1
|
Chauvière A, Manifacier I, Verdier C, Chagnon G, Cheddadi I, Glade N, Stéphanou A. A biomechanical model for cell sensing and migration. Comput Methods Biomech Biomed Engin 2024:1-19. [PMID: 39535176 DOI: 10.1080/10255842.2024.2427112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Revised: 09/06/2024] [Accepted: 10/07/2024] [Indexed: 11/16/2024]
Abstract
We developed an original computational model for cell deformation and migration capable of accounting for the cell sensitivity to the environment and its appropriate adaptation. This cell model is ultimately intended to be used to address tissue morphogenesis. Hence it has been designed to comply with four requirements: (1) the cell should be able to probe and sense its environment and respond accordingly; (2) the model should be easy to parametrize to adapt to different cell types; (3) the model should be able to extend to 3D cases; (4) simulations should be fast enough to integrate many interacting cells. The simulations carried out focused on two aspects: first, the general behaviour of the cell on a homogeneous substrate, as observed experimentally, for model validation. This enabled us to decipher the mechanisms by which the cell can migrate, highlighting respective influences of the adhesions lifetimes and their sensitivity to traction; second, it predicts the sensitivity of the cell to an anisotropic patterned substrate, in agreement with recently published experiments. The results show that mechanosensors simulated by the model make it possible to reproduce such experiments in terms of migration bias generated by the substrate anisotropy. Here again, the model provides a biomechanical explanation of this phenomenon, depending on cell-matrix interactions and adhesion maturation rate.
Collapse
Affiliation(s)
- Arnaud Chauvière
- VetAgro Sup, Grenoble INP, TIMC, Université Grenoble Alpes, CNRS, UMR 5525, Grenoble, France
| | - Ian Manifacier
- VetAgro Sup, Grenoble INP, TIMC, Université Grenoble Alpes, CNRS, UMR 5525, Grenoble, France
| | - Claude Verdier
- LIPhy, Université Grenoble Alpes, CNRS, Grenoble, France
| | - Grégory Chagnon
- VetAgro Sup, Grenoble INP, TIMC, Université Grenoble Alpes, CNRS, UMR 5525, Grenoble, France
| | - Ibrahim Cheddadi
- VetAgro Sup, Grenoble INP, TIMC, Université Grenoble Alpes, CNRS, UMR 5525, Grenoble, France
| | - Nicolas Glade
- VetAgro Sup, Grenoble INP, TIMC, Université Grenoble Alpes, CNRS, UMR 5525, Grenoble, France
| | - Angélique Stéphanou
- VetAgro Sup, Grenoble INP, TIMC, Université Grenoble Alpes, CNRS, UMR 5525, Grenoble, France
| |
Collapse
|
2
|
Heyn JCJ, Rädler JO, Falcke M. Mesenchymal cell migration on one-dimensional micropatterns. Front Cell Dev Biol 2024; 12:1352279. [PMID: 38694822 PMCID: PMC11062138 DOI: 10.3389/fcell.2024.1352279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 03/29/2024] [Indexed: 05/04/2024] Open
Abstract
Quantitative studies of mesenchymal cell motion are important to elucidate cytoskeleton function and mechanisms of cell migration. To this end, confinement of cell motion to one dimension (1D) significantly simplifies the problem of cell shape in experimental and theoretical investigations. Here we review 1D migration assays employing micro-fabricated lanes and reflect on the advantages of such platforms. Data are analyzed using biophysical models of cell migration that reproduce the rich scenario of morphodynamic behavior found in 1D. We describe basic model assumptions and model behavior. It appears that mechanical models explain the occurrence of universal relations conserved across different cell lines such as the adhesion-velocity relation and the universal correlation between speed and persistence (UCSP). We highlight the unique opportunity of reproducible and standardized 1D assays to validate theory based on statistical measures from large data of trajectories and discuss the potential of experimental settings embedding controlled perturbations to probe response in migratory behavior.
Collapse
Affiliation(s)
- Johannes C. J. Heyn
- Fakultät für Physik, Ludwig-Maximilians-Universität München (LMU), Munich, Germany
| | - Joachim O. Rädler
- Fakultät für Physik, Ludwig-Maximilians-Universität München (LMU), Munich, Germany
| | - Martin Falcke
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
- Department of Physics, Humboldt University, Berlin, Germany
| |
Collapse
|
3
|
Cheng Y, Pang SW. Biointerfaces with ultrathin patterns for directional control of cell migration. J Nanobiotechnology 2024; 22:158. [PMID: 38589901 PMCID: PMC11000378 DOI: 10.1186/s12951-024-02418-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Accepted: 03/18/2024] [Indexed: 04/10/2024] Open
Abstract
In the context of wound healing and tissue regeneration, precise control of cell migration direction is deemed crucial. To address this challenge, polydimethylsiloxane (PDMS) platforms with patterned 10 nm thick TiOx in arrowhead shape were designed and fabricated. Remarkably, without tall sidewall constraints, MC3T3-E1 cells seeded on these platforms were constrained to migrate along the tips of the arrowheads, as the cells were guided by the asymmetrical arrowhead tips which provided large contact areas. To the best of our knowledge, this is the first study demonstrating the use of thin TiOx arrowhead pattern in combination with a cell-repellent PDMS surface to provide guided cell migration unidirectionally without tall sidewall constraints. Additionally, high-resolution fluorescence imaging revealed that the asymmetrical distribution of focal adhesions, triggered by the patterned TiOx arrowheads with arm lengths of 10, 20, and 35 μm, promoted cell adhesion and protrusion along the arrowhead tip direction, resulting in unidirectional cell migration. These findings have important implications for the design of biointerfaces with ultrathin patterns to precisely control cell migration. Furthermore, microelectrodes were integrated with the patterned TiOx arrowheads to enable dynamic monitoring of cell migration using impedance measurement. This microfluidic device integrated with thin layer of guiding pattern and microelectrodes allows simultaneous control of directional cell migration and characterization of the cell movement of individual MC3T3-E1 cells, offering great potential for the development of biosensors for single-cell monitoring.
Collapse
Grants
- CityU11207620, CityU11207821, CityU11205423 Research Grants Council of the Hong Kong Special Administrative Region, China
- CityU11207620, CityU11207821, CityU11205423 Research Grants Council of the Hong Kong Special Administrative Region, China
- 9360148, 9380062 Center for Biosystems, Neuroscience, and Nanotechnology (CBNN) of City University of Hong Kong
- 9360148, 9380062 Center for Biosystems, Neuroscience, and Nanotechnology (CBNN) of City University of Hong Kong
Collapse
Affiliation(s)
- Yijun Cheng
- Department of Electrical Engineering, City University of Hong Kong, Kowloon, Hong Kong, China
- Centre for Biosystems, Neuroscience, and Nanotechnology, City University of Hong Kong, Kowloon, Hong Kong, China
| | - Stella W Pang
- Department of Electrical Engineering, City University of Hong Kong, Kowloon, Hong Kong, China.
- Centre for Biosystems, Neuroscience, and Nanotechnology, City University of Hong Kong, Kowloon, Hong Kong, China.
| |
Collapse
|
4
|
Brückner DB, Broedersz CP. Learning dynamical models of single and collective cell migration: a review. REPORTS ON PROGRESS IN PHYSICS. PHYSICAL SOCIETY (GREAT BRITAIN) 2024; 87:056601. [PMID: 38518358 DOI: 10.1088/1361-6633/ad36d2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Accepted: 03/22/2024] [Indexed: 03/24/2024]
Abstract
Single and collective cell migration are fundamental processes critical for physiological phenomena ranging from embryonic development and immune response to wound healing and cancer metastasis. To understand cell migration from a physical perspective, a broad variety of models for the underlying physical mechanisms that govern cell motility have been developed. A key challenge in the development of such models is how to connect them to experimental observations, which often exhibit complex stochastic behaviours. In this review, we discuss recent advances in data-driven theoretical approaches that directly connect with experimental data to infer dynamical models of stochastic cell migration. Leveraging advances in nanofabrication, image analysis, and tracking technology, experimental studies now provide unprecedented large datasets on cellular dynamics. In parallel, theoretical efforts have been directed towards integrating such datasets into physical models from the single cell to the tissue scale with the aim of conceptualising the emergent behaviour of cells. We first review how this inference problem has been addressed in both freely migrating and confined cells. Next, we discuss why these dynamics typically take the form of underdamped stochastic equations of motion, and how such equations can be inferred from data. We then review applications of data-driven inference and machine learning approaches to heterogeneity in cell behaviour, subcellular degrees of freedom, and to the collective dynamics of multicellular systems. Across these applications, we emphasise how data-driven methods can be integrated with physical active matter models of migrating cells, and help reveal how underlying molecular mechanisms control cell behaviour. Together, these data-driven approaches are a promising avenue for building physical models of cell migration directly from experimental data, and for providing conceptual links between different length-scales of description.
Collapse
Affiliation(s)
- David B Brückner
- Institute of Science and Technology Austria, Am Campus 1, 3400 Klosterneuburg, Austria
| | - Chase P Broedersz
- Department of Physics and Astronomy, Vrije Universiteit Amsterdam, 1081 HV Amsterdam, The Netherlands
- Arnold Sommerfeld Center for Theoretical Physics and Center for NanoScience, Department of Physics, Ludwig-Maximilian-University Munich, Theresienstr. 37, D-80333 Munich, Germany
| |
Collapse
|
5
|
Flommersfeld J, Stöberl S, Shah O, Rädler JO, Broedersz CP. Geometry-Sensitive Protrusion Growth Directs Confined Cell Migration. PHYSICAL REVIEW LETTERS 2024; 132:098401. [PMID: 38489624 DOI: 10.1103/physrevlett.132.098401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 01/30/2024] [Indexed: 03/17/2024]
Abstract
The migratory dynamics of cells can be influenced by the complex microenvironment through which they move. It remains unclear how the motility machinery of confined cells responds and adapts to their microenvironment. Here, we propose a biophysical mechanism for a geometry-dependent coupling between cellular protrusions and the nucleus that leads to directed migration. We apply our model to geometry-guided cell migration to obtain insights into the origin of directed migration on asymmetric adhesive micropatterns and the polarization enhancement of cells observed under strong confinement. Remarkably, for cells that can choose between channels of different size, our model predicts an intricate dependence for cellular decision making as a function of the two channel widths, which we confirm experimentally.
Collapse
Affiliation(s)
- Johannes Flommersfeld
- Department of Physics and Astronomy, Vrije Universiteit Amsterdam, 1081HV Amsterdam, Netherlands
- Arnold Sommerfeld Center for Theoretical Physics and Center for NanoScience, Department of Physics, Ludwig-Maximilian-University Munich, Theresienstraße 37, D-80333 Munich, Germany
| | - Stefan Stöberl
- Faculty of Physics and Center for NanoScience, Ludwig-Maximilian-University, Geschwister-Scholl-Platz 1, D-80539 Munich, Germany
| | - Omar Shah
- Department of Physics and Astronomy, Vrije Universiteit Amsterdam, 1081HV Amsterdam, Netherlands
| | - Joachim O Rädler
- Faculty of Physics and Center for NanoScience, Ludwig-Maximilian-University, Geschwister-Scholl-Platz 1, D-80539 Munich, Germany
| | - Chase P Broedersz
- Department of Physics and Astronomy, Vrije Universiteit Amsterdam, 1081HV Amsterdam, Netherlands
- Arnold Sommerfeld Center for Theoretical Physics and Center for NanoScience, Department of Physics, Ludwig-Maximilian-University Munich, Theresienstraße 37, D-80333 Munich, Germany
| |
Collapse
|
6
|
Caballero D, Reis RL, Kundu SC. Trapping metastatic cancer cells with mechanical ratchet arrays. Acta Biomater 2023; 170:202-214. [PMID: 37619895 DOI: 10.1016/j.actbio.2023.08.034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 07/26/2023] [Accepted: 08/17/2023] [Indexed: 08/26/2023]
Abstract
Current treatments for cancer, such as chemotherapy, radiotherapy, immunotherapy, and surgery, have positive results but are generally ineffective against metastatic tumors. Treatment effectiveness can be improved by employing bioengineered cancer traps, typically utilizing chemoattractant-loaded materials, to attract infiltrating cancer cells preventing their uncontrolled spread and potentially enabling eradication. However, the encapsulated chemical compounds can have adverse effects on other cells causing unwanted responses, and the generated gradients can evolve unpredictably. Here, we report the development of a cancer trap based on mechanical ratchet structures to capture metastatic cells. The traps use an array of asymmetric local features to mechanically attract cancer cells and direct their migration for prolonged periods. The trapping efficiency was found to be greater than isotropic or inverse anisotropic ratchet structures on either disseminating cancer cells and tumor spheroids. Importantly, the traps exhibited a reduced effectiveness when targeting non-metastatic and non-tumorigenic cells, underscoring their particular suitability for capturing highly invasive cancer cells. Overall, this original approach may have therapeutic implications for fighting cancer, and may also be used to control cell motility for other biological processes. STATEMENT OF SIGNIFICANCE: Current cancer treatments have limitations in treating metastatic tumors, where cancer cells can invade distant organs. Biomaterials loaded with chemoattractants can be implanted to attract and capture metastatic cells preventing uncontrolled spread. However, encapsulated chemical compounds can have adverse effects on other cells, and gradients can evolve unpredictably. This paper presents an original concept of "cancer traps" based on using mechanical ratchet-based structures to capture metastatic cancer cells, with greater trapping efficiency and stability than previously studied methods. This innovative approach has significant potential clinical implications for fighting cancer, particularly in treating metastatic tumors. Additionally, it could be applied to control cell motility for other biological processes, opening new possibilities for biomedicine and tissue engineering.
Collapse
Affiliation(s)
- David Caballero
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark - Parque da Ciência e Tecnologia, 4805-017 Barco, Guimarães, Portugal; ICVS/3B's-PT Government Associate Laboratory, Braga, Guimarães, Portugal.
| | - Rui L Reis
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark - Parque da Ciência e Tecnologia, 4805-017 Barco, Guimarães, Portugal; ICVS/3B's-PT Government Associate Laboratory, Braga, Guimarães, Portugal
| | - Subhas C Kundu
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark - Parque da Ciência e Tecnologia, 4805-017 Barco, Guimarães, Portugal; ICVS/3B's-PT Government Associate Laboratory, Braga, Guimarães, Portugal
| |
Collapse
|
7
|
Balaghi N, Erdemci-Tandogan G, McFaul C, Fernandez-Gonzalez R. Myosin waves and a mechanical asymmetry guide the oscillatory migration of Drosophila cardiac progenitors. Dev Cell 2023:S1534-5807(23)00238-1. [PMID: 37295436 DOI: 10.1016/j.devcel.2023.05.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 02/27/2023] [Accepted: 05/16/2023] [Indexed: 06/12/2023]
Abstract
Heart development begins with the formation of a tube as cardiac progenitors migrate from opposite sides of the embryo. Abnormal cardiac progenitor movements cause congenital heart defects. However, the mechanisms of cell migration during early heart development remain poorly understood. Using quantitative microscopy, we found that in Drosophila embryos, cardiac progenitors (cardioblasts) migrated through a sequence of forward and backward steps. Cardioblast steps were associated with oscillatory non-muscle myosin II waves that induced periodic shape changes and were necessary for timely heart tube formation. Mathematical modeling predicted that forward cardioblast migration required a stiff boundary at the trailing edge. Consistent with this, we found a supracellular actin cable at the trailing edge of the cardioblasts that limited the amplitude of the backward steps, thus biasing the direction of cell movement. Our results indicate that periodic shape changes coupled with a polarized actin cable produce asymmetrical forces that promote cardioblast migration.
Collapse
Affiliation(s)
- Negar Balaghi
- Institute of Biomedical Engineering, University of Toronto, Toronto, ON M5S 3G9, Canada; Translational Biology and Engineering Program, Ted Rogers Centre for Heart Research, University of Toronto, Toronto, ON M5G 1M1, Canada
| | - Gonca Erdemci-Tandogan
- Institute of Biomedical Engineering, University of Toronto, Toronto, ON M5S 3G9, Canada; Translational Biology and Engineering Program, Ted Rogers Centre for Heart Research, University of Toronto, Toronto, ON M5G 1M1, Canada
| | - Christopher McFaul
- Institute of Biomedical Engineering, University of Toronto, Toronto, ON M5S 3G9, Canada; Translational Biology and Engineering Program, Ted Rogers Centre for Heart Research, University of Toronto, Toronto, ON M5G 1M1, Canada
| | - Rodrigo Fernandez-Gonzalez
- Institute of Biomedical Engineering, University of Toronto, Toronto, ON M5S 3G9, Canada; Translational Biology and Engineering Program, Ted Rogers Centre for Heart Research, University of Toronto, Toronto, ON M5G 1M1, Canada; Department of Cell and Systems Biology, University of Toronto, Toronto, ON M5S 3G5, Canada; Developmental and Stem Cell Biology Program, The Hospital for Sick Children, Toronto, ON M5G 1X8, Canada.
| |
Collapse
|
8
|
Palestra F, Poto R, Ciardi R, Opromolla G, Secondo A, Tedeschi V, Ferrara AL, Di Crescenzo RM, Galdiero MR, Cristinziano L, Modestino L, Marone G, Fiorelli A, Varricchi G, Loffredo S. SARS-CoV-2 Spike Protein Activates Human Lung Macrophages. Int J Mol Sci 2023; 24:3036. [PMID: 36769357 PMCID: PMC9917796 DOI: 10.3390/ijms24033036] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 01/30/2023] [Accepted: 02/01/2023] [Indexed: 02/09/2023] Open
Abstract
COVID-19 is a viral disease caused by SARS-CoV-2. This disease is characterized primarily, but not exclusively, by respiratory tract inflammation. SARS-CoV-2 infection relies on the binding of spike protein to ACE2 on the host cells. The virus uses the protease TMPRSS2 as an entry activator. Human lung macrophages (HLMs) are the most abundant immune cells in the lung and fulfill a variety of specialized functions mediated by the production of cytokines and chemokines. The aim of this project was to investigate the effects of spike protein on HLM activation and the expression of ACE2 and TMPRSS2 in HLMs. Spike protein induced CXCL8, IL-6, TNF-α, and IL-1β release from HLMs; promoted efficient phagocytosis; and induced dysfunction of intracellular Ca2+ concentration by increasing lysosomal Ca2+ content in HLMs. Microscopy experiments revealed that HLM tracking was affected by spike protein activation. Finally, HLMs constitutively expressed mRNAs for ACE2 and TMPRSS2. In conclusion, during SARS-CoV-2 infection, macrophages seem to play a key role in lung injury, resulting in immunological dysfunction and respiratory disease.
Collapse
Affiliation(s)
- Francesco Palestra
- Department of Translational Medical Sciences, University of Naples Federico II, 80131 Naples, Italy
| | - Remo Poto
- Department of Translational Medical Sciences, University of Naples Federico II, 80131 Naples, Italy
- World Allergy Organization (WAO) Center of Excellence (CoE), 80131 Naples, Italy
| | - Renato Ciardi
- Department of Translational Medical Sciences, University of Naples Federico II, 80131 Naples, Italy
| | - Giorgia Opromolla
- Translational Medical and Surgical Science, University of Campania Luigi Vanvitelli, 80131 Naples, Italy
| | - Agnese Secondo
- Department of Neuroscience, Reproductive and Odontostomatological Sciences, University of Naples Federico II, 80131 Naples, Italy
| | - Valentina Tedeschi
- Department of Neuroscience, Reproductive and Odontostomatological Sciences, University of Naples Federico II, 80131 Naples, Italy
| | - Anne Lise Ferrara
- Department of Translational Medical Sciences, University of Naples Federico II, 80131 Naples, Italy
- Institute of Experimental Endocrinology and Oncology (IEOS), National Research Council, 80131 Naples, Italy
| | - Rosa Maria Di Crescenzo
- Department of Neuroscience, Reproductive and Odontostomatological Sciences, University of Naples Federico II, 80131 Naples, Italy
| | - Maria Rosaria Galdiero
- Department of Translational Medical Sciences, University of Naples Federico II, 80131 Naples, Italy
- World Allergy Organization (WAO) Center of Excellence (CoE), 80131 Naples, Italy
- Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, 80131 Naples, Italy
| | - Leonardo Cristinziano
- Department of Translational Medical Sciences, University of Naples Federico II, 80131 Naples, Italy
| | - Luca Modestino
- Department of Translational Medical Sciences, University of Naples Federico II, 80131 Naples, Italy
| | - Gianni Marone
- Department of Translational Medical Sciences, University of Naples Federico II, 80131 Naples, Italy
- World Allergy Organization (WAO) Center of Excellence (CoE), 80131 Naples, Italy
- Institute of Experimental Endocrinology and Oncology (IEOS), National Research Council, 80131 Naples, Italy
- Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, 80131 Naples, Italy
| | - Alfonso Fiorelli
- Translational Medical and Surgical Science, University of Campania Luigi Vanvitelli, 80131 Naples, Italy
| | - Gilda Varricchi
- Department of Translational Medical Sciences, University of Naples Federico II, 80131 Naples, Italy
- World Allergy Organization (WAO) Center of Excellence (CoE), 80131 Naples, Italy
- Institute of Experimental Endocrinology and Oncology (IEOS), National Research Council, 80131 Naples, Italy
- Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, 80131 Naples, Italy
| | - Stefania Loffredo
- Department of Translational Medical Sciences, University of Naples Federico II, 80131 Naples, Italy
- World Allergy Organization (WAO) Center of Excellence (CoE), 80131 Naples, Italy
- Institute of Experimental Endocrinology and Oncology (IEOS), National Research Council, 80131 Naples, Italy
- Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, 80131 Naples, Italy
| |
Collapse
|
9
|
Solbu AA, Caballero D, Damigos S, Kundu SC, Reis RL, Halaas Ø, Chahal AS, Strand BL. Assessing cell migration in hydrogels: An overview of relevant materials and methods. Mater Today Bio 2023; 18:100537. [PMID: 36659998 PMCID: PMC9842866 DOI: 10.1016/j.mtbio.2022.100537] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 12/05/2022] [Accepted: 12/28/2022] [Indexed: 12/29/2022] Open
Abstract
Cell migration is essential in numerous living processes, including embryonic development, wound healing, immune responses, and cancer metastasis. From individual cells to collectively migrating epithelial sheets, the locomotion of cells is tightly regulated by multiple structural, chemical, and biological factors. However, the high complexity of this process limits the understanding of the influence of each factor. Recent advances in materials science, tissue engineering, and microtechnology have expanded the toolbox and allowed the development of biomimetic in vitro assays to investigate the mechanisms of cell migration. Particularly, three-dimensional (3D) hydrogels have demonstrated a superior ability to mimic the extracellular environment. They are therefore well suited to studying cell migration in a physiologically relevant and more straightforward manner than in vivo approaches. A myriad of synthetic and naturally derived hydrogels with heterogeneous characteristics and functional properties have been reported. The extensive portfolio of available hydrogels with different mechanical and biological properties can trigger distinct biological responses in cells affecting their locomotion dynamics in 3D. Herein, we describe the most relevant hydrogels and their associated physico-chemical characteristics typically employed to study cell migration, including established cell migration assays and tracking methods. We aim to give the reader insight into existing literature and practical details necessary for performing cell migration studies in 3D environments.
Collapse
Affiliation(s)
- Anita Akbarzadeh Solbu
- Department of Biotechnology and Food Sciences, NOBIPOL, NTNU- Norwegian University of Science and Technology, Trondheim, Norway
| | - David Caballero
- 3B's Research Group, I3Bs – Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, 4805-017, Barco, Guimarães, Portugal
- ICVS/3B's – PT Government Associate Laboratory, 4805-017, Braga/Guimarães, Portugal
| | - Spyridon Damigos
- Department of Biotechnology and Food Sciences, NOBIPOL, NTNU- Norwegian University of Science and Technology, Trondheim, Norway
| | - Subhas C. Kundu
- 3B's Research Group, I3Bs – Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, 4805-017, Barco, Guimarães, Portugal
- ICVS/3B's – PT Government Associate Laboratory, 4805-017, Braga/Guimarães, Portugal
| | - Rui L. Reis
- 3B's Research Group, I3Bs – Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, 4805-017, Barco, Guimarães, Portugal
- ICVS/3B's – PT Government Associate Laboratory, 4805-017, Braga/Guimarães, Portugal
| | - Øyvind Halaas
- Department of Clinical and Molecular Medicine, NTNU- Norwegian University of Science and Technology, Trondheim, Norway
| | - Aman S. Chahal
- Department of Biotechnology and Food Sciences, NOBIPOL, NTNU- Norwegian University of Science and Technology, Trondheim, Norway
- Department of Clinical and Molecular Medicine, NTNU- Norwegian University of Science and Technology, Trondheim, Norway
- Department of Biotechnology and Nanomedicine, SINTEF Industry, Trondheim, Norway
| | - Berit L. Strand
- Department of Biotechnology and Food Sciences, NOBIPOL, NTNU- Norwegian University of Science and Technology, Trondheim, Norway
| |
Collapse
|
10
|
Thiagarajan R, Bhat A, Salbreux G, Inamdar MM, Riveline D. Pulsations and flows in tissues as two collective dynamics with simple cellular rules. iScience 2022; 25:105053. [PMID: 36204277 PMCID: PMC9531052 DOI: 10.1016/j.isci.2022.105053] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 06/23/2022] [Accepted: 08/26/2022] [Indexed: 11/29/2022] Open
Abstract
Collective motions of epithelial cells are essential for morphogenesis. Tissues elongate, contract, flow, and oscillate, thus sculpting embryos. These tissue level dynamics are known, but the physical mechanisms at the cellular level are unclear. Here, we demonstrate that a single epithelial monolayer of MDCK cells can exhibit two types of local tissue kinematics, pulsations and long range coherent flows, characterized by using quantitative live imaging. We report that these motions can be controlled with internal and external cues such as specific inhibitors and substrate friction modulation. We demonstrate the associated mechanisms with a unified vertex model. When cell velocity alignment and random diffusion of cell polarization are comparable, a pulsatile flow emerges whereas tissue undergoes long-range flows when velocity alignment dominates which is consistent with cytoskeletal dynamics measurements. We propose that environmental friction, acto-myosin distributions, and cell polarization kinetics are important in regulating dynamics of tissue morphogenesis. Two collective cell motions, pulsations and flows, coexist in MDCK monolayers Each collective movement is identified using divergence and velocity correlations Motion is controlled by the regulation of substrate friction and cytoskeleton A vertex model recapitulates the motion by tuning velocity and polarity alignment
Collapse
Affiliation(s)
- Raghavan Thiagarajan
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, France
- Laboratory of Cell Physics ISIS/IGBMC, CNRS and Université de Strasbourg, Strasbourg, France
- Centre National de la Recherche Scientifique, UMR7104, Illkirch, France
- Institut National de la Santé et de la Recherche Médicale, U964, Illkirch, France
| | - Alka Bhat
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, France
- Laboratory of Cell Physics ISIS/IGBMC, CNRS and Université de Strasbourg, Strasbourg, France
- Centre National de la Recherche Scientifique, UMR7104, Illkirch, France
- Institut National de la Santé et de la Recherche Médicale, U964, Illkirch, France
| | | | - Mandar M. Inamdar
- Department of Civil Engineering, Indian Institute of Technology Bombay, Mumbai 400076, India
- Corresponding author
| | - Daniel Riveline
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, France
- Laboratory of Cell Physics ISIS/IGBMC, CNRS and Université de Strasbourg, Strasbourg, France
- Centre National de la Recherche Scientifique, UMR7104, Illkirch, France
- Institut National de la Santé et de la Recherche Médicale, U964, Illkirch, France
- Corresponding author
| |
Collapse
|
11
|
Godeau AL, Leoni M, Comelles J, Guyomar T, Lieb M, Delanoë-Ayari H, Ott A, Harlepp S, Sens P, Riveline D. 3D single cell migration driven by temporal correlation between oscillating force dipoles. eLife 2022; 11:71032. [PMID: 35899947 PMCID: PMC9395190 DOI: 10.7554/elife.71032] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2021] [Accepted: 07/28/2022] [Indexed: 11/13/2022] Open
Abstract
Directional cell locomotion requires symmetry breaking between the front and rear of the cell. In some cells, symmetry breaking manifests itself in a directional flow of actin from the front to the rear of the cell. Many cells, especially in physiological 3D matrices do not show such coherent actin dynamics and present seemingly competing protrusion/retraction dynamics at their front and back. How symmetry breaking manifests itself for such cells is therefore elusive. We take inspiration from the scallop theorem proposed by Purcell for micro-swimmers in Newtonian fluids: self-propelled objects undergoing persistent motion at low Reynolds number must follow a cycle of shape changes that breaks temporal symmetry. We report similar observations for cells crawling in 3D. We quantified cell motion using a combination of 3D live cell imaging, visualization of the matrix displacement and a minimal model with multipolar expansion. We show that our cells embedded in a 3D matrix form myosin-driven force dipoles at both sides of the nucleus, that locally and periodically pinch the matrix. The existence of a phase shift between the two dipoles is required for directed cell motion which manifests itself as cycles with finite area in the dipole-quadrupole diagram, a formal equivalence to the Purcell cycle. We confirm this mechanism by triggering local dipolar contractions with a laser. This leads to directed motion. Our study reveals that these cells control their motility by synchronizing dipolar forces distributed at front and back. This result opens new strategies to externally control cell motion as well as for the design of micro-crawlers.
Collapse
Affiliation(s)
- Amélie Luise Godeau
- Laboratory of Cell Physics, University of Strasbourg, CNRS, IGBMC, Illkirch, France
| | | | - Jordi Comelles
- Laboratory of Cell Physics, University of Strasbourg, CNRS, IGBMC, Illkirch, France
| | - Tristan Guyomar
- Laboratory of Cell Physics, University of Strasbourg, CNRS, IGBMC, Illkirch, France
| | - Michele Lieb
- Laboratory of Cell Physics, University of Strasbourg, CNRS, IGBMC, Illkirch, France
| | - Hélène Delanoë-Ayari
- Univ. Lyon, Université Claude Bernard Lyon 1, CNRS UMR 5306, LyonVilleurbanne Cedex, France
| | - Albrecht Ott
- Universität des Saarlandes, Saarbrücken, Germany
| | - Sebastien Harlepp
- INSERM UMR S1109, Institut d'Hématologie et d'Immunologie, Strasbourg, France
| | - Pierre Sens
- Laboratoire Physico Chimie Curie, Institut Curie, CNRS UMR168, Paris, France
| | - Daniel Riveline
- Development and stem cells, University of Strasbourg, CNRS, IGBMC, Illkirch, France
| |
Collapse
|
12
|
Caballero D, Abreu CM, Lima AC, Neves NN, Reis RL, Kundu SC. Precision biomaterials in cancer theranostics and modelling. Biomaterials 2021; 280:121299. [PMID: 34871880 DOI: 10.1016/j.biomaterials.2021.121299] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 11/18/2021] [Accepted: 11/29/2021] [Indexed: 02/06/2023]
Abstract
Despite significant achievements in the understanding and treatment of cancer, it remains a major burden. Traditional therapeutic approaches based on the 'one-size-fits-all' paradigm are becoming obsolete, as demonstrated by the increasing number of patients failing to respond to treatments. In contrast, more precise approaches based on individualized genetic profiling of tumors have already demonstrated their potential. However, even more personalized treatments display shortcomings mainly associated with systemic delivery, such as low local drug efficacy or specificity. A large amount of effort is currently being invested in developing precision medicine-based strategies for improving the efficiency of cancer theranostics and modelling, which are envisioned to be more accurate, standardized, localized, and less expensive. To this end, interdisciplinary research fields, such as biomedicine, material sciences, pharmacology, chemistry, tissue engineering, and nanotechnology, must converge for boosting the precision cancer ecosystem. In this regard, precision biomaterials have emerged as a promising strategy to detect, model, and treat cancer more efficiently. These are defined as those biomaterials precisely engineered with specific theranostic functions and bioactive components, with the possibility to be tailored to the cancer patient needs, thus having a vast potential in the increasing demand for more efficient treatments. In this review, we discuss the latest advances in the field of precision biomaterials in cancer research, which are expected to revolutionize disease management, focusing on their uses for cancer modelling, detection, and therapeutic applications. We finally comment on the needed requirements to accelerate their application in the clinic to improve cancer patient prognosis.
Collapse
Affiliation(s)
- David Caballero
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, Barco, 4805-017, Guimarães, Portugal; ICVS/3B's - PT Government Associate Laboratory, Braga, Guimarães, Portugal.
| | - Catarina M Abreu
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, Barco, 4805-017, Guimarães, Portugal; ICVS/3B's - PT Government Associate Laboratory, Braga, Guimarães, Portugal
| | - Ana C Lima
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, Barco, 4805-017, Guimarães, Portugal; ICVS/3B's - PT Government Associate Laboratory, Braga, Guimarães, Portugal
| | - Nuno N Neves
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, Barco, 4805-017, Guimarães, Portugal; ICVS/3B's - PT Government Associate Laboratory, Braga, Guimarães, Portugal
| | - Rui L Reis
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, Barco, 4805-017, Guimarães, Portugal; ICVS/3B's - PT Government Associate Laboratory, Braga, Guimarães, Portugal
| | - Subhas C Kundu
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, Barco, 4805-017, Guimarães, Portugal; ICVS/3B's - PT Government Associate Laboratory, Braga, Guimarães, Portugal.
| |
Collapse
|
13
|
d’Alessandro J, Barbier--Chebbah A, Cellerin V, Benichou O, Mège RM, Voituriez R, Ladoux B. Cell migration guided by long-lived spatial memory. Nat Commun 2021; 12:4118. [PMID: 34226542 PMCID: PMC8257581 DOI: 10.1038/s41467-021-24249-8] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Accepted: 06/08/2021] [Indexed: 02/06/2023] Open
Abstract
Living cells actively migrate in their environment to perform key biological functions-from unicellular organisms looking for food to single cells such as fibroblasts, leukocytes or cancer cells that can shape, patrol or invade tissues. Cell migration results from complex intracellular processes that enable cell self-propulsion, and has been shown to also integrate various chemical or physical extracellular signals. While it is established that cells can modify their environment by depositing biochemical signals or mechanically remodelling the extracellular matrix, the impact of such self-induced environmental perturbations on cell trajectories at various scales remains unexplored. Here, we show that cells can retrieve their path: by confining motile cells on 1D and 2D micropatterned surfaces, we demonstrate that they leave long-lived physicochemical footprints along their way, which determine their future path. On this basis, we argue that cell trajectories belong to the general class of self-interacting random walks, and show that self-interactions can rule large scale exploration by inducing long-lived ageing, subdiffusion and anomalous first-passage statistics. Altogether, our joint experimental and theoretical approach points to a generic coupling between motile cells and their environment, which endows cells with a spatial memory of their path and can dramatically change their space exploration.
Collapse
Affiliation(s)
- Joseph d’Alessandro
- grid.508487.60000 0004 7885 7602Université de Paris, CNRS, Institut Jacques Monod, Paris, F-75006 France
| | - Alex Barbier--Chebbah
- grid.462844.80000 0001 2308 1657Laboratoire de Physique Théorique de la Matière Condensée, CNRS/Sorbonne Université, Paris, France
| | - Victor Cellerin
- grid.508487.60000 0004 7885 7602Université de Paris, CNRS, Institut Jacques Monod, Paris, F-75006 France
| | - Olivier Benichou
- grid.462844.80000 0001 2308 1657Laboratoire de Physique Théorique de la Matière Condensée, CNRS/Sorbonne Université, Paris, France
| | - René Marc Mège
- grid.508487.60000 0004 7885 7602Université de Paris, CNRS, Institut Jacques Monod, Paris, F-75006 France
| | - Raphaël Voituriez
- grid.462844.80000 0001 2308 1657Laboratoire Jean Perrin and Laboratoire de Physique Théorique de la Matière Condensée, CNRS/Sorbonne Université, Paris, France
| | - Benoît Ladoux
- grid.508487.60000 0004 7885 7602Université de Paris, CNRS, Institut Jacques Monod, Paris, F-75006 France
| |
Collapse
|
14
|
Caballero D, Brancato V, Lima AC, Abreu CM, Neves NM, Correlo VM, Oliveira JM, Reis RL, Kundu SC. Tumor-Associated Protrusion Fluctuations as a Signature of Cancer Invasiveness. Adv Biol (Weinh) 2021; 5:e2101019. [PMID: 34218529 DOI: 10.1002/adbi.202101019] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 06/21/2021] [Indexed: 12/14/2022]
Abstract
The generation of invasive fluctuating protrusions is a distinctive feature of tumor dissemination. During the invasion, individual cancer cells modulate the morphodynamics of protrusions to optimize their migration efficiency. However, it remains unclear how protrusion fluctuations govern the invasion of more complex multi-cellular structures, such as tumors, and their correlation with the tumor metastatic potential. Herein, a reductionist approach based on 3D tumor cell micro-spheroids with different invasion capabilities is used as a model to decipher the role of tumor-associated fluctuating protrusions in cancer progression. To quantify fluctuations, a set of key biophysical parameters that precisely correlate with the invasive potential of tumors is defined. It is shown that different pharmacological drugs and cytokines are capable of modulating protrusion activity, significantly altering protrusion fluctuations, and tumor invasiveness. This correlation is used to define a novel quantitative invasion index encoding the key biophysical parameters of fluctuations and the relative levels of cell-cell/matrix interactions, which is capable of assessing the tumor's metastatic capability solely based on its magnitude. Overall, this study provides new insights into how protrusion fluctuations regulate tumor cell invasion, suggesting that they may be employed as a novel early indicator, or biophysical signature, of the metastatic potential of tumors.
Collapse
Affiliation(s)
- David Caballero
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, Barco, Guimarães, 4805-017, Portugal.,ICVS/3B's, PT Government Associate Laboratory, Braga, Guimarães, 4805-017, Portugal
| | - Virginia Brancato
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, Barco, Guimarães, 4805-017, Portugal.,ICVS/3B's, PT Government Associate Laboratory, Braga, Guimarães, 4805-017, Portugal
| | - Ana C Lima
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, Barco, Guimarães, 4805-017, Portugal.,ICVS/3B's, PT Government Associate Laboratory, Braga, Guimarães, 4805-017, Portugal
| | - Catarina M Abreu
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, Barco, Guimarães, 4805-017, Portugal.,ICVS/3B's, PT Government Associate Laboratory, Braga, Guimarães, 4805-017, Portugal
| | - Nuno M Neves
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, Barco, Guimarães, 4805-017, Portugal.,ICVS/3B's, PT Government Associate Laboratory, Braga, Guimarães, 4805-017, Portugal
| | - Vitor M Correlo
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, Barco, Guimarães, 4805-017, Portugal.,ICVS/3B's, PT Government Associate Laboratory, Braga, Guimarães, 4805-017, Portugal
| | - Joaquim M Oliveira
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, Barco, Guimarães, 4805-017, Portugal.,ICVS/3B's, PT Government Associate Laboratory, Braga, Guimarães, 4805-017, Portugal
| | - Rui L Reis
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, Barco, Guimarães, 4805-017, Portugal.,ICVS/3B's, PT Government Associate Laboratory, Braga, Guimarães, 4805-017, Portugal
| | - Subhas C Kundu
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, Barco, Guimarães, 4805-017, Portugal.,ICVS/3B's, PT Government Associate Laboratory, Braga, Guimarães, 4805-017, Portugal
| |
Collapse
|
15
|
Le Maout E, Lo Vecchio S, Kumar Korla P, Jinn-Chyuan Sheu J, Riveline D. Ratchetaxis in Channels: Entry Point and Local Asymmetry Set Cell Directions in Confinement. Biophys J 2021; 119:1301-1308. [PMID: 33027610 DOI: 10.1016/j.bpj.2020.08.028] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 08/20/2020] [Accepted: 08/26/2020] [Indexed: 01/02/2023] Open
Abstract
Cell motility is essential in a variety of biological phenomena ranging from early development to organ homeostasis and diseases. This phenomenon has mainly been studied and characterized on flat surfaces in vitro, whereas such conditions are rarely observed in vivo. Recently, cell motion in three-dimensional microfabricated channels was reported to be possible, and it was shown that confined cells push on walls. However, rules setting cell directions in this context have not yet been characterized. Here, we show by using assays that ratchetaxis operates in three-dimensional ratchets in fibroblasts and epithelial cancerous cells. Open ratchets rectify cell motion, whereas closed ratchets impose direct cell migration along channels set by the cell orientation at the channel entry point. We also show that nuclei are pressed in constriction zones through mechanisms involving dynamic asymmetries of focal contacts, stress fibers, and intermediate filaments. Interestingly, cells do not pass these constricting zones when they contain a defective keratin fusion protein implicated in squamous cancer. By combining ratchetaxis with chemical gradients, we finally report that cells are sensitive to local asymmetries in confinement and that topological and chemical cues may be encoded differently by cells. Overall, our ratchet channels could mimic small blood vessels in which cells such as circulating tumor cells are confined; cells can probe local asymmetries that determine their entry into tissues and their subsequent direction. Our results shed light on invasion mechanisms in cancer.
Collapse
Affiliation(s)
- Emilie Le Maout
- Laboratory of Cell Physics ISIS/IGBMC, CNRS and University of Strasbourg, Strasbourg, France; Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, France; Centre National de la Recherche Scientifique, Illkirch, France; Institut National de la Santé et de la Recherche Médicale, Illkirch, France; Université de Strasbourg, Illkirch, France
| | - Simon Lo Vecchio
- Laboratory of Cell Physics ISIS/IGBMC, CNRS and University of Strasbourg, Strasbourg, France; Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, France; Centre National de la Recherche Scientifique, Illkirch, France; Institut National de la Santé et de la Recherche Médicale, Illkirch, France; Université de Strasbourg, Illkirch, France
| | - Praveen Kumar Korla
- Institute of Biomedical Sciences, National Sun Yatsen University, Kaohsiung, Taiwan; School of Chinese Medicine, China Medical University, Taichung, Taiwan
| | - Jim Jinn-Chyuan Sheu
- Institute of Biomedical Sciences, National Sun Yatsen University, Kaohsiung, Taiwan; School of Chinese Medicine, China Medical University, Taichung, Taiwan; Department of Health and Nutrition Biotechnology, Asia University, Taichung, Taiwan; Department of Biotechnology, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Daniel Riveline
- Laboratory of Cell Physics ISIS/IGBMC, CNRS and University of Strasbourg, Strasbourg, France; Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, France; Centre National de la Recherche Scientifique, Illkirch, France; Institut National de la Santé et de la Recherche Médicale, Illkirch, France; Université de Strasbourg, Illkirch, France.
| |
Collapse
|
16
|
Charbonnier B, Hadida M, Marchat D. Additive manufacturing pertaining to bone: Hopes, reality and future challenges for clinical applications. Acta Biomater 2021; 121:1-28. [PMID: 33271354 DOI: 10.1016/j.actbio.2020.11.039] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 11/06/2020] [Accepted: 11/24/2020] [Indexed: 12/12/2022]
Abstract
For the past 20 years, the democratization of additive manufacturing (AM) technologies has made many of us dream of: low cost, waste-free, and on-demand production of functional parts; fully customized tools; designs limited by imagination only, etc. As every patient is unique, the potential of AM for the medical field is thought to be considerable: AM would allow the division of dedicated patient-specific healthcare solutions entirely adapted to the patients' clinical needs. Pertinently, this review offers an extensive overview of bone-related clinical applications of AM and ongoing research trends, from 3D anatomical models for patient and student education to ephemeral structures supporting and promoting bone regeneration. Today, AM has undoubtably improved patient care and should facilitate many more improvements in the near future. However, despite extensive research, AM-based strategies for bone regeneration remain the only bone-related field without compelling clinical proof of concept to date. This may be due to a lack of understanding of the biological mechanisms guiding and promoting bone formation and due to the traditional top-down strategies devised to solve clinical issues. Indeed, the integrated holistic approach recommended for the design of regenerative systems (i.e., fixation systems and scaffolds) has remained at the conceptual state. Challenged by these issues, a slower but incremental research dynamic has occurred for the last few years, and recent progress suggests notable improvement in the years to come, with in view the development of safe, robust and standardized patient-specific clinical solutions for the regeneration of large bone defects.
Collapse
|
17
|
Edwards-Jorquera SS, Bosveld F, Bellaïche YA, Lennon-Duménil AM, Glavic Á. Trpml controls actomyosin contractility and couples migration to phagocytosis in fly macrophages. J Cell Biol 2020; 219:133603. [PMID: 31940424 PMCID: PMC7055000 DOI: 10.1083/jcb.201905228] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Revised: 11/13/2019] [Accepted: 12/07/2019] [Indexed: 12/29/2022] Open
Abstract
Phagocytes use their actomyosin cytoskeleton to migrate as well as to probe their environment by phagocytosis or macropinocytosis. Although migration and extracellular material uptake have been shown to be coupled in some immune cells, the mechanisms involved in such coupling are largely unknown. By combining time-lapse imaging with genetics, we here identify the lysosomal Ca2+ channel Trpml as an essential player in the coupling of cell locomotion and phagocytosis in hemocytes, the Drosophila macrophage-like immune cells. Trpml is needed for both hemocyte migration and phagocytic processing at distinct subcellular localizations: Trpml regulates hemocyte migration by controlling actomyosin contractility at the cell rear, whereas its role in phagocytic processing lies near the phagocytic cup in a myosin-independent fashion. We further highlight that Vamp7 also regulates phagocytic processing and locomotion but uses pathways distinct from those of Trpml. Our results suggest that multiple mechanisms may have emerged during evolution to couple phagocytic processing to cell migration and facilitate space exploration by immune cells.
Collapse
Affiliation(s)
| | - Floris Bosveld
- Institut Curie, PSL Research University, Sorbonne Universités, UPMC Univ Paris 06, Centre National de la Recherche Scientifique UMR 3215, Institut National de la Santé et de la Recherche Médicale U934, Paris, France
| | - Yohanns A Bellaïche
- Institut Curie, PSL Research University, Sorbonne Universités, UPMC Univ Paris 06, Centre National de la Recherche Scientifique UMR 3215, Institut National de la Santé et de la Recherche Médicale U934, Paris, France
| | - Ana-María Lennon-Duménil
- Institut Curie, PSL Research University, Institut National de la Santé et de la Recherche Médicale U932 Immunité et Cancer, Paris, France
| | - Álvaro Glavic
- Centro de Regulación del Genoma, Facultad de Ciencias, Universidad de Chile, Santiago, Chile
| |
Collapse
|
18
|
Caballero D, Kundu SC, Reis RL. The Biophysics of Cell Migration: Biasing Cell Motion with Feynman Ratchets. ACTA ACUST UNITED AC 2020. [DOI: 10.35459/tbp.2020.000150] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
ABSTRACT
The concepts and frameworks of soft matter physics and the laws of thermodynamics can be used to describe relevant developmental, physiologic, and pathologic events in which directed cell migration is involved, such as in cancer. Typically, this directionality has been associated with the presence of soluble long-range gradients of a chemoattractant, synergizing with many other guidance cues to direct the motion of cells. In particular, physical inputs have been shown to strongly influence cell locomotion. However, this type of cue has been less explored despite the importance in biology. In this paper, we describe recent in vitro works at the interface between physics and biology, showing how the motion of cells can be directed by using gradient-free environments with repeated local asymmetries. This rectification of cell migration, from random to directed, is a process reminiscent of the Feynman ratchet; therefore, this framework can be used to explain the mechanism behind directed cell motion.
Collapse
Affiliation(s)
- David Caballero
- 3B's Research Group, I3Bs–Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Barco, Guimarães, Portugal
- ICVS/3Bs–PT: Life and Health Sciences Research Institute (ICVS)/3B's Research Group Government Associate Laboratory, 4805-017, Braga, Guimarães, Portugal
| | - Subhas C. Kundu
- 3B's Research Group, I3Bs–Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Barco, Guimarães, Portugal
- ICVS/3Bs–PT: Life and Health Sciences Research Institute (ICVS)/3B's Research Group Government Associate Laboratory, 4805-017, Braga, Guimarães, Portugal
| | - Rui L. Reis
- 3B's Research Group, I3Bs–Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Barco, Guimarães, Portugal
- ICVS/3Bs–PT: Life and Health Sciences Research Institute (ICVS)/3B's Research Group Government Associate Laboratory, 4805-017, Braga, Guimarães, Portugal
- The Discoveries Centre for Regenerative and Precision Medicine, Headquarters at University of Minho, AvePark, 4805-017 Barco, Guimarães, Portugal
| |
Collapse
|
19
|
Lo Vecchio S, Thiagarajan R, Caballero D, Vigon V, Navoret L, Voituriez R, Riveline D. Collective Dynamics of Focal Adhesions Regulate Direction of Cell Motion. Cell Syst 2020; 10:535-542.e4. [DOI: 10.1016/j.cels.2020.05.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Revised: 02/20/2020] [Accepted: 05/19/2020] [Indexed: 01/14/2023]
|
20
|
Riveline D, Lo Vecchio S. "Stochastic Resonance" for Individual Cells. Biophys J 2020; 118:533-534. [PMID: 32023439 DOI: 10.1016/j.bpj.2019.12.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Accepted: 12/18/2019] [Indexed: 11/24/2022] Open
Affiliation(s)
- Daniel Riveline
- Laboratory of Cell Physics ISIS/IGBMC, CNRS, Université de Strasbourg, Strasbourg, France; Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, France; Centre National de la Recherche Scientifique, UMR 7104, Illkirch, France; Institut National de la Santé et de la Recherche Médicale, U964, Illkirch, France; Université de Strasbourg, Illkirch, France.
| | - Simon Lo Vecchio
- Laboratory of Cell Physics ISIS/IGBMC, CNRS, Université de Strasbourg, Strasbourg, France; Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, France; Centre National de la Recherche Scientifique, UMR 7104, Illkirch, France; Institut National de la Santé et de la Recherche Médicale, U964, Illkirch, France; Université de Strasbourg, Illkirch, France
| |
Collapse
|
21
|
Fink A, Brückner DB, Schreiber C, Röttgermann PJF, Broedersz CP, Rädler JO. Area and Geometry Dependence of Cell Migration in Asymmetric Two-State Micropatterns. Biophys J 2020; 118:552-564. [PMID: 31864660 PMCID: PMC7002917 DOI: 10.1016/j.bpj.2019.11.3389] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Revised: 10/11/2019] [Accepted: 11/12/2019] [Indexed: 12/19/2022] Open
Abstract
Microstructured surfaces provide a unique framework to probe cell migration and cytoskeletal dynamics in a standardized manner. Here, we report on the steady-state occupancy probability of cells in asymmetric two-state microstructures that consist of two fibronectin-coated adhesion sites connected by a thin guidance cue. In these dumbbell-like structures, cells transition between the two sites in a repeated and stochastic manner, and average dwell times in the respective microenvironments are determined from the cell trajectories. We study the dynamics of human breast carcinoma cells (MDA-MB-231) in these microstructures as a function of area, shape, and orientation of the adhesion sites. On square adhesive sites with different areas, we find that the occupancy probability ratio is directly proportional to the ratio of corresponding adhesion site areas. These asymmetries are well captured by a simple model for the stochastic nonlinear dynamics of the cells, which reveals generic features of the motion. Sites of equal area but different shape lead to equal occupancy if shapes are isotropic (e.g., squared or circular). In contrast, an asymmetry in the occupancy is induced by anisotropic shapes like rhombi, triangles, or rectangles that enable motion in the direction perpendicular to the transition axis. Analysis of the two-dimensional motion of cells between two rectangles with orthogonal orientation suggests that cellular transition rates depend on the cell polarization induced by anisotropic micropatterns. Taken together, our results illustrate how two-state micropatterns provide a dynamic migration assay with distinct dwell times and relative cell occupancy as readouts, which may be useful to probe cell-microenvironment interactions.
Collapse
Affiliation(s)
- Alexandra Fink
- Faculty of Physics and Center for NanoScience, Ludwig-Maximilians-Universität, München, Germany
| | - David B Brückner
- Faculty of Physics and Center for NanoScience, Ludwig-Maximilians-Universität, München, Germany; Arnold-Sommerfeld-Center for Theoretical Physics and Center for NanoScience, Ludwig-Maximilians-Universität, München, Germany
| | - Christoph Schreiber
- Faculty of Physics and Center for NanoScience, Ludwig-Maximilians-Universität, München, Germany
| | - Peter J F Röttgermann
- Faculty of Physics and Center for NanoScience, Ludwig-Maximilians-Universität, München, Germany
| | - Chase P Broedersz
- Faculty of Physics and Center for NanoScience, Ludwig-Maximilians-Universität, München, Germany; Arnold-Sommerfeld-Center for Theoretical Physics and Center for NanoScience, Ludwig-Maximilians-Universität, München, Germany
| | - Joachim O Rädler
- Faculty of Physics and Center for NanoScience, Ludwig-Maximilians-Universität, München, Germany.
| |
Collapse
|
22
|
Engineered topographical structure to control spatial cell density using cell migration. Biomed Microdevices 2019; 21:98. [PMID: 31729612 DOI: 10.1007/s10544-019-0447-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Control of the spatial distribution of various cell types is required to construct functional tissues. Here, we report a simple topographical structure changed the spatial cell density. A concave curved boundary was designed, which allowed the spatial descent moving of cells and the change in spatial distributions of co-cultured cells. We utilized the difference in cell motility between myoblast cells (C2C12) and neuronal cells (PC12) to demonstrate the feasibility of spontaneous change in spatial cell density. Without the curved boundaries, high motility cells (C2C12) did not migrate to the adjacent area, which resulted in a slight temporal change (< 15%) in the spatial cell distribution. In contrast, with the curved boundaries, the cell density of the high motility cells in the groove to those cells on the ridge showed an increase exceeding 45%. On the other hand, the temporal change in the spatial cell distribution of low motility cells (PC12) was below 15% with or without the curved boundaries. In addition, as groove width increased, both cells displayed more initially gathering in groove. Importantly, these cell-type dependent results were also maintained under co-culture conditions. Our results suggest that designing topographical interfaces changes spatial cell density without any manipulation and is useful for multi-cellular constructs.
Collapse
|
23
|
Nishimoto S, Tokuoka Y, Yamada TG, Hiroi NF, Funahashi A. Predicting the future direction of cell movement with convolutional neural networks. PLoS One 2019; 14:e0221245. [PMID: 31483827 PMCID: PMC6726366 DOI: 10.1371/journal.pone.0221245] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Accepted: 08/02/2019] [Indexed: 12/16/2022] Open
Abstract
Image-based deep learning systems, such as convolutional neural networks (CNNs), have recently been applied to cell classification, producing impressive results; however, application of CNNs has been confined to classification of the current cell state from the image. Here, we focused on cell movement where current and/or past cell shape can influence the future cell movement. We demonstrate that CNNs prospectively predicted the future direction of cell movement with high accuracy from a single image patch of a cell at a certain time. Furthermore, by visualizing the image features that were learned by the CNNs, we could identify morphological features, e.g., the protrusions and trailing edge that have been experimentally reported to determine the direction of cell movement. Our results indicate that CNNs have the potential to predict the future direction of cell movement from current cell shape, and can be used to automatically identify those morphological features that influence future cell movement.
Collapse
Affiliation(s)
- Shori Nishimoto
- Department of Biosciences and Informatics, Keio University, Yokohama-shi, Kanagawa, Japan
| | - Yuta Tokuoka
- Department of Biosciences and Informatics, Keio University, Yokohama-shi, Kanagawa, Japan
| | - Takahiro G. Yamada
- Department of Biosciences and Informatics, Keio University, Yokohama-shi, Kanagawa, Japan
| | - Noriko F. Hiroi
- Department of Biosciences and Informatics, Keio University, Yokohama-shi, Kanagawa, Japan
- Faculty of Pharmacy, Sanyo-Onoda City University, Sanyo-Onoda, Yamaguchi, Japan
| | - Akira Funahashi
- Department of Biosciences and Informatics, Keio University, Yokohama-shi, Kanagawa, Japan
- * E-mail:
| |
Collapse
|
24
|
Chen S, Hourwitz MJ, Campanello L, Fourkas JT, Losert W, Parent CA. Actin Cytoskeleton and Focal Adhesions Regulate the Biased Migration of Breast Cancer Cells on Nanoscale Asymmetric Sawteeth. ACS NANO 2019; 13:1454-1468. [PMID: 30707556 PMCID: PMC7159974 DOI: 10.1021/acsnano.8b07140] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Physical guidance from the underlying matrix is a key regulator of cancer invasion and metastasis. We explore the effects of surface topography on the migration phenotype of multiple breast cancer cell lines using aligned nanoscale ridges and asymmetric sawtooth structures. Both benign and metastatic breast cancer cells preferentially move parallel to nanoridges, with enhanced speeds compared to flat surfaces. In contrast, asymmetric sawtooth structures unidirectionally bias the movement of breast cancer cells in a cell-type-dependent manner. Quantitative analysis shows that the level of bias in cell migration increases when cells move with higher speeds or with higher directional persistence. Live-cell imaging studies further reveal that actin polymerization waves are unidirectionally guided by the sawteeth in the same direction as the cell motion. High-resolution fluorescence imaging and scanning electron microscopy studies reveal that two breast cancer cell lines with opposite migrational profiles exhibit profoundly different cell cortical plasticity and focal adhesion patterns. These results suggest that the overall migration response of cancer cells to surface topography is directly related to the underlying cytoskeletal architectures and dynamics, which are regulated by both intrinsic and extrinsic factors.
Collapse
Affiliation(s)
- Song Chen
- Laboratory of Cellular and Molecular Biology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, Maryland 20892, United States
- Institute for Physical Science and Technology, University of Maryland, College Park, Maryland 20742, United States
- Department of Pharmacology, Michigan Medicine, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Matt J. Hourwitz
- Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland 20742, United States
| | - Leonard Campanello
- Department of Physics, University of Maryland, College Park, Maryland 20742, United States
| | - John T. Fourkas
- Institute for Physical Science and Technology, University of Maryland, College Park, Maryland 20742, United States
- Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland 20742, United States
| | - Wolfgang Losert
- Institute for Physical Science and Technology, University of Maryland, College Park, Maryland 20742, United States
- Department of Physics, University of Maryland, College Park, Maryland 20742, United States
| | - Carole A. Parent
- Laboratory of Cellular and Molecular Biology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, Maryland 20892, United States
- Institute for Physical Science and Technology, University of Maryland, College Park, Maryland 20742, United States
- Department of Pharmacology, Michigan Medicine, University of Michigan, Ann Arbor, Michigan 48109, United States
| |
Collapse
|
25
|
Directing cell migration on flat substrates and in confinement with microfabrication and microfluidics. Methods Cell Biol 2018; 147:109-132. [PMID: 30165954 DOI: 10.1016/bs.mcb.2018.06.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Cell motility has been mainly characterized in vitro through the motion of cells on 2D flat Petri dishes, and in Boyden chambers with the passage of cells through sub-cellular sized cavities. These experimental conditions have contributed to understand important features, but these artificial designs can prevent elucidation of mechanisms involved in guiding cell migration in vivo. In this context, microfabrication and microfluidics have provided unprecedented tools to design new assays with local controls in two and three dimensions. Single cells are surrounded by specific environments at a scale where cellular organelles like the nucleus, the cortex, and protrusions can be probed locally in time and in space. Here, we report methods to direct cell motion with emphasis on micro-contact printing for 2D cell migration, and ratchetaxis/chemotaxis in 3D confinements. While sharing similarities, both environments generate distinct experimental issues and questions with potential relevance for in vivo situations.
Collapse
|
26
|
Pathak A. Modeling and predictions of biphasic mechanosensitive cell migration altered by cell-intrinsic properties and matrix confinement. Phys Biol 2018; 15:065001. [DOI: 10.1088/1478-3975/aabdcc] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
27
|
Coburn L, Lopez H, Schouwenaar IM, Yap AS, Lobaskin V, Gomez GA. Role of contact inhibition of locomotion and junctional mechanics in epithelial collective responses to injury. Phys Biol 2018; 15:024001. [PMID: 29091048 DOI: 10.1088/1478-3975/aa976b] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Epithelial tissues form physically integrated barriers against the external environment protecting organs from infection and invasion. Within each tissue, epithelial cells respond to different challenges that can potentially compromise tissue integrity. In particular, cells collectively respond to injuries by reorganizing their cell-cell junctions and migrating directionally towards the sites of damage. Notwithstanding, the mechanisms that drive collective responses in epithelial aggregates remain poorly understood. In this work, we develop a minimal mechanistic model that is able to capture the essential features of epithelial collective responses to injuries. We show that a model that integrates the mechanics of cells at the cell-cell and cell-substrate interfaces as well as contact inhibition of locomotion (CIL) correctly predicts two key properties of epithelial response to injury as: (1) local relaxation of the tissue and (2) collective reorganization involving the extension of cryptic lamellipodia that extend, on average, up to 3 cell diameters from the site of injury and morphometric changes in the basal regions. Our model also suggests that active responses (like the actomyosin purse string and softening of cell-cell junctions) are needed to drive morphometric changes in the apical region. Therefore, our results highlight the importance of the crosstalk between junctional biomechanics, cell substrate adhesion, and CIL, as well as active responses, in guiding the collective rearrangements that are required to preserve the epithelial barrier in response to injury.
Collapse
Affiliation(s)
- Luke Coburn
- Institute of Complex Systems and Mathematical Biology, University of Aberdeen, United Kingdom. Authors to whom any correspondence should be addressed
| | | | | | | | | | | |
Collapse
|
28
|
Scattering of Cell Clusters in Confinement. Biophys J 2017; 111:1496-1506. [PMID: 27705772 DOI: 10.1016/j.bpj.2016.08.034] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2016] [Revised: 07/11/2016] [Accepted: 08/31/2016] [Indexed: 11/20/2022] Open
Abstract
Epithelial-to-mesenchymal transition (EMT) enables scattering of cell clusters and disseminates motile cells to distant locations in vivo during embryonic development and cancer metastasis. Both stiffness and topography of the extracellular matrix (ECM) have been shown to influence EMT. In this work, we examine how the integrity of epithelial cell clusters is regulated by subcellular forces, protrusions, and adhesions for varying ECM inputs, such as stiffness, topography, and dimensionality. Our model simulates multicell networks of defined sizes and shapes in ECMs of varied stiffness and geometry. The integrity of cell clusters is dictated by cell-cell junctions, which depend on subcellular forces and adhesion dynamics within each cell of the cluster. Our simulations demonstrate an enhanced dissociation of cell-cell junctions in stiffer and more confined three-dimensional (3D) environments, consistent with experimental findings. In narrow channels, the cell edges parallel to the axis of channels lose their cell-cell junctions more readily than those oriented in the perpendicular direction. The inhibition of protrusive activity and cell polarity disables confinement-dependent cell scattering. Here, cell adhesion and spreading along channel walls is found to be essential for scattering. The model also predicts that two-dimensional (2D) confinement of clusters restricts cell spreading and simultaneously blunts the confinement-sensitive cell scattering. This new, to our knowledge, multiscale model integrates molecular adhesion dynamics, subcellular forces, cellular deformation, and macroscale mechanical properties of the ECM to predict the state of cell clusters of defined shapes and sizes. The predictions made by our model not only match experimental findings from a number of experimental setups, but also provide a new conceptual framework for understanding mechanosensitive cell scattering and EMT.
Collapse
|
29
|
Caballero D, Samitier J. Topological Control of Extracellular Matrix Growth: A Native-Like Model for Cell Morphodynamics Studies. ACS APPLIED MATERIALS & INTERFACES 2017; 9:4159-4170. [PMID: 28068057 DOI: 10.1021/acsami.6b13063] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
The interaction of cells with their natural environment influences a large variety of cellular phenomena, including cell adhesion, proliferation, and migration. The complex extracellular matrix network has challenged the attempts to replicate in vitro the heterogeneity of the cell environment and has threatened, in general, the relevance of in vitro studies. In this work, we describe a new and extremely versatile approach to generate native-like extracellular matrices with controlled morphologies for the in vitro study of cellular processes. This general approach combines the confluent culture of fibroblasts with microfabricated guiding templates to direct the three-dimensional growth of well-defined extracellular networks which recapitulate the structural and biomolecular complexity of features typically found in vivo. To evaluate its performance, we studied fundamental cellular processes, including cell cytoskeleton organization, cell-matrix adhesion, proliferation, and protrusions morphodynamics. In all cases, we found striking differences depending on matrix architecture and, in particular, when compared to standard two-dimensional environments. We also assessed whether the engineered matrix networks influenced cell migration dynamics and locomotion strategy, finding enhanced migration efficiency for cells seeded on aligned matrices. Altogether, our methodology paves the way to the development of high-performance models of the extracellular matrix for potential applications in tissue engineering, diagnosis, or stem-cell biology.
Collapse
Affiliation(s)
- David Caballero
- Nanobioengineering Group, Institute for Bioengineering of Catalonia (IBEC) , Baldiri Reixac 15-21, 08028 Barcelona, Spain
- Department of Engineering: Electronics, University of Barcelona , 08028 Barcelona, Spain
- Centro de Investigación Biomédica en Red en Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), 28029 Madrid, Spain
| | - Josep Samitier
- Nanobioengineering Group, Institute for Bioengineering of Catalonia (IBEC) , Baldiri Reixac 15-21, 08028 Barcelona, Spain
- Department of Engineering: Electronics, University of Barcelona , 08028 Barcelona, Spain
- Centro de Investigación Biomédica en Red en Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), 28029 Madrid, Spain
| |
Collapse
|
30
|
Caballero D, Comelles J, Piel M, Voituriez R, Riveline D. Ratchetaxis: Long-Range Directed Cell Migration by Local Cues. Trends Cell Biol 2016; 25:815-827. [PMID: 26615123 DOI: 10.1016/j.tcb.2015.10.009] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2015] [Revised: 10/07/2015] [Accepted: 10/12/2015] [Indexed: 01/22/2023]
Abstract
Directed cell migration is usually thought to depend on the presence of long-range gradients of either chemoattractants or physical properties such as stiffness or adhesion. However, in vivo, chemical or mechanical gradients have not systematically been observed. Here we review recent in vitro experiments, which show that other types of spatial guidance cues can bias cell motility. Introducing local geometrical or mechanical anisotropy in the cell environment, such as adhesive/topographical microratchets or tilted micropillars, show that local and periodic external cues can direct cell motion. Together with modeling, these experiments suggest that cell motility can be viewed as a stochastic phenomenon, which can be biased by various types of local cues, leading to directional migration.
Collapse
Affiliation(s)
- David Caballero
- Laboratory of Cell Physics ISIS/IGBMC, CNRS and University of Strasbourg, Strasbourg, France; Development and Stem Cells Program, IGBMC, CNRS, INSERM and University of Strasbourg, Illkirch, France
| | - Jordi Comelles
- Laboratory of Cell Physics ISIS/IGBMC, CNRS and University of Strasbourg, Strasbourg, France; Development and Stem Cells Program, IGBMC, CNRS, INSERM and University of Strasbourg, Illkirch, France
| | - Matthieu Piel
- Institut Curie, PSL Research University, CNRS, UMR 144, Bio6, F-75005, Paris, France.
| | - Raphaël Voituriez
- Laboratoire de Physique Théorique de la Matière Condensée, CNRS UMR 7600, Université Pierre et Marie Curie, Paris, France; Laboratoire Jean Perrin, CNRS UMR 8237, Université Pierre et Marie Curie, Paris, France.
| | - Daniel Riveline
- Laboratory of Cell Physics ISIS/IGBMC, CNRS and University of Strasbourg, Strasbourg, France; Development and Stem Cells Program, IGBMC, CNRS, INSERM and University of Strasbourg, Illkirch, France.
| |
Collapse
|
31
|
Coburn L, Lopez H, Caldwell BJ, Moussa E, Yap C, Priya R, Noppe A, Roberts AP, Lobaskin V, Yap AS, Neufeld Z, Gomez GA. Contact inhibition of locomotion and mechanical cross-talk between cell-cell and cell-substrate adhesion determine the pattern of junctional tension in epithelial cell aggregates. Mol Biol Cell 2016; 27:3436-3448. [PMID: 27605701 PMCID: PMC5221537 DOI: 10.1091/mbc.e16-04-0226] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2016] [Accepted: 08/30/2016] [Indexed: 01/13/2023] Open
Abstract
A computational approach is used to analyze the biomechanics of epithelial cells based on their capacity to adhere to one another and to the substrate and exhibit contact inhibition of locomotion. This approach reproduces emergent properties of epithelial cell aggregates and makes predictions for experimental validation. We used a computational approach to analyze the biomechanics of epithelial cell aggregates—islands, stripes, or entire monolayers—that combines both vertex and contact-inhibition-of-locomotion models to include cell–cell and cell–substrate adhesion. Examination of the distribution of cell protrusions (adhesion to the substrate) in the model predicted high-order profiles of cell organization that agree with those previously seen experimentally. Cells acquired an asymmetric distribution of basal protrusions, traction forces, and apical aspect ratios that decreased when moving from the edge to the island center. Our in silico analysis also showed that tension on cell–cell junctions and apical stress is not homogeneous across the island. Instead, these parameters are higher at the island center and scale up with island size, which we confirmed experimentally using laser ablation assays and immunofluorescence. Without formally being a three-dimensional model, our approach has the minimal elements necessary to reproduce the distribution of cellular forces and mechanical cross-talk, as well as the distribution of principal stress in cells within epithelial cell aggregates. By making experimentally testable predictions, our approach can aid in mechanical analysis of epithelial tissues, especially when local changes in cell–cell and/or cell–substrate adhesion drive collective cell behavior.
Collapse
Affiliation(s)
- Luke Coburn
- School of Physics and Complex and Adaptive Systems Laboratory, University College Dublin, Belfield, Dublin 4, Ireland .,Institute of Complex Systems and Mathematical Biology, University of Aberdeen, Aberdeen AB24 3FX, United Kingdom
| | - Hender Lopez
- School of Physics and Complex and Adaptive Systems Laboratory, University College Dublin, Belfield, Dublin 4, Ireland.,Center for BioNano Interactions, School of Chemistry and Chemical Biology, University College Dublin, Belfield, Dublin 4, Ireland
| | - Benjamin J Caldwell
- Institute for Molecular Bioscience, Division of Cell Biology and Molecular Medicine, University of Queensland, St. Lucia, Brisbane 4072, Australia
| | - Elliott Moussa
- Institute for Molecular Bioscience, Division of Cell Biology and Molecular Medicine, University of Queensland, St. Lucia, Brisbane 4072, Australia
| | - Chloe Yap
- Institute for Molecular Bioscience, Division of Cell Biology and Molecular Medicine, University of Queensland, St. Lucia, Brisbane 4072, Australia
| | - Rashmi Priya
- Institute for Molecular Bioscience, Division of Cell Biology and Molecular Medicine, University of Queensland, St. Lucia, Brisbane 4072, Australia
| | - Adrian Noppe
- School of Mathematics and Physics, University of Queensland, St. Lucia, Brisbane 4072, Australia
| | - Anthony P Roberts
- School of Mathematics and Physics, University of Queensland, St. Lucia, Brisbane 4072, Australia
| | - Vladimir Lobaskin
- School of Physics and Complex and Adaptive Systems Laboratory, University College Dublin, Belfield, Dublin 4, Ireland
| | - Alpha S Yap
- Institute for Molecular Bioscience, Division of Cell Biology and Molecular Medicine, University of Queensland, St. Lucia, Brisbane 4072, Australia
| | - Zoltan Neufeld
- Institute for Molecular Bioscience, Division of Cell Biology and Molecular Medicine, University of Queensland, St. Lucia, Brisbane 4072, Australia.,School of Mathematics and Physics, University of Queensland, St. Lucia, Brisbane 4072, Australia
| | - Guillermo A Gomez
- Institute for Molecular Bioscience, Division of Cell Biology and Molecular Medicine, University of Queensland, St. Lucia, Brisbane 4072, Australia
| |
Collapse
|
32
|
Albert PJ, Schwarz US. Modeling cell shape and dynamics on micropatterns. Cell Adh Migr 2016; 10:516-528. [PMID: 26838278 PMCID: PMC5079397 DOI: 10.1080/19336918.2016.1148864] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2015] [Accepted: 01/26/2016] [Indexed: 12/29/2022] Open
Abstract
Adhesive micropatterns have become a standard tool to study cells under defined conditions. Applications range from controlling the differentiation and fate of single cells to guiding the collective migration of cell sheets. In long-term experiments, single cell normalization is challenged by cell division. For all of these setups, mathematical models predicting cell shape and dynamics can guide pattern design. Here we review recent advances in predicting and explaining cell shape, traction forces and dynamics on micropatterns. Starting with contour models as the simplest approach to explain concave cell shapes, we move on to network and continuum descriptions as examples for static models. To describe dynamic processes, cellular Potts, vertex and phase field models can be used. Different types of model are appropriate to address different biological questions and together, they provide a versatile tool box to predict cell behavior on micropatterns.
Collapse
Affiliation(s)
- Philipp J. Albert
- Institute for Theoretical Physics and BioQuant, Heidelberg University, Heidelberg, Germany
| | - Ulrich S. Schwarz
- Institute for Theoretical Physics and BioQuant, Heidelberg University, Heidelberg, Germany
| |
Collapse
|
33
|
Wollrab V, Thiagarajan R, Wald A, Kruse K, Riveline D. Still and rotating myosin clusters determine cytokinetic ring constriction. Nat Commun 2016; 7:11860. [PMID: 27363521 PMCID: PMC4932180 DOI: 10.1038/ncomms11860] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2015] [Accepted: 05/06/2016] [Indexed: 12/27/2022] Open
Abstract
The cytokinetic ring is essential for separating daughter cells during division. It consists of actin filaments and myosin motors that are generally assumed to organize as sarcomeres similar to skeletal muscles. However, direct evidence is lacking. Here we show that the internal organization and dynamics of rings are different from sarcomeres and distinct in different cell types. Using micro-cavities to orient rings in single focal planes, we find in mammalian cells a transition from a homogeneous distribution to a periodic pattern of myosin clusters at the onset of constriction. In contrast, in fission yeast, myosin clusters rotate prior to and during constriction. Theoretical analysis indicates that both patterns result from acto-myosin self-organization and reveals differences in the respective stresses. These findings suggest distinct functional roles for rings: contraction in mammalian cells and transport in fission yeast. Thus self-organization under different conditions may be a generic feature for regulating morphogenesis in vivo.
Collapse
Affiliation(s)
- Viktoria Wollrab
- Laboratory of Cell Physics ISIS/IGBMC, ISIS &icFRC, Université de Strasbourg &CNRS, 8 allée Gaspard Monge, Strasbourg 67000, France.,Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, France.,Centre National de la Recherche Scientifique, UMR7104, Illkirch, France.,Institut National de la Santé et de la Recherche Médicale, U964, Illkirch, France.,Université de Strasbourg, Illkirch, France.,Theoretical Physics, Saarland University 66123, Saarbrücken, Germany
| | - Raghavan Thiagarajan
- Laboratory of Cell Physics ISIS/IGBMC, ISIS &icFRC, Université de Strasbourg &CNRS, 8 allée Gaspard Monge, Strasbourg 67000, France.,Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, France.,Centre National de la Recherche Scientifique, UMR7104, Illkirch, France.,Institut National de la Santé et de la Recherche Médicale, U964, Illkirch, France.,Université de Strasbourg, Illkirch, France
| | - Anne Wald
- Theoretical Physics, Saarland University 66123, Saarbrücken, Germany
| | - Karsten Kruse
- Theoretical Physics, Saarland University 66123, Saarbrücken, Germany
| | - Daniel Riveline
- Laboratory of Cell Physics ISIS/IGBMC, ISIS &icFRC, Université de Strasbourg &CNRS, 8 allée Gaspard Monge, Strasbourg 67000, France.,Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, France.,Centre National de la Recherche Scientifique, UMR7104, Illkirch, France.,Institut National de la Santé et de la Recherche Médicale, U964, Illkirch, France.,Université de Strasbourg, Illkirch, France
| |
Collapse
|
34
|
Berguiga L, Streppa L, Boyer-Provera E, Martinez-Torres C, Schaeffer L, Elezgaray J, Arneodo A, Argoul F. Time-lapse scanning surface plasmon microscopy of living adherent cells with a radially polarized beam. APPLIED OPTICS 2016; 55:1216-27. [PMID: 26906571 DOI: 10.1364/ao.55.001216] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
We report on a fibered high-resolution scanning surface plasmon microscope for long term imaging of living adherent cells. The coupling of a high numerical aperture objective lens and a fibered heterodyne interferometer enhances both the sensitivity and the long term stability of this microscope, allowing for time-lapse recording over several days. The diffraction limit is reached with a radially polarized illumination beam. Adherence and motility of living C2C12 myoblast cells are followed for 50 h, revealing that the dynamics of these cells change after 10 h. This plasmon enhanced evanescent wave microscopy is particularly suited for investigating cell adhesion, since it can not only be performed without staining of the sample but it can also capture in real time the exchange of extracellular matrix elements between the substrate and the cells.
Collapse
|
35
|
Albert PJ, Schwarz US. Optimizing micropattern geometries for cell shape and migration with genetic algorithms. Integr Biol (Camb) 2016; 8:741-50. [DOI: 10.1039/c6ib00061d] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Adhesive micropatterns have become a standard tool to control cell shape and function in cell culture.
Collapse
Affiliation(s)
- Philipp J. Albert
- Institute for Theoretical Physics and BioQuant
- Heidelberg University
- 69120 Heidelberg
- Germany
| | - Ulrich S. Schwarz
- Institute for Theoretical Physics and BioQuant
- Heidelberg University
- 69120 Heidelberg
- Germany
| |
Collapse
|
36
|
Caballero D, Voituriez R, Riveline D. The cell ratchet: interplay between efficient protrusions and adhesion determines cell motion. Cell Adh Migr 2015; 9:327-34. [PMID: 26313125 DOI: 10.1080/19336918.2015.1061865] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022] Open
Abstract
Many physiological and pathological processes involve directed cell motion. In general, migrating cells are represented with a polarized morphology with extending and retracting protrusions at the leading edge. However, cell motion is a more complex phenomenon. Cells show heterogeneous morphologies and high protrusive dynamics is not always related to cell shape. This prevents the quantitative prediction of cell motion and the identification of cellular mechanisms setting directionality. Here we discuss the importance of protrusion fluctuations in directed cell motion. We show how their spatiotemporal distribution and dynamics determine the fluctuations and directions of cell motion for NIH3T3 fibroblasts plated on micro-patterned adhesive ratchets. (1) We introduce efficient protrusions and direction index which capture short-term cell motility over hours: these new read-outs allow the prediction of parameters characteristic for the long-term motion of cells over days. The results may have important implications for the study of biological phenomena where directed cell migration is involved, in morphogenesis and in cancer.
Collapse
Affiliation(s)
- David Caballero
- a Laboratory of Cell Physics; ISIS/IGBMC; Université de Strasbourg and CNRS (UMR 7006) ; Strasbourg , France.,b Development and Stem Cells Program; IGBMC; CNRS (UMR 7104); INSERM (U964); Université de Strasbourg ; Illkirch , France
| | - Raphaël Voituriez
- c Laboratoire de Physique Théorique de la Matière Condensée; CNRS UMR 7600; Université Pierre et Marie Curie ; Paris , France.,d Laboratoire Jean Perrin; CNRS FRE 3231; Université Pierre et Marie Curie ; Paris , France
| | - Daniel Riveline
- a Laboratory of Cell Physics; ISIS/IGBMC; Université de Strasbourg and CNRS (UMR 7006) ; Strasbourg , France.,b Development and Stem Cells Program; IGBMC; CNRS (UMR 7104); INSERM (U964); Université de Strasbourg ; Illkirch , France
| |
Collapse
|
37
|
Comelles J, Caballero D, Voituriez R, Hortigüela V, Wollrab V, Godeau AL, Samitier J, Martínez E, Riveline D. Cells as active particles in asymmetric potentials: motility under external gradients. Biophys J 2015; 107:1513-22. [PMID: 25296303 DOI: 10.1016/j.bpj.2014.08.001] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2013] [Revised: 07/11/2014] [Accepted: 08/01/2014] [Indexed: 12/11/2022] Open
Abstract
Cell migration is a crucial event during development and in disease. Mechanical constraints and chemical gradients can contribute to the establishment of cell direction, but their respective roles remain poorly understood. Using a microfabricated topographical ratchet, we show that the nucleus dictates the direction of cell movement through mechanical guidance by its environment. We demonstrate that this direction can be tuned by combining the topographical ratchet with a biochemical gradient of fibronectin adhesion. We report competition and cooperation between the two external cues. We also quantitatively compare the measurements associated with the trajectory of a model that treats cells as fluctuating particles trapped in a periodic asymmetric potential. We show that the cell nucleus contributes to the strength of the trap, whereas cell protrusions guided by the adhesive gradients add a constant tunable bias to the direction of cell motion.
Collapse
Affiliation(s)
- Jordi Comelles
- Laboratory of Cell Physics ISIS/IGBMC, CNRS UMR 7006 and University of Strasbourg, Strasbourg, France; Development and Stem Cells Program, IGBMC, CNRS UMR 7104, INSERM (U964) and University of Strasbourg, Illkirch, France; Nanobioengineering Group, Institute for Bioengineering of Catalonia (IBEC), Barcelona, Spain
| | - David Caballero
- Laboratory of Cell Physics ISIS/IGBMC, CNRS UMR 7006 and University of Strasbourg, Strasbourg, France; Development and Stem Cells Program, IGBMC, CNRS UMR 7104, INSERM (U964) and University of Strasbourg, Illkirch, France
| | - Raphaël Voituriez
- Laboratoire de Physique Théorique de la Matière Condensée, CNRS UMR 7600, Université Pierre et Marie Curie, Paris, France; Laboratoire Jean Perrin, CNRS FRE 3231, Université Pierre et Marie Curie, Paris, France
| | - Verónica Hortigüela
- Biomimetic Systems for Cell Engineering, Institute for Bioengineering of Catalonia (IBEC), Barcelona, Spain; Centro de Investigación Biomédica en Red en Bioingeniería, Biomateriales y Nanomedicina, Zaragoza, Spain
| | - Viktoria Wollrab
- Laboratory of Cell Physics ISIS/IGBMC, CNRS UMR 7006 and University of Strasbourg, Strasbourg, France; Development and Stem Cells Program, IGBMC, CNRS UMR 7104, INSERM (U964) and University of Strasbourg, Illkirch, France
| | - Amélie Luise Godeau
- Laboratory of Cell Physics ISIS/IGBMC, CNRS UMR 7006 and University of Strasbourg, Strasbourg, France; Development and Stem Cells Program, IGBMC, CNRS UMR 7104, INSERM (U964) and University of Strasbourg, Illkirch, France
| | - Josep Samitier
- Nanobioengineering Group, Institute for Bioengineering of Catalonia (IBEC), Barcelona, Spain; Centro de Investigación Biomédica en Red en Bioingeniería, Biomateriales y Nanomedicina, Zaragoza, Spain; Department of Electronics, University of Barcelona, Barcelona, Spain
| | - Elena Martínez
- Biomimetic Systems for Cell Engineering, Institute for Bioengineering of Catalonia (IBEC), Barcelona, Spain; Centro de Investigación Biomédica en Red en Bioingeniería, Biomateriales y Nanomedicina, Zaragoza, Spain; Department of Electronics, University of Barcelona, Barcelona, Spain
| | - Daniel Riveline
- Laboratory of Cell Physics ISIS/IGBMC, CNRS UMR 7006 and University of Strasbourg, Strasbourg, France; Development and Stem Cells Program, IGBMC, CNRS UMR 7104, INSERM (U964) and University of Strasbourg, Illkirch, France.
| |
Collapse
|
38
|
Methods for rectifying cell motions in vitro: breaking symmetry using microfabrication and microfluidics. Methods Cell Biol 2015. [PMID: 25640443 DOI: 10.1016/bs.mcb.2014.10.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
Cell motility is an important phenomenon in cell biology, developmental biology, and cancer. Here we report methods that we designed to identify and characterize external factors which direct cell motions by breaking locally the symmetry. We used microfabrication and microfluidics techniques to impose and combine mechanical and chemical cues to moving fibroblasts. Gradients can thereby be engineered at the cellular scale and this approach has allowed to disentangle roles of the nucleus and protrusion activity in setting cell directions.
Collapse
|
39
|
Fibroblasts probe substrate rigidity with filopodia extensions before occupying an area. Proc Natl Acad Sci U S A 2014; 111:17176-81. [PMID: 25404288 DOI: 10.1073/pnas.1412285111] [Citation(s) in RCA: 97] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Rigidity sensing and durotaxis are thought to be important elements in wound healing, tissue formation, and cancer treatment. It has been challenging, however, to study the underlying mechanism due to difficulties in capturing cells during the transient response to a rigidity interface. We have addressed this problem by developing a model experimental system that confines cells to a micropatterned area with a rigidity border. The system consists of a rigid domain of one large adhesive island, adjacent to a soft domain of small adhesive islands grafted on a nonadhesive soft gel. This configuration allowed us to test rigidity sensing away from the cell body during probing and spreading. NIH 3T3 cells responded to the micropatterned rigidity border similarly to cells at a conventional rigidity border, by showing a strong preference for staying on the rigid side. Furthermore, cells used filopodia extensions to probe substrate rigidity at a distance in front of the leading edge and regulated their responses based on the strain of the intervening substrate. Soft substrates inhibited focal adhesion maturation and promoted cell retraction, whereas rigid substrates allowed stable adhesions and cell spreading. Myosin II was required for not only the generation of probing forces but also the retraction in response to soft substrates. We suggest that a myosin II-driven, filopodia-based probing mechanism ahead of the leading edge allows cells to migrate efficiently, by sensing physical characteristics before moving over a substrate to avoid backtracking.
Collapse
|