1
|
Volovik MV, Batishchev OV. Viral fingerprints of the ion channel evolution: compromise of complexity and function. J Biomol Struct Dyn 2024:1-20. [PMID: 39365745 DOI: 10.1080/07391102.2024.2411523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Accepted: 04/29/2024] [Indexed: 10/06/2024]
Abstract
Evolution from precellular supramolecular assemblies to cellular world originated from the ability to make a barrier between the interior of the cell and the outer environment. This step resulted from the possibility to form a membrane, which preserves the cell like a wall of the castle. However, every castle needs gates for trading, i.e. in the case of cell, for controlled exchange of substances. These 'gates' should have the mechanism of opening and closing, guards, entry rules, and so on. Different structures are known to be able to make membrane permeable to various substances, from ions to macromolecules. They are amphipathic peptides, their assemblies, sophisticated membrane channels with numerous transmembrane domains, etc. Upon evolving, cellular world preserved and selected many variants, which, finally, have provided both prokaryotes and eukaryotes with highly selective and regulated ion channels. However, various simpler variants of ion channels are found in viruses. Despite the origin of viruses is still under debates, they have evolved parallelly with the cellular forms of life. Being initial form of the enveloped organisms, reduction of protocells or their escaped parts, viruses might be fingerprints of the evolutionary steps of cellular structures like ion channels. Therefore, viroporins may provide us a necessary information about selection between high functionality and less complex structure in supporting all the requirements for controlled membrane permeability. In this review we tried to elucidate these compromises and show the possible way of the evolution of ion channels, from peptides to complex multi-subunit structures, basing on viral examples.
Collapse
Affiliation(s)
- Marta V Volovik
- Laboratory of Bioelectrochemistry, A.N. Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, Moscow, Russia
| | - Oleg V Batishchev
- Laboratory of Bioelectrochemistry, A.N. Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, Moscow, Russia
| |
Collapse
|
2
|
Kephart SM, Hom N, Lee KK. Visualizing intermediate stages of viral membrane fusion by cryo-electron tomography. Trends Biochem Sci 2024; 49:916-931. [PMID: 39054240 PMCID: PMC11455608 DOI: 10.1016/j.tibs.2024.06.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 06/07/2024] [Accepted: 06/18/2024] [Indexed: 07/27/2024]
Abstract
Protein-mediated membrane fusion is the dynamic process where specialized protein machinery undergoes dramatic conformational changes that drive two membrane bilayers together, leading to lipid mixing and opening of a fusion pore between previously separate membrane-bound compartments. Membrane fusion is an essential stage of enveloped virus entry that results in viral genome delivery into host cells. Recent studies applying cryo-electron microscopy techniques in a time-resolved fashion provide unprecedented glimpses into the interaction of viral fusion proteins and membranes, revealing fusion intermediate states from the initiation of fusion to release of the viral genome. In combination with complementary structural, biophysical, and computation modeling approaches, these advances are shedding new light on the mechanics and dynamics of protein-mediated membrane fusion.
Collapse
Affiliation(s)
- Sally M Kephart
- Department of Medicinal Chemistry, University of Washington, Seattle, WA, USA
| | - Nancy Hom
- Department of Medicinal Chemistry, University of Washington, Seattle, WA, USA
| | - Kelly K Lee
- Department of Medicinal Chemistry, University of Washington, Seattle, WA, USA; Biological Structure Physics and Design Graduate Program, University of Washington, Seattle, WA, USA.
| |
Collapse
|
3
|
Wang L, Shi L, Liu H, Zhang J, Yang W, Schountz T, Ma W. Incompatible packaging signals and impaired protein functions hinder reassortment of bat H17N10 or H18N11 segment 7 with human H1N1 influenza A viruses. J Virol 2024; 98:e0086424. [PMID: 39162567 PMCID: PMC11406886 DOI: 10.1128/jvi.00864-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Accepted: 07/11/2024] [Indexed: 08/21/2024] Open
Abstract
Novel bat H17N10 and H18N11 influenza A viruses (IAVs) are incapable of reassortment with conventional IAVs during co-infection. To date, the underlying mechanisms that inhibit bat and conventional IAV reassortment remain poorly understood. Herein, we used the bat influenza M gene in the PR8 H1N1 virus genetic background to determine the molecular basis that restricts reassortment of segment 7. Our results showed that NEP and M1 from bat H17N10 and H18N11 can interact with PR8 M1 and NEP, resulting in mediating PR8 viral ribonucleoprotein (vRNP) nuclear export and formation of virus-like particles with single vRNP. Further studies demonstrated that the incompatible packaging signals (PSs) of H17N10 or H18N11 M segment led to the failure to rescue recombinant viruses in the PR8 genetic background. Recombinant PR8 viruses (rPR8psH18M and rPR8psH17M) containing bat influenza M coding region flanked with the PR8 M PSs were rescued but displayed lower replication in contrast to the parental PR8 virus, which is due to a low efficiency of recombinant virus uncoating correlating with the functions of the bat M2. Our studies reveal molecular mechanisms of the M gene that hinder reassortment between bat and conventional IAVs, which will help to understand the biology of novel bat IAVs. IMPORTANCE Reassortment is one of the mechanisms in fast evolution of influenza A viruses (IAVs) and responsible for generating pandemic strains. To date, why novel bat IAVs are incapable of reassorting with conventional IAVs remains completely understood. Here, we attempted to rescue recombinant PR8 viruses with M segment from bat IAVs to understand the molecular mechanisms in hindering their reassortment. Results showed that bat influenza NEP and M1 have similar functions as respective counterparts of PR8 to medicating viral ribonucleoprotein nuclear export. Moreover, the incompatible packaging signals of M genes from bat and conventional IAVs and impaired bat M2 functions are the major reasons to hinder their reassortment. Recombinant PR8 viruses with bat influenza M open reading frames were generated but showed attenuation, which correlated with the functions of the bat M2 protein. Our studies provide novel insights into the molecular mechanisms that restrict reassortment between bat and conventional IAVs.
Collapse
Affiliation(s)
- Liping Wang
- Department of Veterinary Pathobiology, College of Veterinary Medicine, University of Missouri, Columbia, Missouri, USA
- Department of Molecular Microbiology and Immunology, School of Medicine, University of Missouri, Columbia, Missouri, USA
- MU Center for Influenza and Emerging Infectious Diseases, University of Missouri, Columbia, Missouri, USA
| | - Lei Shi
- Department of Veterinary Pathobiology, College of Veterinary Medicine, University of Missouri, Columbia, Missouri, USA
- Department of Molecular Microbiology and Immunology, School of Medicine, University of Missouri, Columbia, Missouri, USA
- MU Center for Influenza and Emerging Infectious Diseases, University of Missouri, Columbia, Missouri, USA
| | - Heidi Liu
- Department of Veterinary Pathobiology, College of Veterinary Medicine, University of Missouri, Columbia, Missouri, USA
- Department of Molecular Microbiology and Immunology, School of Medicine, University of Missouri, Columbia, Missouri, USA
| | - Jialin Zhang
- Department of Veterinary Pathobiology, College of Veterinary Medicine, University of Missouri, Columbia, Missouri, USA
- Department of Molecular Microbiology and Immunology, School of Medicine, University of Missouri, Columbia, Missouri, USA
| | - Wenyu Yang
- Department of Veterinary Pathobiology, College of Veterinary Medicine, University of Missouri, Columbia, Missouri, USA
- Department of Molecular Microbiology and Immunology, School of Medicine, University of Missouri, Columbia, Missouri, USA
| | - Tony Schountz
- Department of Microbiology, Immunology and Pathology, College of Veterinary Medicine and Biomedical Sciences, Center for Vector-borne Infectious Diseases, Colorado State University, Fort Collins, Colorado, USA
| | - Wenjun Ma
- Department of Veterinary Pathobiology, College of Veterinary Medicine, University of Missouri, Columbia, Missouri, USA
- Department of Molecular Microbiology and Immunology, School of Medicine, University of Missouri, Columbia, Missouri, USA
- MU Center for Influenza and Emerging Infectious Diseases, University of Missouri, Columbia, Missouri, USA
| |
Collapse
|
4
|
Sulpiana, Amalia R, Atik N. The Roles of Endocytosis and Autophagy at the Cellular Level During Influenza Virus Infection: A Mini-Review. Infect Drug Resist 2024; 17:3199-3208. [PMID: 39070720 PMCID: PMC11283801 DOI: 10.2147/idr.s471204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 07/18/2024] [Indexed: 07/30/2024] Open
Abstract
Acute respiratory infections contribute to morbidity and mortality worldwide. The common cause of this deadly disease is a virus, and one of the most commonly found is the influenza virus. Influenza viruses have several capabilities in infection, including utilizing the host's machinery to survive within cells and replicate safely. This review aims to examine the literature on how influenza viruses use host machinery, including endocytosis and autophagy, for their internalization and replication within cells. This review method involves a literature search by examining articles published in the PubMed and Scopus databases. The keywords used were "Endocytosis" OR "Autophagy" AND "Influenza Virus". Eighteen articles were included due to inclusion and exclusion criteria. GTPases switch, and V-ATPase plays a key role in the endocytic machinery hijacked by influenza viruses to enter host cells. On the other hand, LC3 and Atg5 facilitate influenza-induced apoptosis via the autophagic pathway. In conclusion, influenza viruses primarily use clathrin-mediated endocytosis to enter cells and avoid degradation during endosomal maturation by exiting endosomes for transfer to the nucleus for replication. It also uses autophagy to induce apoptosis to continue replication. The capability of the influenza viruses to hijack endocytosis and autophagy mechanisms could be critical points for further research. Therefore, we discuss how the influenza virus utilizes both endocytosis and autophagy and the approach for a new strategic therapy targeting those mechanisms.
Collapse
Affiliation(s)
- Sulpiana
- Biomedical Science Master Program, Faculty of Medicine, Universitas Padjadjaran, Bandung, West Java, 54211, Indonesia
- Faculty of Medicine, IPB University, Bogor, 16680, Indonesia
| | - Riezki Amalia
- Department of Pharmacology and Clinical Pharmacy, Faculty of Pharmacy, Universitas Padjadjaran, Bandung, West Java, Indonesia
| | - Nur Atik
- Department of Biomedical Sciences, Faculty of Medicine, Universitas Padjadjaran, Bandung, West Java, 40161, Indonesia
| |
Collapse
|
5
|
David SC, Vadas O, Glas I, Schaub A, Luo B, D'angelo G, Montoya JP, Bluvshtein N, Hugentobler W, Klein LK, Motos G, Pohl M, Violaki K, Nenes A, Krieger UK, Stertz S, Peter T, Kohn T. Inactivation mechanisms of influenza A virus under pH conditions encountered in aerosol particles as revealed by whole-virus HDX-MS. mSphere 2023; 8:e0022623. [PMID: 37594288 PMCID: PMC10597348 DOI: 10.1128/msphere.00226-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 06/23/2023] [Indexed: 08/19/2023] Open
Abstract
Multiple respiratory viruses, including influenza A virus (IAV), can be transmitted via expiratory aerosol particles, and aerosol pH was recently identified as a major factor influencing airborne virus infectivity. Indoors, small exhaled aerosols undergo rapid acidification to pH ~4. IAV is known to be sensitive to mildly acidic conditions encountered within host endosomes; however, it is unknown whether the same mechanisms could mediate viral inactivation within the more acidic aerosol micro-environment. Here, we identified that transient exposure to pH 4 caused IAV inactivation by a two-stage process, with an initial sharp decline in infectious titers mainly attributed to premature attainment of the post-fusion conformation of viral protein haemagglutinin (HA). Protein changes were observed by hydrogen-deuterium exchange coupled to mass spectrometry (HDX-MS) as early as 10 s post-exposure to acidic conditions. Our HDX-MS data are in agreement with other more labor-intensive structural analysis techniques, such as X-ray crystallography, highlighting the ease and usefulness of whole-virus HDX-MS for multiplexed protein analyses, even within enveloped viruses such as IAV. Additionally, virion integrity was partially but irreversibly affected by acidic conditions, with a progressive unfolding of the internal matrix protein 1 (M1) that aligned with a more gradual decline in viral infectivity with time. In contrast, no acid-mediated changes to the genome or lipid envelope were detected. Improved understanding of respiratory virus fate within exhaled aerosols constitutes a global public health priority, and information gained here could aid the development of novel strategies to control the airborne persistence of seasonal and/or pandemic influenza in the future. IMPORTANCE It is well established that COVID-19, influenza, and many other respiratory diseases can be transmitted by the inhalation of aerosolized viruses. Many studies have shown that the survival time of these airborne viruses is limited, but it remains an open question as to what drives their infectivity loss. Here, we address this question for influenza A virus by investigating structural protein changes incurred by the virus under conditions relevant to respiratory aerosol particles. From prior work, we know that expelled aerosols can become highly acidic due to equilibration with indoor room air, and our results indicate that two viral proteins are affected by these acidic conditions at multiple sites, leading to virus inactivation. Our findings suggest that the development of air treatments to quicken the speed of aerosol acidification would be a major strategy to control infectious bioburdens in the air.
Collapse
Affiliation(s)
- Shannon C. David
- Environmental Chemistry Laboratory, School of Architecture, Civil and Environmental Engineering, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Oscar Vadas
- Protein Platform, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Irina Glas
- Institute of Medical Virology, University of Zurich, Zürich, Switzerland
| | - Aline Schaub
- Environmental Chemistry Laboratory, School of Architecture, Civil and Environmental Engineering, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Beiping Luo
- Institute for Atmospheric and Climate Science, ETH Zurich, Zürich, Switzerland
| | - Giovanni D'angelo
- Laboratory of Lipid Cell Biology, School of Life Sciences, Interschool Institute of Bioengineering and Global Health Institute, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Jonathan Paz Montoya
- Laboratory of Lipid Cell Biology, School of Life Sciences, Interschool Institute of Bioengineering and Global Health Institute, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Nir Bluvshtein
- Institute for Atmospheric and Climate Science, ETH Zurich, Zürich, Switzerland
| | - Walter Hugentobler
- Laboratory of Atmospheric Processes and their Impacts, School of Architecture, Civil and Environmental Engineering, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Liviana K. Klein
- Institute for Atmospheric and Climate Science, ETH Zurich, Zürich, Switzerland
| | - Ghislain Motos
- Laboratory of Atmospheric Processes and their Impacts, School of Architecture, Civil and Environmental Engineering, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Marie Pohl
- Institute of Medical Virology, University of Zurich, Zürich, Switzerland
| | - Kalliopi Violaki
- Laboratory of Atmospheric Processes and their Impacts, School of Architecture, Civil and Environmental Engineering, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Athanasios Nenes
- Laboratory of Atmospheric Processes and their Impacts, School of Architecture, Civil and Environmental Engineering, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
- Institute of Chemical Engineering Sciences, Foundation for Research and Technology Hellas, Patras, Greece
| | - Ulrich K. Krieger
- Institute for Atmospheric and Climate Science, ETH Zurich, Zürich, Switzerland
| | - Silke Stertz
- Institute of Medical Virology, University of Zurich, Zürich, Switzerland
| | - Thomas Peter
- Institute for Atmospheric and Climate Science, ETH Zurich, Zürich, Switzerland
| | - Tamar Kohn
- Environmental Chemistry Laboratory, School of Architecture, Civil and Environmental Engineering, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| |
Collapse
|
6
|
Huang X, Yin G, Zhou B, Cai Y, Hu J, Huang J, Chen Z, Liu Q, Feng X. KRT10 plays an important role in the release of viral genome from endosomes during H9N2 subtype AIV replication in HeLa cells. Vet Microbiol 2023; 284:109824. [PMID: 37406407 DOI: 10.1016/j.vetmic.2023.109824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 06/21/2023] [Accepted: 06/28/2023] [Indexed: 07/07/2023]
Abstract
The infection and replication of avian influenza virus (AIV) in host cells is a complex biological process that involves the transport of viral genes through the host cell's transport systems. Actin, microtubules and vimentin are known to facilitate transport of endosomes to the perinuclear region, but the biological role of Keratin, another intermediate filament, in viral transport during AIV replication is not well understood. In this study, the viral NS2 protein was used as the target protein to identify the potential interacting proteins following GST-Pulldown method and protein mass spectrometry. It was discovered that Keratin10 interacted with NS2. Subsequently, it was found AIV infection did not affect the gene level or protein level of keratin10 in HeLa cells, but when Keratin10 was knocked down, the expressions of viral NP mRNA and protein were reduced, and the generation of offspring virus also was also decreased. Furthermore, in early viral infection, Keratin10 could aggregate and co-localize with NP proteins, suggesting that Keratin10 might be connected to early viral transport. Additionally, it was demonstrated that Keratin10 co-localized with Lamp1 and that AIV particles were trapped in late endosomes/Lysosomes after Keratin10 was knocked down. Finally, it was discovered that the knocking down Keratin10 in HeLa cells led to an increase in the acidic pH of endosomes and lysosomes, which prevented AIV from undergoing fusion and uncoating, and then inhibited the process of the viral infection. Overall, the results suggested that Keratin10 might play the critical role in the release of vRNPs from LEs/Ls and can affect the generation of offspring virus. The study provides the novel insights into the role of Keratin10 in the process of AIV infection and transmission, which may have implications for developing new strategies to against AIV infections.
Collapse
Affiliation(s)
- Xiangyu Huang
- Key Laboratory of Animal Microbiology of China's Ministry of Agriculture, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China; MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Guihu Yin
- Key Laboratory of Animal Microbiology of China's Ministry of Agriculture, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China; MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Bin Zhou
- Key Laboratory of Animal Microbiology of China's Ministry of Agriculture, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China; MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Yiqin Cai
- Key Laboratory of Animal Microbiology of China's Ministry of Agriculture, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China; MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Jianing Hu
- Key Laboratory of Animal Microbiology of China's Ministry of Agriculture, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China; MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Jingwen Huang
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Zili Chen
- Agricultural Comprehensive Law Enforcement Brigade of Rudong, Rudong Agriculture and Rural Affairs Bureau, Rudong 226400, China
| | - Qingtao Liu
- Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Xiuli Feng
- Key Laboratory of Animal Microbiology of China's Ministry of Agriculture, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China; MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China.
| |
Collapse
|
7
|
Thompson D, Cismaru CV, Rougier JS, Schwemmle M, Zimmer G. The M2 proteins of bat influenza A viruses reveal atypical features compared to conventional M2 proteins. J Virol 2023; 97:e0038823. [PMID: 37540019 PMCID: PMC10506471 DOI: 10.1128/jvi.00388-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Accepted: 06/14/2023] [Indexed: 08/05/2023] Open
Abstract
The influenza A virus (IAV) M2 protein has proton channel activity, which plays a role in virus uncoating and may help to preserve the metastable conformation of the IAV hemagglutinin (HA). In contrast to the highly conserved M2 proteins of conventional IAV, the primary sequences of bat IAV H17N10 and H18N11 M2 proteins show remarkable divergence, suggesting that these proteins may differ in their biological function. We, therefore, assessed the proton channel activity of bat IAV M2 proteins and investigated its role in virus replication. Here, we show that the M2 proteins of bat IAV did not fully protect acid-sensitive HA of classical IAV from low pH-induced conformational change, indicating low proton channel activity. Interestingly, the N31S substitution not only rendered bat IAV M2 proteins sensitive to inhibition by amantadine but also preserved the metastable conformation of acid-sensitive HA to a greater extent. In contrast, the acid-stable HA of H18N11 did not rely on such support by M2 protein. When mutant M2(N31S) protein was expressed in the context of chimeric H18N11/H5N1(6:2) encoding HA and NA of avian IAV H5N1, amantadine significantly inhibited virus entry, suggesting that ion channel activity supported virus uncoating. Finally, the cytoplasmic domain of the H18N11 M2 protein mediated rapid internalization of the protein from the plasma membrane leading to low-level expression at the cell surface. However, cell surface levels of H18N11 M2 protein were significantly enhanced in cells infected with the chimeric H18N11/H5N1(6:2) virus. The potential role of the N1 sialidase in arresting M2 internalization is discussed. IMPORTANCE Bat IAV M2 proteins not only differ from the homologous proteins of classical IAV by their divergent primary sequence but are also unable to preserve the metastable conformation of acid-sensitive HA, indicating low proton channel activity. This unusual feature may help to avoid M2-mediated cytotoxic effects and inflammation in bats infected with H17N10 or H18N11. Unlike classical M2 proteins, bat IAV M2 proteins with the N31S substitution mediated increased protection of HA from acid-induced conformational change. This remarkable gain of function may help to understand how single point mutations can modulate proton channel activity. In addition, the cytoplasmic domain was found to be responsible for the low cell surface expression level of bat IAV M2 proteins. Given that the M2 cytoplasmic domain of conventional IAV is well known to participate in virus assembly at the plasma membrane, this atypical feature might have consequences for bat IAV budding and egress.
Collapse
Affiliation(s)
- Danielle Thompson
- Institute of Virology and Immunology, Mittelhäusern, Switzerland
- Graduate School for Cellular and Biomedical Sciences, University of Bern, Bern, Switzerland
| | - Christiana Victoria Cismaru
- Institute of Virology and Immunology, Mittelhäusern, Switzerland
- Graduate School for Cellular and Biomedical Sciences, University of Bern, Bern, Switzerland
| | | | - Martin Schwemmle
- Institute of Virology, Medical Center – University of Freiburg, Freiburg im Breisgau, Germany
| | - Gert Zimmer
- Institute of Virology and Immunology, Mittelhäusern, Switzerland
- Department of Pathology and Infectious Diseases, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| |
Collapse
|
8
|
Jazmin GM, Elaheh M, Manuel Jonathan FV, Martiniano B, David ML, Alám LC, José CB. In Silico Design of an Oseltamivir Derivative with Increased Affinity against Wild-Type and Mutant Variants of Neuraminidase and Hemagglutinin of Influenza A H1N1 Virus. Chem Biodivers 2023:e202201077. [PMID: 37377353 DOI: 10.1002/cbdv.202201077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Accepted: 06/08/2023] [Indexed: 06/29/2023]
Abstract
Antiviral resistance has turned into a world concern nowadays. Influenza A H1N1 emerged as a problem at the world level due to the neuraminidase (NA) mutations. The NA mutants conferred resistance to oseltamivir and zanamivir. Several efforts were conducted to develop better anti-influenza A H1N1 drugs. Our research group combined in silico methods to create a compound derived from oseltamivir to be tested in vitro against influenza A H1N1. Here we show the results of a new compound derived from oseltamivir but with specific chemical modifications, with significant affinity either on NA (in silico and in vitro assays) or HA (in silico) from influenza A H1N1 strain. We include docking and molecular dynamics (MD) simulations of the oseltamivir derivative at the binding site onto NA and HA of influenza A H1N1. Additionally, the biological experimental results show that oseltamivir derivative decreases the lytic-plaque formation on viral susceptibility assays, and it does not show cytotoxicity. Finally, oseltamivir derivative assayed on viral NA showed a concentration-dependent inhibition behavior at nM, depicting a high affinity of the compound for the enzyme, corroborated with the MD simulations results, placing our designed oseltamivir derivative as a potential antiviral against influenza A H1N1.
Collapse
Affiliation(s)
- García-Machorro Jazmin
- Laboratorio de Medicina de Conservación, Escuela Superior de Medicina, Instituto Politécnico., Plan de San Luis y Díaz Mirón s/n, Col. Casco de Santo Tomas, Delegación Miguel Hidalgo, C.P. 11340, Ciudad de México, México
| | - Mirzaeicheshmeh Elaheh
- Laboratorio de Medicina de Conservación, Escuela Superior de Medicina, Instituto Politécnico., Plan de San Luis y Díaz Mirón s/n, Col. Casco de Santo Tomas, Delegación Miguel Hidalgo, C.P. 11340, Ciudad de México, México
- Laboratorio de Diseño y Desarrollo de Nuevos Fármacos e Innovación Biotecnológica (Laboratory for the Design and Development of New Drugs and Biotechnological Innovation), Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis y Salvador Díaz Mirón s/n, Casco de Santo Tomás, Ciudad de México, 11340, México
| | - Fragoso-Vázquez Manuel Jonathan
- Departamento de Química Orgánica, Escuela Nacional de Ciencias, Biológicas, Instituto Politécnico Nacional, Prolongación de Carpio y Plan de Ayala, Col. Casco de Santo Tomas, México City, CP 11340, México
| | - Bello Martiniano
- Laboratorio de Diseño y Desarrollo de Nuevos Fármacos e Innovación Biotecnológica (Laboratory for the Design and Development of New Drugs and Biotechnological Innovation), Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis y Salvador Díaz Mirón s/n, Casco de Santo Tomás, Ciudad de México, 11340, México
| | - Méndez-Luna David
- Laboratorio de Diseño y Desarrollo de Nuevos Fármacos e Innovación Biotecnológica (Laboratory for the Design and Development of New Drugs and Biotechnological Innovation), Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis y Salvador Díaz Mirón s/n, Casco de Santo Tomás, Ciudad de México, 11340, México
- Departamento de Fisiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Zacatenco, Av. Wilfrido Massieu 399, Col. Nueva Industrial Vallejo, Alcaldía Gustavo A. Madero, Ciudad de México, 07738, México
| | - León-Cardona Alám
- Laboratorio de Diseño y Desarrollo de Nuevos Fármacos e Innovación Biotecnológica (Laboratory for the Design and Development of New Drugs and Biotechnological Innovation), Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis y Salvador Díaz Mirón s/n, Casco de Santo Tomás, Ciudad de México, 11340, México
| | - Correa-Basurto José
- Laboratorio de Diseño y Desarrollo de Nuevos Fármacos e Innovación Biotecnológica (Laboratory for the Design and Development of New Drugs and Biotechnological Innovation), Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis y Salvador Díaz Mirón s/n, Casco de Santo Tomás, Ciudad de México, 11340, México
| |
Collapse
|
9
|
Winter SL, Golani G, Lolicato F, Vallbracht M, Thiyagarajah K, Ahmed SS, Lüchtenborg C, Fackler OT, Brügger B, Hoenen T, Nickel W, Schwarz US, Chlanda P. The Ebola virus VP40 matrix layer undergoes endosomal disassembly essential for membrane fusion. EMBO J 2023:e113578. [PMID: 37082863 DOI: 10.15252/embj.2023113578] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2023] [Revised: 03/09/2023] [Accepted: 03/22/2023] [Indexed: 04/22/2023] Open
Abstract
Ebola viruses (EBOVs) assemble into filamentous virions, whose shape and stability are determined by the matrix viral protein 40 (VP40). Virus entry into host cells occurs via membrane fusion in late endosomes; however, the mechanism of how the remarkably long virions undergo uncoating, including virion disassembly and nucleocapsid release into the cytosol, remains unknown. Here, we investigate the structural architecture of EBOVs entering host cells and discover that the VP40 matrix disassembles prior to membrane fusion. We reveal that VP40 disassembly is caused by the weakening of VP40-lipid interactions driven by low endosomal pH that equilibrates passively across the viral envelope without a dedicated ion channel. We further show that viral membrane fusion depends on VP40 matrix integrity, and its disassembly reduces the energy barrier for fusion stalk formation. Thus, pH-driven structural remodeling of the VP40 matrix acts as a molecular switch coupling viral matrix uncoating to membrane fusion during EBOV entry.
Collapse
Affiliation(s)
- Sophie L Winter
- Schaller Research Groups, Department of Infectious Diseases, Virology, University Hospital Heidelberg, Heidelberg, Germany
- BioQuant-Center for Quantitative Biology, Heidelberg University, Heidelberg, Germany
| | - Gonen Golani
- BioQuant-Center for Quantitative Biology, Heidelberg University, Heidelberg, Germany
- Institute for Theoretical Physics, Heidelberg University, Heidelberg, Germany
| | - Fabio Lolicato
- Heidelberg University Biochemistry Center, Heidelberg, Germany
- Department of Physics, University of Helsinki, Helsinki, Finland
| | - Melina Vallbracht
- Schaller Research Groups, Department of Infectious Diseases, Virology, University Hospital Heidelberg, Heidelberg, Germany
- BioQuant-Center for Quantitative Biology, Heidelberg University, Heidelberg, Germany
| | - Keerthihan Thiyagarajah
- Schaller Research Groups, Department of Infectious Diseases, Virology, University Hospital Heidelberg, Heidelberg, Germany
- BioQuant-Center for Quantitative Biology, Heidelberg University, Heidelberg, Germany
| | - Samy Sid Ahmed
- Department of Infectious Diseases, Integrative Virology, University Hospital Heidelberg, Heidelberg, Germany
| | | | - Oliver T Fackler
- Department of Infectious Diseases, Integrative Virology, University Hospital Heidelberg, Heidelberg, Germany
- German Centre for Infection Research (DZIF), Partner Site Heidelberg, Heidelberg, Germany
| | - Britta Brügger
- Heidelberg University Biochemistry Center, Heidelberg, Germany
| | - Thomas Hoenen
- Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Insitut, Greifswald-Insel Riems, Greifswald, Germany
| | - Walter Nickel
- Heidelberg University Biochemistry Center, Heidelberg, Germany
| | - Ulrich S Schwarz
- BioQuant-Center for Quantitative Biology, Heidelberg University, Heidelberg, Germany
- Institute for Theoretical Physics, Heidelberg University, Heidelberg, Germany
| | - Petr Chlanda
- Schaller Research Groups, Department of Infectious Diseases, Virology, University Hospital Heidelberg, Heidelberg, Germany
- BioQuant-Center for Quantitative Biology, Heidelberg University, Heidelberg, Germany
| |
Collapse
|
10
|
Loshkareva AS, Popova MM, Shilova LA, Fedorova NV, Timofeeva TA, Galimzyanov TR, Kuzmin PI, Knyazev DG, Batishchev OV. Influenza A Virus M1 Protein Non-Specifically Deforms Charged Lipid Membranes and Specifically Interacts with the Raft Boundary. MEMBRANES 2023; 13:76. [PMID: 36676883 PMCID: PMC9864314 DOI: 10.3390/membranes13010076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 12/26/2022] [Accepted: 01/05/2023] [Indexed: 06/17/2023]
Abstract
Topological rearrangements of biological membranes, such as fusion and fission, often require a sophisticated interplay between different proteins and cellular membranes. However, in the case of fusion proteins of enveloped viruses, even one molecule can execute membrane restructurings. Growing evidence indicates that matrix proteins of enveloped viruses can solely trigger the membrane bending required for another crucial step in virogenesis, the budding of progeny virions. For the case of the influenza A virus matrix protein M1, different studies report both in favor and against M1 being able to produce virus-like particles without other viral proteins. Here, we investigated the physicochemical mechanisms of M1 membrane activity on giant unilamellar vesicles of different lipid compositions using fluorescent confocal microscopy. We confirmed that M1 predominantly interacts electrostatically with the membrane, and its ability to deform the lipid bilayer is non-specific and typical for membrane-binding proteins and polypeptides. However, in the case of phase-separating membranes, M1 demonstrates a unique ability to induce macro-phase separation, probably due to the high affinity of M1's amphipathic helices to the raft boundary. Thus, we suggest that M1 is tailored to deform charged membranes with a specific activity in the case of phase-separating membranes.
Collapse
Affiliation(s)
- Anna S. Loshkareva
- Laboratory of Bioelectrochemistry, Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, 119071 Moscow, Russia
| | - Marina M. Popova
- Laboratory of Bioelectrochemistry, Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, 119071 Moscow, Russia
| | - Liudmila A. Shilova
- Laboratory of Bioelectrochemistry, Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, 119071 Moscow, Russia
| | - Natalia V. Fedorova
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119991 Moscow, Russia
| | - Tatiana A. Timofeeva
- Laboratory of Physiology of Viruses, D. I. Ivanovsky Institute of Virology, FSBI N. F. Gamaleya NRCEM, Ministry of Health of Russian Federation, 123098 Moscow, Russia
| | - Timur R. Galimzyanov
- Laboratory of Bioelectrochemistry, Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, 119071 Moscow, Russia
| | - Petr I. Kuzmin
- Laboratory of Bioelectrochemistry, Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, 119071 Moscow, Russia
| | - Denis G. Knyazev
- Institute of Biophysics, Johannes Kepler University Linz, 4020 Linz, Austria
| | - Oleg V. Batishchev
- Laboratory of Bioelectrochemistry, Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, 119071 Moscow, Russia
| |
Collapse
|
11
|
Winter SL, Chlanda P. The Art of Viral Membrane Fusion and Penetration. Subcell Biochem 2023; 106:113-152. [PMID: 38159225 DOI: 10.1007/978-3-031-40086-5_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2024]
Abstract
As obligate pathogens, viruses have developed diverse mechanisms to deliver their genome across host cell membranes to sites of virus replication. While enveloped viruses utilize viral fusion proteins to accomplish fusion of their envelope with the cellular membrane, non-enveloped viruses rely on machinery that causes local membrane ruptures and creates an opening through which the capsid or viral genome is released. Both membrane fusion and membrane penetration take place at the plasma membrane or in intracellular compartments, often involving the engagement of the cellular machinery and antagonism of host restriction factors. Enveloped and non-enveloped viruses have evolved intricate mechanisms to enable virus uncoating and modulation of membrane fusion in a spatiotemporally controlled manner. This chapter summarizes and discusses the current state of understanding of the mechanisms of viral membrane fusion and penetration. The focus is on the role of lipids, viral scaffold uncoating, viral membrane fusion inhibitors, and host restriction factors as physicochemical modulators. In addition, recent advances in visualizing and detecting viral membrane fusion and penetration using cryo-electron microscopy methods are presented.
Collapse
Affiliation(s)
- Sophie L Winter
- Schaller Research Group, Department of Infectious Diseases, Virology, Heidelberg University Hospital, Heidelberg, Germany
| | - Petr Chlanda
- Schaller Research Group, Department of Infectious Diseases, Virology, Heidelberg University Hospital, Heidelberg, Germany.
| |
Collapse
|
12
|
Wang Z, Hao D, Wang Y, Zhao J, Zhang J, Rong X, Zhang J, Min J, Qi W, Su R, He M. Peptidyl Virus-Like Nanovesicles as Reconfigurable "Trojan Horse" for Targeted siRNA Delivery and Synergistic Inhibition of Cancer Cells. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2204959. [PMID: 36372545 DOI: 10.1002/smll.202204959] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 09/10/2022] [Indexed: 06/16/2023]
Abstract
The self-assembly of peptidyl virus-like nanovesicles (pVLNs) composed of highly ordered peptide bilayer membranes that encapsulate the small interfering RNA (siRNA) is reported. The targeting and enzyme-responsive sequences on the bilayer's surface allow the pVLNs to enter cancer cells with high efficiency and control the release of genetic drugs in response to the subcellular environment. By transforming its structure in response to the highly expressed enzyme matrix metalloproteinase 7 (MMP-7) in cancer cells, it helps the siRNA escape from the lysosomes, resulting in a final silencing efficiency of 92%. Moreover, the pVLNs can serve as reconfigurable "Trojan horse" by transforming into membranes triggered by the MMP-7 and disrupting the cytoplasmic structure, thereby achieving synergistic anticancer effects and 96% cancer cell mortality with little damage to normal cells. The pVLNs benefit from their biocompatibility, targeting, and enzyme responsiveness, making them a promising platform for gene therapy and anticancer therapy.
Collapse
Affiliation(s)
- Zixuan Wang
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, P. R. China
| | - Dongzhao Hao
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, P. R. China
| | - Yuefei Wang
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, P. R. China
- Tianjin Key Laboratory of Membrane Science and Desalination Technology, Tianjin University, Tianjin, 300072, P. R. China
| | - Jinwu Zhao
- State Key Laboratory of Precision Measuring Technology and Instruments, Tianjin University, Tianjin, 300072, P. R. China
| | - Jiaxing Zhang
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, P. R. China
| | - Xi Rong
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, P. R. China
| | - Jiaojiao Zhang
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, P. R. China
| | - Jiwei Min
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, P. R. China
| | - Wei Qi
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, P. R. China
- Tianjin Key Laboratory of Membrane Science and Desalination Technology, Tianjin University, Tianjin, 300072, P. R. China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin, 300072, P. R. China
| | - Rongxin Su
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, P. R. China
- Tianjin Key Laboratory of Membrane Science and Desalination Technology, Tianjin University, Tianjin, 300072, P. R. China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin, 300072, P. R. China
| | - Mingxia He
- State Key Laboratory of Precision Measuring Technology and Instruments, Tianjin University, Tianjin, 300072, P. R. China
| |
Collapse
|
13
|
Wiest MJ, Gu C, Ham H, Gorvel L, Keddis MT, Griffing LW, Joo H, Gorvel JP, Billadeau DD, Oh S. Disruption of endosomal trafficking with EGA alters TLR9 cytokine response in human plasmacytoid dendritic cells. Front Immunol 2023; 14:1144127. [PMID: 37020542 PMCID: PMC10067882 DOI: 10.3389/fimmu.2023.1144127] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Accepted: 03/10/2023] [Indexed: 04/07/2023] Open
Abstract
Plasmacytoid dendritic cells (pDCs) exhibit bifurcated cytokine responses to TLR9 agonists, an IRF7-mediated type 1 IFN response or a pro-inflammatory cytokine response via the activation of NF-κB. This bifurcated response has been hypothesized to result from either distinct signaling endosomes or endo-lysosomal trafficking delay of TLR9 agonists allowing for autocrine signaling to affect outcomes. Utilizing the late endosome trafficking inhibitor, EGA, we assessed the bifurcated cytokine responses of pDCs to TLR9 stimulation. EGA treatment of pDCs diminished both IFNα and pro-inflammatory cytokine expression induced by CpG DNAs (D- and K-type), CpG-DNAs complexed with DOTAP, and genomic DNAs complexed with LL37. Mechanistically, EGA suppressed phosphorylation of IKKα/β, STAT1, Akt, and p38, and decreased colocalization of CpG oligodeoxynucleotides with LAMP+ endo-lysosomes. EGA also diminished type 1 IFN expression by pDCs from systemic lupus erythematosus patients. Therefore, our findings help understand mechanisms for the bifurcated cytokine responses by pDCs and support future examination of the potential benefit of EGA in treating type 1 IFN-associated inflammatory diseases in the future.
Collapse
Affiliation(s)
- Matthew J. Wiest
- Department of Immunology, Mayo Clinic, Scottsdale, AZ, United States
- Baylor Institute of Biomedical Studies, Baylor University, Waco, TX, United States
| | - Chao Gu
- Department of Immunology, Mayo Clinic, Scottsdale, AZ, United States
| | - Hyoungjun Ham
- Department of Immunology, Mayo Clinic, Rochester, MN, United States
| | - Laurent Gorvel
- CRCM, Aix Marseille Universite, INSERM, Marseille, France
| | - Mira T. Keddis
- Department of Nephrology, Mayo Clinic, Scottsdale, AZ, United States
| | - Leroy W. Griffing
- Department of Rheumatology, Mayo Clinic, Scottsdale, AZ, United States
| | - HyeMee Joo
- Department of Immunology, Mayo Clinic, Scottsdale, AZ, United States
- Baylor Institute of Biomedical Studies, Baylor University, Waco, TX, United States
| | | | | | - SangKon Oh
- Department of Immunology, Mayo Clinic, Scottsdale, AZ, United States
- Baylor Institute of Biomedical Studies, Baylor University, Waco, TX, United States
- *Correspondence: SangKon Oh,
| |
Collapse
|
14
|
Villamil Giraldo AM, Mannsverk S, Kasson PM. Measuring single-virus fusion kinetics using an assay for nucleic acid exposure. Biophys J 2022; 121:4467-4475. [PMID: 36330566 PMCID: PMC9748363 DOI: 10.1016/j.bpj.2022.11.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 09/26/2022] [Accepted: 10/31/2022] [Indexed: 11/11/2022] Open
Abstract
The kinetics by which individual enveloped viruses fuse with membranes provide an important window into viral-entry mechanisms. We have developed a real-time assay using fluorescent probes for single-virus genome exposure than can report on stages of viral entry including or subsequent to fusion pore formation and prior to viral genome trafficking. We accomplish this using oxazole yellow nucleic-acid-binding dyes, which can be encapsulated in the lumen of target membranes to permit specific detection of fusion events. Since increased fluorescence of the dye occurs only when it encounters viral genome via a fusion pore and binds, this assay excludes content leakage without fusion. Using this assay, we show that influenza virus fuses with liposomes of different sizes with indistinguishable kinetics by both testing liposomes extruded through pores of different radii and showing that the fusion kinetics of individual liposomes are uncorrelated with the size of the liposome. These results suggest that the starting curvature of such liposomes does not control the rate-limiting steps in influenza entry.
Collapse
Affiliation(s)
- Ana M Villamil Giraldo
- Science for Life Laboratory, Department of Cell and Molecular Biology, Uppsala University, Uppsala, Sweden
| | - Steinar Mannsverk
- Science for Life Laboratory, Department of Cell and Molecular Biology, Uppsala University, Uppsala, Sweden
| | - Peter M Kasson
- Science for Life Laboratory, Department of Cell and Molecular Biology, Uppsala University, Uppsala, Sweden; Departments of Molecular Physiology and Biomedical Engineering, University of Virginia, Charlottesville, Virginia.
| |
Collapse
|
15
|
Barroso da Silva FL, Giron CC, Laaksonen A. Electrostatic Features for the Receptor Binding Domain of SARS-COV-2 Wildtype and Its Variants. Compass to the Severity of the Future Variants with the Charge-Rule. J Phys Chem B 2022; 126:6835-6852. [PMID: 36066414 DOI: 10.1021/acs.jpcb.2c04225] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Electrostatic intermolecular interactions are important in many aspects of biology. We have studied the main electrostatic features involved in the interaction of the receptor-binding domain (RBD) of the SARS-CoV-2 spike protein with the human receptor Angiotensin-converting enzyme 2 (ACE2). As the principal computational tool, we have used the FORTE approach, capable to model proton fluctuations and computing free energies for a very large number of protein-protein systems under different physical-chemical conditions, here focusing on the RBD-ACE2 interactions. Both the wild-type and all critical variants are included in this study. From our large ensemble of extensive simulations, we obtain, as a function of pH, the binding affinities, charges of the proteins, their charge regulation capacities, and their dipole moments. In addition, we have calculated the pKas for all ionizable residues and mapped the electrostatic coupling between them. We are able to present a simple predictor for the RBD-ACE2 binding based on the data obtained for Alpha, Beta, Gamma, Delta, and Omicron variants, as a linear correlation between the total charge of the RBD and the corresponding binding affinity. This "RBD charge rule" should work as a quick test of the degree of severity of the coming SARS-CoV-2 variants in the future.
Collapse
Affiliation(s)
- Fernando L Barroso da Silva
- Departamento de Ciências Biomoleculares, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Av. café, s/no-campus da USP, BR-14040-903 Ribeirão Preto, SP, Brazil.,Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina 27695, United States
| | - Carolina Corrêa Giron
- Departamento de Ciências Biomoleculares, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Av. café, s/no-campus da USP, BR-14040-903 Ribeirão Preto, SP, Brazil.,Hospital de Clínicas, Universidade Federal do Triângulo Mineiro, Av. Getúlio Guaritá, 38025-440 Uberaba, MG, Brazil
| | - Aatto Laaksonen
- Department of Materials and Environmental Chemistry, Arrhenius Laboratory, Stockholm University, SE-106 91 Stockholm, Sweden.,State Key Laboratory of Materials-Oriented and Chemical Engineering, Nanjing Tech University, Nanjing, 210009, P. R. China.,Centre of Advanced Research in Bionanoconjugates and Biopolymers, Petru Poni Institute of Macromolecular Chemistry, Aleea Grigore Ghica-Voda, 41A, 700487 Iasi, Romania.,Department of Engineering Sciences and Mathematics, Division of Energy Science, Luleå University of Technology, SE-97187 Luleå, Sweden.,Department of Chemical and Geological Sciences, Campus Monserrato, University of Cagliari, SS 554 bivio per Sestu, 09042 Monserrato, Italy
| |
Collapse
|
16
|
The Contribution of Viral Proteins to the Synergy of Influenza and Bacterial Co-Infection. Viruses 2022; 14:v14051064. [PMID: 35632805 PMCID: PMC9143653 DOI: 10.3390/v14051064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 05/12/2022] [Accepted: 05/12/2022] [Indexed: 02/04/2023] Open
Abstract
A severe course of acute respiratory disease caused by influenza A virus (IAV) infection is often linked with subsequent bacterial superinfection, which is difficult to cure. Thus, synergistic influenza-bacterial co-infection represents a serious medical problem. The pathogenic changes in the infected host are accelerated as a consequence of IAV infection, reflecting its impact on the host immune response. IAV infection triggers a complex process linked with the blocking of innate and adaptive immune mechanisms required for effective antiviral defense. Such disbalance of the immune system allows for easier initiation of bacterial superinfection. Therefore, many new studies have emerged that aim to explain why viral-bacterial co-infection can lead to severe respiratory disease with possible fatal outcomes. In this review, we discuss the key role of several IAV proteins-namely, PB1-F2, hemagglutinin (HA), neuraminidase (NA), and NS1-known to play a role in modulating the immune defense of the host, which consequently escalates the development of secondary bacterial infection, most often caused by Streptococcus pneumoniae. Understanding the mechanisms leading to pathological disorders caused by bacterial superinfection after the previous viral infection is important for the development of more effective means of prevention; for example, by vaccination or through therapy using antiviral drugs targeted at critical viral proteins.
Collapse
|
17
|
Wang ZG, Zhao L, Chen LL, Liu HY, Wang L, Hu Y, Shi XH, Zhao D, Liu SL, Pang DW. Spatiotemporal Quantification of Endosomal Acidification on the Viral Journey. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2104200. [PMID: 34786839 DOI: 10.1002/smll.202104200] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 10/05/2021] [Indexed: 06/13/2023]
Abstract
Many enveloped viruses utilize endocytic pathways and vesicle trafficking to infect host cells, where the acidification of virus-containing endosomes triggers the virus-endosome fusion events. Therefore, simultaneous correlation of intracellular location, local pH, and individual virus dynamics is important for gaining insight into viral infection mechanisms. Here, an imaging approach is developed for spatiotemporal quantification of endosomal acidification on the viral journey in host cells using a fluorescence resonance energy transfer based ratiometric pH sensor consisting of a photostable and high-brightness QD, pH-sensitive fluorescent dyes, and virus-binding proteins. Ratiometric analysis of sensor-based single-virus tracking data enables to dissect a two-step endosomal acidification process during the infection of influenza viruses and elucidates the occurrence of the fission and sorting of virus-containing endosomes to recycling endosomes after initial acidification. This technique should serve as a robust approach for in situ quantification of endosomal acidification on the viral journey.
Collapse
Affiliation(s)
- Zhi-Gang Wang
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Research Center for Analytical Sciences, College of Chemistry, and School of Medicine, Nankai University, Tianjin, 300071, P. R. China
| | - Liang Zhao
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Research Center for Analytical Sciences, College of Chemistry, and School of Medicine, Nankai University, Tianjin, 300071, P. R. China
| | - Lu-Lu Chen
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Research Center for Analytical Sciences, College of Chemistry, and School of Medicine, Nankai University, Tianjin, 300071, P. R. China
| | - Hao-Yang Liu
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Research Center for Analytical Sciences, College of Chemistry, and School of Medicine, Nankai University, Tianjin, 300071, P. R. China
| | - Lei Wang
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Research Center for Analytical Sciences, College of Chemistry, and School of Medicine, Nankai University, Tianjin, 300071, P. R. China
| | - Yusi Hu
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Research Center for Analytical Sciences, College of Chemistry, and School of Medicine, Nankai University, Tianjin, 300071, P. R. China
| | - Xue-Hui Shi
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Research Center for Analytical Sciences, College of Chemistry, and School of Medicine, Nankai University, Tianjin, 300071, P. R. China
| | - Dongbing Zhao
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Research Center for Analytical Sciences, College of Chemistry, and School of Medicine, Nankai University, Tianjin, 300071, P. R. China
| | - Shu-Lin Liu
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Research Center for Analytical Sciences, College of Chemistry, and School of Medicine, Nankai University, Tianjin, 300071, P. R. China
- Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan, 430074, P. R. China
| | - Dai-Wen Pang
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Research Center for Analytical Sciences, College of Chemistry, and School of Medicine, Nankai University, Tianjin, 300071, P. R. China
| |
Collapse
|
18
|
Thyrsted J, Storgaard J, Blay-Cadanet J, Heinz A, Thielke AL, Crotta S, de Paoli F, Olagnier D, Wack A, Hiller K, Hansen AL, Holm CK. Influenza A induces lactate formation to inhibit type I IFN in primary human airway epithelium. iScience 2021; 24:103300. [PMID: 34746710 PMCID: PMC8555494 DOI: 10.1016/j.isci.2021.103300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 09/14/2021] [Accepted: 10/14/2021] [Indexed: 11/28/2022] Open
Abstract
Pathogenic viruses induce metabolic changes in host cells to secure the availability of biomolecules and energy to propagate. Influenza A virus (IAV) and severe acute respiratory syndrome corona virus 2 (SARS-CoV-2) both infect the human airway epithelium and are important human pathogens. The metabolic changes induced by these viruses in a physiologically relevant human model and how this affects innate immune responses to limit viral propagation are not well known. Using an ex vivo model of pseudostratified primary human airway epithelium, we here demonstrate that infection with both IAV and SARS-CoV-2 resulted in distinct metabolic changes including increases in lactate dehydrogenase A (LDHA) expression and LDHA-mediated lactate formation. Interestingly, LDHA regulated both basal and induced mitochondrial anti-viral signaling protein (MAVS)-dependent type I interferon (IFN) responses to promote IAV, but not SARS-CoV-2, replication. Our data demonstrate that LDHA and lactate promote IAV but not SARS-CoV-2 replication by inhibiting MAVS-dependent induction of type I IFN in primary human airway epithelium.
Collapse
Affiliation(s)
- Jacob Thyrsted
- Department of Biomedicine, Aarhus University, 8000 Aarhus, Denmark
| | - Jacob Storgaard
- Department of Biomedicine, Aarhus University, 8000 Aarhus, Denmark
| | | | - Alexander Heinz
- Department of Bioinformatics and Biochemistry, Technische Universität Braunschweig, Braunschweig 38108, Germany
| | | | - Stefania Crotta
- Immunoregulation Laboratory, The Francis Crick Institute, NW1 1BF London, England
| | - Frank de Paoli
- Department of Biomedicine, Aarhus University, 8000 Aarhus, Denmark
| | - David Olagnier
- Department of Biomedicine, Aarhus University, 8000 Aarhus, Denmark
| | - Andreas Wack
- Immunoregulation Laboratory, The Francis Crick Institute, NW1 1BF London, England
| | - Karsten Hiller
- Department of Bioinformatics and Biochemistry, Technische Universität Braunschweig, Braunschweig 38108, Germany
| | | | | |
Collapse
|
19
|
Barazorda-Ccahuana HL, Nedyalkova M, Mas F, Madurga S. Unveiling the Effect of Low pH on the SARS-CoV-2 Main Protease by Molecular Dynamics Simulations. Polymers (Basel) 2021; 13:3823. [PMID: 34771379 PMCID: PMC8587287 DOI: 10.3390/polym13213823] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 10/29/2021] [Accepted: 11/01/2021] [Indexed: 12/19/2022] Open
Abstract
(1) Background: Main Protease (Mpro) is an attractive therapeutic target that acts in the replication and transcription of the SARS-CoV-2 coronavirus. Mpro is rich in residues exposed to protonation/deprotonation changes which could affect its enzymatic function. This work aimed to explore the effect of the protonation/deprotonation states of Mpro at different pHs using computational techniques. (2) Methods: The different distribution charges were obtained in all the evaluated pHs by the Semi-Grand Canonical Monte Carlo (SGCMC) method. A set of Molecular Dynamics (MD) simulations was performed to consider the different protonation/deprotonation during 250 ns, verifying the structural stability of Mpro at different pHs. (3) Results: The present findings demonstrate that active site residues and residues that allow Mpro dimerisation was not affected by pH changes. However, Mpro substrate-binding residues were altered at low pHs, allowing the increased pocket volume. Additionally, the results of the solvent distribution around Sγ, Hγ, Nδ1 and Hδ1 atoms of the catalytic residues Cys145 and His41 showed a low and high-water affinity at acidic pH, respectively. It which could be crucial in the catalytic mechanism of SARS-CoV-2 Mpro at low pHs. Moreover, we analysed the docking interactions of PF-00835231 from Pfizer in the preclinical phase, which shows excellent affinity with the Mpro at different pHs. (4) Conclusion: Overall, these findings indicate that SARS-CoV-2 Mpro is highly stable at acidic pH conditions, and this inhibitor could have a desirable function at this condition.
Collapse
Affiliation(s)
- Haruna Luz Barazorda-Ccahuana
- Materials Science and Physical Chemistry Department & Research Institute of Theoretical and Computational Chemistry (IQTCUB), University of Barcelona, 08028 Barcelona, Spain;
- Vicerrectorado de Investigación, Universidad Católica de Santa María, Arequipa 04000, Peru
| | - Miroslava Nedyalkova
- Department of Inorganic Chemistry, University of Sofia “St. Kl. Okhridski”, 1164 Sofia, Bulgaria;
| | - Francesc Mas
- Materials Science and Physical Chemistry Department & Research Institute of Theoretical and Computational Chemistry (IQTCUB), University of Barcelona, 08028 Barcelona, Spain;
| | - Sergio Madurga
- Materials Science and Physical Chemistry Department & Research Institute of Theoretical and Computational Chemistry (IQTCUB), University of Barcelona, 08028 Barcelona, Spain;
| |
Collapse
|
20
|
Acidification induces condensation of the adenovirus core. Acta Biomater 2021; 135:534-542. [PMID: 34407472 DOI: 10.1016/j.actbio.2021.08.019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Revised: 08/11/2021] [Accepted: 08/12/2021] [Indexed: 12/17/2022]
Abstract
The adenovirus (AdV) icosahedral capsid encloses a nucleoprotein core formed by the dsDNA genome bound to numerous copies of virus-encoded, positively charged proteins. For an efficient delivery of its genome, AdV must undergo a cascade of dismantling events from the plasma membrane to the nuclear pore. Throughout this uncoating process, the virion moves across potentially disruptive environments whose influence in particle stability is poorly understood. In this work we analyze the effect of acidic conditions on AdV particles by exploring their mechanical properties, genome accessibility and capsid disruption. Our results show that under short term acidification the AdV virion becomes softer and its genome less accessible to an intercalating dye, even in the presence of capsid openings. The AFM tip penetrates deeper in virions at neutral pH, and mechanical properties of genome-less particles are not altered upon acidification. Altogether, these results indicate that the main effect of acidification is the compaction of the nucleoproteic core, revealing a previously unknown role for chemical cues in AdV uncoating. STATEMENT OF SIGNIFICANCE: Studying the behavior of virus particles under changing environmental conditions is key to understand cell entry and propagation. One such change is the acidification undergone in certain cell compartments, which is thought to play a role in the programmed uncoating of virus genomes. Mild acidification in the early endosome has been proposed as a trigger signal for human AdV uncoating. However, the actual effect of low pH in AdV stability and entry is not well defined. Understanding the consequences of acidification in AdV structure and stability is also relevant to define storage conditions for therapeutic vectors, or design AdV variants resistant to intestinal conditions for oral administration of vaccines.
Collapse
|
21
|
Peukes J, Xiong X, Briggs JAG. New structural insights into the multifunctional influenza A matrix protein 1. FEBS Lett 2021; 595:2535-2543. [PMID: 34547821 PMCID: PMC8835727 DOI: 10.1002/1873-3468.14194] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 09/10/2021] [Accepted: 09/10/2021] [Indexed: 11/18/2022]
Abstract
Influenza A virus matrix protein 1 (M1) is the most abundant protein within virions and functions at multiple steps of the virus life cycle, including nuclear RNA export, virus particle assembly, and virus disassembly. Two recent publications have presented the first structures of full‐length M1 and show that it assembles filaments in vitro via an interface between the N‐ and C‐terminal domains of adjacent monomers. These filaments were found to be similar to those that form the endoskeleton of assembled virions. The structures provide a molecular basis to understand the functions of M1 during the virus life cycle. Here, we compare and discuss the two structures, and explore their implications for the mechanisms by which the multifunctional M1 protein can mediate virus assembly, interact with viral ribonucleoproteins and act during infection of a new cell.
Collapse
Affiliation(s)
- Julia Peukes
- Structural Studies Division, Medical Research Council Laboratory of Molecular Biology, Cambridge, UK.,California Institute for Quantitative Biosciences (QB3), University of California, Berkeley, CA, USA
| | - Xiaoli Xiong
- Structural Studies Division, Medical Research Council Laboratory of Molecular Biology, Cambridge, UK.,Bioland Laboratory (Guangzhou Regenerative Medicine and Health - Guangdong Laboratory), Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - John A G Briggs
- Structural Studies Division, Medical Research Council Laboratory of Molecular Biology, Cambridge, UK.,Department of Cell and Virus Structure, Max Planck Institute of Biochemistry, Martinsried, Germany
| |
Collapse
|
22
|
Li S. Cryo-electron tomography of enveloped viruses. Trends Biochem Sci 2021; 47:173-186. [PMID: 34511334 DOI: 10.1016/j.tibs.2021.08.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 08/12/2021] [Accepted: 08/18/2021] [Indexed: 10/20/2022]
Abstract
Viruses are macromolecular machineries that hijack cellular metabolism for replication. Enveloped viruses comprise a large variety of RNA and DNA viruses, many of which are notorious human or animal pathogens. Despite their importance, the presence of lipid bilayers in their assembly has made most enveloped viruses too pleomorphic to be reconstructed as a whole by traditional structural biology methods. Furthermore, structural biology of the viral lifecycle was hindered by the sample thickness. Here, I review the recent advances in the applications of cryo-electron tomography (cryo-ET) on enveloped viral structures and intracellular viral activities.
Collapse
Affiliation(s)
- Sai Li
- School of Life Sciences, Tsinghua University, Beijing 100084, China; Beijing Advanced Innovation Center for Structural Biology and Frontier Research Center for Biological Structure, Tsinghua University, Beijing 100084, China; Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
23
|
Guktur RE, Nep EI, Asala O, Olorunfemi PO, Ngwuluka NC, Ochekpe NA, Sagay AS. Carboxymethylated and acetylated xerogel derivatives of Plectranthus esculentus starch protect Newcastle disease vaccines against cold chain failure. Vaccine 2021; 39:4871-4884. [PMID: 34253418 DOI: 10.1016/j.vaccine.2021.06.062] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 06/19/2021] [Accepted: 06/22/2021] [Indexed: 10/20/2022]
Abstract
Developing vaccine stabilizers from local natural sources is desirable especially if the stabilizer would enhance the ability of the antigen to withstand frequent failures in cold chains. The study was undertaken to formulate immunogenic live Newcastle Disease (ND) LaSota vaccines stabilized with modified native starches for use at cold and ambient temperatures and to assess the immunogenicity of the starch stabilized vaccines in vaccinated chickens. Native starch extracted from the tubers of Plectranthus esculentus (Family, Lamiaceae) was modified by carboxymethylation and acetylation/xerogel formation and used as vaccine stabilizers of ND LaSota virus with/without buffers/bulking excipients. Cold Chain Failure (CCF) was simulated by storing the vaccines at 5 ± 2 °C for one month then at 37 ± 1 °C for 96 h. The stability of the samples were evaluated in comparison with peptone stabilized ND vaccines using pH, residual moisture, XRD, reconstitution time, mean embryo infective dose (EID50) and haemagglutination (HA) tests. Haemagglutination inhibition was used to evaluate the efficacy of the vaccines in conferring positive serum antibody titers (≥23 log2) in vaccine-naïve 2-week old broilers that were orally administered a single dose of the vaccines kept at 37 ± 1 °C for 96 h and bled weekly over four weeks. Temperature, pH, moisture content and amorphousness impacted vaccine stability. Peptone stabilized vaccines were significantly less stable and most affected by temperature changes with 1.2log10EID50 loss while buffered/bulked trehalose, carboxymethylated and acetylated/xerogelized starch stabilized vaccines were most stable (0.2-0.5log10EID50 loss in titer) after 96 h in CCF. Buffered trehalose stabilized vaccine (TVB) had lower HA titres than peptone and starch stabilized vaccines containing D-mannitol and Na2HPO4. Antibody titres of vaccinated broilers were between 3.3 ± 1.398 and 8.35 ± 2.678. All the vaccines were immunogenic (HI ≥ 23) and developed HI titres (≥24) considered to be protective. Carboxymethylated and acetylated/xerogel derivatives of P. esculentus starch have a great potential as vaccine stabilizers especially in areas prone to CCF.
Collapse
Affiliation(s)
- R E Guktur
- Department of Pharmaceutical Microbiology and Biotechnology, Faculty of Pharmaceutical Sciences, University of Jos, PMB 2084, Jos, Nigeria; Viral Vaccines Production Division, National Veterinary Research Institute, PMB 01, Vom, Nigeria
| | - E I Nep
- Department of Pharmaceutics, Faculty of Pharmaceutical Sciences, University of Jos, PMB 2084, Jos, Nigeria
| | - O Asala
- Viral Vaccines Production Division, National Veterinary Research Institute, PMB 01, Vom, Nigeria
| | - P O Olorunfemi
- Department of Pharmaceutical Microbiology and Biotechnology, Faculty of Pharmaceutical Sciences, University of Jos, PMB 2084, Jos, Nigeria
| | - N C Ngwuluka
- Department of Pharmaceutics, Faculty of Pharmaceutical Sciences, University of Jos, PMB 2084, Jos, Nigeria
| | - N A Ochekpe
- Department of Pharmaceutical Chemistry, Faculty of Pharmaceutical Sciences, University of Jos, PMB 2084, Jos, Nigeria.
| | - A S Sagay
- Department of Obstetrics and Gynaecology, College of Health Sciences, University of Jos/Jos University Teaching Hospital, Jos, Nigeria
| |
Collapse
|
24
|
Melano I, Kuo LL, Lo YC, Sung PW, Tien N, Su WC. Effects of Basic Amino Acids and Their Derivatives on SARS-CoV-2 and Influenza-A Virus Infection. Viruses 2021; 13:1301. [PMID: 34372507 PMCID: PMC8310019 DOI: 10.3390/v13071301] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 06/28/2021] [Accepted: 06/30/2021] [Indexed: 11/26/2022] Open
Abstract
Amino acids have been implicated with virus infection and replication. Here, we demonstrate the effects of two basic amino acids, arginine and lysine, and their ester derivatives on infection of two enveloped viruses, SARS-CoV-2, and influenza A virus. We found that lysine and its ester derivative can efficiently block infection of both viruses in vitro. Furthermore, the arginine ester derivative caused a significant boost in virus infection. Studies on their mechanism of action revealed that the compounds potentially disturb virus uncoating rather than virus attachment and endosomal acidification. Our findings suggest that lysine supplementation and the reduction of arginine-rich food intake can be considered as prophylactic and therapeutic regimens against these viruses while also providing a paradigm for the development of broad-spectrum antivirals.
Collapse
Affiliation(s)
- Ivonne Melano
- Graduate Institute of Biomedical Sciences, College of Medicine, China Medical University, Taichung 40402, Taiwan;
| | - Li-Lan Kuo
- Research Center for Emerging Viruses, China Medical University Hospital, Taichung 40402, Taiwan;
| | - Yan-Chung Lo
- Sinphar Pharmaceutical Co., Ltd., Sinphar Group, Yilan 269, Taiwan;
| | - Po-Wei Sung
- School of Medicine, China Medical University, Taichung 40402, Taiwan;
| | - Ni Tien
- Department of Laboratory Medicine, China Medical University Hospital, Taichung 40402, Taiwan;
- Department of Medical Laboratory Science and Biotechnology, China Medical University, Taichung 40402, Taiwan
| | - Wen-Chi Su
- Graduate Institute of Biomedical Sciences, College of Medicine, China Medical University, Taichung 40402, Taiwan;
- Research Center for Emerging Viruses, China Medical University Hospital, Taichung 40402, Taiwan;
- International Master’s Program of Biomedical Sciences, China Medical University, Taichung 40402, Taiwan
| |
Collapse
|
25
|
Abstract
Dual oxidase 1 (DUOX1) is an NADPH oxidase that is highly expre-ssed in respiratory epithelial cells and produces H2O2 in the airway lumen. While a line of prior in vitro observations suggested that DUOX1 works in partnership with an airway peroxidase, lactoperoxidase (LPO), to produce antimicrobial hypothiocyanite (OSCN-) in the airways, the in vivo role of DUOX1 in mammalian organisms has remained unproven to date. Here, we show that Duox1 promotes antiviral innate immunity in vivo. Upon influenza airway challenge, Duox1 -/- mice have enhanced mortality, morbidity, and impaired lung viral clearance. Duox1 increases the airway levels of several cytokines (IL-1β, IL-2, CCL1, CCL3, CCL11, CCL19, CCL20, CCL27, CXCL5, and CXCL11), contributes to innate immune cell recruitment, and affects epithelial apoptosis in the airways. In primary human tracheobronchial epithelial cells, OSCN- is generated by LPO using DUOX1-derived H2O2 and inactivates several influenza strains in vitro. We also show that OSCN- diminishes influenza replication and viral RNA synthesis in infected host cells that is inhibited by the H2O2 scavenger catalase. Binding of the influenza virus to host cells and viral entry are both reduced by OSCN- in an H2O2-dependent manner in vitro. OSCN- does not affect the neuraminidase activity or morphology of the influenza virus. Overall, this antiviral function of Duox1 identifies an in vivo role of this gene, defines the steps in the infection cycle targeted by OSCN-, and proposes that boosting this mechanism in vivo can have therapeutic potential in treating viral infections.
Collapse
|
26
|
Bhat SV, Price JDW, Dahms TES. AFM-Based Correlative Microscopy Illuminates Human Pathogens. Front Cell Infect Microbiol 2021; 11:655501. [PMID: 34026660 PMCID: PMC8138568 DOI: 10.3389/fcimb.2021.655501] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Accepted: 04/08/2021] [Indexed: 12/25/2022] Open
Abstract
Microbes have an arsenal of virulence factors that contribute to their pathogenicity. A number of challenges remain to fully understand disease transmission, fitness landscape, antimicrobial resistance and host heterogeneity. A variety of tools have been used to address diverse aspects of pathogenicity, from molecular host-pathogen interactions to the mechanisms of disease acquisition and transmission. Current gaps in our knowledge include a more direct understanding of host-pathogen interactions, including signaling at interfaces, and direct phenotypic confirmation of pathogenicity. Correlative microscopy has been gaining traction to address the many challenges currently faced in biomedicine, in particular the combination of optical and atomic force microscopy (AFM). AFM, generates high-resolution surface topographical images, and quantifies mechanical properties at the pN scale under physiologically relevant conditions. When combined with optical microscopy, AFM probes pathogen surfaces and their physical and molecular interaction with host cells, while the various modes of optical microscopy view internal cellular responses of the pathogen and host. Here we review the most recent advances in our understanding of pathogens, recent applications of AFM to the field, how correlative AFM-optical microspectroscopy and microscopy have been used to illuminate pathogenicity and how these methods can reach their full potential for studying host-pathogen interactions.
Collapse
Affiliation(s)
- Supriya V Bhat
- Department of Chemistry and Biochemistry, University of Regina, Regina, SK, Canada
| | - Jared D W Price
- Department of Chemistry and Biochemistry, University of Regina, Regina, SK, Canada
| | - Tanya E S Dahms
- Department of Chemistry and Biochemistry, University of Regina, Regina, SK, Canada
| |
Collapse
|
27
|
Ghoshal B, Bertrand E, Bhattacharyya SN. Non-canonical ago loading of EV-derived exogenous single stranded miRNA in recipient cells. J Cell Sci 2021; 134:jcs.253914. [PMID: 33785534 DOI: 10.1242/jcs.253914] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Accepted: 03/19/2021] [Indexed: 12/19/2022] Open
Abstract
MicroRNAs, the tiny regulators of gene expression, can be transferred between neighbouring cells via Extracellular Vesicles (EV) to control the expression of genes in both donor and recipient cells. How the EV-derived miRNAs get internalized and become functional in target cells is an unresolved question. We have expressed liver specific microRNA, miR-122, in non-hepatic cells for packaging in the released EVs. With these EVs, we have followed the trafficking of miR-122 to recipient HeLa cells that otherwise don't express this miRNA. We found that EV-associated miR-122 are primarily single stranded and, to become functional, get loaded onto the recipient cell Ago proteins without requiring host Dicer1. Following endocytosis, EV-associated miR-122 get loaded onto the host cell Ago on the endosomal membrane where the release of internalized miRNAs occurs in a pH-dependent manner facilitating the formation of the exogenous miRNP pool in the recipient cells. Endosome maturation defect affects EV-mediated entry of exogeneous miRNAs in mammalian cells.
Collapse
Affiliation(s)
- Bartika Ghoshal
- RNA Biology Research Laboratory, Molecular Genetics Division, CSIR-Indian Institute of Chemical Biology, India
| | - Edouard Bertrand
- Institut de Génétique Moléculaire de Montpellier, Université de Montpellier, CNRS, Montpellier, France
| | - Suvendra N Bhattacharyya
- RNA Biology Research Laboratory, Molecular Genetics Division, CSIR-Indian Institute of Chemical Biology, India
| |
Collapse
|
28
|
McKellar J, Rebendenne A, Wencker M, Moncorgé O, Goujon C. Mammalian and Avian Host Cell Influenza A Restriction Factors. Viruses 2021; 13:522. [PMID: 33810083 PMCID: PMC8005160 DOI: 10.3390/v13030522] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 03/12/2021] [Accepted: 03/15/2021] [Indexed: 12/27/2022] Open
Abstract
The threat of a new influenza pandemic is real. With past pandemics claiming millions of lives, finding new ways to combat this virus is essential. Host cells have developed a multi-modular system to detect incoming pathogens, a phenomenon called sensing. The signaling cascade triggered by sensing subsequently induces protection for themselves and their surrounding neighbors, termed interferon (IFN) response. This response induces the upregulation of hundreds of interferon-stimulated genes (ISGs), including antiviral effectors, establishing an antiviral state. As well as the antiviral proteins induced through the IFN system, cells also possess a so-called intrinsic immunity, constituted of antiviral proteins that are constitutively expressed, creating a first barrier preceding the induction of the interferon system. All these combined antiviral effectors inhibit the virus at various stages of the viral lifecycle, using a wide array of mechanisms. Here, we provide a review of mammalian and avian influenza A restriction factors, detailing their mechanism of action and in vivo relevance, when known. Understanding their mode of action might help pave the way for the development of new influenza treatments, which are absolutely required if we want to be prepared to face a new pandemic.
Collapse
Affiliation(s)
- Joe McKellar
- Institut de Recherche en Infectiologie de Montpellier, CNRS, Université de Montpellier, CEDEX 5, 34293 Montpellier, France; (J.M.); (A.R.)
| | - Antoine Rebendenne
- Institut de Recherche en Infectiologie de Montpellier, CNRS, Université de Montpellier, CEDEX 5, 34293 Montpellier, France; (J.M.); (A.R.)
| | - Mélanie Wencker
- Centre International de Recherche en Infectiologie, INSERM/CNRS/UCBL1/ENS de Lyon, 69007 Lyon, France;
| | - Olivier Moncorgé
- Institut de Recherche en Infectiologie de Montpellier, CNRS, Université de Montpellier, CEDEX 5, 34293 Montpellier, France; (J.M.); (A.R.)
| | - Caroline Goujon
- Institut de Recherche en Infectiologie de Montpellier, CNRS, Université de Montpellier, CEDEX 5, 34293 Montpellier, France; (J.M.); (A.R.)
| |
Collapse
|
29
|
Trexler M, Brusatori M, Auner G. Avidin-biotin complex-based capture coating platform for universal Influenza virus immobilization and characterization. PLoS One 2021; 16:e0247429. [PMID: 33635877 PMCID: PMC7909696 DOI: 10.1371/journal.pone.0247429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Accepted: 02/08/2021] [Indexed: 11/18/2022] Open
Abstract
Influenza virus mutates quickly and unpredictably creating emerging pathogenic strains that are difficult to detect, diagnose, and characterize. Conventional tools to study and characterize virus, such as next generation sequencing, genome amplification (RT-PCR), and serological antibody testing, are not adequately suited to rapidly mutating pathogens like Influenza virus where the success of infection heavily depends on the phenotypic expression of surface glycoproteins. Bridging the gap between genome and pathogenic expression remains a challenge. Using sialic acid as a universal Influenza virus binding receptor, a novel virus avidin-biotin complex-based capture coating was developed and characterized that may be used to create future diagnostic and interrogation platforms for viable whole Influenza virus. First, fluorescent FITC probe studies were used to optimize coating component concentrations. Then atomic force microscopy (AFM) was used to profile the surface characteristics of the novel capture coating, acquire topographical imaging of Influenza particles immobilized by the coating, and calculate the capture efficiency of the coating (over 90%) for all four representative human Influenza virus strains tested.
Collapse
Affiliation(s)
- Micaela Trexler
- Smart Sensors and Integrated Microsystems, Wayne State University, Detroit, Michigan, United States of America
- Department of Biomedical Engineering, Wayne State University College of Engineering, Detroit, Michigan, United States of America
- * E-mail:
| | - Michelle Brusatori
- Smart Sensors and Integrated Microsystems, Wayne State University, Detroit, Michigan, United States of America
- Department of Biomedical Engineering, Wayne State University College of Engineering, Detroit, Michigan, United States of America
- Michael and Marian Illitch Department of Surgery, Wayne State University School of Medicine, Detroit, Michigan, United States of America
| | - Gregory Auner
- Smart Sensors and Integrated Microsystems, Wayne State University, Detroit, Michigan, United States of America
- Department of Biomedical Engineering, Wayne State University College of Engineering, Detroit, Michigan, United States of America
- Michael and Marian Illitch Department of Surgery, Wayne State University School of Medicine, Detroit, Michigan, United States of America
| |
Collapse
|
30
|
Touizer E, Sieben C, Henriques R, Marsh M, Laine RF. Application of Super-Resolution and Advanced Quantitative Microscopy to the Spatio-Temporal Analysis of Influenza Virus Replication. Viruses 2021; 13:233. [PMID: 33540739 PMCID: PMC7912985 DOI: 10.3390/v13020233] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 01/28/2021] [Accepted: 01/28/2021] [Indexed: 02/07/2023] Open
Abstract
With an estimated three to five million human cases annually and the potential to infect domestic and wild animal populations, influenza viruses are one of the greatest health and economic burdens to our society, and pose an ongoing threat of large-scale pandemics. Despite our knowledge of many important aspects of influenza virus biology, there is still much to learn about how influenza viruses replicate in infected cells, for instance, how they use entry receptors or exploit host cell trafficking pathways. These gaps in our knowledge are due, in part, to the difficulty of directly observing viruses in living cells. In recent years, advances in light microscopy, including super-resolution microscopy and single-molecule imaging, have enabled many viral replication steps to be visualised dynamically in living cells. In particular, the ability to track single virions and their components, in real time, now allows specific pathways to be interrogated, providing new insights to various aspects of the virus-host cell interaction. In this review, we discuss how state-of-the-art imaging technologies, notably quantitative live-cell and super-resolution microscopy, are providing new nanoscale and molecular insights into influenza virus replication and revealing new opportunities for developing antiviral strategies.
Collapse
Affiliation(s)
- Emma Touizer
- Division of Infection and Immunity, University College London, London WC1E 6AE, UK;
- MRC Laboratory for Molecular Cell Biology, University College London, London WC1E 6BT, UK; (R.H.); (M.M.)
| | - Christian Sieben
- Department of Cell Biology, Helmholtz Centre for Infection Research, 38124 Braunschweig, Germany;
| | - Ricardo Henriques
- MRC Laboratory for Molecular Cell Biology, University College London, London WC1E 6BT, UK; (R.H.); (M.M.)
- The Francis Crick Institute, London NW1 1AT, UK
- Instituto Gulbenkian de Ciência, 2780-156 Oeiras, Portugal
| | - Mark Marsh
- MRC Laboratory for Molecular Cell Biology, University College London, London WC1E 6BT, UK; (R.H.); (M.M.)
| | - Romain F. Laine
- MRC Laboratory for Molecular Cell Biology, University College London, London WC1E 6BT, UK; (R.H.); (M.M.)
- The Francis Crick Institute, London NW1 1AT, UK
| |
Collapse
|
31
|
Mohd-Kipli F, Claridge JK, Habjanič J, Jiang A, Schnell JR. Conformational triggers associated with influenza matrix protein 1 polymerization. J Biol Chem 2021; 296:100316. [PMID: 33516724 PMCID: PMC7949140 DOI: 10.1016/j.jbc.2021.100316] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 12/28/2020] [Accepted: 01/19/2021] [Indexed: 11/26/2022] Open
Abstract
A central role for the influenza matrix protein 1 (M1) is to form a polymeric coat on the inner leaflet of the host membrane that ultimately provides shape and stability to the virion. M1 polymerizes upon binding membranes, but triggers for conversion of M1 from a water-soluble component of the nucleus and cytosol into an oligomer at the membrane surface are unknown. While full-length M1 is required for virus viability, the N-terminal domain (M1NT) retains membrane binding and pH-dependent oligomerization. We studied the structural plasticity and oligomerization of M1NT in solution using NMR spectroscopy. We show that the isolated domain can be induced by sterol-containing compounds to undergo a conformational change and self-associate in a pH-dependent manner consistent with the stacked dimer oligomeric interface. Surface-exposed residues at one of the stacked dimer interfaces are most sensitive to sterols. Several perturbed residues are at the interface between the N-terminal subdomains and are also perturbed by changes in pH. The effects of sterols appear to be indirect and most likely mediated by reduction in water activity. The local changes are centered on strictly conserved residues and consistent with a priming of the N-terminal domain for polymerization. We hypothesize that M1NT is sensitive to changes in the aqueous environment and that this sensitivity is part of a mechanism for restricting polymerization to the membrane surface. Structural models combined with information from chemical shift perturbations indicate mechanisms by which conformational changes can be transmitted from one polymerization interface to the other.
Collapse
Affiliation(s)
- Faiz Mohd-Kipli
- Department of Biochemistry, University of Oxford, Oxford, United Kingdom; Faculty of Science, Universiti Brunei Darussalam, Gadong, Brunei Darussalam
| | - Jolyon K Claridge
- Department of Biochemistry, University of Oxford, Oxford, United Kingdom
| | - Jelena Habjanič
- Department of Biochemistry, University of Oxford, Oxford, United Kingdom
| | - Alex Jiang
- Department of Biochemistry, University of Oxford, Oxford, United Kingdom
| | - Jason R Schnell
- Department of Biochemistry, University of Oxford, Oxford, United Kingdom.
| |
Collapse
|
32
|
Hwang HS, Chang M, Kim YA. Influenza-Host Interplay and Strategies for Universal Vaccine Development. Vaccines (Basel) 2020; 8:vaccines8030548. [PMID: 32962304 PMCID: PMC7564814 DOI: 10.3390/vaccines8030548] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 09/11/2020] [Accepted: 09/18/2020] [Indexed: 12/24/2022] Open
Abstract
Influenza is an annual epidemic and an occasional pandemic caused by pathogens that are responsible for infectious respiratory disease. Humans are highly susceptible to the infection mediated by influenza A viruses (IAV). The entry of the virus is mediated by the influenza virus hemagglutinin (HA) glycoprotein that binds to the cellular sialic acid receptors and facilitates the fusion of the viral membrane with the endosomal membrane. During IAV infection, virus-derived pathogen-associated molecular patterns (PAMPs) are recognized by host intracellular specific sensors including toll-like receptors (TLRs), C-type lectin receptors, retinoic acid-inducible gene-I (RIG-I)-like receptors (RLRs), and nucleotide-binding oligomerization domain (NOD)-like receptors (NLRs) either on the cell surface or intracellularly in endosomes. Herein, we comprehensively review the current knowledge available on the entry of the influenza virus into host cells and the molecular details of the influenza virus–host interface. We also highlight certain strategies for the development of universal influenza vaccines.
Collapse
Affiliation(s)
- Hye Suk Hwang
- Alan G. MacDiarmid Energy Research Institute, Chonnam National University, Gwangju 61186, Korea;
| | - Mincheol Chang
- Alan G. MacDiarmid Energy Research Institute, Chonnam National University, Gwangju 61186, Korea;
- Department of Polymer Engineering, Graduate School, Chonnam National University, Gwangju 61186, Korea
- School of Polymer Science and Engineering, Chonnam National University, Gwangju 61186, Korea
- Correspondence: (M.C.); (Y.A.K.); Tel.: +82-62-530-1771 (M.C.); +82-62-530-1871 (Y.A.K.)
| | - Yoong Ahm Kim
- Alan G. MacDiarmid Energy Research Institute, Chonnam National University, Gwangju 61186, Korea;
- Department of Polymer Engineering, Graduate School, Chonnam National University, Gwangju 61186, Korea
- School of Polymer Science and Engineering, Chonnam National University, Gwangju 61186, Korea
- Correspondence: (M.C.); (Y.A.K.); Tel.: +82-62-530-1771 (M.C.); +82-62-530-1871 (Y.A.K.)
| |
Collapse
|
33
|
Mastrodomenico V, Esin JJ, Qazi S, Khomutov MA, Ivanov AV, Mukhopadhyay S, Mounce BC. Virion-Associated Polyamines Transmit with Bunyaviruses to Maintain Infectivity and Promote Entry. ACS Infect Dis 2020; 6:2490-2501. [PMID: 32687697 DOI: 10.1021/acsinfecdis.0c00402] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Viruses require host cell metabolites to productively infect, and the mechanisms by which viruses usurp these molecules are diverse. One group of cellular metabolites important in virus infection is the polyamines, small positively charged molecules involved in cell cycle, translation, and nucleic acid metabolism, among other cellular functions. Polyamines support replication of diverse viruses, and they are important for processes such as transcription, translation, and viral protein enzymatic activity. Rift Valley fever virus (RVFV) is a negative and ambisense RNA virus that requires polyamines to produce infectious particles. In polyamine depleted conditions, noninfectious particles are produced that interfere with virus replication and stimulate immune signaling. Here, we find that RVFV relies on virion-associated polyamines to maintain infectivity and enhance viral entry. We show that RVFV replication is facilitated by a limited set of polyamines and that spermidine and closely related molecules associate with purified virions and transmit from cell to cell during infection. Virion-associated spermidine maintains virion infectivity, as virions devoid of polyamines rapidly lose infectivity and are temperature sensitive. Further, virions without polyamines bind to cells but exhibit a defect in entry, requiring more acidic conditions than virions containing spermidine. These data highlight a unique role for polyamines, and spermidine particularly, to maintain virus infectivity. Further, these studies are the first to identify polyamines associated with RVFV virions. Targeting polyamines represents a promising antiviral strategy, and this work highlights a new mechanism by which we can inhibit virus replication through FDA-approved polyamine depleting pharmaceuticals.
Collapse
Affiliation(s)
- Vincent Mastrodomenico
- Department of Microbiology and Immunology, Stritch School of Medicine, Loyola University Chicago, Maywood, Illinois 60153, United States
| | - Jeremy J. Esin
- Department of Microbiology and Immunology, Stritch School of Medicine, Loyola University Chicago, Maywood, Illinois 60153, United States
- Infectious Disease and Immunology Research Institute, Stritch School of Medicine, Loyola University Chicago, Maywood, Illinois 60153, United States
| | - Shefah Qazi
- Department of Biology, Indiana University, Bloomington, Indiana 47405, United States
| | - Maxim A. Khomutov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow 119991, Russia
| | - Alexander V. Ivanov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow 119991, Russia
| | | | - Bryan C. Mounce
- Department of Microbiology and Immunology, Stritch School of Medicine, Loyola University Chicago, Maywood, Illinois 60153, United States
- Infectious Disease and Immunology Research Institute, Stritch School of Medicine, Loyola University Chicago, Maywood, Illinois 60153, United States
| |
Collapse
|
34
|
Cuellar-Camacho JL, Bhatia S, Reiter-Scherer V, Lauster D, Liese S, Rabe JP, Herrmann A, Haag R. Quantification of Multivalent Interactions between Sialic Acid and Influenza A Virus Spike Proteins by Single-Molecule Force Spectroscopy. J Am Chem Soc 2020; 142:12181-12192. [PMID: 32538085 DOI: 10.1021/jacs.0c02852] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Multivalency is a key principle in reinforcing reversible molecular interactions through the formation of multiple bonds. The influenza A virus deploys this strategy to bind strongly to cell surface receptors. We performed single-molecule force spectroscopy (SMFS) to investigate the rupture force required to break individual and multiple bonds formed between synthetic sialic acid (SA) receptors and the two principal spike proteins of the influenza A virus (H3N2): hemagglutinin (H3) and neuraminidase (N2). Kinetic parameters such as the rupture length (χβ) and dissociation rate (koff) are extracted using the model by Friddle, De Yoreo, and Noy. We found that a monovalent SA receptor binds to N2 with a significantly higher bond lifetime (270 ms) compared to that for H3 (36 ms). By extending the single-bond rupture analysis to a multibond system of n protein-receptor pairs, we provide an unprecedented quantification of the mechanistic features of multivalency between H3 and N2 with SA receptors and show that the stability of the multivalent connection increases with the number of bonds from tens to hundreds of milliseconds. Association rates (kon) are also provided, and an estimation of the dissociation constants (KD) between the SA receptors to both proteins indicate a 17-fold higher binding affinity for the SA-N2 bond with respect to that of SA-H3. An optimal designed multivalent SA receptor showed a higher binding stability to the H3 protein of the influenza A virus than to the monovalent SA receptor. Our study emphasizes the influence of the scaffold on the presentation of receptors during multivalent binding.
Collapse
Affiliation(s)
- Jose Luis Cuellar-Camacho
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, Takustraße 3, 14195 Berlin, Germany
| | - Sumati Bhatia
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, Takustraße 3, 14195 Berlin, Germany
| | - Valentin Reiter-Scherer
- Department of Physics & IRIS Adlershof, Humboldt-Universität zu Berlin, Newtonstraße 15, 12489 Berlin, Germany
| | - Daniel Lauster
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, Takustraße 3, 14195 Berlin, Germany.,Institute for Biology & IRI Life Sciences, Humboldt-Universität zu Berlin, Invalidenstraße 42, 10115 Berlin, Germany
| | - Susanne Liese
- Department of Mathematics, University of Oslo, Moltke Moes vei 35, 1053 Oslo, Norway
| | - Jürgen P Rabe
- Department of Physics & IRIS Adlershof, Humboldt-Universität zu Berlin, Newtonstraße 15, 12489 Berlin, Germany
| | - Andreas Herrmann
- Institute for Biology & IRI Life Sciences, Humboldt-Universität zu Berlin, Invalidenstraße 42, 10115 Berlin, Germany
| | - Rainer Haag
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, Takustraße 3, 14195 Berlin, Germany
| |
Collapse
|
35
|
Jalily PH, Duncan MC, Fedida D, Wang J, Tietjen I. Put a cork in it: Plugging the M2 viral ion channel to sink influenza. Antiviral Res 2020; 178:104780. [PMID: 32229237 PMCID: PMC7102647 DOI: 10.1016/j.antiviral.2020.104780] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Revised: 02/12/2020] [Accepted: 03/20/2020] [Indexed: 12/17/2022]
Abstract
The ongoing threat of seasonal and pandemic influenza to human health requires antivirals that can effectively supplement existing vaccination strategies. The M2 protein of influenza A virus (IAV) is a proton-gated, proton-selective ion channel that is required for virus replication and is an established antiviral target. While licensed adamantane-based M2 antivirals have been historically used, M2 mutations that confer major adamantane resistance are now so prevalent in circulating virus strains that these drugs are no longer recommended. Here we review the current understanding of IAV M2 structure and function, mechanisms of inhibition, the rise of drug resistance mutations, and ongoing efforts to develop new antivirals that target resistant forms of M2.
Collapse
Affiliation(s)
- Pouria H Jalily
- Department of Anesthesiology, Pharmacology, and Therapeutics, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Maggie C Duncan
- Faculty of Health Sciences, Simon Fraser University, Burnaby, BC, Canada
| | - David Fedida
- Department of Anesthesiology, Pharmacology, and Therapeutics, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Jun Wang
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, Tuscon, AZ, USA
| | - Ian Tietjen
- Faculty of Health Sciences, Simon Fraser University, Burnaby, BC, Canada; The Wistar Institute, Philadelphia, PA, USA.
| |
Collapse
|
36
|
Jung HE, Lee HK. Host Protective Immune Responses against Influenza A Virus Infection. Viruses 2020; 12:v12050504. [PMID: 32375274 PMCID: PMC7291249 DOI: 10.3390/v12050504] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2020] [Revised: 04/27/2020] [Accepted: 04/30/2020] [Indexed: 12/31/2022] Open
Abstract
Influenza viruses cause infectious respiratory disease characterized by fever, myalgia, and congestion, ranging in severity from mild to life-threating. Although enormous efforts have aimed to prevent and treat influenza infections, seasonal and pandemic influenza outbreaks remain a major public health concern. This is largely because influenza viruses rapidly undergo genetic mutations that restrict the long-lasting efficacy of vaccine-induced immune responses and therapeutic regimens. In this review, we discuss the virological features of influenza A viruses and provide an overview of current knowledge of the innate sensing of invading influenza viruses and the protective immune responses in the host.
Collapse
Affiliation(s)
- Hi Eun Jung
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Korea
- Correspondence: (H.E.J.); (H.K.L.); Tel.: +82-42-350-4281 (H.K.L.)
| | - Heung Kyu Lee
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Korea
- KAIST Institute for Health Science and Technology, KAIST, Daejeon 34141, Korea
- Correspondence: (H.E.J.); (H.K.L.); Tel.: +82-42-350-4281 (H.K.L.)
| |
Collapse
|
37
|
Jakubcová L, Vozárová M, Hollý J, Tomčíková K, Fogelová M, Polčicová K, Kostolanský F, Fodor E, Varečková E. Biological properties of influenza A virus mutants with amino acid substitutions in the HA2 glycoprotein of the HA1/HA2 interaction region. J Gen Virol 2020; 100:1282-1292. [PMID: 31329089 PMCID: PMC7414431 DOI: 10.1099/jgv.0.001305] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Influenza A viruses (IAVs) enter into cells by receptor-dependent endocytosis. Subsequently, conformational changes of haemagglutinin are triggered by low environmental pH and the N terminus of HA2 glycoprotein (gp) is inserted into the endosomal membrane, resulting in fusion pore formation and genomic vRNA release into the cytoplasm. However, the pH optimum of membrane fusion is host- and virus-specific and can have an impact on virus pathogenicity. We prepared mutants of neurotropic IAV A/WSN/33 (H1N1) with aa substitutions in HA2 gp at the site of HA1/HA2 interaction, namely T642H (HA2 numbering position 64, H1 numbering position HA407; referred to as mutant '64'), V662H ('66') (HA409); and a double mutant ('D') with two aa substitutions (T642H, V662H). These substitutions were hypothesized to influence the pH optimum of fusion. The pH optimum of fusion activity was measured by a luciferase assay and biological properties of viruses were monitored. The in vitro and in vivo replication ability and pathogenicity of mutants were comparable (64) or lower (66, D) than those of the wild-type virus. However, the HA2 mutation V662H and double mutation T642H, V662H shifted the fusion pH maximum to lower values (ranging from 5.1 to 5.3) compared to pH from 5.4 to 5.6 for the wild-type and 64 mutant. The decreased replication ability and pathogenicity of 66 and D mutants was accompanied by higher titres in late intervals post-infection in lungs, and viral RNA in brains compared to wild-type virus-infected mice. These results have implications for understanding the pathogenicity of influenza viruses.
Collapse
Affiliation(s)
- L Jakubcová
- Institute of Virology, Biomedical Research Center, Slovak Academy of Sciences, Dúbravská cesta 9, 845 05 Bratislava, Slovakia
| | - M Vozárová
- Institute of Virology, Biomedical Research Center, Slovak Academy of Sciences, Dúbravská cesta 9, 845 05 Bratislava, Slovakia
| | - J Hollý
- Institute of Virology, Biomedical Research Center, Slovak Academy of Sciences, Dúbravská cesta 9, 845 05 Bratislava, Slovakia
| | - K Tomčíková
- Institute of Virology, Biomedical Research Center, Slovak Academy of Sciences, Dúbravská cesta 9, 845 05 Bratislava, Slovakia
| | - M Fogelová
- Institute of Virology, Biomedical Research Center, Slovak Academy of Sciences, Dúbravská cesta 9, 845 05 Bratislava, Slovakia
| | - K Polčicová
- Institute of Virology, Biomedical Research Center, Slovak Academy of Sciences, Dúbravská cesta 9, 845 05 Bratislava, Slovakia
| | - F Kostolanský
- Institute of Virology, Biomedical Research Center, Slovak Academy of Sciences, Dúbravská cesta 9, 845 05 Bratislava, Slovakia
| | - E Fodor
- Sir William Dunn School of Pathology, University of Oxford, Oxford, UK
| | - E Varečková
- Institute of Virology, Biomedical Research Center, Slovak Academy of Sciences, Dúbravská cesta 9, 845 05 Bratislava, Slovakia
| |
Collapse
|
38
|
Abstract
Influenza A virus (IAV) is an enveloped virus of the Orthomyxoviridae with a negative-sense single-stranded RNA genome. During virus cell entry, viral and cellular cues are delivered in a stepwise manner within two distinct cellular compartments-the endosomes and the cytosol. Endosome maturation primes the viral core for uncoating by cytosolic host proteins and host-mediated virus disaggregation is essential for genome import and replication in the nucleus. Recent evidence shows that two well-known cellular proteins-histone deacetylase 6 (HDAC6) and karyopherin-β2 (kapβ2)-uncoat influenza virus. HDAC6 is 1 of 11 HDACs and an X-linked, cytosolic lysine deacetylase. Under normal cellular conditions HDAC6 is the tubulin deacetylase. Under proteasomal stress HDAC6 binds unanchored ubiquitin, dynein and myosin II to sequester misfolded protein aggregates for autophagy. Kapβ2 is a member of the importin β family that transports RNA-binding proteins into the nucleus by binding to disordered nuclear localization signals (NLSs) known as PY-NLS. Kapβ2 is emerging as a universal uncoating factor for IAV and human immunodeficiency virus type 1 (HIV-1). Kapβ2 can also reverse liquid-liquid phase separation (LLPS) of RNA-binding proteins by promoting their disaggregation. Thus, it is becoming evident that key players in the management of cellular condensates and membraneless organelles are potent virus uncoating factors. This emerging concept reveals implications in viral pathogenesis, as well as, the promise for cell-targeted therapeutic strategies to block universal virus uncoating pathways hijacked by enveloped RNA viruses.
Collapse
Affiliation(s)
- Yohei Yamauchi
- School of Cellular & Molecular Medicine, University of Bristol, Bristol, United Kingdom.
| |
Collapse
|
39
|
Glucosylceramide synthase maintains influenza virus entry and infection. PLoS One 2020; 15:e0228735. [PMID: 32032363 PMCID: PMC7006932 DOI: 10.1371/journal.pone.0228735] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Accepted: 01/22/2020] [Indexed: 12/18/2022] Open
Abstract
Influenza virus is an enveloped virus wrapped in a lipid bilayer derived from the host cell plasma membrane. Infection by influenza virus is dependent on these host cell lipids, which include sphingolipids. Here we examined the role of the sphingolipid, glucosylceramide, in influenza virus infection by knocking out the enzyme responsible for its synthesis, glucosylceramide synthase (UGCG). We observed diminished influenza virus infection in HEK 293 and A549 UGCG knockout cells and demonstrated that this is attributed to impaired viral entry. We also observed that entry mediated by the glycoproteins of other enveloped viruses that enter cells by endocytosis is also impaired in UGCG knockout cells, suggesting a broader role for UGCG in viral entry by endocytosis.
Collapse
|
40
|
Amphipathic Helices of Cellular Proteins Can Replace the Helix in M2 of Influenza A Virus with Only Small Effects on Virus Replication. J Virol 2020; 94:JVI.01605-19. [PMID: 31694941 DOI: 10.1128/jvi.01605-19] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Accepted: 11/04/2019] [Indexed: 11/20/2022] Open
Abstract
M2 of influenza virus functions as a proton channel during virus entry. In addition, an amphipathic helix in its cytoplasmic tail plays a role during budding. It targets M2 to the assembly site where it inserts into the inner membrane leaflet to induce curvature that causes virus scission. Since vesicularization of membranes can be performed by a variety of amphiphilic peptides, we used reverse genetics to investigate whether the peptides can substitute for M2's helix. Virus could not be generated if M2's helix was deleted or replaced by a peptide predicted not to form an amphiphilic helix. In contrast, viruses could be rescued if the M2 helix was exchanged by helices known to induce membrane curvature. Infectious virus titers were marginally reduced if M2 contains the helix of the amphipathic lipid packing sensor from the Epsin N-terminal homology domain or the nonnatural membrane inducer RW16. Transmission electron microscopy of infected cells did not reveal unequivocal evidence that virus budding or membrane scission was disturbed in any of the mutants. Instead, individual virus mutants exhibit other defects in M2, such as reduced surface expression, incorporation into virus particles, and ion channel activity. The protein composition and specific infectivity were also altered for mutant virions. We conclude that the presence of an amphiphilic helix in M2 is essential for virus replication but that other helices can replace its basic (curvature-inducing) function.IMPORTANCE Influenza virus is unique among enveloped viruses since it does not rely on the cellular ESCRT machinery for budding. Instead, viruses encode their own scission machine, the M2 protein. M2 is targeted to the edge of the viral assembly site, where it inserts an amphiphilic helix into the membrane to induce curvature. Cellular proteins utilize a similar mechanism for scission of vesicles. We show that the helix of M2 can be replaced by helices from cellular proteins with only small effects on virus replication. No evidence was obtained that budding is disturbed, but individual mutants exhibit other defects in M2 that explain the reduced virus titers. In contrast, no virus could be generated if the helix of M2 is deleted or replaced by irrelevant sequences. These experiments support the concept that M2 requires an amphiphilic helix to induce membrane curvature, but its biophysical properties are more important than the amino acid sequence.
Collapse
|
41
|
Microtubules in Influenza Virus Entry and Egress. Viruses 2020; 12:v12010117. [PMID: 31963544 PMCID: PMC7020094 DOI: 10.3390/v12010117] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Revised: 01/10/2020] [Accepted: 01/14/2020] [Indexed: 12/14/2022] Open
Abstract
Influenza viruses are respiratory pathogens that represent a significant threat to public health, despite the large-scale implementation of vaccination programs. It is necessary to understand the detailed and complex interactions between influenza virus and its host cells in order to identify successful strategies for therapeutic intervention. During viral entry, the cellular microenvironment presents invading pathogens with a series of obstacles that must be overcome to infect permissive cells. Influenza hijacks numerous host cell proteins and associated biological pathways during its journey into the cell, responding to environmental cues in order to successfully replicate. The cellular cytoskeleton and its constituent microtubules represent a heavily exploited network during viral infection. Cytoskeletal filaments provide a dynamic scaffold for subcellular viral trafficking, as well as virus-host interactions with cellular machineries that are essential for efficient uncoating, replication, and egress. In addition, influenza virus infection results in structural changes in the microtubule network, which itself has consequences for viral replication. Microtubules, their functional roles in normal cell biology, and their exploitation by influenza viruses will be the focus of this review.
Collapse
|
42
|
Li B, Clohisey SM, Chia BS, Wang B, Cui A, Eisenhaure T, Schweitzer LD, Hoover P, Parkinson NJ, Nachshon A, Smith N, Regan T, Farr D, Gutmann MU, Bukhari SI, Law A, Sangesland M, Gat-Viks I, Digard P, Vasudevan S, Lingwood D, Dockrell DH, Doench JG, Baillie JK, Hacohen N. Genome-wide CRISPR screen identifies host dependency factors for influenza A virus infection. Nat Commun 2020; 11:164. [PMID: 31919360 PMCID: PMC6952391 DOI: 10.1038/s41467-019-13965-x] [Citation(s) in RCA: 109] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Accepted: 12/06/2019] [Indexed: 12/26/2022] Open
Abstract
Host dependency factors that are required for influenza A virus infection may serve as therapeutic targets as the virus is less likely to bypass them under drug-mediated selection pressure. Previous attempts to identify host factors have produced largely divergent results, with few overlapping hits across different studies. Here, we perform a genome-wide CRISPR/Cas9 screen and devise a new approach, meta-analysis by information content (MAIC) to systematically combine our results with prior evidence for influenza host factors. MAIC out-performs other meta-analysis methods when using our CRISPR screen as validation data. We validate the host factors, WDR7, CCDC115 and TMEM199, demonstrating that these genes are essential for viral entry and regulation of V-type ATPase assembly. We also find that CMTR1, a human mRNA cap methyltransferase, is required for efficient viral cap snatching and regulation of a cell autonomous immune response, and provides synergistic protection with the influenza endonuclease inhibitor Xofluza. Here, Li et al. perform a genome-wide CRISPR screen to identify host dependency factors for influenza A virus infection and show that the host mRNA cap methyltransferase CMTR1 is important for viral cap snatching and that it affects expression of antiviral genes.
Collapse
Affiliation(s)
- Bo Li
- Harvard University Virology Program, Harvfvard Medical School, Boston, MA02142, USA.,Broad Institute of MIT and Harvard, 415 Main Street, Cambridge, MA, 02142, USA
| | - Sara M Clohisey
- Roslin Institute, University of Edinburgh, Easter Bush, EH25 9RG, UK
| | - Bing Shao Chia
- Harvard University Virology Program, Harvfvard Medical School, Boston, MA02142, USA.,Broad Institute of MIT and Harvard, 415 Main Street, Cambridge, MA, 02142, USA
| | - Bo Wang
- Roslin Institute, University of Edinburgh, Easter Bush, EH25 9RG, UK
| | - Ang Cui
- Broad Institute of MIT and Harvard, 415 Main Street, Cambridge, MA, 02142, USA.,Harvard-MIT Health Sciences and Technology, Harvard Medical School, Boston, MA, 02115, USA
| | - Thomas Eisenhaure
- Broad Institute of MIT and Harvard, 415 Main Street, Cambridge, MA, 02142, USA
| | | | - Paul Hoover
- Broad Institute of MIT and Harvard, 415 Main Street, Cambridge, MA, 02142, USA
| | | | - Aharon Nachshon
- School of Molecular Cell Biology and Biotechnology, Department of Cell Research and Immunology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Nikki Smith
- Roslin Institute, University of Edinburgh, Easter Bush, EH25 9RG, UK
| | - Tim Regan
- Roslin Institute, University of Edinburgh, Easter Bush, EH25 9RG, UK
| | - David Farr
- Roslin Institute, University of Edinburgh, Easter Bush, EH25 9RG, UK
| | - Michael U Gutmann
- School of informatics, University of Edinburgh, Edinburgh, EH8 9YL, UK
| | - Syed Irfan Bukhari
- Center for Cancer Research, Massachusetts General hospital, Harvard Medical School, Boston, MA, USA
| | - Andrew Law
- Roslin Institute, University of Edinburgh, Easter Bush, EH25 9RG, UK
| | - Maya Sangesland
- The Ragon Institute of Massachusetts General Hospital, MIT and Harvard University, Cambridge, MA, USA
| | - Irit Gat-Viks
- Broad Institute of MIT and Harvard, 415 Main Street, Cambridge, MA, 02142, USA.,School of Molecular Cell Biology and Biotechnology, Department of Cell Research and Immunology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Paul Digard
- Roslin Institute, University of Edinburgh, Easter Bush, EH25 9RG, UK
| | - Shobha Vasudevan
- Center for Cancer Research, Massachusetts General hospital, Harvard Medical School, Boston, MA, USA
| | - Daniel Lingwood
- The Ragon Institute of Massachusetts General Hospital, MIT and Harvard University, Cambridge, MA, USA
| | - David H Dockrell
- MRC Center for Inflammation Research, University of Edinburgh, Edinburgh, UK
| | - John G Doench
- Broad Institute of MIT and Harvard, 415 Main Street, Cambridge, MA, 02142, USA
| | - J Kenneth Baillie
- Roslin Institute, University of Edinburgh, Easter Bush, EH25 9RG, UK. .,Intensive Care Unit, Royal Infirmary Edinburgh, Edinburgh, EH16 5SA, UK.
| | - Nir Hacohen
- Broad Institute of MIT and Harvard, 415 Main Street, Cambridge, MA, 02142, USA. .,Massachusetts General Hospital Cancer Center, Boston, MA, 02129, USA.
| |
Collapse
|
43
|
Ni R, Chau Y. Nanoassembly of Oligopeptides and DNA Mimics the Sequential Disassembly of a Spherical Virus. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201913611] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Rong Ni
- Department of Chemical and Biological EngineeringThe Hong Kong University of Science and Technology Clearwater Bay Kowloon, Hong Kong China
| | - Ying Chau
- Department of Chemical and Biological EngineeringThe Hong Kong University of Science and Technology Clearwater Bay Kowloon, Hong Kong China
| |
Collapse
|
44
|
Ni R, Chau Y. Nanoassembly of Oligopeptides and DNA Mimics the Sequential Disassembly of a Spherical Virus. Angew Chem Int Ed Engl 2019; 59:3578-3584. [DOI: 10.1002/anie.201913611] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Indexed: 11/05/2022]
Affiliation(s)
- Rong Ni
- Department of Chemical and Biological EngineeringThe Hong Kong University of Science and Technology Clearwater Bay Kowloon, Hong Kong China
| | - Ying Chau
- Department of Chemical and Biological EngineeringThe Hong Kong University of Science and Technology Clearwater Bay Kowloon, Hong Kong China
| |
Collapse
|
45
|
Zak AJ, Hill BD, Rizvi SM, Smith MR, Yang M, Wen F. Enhancing the Yield and Quality of Influenza Virus-like Particles (VLPs) Produced in Insect Cells by Inhibiting Cytopathic Effects of Matrix Protein M2. ACS Synth Biol 2019; 8:2303-2314. [PMID: 31487465 DOI: 10.1021/acssynbio.9b00111] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
To provide broader protection and eliminate the need for annual update of influenza vaccines, biomolecular engineering of influenza virus-like particles (VLPs) to display more conserved influenza proteins such as the matrix protein M2 has been explored. However, achieving high surface density of full-length M2 in influenza VLPs has been left unrealized. In this study, we show that the ion channel activity of M2 induces significant cytopathic effects in Spodoptera frugiperda (Sf9) insect cells when expressed using M2-encoding baculovirus. These effects include altered Sf9 cell morphology and reduced baculovirus replication, resulting in impaired influenza protein expression and thus VLP production. On the basis of the function of M2, we hypothesized that blocking its ion channel activity could potentially relieve these cytopathic effects, and thus restore influenza protein expression to improve VLP production. The use of the M2 inhibitor amantadine indeed improves Sf9 cellular expression not only of M2 (∼3-fold), but also of hemagglutinin (HA) (∼7-fold) and of matrix protein M1 (∼3-fold) when coexpressed to produce influenza VLPs. This increased cellular expression of all three influenza proteins further leads to ∼2-fold greater VLP yield. More importantly, the quality of the resulting influenza VLPs is significantly improved, as demonstrated by the ∼2-fold, ∼50-fold, and ∼2-fold increase in the antigen density to approximately 53 HA, 48 M1, and 156 M2 per influenza VLP, respectively. Taken together, this study represents a novel approach to enable the efficient incorporation of full-length M2 while enhancing both the yield and quality of influenza VLPs produced by Sf9 cells.
Collapse
Affiliation(s)
- Andrew J. Zak
- Department of Chemical Engineering, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Brett D. Hill
- Department of Chemical Engineering, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Syed M. Rizvi
- Department of Chemical Engineering, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Mason R. Smith
- Department of Chemical Engineering, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Madeleine Yang
- Department of Chemical Engineering, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Fei Wen
- Department of Chemical Engineering, University of Michigan, Ann Arbor, Michigan 48109, United States
| |
Collapse
|
46
|
The application of atomic force microscopy for viruses and protein shells: Imaging and spectroscopy. Adv Virus Res 2019; 105:161-187. [PMID: 31522704 DOI: 10.1016/bs.aivir.2019.07.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Atomic force microscopy (AFM) probes surface-adsorbed samples at the nanoscale by using a sharp stylus of nanometric size located at the end of a micro-cantilever. This technique can also work in a liquid environment and offers unique possibilities to study individual protein assemblies, such as viruses, under conditions that resemble their natural liquid milieu. Here, I show how AFM can be used to explore the topography of viruses and protein cages, including that of structures lacking a well-defined symmetry. AFM is not limited for imaging and allows the manipulation of individual viruses with force spectroscopy approaches, such as single indentation and mechanical fatigue assays. These pushing experiments deform the protein cages to obtain their mechanical information and can be used to monitor the structural changes induced by maturation or the exposure to different biochemical environments, such as pH variation. We discuss how studying capsid rupture and self-healing events offers insight into virus uncoating pathways. On the other hand, pulling tests can provide information about the virus-host interaction established between the viral fibers and the cell membrane.
Collapse
|
47
|
Greber UF. Editorial: Physical Virology and the Nature of Virus Infections. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1215:1-11. [PMID: 31317493 DOI: 10.1007/978-3-030-14741-9_1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/09/2023]
Abstract
Virus particles, 'virions', range in size from nano-scale to micro-scale. They have many different shapes and are composed of proteins, sugars, nucleic acids, lipids, water and solutes. Virions are autonomous entities and affect all forms of life in a parasitic relationship. They infect prokaryotic and eukaryotic cells. The physical properties of virions are tuned to the way they interact with cells. When virions interact with cells, they gain huge complexity and give rise to an infected cell, also known as 'virus'. Virion-cell interactions entail the processes of entry, replication and assembly, as well as egress from the infected cell. Collectively, these steps can result in progeny virions, which is a productive infection, or in silencing of the virus, an abortive or latent infection. This book explores facets of the physical nature of virions and viruses and the impact of mechanical properties on infection processes at the cellular and subcellular levels.
Collapse
Affiliation(s)
- Urs F Greber
- Department of Molecular Life Sciences, University of Zurich, Zurich, Switzerland.
| |
Collapse
|
48
|
Glucosylceramidase Maintains Influenza Virus Infection by Regulating Endocytosis. J Virol 2019; 93:JVI.00017-19. [PMID: 30918081 PMCID: PMC6613767 DOI: 10.1128/jvi.00017-19] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Accepted: 03/14/2019] [Indexed: 01/07/2023] Open
Abstract
Influenza virus is the pathogen responsible for the second largest pandemic in human history. A better understanding of how influenza virus enters host cells may lead to the development of more-efficacious therapies against emerging strains of the virus. Here we show that the glycosphingolipid metabolizing enzyme glucosylceramidase is required for optimal influenza virus trafficking to late endosomes and for consequent fusion, entry, and infection. We also provide evidence that promotion of influenza virus entry by glucosylceramidase extends to other endosome-entering viruses and is due to a general requirement for this enzyme, and hence for optimal levels of glucosylceramide, for efficient trafficking of endogenous cargos, such as the epidermal growth factor (EGF) receptor, along the endocytic pathway. This work therefore has implications for the basic process of endocytosis as well as for pathogenic processes, including virus entry and Gaucher disease. Influenza virus is an RNA virus encapsulated in a lipid bilayer derived from the host cell plasma membrane. Previous studies showed that influenza virus infection depends on cellular lipids, including the sphingolipids sphingomyelin and sphingosine. Here we examined the role of a third sphingolipid, glucosylceramide, in influenza virus infection following clustered regularly interspaced short palindromic repeats with Cas9 (CRISPR-Cas9)-mediated knockout (KO) of its metabolizing enzyme glucosylceramidase (GBA). After confirming GBA knockout of HEK 293 and A549 cells by both Western blotting and lipid mass spectrometry, we observed diminished infection in both KO cell lines by a PR8 (H1N1) green fluorescent protein (GFP) reporter virus. We further showed that the reduction in infection correlated with impaired influenza virus trafficking to late endosomes and hence with fusion and entry. To examine whether GBA is required for other enveloped viruses, we compared the results seen with entry mediated by the glycoproteins of Ebola virus, influenza virus, vesicular stomatitis virus (VSV), and measles virus in GBA knockout cells. Entry inhibition was relatively robust for Ebola virus and influenza virus, modest for VSV, and mild for measles virus, suggesting a greater role for viruses that enter cells by fusing with late endosomes. As the virus studies suggested a general role for GBA along the endocytic pathway, we tested that hypothesis and found that trafficking of epidermal growth factor (EGF) to late endosomes and degradation of its receptor were impaired in GBA knockout cells. Collectively, our findings suggest that GBA is critically important for endocytic trafficking of viruses as well as of cellular cargos, including growth factor receptors. Modulation of glucosylceramide levels may therefore represent a novel accompaniment to strategies to antagonize “late-penetrating” viruses, including influenza virus. IMPORTANCE Influenza virus is the pathogen responsible for the second largest pandemic in human history. A better understanding of how influenza virus enters host cells may lead to the development of more-efficacious therapies against emerging strains of the virus. Here we show that the glycosphingolipid metabolizing enzyme glucosylceramidase is required for optimal influenza virus trafficking to late endosomes and for consequent fusion, entry, and infection. We also provide evidence that promotion of influenza virus entry by glucosylceramidase extends to other endosome-entering viruses and is due to a general requirement for this enzyme, and hence for optimal levels of glucosylceramide, for efficient trafficking of endogenous cargos, such as the epidermal growth factor (EGF) receptor, along the endocytic pathway. This work therefore has implications for the basic process of endocytosis as well as for pathogenic processes, including virus entry and Gaucher disease.
Collapse
|
49
|
Abstract
Internal acidification of the influenza virus, mediated by the M2 proton channel, is a key step in its life cycle. The interior M1 protein shell dissolves at pH~5.5 to 6.0, allowing the release of vRNA to the cytoplasm upon fusion of the viral envelope with the endosomal membrane. Previous models have described the mechanisms and rate constants of M2-mediated transport but did not describe the kinetics of pH changes inside the virus or consider exterior pH changes due to endosome maturation. Therefore, we developed a mathematical model of M2-mediated virion acidification. We find that ~32,000 protons are required to acidify a typically-sized virion. Predicted acidification kinetics were consistent with published in vitro experiments following internal acidification. Finally, we applied the model to the in vivo situation. For all rates of endosomal maturation considered, internal acidification lagged ~1 min behind endosomal acidification to pH 6. For slow endosomal maturation requiring several minutes or more, internal and endosomal pH decay together in pseudo-equilibrium to the late endosomal pH~5.0. For fast endosomal maturation (≲2 min), a lag of tens of seconds continued toward the late endosomal pH. Recent experiments suggest in vivo maturation is in this “fast” regime where lag is considerable. We predict that internal pH reaches the threshold for M1 shell solvation just before the external pH triggers membrane fusion mediated by the influenza protein hemagglutinin, critical because outward proton diffusion through a single small fusion pore is faster than the collective M2-mediated transport inward.
Collapse
|
50
|
Höfer CT, Di Lella S, Dahmani I, Jungnick N, Bordag N, Bobone S, Huang Q, Keller S, Herrmann A, Chiantia S. Structural determinants of the interaction between influenza A virus matrix protein M1 and lipid membranes. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2019; 1861:1123-1134. [PMID: 30902626 DOI: 10.1016/j.bbamem.2019.03.013] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Accepted: 03/16/2019] [Indexed: 11/26/2022]
Abstract
Influenza A virus is a pathogen responsible for severe seasonal epidemics threatening human and animal populations every year. One of the ten major proteins encoded by the viral genome, the matrix protein M1, is abundantly produced in infected cells and plays a structural role in determining the morphology of the virus. During assembly of new viral particles, M1 is recruited to the host cell membrane where it associates with lipids and other viral proteins. The structure of M1 is only partially known. In particular, structural details of M1 interactions with the cellular plasma membrane as well as M1-protein interactions and multimerization have not been clarified, yet. In this work, we employed a set of complementary experimental and theoretical tools to tackle these issues. Using raster image correlation, surface plasmon resonance and circular dichroism spectroscopies, we quantified membrane association and oligomerization of full-length M1 and of different genetically engineered M1 constructs (i.e., N- and C-terminally truncated constructs and a mutant of the polybasic region, residues 95-105). Furthermore, we report novel information on structural changes in M1 occurring upon binding to membranes. Our experimental results are corroborated by an all-atom model of the full-length M1 protein bound to a negatively charged lipid bilayer.
Collapse
Affiliation(s)
- C T Höfer
- Institute for Biology, IRI Life Sciences, Humboldt-Universität zu Berlin, Invalidenstraße 42, 10115, Berlin, Germany
| | - S Di Lella
- Institute for Biology, IRI Life Sciences, Humboldt-Universität zu Berlin, Invalidenstraße 42, 10115, Berlin, Germany
| | - I Dahmani
- University of Potsdam, Institute of Biochemistry and Biology, Karl-Liebknecht-Str. 24-25, 14476 Potsdam, Germany
| | - N Jungnick
- Institute for Biology, IRI Life Sciences, Humboldt-Universität zu Berlin, Invalidenstraße 42, 10115, Berlin, Germany
| | - N Bordag
- Leibniz-Institute for Molecular Pharmacology (FMP), Biophysics of Membrane Proteins, Robert-Roessle-Str. 10, 13125 Berlin, Germany
| | - S Bobone
- University of Potsdam, Institute of Biochemistry and Biology, Karl-Liebknecht-Str. 24-25, 14476 Potsdam, Germany
| | - Q Huang
- School of Life Sciences, Fudan University, 220 Handan Rd, WuJiaoChang, Yangpu Qu, Shanghai Shi 200433, China
| | - S Keller
- Molecular Biophysics, Technische Universität Kaiserslautern (TUK), Erwin-Schrödinger-Str. 13, 67663 Kaiserslautern, Germany
| | - A Herrmann
- Institute for Biology, IRI Life Sciences, Humboldt-Universität zu Berlin, Invalidenstraße 42, 10115, Berlin, Germany.
| | - S Chiantia
- University of Potsdam, Institute of Biochemistry and Biology, Karl-Liebknecht-Str. 24-25, 14476 Potsdam, Germany.
| |
Collapse
|