1
|
Zeng Y, Liu X, Wang Z, Gao W, Zhang S, Wang Y, Liu Y, Yu H. Multidepth quantitative analysis of liver cell viscoelastic properties: Fusion of nanoindentation and finite element modeling techniques. Microsc Res Tech 2025; 88:202-212. [PMID: 39254440 DOI: 10.1002/jemt.24697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 06/11/2024] [Accepted: 08/27/2024] [Indexed: 09/11/2024]
Abstract
Liver cells are the basic functional unit of the liver. However, repeated or sustained injury leads to structural disorders of liver lobules, proliferation of fibrous tissue and changes in structure, thus increasing scar tissue. Cellular fibrosis affects tissue stiffness, shear force, and other cellular mechanical forces. Mechanical force characteristics can serve as important indicators of cell damage and cirrhosis. Atomic force microscopy (AFM) has been widely used to study cell surface mechanics. However, characterization of the deep mechanical properties inside liver cells remains an underdeveloped field. In this work, cell nanoindentation was combined with finite element analysis to simulate and analyze the mechanical responses of liver cells at different depths in vitro and their internal responses and stress diffusion distributions after being subjected to normal stress. The sensitivities of the visco-hyperelastic parameters of the finite element model to the effects of the peak force and equilibrium force were compared. The force curves of alcohol-damaged liver cells at different depths were measured and compared with those of undamaged liver cells. The inverse analysis method was used to simulate the finite element model in vitro. Changes in the parameters of the cell model after injury were explored and analyzed, and their potential for characterizing hepatocellular injury and related treatments was evaluated. RESEARCH HIGHLIGHTS: This study aims to establish an in vitro hyperelastic model of liver cells and analyze the mechanical changes of cells in vitro. An analysis method combining finite element analysis model and nanoindentation was used to obtain the key parameters of the model. The multi-depth mechanical differences and internal structural changes of injured liver cells were analyzed.
Collapse
Affiliation(s)
- Yi Zeng
- International Research Centre for Nano Handling and Manufacturing of China, Changchun University of Science and Technology, Changchun, China
- Ministry of Education Key Laboratory for Cross-Scale Micro and Nano Manufacturing, Changchun University of Science and Technology, Changchun, China
- School of Electronic Information Engineering, Changchun University, Changchun, China
| | - Xianping Liu
- School of Engineering, University of Warwick, Coventry, UK
| | - Zuobin Wang
- International Research Centre for Nano Handling and Manufacturing of China, Changchun University of Science and Technology, Changchun, China
- Ministry of Education Key Laboratory for Cross-Scale Micro and Nano Manufacturing, Changchun University of Science and Technology, Changchun, China
- JR3CN & IRAC, University of Bedfordshire, Luton, UK
| | - Wei Gao
- School of Electronic Information Engineering, Changchun University, Changchun, China
- School of Electronic Information Engineering, Changchun University of Science and Technology, Changchun, China
| | - Shengli Zhang
- International Research Centre for Nano Handling and Manufacturing of China, Changchun University of Science and Technology, Changchun, China
- Ministry of Education Key Laboratory for Cross-Scale Micro and Nano Manufacturing, Changchun University of Science and Technology, Changchun, China
| | - Ying Wang
- International Research Centre for Nano Handling and Manufacturing of China, Changchun University of Science and Technology, Changchun, China
- Ministry of Education Key Laboratory for Cross-Scale Micro and Nano Manufacturing, Changchun University of Science and Technology, Changchun, China
| | - Yunqing Liu
- School of Electronic Information Engineering, Changchun University of Science and Technology, Changchun, China
| | - Haiyue Yu
- International Research Centre for Nano Handling and Manufacturing of China, Changchun University of Science and Technology, Changchun, China
- Ministry of Education Key Laboratory for Cross-Scale Micro and Nano Manufacturing, Changchun University of Science and Technology, Changchun, China
| |
Collapse
|
2
|
Siadat SM, Li H, Millette BA, Safa BN, Wong CA, Bahrani Fard MR, Braakman ST, Tay I, Bertrand JA, Read AT, Schildmeyer LA, Perkumas KM, Stamer WD, Overby DR, Ethier CR. Endothelial cell stiffness and type drive the formation of biomechanically-induced transcellular pores. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.23.619950. [PMID: 39554025 PMCID: PMC11565842 DOI: 10.1101/2024.10.23.619950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/19/2024]
Abstract
Formation of transcellular pores facilitates the transport of materials across endothelial barriers. In Schlemm's canal (SC) endothelium, impaired pore formation is associated with glaucoma. However, our understanding of the cellular processes responsible for pore formation is limited by lack of in vitro assays. Here, we present a novel platform for studying transcellular pore formation in human endothelial cells. We induced pores in SC cells by seeding them atop micron-sized magnetic beads followed by application of a magnetic field to subject cells to a basal to apical force, mimicking in vivo biomechanical forces. The pore formation process was dynamic, with pores opening and closing. Glaucomatous cells exhibited impaired pore formation that correlated with their increased stiffness. We further discovered that application of forces from the apical to basal direction did not induce pores in SC cells but resulted in formation of pores in other types of endothelial cells. Our studies reveal the central role of cell mechanics in formation of transcellular pores in endothelial cells, and provide a new approach for investigating their associated underlying mechanism/s.
Collapse
Affiliation(s)
- Seyed Mohammad Siadat
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology/Emory University, Atlanta, GA, USA
- Department of Bioengineering, Northeastern University, Boston, MA, USA
| | - Haiyan Li
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology/Emory University, Atlanta, GA, USA
| | - Brigid A. Millette
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology/Emory University, Atlanta, GA, USA
| | - Babak N. Safa
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology/Emory University, Atlanta, GA, USA
- Department of Medical Engineering, University of South Florida, Tampa, FL, USA
| | - Cydney A. Wong
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology/Emory University, Atlanta, GA, USA
| | - M. Reza Bahrani Fard
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology/Emory University, Atlanta, GA, USA
| | - Sietse T Braakman
- Department of Bioengineering, Imperial College London, London, London, United Kingdom
| | - Ian Tay
- Department of Bioengineering, Imperial College London, London, London, United Kingdom
| | - Jacques A. Bertrand
- Department of Bioengineering, Imperial College London, London, London, United Kingdom
| | - A. Thomas Read
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology/Emory University, Atlanta, GA, USA
| | - Lisa A. Schildmeyer
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology/Emory University, Atlanta, GA, USA
| | - Kristin M. Perkumas
- Department of Ophthalmology, Duke Eye Center, Duke University, Durham, NC, USA
| | - W. Daniel Stamer
- Department of Ophthalmology, Duke Eye Center, Duke University, Durham, NC, USA
| | - Darryl R. Overby
- Department of Bioengineering, Imperial College London, London, London, United Kingdom
| | - C. Ross Ethier
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology/Emory University, Atlanta, GA, USA
| |
Collapse
|
3
|
Kardashina T, Serrano EE, Dawson JA, Drach B. Mechanical characterization of Xenopus laevis oocytes using atomic force microscopy. J Mech Behav Biomed Mater 2024; 157:106648. [PMID: 38996625 DOI: 10.1016/j.jmbbm.2024.106648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 06/25/2024] [Accepted: 06/30/2024] [Indexed: 07/14/2024]
Abstract
Mechanical properties are essential for the biological activities of cells, and they have been shown to be affected by diseases. Therefore, accurate mechanical characterization is important for studying the cell lifecycle, cell-cell interactions, and disease diagnosis. While the cytoskeleton and actin cortex are typically the primary structural stiffness contributors in most live cells, oocytes possess an additional extracellular layer known as the vitelline membrane (VM), or envelope, which can significantly impact their overall mechanical properties. In this study, we utilized nanoindentation via an atomic force microscope to measure the Young's modulus of Xenopus laevis oocytes at different force setpoints and explored the influence of the VM by conducting measurements on oocytes with the membrane removed. The findings revealed that the removal of VM led to a significant decrease in the apparent Young's modulus of the oocytes, highlighting the pivotal role of the VM as the main structural component responsible for the oocyte's shape and stiffness. Furthermore, the mechanical behavior of VM was investigated through finite element (FE) simulations of the nanoindentation process. FE simulations with the VM Young's modulus in the range 20-60 MPa resulted in force-displacement curves that closely resemble experimental in terms of shape and maximum force for a given indentation depth.
Collapse
Affiliation(s)
- Tatiana Kardashina
- Department of Mechanical and Aerospace Engineering, New Mexico State University, Las Cruces NM, USA
| | - Elba E Serrano
- Department of Biology, New Mexico State University, Las Cruces NM, USA
| | - John A Dawson
- Department of Economics, Applied Statistics, and International Business, New Mexico State University, Las Cruces NM, USA
| | - Borys Drach
- Department of Mechanical and Aerospace Engineering, New Mexico State University, Las Cruces NM, USA.
| |
Collapse
|
4
|
Li H, Harvey DH, Dai J, Swingle SP, Compton AM, Sugali CK, Dhamodaran K, Yao J, Lin TY, Sulchek T, Kim T, Ethier CR, Mao W. Characterization, enrichment, and computational modeling of cross-linked actin networks in trabecular meshwork cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.21.608970. [PMID: 39229235 PMCID: PMC11370370 DOI: 10.1101/2024.08.21.608970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 09/05/2024]
Abstract
Purpose Cross-linked actin networks (CLANs) are prevalent in the glaucomatous trabecular meshwork (TM), yet their role in ocular hypertension remains unclear. We used a human TM cell line that spontaneously forms fluorescently-labeled CLANs (GTM3L) to explore the origin of CLANs, developed techniques to increase CLAN incidence in GMT3L cells, and computationally studied the biomechanical properties of CLAN-containing cells. Methods GTM3L cells were fluorescently sorted for viral copy number analysis. CLAN incidence was increased by (i) differential sorting of cells by adhesion, (ii) cell deswelling, and (iii) cell selection based on cell stiffness. GTM3L cells were also cultured on glass or soft hydrogel to determine substrate stiffness effects on CLAN incidence. Computational models were constructed to mimic and study the biomechanical properties of CLANs. Results All GTM3L cells had an average of 1 viral copy per cell. LifeAct-GFP expression level did not affect CLAN incidence rate, but CLAN rate was increased from ~0.28% to ~50% by a combination of adhesion selection, cell deswelling, and cell stiffness-based sorting. Further, GTM3L cells formed more CLANs on a stiff vs. a soft substrate. Computational modeling predicted that CLANs contribute to higher cell stiffness, including increased resistance of the nucleus to tensile stress when CLANs are physically linked to the nucleus. Conclusions It is possible to greatly enhance CLAN incidence in GTM3L cells. CLANs are mechanosensitive structures that affect cell biomechanical properties. Further research is needed to determine the effect of CLANs on TM biomechanics and mechanobiology as well as the etiology of CLAN formation in the TM.
Collapse
Affiliation(s)
- Haiyan Li
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology/Emory University, Atlanta, GA
| | - Devon H Harvey
- Eugene and Marilyn Glick Eye Institute, Indiana University, Indianapolis, Indiana
- Department of Ophthalmology, Indiana University, Indianapolis, Indiana
| | - Jiannong Dai
- Eugene and Marilyn Glick Eye Institute, Indiana University, Indianapolis, Indiana
- Department of Ophthalmology, Indiana University, Indianapolis, Indiana
| | - Steven P Swingle
- Department of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA
| | - Anthony M Compton
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology/Emory University, Atlanta, GA
| | - Chenna Kesavulu Sugali
- Eugene and Marilyn Glick Eye Institute, Indiana University, Indianapolis, Indiana
- Department of Ophthalmology, Indiana University, Indianapolis, Indiana
| | - Kamesh Dhamodaran
- Eugene and Marilyn Glick Eye Institute, Indiana University, Indianapolis, Indiana
- Department of Ophthalmology, Indiana University, Indianapolis, Indiana
| | - Jing Yao
- Department of Medical and Molecular Genetics, Indiana University, Indianapolis, Indiana
| | - Tsai-Yu Lin
- Department of Medical and Molecular Genetics, Indiana University, Indianapolis, Indiana
| | - Todd Sulchek
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology/Emory University, Atlanta, GA
- Department of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA
| | - Taeyoon Kim
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, Indiana
| | - C Ross Ethier
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology/Emory University, Atlanta, GA
- Department of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA
| | - Weiming Mao
- Eugene and Marilyn Glick Eye Institute, Indiana University, Indianapolis, Indiana
- Department of Ophthalmology, Indiana University, Indianapolis, Indiana
- Department of Biochemistry & Molecular Biology, Indiana University, Indianapolis, Indiana
- Department of Pharmacology and Toxicology, Indiana University, Indianapolis, Indiana
- Stark Neurosciences Research Institute, Indiana University, Indianapolis, Indiana
| |
Collapse
|
5
|
Rajput SS, Singh SB, Subramanyam D, Patil S. Soft glassy rheology of single cells with pathogenic protein aggregates. SOFT MATTER 2024; 20:6266-6274. [PMID: 39054893 DOI: 10.1039/d4sm00595c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/27/2024]
Abstract
A correlation between the mechanical properties of cells and various diseases has been emerging in recent years. Atomic force microscopy (AFM) has been widely used to measure a single cell's apparent Young's modulus by treating it as a fully elastic object. More recently, quantitative characterization of the complete viscoelasticity of single cells has become possible. We performed AFM-based nano-indentation experiments on hemocytes isolated from third instar larvae to determine their viscoelasticity and found that live hemocytes, like many other cells, follow a scale-free power-law rheology (PLR) akin to soft glasses. Further, we examined the changes in the rheological response of hemocytes in the presence of pathogenic protein aggregates known to cause neurodegenerative diseases such as Huntington's disorder and amyotrophic lateral sclerosis. Our results show that cells lose their fluidity and appear more solid-like in the presence of certain aggregates, in a manner correlated to actin reorganization. More solid-like cells also display reduced intracellular transport through clathrin-mediated endocytosis (CME). However, the cell's rheology remains largely unaffected and is similar to that of wild-type (WT) hemocytes, if aggregates do not perturb the actin organization and CME. Moreover, the fluid-like nature was significantly recovered when actin organization was rescued by overexpressing specific actin interacting proteins or chaperones. Our study, for the first time, underscores a direct correlation between parameters governing glassy dynamics, actin organization and CME.
Collapse
Affiliation(s)
- Shatruhan Singh Rajput
- Department of Physics, Indian Institute of Science Education and Research, Pune 411008, India
- Department of Biochemistry, University of Cambridge, 80 Tennis Court Road, Cambridge, CB2 1GA, UK
| | - Surya Bansi Singh
- National Centre for Cell Science, SP Pune University Campus, Pune 411007, India.
- SP Pune University, Pune 411007, India
| | - Deepa Subramanyam
- National Centre for Cell Science, SP Pune University Campus, Pune 411007, India.
| | - Shivprasad Patil
- Department of Physics, Indian Institute of Science Education and Research, Pune 411008, India.
| |
Collapse
|
6
|
Markova O, Clanet C, Husson J. Quantifying both viscoelasticity and surface tension: Why sharp tips overestimate cell stiffness. Biophys J 2024; 123:210-220. [PMID: 38087780 PMCID: PMC10808041 DOI: 10.1016/j.bpj.2023.12.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Revised: 09/10/2023] [Accepted: 12/07/2023] [Indexed: 12/23/2023] Open
Abstract
Quantifying the mechanical properties of cells is important to better understand how mechanics constrain cellular processes. Furthermore, because pathologies are usually paralleled by altered cell mechanical properties, mechanical parameters can be used as a novel way to characterize the pathological state of cells. Key features used in models are cell tension, cell viscoelasticity (representing the average of the cell bulk), or a combination of both. It is unclear which of these features is the most relevant or whether both should be included. To clarify this, we performed microindentation experiments on cells with microindenters of various tip radii, including micrometer-sized microneedles. We obtained different cell-indenter contact radii and measured the corresponding contact stiffness. We derived a model predicting that this contact stiffness should be an affine function of the contact radius and that, at vanishing contact radius, the cell stiffness should be equal to the cell tension multiplied by a constant. When microindenting leukocytes and both adherent and trypsinized adherent cells, the contact stiffness was indeed an affine function of the contact radius. For leukocytes, the deduced surface tension was consistent with that measured using micropipette aspiration. For detached endothelial cells, agreement between microindentation and micropipette aspiration was better when considering these as only viscoelastic when analyzing micropipette aspiration experiments. This work suggests that indenting cells with sharp tips but neglecting the presence of surface tension leads to an effective elastic modulus whose origin is in fact surface tension. Accordingly, using sharp tips when microindenting a cell is a good way to directly measure its surface tension without the need to let the viscoelastic modulus relax.
Collapse
Affiliation(s)
- Olga Markova
- Laboratoire d'Hydrodynamique (LadHyX), CNRS, École Polytechnique, Institut Polytechnique de Paris, Palaiseau, France
| | - Christophe Clanet
- Laboratoire d'Hydrodynamique (LadHyX), CNRS, École Polytechnique, Institut Polytechnique de Paris, Palaiseau, France
| | - Julien Husson
- Laboratoire d'Hydrodynamique (LadHyX), CNRS, École Polytechnique, Institut Polytechnique de Paris, Palaiseau, France.
| |
Collapse
|
7
|
Yuan W, Ding Y, Wang G. Universal contact stiffness of elastic solids covered with tensed membranes and its application in indentation tests of biological materials. Acta Biomater 2023; 171:202-208. [PMID: 37690593 DOI: 10.1016/j.actbio.2023.09.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 09/04/2023] [Accepted: 09/05/2023] [Indexed: 09/12/2023]
Abstract
The inherent membrane tension of biological materials could vitally affect their responses to contact loading but is generally ignored in existing indentation analysis. In this paper, the authors theoretically investigate the contact stiffness of axisymmetric indentations of elastic solids covered with thin tensed membranes. When the indentation size decreases to the same order as the ratio of membrane tension to elastic modulus, the contact stiffness accounting for the effect of membrane tension becomes much higher than the prediction of conventional contact theory. An explicit expression is derived for the contact stiffness, which is universal for axisymmetric indentations using indenters of arbitrary convex profiles. On this basis, a simple method of analysis is proposed to estimate the membrane tension and elastic modulus of biological materials from the indentation load-depth data, which is successfully applied to analyze the indentation experiments of cells and lungs. This study might be helpful for the comprehensive assessment of the mechanical properties of soft biological systems. STATEMENT OF SIGNIFICANCE: This paper highlights the crucial effect of the inherent membrane tension on the indentation response of soft biomaterials, which has been generally ignored in existing analysis of experiments. For typical indentation tests on cells and organs, the contact stiffness can be twice or higher than the prediction of conventional contact model. A universal expression of the contact stiffness accounting for the membrane tension effect is derived. On this basis, a simple method of analysis is proposed to abstract the membrane tension of biomaterials from the experimentally recorded indentation load-depth data. With this method, the elasticity of soft biomaterials can be characterized more comprehensively.
Collapse
Affiliation(s)
- Weike Yuan
- Department of Engineering Mechanics, SVL, MMML, Xi'an Jiaotong University, 710049 Xi'an, China
| | - Yue Ding
- Department of Engineering Mechanics, SVL, MMML, Xi'an Jiaotong University, 710049 Xi'an, China
| | - Gangfeng Wang
- Department of Engineering Mechanics, SVL, MMML, Xi'an Jiaotong University, 710049 Xi'an, China.
| |
Collapse
|
8
|
Savin N, Erofeev A, Gorelkin P. Analytical Models for Measuring the Mechanical Properties of Yeast. Cells 2023; 12:1946. [PMID: 37566025 PMCID: PMC10417110 DOI: 10.3390/cells12151946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 07/21/2023] [Accepted: 07/26/2023] [Indexed: 08/12/2023] Open
Abstract
The mechanical properties of yeast play an important role in many biological processes, such as cell division and growth, maintenance of internal pressure, and biofilm formation. In addition, the mechanical properties of cells can indicate the degree of damage caused by antifungal drugs, as the mechanical parameters of healthy and damaged cells are different. Over the past decades, atomic force microscopy (AFM) and micromanipulation have become the most widely used methods for evaluating the mechanical characteristics of microorganisms. In this case, the reliability of such an estimate depends on the choice of mathematical model. This review presents various analytical models developed in recent years for studying the mechanical properties of both cells and their individual structures. The main provisions of the applied approaches are described along with their limitations and advantages. Attention is paid to the innovative method of low-invasive nanomechanical mapping with scanning ion-conductance microscopy (SICM), which is currently starting to be successfully used in the discovery of novel drugs acting on the yeast cell wall and plasma membrane.
Collapse
Affiliation(s)
- Nikita Savin
- Research Laboratory of Biophysics, National University of Science and Technology MISiS, Moscow 119049, Russia;
| | - Alexander Erofeev
- Research Laboratory of Biophysics, National University of Science and Technology MISiS, Moscow 119049, Russia;
| | | |
Collapse
|
9
|
Pettenuzzo S, Arduino A, Belluzzi E, Pozzuoli A, Fontanella CG, Ruggieri P, Salomoni V, Majorana C, Berardo A. Biomechanics of Chondrocytes and Chondrons in Healthy Conditions and Osteoarthritis: A Review of the Mechanical Characterisations at the Microscale. Biomedicines 2023; 11:1942. [PMID: 37509581 PMCID: PMC10377681 DOI: 10.3390/biomedicines11071942] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 07/05/2023] [Accepted: 07/06/2023] [Indexed: 07/30/2023] Open
Abstract
Biomechanical studies are expanding across a variety of fields, from biomedicine to biomedical engineering. From the molecular to the system level, mechanical stimuli are crucial regulators of the development of organs and tissues, their growth and related processes such as remodelling, regeneration or disease. When dealing with cell mechanics, various experimental techniques have been developed to analyse the passive response of cells; however, cell variability and the extraction process, complex experimental procedures and different models and assumptions may affect the resulting mechanical properties. For these purposes, this review was aimed at collecting the available literature focused on experimental chondrocyte and chondron biomechanics with direct connection to their biochemical functions and activities, in order to point out important information regarding the planning of an experimental test or a comparison with the available results. In particular, this review highlighted (i) the most common experimental techniques used, (ii) the results and models adopted by different authors, (iii) a critical perspective on features that could affect the results and finally (iv) the quantification of structural and mechanical changes due to a degenerative pathology such as osteoarthritis.
Collapse
Affiliation(s)
- Sofia Pettenuzzo
- Department of Civil, Environmental and Architectural Engineering, University of Padova, 35131 Padova, Italy
| | - Alessandro Arduino
- Department of Civil, Environmental and Architectural Engineering, University of Padova, 35131 Padova, Italy
| | - Elisa Belluzzi
- Musculoskeletal Pathology and Oncology Laboratory, Department of Surgery, Oncology and Gastroenterology, University of Padova (DiSCOG), Via Giustiniani 3, 35128 Padova, Italy
- Orthopedics and Orthopedic Oncology, Department of Surgery, Oncology and Gastroenterology, University of Padova (DiSCOG), 35128 Padova, Italy
| | - Assunta Pozzuoli
- Musculoskeletal Pathology and Oncology Laboratory, Department of Surgery, Oncology and Gastroenterology, University of Padova (DiSCOG), Via Giustiniani 3, 35128 Padova, Italy
- Orthopedics and Orthopedic Oncology, Department of Surgery, Oncology and Gastroenterology, University of Padova (DiSCOG), 35128 Padova, Italy
| | | | - Pietro Ruggieri
- Orthopedics and Orthopedic Oncology, Department of Surgery, Oncology and Gastroenterology, University of Padova (DiSCOG), 35128 Padova, Italy
| | - Valentina Salomoni
- Department of Civil, Environmental and Architectural Engineering, University of Padova, 35131 Padova, Italy
- Department of Management and Engineering (DTG), Stradella S. Nicola 3, 36100 Vicenza, Italy
| | - Carmelo Majorana
- Department of Civil, Environmental and Architectural Engineering, University of Padova, 35131 Padova, Italy
| | - Alice Berardo
- Department of Civil, Environmental and Architectural Engineering, University of Padova, 35131 Padova, Italy
- Department of Biomedical Sciences, University of Padova, 35131 Padova, Italy
| |
Collapse
|
10
|
Shayan M, Huang MS, Navarro R, Chiang G, Hu C, Oropeza BP, Johansson PK, Suhar RA, Foster AA, LeSavage BL, Zamani M, Enejder A, Roth JG, Heilshorn SC, Huang NF. Elastin-like protein hydrogels with controllable stress relaxation rate and stiffness modulate endothelial cell function. J Biomed Mater Res A 2023; 111:896-909. [PMID: 36861665 PMCID: PMC10159914 DOI: 10.1002/jbm.a.37520] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Revised: 01/26/2023] [Accepted: 02/15/2023] [Indexed: 03/03/2023]
Abstract
Mechanical cues from the extracellular matrix (ECM) regulate vascular endothelial cell (EC) morphology and function. Since naturally derived ECMs are viscoelastic, cells respond to viscoelastic matrices that exhibit stress relaxation, in which a cell-applied force results in matrix remodeling. To decouple the effects of stress relaxation rate from substrate stiffness on EC behavior, we engineered elastin-like protein (ELP) hydrogels in which dynamic covalent chemistry (DCC) was used to crosslink hydrazine-modified ELP (ELP-HYD) and aldehyde/benzaldehyde-modified polyethylene glycol (PEG-ALD/PEG-BZA). The reversible DCC crosslinks in ELP-PEG hydrogels create a matrix with independently tunable stiffness and stress relaxation rate. By formulating fast-relaxing or slow-relaxing hydrogels with a range of stiffness (500-3300 Pa), we examined the effect of these mechanical properties on EC spreading, proliferation, vascular sprouting, and vascularization. The results show that both stress relaxation rate and stiffness modulate endothelial spreading on two-dimensional substrates, on which ECs exhibited greater cell spreading on fast-relaxing hydrogels up through 3 days, compared with slow-relaxing hydrogels at the same stiffness. In three-dimensional hydrogels encapsulating ECs and fibroblasts in coculture, the fast-relaxing, low-stiffness hydrogels produced the widest vascular sprouts, a measure of vessel maturity. This finding was validated in a murine subcutaneous implantation model, in which the fast-relaxing, low-stiffness hydrogel produced significantly more vascularization compared with the slow-relaxing, low-stiffness hydrogel. Together, these results suggest that both stress relaxation rate and stiffness modulate endothelial behavior, and that the fast-relaxing, low-stiffness hydrogels supported the highest capillary density in vivo.
Collapse
Affiliation(s)
- Mahdis Shayan
- Department of Cardiothoracic Surgery, Stanford University, Palo Alto, CA, USA
- The Stanford Cardiovascular Institute, Stanford University, Palo Alto, CA, USA
| | - Michelle S. Huang
- Department of Chemical Engineering, Stanford University, Palo Alto, CA, USA
| | - Renato Navarro
- Department of Materials Science & Engineering, Stanford University, Palo Alto, CA, USA
| | - Gladys Chiang
- Veterans Affairs Palo Alto Health Care System, Palo Alto, CA, USA
| | - Caroline Hu
- Veterans Affairs Palo Alto Health Care System, Palo Alto, CA, USA
| | - Beu P. Oropeza
- Department of Cardiothoracic Surgery, Stanford University, Palo Alto, CA, USA
- The Stanford Cardiovascular Institute, Stanford University, Palo Alto, CA, USA
- Veterans Affairs Palo Alto Health Care System, Palo Alto, CA, USA
| | - Patrik K. Johansson
- Geballe Laboratory for Advanced Materials, Stanford University, Palo Alto, CA, USA
| | - Riley A. Suhar
- Department of Materials Science & Engineering, Stanford University, Palo Alto, CA, USA
| | - Abbygail A. Foster
- Department of Materials Science & Engineering, Stanford University, Palo Alto, CA, USA
| | - Bauer L. LeSavage
- Department of Bioengineering, Stanford University, Palo Alto, CA, USA
| | - Maedeh Zamani
- Department of Cardiothoracic Surgery, Stanford University, Palo Alto, CA, USA
- The Stanford Cardiovascular Institute, Stanford University, Palo Alto, CA, USA
| | - Annika Enejder
- Geballe Laboratory for Advanced Materials, Stanford University, Palo Alto, CA, USA
| | - Julien G. Roth
- Institute for Stem Cell Biology & Regenerative Medicine, Stanford University School of Medicine, Palo Alto, CA, USA
| | - Sarah C. Heilshorn
- The Stanford Cardiovascular Institute, Stanford University, Palo Alto, CA, USA
- Department of Chemical Engineering, Stanford University, Palo Alto, CA, USA
- Department of Materials Science & Engineering, Stanford University, Palo Alto, CA, USA
- Geballe Laboratory for Advanced Materials, Stanford University, Palo Alto, CA, USA
| | - Ngan F. Huang
- Department of Cardiothoracic Surgery, Stanford University, Palo Alto, CA, USA
- The Stanford Cardiovascular Institute, Stanford University, Palo Alto, CA, USA
- Department of Chemical Engineering, Stanford University, Palo Alto, CA, USA
- Veterans Affairs Palo Alto Health Care System, Palo Alto, CA, USA
| |
Collapse
|
11
|
Merson J, Parvez N, Picu RC. Probing soft fibrous materials by indentation. Acta Biomater 2023; 163:25-34. [PMID: 35381401 PMCID: PMC9526757 DOI: 10.1016/j.actbio.2022.03.053] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 03/22/2022] [Accepted: 03/29/2022] [Indexed: 11/27/2022]
Abstract
Indentation is often used to measure the stiffness of soft materials whose main structural component is a network of filaments, such as the cellular cytoskeleton, connective tissue, gels, and the extracellular matrix. For elastic materials, the typical procedure requires fitting the experimental force-displacement curve with the Hertz model, which predicts that f=kδ1.5 and k is proportional to the reduced modulus of the indented material, E/(1-ν2). Here we show using explicit models of fiber networks that the Hertz model applies to indentation in network materials provided the indenter radius is larger than approximately 12lc, where lc is the mean segment length of the network. Using smaller indenters leads to a relation between force and indentation displacement of the form f=kδq, where q is observed to increase with decreasing indenter radius. Using the Hertz model to interpret results of indentations in network materials using small indenters leads to an inferred modulus smaller than the real modulus of the material. The origin of this departure from the classical Hertz model is investigated. A compacted, stiff network region develops under the indenter, effectively increasing the indenter size and modifying its shape. This modification is marginal when large indenters are used. However, when the indenter radius is small, the effect of the compacted layer is pronounced as it changes the indenter profile from spherical towards conical. This entails an increase of exponent q above the value of 1.5 corresponding to spherical indenters. STATEMENT OF SIGNIFICANCE: The article presents a study of indentation in network biomaterials and demonstrates a size effect which precludes the use of the Hertz model to infer the elastic constants of the material. The size effect occurs once the indenter radius is smaller than approximately 12 times the mean segment length of the network. This result provides guidelines for the selection of indentation conditions that guarantee the applicability of the Hertz model. At the same time, the finding may be used to infer the mean segment length of the network based on indentations with indenters of various sizes. Hence, the method can be used to evaluate this structural parameter which is not easily accessible in experiments.
Collapse
Affiliation(s)
- J Merson
- Department of Mechanical, Aerospace and Nuclear Engineering, Rensselaer Polytechnic Institute, Troy, NY 12180, United States
| | - N Parvez
- Department of Mechanical, Aerospace and Nuclear Engineering, Rensselaer Polytechnic Institute, Troy, NY 12180, United States
| | - R C Picu
- Department of Mechanical, Aerospace and Nuclear Engineering, Rensselaer Polytechnic Institute, Troy, NY 12180, United States.
| |
Collapse
|
12
|
Krzemien L, Giergiel M, Kurek A, Barbasz J. The role of the cortex in indentation experiments of animal cells. Biomech Model Mechanobiol 2023; 22:177-187. [PMID: 36282360 PMCID: PMC9958175 DOI: 10.1007/s10237-022-01639-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Accepted: 09/07/2022] [Indexed: 11/28/2022]
Abstract
We present a model useful for interpretation of indentation experiments on animal cells. We use finite element modeling for a thorough representation of the complex structure of an animal cell. In our model, the crucial constituent is the cell cortex-a rigid layer of cytoplasmic proteins present on the inner side of the cell membrane. It plays a vital role in the mechanical interactions between cells. The cell cortex is modeled by a three-dimensional solid to reflect its bending stiffness. This approach allows us to interpret the results of the indentation measurements and extract the mechanical properties of the individual elements of the cell structure. During the simulations, we scan a broad range of parameters such as cortex thickness and Young's modulus, cytoplasm Young's modulus, and indenter radius, which define cell properties and experimental conditions. Finally, we propose a simple closed-form formula that approximates the simulated results with satisfactory accuracy. Our formula is as easy to use as Hertz's function to extract cell properties from the measurement, yet it considers the cell's inner structure, including cell cortex, cytoplasm, and nucleus.
Collapse
Affiliation(s)
- Leszek Krzemien
- Jerzy Haber Institute of Catalysis and Surface Chemistry, Polish Academy of Sciences, Niezapominajek 8, 30239 Krakow, Poland
| | - Magdalena Giergiel
- Department of Physics of Nanostructures and Nanotechnology, Institute of Physics, Jagiellonian University, Prof. Stanislawa Lojasiewicza 11, 30348, Krakow, Poland.
| | - Agnieszka Kurek
- Jerzy Haber Institute of Catalysis and Surface Chemistry, Polish Academy of Sciences, Niezapominajek 8, 30239 Krakow, Poland
| | - Jakub Barbasz
- Jerzy Haber Institute of Catalysis and Surface Chemistry, Polish Academy of Sciences, Niezapominajek 8, 30239 Krakow, Poland
| |
Collapse
|
13
|
Kołodziejczyk AM, Grala MM, Zimon A, Białkowska K, Walkowiak B, Komorowski P. Investigation of HUVEC response to exposure to PAMAM dendrimers – changes in cell elasticity and vesicles release. Nanotoxicology 2022; 16:375-392. [DOI: 10.1080/17435390.2022.2097138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Affiliation(s)
- Agnieszka Maria Kołodziejczyk
- Nanomaterial Structural Research Laboratory, Bionanopark Ltd., Lodz, Poland
- Molecular and Nanostructural Biophysics Laboratory, Bionanopark Ltd., Lodz, Poland
| | | | - Aleksandra Zimon
- Nanomaterial Structural Research Laboratory, Bionanopark Ltd., Lodz, Poland
| | - Kamila Białkowska
- Molecular and Nanostructural Biophysics Laboratory, Bionanopark Ltd., Lodz, Poland
- Department of General Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, Lodz, Poland
| | - Bogdan Walkowiak
- Nanomaterial Structural Research Laboratory, Bionanopark Ltd., Lodz, Poland
- Department of Biophysics, Institute of Materials Science and Engineering, Lodz University of Technology, Lodz, Poland
| | - Piotr Komorowski
- Nanomaterial Structural Research Laboratory, Bionanopark Ltd., Lodz, Poland
- Department of Biophysics, Institute of Materials Science and Engineering, Lodz University of Technology, Lodz, Poland
| |
Collapse
|
14
|
Angom RS, Kulkarni T, Wang E, Kumar Dutta S, Bhattacharya S, Das P, Mukhopadhyay D. Vascular Endothelial Growth Factor Receptor-1 Modulates Hypoxia-Mediated Endothelial Senescence and Cellular Membrane Stiffness via YAP-1 Pathways. Front Cell Dev Biol 2022; 10:903047. [PMID: 35846360 PMCID: PMC9283904 DOI: 10.3389/fcell.2022.903047] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Accepted: 06/13/2022] [Indexed: 11/23/2022] Open
Abstract
Hypoxia-induced endothelial cell (EC) dysfunction has been implicated as potential initiators of different pathogenesis, including Alzheimer’s disease and vascular dementia. However, in-depth structural, mechanical, and molecular mechanisms leading to EC dysfunction and pathology need to be revealed. Here, we show that ECs exposed to hypoxic conditions readily enter a senescence phenotype. As expected, hypoxia upregulated the expression of vascular endothelial growth factor (VEGFs) and its receptors (VEGFRs) in the ECs. Interestingly, Knockdown of VEGFR-1 expression prior to hypoxia exposure prevented EC senescence, suggesting an important role of VEGFR-1 expression in the induction of EC senescence. Using atomic force microscopy, we showed that senescent ECs had a flattened cell morphology, decreased membrane ruffling, and increased membrane stiffness, demonstrating unique morphological and nanomechanical signatures. Furthermore, we show that hypoxia inhibited the Hippo pathway Yes-associated protein (YAP-1) expression and knockdown of YAP-1 induced senescence in the ECs, supporting a key role of YAP-1 expression in the induction of EC senescence. And importantly, VEGFR-1 Knockdown in the ECs modulated YAP-1 expression, suggesting a novel VEGFR-1-YAP-1 axis in the induction of hypoxia-mediated EC senescence. In conclusion, VEGFR-1 is overexpressed in ECs undergoing hypoxia-mediated senescence, and the knockdown of VEGFR-1 restores cellular structural and nanomechanical integrity by recovering YAP-1 expression.
Collapse
Affiliation(s)
| | - Tanmay Kulkarni
- Department of Biochemistry and Molecular Biology, Jacksonville, FL, United States
| | - Enfeng Wang
- Department of Biochemistry and Molecular Biology, Jacksonville, FL, United States
| | - Shamit Kumar Dutta
- Department of Biochemistry and Molecular Biology, Jacksonville, FL, United States
| | - Santanu Bhattacharya
- Department of Biochemistry and Molecular Biology, Jacksonville, FL, United States
- Department of Physiology and Biomedical Engineering, Mayo Clinic College of Medicine and Science, Jacksonville, FL, United States
| | - Pritam Das
- Department of Biochemistry and Molecular Biology, Jacksonville, FL, United States
| | - Debabrata Mukhopadhyay
- Department of Biochemistry and Molecular Biology, Jacksonville, FL, United States
- Department of Physiology and Biomedical Engineering, Mayo Clinic College of Medicine and Science, Jacksonville, FL, United States
- *Correspondence: Debabrata Mukhopadhyay,
| |
Collapse
|
15
|
Xie L, Sun Z, Brown NJ, Glinskii OV, Meininger GA, Glinsky VV. Changes in dynamics of tumor/endothelial cell adhesive interactions depending on endothelial cell growth state and elastic properties. PLoS One 2022; 17:e0269552. [PMID: 35666755 PMCID: PMC9170101 DOI: 10.1371/journal.pone.0269552] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 05/23/2022] [Indexed: 11/18/2022] Open
Abstract
Cancer cell adhesion to the endothelium is a crucial process in hematogenous metastasis, but how the integrity of the endothelial barrier and endothelial cell (EC) mechanical properties influence the adhesion between metastatic cancer cells and the endothelium remain unclear. In the present study, we have measured the adhesion between single cancer cells and two types of ECs at various growth states and their mechanical properties (elasticity) using atomic force microscopy single cell force spectroscopy. We demonstrated that the EC stiffness increased and adhesion with cancer cells decreased, as ECs grew from a single cell to a confluent state and developed cell-cell contacts, but this was reversed when confluent cells returned to a single state in a scratch assay. Our results suggest that the integrity of the endothelial barrier is an important factor in reducing the ability of the metastatic tumor cells to adhere to the vascular endothelium, extravasate and lodge in the vasculature of a distant organ where secondary metastatic tumors would develop.
Collapse
Affiliation(s)
- Leike Xie
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri, United States of America
- Department of Pathology and Anatomical Sciences, University of Missouri, Columbia, Missouri, United States of America
| | - Zhe Sun
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri, United States of America
| | - Nicola J. Brown
- Microcirculation Research Group, Department of Oncology and Metabolism, Faculty of Medicine, Dentistry and Health, University of Sheffield, Sheffield, United Kingdom
| | - Olga V. Glinskii
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri, United States of America
- Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, Missouri, United States of America
- Research Service, Harry S. Truman Memorial Veterans Hospital, Columbia, Missouri, United States of America
| | - Gerald A. Meininger
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri, United States of America
- Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, Missouri, United States of America
| | - Vladislav V. Glinsky
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri, United States of America
- Department of Pathology and Anatomical Sciences, University of Missouri, Columbia, Missouri, United States of America
- Research Service, Harry S. Truman Memorial Veterans Hospital, Columbia, Missouri, United States of America
| |
Collapse
|
16
|
Ko PL, Wang CK, Hsu HH, Lee TA, Tung YC. Revealing anisotropic elasticity of endothelium under fluid shear stress. Acta Biomater 2022; 145:316-328. [PMID: 35367381 DOI: 10.1016/j.actbio.2022.03.040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 03/22/2022] [Accepted: 03/24/2022] [Indexed: 11/26/2022]
Abstract
Endothelium lining interior surface of blood vessels experiences various physical stimulations in vivo. Its physical properties, especially elasticity, play important roles in regulating the physiological functions of vascular systems. In this paper, an integrated approach is developed to characterize the anisotropic elasticity of the endothelium under physiological-level fluid shear stress. A pressure sensor-embedded microfluidic device is developed to provide fluid shear stress on the perfusion-cultured endothelium and to measure transverse in-plane elasticities in the directions parallel and perpendicular to the flow direction. Biological atomic force microscopy (Bio-AFM) is further exploited to measure the vertical elasticity of the endothelium in its out-of-plane direction. The results show that the transverse elasticity of the endothelium in the direction parallel to the perfusion culture flow direction is about 70% higher than that in the direction perpendicular to the flow direction. Moreover, the transverse elasticities of the endothelium are estimated to be approximately 120 times larger than the vertical one. The results indicate the effects of fluid shear stress on the transverse elasticity anisotropy of the endothelium, and the difference between the elasticities in transverse and vertical directions. The quantitative measurement of the endothelium anisotropic elasticity in different directions at the tissue level under the fluid shear stress provides biologists insightful information for the advanced vascular system studies from biophysical and biomaterial viewpoints. STATEMENT OF SIGNIFICANCE: In this paper, we take advantage an integrated approach combining microfluidic devices and biological atomic force microscopy (Bio-AFM) to characterize anisotropic elasticities of endothelia with and without fluidic shear stress application. The microfluidic devices are exploited to conduct perfusion cell culture of the endothelial cells, and to estimate the in-plane elasticities of the endothelium in the direction parallel and perpendicular to the shear stress. In addition, the Bio-AFM is utilized for characterization of the endothelium morphology and vertical elasticity. The measurement results demonstrate the very first anisotropic elasticity quantification of the endothelia. Furthermore, the study provides insightful information bridging the microscopic sing cell and macroscopic organ level studies, which can greatly help to advance vascular system research from material perspective.
Collapse
|
17
|
Nuclear lamin isoforms differentially contribute to LINC complex-dependent nucleocytoskeletal coupling and whole-cell mechanics. Proc Natl Acad Sci U S A 2022; 119:e2121816119. [PMID: 35439057 PMCID: PMC9170021 DOI: 10.1073/pnas.2121816119] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Interactions between the cell nucleus and cytoskeleton regulate cell mechanics and are facilitated by the interplay between the nuclear lamina and linker of nucleoskeleton and cytoskeleton (LINC) complexes. To date, the specific contribution of the four lamin isoforms to nucleocytoskeletal connectivity and whole-cell mechanics remains unknown. We discover that A- and B-type lamins distinctively interact with LINC complexes that bind F-actin and vimentin filaments to differentially modulate cortical stiffness, cytoplasmic stiffness, and contractility of mouse embryonic fibroblasts (MEFs). We propose and experimentally verify an integrated lamin–LINC complex–cytoskeleton model that explains cellular mechanical phenotypes in lamin-deficient MEFs. Our findings uncover potential mechanisms for cellular defects in human laminopathies and many cancers associated with mutations or modifications in lamin isoforms. The ability of a cell to regulate its mechanical properties is central to its function. Emerging evidence suggests that interactions between the cell nucleus and cytoskeleton influence cell mechanics through poorly understood mechanisms. Here we conduct quantitative confocal imaging to show that the loss of A-type lamins tends to increase nuclear and cellular volume while the loss of B-type lamins behaves in the opposite manner. We use fluorescence recovery after photobleaching, atomic force microscopy, optical tweezer microrheology, and traction force microscopy to demonstrate that A-type lamins engage with both F-actin and vimentin intermediate filaments (VIFs) through the linker of nucleoskeleton and cytoskeleton (LINC) complexes to modulate cortical and cytoplasmic stiffness as well as cellular contractility in mouse embryonic fibroblasts (MEFs). In contrast, we show that B-type lamins predominantly interact with VIFs through LINC complexes to regulate cytoplasmic stiffness and contractility. We then propose a physical model mediated by the lamin–LINC complex that explains these distinct mechanical phenotypes (mechanophenotypes). To verify this model, we use dominant negative constructs and RNA interference to disrupt the LINC complexes that facilitate the interaction of the nucleus with the F-actin and VIF cytoskeletons and show that the loss of these elements results in mechanophenotypes like those observed in MEFs that lack A- or B-type lamin isoforms. Finally, we demonstrate that the loss of each lamin isoform softens the cell nucleus and enhances constricted cell migration but in turn increases migration-induced DNA damage. Together, our findings uncover distinctive roles for each of the four major lamin isoforms in maintaining nucleocytoskeletal interactions and cellular mechanics.
Collapse
|
18
|
Tracking of Endothelial Cell Migration and Stiffness Measurements Reveal the Role of Cytoskeletal Dynamics. Int J Mol Sci 2022; 23:ijms23010568. [PMID: 35008993 PMCID: PMC8745078 DOI: 10.3390/ijms23010568] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 12/23/2021] [Accepted: 12/30/2021] [Indexed: 02/01/2023] Open
Abstract
Cell migration is a complex, tightly regulated multistep process in which cytoskeletal reorganization and focal adhesion redistribution play a central role. Core to both individual and collective migration is the persistent random walk, which is characterized by random force generation and resistance to directional change. We first discuss a model that describes the stochastic movement of ECs and characterizes EC persistence in wound healing. To that end, we pharmacologically disrupted cytoskeletal dynamics, cytochalasin D for actin and nocodazole for tubulin, to understand its contributions to cell morphology, stiffness, and motility. As such, the use of Atomic Force Microscopy (AFM) enabled us to probe the topography and stiffness of ECs, while time lapse microscopy provided observations in wound healing models. Our results suggest that actin and tubulin dynamics contribute to EC shape, compressive moduli, and directional organization in collective migration. Insights from the model and time lapse experiment suggest that EC speed and persistence are directionally organized in wound healing. Pharmacological disruptions suggest that actin and tubulin dynamics play a role in collective migration. Current insights from both the model and experiment represent an important step in understanding the biomechanics of EC migration as a therapeutic target.
Collapse
|
19
|
The Hertzian theory in AFM nanoindentation experiments regarding biological samples: Overcoming limitations in data processing. Micron 2022; 155:103228. [DOI: 10.1016/j.micron.2022.103228] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 12/09/2021] [Accepted: 01/26/2022] [Indexed: 11/21/2022]
|
20
|
Esteki MH, Malandrino A, Alemrajabi AA, Sheridan GK, Charras G, Moeendarbary E. Poroelastic osmoregulation of living cell volume. iScience 2021; 24:103482. [PMID: 34927026 PMCID: PMC8649806 DOI: 10.1016/j.isci.2021.103482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 08/19/2021] [Accepted: 11/19/2021] [Indexed: 11/22/2022] Open
Abstract
Cells maintain their volume through fine intracellular osmolarity regulation. Osmotic challenges drive fluid into or out of cells causing swelling or shrinkage, respectively. The dynamics of cell volume changes depending on the rheology of the cellular constituents and on how fast the fluid permeates through the membrane and cytoplasm. We investigated whether and how poroelasticity can describe volume dynamics in response to osmotic shocks. We exposed cells to osmotic perturbations and used defocusing epifluorescence microscopy on membrane-attached fluorescent nanospheres to track volume dynamics with high spatiotemporal resolution. We found that a poroelastic model that considers both geometrical and pressurization rates captures fluid-cytoskeleton interactions, which are rate-limiting factors in controlling volume changes at short timescales. Linking cellular responses to osmotic shocks and cell mechanics through poroelasticity can predict the cell state in health, disease, or in response to novel therapeutics. Cell height changes can be finely captured by defocusing microscopy Water permeation and cellular deformability regulate dynamics of cell volume changes Poroelasticity describes the dynamics of cell volume changes The response of cell to hypo or hyperosmotic shocks are modeled by poroelasticity
Collapse
Affiliation(s)
- Mohammad Hadi Esteki
- Department of Mechanical Engineering, Isfahan University of Technology, Isfahan, Iran.,Department of Mechanical Engineering, University College London, London, UK
| | - Andrea Malandrino
- Biomaterials, Biomechanics and Tissue Engineering Group, Department of Materials Science and Engineering, Universitat Politècnica de Catalunya, Barcelona, Spain
| | - Ali Akbar Alemrajabi
- Department of Mechanical Engineering, Isfahan University of Technology, Isfahan, Iran
| | - Graham K Sheridan
- School of Life Sciences, Queens Medical Centre, University of Nottingham, Nottingham, UK
| | - Guillaume Charras
- London Centre for Nanotechnology, University College London, London, UK.,Department of Cell and Developmental Biology, University College London, London, UK.,Institute for the Physics of Living Systems, University College London, London, UK
| | - Emad Moeendarbary
- Department of Mechanical Engineering, University College London, London, UK.,Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| |
Collapse
|
21
|
Li X, Klausen LH, Zhang W, Jahed Z, Tsai CT, Li TL, Cui B. Nanoscale Surface Topography Reduces Focal Adhesions and Cell Stiffness by Enhancing Integrin Endocytosis. NANO LETTERS 2021; 21:8518-8526. [PMID: 34346220 PMCID: PMC8516714 DOI: 10.1021/acs.nanolett.1c01934] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Both substrate stiffness and surface topography regulate cell behavior through mechanotransduction signaling pathways. Such intertwined effects suggest that engineered surface topographies might substitute or cancel the effects of substrate stiffness in biomedical applications. However, the mechanisms by which cells recognize topographical features are not fully understood. Here we demonstrate that the presence of nanotopography drastically alters cell behavior such that neurons and stem cells cultured on rigid glass substrates behave as if they were on soft hydrogels. With atomic force microscopy, we show that rigid nanotopography resembles the effects of soft hydrogels in reducing cell stiffness and membrane tension. Further, we reveal that nanotopography reduces focal adhesions and cell stiffness by enhancing the endocytosis and the subsequent removal of integrin receptors. This mechanistic understanding will support the rational design of nanotopography that directs cells on rigid materials to behave as if they were on soft ones.
Collapse
Affiliation(s)
- Xiao Li
- Department of Chemistry, Stanford University, Stanford, California 94305, United States
| | - Lasse H Klausen
- Department of Chemistry, Stanford University, Stanford, California 94305, United States
| | - Wei Zhang
- Department of Chemistry, Stanford University, Stanford, California 94305, United States
| | - Zeinab Jahed
- Department of Chemistry, Stanford University, Stanford, California 94305, United States
| | - Ching-Ting Tsai
- Department of Chemistry, Stanford University, Stanford, California 94305, United States
| | - Thomas L Li
- Department of Chemistry, Stanford University, Stanford, California 94305, United States
| | - Bianxiao Cui
- Department of Chemistry, Stanford University, Stanford, California 94305, United States
| |
Collapse
|
22
|
Fekete T, Mészáros M, Szegletes Z, Vizsnyiczai G, Zimányi L, Deli MA, Veszelka S, Kelemen L. Optically Manipulated Microtools to Measure Adhesion of the Nanoparticle-Targeting Ligand Glutathione to Brain Endothelial Cells. ACS APPLIED MATERIALS & INTERFACES 2021; 13:39018-39029. [PMID: 34397215 DOI: 10.1021/acsami.1c08454] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Targeting nanoparticles as drug delivery platforms is crucial to facilitate their cellular entry. Docking of nanoparticles by targeting ligands on cell membranes is the first step for the initiation of cellular uptake. As a model system, we studied brain microvascular endothelial cells, which form the anatomical basis of the blood-brain barrier, and the tripeptide glutathione, one of the most effective targeting ligands of nanoparticles to cross the blood-brain barrier. To investigate this initial docking step between glutathione and the membrane of living brain endothelial cells, we applied our recently developed innovative optical method. We present a microtool, with a task-specific geometry used as a probe, actuated by multifocus optical tweezers to characterize the adhesion probability and strength of glutathione-coated surfaces to the cell membrane of endothelial cells. The binding probability of the glutathione-coated surface and the adhesion force between the microtool and cell membrane was measured in a novel arrangement: cells were cultured on a vertical polymer wall and the mechanical forces were generated laterally and at the same time, perpendicularly to the plasma membrane. The adhesion force values were also determined with more conventional atomic force microscopy (AFM) measurements using functionalized colloidal probes. The optical trapping-based method was found to be suitable to measure very low adhesion forces (≤ 20 pN) without a high level of noise, which is characteristic for AFM measurements in this range. The holographic optical tweezers-directed functionalized microtools may help characterize the adhesion step of nanoparticles initiating transcytosis and select ligands to target nanoparticles.
Collapse
Affiliation(s)
- Tamás Fekete
- Institute of Biophysics, Biological Research Centre, Eötvös Loránd Research Network (ELKH), Szeged 6726, Hungary
- Doctoral School in Multidisciplinary Medicine, University of Szeged, Szeged 6720, Hungary
| | - Mária Mészáros
- Institute of Biophysics, Biological Research Centre, Eötvös Loránd Research Network (ELKH), Szeged 6726, Hungary
| | - Zsolt Szegletes
- Institute of Biophysics, Biological Research Centre, Eötvös Loránd Research Network (ELKH), Szeged 6726, Hungary
| | - Gaszton Vizsnyiczai
- Institute of Biophysics, Biological Research Centre, Eötvös Loránd Research Network (ELKH), Szeged 6726, Hungary
| | - László Zimányi
- Institute of Biophysics, Biological Research Centre, Eötvös Loránd Research Network (ELKH), Szeged 6726, Hungary
| | - Mária A Deli
- Institute of Biophysics, Biological Research Centre, Eötvös Loránd Research Network (ELKH), Szeged 6726, Hungary
| | - Szilvia Veszelka
- Institute of Biophysics, Biological Research Centre, Eötvös Loránd Research Network (ELKH), Szeged 6726, Hungary
| | - Lóránd Kelemen
- Institute of Biophysics, Biological Research Centre, Eötvös Loránd Research Network (ELKH), Szeged 6726, Hungary
| |
Collapse
|
23
|
Laplaud V, Levernier N, Pineau J, Roman MS, Barbier L, Sáez PJ, Lennon-Duménil AM, Vargas P, Kruse K, du Roure O, Piel M, Heuvingh J. Pinching the cortex of live cells reveals thickness instabilities caused by myosin II motors. SCIENCE ADVANCES 2021; 7:eabe3640. [PMID: 34215576 PMCID: PMC11057708 DOI: 10.1126/sciadv.abe3640] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Accepted: 05/20/2021] [Indexed: 06/13/2023]
Abstract
The cell cortex is a contractile actin meshwork, which determines cell shape and is essential for cell mechanics, migration, and division. Because its thickness is below optical resolution, there is a tendency to consider the cortex as a thin uniform two-dimensional layer. Using two mutually attracted magnetic beads, one inside the cell and the other in the extracellular medium, we pinch the cortex of dendritic cells and provide an accurate and time-resolved measure of its thickness. Our observations draw a new picture of the cell cortex as a highly dynamic layer, harboring large fluctuations in its third dimension because of actomyosin contractility. We propose that the cortex dynamics might be responsible for the fast shape-changing capacity of highly contractile cells that use amoeboid-like migration.
Collapse
Affiliation(s)
- Valentin Laplaud
- Physique et Mécanique des Milieux Hétérogènes, ESPCI Paris, PSL University, CNRS, Univ Paris, Sorbonne Université, Paris, France
- Institut Curie and Institut Pierre Gilles de Gennes, PSL University, CNRS, Paris, France
| | - Nicolas Levernier
- Department of Theoretical Physics, University of Geneva, Geneva, Switzerland
| | - Judith Pineau
- Institut Curie, INSERM U932, PSL University, Paris, France
| | | | - Lucie Barbier
- Institut Curie and Institut Pierre Gilles de Gennes, PSL University, CNRS, Paris, France
| | - Pablo J Sáez
- Institut Curie and Institut Pierre Gilles de Gennes, PSL University, CNRS, Paris, France
| | | | - Pablo Vargas
- Institut Curie and Institut Pierre Gilles de Gennes, PSL University, CNRS, Paris, France
| | - Karsten Kruse
- Departments of Biochemistry and Theoretical Physics and NCCR for Chemical Biology, University of Geneva, Geneva 1211, Switzerland
| | - Olivia du Roure
- Physique et Mécanique des Milieux Hétérogènes, ESPCI Paris, PSL University, CNRS, Univ Paris, Sorbonne Université, Paris, France.
| | - Matthieu Piel
- Institut Curie and Institut Pierre Gilles de Gennes, PSL University, CNRS, Paris, France.
| | - Julien Heuvingh
- Physique et Mécanique des Milieux Hétérogènes, ESPCI Paris, PSL University, CNRS, Univ Paris, Sorbonne Université, Paris, France.
| |
Collapse
|
24
|
Adelson RP, Palikuqi B, Weiss Z, Checco A, Schreiner R, Rafii S, Rabbany SY. Morphological characterization of Etv2 vascular explants using fractal analysis and atomic force microscopy. Microvasc Res 2021; 138:104205. [PMID: 34146583 DOI: 10.1016/j.mvr.2021.104205] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 05/28/2021] [Accepted: 06/07/2021] [Indexed: 11/25/2022]
Abstract
The rapid engraftment of vascular networks is critical for functional incorporation of tissue explants. However, existing methods for inducing angiogenesis utilize approaches that yield vasculature with poor temporal stability or inadequate mechanical integrity, which reduce their robustness in vivo. The transcription factor Ets variant 2 (Etv2) specifies embryonic hematopoietic and vascular endothelial cell (EC) development, and is transiently reactivated during postnatal vascular regeneration and tumor angiogenesis. This study investigates the role for Etv2 upregulation in forming stable vascular beds both in vitro and in vivo. Control and Etv2+ prototypical fetal-derived human umbilical vein ECs (HUVECs) and adult ECs were angiogenically grown into vascular beds. These vessel beds were characterized using fractal dimension and lacunarity, to quantify their branching complexity and space-filling homogeneity, respectively. Atomic force microscopy (AFM) was used to explore whether greater complexity and homogeneity lead to more mechanically stable vessels. Additionally, markers of EC integrity were used to probe for mechanistic clues. Etv2+ HUVECs exhibit greater branching, vessel density, and structural homogeneity, and decreased stiffness in vitro and in vivo, indicating a greater propensity for stable vessel formation. When co-cultured with colon tumor organoid tissue, Etv2+ HUVECs had decreased fractal dimension and lacunarity compared to Etv2+ HUVECs cultured alone, indicating that vessel density and homogeneity of vessel spacing increased due to the presence of Etv2. This study sets forth the novel concept that fractal dimension, lacunarity, and AFM are as informative as conventional angiogenic measurements, including vessel branching and density, to assess vascular perfusion and stability.
Collapse
Affiliation(s)
- Robert P Adelson
- Bioengineering Program, DeMatteis School of Engineering and Applied Science, Hofstra University, Hempstead, NY, USA
| | - Brisa Palikuqi
- Division of Regenerative Medicine, Ansary Stem Cell Institute, Department of Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Zachary Weiss
- Bioengineering Program, DeMatteis School of Engineering and Applied Science, Hofstra University, Hempstead, NY, USA
| | - Antonio Checco
- Bioengineering Program, DeMatteis School of Engineering and Applied Science, Hofstra University, Hempstead, NY, USA
| | - Ryan Schreiner
- Department of Ophthalmology, Margaret Dyson Vision Research Institute, Weill Cornell Medicine, New York, NY, USA
| | - Shahin Rafii
- Division of Regenerative Medicine, Ansary Stem Cell Institute, Department of Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Sina Y Rabbany
- Bioengineering Program, DeMatteis School of Engineering and Applied Science, Hofstra University, Hempstead, NY, USA; Division of Regenerative Medicine, Ansary Stem Cell Institute, Department of Medicine, Weill Cornell Medicine, New York, NY, USA.
| |
Collapse
|
25
|
Nguyen A, Brandt M, Muenker TM, Betz T. Multi-oscillation microrheology via acoustic force spectroscopy enables frequency-dependent measurements on endothelial cells at high-throughput. LAB ON A CHIP 2021; 21:1929-1947. [PMID: 34008613 PMCID: PMC8130676 DOI: 10.1039/d0lc01135e] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Accepted: 03/12/2021] [Indexed: 06/03/2023]
Abstract
Active microrheology is one of the main methods to determine the mechanical properties of cells and tissue, and the modelling of these viscoelastic properties is under heavy debate with many competing approaches. Most experimental methods of active microrheology such as optical tweezers or atomic force microscopy based approaches rely on single cell measurements, and thus suffer from a low throughput. Here, we present a novel method for frequency-dependent microrheology on cells using acoustic forces which allows multiplexed measurements of several cells in parallel. Acoustic force spectroscopy (AFS) is used to generate multi-oscillatory forces in the range of pN-nN on particles attached to primary human umbilical vein endothelial cells (HUVEC) cultivated inside a microfluidic chip. While the AFS was introduced as a single-molecule technique to measure mechanochemical properties of biomolecules, we exploit the AFS to measure the dynamic viscoelastic properties of cells exposed to different conditions, such as flow shear stresses or drug injections. By controlling the force and measuring the position of the particle, the complex shear modulus G*(ω) can be measured continuously over several hours. The resulting power-law shear moduli are consistent with fractional viscoelastic models. In our experiments we confirm a decrease in shear modulus after perturbing the actin cytoskeleton via cytochalasin B. This effect was reversible after washing out the drug. Additionally, we include critical information for the usage of the new method AFS as a measurement tool showing its capabilities and limitations and we find that for performing viscoelastic measurements with the AFS, a thorough calibration and careful data analysis is crucial, for which we provide protocols and guidelines.
Collapse
Affiliation(s)
- Alfred Nguyen
- Institute of Cell Biology, University of Münster, Münster, Germany.
| | - Matthias Brandt
- Institute of Cell Biology, University of Münster, Münster, Germany.
| | - Till M Muenker
- Institute of Cell Biology, University of Münster, Münster, Germany. and Third Institute of Physics-Biophysics, University of Göttingen, Göttingen, Germany.
| | - Timo Betz
- Institute of Cell Biology, University of Münster, Münster, Germany. and Third Institute of Physics-Biophysics, University of Göttingen, Göttingen, Germany.
| |
Collapse
|
26
|
Ren K, Gao J, Han D. AFM Force Relaxation Curve Reveals That the Decrease of Membrane Tension Is the Essential Reason for the Softening of Cancer Cells. Front Cell Dev Biol 2021; 9:663021. [PMID: 34055793 PMCID: PMC8152666 DOI: 10.3389/fcell.2021.663021] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Accepted: 04/06/2021] [Indexed: 12/31/2022] Open
Abstract
Differences in stiffness constitute an extremely important aspect of the mechanical differences between cancer cells and normal cells, and atomic force microscopy (AFM) is the most commonly used tool to characterize the difference in stiffness. However, the process of mechanical characterization using AFM has been controversial and the influence of the membrane tension on AFM measurement results was often ignored. Here, a physical model involving a simultaneous consideration of the effects of the cell membrane, cytoskeleton network and cytosol was proposed. We carried out a theoretical analysis of AFM force relaxation curves, and as a result solved many of the remaining controversial issues regarding AFM-based mechanical characterization of cells, and provided a quantitative solution for the membrane tension measured using AFM indentation experiments for the first time. From the results of experiments on cells with different adherent shapes and different pairs of normal cells and cancer cells, we found additional force provided by membrane tension to be the main component of the force applied to the AFM probe, with decreased cell membrane tension being the essential reason for the greater softness of cancer cells than of normal cells. Hence, regulating membrane tension may become an important method for regulating the behavior of cancer cells.
Collapse
Affiliation(s)
- Keli Ren
- CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, China.,National Center for Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing, China
| | - Jingwei Gao
- CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, China.,National Center for Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing, China
| | - Dong Han
- CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, China.,National Center for Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
27
|
Acott TS, Vranka JA, Keller KE, Raghunathan V, Kelley MJ. Normal and glaucomatous outflow regulation. Prog Retin Eye Res 2021; 82:100897. [PMID: 32795516 PMCID: PMC7876168 DOI: 10.1016/j.preteyeres.2020.100897] [Citation(s) in RCA: 87] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 07/28/2020] [Accepted: 07/31/2020] [Indexed: 12/12/2022]
Abstract
Glaucoma remains only partially understood, particularly at the level of intraocular pressure (IOP) regulation. Trabecular meshwork (TM) and Schlemm's canal inner wall endothelium (SCE) are key to IOP regulation and their characteristics and behavior are the focus of much investigation. This is becoming more apparent with time. We and others have studied the TM and SCE's extracellular matrix (ECM) extensively and unraveled much about its functions and role in regulating aqueous outflow. Ongoing ECM turnover is required to maintain IOP regulation and several TM ECM manipulations modulate outflow facility. We have established clearly that the outflow pathway senses sustained pressure deviations and responds by adjusting the outflow resistance correctively to keep IOP within an appropriately narrow range which will not normally damage the optic nerve. The glaucomatous outflow pathway has in many cases lost this IOP homeostatic response, apparently due at least in part, to loss of TM cells. Depletion of TM cells eliminates the IOP homeostatic response, while restoration of TM cells restores it. Aqueous outflow is not homogeneous, but rather segmental with regions of high, intermediate and low flow. In general, glaucomatous eyes have more low flow regions than normal eyes. There are distinctive molecular differences between high and low flow regions, and during the response to an IOP homeostatic pressure challenge, additional changes in segmental molecular composition occur. In conjunction with these changes, the biomechanical properties of the juxtacanalicular (JCT) segmental regions are different, with low flow regions being stiffer than high flow regions. The JCT ECM of glaucomatous eyes is around 20 times stiffer than in normal eyes. The aqueous humor outflow resistance has been studied extensively, but neither the exact molecular components that comprise the resistance nor their exact location have been established. Our hypothetical model, based on considerable available data, posits that the continuous SCE basal lamina, which lies between 125 and 500 nm beneath the SCE basal surface, is the primary source of normal resistance. On the surface of JCT cells, small and highly controlled focal degradation of its components by podosome- or invadopodia-like structures, PILS, occurs in response to pressure-induced mechanical stretching. Sub-micron sized basement membrane discontinuities develop in the SCE basement membrane and these discontinuities allow passage of aqueous humor to and through SCE giant vacuoles and pores. JCT cells then relocate versican with its highly charged glycosaminoglycan side chains into the discontinuities and by manipulation of their orientation and concentration, the JCT and perhaps the SCE cells regulate the amount of fluid passage. Testing this outflow resistance hypothesis is ongoing in our lab and has the potential to advance our understanding of IOP regulation and of glaucoma.
Collapse
Affiliation(s)
- Ted S Acott
- Department of Ophthalmology, Casey Eye Institute, Oregon Health & Science University, Portland, OR, 97239, USA; Department of Chemical Physiology and Biochemistry, Oregon Health & Science University, Portland, OR, 97239, USA.
| | - Janice A Vranka
- Department of Ophthalmology, Casey Eye Institute, Oregon Health & Science University, Portland, OR, 97239, USA
| | - Kate E Keller
- Department of Ophthalmology, Casey Eye Institute, Oregon Health & Science University, Portland, OR, 97239, USA
| | - VijayKrishna Raghunathan
- Department of Basic Sciences, The Ocular Surface Institute, College of Optometry, Department of Biomedical Engineering, Cullen College of Engineering, University of Houston, Houston, TX, 77204, USA
| | - Mary J Kelley
- Department of Ophthalmology, Casey Eye Institute, Oregon Health & Science University, Portland, OR, 97239, USA; Department of Integrative Biosciences, Oregon Health & Sciences University, Portland, OR, 97239, USA
| |
Collapse
|
28
|
Moretti M, La Rocca R, Perrone Donnorso M, Torre B, Canale C, Malerba M, Das G, Sottile R, Garofalo C, Achour A, Kärre K, Carbone E, Di Fabrizio E. Clustering of Major Histocompatibility Complex-Class I Molecules in Healthy and Cancer Colon Cells Revealed from Their Nanomechanical Properties. ACS NANO 2021; 15:7500-7512. [PMID: 33749234 DOI: 10.1021/acsnano.1c00897] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The activation of the T cell mediated immune response relies on the fine interaction between the T cell receptor on the immune cell and the antigen-presenting major histocompatibility complex (MHC) molecules on the membrane surface of antigen-presenting cells. Both the distribution and quantity of MHC/peptide complexes and their adequate morphological presentation affect the activation of the immune cells. In several types of cancer the immune response is down-regulated due to the low expression of MHC-class I (MHC-I) molecules on the cell's surface, and in addition, the mechanical properties of the membrane seem to play a role. Herein, we investigate the distribution of MHC-I molecules and the related nanoscale mechanical environment on the cell surface of two cell lines derived from colon adenocarcinoma and a healthy epithelial colon reference cell line. Atomic force microscopy (AFM) force spectroscopy analysis using an antibody-tagged pyramidal probe specific for MHC-I molecules and a formula that relates the elasticity of the cell to the energy of adhesion revealed the different population distributions of MHC-I molecules in healthy cells compared to cancer cells. We found that MHC-I molecules are significantly less expressed in cancer cells. Moreover, the local elastic modulus is significantly reduced in cancer cells. We speculate that these results might be related to the proven ability of cancer cells to evade the immune system, not only by reducing MHC-I cell surface expression but also by modifying the local mechanical properties affecting the overall morphology of MHC-I synapse presentation to immune cells.
Collapse
Affiliation(s)
- Manola Moretti
- Single Molecule Imaging by Light Enhanced Spectroscopies Lab, King Abdullah University of Science and Technology, 23955-6900 Thuwal, Jeddah, Kingdom of Saudi Arabia
| | - Rosanna La Rocca
- Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genova, Italy
| | | | - Bruno Torre
- Single Molecule Imaging by Light Enhanced Spectroscopies Lab, King Abdullah University of Science and Technology, 23955-6900 Thuwal, Jeddah, Kingdom of Saudi Arabia
| | - Claudio Canale
- Department of Physics, University of Genova, Via Dodecaneso 33, 16146 Genova, Italy
| | - Mario Malerba
- Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genova, Italy
| | - Gobind Das
- Department of Physics, Khalifa University, P. O. Box 127788 Abu Dhabi, United Arab Emirates
| | - Rosa Sottile
- Katharine Hsu Lab, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, New York 10065, United States
| | - Cinzia Garofalo
- Department for Experimental and Clinical Medicine, University of Catanzaro, Viale Europa, 88100 Catanzaro, Italy
| | - Adnane Achour
- Science for Life Laboratory, Department of Medicine, Solna, Karolinska Institute, and Division of Infectious Diseases, Karolinska University Hospital, 17176 Solna, Stockholm, Sweden
| | - Klas Kärre
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institute, Biomedicum Solnavägen 9, 17165 Solna, Stockholm, Sweden
| | - Ennio Carbone
- Dipartimento Medicina di Precisione, Università della Campania, via L. De Crecchio, 7, 80138 Naples, Italy
| | - Enzo Di Fabrizio
- Department of Applied Physics, Polytechnic University of Turin, Corso Duca degli Abruzzi, 24, 10129 Torino, Italy
| |
Collapse
|
29
|
Starodubtseva MN, Nadyrov EA, Shkliarava NM, Tsukanava AU, Starodubtsev IE, Kondrachyk AN, Matveyenkau MV, Nedoseikina MS. Heterogeneity of nanomechanical properties of the human umbilical vein endothelial cell surface. Microvasc Res 2021; 136:104168. [PMID: 33845104 DOI: 10.1016/j.mvr.2021.104168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Revised: 03/13/2021] [Accepted: 03/30/2021] [Indexed: 11/26/2022]
Abstract
Endothelial cells, due to heterogeneity in the cell structure, can potentially form an inhomogeneous on structural and mechanical properties of the inner layer of the capillaries. Using quantitative nanomechanical mapping mode of atomic force microscopy, the parameters of the structural, elastic, and adhesive properties of the cell surface for living and glutaraldehyde-fixed human umbilical vein endothelial cells were studied. A significant difference in the studied parameters for three cell surface zones (peripheral, perinuclear, and nuclear zones) was established. The perinuclear zone appeared to be the softest zone of the endothelial cell surface. The heterogeneity of the endothelial cell mechanical properties at the nanoscale level can be an important mechanism in regulating the endothelium functions in blood vessels.
Collapse
Affiliation(s)
- Maria N Starodubtseva
- Institute of Radiobiology of NAS of Belarus, 4 Fedyuninskogo str., Gomel BY-246007, Belarus; Gomel State Medical University, 5 Lange str., Gomel BY-246000, Belarus.
| | - Eldar A Nadyrov
- Gomel State Medical University, 5 Lange str., Gomel BY-246000, Belarus
| | - Nastassia M Shkliarava
- Institute of Radiobiology of NAS of Belarus, 4 Fedyuninskogo str., Gomel BY-246007, Belarus
| | - Alena U Tsukanava
- Institute of Radiobiology of NAS of Belarus, 4 Fedyuninskogo str., Gomel BY-246007, Belarus
| | | | | | - Matsvei V Matveyenkau
- Institute of Radiobiology of NAS of Belarus, 4 Fedyuninskogo str., Gomel BY-246007, Belarus
| | | |
Collapse
|
30
|
Dessalles CA, Babataheri A, Barakat AI. Pericyte mechanics and mechanobiology. J Cell Sci 2021; 134:134/6/jcs240226. [PMID: 33753399 DOI: 10.1242/jcs.240226] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Pericytes are mural cells of the microvasculature, recognized by their thin processes and protruding cell body. Pericytes wrap around endothelial cells and play a central role in regulating various endothelial functions, including angiogenesis and inflammation. They also serve as a vascular support and regulate blood flow by contraction. Prior reviews have examined pericyte biological functions and biochemical signaling pathways. In this Review, we focus on the role of mechanics and mechanobiology in regulating pericyte function. After an overview of the morphology and structure of pericytes, we describe their interactions with both the basement membrane and endothelial cells. We then turn our attention to biophysical considerations, and describe contractile forces generated by pericytes, mechanical forces exerted on pericytes, and pericyte responses to these forces. Finally, we discuss 2D and 3D engineered in vitro models for studying pericyte mechano-responsiveness and underscore the need for more evolved models that provide improved understanding of pericyte function and dysfunction.
Collapse
Affiliation(s)
- Claire A Dessalles
- LadHyX, CNRS, Ecole polytechnique, Institut polytechnique de Paris, 91120, Palaiseau, France
| | - Avin Babataheri
- LadHyX, CNRS, Ecole polytechnique, Institut polytechnique de Paris, 91120, Palaiseau, France
| | - Abdul I Barakat
- LadHyX, CNRS, Ecole polytechnique, Institut polytechnique de Paris, 91120, Palaiseau, France
| |
Collapse
|
31
|
Migliorini E, Cavalcanti-Adam EA, Uva AE, Fiorentino M, Gattullo M, Manghisi VM, Vaiani L, Boccaccio A. Nanoindentation of mesenchymal stem cells using atomic force microscopy: effect of adhesive cell-substrate structures. NANOTECHNOLOGY 2021; 32:215706. [PMID: 33596559 DOI: 10.1088/1361-6528/abe748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Accepted: 02/17/2021] [Indexed: 06/12/2023]
Abstract
The procedure commonly adopted to characterize cell materials using atomic force microscopy neglects the stress state induced in the cell by the adhesion structures that anchor it to the substrate. In several studies, the cell is considered as made from a single material and no specific information is provided regarding the mechanical properties of subcellular components. Here we present an optimization algorithm to determine separately the material properties of subcellular components of mesenchymal stem cells subjected to nanoindentation measurements. We assess how these properties change if the adhesion structures at the cell-substrate interface are considered or not in the algorithm. In particular, among the adhesion structures, the focal adhesions and the stress fibers were simulated. We found that neglecting the adhesion structures leads to underestimate the cell mechanical properties thus making errors up to 15%. This result leads us to conclude that the action of adhesion structures should be taken into account in nanoindentation measurements especially for cells that include a large number of adhesions to the substrate.
Collapse
Affiliation(s)
| | - Elisabetta Ada Cavalcanti-Adam
- Max Planck Institute for Medical Research, D-69120 Heidelberg, Germany
- Heidelberg University, D-69120 Heidelberg, Germany
| | - Antonio Emmanuele Uva
- Dipartimento di Meccanica, Matematica e Management, Politecnico di Bari, Bari, Italy
| | - Michele Fiorentino
- Dipartimento di Meccanica, Matematica e Management, Politecnico di Bari, Bari, Italy
| | - Michele Gattullo
- Dipartimento di Meccanica, Matematica e Management, Politecnico di Bari, Bari, Italy
| | - Vito Modesto Manghisi
- Dipartimento di Meccanica, Matematica e Management, Politecnico di Bari, Bari, Italy
| | - Lorenzo Vaiani
- Dipartimento di Meccanica, Matematica e Management, Politecnico di Bari, Bari, Italy
| | - Antonio Boccaccio
- Dipartimento di Meccanica, Matematica e Management, Politecnico di Bari, Bari, Italy
| |
Collapse
|
32
|
Vaiani L, Migliorini E, Cavalcanti-Adam EA, Uva AE, Fiorentino M, Gattullo M, Manghisi VM, Boccaccio A. Coarse-grained elastic network modelling: A fast and stable numerical tool to characterize mesenchymal stem cells subjected to AFM nanoindentation measurements. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 121:111860. [PMID: 33579492 DOI: 10.1016/j.msec.2020.111860] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 12/23/2020] [Accepted: 12/26/2020] [Indexed: 12/11/2022]
Abstract
The knowledge of the mechanical properties is the starting point to study the mechanobiology of mesenchymal stem cells and to understand the relationships linking biophysical stimuli to the cellular differentiation process. In experimental biology, Atomic Force Microscopy (AFM) is a common technique for measuring these mechanical properties. In this paper we present an alternative approach for extracting common mechanical parameters, such as the Young's modulus of cell components, starting from AFM nanoindentation measurements conducted on human mesenchymal stem cells. In a virtual environment, a geometrical model of a stem cell was converted in a highly deformable Coarse-Grained Elastic Network Model (CG-ENM) to reproduce the real AFM experiment and retrieve the related force-indentation curve. An ad-hoc optimization algorithm perturbed the local stiffness values of the springs, subdivided in several functional regions, until the computed force-indentation curve replicated the experimental one. After this curve matching, the extraction of global Young's moduli was performed for different stem cell samples. The algorithm was capable to distinguish the material properties of different subcellular components such as the cell cortex and the cytoskeleton. The numerical results predicted with the elastic network model were then compared to those obtained from hertzian contact theory and Finite Element Method (FEM) for the same case studies, showing an optimal agreement and a highly reduced computational cost. The proposed simulation flow seems to be an accurate, fast and stable method for understanding the mechanical behavior of soft biological materials, even for subcellular levels of detail. Moreover, the elastic network modelling allows shortening the computational times to approximately 33% of the time required by a traditional FEM simulation performed using elements with size comparable to that of springs.
Collapse
Affiliation(s)
- L Vaiani
- Dipartimento di Meccanica, Matematica e Management, Politecnico di Bari, Bari 70126, Italy
| | | | - E A Cavalcanti-Adam
- Max Planck Institute for Medical Research, D-69120 Heidelberg, Germany; Heidelberg University, D-69120 Heidelberg, Germany
| | - A E Uva
- Dipartimento di Meccanica, Matematica e Management, Politecnico di Bari, Bari 70126, Italy
| | - M Fiorentino
- Dipartimento di Meccanica, Matematica e Management, Politecnico di Bari, Bari 70126, Italy
| | - M Gattullo
- Dipartimento di Meccanica, Matematica e Management, Politecnico di Bari, Bari 70126, Italy
| | - V M Manghisi
- Dipartimento di Meccanica, Matematica e Management, Politecnico di Bari, Bari 70126, Italy
| | - A Boccaccio
- Dipartimento di Meccanica, Matematica e Management, Politecnico di Bari, Bari 70126, Italy.
| |
Collapse
|
33
|
Silvani G, Romanov V, Cox CD, Martinac B. Biomechanical Characterization of Endothelial Cells Exposed to Shear Stress Using Acoustic Force Spectroscopy. Front Bioeng Biotechnol 2021; 9:612151. [PMID: 33614612 PMCID: PMC7891662 DOI: 10.3389/fbioe.2021.612151] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 01/07/2021] [Indexed: 01/27/2023] Open
Abstract
Characterizing mechanical properties of cells is important for understanding many cellular processes, such as cell movement, shape, and growth, as well as adaptation to changing environments. In this study, we explore the mechanical properties of endothelial cells that form the biological barrier lining blood vessels, whose dysfunction leads to development of many cardiovascular disorders. Stiffness of living endothelial cells was determined by Acoustic Force Spectroscopy (AFS), by pull parallel multiple functionalized microspheres located at the cell-cell periphery. The unique configuration of the acoustic microfluidic channel allowed us to develop a long-term dynamic culture protocol exposing cells to laminar flow for up to 48 h, with shear stresses in the physiological range (i.e., 6 dyn/cm2). Two different Endothelial cells lines, Human Aortic Endothelial Cells (HAECs) and Human Umbilical Vein Endothelial Cells (HUVECs), were investigated to show the potential of this tool to capture the change in cellular mechanical properties during maturation of a confluent endothelial monolayer. Immunofluorescence microscopy was exploited to follow actin filament rearrangement and junction formation over time. For both cell types we found that the application of shear-stress promotes the typical phenotype of a mature endothelium expressing a linear pattern of VE-cadherin at the cell-cell border and actin filament rearrangement along the perimeter of Endothelial cells. A staircase-like sequence of increasing force steps, ranging from 186 pN to 3.5 nN, was then applied in a single measurement revealing the force-dependent apparent stiffness of the membrane cortex in the kPa range. We also found that beads attached to cells cultured under dynamic conditions were harder to displace than cells cultured under static conditions, showing a stiffer membrane cortex at cell periphery. All together these results demonstrate that the AFS can identify changes in cell mechanics based on force measurements of adherent cells under conditions mimicking their native microenvironment, thus revealing the shear stress dependence of the mechanical properties of neighboring endothelial cells.
Collapse
Affiliation(s)
- Giulia Silvani
- Victor Chang Cardiac Research Institute, Sydney, NSW, Australia
| | | | - Charles D. Cox
- Victor Chang Cardiac Research Institute, Sydney, NSW, Australia
- St Vincent's Clinical School, University of New South Wales, Sydney, NSW, Australia
| | - Boris Martinac
- Victor Chang Cardiac Research Institute, Sydney, NSW, Australia
- St Vincent's Clinical School, University of New South Wales, Sydney, NSW, Australia
| |
Collapse
|
34
|
Gil-Redondo JC, Iturri J, Ortega F, Pérez-Sen R, Weber A, Miras-Portugal MT, Toca-Herrera JL, Delicado EG. Nucleotides-Induced Changes in the Mechanical Properties of Living Endothelial Cells and Astrocytes, Analyzed by Atomic Force Microscopy. Int J Mol Sci 2021; 22:ijms22020624. [PMID: 33435130 PMCID: PMC7827192 DOI: 10.3390/ijms22020624] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 01/06/2021] [Accepted: 01/07/2021] [Indexed: 12/18/2022] Open
Abstract
Endothelial cells and astrocytes preferentially express metabotropic P2Y nucleotide receptors, which are involved in the maintenance of vascular and neural function. Among these, P2Y1 and P2Y2 receptors appear as main actors, since their stimulation induces intracellular calcium mobilization and activates signaling cascades linked to cytoskeletal reorganization. In the present work, we have analyzed, by means of atomic force microscopy (AFM) in force spectroscopy mode, the mechanical response of human umbilical vein endothelial cells (HUVEC) and astrocytes upon 2MeSADP and UTP stimulation. This approach allows for simultaneous measurement of variations in factors such as Young’s modulus, maximum adhesion force and rupture event formation, which reflect the potential changes in both the stiffness and adhesiveness of the plasma membrane. The largest effect was observed in both endothelial cells and astrocytes after P2Y2 receptor stimulation with UTP. Such exposure to UTP doubled the Young’s modulus and reduced both the adhesion force and the number of rupture events. In astrocytes, 2MeSADP stimulation also had a remarkable effect on AFM parameters. Additional studies performed with the selective P2Y1 and P2Y13 receptor antagonists revealed that the 2MeSADP-induced mechanical changes were mediated by the P2Y13 receptor, although they were negatively modulated by P2Y1 receptor stimulation. Hence, our results demonstrate that AFM can be a very useful tool to evaluate functional native nucleotide receptors in living cells.
Collapse
Affiliation(s)
- Juan Carlos Gil-Redondo
- Departamento de Bioquímica y Biología Molecular, Facultad de Veterinaria, Instituto Universitario de Investigación en Neuroquímica (IUIN), Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdiSSC), Universidad Complutense Madrid, 28040 Madrid, Spain; (J.C.G.-R.); (R.P.-S.); (M.T.M.-P.)
- Department of Nanobiotechnology (DNBT), Institute for Biophysics, BOKU University for Natural Resources and Life Sciences, Muthgasse 11 (Simon Zeisel Haus), A-1190 Vienna, Austria; (A.W.); (J.L.T.-H.)
| | - Jagoba Iturri
- Department of Nanobiotechnology (DNBT), Institute for Biophysics, BOKU University for Natural Resources and Life Sciences, Muthgasse 11 (Simon Zeisel Haus), A-1190 Vienna, Austria; (A.W.); (J.L.T.-H.)
- Correspondence: (J.I.); (F.O.); (E.G.D.); Tel.: +43-1-47654-80354 (J.I.); +34-91-394-3892 (E.G.D.)
| | - Felipe Ortega
- Departamento de Bioquímica y Biología Molecular, Facultad de Veterinaria, Instituto Universitario de Investigación en Neuroquímica (IUIN), Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdiSSC), Universidad Complutense Madrid, 28040 Madrid, Spain; (J.C.G.-R.); (R.P.-S.); (M.T.M.-P.)
- Correspondence: (J.I.); (F.O.); (E.G.D.); Tel.: +43-1-47654-80354 (J.I.); +34-91-394-3892 (E.G.D.)
| | - Raquel Pérez-Sen
- Departamento de Bioquímica y Biología Molecular, Facultad de Veterinaria, Instituto Universitario de Investigación en Neuroquímica (IUIN), Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdiSSC), Universidad Complutense Madrid, 28040 Madrid, Spain; (J.C.G.-R.); (R.P.-S.); (M.T.M.-P.)
| | - Andreas Weber
- Department of Nanobiotechnology (DNBT), Institute for Biophysics, BOKU University for Natural Resources and Life Sciences, Muthgasse 11 (Simon Zeisel Haus), A-1190 Vienna, Austria; (A.W.); (J.L.T.-H.)
| | - María Teresa Miras-Portugal
- Departamento de Bioquímica y Biología Molecular, Facultad de Veterinaria, Instituto Universitario de Investigación en Neuroquímica (IUIN), Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdiSSC), Universidad Complutense Madrid, 28040 Madrid, Spain; (J.C.G.-R.); (R.P.-S.); (M.T.M.-P.)
| | - José Luis Toca-Herrera
- Department of Nanobiotechnology (DNBT), Institute for Biophysics, BOKU University for Natural Resources and Life Sciences, Muthgasse 11 (Simon Zeisel Haus), A-1190 Vienna, Austria; (A.W.); (J.L.T.-H.)
| | - Esmerilda G. Delicado
- Departamento de Bioquímica y Biología Molecular, Facultad de Veterinaria, Instituto Universitario de Investigación en Neuroquímica (IUIN), Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdiSSC), Universidad Complutense Madrid, 28040 Madrid, Spain; (J.C.G.-R.); (R.P.-S.); (M.T.M.-P.)
- Correspondence: (J.I.); (F.O.); (E.G.D.); Tel.: +43-1-47654-80354 (J.I.); +34-91-394-3892 (E.G.D.)
| |
Collapse
|
35
|
Yan X, Li M, Luo Z, Zhao Y, Zhang H, Chen L. VIP Induces Changes in the F-/G-Actin Ratio of Schlemm's Canal Endothelium via LRRK2 Transcriptional Regulation. Invest Ophthalmol Vis Sci 2021; 61:45. [PMID: 32572455 PMCID: PMC7415318 DOI: 10.1167/iovs.61.6.45] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Purpose A previous study reported that vasoactive intestinal peptide (VIP) can regulate the cytoskeleton of Schlemm's canal (SC) endothelium and expand the SC lumen in a rat glaucoma model. In this study, we aimed to investigate the molecular mechanism of VIP on cytoskeleton regulation. Methods During in vivo experiments in rats, leucine-rich repeat kinase 2 (LRRK2) expression and the ratio of F-actin to G-actin (F-/G-actin) surrounding SC were examined by immunofluorescence after the application of VIP. For in vitro experiments in human umbilical vein endothelial cells, both quantitative PCR (qPCR) and western blotting were performed to evaluate Sp1 and LRRK2 expression after the application of VIP (and Sp1/LRRK2 inhibitor). In addition, the F-/G-actin ratio was examined by both immunofluorescence and western blotting after the application of VIP (and LRRK2 inhibitor). Results VIP induced increases in the expression of LRRK2 both in vivo and in vitro and the nuclear translocation of Sp1 in vitro. The application of Sp1 inhibitor abolished the increase in LRRK2 expression induced by VIP in vitro. In addition, VIP changed the F-/G-actin ratio, and this effect was abolished by the LRRK2 inhibitor both in vivo and in vitro. Conclusions VIP increased the expression of LRRK2, and this regulation was due to the nuclear translocation of Sp1. VIP further changed the F-/G-actin ratio and regulated the balance between the stabilization and destabilization of the F-actin architecture. This study elucidates a novel mechanism by which VIP regulates the actin cytoskeleton of SC endothelium via the Sp1–LRRK2 pathway, suggesting a potential novel treatment strategy for glaucoma.
Collapse
|
36
|
Lüchtefeld I, Bartolozzi A, Mejía Morales J, Dobre O, Basso M, Zambelli T, Vassalli M. Elasticity spectra as a tool to investigate actin cortex mechanics. J Nanobiotechnology 2020; 18:147. [PMID: 33081777 PMCID: PMC7576730 DOI: 10.1186/s12951-020-00706-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Accepted: 10/09/2020] [Indexed: 12/24/2022] Open
Abstract
Background The mechanical properties of single living cells have proven to be a powerful marker of the cell physiological state. The use of nanoindentation-based single cell force spectroscopy provided a wealth of information on the elasticity of cells, which is still largely to be exploited. The simplest model to describe cell mechanics is to treat them as a homogeneous elastic material and describe it in terms of the Young’s modulus. Beside its simplicity, this approach proved to be extremely informative, allowing to assess the potential of this physical indicator towards high throughput phenotyping in diagnostic and prognostic applications. Results Here we propose an extension of this analysis to explicitly account for the properties of the actin cortex. We present a method, the Elasticity Spectra, to calculate the apparent stiffness of the cell as a function of the indentation depth and we suggest a simple phenomenological approach to measure the thickness and stiffness of the actin cortex, in addition to the standard Young’s modulus. Conclusions The Elasticity Spectra approach is tested and validated on a set of cells treated with cytoskeleton-affecting drugs, showing the potential to extend the current representation of cell mechanics, without introducing a detailed and complex description of the intracellular structure.![]()
Collapse
Affiliation(s)
- Ines Lüchtefeld
- Laboratory of Biosensors and Bioelectronics, ETH Zürich, Gloriastrasse 35, 8092, Zürich, Switzerland
| | - Alice Bartolozzi
- Dipartimento di Ingegneria dell'Informazione, Università degli studi di Firenze, Via di S. Marta 3, 50139, Firenze, Italy
| | - Julián Mejía Morales
- Institut de Physique de Nice, Université Côte d'Azur, 1361 Route des Lucioles, 06560, Valbonne, France.,Dipartimento di Medicina Sperimentale, Università degli studi di Genova, Via Leon Battista Alberti 2, 16132, Genova, Italy
| | - Oana Dobre
- James Watt School of Engineering, University of Glasgow, Oakfield avenue, Glasgow, G12 8LT, UK
| | - Michele Basso
- Dipartimento di Ingegneria dell'Informazione, Università degli studi di Firenze, Via di S. Marta 3, 50139, Firenze, Italy
| | - Tomaso Zambelli
- Laboratory of Biosensors and Bioelectronics, ETH Zürich, Gloriastrasse 35, 8092, Zürich, Switzerland
| | - Massimo Vassalli
- James Watt School of Engineering, University of Glasgow, Oakfield avenue, Glasgow, G12 8LT, UK.
| |
Collapse
|
37
|
Stack T, Vincent M, Vahabikashi A, Li G, Perkumas KM, Stamer WD, Johnson M, Scott E. Targeted Delivery of Cell Softening Micelles to Schlemm's Canal Endothelial Cells for Treatment of Glaucoma. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2020; 16:e2004205. [PMID: 33015961 PMCID: PMC7647937 DOI: 10.1002/smll.202004205] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2020] [Revised: 08/19/2020] [Indexed: 05/06/2023]
Abstract
Increased stiffness of the Schlemm's canal (SC) endothelium in the aqueous humor outflow pathways has been associated with elevated intraocular pressure (IOP) in glaucoma. Novel treatments that relax this endothelium, such as actin depolymerizers and rho kinase inhibitors, are in development. Unfortunately, these treatments have undesirable off-target effects and a lower than desired potency. To address these issues, a targeted PEG-b-PPS micelle loaded with actin depolymerizer latrunculin A (tLatA-MC) is developed. Targeting of SC cells is achieved by modifying the micelle surface with a high affinity peptide that binds the VEGFR3/FLT4 receptor, a lymphatic lineage marker found to be highly expressed by SC cells relative to other ocular cells. During in vitro optimization, increasing the peptide surface density increased micellar uptake in SC cells while unexpectedly decreasing uptake by human umbilical vein endothelial cells (HUVEC). The functional efficacy of tLatA-MC, as measured by decreased SC cell stiffness compared to non-targeted micelles (ntLatA-MC) or targeted blank micelles (tBL-MC), is verified using atomic force microscopy. tLatA-MC reduced IOP in an in vivo mouse model by 30-50%. The results validate the use of a cell-softening nanotherapy to selectively modulate stiffness of SC cells for therapeutic reduction of IOP and treatment of glaucoma.
Collapse
Affiliation(s)
- Trevor Stack
- Department of Biomedical Engineering, Northwestern University, 2145 Sheridan Road, Evanston, IL, 60208, USA
| | - Michael Vincent
- Department of Biomedical Engineering, Northwestern University, 2145 Sheridan Road, Evanston, IL, 60208, USA
| | - Amir Vahabikashi
- Department of Biomedical Engineering, Northwestern University, 2145 Sheridan Road, Evanston, IL, 60208, USA
| | - Guorong Li
- Department of Ophthalmology, Duke University, 2351 Erwin Road, Durham, NC, 27710, USA
| | - Kristin M Perkumas
- Department of Ophthalmology, Duke University, 2351 Erwin Road, Durham, NC, 27710, USA
| | - W Daniel Stamer
- Department of Ophthalmology, Duke University, 2351 Erwin Road, Durham, NC, 27710, USA
- Department of Biomedical Engineering, Duke University, 101 Science Drive, Durham, NC, 27708, USA
| | - Mark Johnson
- Department of Biomedical Engineering, Northwestern University, 2145 Sheridan Road, Evanston, IL, 60208, USA
- Department of Ophthalmology, Northwestern University, 645 N. Michigan Avenue, Chicago, IL, 60611, USA
- Department of Mechanical Engineering, Northwestern University, 2145 Sheridan Road, Evanston, IL, 60208, USA
| | - Evan Scott
- Department of Biomedical Engineering, Northwestern University, 2145 Sheridan Road, Evanston, IL, 60208, USA
| |
Collapse
|
38
|
Grexa I, Fekete T, Molnár J, Molnár K, Vizsnyiczai G, Ormos P, Kelemen L. Single-Cell Elasticity Measurement with an Optically Actuated Microrobot. MICROMACHINES 2020; 11:mi11090882. [PMID: 32972024 PMCID: PMC7570390 DOI: 10.3390/mi11090882] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 09/15/2020] [Accepted: 09/20/2020] [Indexed: 02/07/2023]
Abstract
A cell elasticity measurement method is introduced that uses polymer microtools actuated by holographic optical tweezers. The microtools were prepared with two-photon polymerization. Their shape enables the approach of the cells in any lateral direction. In the presented case, endothelial cells grown on vertical polymer walls were probed by the tools in a lateral direction. The use of specially shaped microtools prevents the target cells from photodamage that may arise during optical trapping. The position of the tools was recorded simply with video microscopy and analyzed with image processing methods. We critically compare the resulting Young’s modulus values to those in the literature obtained by other methods. The application of optical tweezers extends the force range available for cell indentations measurements down to the fN regime. Our approach demonstrates a feasible alternative to the usual vertical indentation experiments.
Collapse
Affiliation(s)
- István Grexa
- Biological Research Centre, Temesvári krt. 62, 6726 Szeged, Hungary; (I.G.); (T.F.); (J.M.); (K.M.); (G.V.); (P.O.)
- Doctoral School of Interdisciplinary Medicine, University of Szeged, Korányi fasor 10, 6720 Szeged, Hungary
| | - Tamás Fekete
- Biological Research Centre, Temesvári krt. 62, 6726 Szeged, Hungary; (I.G.); (T.F.); (J.M.); (K.M.); (G.V.); (P.O.)
- Doctoral School of Multidisciplinary Medicine, Dóm tér 9, Hungary University of Szeged, 6720 Szeged, Hungary
| | - Judit Molnár
- Biological Research Centre, Temesvári krt. 62, 6726 Szeged, Hungary; (I.G.); (T.F.); (J.M.); (K.M.); (G.V.); (P.O.)
| | - Kinga Molnár
- Biological Research Centre, Temesvári krt. 62, 6726 Szeged, Hungary; (I.G.); (T.F.); (J.M.); (K.M.); (G.V.); (P.O.)
- Doctoral School of Theoretical Medicine, University of Szeged, Korányi fasor 10, 6720 Szeged, Hungary
| | - Gaszton Vizsnyiczai
- Biological Research Centre, Temesvári krt. 62, 6726 Szeged, Hungary; (I.G.); (T.F.); (J.M.); (K.M.); (G.V.); (P.O.)
| | - Pál Ormos
- Biological Research Centre, Temesvári krt. 62, 6726 Szeged, Hungary; (I.G.); (T.F.); (J.M.); (K.M.); (G.V.); (P.O.)
| | - Lóránd Kelemen
- Biological Research Centre, Temesvári krt. 62, 6726 Szeged, Hungary; (I.G.); (T.F.); (J.M.); (K.M.); (G.V.); (P.O.)
- Correspondence: ; Tel.: +36-62-599-600 (ext. 419)
| |
Collapse
|
39
|
Efremov YM, Kotova SL, Akovantseva AA, Timashev PS. Nanomechanical properties of enucleated cells: contribution of the nucleus to the passive cell mechanics. J Nanobiotechnology 2020; 18:134. [PMID: 32943055 PMCID: PMC7500557 DOI: 10.1186/s12951-020-00696-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Accepted: 09/09/2020] [Indexed: 01/09/2023] Open
Abstract
Background The nucleus, besides its functions in the gene maintenance and regulation, plays a significant role in the cell mechanosensitivity and mechanotransduction. It is the largest cellular organelle that is often considered as the stiffest cell part as well. Interestingly, the previous studies have revealed that the nucleus might be dispensable for some of the cell properties, like polarization and 1D and 2D migration. Here, we studied how the nanomechanical properties of cells, as measured using nanomechanical mapping by atomic force microscopy (AFM), were affected by the removal of the nucleus. Methods The mass enucleation procedure was employed to obtain cytoplasts (enucleated cells) and nucleoplasts (nuclei surrounded by plasma membrane) of two cell lines, REF52 fibroblasts and HT1080 fibrosarcoma cells. High-resolution viscoelastic mapping by AFM was performed to compare the mechanical properties of normal cells, cytoplasts, and nucleoplast. The absence or presence of the nucleus was confirmed with fluorescence microscopy, and the actin cytoskeleton structure was assessed with confocal microscopy. Results Surprisingly, we did not find the softening of cytoplasts relative to normal cells, and even some degree of stiffening was discovered. Nucleoplasts, as well as the nuclei isolated from cells using a detergent, were substantially softer than both the cytoplasts and normal cells. Conclusions The cell can maintain its mechanical properties without the nucleus. Together, the obtained data indicate the dominating role of the actomyosin cytoskeleton over the nucleus in the cell mechanics at small deformations inflicted by AFM. ![]()
Collapse
Affiliation(s)
- Yuri M Efremov
- Institute for Regenerative Medicine, Sechenov University, 8 Trubetskaya St., Moscow, 119991, Russia.
| | - Svetlana L Kotova
- Institute for Regenerative Medicine, Sechenov University, 8 Trubetskaya St., Moscow, 119991, Russia.,N.N. Semenov Institute of Chemical Physics, 4 Kosygin St., Moscow, 119991, Russia
| | - Anastasia A Akovantseva
- Institute of Photon Technologies of Federal Scientific Research Centre "Crystallography and Photonics" of Russian Academy of Sciences, Pionerskaya 2, Troitsk, Moscow, 108840, Russia
| | - Peter S Timashev
- Institute for Regenerative Medicine, Sechenov University, 8 Trubetskaya St., Moscow, 119991, Russia.,N.N. Semenov Institute of Chemical Physics, 4 Kosygin St., Moscow, 119991, Russia.,Institute of Photon Technologies of Federal Scientific Research Centre "Crystallography and Photonics" of Russian Academy of Sciences, Pionerskaya 2, Troitsk, Moscow, 108840, Russia.,Chemistry Department, Lomonosov Moscow State University, Leninskiye Gory 1-3, Moscow, 119991, Russia
| |
Collapse
|
40
|
Garcia R. Nanomechanical mapping of soft materials with the atomic force microscope: methods, theory and applications. Chem Soc Rev 2020; 49:5850-5884. [PMID: 32662499 DOI: 10.1039/d0cs00318b] [Citation(s) in RCA: 182] [Impact Index Per Article: 36.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/28/2024]
Abstract
Fast, high-resolution, non-destructive and quantitative characterization methods are needed to develop materials with tailored properties at the nanoscale or to understand the relationship between mechanical properties and cell physiology. This review introduces the state-of-the-art force microscope-based methods to map at high-spatial resolution the elastic and viscoelastic properties of soft materials. The experimental methods are explained in terms of the theories that enable the transformation of observables into material properties. Several applications in materials science, molecular biology and mechanobiology illustrate the scope, impact and potential of nanomechanical mapping methods.
Collapse
Affiliation(s)
- Ricardo Garcia
- Instituto de Ciencia de Materiales de Madrid, CSIC, c/Sor Juana Inés de la Cruz 3, 28049 Madrid, Spain.
| |
Collapse
|
41
|
Chen Z, Zhu Y, Xu D, Alam MM, Shui L, Chen H. Cell elasticity measurement using a microfluidic device with real-time pressure feedback. LAB ON A CHIP 2020; 20:2343-2353. [PMID: 32463051 DOI: 10.1039/d0lc00092b] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
The study of cell elasticity provides new insights into not only cell biology but also disease diagnosis based on cell mechanical state variation. Microfluidic technologies have made noticeable progress in studying cell deformation with capabilities of high throughput and automation. This paper reports the development of a novel microfluidic system to precisely measure the elasticity of cells having large deformation in a constriction channel. It integrated i) a separation unit to isolate rod- or flake-shaped particles that might block the constriction channel to increase the measurement throughput and ii) a pressure feedback system precisely detecting the pressure drop inducing the deformation of each cell. The fluid dynamics of the separation unit was modeled to understand the separation mechanism before the experimental determination of separation efficiency. Afterward, the pressure system was characterized to demonstrate its sensitivity and reproducibility in measuring the subtle pressure drop along a constriction channel. Finally, the microfluidic system was employed to study the stiffness of both K562 and endothelial cells. The cell protrusion and pressure drop were employed to calculate the mechanical properties based on a power-law rheology model describing the viscoelastic behaviors of cells. Both the stiffness and the fluidity of K562 and endothelial cells were consistent with those in previous studies. The system has remarkable application potential in the precise evaluation of cell mechanical properties.
Collapse
Affiliation(s)
- Zhenlin Chen
- School of Mechanical Engineering and Automation, Harbin Institute of Technology, Shenzhen, Shenzhen 518055, China.
| | | | | | | | | | | |
Collapse
|
42
|
Keeling MC, Gavara N. Withaferin-A Can Be Used to Modulate the Keratin Network of Intermediate Filaments in Human Epidermal Keratinocytes. Int J Mol Sci 2020; 21:ijms21124450. [PMID: 32585813 PMCID: PMC7352337 DOI: 10.3390/ijms21124450] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 06/18/2020] [Accepted: 06/19/2020] [Indexed: 12/22/2022] Open
Abstract
The mechanical state of cells is a critical part of their healthy functioning and it is controlled primarily by cytoskeletal networks (actin, microtubules and intermediate filaments). Drug-based strategies targeting the assembly of a given cytoskeletal network are often used to pinpoint their role in cellular function. Unlike actin and microtubules, there has been limited interest in the role of intermediate filaments, and fewer drugs have thus been identified and characterised as modulators of its assembly. Here, we evaluate whether Withaferin-A (WFA), an established disruptor of vimentin filaments, can also be used to modulate keratin filament assembly. Our results show that in keratinocytes, which are keratin-rich but vimentin-absent, Withaferin-A disrupts keratin filaments. Importantly, the dosages required are similar to those previously reported to disrupt vimentin in other cell types. Furthermore, Withaferin-A-induced keratin disassembly is accompanied by changes in cell stiffness and migration. Therefore, we propose that WFA can be repurposed as a useful drug to disrupt the keratin cytoskeleton in epithelial cells.
Collapse
|
43
|
Cao L, Yonis A, Vaghela M, Barriga EH, Chugh P, Smith MB, Maufront J, Lavoie G, Méant A, Ferber E, Bovellan M, Alberts A, Bertin A, Mayor R, Paluch EK, Roux PP, Jégou A, Romet-Lemonne G, Charras G. SPIN90 associates with mDia1 and the Arp2/3 complex to regulate cortical actin organization. Nat Cell Biol 2020; 22:803-814. [PMID: 32572169 DOI: 10.1038/s41556-020-0531-y] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Accepted: 05/04/2020] [Indexed: 01/02/2023]
Abstract
Cell shape is controlled by the submembranous cortex, an actomyosin network mainly generated by two actin nucleators: the Arp2/3 complex and the formin mDia1. Changes in relative nucleator activity may alter cortical organization, mechanics and cell shape. Here we investigate how nucleation-promoting factors mediate interactions between nucleators. In vitro, the nucleation-promoting factor SPIN90 promotes formation of unbranched filaments by Arp2/3, a process thought to provide the initial filament for generation of dendritic networks. Paradoxically, in cells, SPIN90 appears to favour a formin-dominated cortex. Our in vitro experiments reveal that this feature stems mainly from two mechanisms: efficient recruitment of mDia1 to SPIN90-Arp2/3 nucleated filaments and formation of a ternary SPIN90-Arp2/3-mDia1 complex that greatly enhances filament nucleation. Both mechanisms yield rapidly elongating filaments with mDia1 at their barbed ends and SPIN90-Arp2/3 at their pointed ends. Thus, in networks, SPIN90 lowers branching densities and increases the proportion of long filaments elongated by mDia1.
Collapse
Affiliation(s)
- Luyan Cao
- Université de Paris, CNRS, Institut Jacques Monod, Paris, France
| | - Amina Yonis
- London Centre for Nanotechnology, University College London, London, UK.,Department of Cell and Developmental Biology, University College London, London, UK
| | - Malti Vaghela
- London Centre for Nanotechnology, University College London, London, UK.,Department of Physics and Astronomy, University College London, London, UK
| | - Elias H Barriga
- Department of Cell and Developmental Biology, University College London, London, UK.,Instituto Gulbenkian de Ciência, Oeiras, Portugal
| | - Priyamvada Chugh
- MRC-Laboratory for Molecular Cell Biology, University College London, London, UK
| | - Matthew B Smith
- MRC-Laboratory for Molecular Cell Biology, University College London, London, UK.,The Francis Crick institute, London, UK
| | - Julien Maufront
- Laboratoire Physico Chimie Curie, Institut Curie, PSL Research University, CNRS UMR168, Paris, France.,Sorbonne Universités, Paris, France
| | - Geneviève Lavoie
- Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, Quebec, Canada
| | - Antoine Méant
- Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, Quebec, Canada
| | - Emma Ferber
- London Centre for Nanotechnology, University College London, London, UK
| | - Miia Bovellan
- London Centre for Nanotechnology, University College London, London, UK.,Department of Cell and Developmental Biology, University College London, London, UK
| | - Art Alberts
- Van Andel research institute, Grand Rapids, MI, USA
| | - Aurélie Bertin
- Laboratoire Physico Chimie Curie, Institut Curie, PSL Research University, CNRS UMR168, Paris, France.,Sorbonne Universités, Paris, France
| | - Roberto Mayor
- Department of Cell and Developmental Biology, University College London, London, UK
| | - Ewa K Paluch
- MRC-Laboratory for Molecular Cell Biology, University College London, London, UK.,Institute for the Physics of Living Systems, University College London, London, UK.,Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK
| | - Philippe P Roux
- Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, Quebec, Canada.,Department of Pathology and Cell Biology, Université de Montréal, Montréal, Canada
| | - Antoine Jégou
- Université de Paris, CNRS, Institut Jacques Monod, Paris, France.
| | | | - Guillaume Charras
- London Centre for Nanotechnology, University College London, London, UK. .,Department of Cell and Developmental Biology, University College London, London, UK. .,Institute for the Physics of Living Systems, University College London, London, UK.
| |
Collapse
|
44
|
Wang L, Tian L, Zhang W, Wang Z, Liu X. Effect of AFM Nanoindentation Loading Rate on the Characterization of Mechanical Properties of Vascular Endothelial Cell. MICROMACHINES 2020; 11:E562. [PMID: 32486388 PMCID: PMC7345843 DOI: 10.3390/mi11060562] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 05/28/2020] [Accepted: 05/28/2020] [Indexed: 02/07/2023]
Abstract
Vascular endothelial cells form a barrier that blocks the delivery of drugs entering into brain tissue for central nervous system disease treatment. The mechanical responses of vascular endothelial cells play a key role in the progress of drugs passing through the blood-brain barrier. Although nanoindentation experiment by using AFM (Atomic Force Microscopy) has been widely used to investigate the mechanical properties of cells, the particular mechanism that determines the mechanical response of vascular endothelial cells is still poorly understood. In order to overcome this limitation, nanoindentation experiments were performed at different loading rates during the ramp stage to investigate the loading rate effect on the characterization of the mechanical properties of bEnd.3 cells (mouse brain endothelial cell line). Inverse finite element analysis was implemented to determine the mechanical properties of bEnd.3 cells. The loading rate effect appears to be more significant in short-term peak force than that in long-term force. A higher loading rate results in a larger value of elastic modulus of bEnd.3 cells, while some mechanical parameters show ambiguous regulation to the variation of indentation rate. This study provides new insights into the mechanical responses of vascular endothelial cells, which is important for a deeper understanding of the cell mechanobiological mechanism in the blood-brain barrier.
Collapse
Affiliation(s)
- Lei Wang
- Center of Ultra-Precision Optoelectric Instrument Engineering, School of Instrumentation Science and Engineering, Harbin Institute of Technology, Harbin 150001, China
| | - Liguo Tian
- International Research Center for Nano Handling and Manufacturing of China, Changchun University of Science and Technology, Changchun 130022, China; (L.T.); (W.Z.); (Z.W.)
| | - Wenxiao Zhang
- International Research Center for Nano Handling and Manufacturing of China, Changchun University of Science and Technology, Changchun 130022, China; (L.T.); (W.Z.); (Z.W.)
| | - Zuobin Wang
- International Research Center for Nano Handling and Manufacturing of China, Changchun University of Science and Technology, Changchun 130022, China; (L.T.); (W.Z.); (Z.W.)
| | - Xianping Liu
- School of Engineering, University of Warwick, Coventry CV4 7AL, UK;
| |
Collapse
|
45
|
Garcia PD, Guerrero CR, Garcia R. Nanorheology of living cells measured by AFM-based force-distance curves. NANOSCALE 2020; 12:9133-9143. [PMID: 32293616 DOI: 10.1039/c9nr10316c] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Mechanobiology aims to establish functional relationships between the mechanical state of a living a cell and its physiology. The acquisition of force-distance curves with an AFM is by far the dominant method to characterize the nanomechanical properties of living cells. However, theoretical simulations have shown that the contact mechanics models used to determine the Young's modulus from a force-distance curve could be off by a factor 5 from its expected value. The semi-quantitative character arises from the lack of a theory that integrates the AFM data, a realistic viscoelastic model of a cell and its finite-thickness. Here, we develop a method to determine the mechanical response of a cell from a force-distance curve. The method incorporates bottom-effect corrections, a power-law rheology model and the deformation history of the cell. It transforms the experimental data into viscoelastic parameters of the cell as a function of the indentation frequency. The quantitative agreement obtained between the experiments performed on living fibroblast cells and the analytical theory supports the use of force-distance curves to measure the nanorheological properties of cells.
Collapse
Affiliation(s)
- Pablo D Garcia
- Instituto de Ciencia de Materiales de Madrid, CSIC, c/ Sor Juana Inés de la Cruz 3, 28049 Madrid, Spain.
| | | | | |
Collapse
|
46
|
Determination of viscohyperelastic properties of tubule epithelial cells by an approach combined with AFM nanoindentation and finite element analysis. Micron 2020; 129:102779. [DOI: 10.1016/j.micron.2019.102779] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Revised: 11/04/2019] [Accepted: 11/04/2019] [Indexed: 01/12/2023]
|
47
|
Abstract
AbstractAtomic force microscopy (AFM) has been widely used to acquire surface topography upon different scanning modes and to quantify mechanical properties of a cell using single-point ramp force mode. However, these traditional measurements need massive force curves originating from multiple points of a cell to exclude the potential errors resulted from limited and factitious selections of testing points, making the measurements time-consuming and highly localized. PeakForce Quantitative NanoMechanics (PF QNM) is a high-speed (faster by 3–4 order of magnitude) and global surface mechanical property mapping method with high spatial resolution, overcoming the drawbacks of traditional ramp mode especially used for a live cell with high heterogeneity. In this protocol, we elaborated how to run PF QNM measurements for live cells and relevant modification may be needed when extending this method to other cell-like soft materials.
Collapse
|
48
|
Efremov YM, Okajima T, Raman A. Measuring viscoelasticity of soft biological samples using atomic force microscopy. SOFT MATTER 2020; 16:64-81. [PMID: 31720656 DOI: 10.1039/c9sm01020c] [Citation(s) in RCA: 112] [Impact Index Per Article: 22.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Mechanical properties play important roles at different scales in biology. At the level of a single cell, the mechanical properties mediate mechanosensing and mechanotransduction, while at the tissue and organ levels, changes in mechanical properties are closely connected to disease and physiological processes. Over the past three decades, atomic force microscopy (AFM) has become one of the most widely used tools in the mechanical characterization of soft samples, ranging from molecules, cell organoids and cells to whole tissue. AFM methods can be used to quantify both elastic and viscoelastic properties, and significant recent developments in the latter have been enabled by the introduction of new techniques and models for data analysis. Here, we review AFM techniques developed in recent years for examining the viscoelastic properties of cells and soft gels, describe the main steps in typical data acquisition and analysis protocols, and discuss relevant viscoelastic models and how these have been used to characterize the specific features of cellular and other biological samples. We also discuss recent trends and potential directions for this field.
Collapse
Affiliation(s)
- Yuri M Efremov
- School of Mechanical Engineering, Purdue University, West Lafayette, Indiana, USA. and Birck Nanotechnology Center, Purdue University, West Lafayette, Indiana, USA and Institute for Regenerative Medicine, Sechenov University, Moscow, Russia
| | - Takaharu Okajima
- Graduate School of Information Science and Technology, Hokkaido University, Sapporo, Japan
| | - Arvind Raman
- School of Mechanical Engineering, Purdue University, West Lafayette, Indiana, USA. and Birck Nanotechnology Center, Purdue University, West Lafayette, Indiana, USA
| |
Collapse
|
49
|
Song Y, Soto J, Chen B, Yang L, Li S. Cell engineering: Biophysical regulation of the nucleus. Biomaterials 2020; 234:119743. [PMID: 31962231 DOI: 10.1016/j.biomaterials.2019.119743] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Revised: 12/02/2019] [Accepted: 12/25/2019] [Indexed: 12/12/2022]
Abstract
Cells live in a complex and dynamic microenvironment, and a variety of microenvironmental cues can regulate cell behavior. In addition to biochemical signals, biophysical cues can induce not only immediate intracellular responses, but also long-term effects on phenotypic changes such as stem cell differentiation, immune cell activation and somatic cell reprogramming. Cells respond to mechanical stimuli via an outside-in and inside-out feedback loop, and the cell nucleus plays an important role in this process. The mechanical properties of the nucleus can directly or indirectly modulate mechanotransduction, and the physical coupling of the cell nucleus with the cytoskeleton can affect chromatin structure and regulate the epigenetic state, gene expression and cell function. In this review, we will highlight the recent progress in nuclear biomechanics and mechanobiology in the context of cell engineering, tissue remodeling and disease development.
Collapse
Affiliation(s)
- Yang Song
- Department of Bioengineering, University of California, Los Angeles, CA, USA; School of Bioengineering, Chongqing University, Chongqing, 400044, China
| | - Jennifer Soto
- Department of Bioengineering, University of California, Los Angeles, CA, USA
| | - Binru Chen
- Department of Bioengineering, University of California, Los Angeles, CA, USA
| | - Li Yang
- School of Bioengineering, Chongqing University, Chongqing, 400044, China
| | - Song Li
- Department of Bioengineering, University of California, Los Angeles, CA, USA; Department of Medicine, University of California, Los Angeles, CA, USA.
| |
Collapse
|
50
|
Vahabikashi A, Gelman A, Dong B, Gong L, Cha EDK, Schimmel M, Tamm ER, Perkumas K, Stamer WD, Sun C, Zhang HF, Gong H, Johnson M. Increased stiffness and flow resistance of the inner wall of Schlemm's canal in glaucomatous human eyes. Proc Natl Acad Sci U S A 2019; 116:26555-26563. [PMID: 31806762 PMCID: PMC6936716 DOI: 10.1073/pnas.1911837116] [Citation(s) in RCA: 71] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The cause of the elevated outflow resistance and consequent ocular hypertension characteristic of glaucoma is unknown. To investigate possible causes for this flow resistance, we used atomic force microscopy (AFM) with 10-µm spherical tips to probe the stiffness of the inner wall of Schlemm's canal as a function of distance from the tissue surface in normal and glaucomatous postmortem human eyes, and 1-µm spherical AFM tips to probe the region immediately below the tissue surface. To localize flow resistance, perfusion and imaging methods were used to characterize the pressure drop in the immediate vicinity of the inner wall using giant vacuoles that form in Schlemm's canal cells as micropressure sensors. Tissue stiffness increased with increasing AFM indentation depth. Tissues from glaucomatous eyes were stiffer compared with normal eyes, with greatly increased stiffness residing within ∼1 µm of the inner-wall surface. Giant vacuole size and density were similar in normal and glaucomatous eyes despite lower flow rate through the latter due to their higher flow resistance. This implied that the elevated flow resistance found in the glaucomatous eyes was localized to the same region as the increased tissue stiffness. Our findings implicate pathological changes to biophysical characteristics of Schlemm's canal endothelia and/or their immediate underlying extracellular matrix as cause for ocular hypertension in glaucoma.
Collapse
Affiliation(s)
- Amir Vahabikashi
- Department of Biomedical Engineering, Northwestern University, Evanston, IL 60201
| | - Ariel Gelman
- Department of Ophthalmology, Boston University School of Medicine, Boston, MA 02118
| | - Biqin Dong
- Department of Biomedical Engineering, Northwestern University, Evanston, IL 60201
- Department of Mechanical Engineering, Northwestern University, Evanston, IL 60201
| | - Lihua Gong
- Department of Ophthalmology, Boston University School of Medicine, Boston, MA 02118
| | - Elliott D. K. Cha
- Department of Ophthalmology, Boston University School of Medicine, Boston, MA 02118
| | - Margit Schimmel
- Institute of Anatomy, University of Regensburg, D-93053 Regensburg, Germany
| | - Ernst R. Tamm
- Institute of Anatomy, University of Regensburg, D-93053 Regensburg, Germany
| | | | - W. Daniel Stamer
- Department of Ophthalmology, Duke University, Durham, NC 27710
- Department of Biomedical Engineering, Duke University, Durham, NC 27708
| | - Cheng Sun
- Department of Mechanical Engineering, Northwestern University, Evanston, IL 60201
| | - Hao F. Zhang
- Department of Biomedical Engineering, Northwestern University, Evanston, IL 60201
- Department of Ophthalmology, Northwestern University, Chicago, IL 60611
| | - Haiyan Gong
- Department of Ophthalmology, Boston University School of Medicine, Boston, MA 02118
| | - Mark Johnson
- Department of Biomedical Engineering, Northwestern University, Evanston, IL 60201
- Department of Mechanical Engineering, Northwestern University, Evanston, IL 60201
- Department of Ophthalmology, Northwestern University, Chicago, IL 60611
| |
Collapse
|