer technique may facilitate future validations for constitutive models and measurements of variation in the diurnal osmotic cycle, which may inform studies to identify diurnal- and disease-associated changes in mechanotransduction.
Collapse
Affiliation(s)
| | | | | | - B A Walter
- Department of Biomedical Engineering, The Ohio State University, Mars G. Fontana Laboratories, 140 W. 19th Ave, Room 3155, Columbus, OH 43210,
| |
Collapse
|
42
|
Potekhina Y, Filatova A, Tregubova E, Mokhov D. Mechanosensitivity of Cells and Its Role in the Regulation of Physiological Functions and the Implementation of Physiotherapeutic Effects (Review). Sovrem Tekhnologii Med 2020; 12:77-89. [PMID: 34795996 PMCID: PMC8596276 DOI: 10.17691/stm2020.12.4.10] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Indexed: 01/11/2023] Open
Abstract
Regulatory signals in the body are not limited to chemical and electrical ones. There is another type of important signals for cells: those are mechanical signals (coming from the environment or arising from within the body), which have been less known in the literature. The review summarizes new information on the mechanosensitivity of various cells of connective tissue and nervous system. Participation of mechanical stimuli in the regulation of growth, development, differentiation, and functioning of tissues is described. The data focus on bone remodeling, wound healing, neurite growth, and the formation of neural networks. Mechanotransduction, cellular organelles, and mechanosensitive molecules involved in these processes are discussed as well as the role of the extracellular matrix. The importance of mechanical characteristics of cells in the pathogenesis of diseases is highlighted. Finally, the possible role of mechanosensitivity in mediating the physiotherapeutic effects is addressed.
Collapse
Affiliation(s)
- Yu.P. Potekhina
- Professor, Department of Normal Physiology named after N.Y. Belenkov; Privolzhsky Research Medical University, 10/1 Minin and Pozharsky Square, Nizhny Novgorod, 603005, Russia
| | - A.I. Filatova
- Student, Faculty of Pediatrics; Privolzhsky Research Medical University, 10/1 Minin and Pozharsky Square, Nizhny Novgorod, 603005, Russia
| | - E.S. Tregubova
- Professor, Department of Osteopathy; North-Western State Medical University named after I.I. Mechnikov, 41 Kirochnaya St., Saint Petersburg, 191015, Russia; Associate Professor, Institute of Osteopathy; Saint Petersburg State University, 7/9 Universitetskaya naberezhnaya, Saint Petersburg, 199034, Russia
| | - D.E. Mokhov
- Head of the Department of Osteopathy; North-Western State Medical University named after I.I. Mechnikov, 41 Kirochnaya St., Saint Petersburg, 191015, Russia; Director of the Institute of Osteopathy Saint Petersburg State University, 7/9 Universitetskaya naberezhnaya, Saint Petersburg, 199034, Russia
| |
Collapse
|
43
|
Goswami R, Asnacios A, Milani P, Graindorge S, Houlné G, Mutterer J, Hamant O, Chabouté ME. Mechanical Shielding in Plant Nuclei. Curr Biol 2020; 30:2013-2025.e3. [PMID: 32330420 DOI: 10.1016/j.cub.2020.03.059] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Revised: 02/05/2020] [Accepted: 03/23/2020] [Indexed: 01/14/2023]
Abstract
In animal single cells in culture, nuclear geometry and stiffness can be affected by mechanical cues, with important consequences for chromatin status and gene expression. This calls for additional investigation into the corresponding physiological relevance in a multicellular context and in different mechanical environments. Using the Arabidopsis root as a model system, and combining morphometry and micro-rheometry, we found that hyperosmotic stress decreases nuclear circularity and size and increases nuclear stiffness in meristematic cells. These changes were accompanied by enhanced expression of touch response genes. The nuclear response to hyperosmotic stress was rescued upon return to iso-osmotic conditions and could even lead to opposite trends upon hypo-osmotic stress. Interestingly, nuclei in a mutant impaired in the functions of the gamma-tubulin complex protein 3 (GCP3) interacting protein (GIP)/MZT1 proteins at the nuclear envelope were almost insensitive to such osmotic changes. The gip1gip2 mutant exhibited constitutive hyperosmotic stress response with stiffer and deformed nuclei, as well as touch response gene induction. The mutant was also resistant to lethal hyperosmotic conditions. Altogether, we unravel a stereotypical geometric, mechanical, and genetic nuclear response to hyperosmotic stress in plants. Our data also suggest that chromatin acts as a gel that stiffens in hyperosmotic conditions and that the nuclear-envelope-associated protein GIPs act as negative regulators of this response.
Collapse
Affiliation(s)
- Rituparna Goswami
- Institut de Biologie Moléculaire des Plantes, CNRS, Université de Strasbourg, Strasbourg 67084, France; Laboratoire de Reproduction et Développement des Plantes, Université de Lyon, UCB Lyon 1, ENS de Lyon, INRAE, CNRS, Lyon 69364, France
| | - Atef Asnacios
- Laboratoire Matière et Systèmes Complexes, Université de Paris, CNRS, Université Paris-Diderot, Paris 75013, France
| | | | - Stéfanie Graindorge
- Institut de Biologie Moléculaire des Plantes, CNRS, Université de Strasbourg, Strasbourg 67084, France
| | - Guy Houlné
- Institut de Biologie Moléculaire des Plantes, CNRS, Université de Strasbourg, Strasbourg 67084, France
| | - Jérôme Mutterer
- Institut de Biologie Moléculaire des Plantes, CNRS, Université de Strasbourg, Strasbourg 67084, France
| | - Olivier Hamant
- Laboratoire de Reproduction et Développement des Plantes, Université de Lyon, UCB Lyon 1, ENS de Lyon, INRAE, CNRS, Lyon 69364, France.
| | - Marie-Edith Chabouté
- Institut de Biologie Moléculaire des Plantes, CNRS, Université de Strasbourg, Strasbourg 67084, France.
| |
Collapse
|
44
|
Gilbert HTJ, Mallikarjun V, Dobre O, Jackson MR, Pedley R, Gilmore AP, Richardson SM, Swift J. Nuclear decoupling is part of a rapid protein-level cellular response to high-intensity mechanical loading. Nat Commun 2019; 10:4149. [PMID: 31515493 PMCID: PMC6742657 DOI: 10.1038/s41467-019-11923-1] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Accepted: 07/26/2019] [Indexed: 12/17/2022] Open
Abstract
Studies of cellular mechano-signaling have often utilized static models that do not fully replicate the dynamics of living tissues. Here, we examine the time-dependent response of primary human mesenchymal stem cells (hMSCs) to cyclic tensile strain (CTS). At low-intensity strain (1 h, 4% CTS at 1 Hz), cell characteristics mimic responses to increased substrate stiffness. As the strain regime is intensified (frequency increased to 5 Hz), we characterize rapid establishment of a broad, structured and reversible protein-level response, even as transcription is apparently downregulated. Protein abundance is quantified coincident with changes to protein conformation and post-translational modification (PTM). Furthermore, we characterize changes to the linker of nucleoskeleton and cytoskeleton (LINC) complex that bridges the nuclear envelope, and specifically to levels and PTMs of Sad1/UNC-84 (SUN) domain-containing protein 2 (SUN2). The result of this regulation is to decouple mechano-transmission between the cytoskeleton and the nucleus, thus conferring protection to chromatin.
Collapse
Affiliation(s)
- Hamish T J Gilbert
- Wellcome Centre for Cell-Matrix Research, Oxford Road, Manchester, M13 9PT, UK
- Division of Cell Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester, M13 9PL, UK
| | - Venkatesh Mallikarjun
- Wellcome Centre for Cell-Matrix Research, Oxford Road, Manchester, M13 9PT, UK
- Division of Cell Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester, M13 9PL, UK
| | - Oana Dobre
- Wellcome Centre for Cell-Matrix Research, Oxford Road, Manchester, M13 9PT, UK
- Division of Cell Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester, M13 9PL, UK
- School of Engineering, University of Glasgow, Glasgow, G12 8QQ, UK
| | - Mark R Jackson
- Wellcome Centre for Cell-Matrix Research, Oxford Road, Manchester, M13 9PT, UK
- Division of Cell Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester, M13 9PL, UK
- Institute of Cancer Sciences, Glasgow, G61 1QH, UK
| | - Robert Pedley
- Wellcome Centre for Cell-Matrix Research, Oxford Road, Manchester, M13 9PT, UK
- Division of Molecular and Clinical Cancer Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester, M13 9PL, UK
| | - Andrew P Gilmore
- Wellcome Centre for Cell-Matrix Research, Oxford Road, Manchester, M13 9PT, UK
- Division of Molecular and Clinical Cancer Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester, M13 9PL, UK
| | - Stephen M Richardson
- Division of Cell Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester, M13 9PL, UK
| | - Joe Swift
- Wellcome Centre for Cell-Matrix Research, Oxford Road, Manchester, M13 9PT, UK.
- Division of Cell Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester, M13 9PL, UK.
| |
Collapse
|
45
|
Nuclei deformation reveals pressure distributions in 3D cell clusters. PLoS One 2019; 14:e0221753. [PMID: 31513673 PMCID: PMC6771309 DOI: 10.1371/journal.pone.0221753] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Accepted: 08/14/2019] [Indexed: 12/16/2022] Open
Abstract
Measuring pressures within complex multi-cellular environments is critical for
studying mechanobiology as these forces trigger diverse biological responses,
however, these studies are difficult as a deeply embedded yet well-calibrated
probe is required. In this manuscript, we use endogenous cell nuclei as pressure
sensors by introducing a fluorescent protein localized to the nucleus and
confocal microscopy to measure the individual nuclear volumes in 3D
multi-cellular aggregates. We calibrate this measurement of nuclear volume to
pressure by quantifying the nuclear volume change as a function of osmotic
pressure in isolated 2D culture. Using this technique, we find that in
multicellular structures, the nuclear compressive mechanical stresses are on the
order of MPa, increase with cell number in the cluster, and that the
distribution of stresses is homogenous in spherical cell clusters, but highly
asymmetric in oblong clusters. This approach may facilitate quantitative
mechanical measurements in complex and extended biological structures both
in vitro and in vivo.
Collapse
|
46
|
Stephens AD, Liu PZ, Kandula V, Chen H, Almassalha LM, Herman C, Backman V, O’Halloran T, Adam SA, Goldman RD, Banigan EJ, Marko JF. Physicochemical mechanotransduction alters nuclear shape and mechanics via heterochromatin formation. Mol Biol Cell 2019; 30:2320-2330. [PMID: 31365328 PMCID: PMC6743459 DOI: 10.1091/mbc.e19-05-0286] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Accepted: 06/11/2019] [Indexed: 12/12/2022] Open
Abstract
The nucleus houses, organizes, and protects chromatin to ensure genome integrity and proper gene expression, but how the nucleus adapts mechanically to changes in the extracellular environment is poorly understood. Recent studies have revealed that extracellular physical stresses induce chromatin compaction via mechanotransductive processes. We report that increased extracellular multivalent cations lead to increased heterochromatin levels through activation of mechanosensitive ion channels (MSCs), without large-scale cell stretching. In cells with perturbed chromatin or lamins, this increase in heterochromatin suppresses nuclear blebbing associated with nuclear rupture and DNA damage. Through micromanipulation force measurements, we show that this increase in heterochromatin increases chromatin-based nuclear rigidity, which protects nuclear morphology and function. In addition, transduction of elevated extracellular cations rescues nuclear morphology in model and patient cells of human diseases, including progeria and the breast cancer model cell line MDA-MB-231. We conclude that nuclear mechanics, morphology, and function can be modulated by cell sensing of the extracellular environment through MSCs and consequent changes to histone modification state and chromatin-based nuclear rigidity.
Collapse
Affiliation(s)
- Andrew D. Stephens
- Department of Molecular Biosciences, Northwestern University, Evanston, IL 60208
| | - Patrick Z. Liu
- Department of Molecular Biosciences, Northwestern University, Evanston, IL 60208
| | - Viswajit Kandula
- Department of Molecular Biosciences, Northwestern University, Evanston, IL 60208
| | - Haimei Chen
- Department of Chemistry, Northwestern University, Evanston, IL 60208
| | - Luay M. Almassalha
- Department of Biomedical Engineering, Northwestern University, Evanston, IL 60208
| | - Cameron Herman
- Department of Molecular Biosciences, Northwestern University, Evanston, IL 60208
| | - Vadim Backman
- Department of Biomedical Engineering, Northwestern University, Evanston, IL 60208
| | - Thomas O’Halloran
- Department of Chemistry, Northwestern University, Evanston, IL 60208
| | - Stephen A. Adam
- Department of Cell and Molecular Biology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611
| | - Robert D. Goldman
- Department of Cell and Molecular Biology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611
| | - Edward J. Banigan
- Department of Physics and Astronomy, Northwestern University, Evanston, IL 60208
- Institute for Medical Engineering and Science and Department of Physics, Massachusetts Institute of Technology, Cambridge, MA 02139
| | - John F. Marko
- Department of Molecular Biosciences, Northwestern University, Evanston, IL 60208
- Department of Physics and Astronomy, Northwestern University, Evanston, IL 60208
| |
Collapse
|
47
|
Kratochvílová I, Kopečná O, Bačíková A, Pagáčová E, Falková I, Follett SE, Elliott KW, Varga K, Golan M, Falk M. Changes in Cryopreserved Cell Nuclei Serve as Indicators of Processes during Freezing and Thawing. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:7496-7508. [PMID: 30339402 DOI: 10.1021/acs.langmuir.8b02742] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
The mechanisms underlying cell protection from cryoinjury are not yet fully understood. Recent biological studies have addressed cryopreserved cell survival but have not correlated the cryoprotection effectiveness with the impact of cryoprotectants on the most important cell structure, the nucleus, and the freeze/thaw process. We identified changes of cell nuclei states caused by different types of cryoprotectants and associate them with alterations of the freeze/thaw process in cells. Namely, we investigated both higher-order chromatin structure and nuclear envelope integrity as possible markers of freezing and thawing processes. Moreover, we analyzed in detail the relationship between nuclear envelope integrity, chromatin condensation, freeze/thaw processes in cells, and cryopreservation efficiency for dimethyl sulfoxide, glycerol, trehalose, and antifreeze protein. Our interdisciplinary study reveals how changes in cell nuclei induced by cryoprotectants affect the ability of cells to withstand freezing and thawing and how nuclei changes correlate with processes during freezing and thawing. Our results contribute to the deeper fundamental understanding of the freezing processes, notably in the cell nucleus, which will expand the applications and lead to the rational design of cryoprotective materials and protocols.
Collapse
Affiliation(s)
- Irena Kratochvílová
- Institute of Physics, v.v.i. , Czech Academy of Sciences , Na Slovance 2 , CZ-182 21 Prague 8 , Czech Republic
| | - Olga Kopečná
- Institute of Biophysics, v.v.i. , Czech Academy of Sciences , Královopolská 135 , CZ-612 65 Brno , Czech Republic
| | - Alena Bačíková
- Institute of Biophysics, v.v.i. , Czech Academy of Sciences , Královopolská 135 , CZ-612 65 Brno , Czech Republic
| | - Eva Pagáčová
- Institute of Biophysics, v.v.i. , Czech Academy of Sciences , Královopolská 135 , CZ-612 65 Brno , Czech Republic
| | - Iva Falková
- Institute of Biophysics, v.v.i. , Czech Academy of Sciences , Královopolská 135 , CZ-612 65 Brno , Czech Republic
| | - Shelby E Follett
- Department of Chemistry , University of Wyoming , 1000 E. University Avenue , Laramie , Wyoming 82071 , United States
| | - K Wade Elliott
- Department of Molecular, Cellular, and Biomedical Sciences , University of New Hampshire , 46 College Road , Durham , New Hampshire 03824 , United States
| | - Krisztina Varga
- Department of Molecular, Cellular, and Biomedical Sciences , University of New Hampshire , 46 College Road , Durham , New Hampshire 03824 , United States
| | - Martin Golan
- Institute of Physics, v.v.i. , Czech Academy of Sciences , Na Slovance 2 , CZ-182 21 Prague 8 , Czech Republic
| | - Martin Falk
- Institute of Biophysics, v.v.i. , Czech Academy of Sciences , Královopolská 135 , CZ-612 65 Brno , Czech Republic
| |
Collapse
|
48
|
Stephens AD, Banigan EJ, Marko JF. Chromatin's physical properties shape the nucleus and its functions. Curr Opin Cell Biol 2019; 58:76-84. [PMID: 30889417 PMCID: PMC6692209 DOI: 10.1016/j.ceb.2019.02.006] [Citation(s) in RCA: 115] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Revised: 02/06/2019] [Accepted: 02/20/2019] [Indexed: 12/13/2022]
Abstract
The cell nucleus encloses, organizes, and protects the genome. Chromatin maintains nuclear mechanical stability and shape in coordination with lamins and the cytoskeleton. Abnormal nuclear shape is a diagnostic marker for human diseases, and it can cause nuclear dysfunction. Chromatin mechanics underlies this link, as alterations to chromatin and its physical properties can disrupt or rescue nuclear shape. The cell can regulate nuclear shape through mechanotransduction pathways that sense and respond to extracellular cues, thus modulating chromatin compaction and rigidity. These findings reveal how chromatin's physical properties can regulate cellular function and drive abnormal nuclear morphology and dysfunction in disease.
Collapse
Affiliation(s)
- Andrew D Stephens
- Department of Molecular Biosciences, Northwestern University, Evanston, IL 60208, United States.
| | - Edward J Banigan
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA 02139, United States
| | - John F Marko
- Department of Molecular Biosciences, Northwestern University, Evanston, IL 60208, United States; Department of Physics and Astronomy, Northwestern University, Evanston, IL 60208, United States.
| |
Collapse
|
49
|
Inoue Y, Hasegawa S, Miyachi K, Yamada T, Nakata S, Ipponjima S, Hibi T, Nemoto T, Tanaka M, Suzuki R, Hirashima N. Development of 3D imaging technique of reconstructed human epidermis with immortalized human epidermal cell line. Exp Dermatol 2019; 27:563-570. [PMID: 29700854 DOI: 10.1111/exd.13672] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/16/2018] [Indexed: 11/29/2022]
Abstract
The epidermis, the outermost layer of the skin, retains moisture and functions as a physical barrier against the external environment. Epidermal cells are continuously replaced by turnover, and thus to understand in detail the dynamic cellular events in the epidermis, techniques to observe live tissues in 3D are required. Here, we established a live 3D imaging technique for epidermis models. We first obtained immortalized human epidermal cell lines which have a normal differentiation capacity and fluorescence-labelled cytoplasm or nuclei. The reconstituted 3D epidermis was prepared with these lines. Using this culture system, we were able to observe the structure of the reconstituted epidermis live in 3D, which was similar to an in vivo epidermis, and evaluate the effect of a skin irritant. This technique may be useful for dermatological science and drug development.
Collapse
Affiliation(s)
- Yu Inoue
- Department of Cellular Biophysics, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya, Aichi, Japan.,Research Laboratories, Nippon Menard Cosmetic Co., Ltd., Nagoya, Aichi, Japan.,Nagoya University-MENARD Collaborative Research Chairs, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan
| | - Seiji Hasegawa
- Research Laboratories, Nippon Menard Cosmetic Co., Ltd., Nagoya, Aichi, Japan.,Nagoya University-MENARD Collaborative Research Chairs, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan
| | - Katsuma Miyachi
- Research Laboratories, Nippon Menard Cosmetic Co., Ltd., Nagoya, Aichi, Japan
| | - Takaaki Yamada
- Research Laboratories, Nippon Menard Cosmetic Co., Ltd., Nagoya, Aichi, Japan
| | - Satoru Nakata
- Research Laboratories, Nippon Menard Cosmetic Co., Ltd., Nagoya, Aichi, Japan
| | - Sari Ipponjima
- Research Institute for Electronic Science, Hokkaido University, Sapporo, Hokkaido, Japan.,Graduate School of Information Science and Technology, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Terumasa Hibi
- Research Institute for Electronic Science, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Tomomi Nemoto
- Research Institute for Electronic Science, Hokkaido University, Sapporo, Hokkaido, Japan.,Graduate School of Information Science and Technology, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Masahiko Tanaka
- Department of Cellular Biophysics, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya, Aichi, Japan
| | - Ryo Suzuki
- Department of Cellular Biophysics, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya, Aichi, Japan
| | - Naohide Hirashima
- Department of Cellular Biophysics, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya, Aichi, Japan.,Institute of Drug Discovery Science, Nagoya City University, Nagoya, Aichi, Japan
| |
Collapse
|
50
|
Balakrishnan S, Mathad SS, Sharma G, Raju SR, Reddy UB, Das S, Ananthasuresh GK. A Nondimensional Model Reveals Alterations in Nuclear Mechanics upon Hepatitis C Virus Replication. Biophys J 2019; 116:1328-1339. [PMID: 30879645 DOI: 10.1016/j.bpj.2019.02.013] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Revised: 01/31/2019] [Accepted: 02/07/2019] [Indexed: 02/05/2023] Open
Abstract
Morphology of the nucleus is an important regulator of gene expression. Nuclear morphology is in turn a function of the forces acting on it and the mechanical properties of the nuclear envelope. Here, we present a two-parameter, nondimensional mechanical model of the nucleus that reveals a relationship among nuclear shape parameters, such as projected area, surface area, and volume. Our model fits the morphology of individual nuclei and predicts the ratio between forces and modulus in each nucleus. We analyzed the changes in nuclear morphology of liver cells due to hepatitis C virus (HCV) infection using this model. The model predicted a decrease in the elastic modulus of the nuclear envelope and an increase in the pre-tension in cortical actin as the causes for the change in nuclear morphology. These predictions were validated biomechanically by showing that liver cells expressing HCV proteins possessed enhanced cellular stiffness and reduced nuclear stiffness. Concomitantly, cells expressing HCV proteins showed downregulation of lamin-A,C and upregulation of β-actin, corroborating the predictions of the model. Our modeling assumptions are broadly applicable to adherent, monolayer cell cultures, making the model amenable to investigate changes in nuclear mechanics due to other stimuli by merely measuring nuclear morphology. Toward this, we present two techniques, graphical and numerical, to use our model for predicting physical changes in the nucleus.
Collapse
Affiliation(s)
- Sreenath Balakrishnan
- BioSystems Science and Engineering, Indian Institute of Science, Bengaluru, Karnataka, India
| | - Suma S Mathad
- Mechanical Engineering, Indian Institute of Science, Bengaluru, Karnataka, India
| | - Geetika Sharma
- Microbiology and Cell Biology, Indian Institute of Science, Bengaluru, Karnataka, India
| | - Shilpa R Raju
- Mechanical Engineering, Indian Institute of Science, Bengaluru, Karnataka, India
| | - Uma B Reddy
- Microbiology and Cell Biology, Indian Institute of Science, Bengaluru, Karnataka, India
| | - Saumitra Das
- BioSystems Science and Engineering, Indian Institute of Science, Bengaluru, Karnataka, India; Microbiology and Cell Biology, Indian Institute of Science, Bengaluru, Karnataka, India.
| | - G K Ananthasuresh
- BioSystems Science and Engineering, Indian Institute of Science, Bengaluru, Karnataka, India; Mechanical Engineering, Indian Institute of Science, Bengaluru, Karnataka, India.
| |
Collapse
|