1
|
Balleux G, Höfte M, Arguelles-Arias A, Deleu M, Ongena M. Bacillus lipopeptides as key players in rhizosphere chemical ecology. Trends Microbiol 2025; 33:80-95. [PMID: 39214821 DOI: 10.1016/j.tim.2024.08.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 08/01/2024] [Accepted: 08/05/2024] [Indexed: 09/04/2024]
Abstract
Microbial natural products are widely explored for their therapeutic potential. Understanding the underlying evolutionary and adaptive forces driving their production remains a fundamental question in biology. Amphiphilic cyclic lipopeptides (CLPs), a prominent category of bacterial specialized metabolites, show strong antimicrobial activity, particularly against phytopathogens. It is thus assumed that these compounds are deployed by soil- or rhizosphere-dwelling bacteria as microbial weapons in competitive natural environments. Here, we challenge this reductionist perspective and present evidence that Bacillus CLPs are prominent chemical mediators of ecological interactions. They help Bacillus to communicate, compete, defend against predators, or cooperate and establish mutualistic relationships with other (micro)organisms. Additional parallel examples are highlighted in other genera, such as Pseudomonas. This broader perspective underscores the need for further investigation into the role of CLPs in shaping the adaptive strategies of key rhizobacterial species.
Collapse
Affiliation(s)
- Guillaume Balleux
- Microbial Processes and Interactions laboratory, TERRA Research Centre, Gembloux Agro-Bio Tech, University of Liège, Gembloux, 5030, Belgium.
| | - Monica Höfte
- Laboratory of Phytopathology, Faculty of Bioscience Engineering, Ghent University, Ghent, 9000, Belgium
| | - Anthony Arguelles-Arias
- Microbial Processes and Interactions laboratory, TERRA Research Centre, Gembloux Agro-Bio Tech, University of Liège, Gembloux, 5030, Belgium
| | - Magali Deleu
- Laboratory of Molecular Biophysics at Interfaces, TERRA Research Centre, Gembloux Agro-Bio Tech, University of Liège, Gembloux, 5030, Belgium
| | - Marc Ongena
- Microbial Processes and Interactions laboratory, TERRA Research Centre, Gembloux Agro-Bio Tech, University of Liège, Gembloux, 5030, Belgium.
| |
Collapse
|
2
|
Bakker C, Graham HR, Popescu I, Li M, McMullin DR, Avis TJ. Fungal membrane determinants affecting sensitivity to antifungal cyclic lipopeptides from Bacillus spp. Fungal Biol 2024; 128:2080-2088. [PMID: 39384277 DOI: 10.1016/j.funbio.2024.08.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 07/11/2024] [Accepted: 08/14/2024] [Indexed: 10/11/2024]
Abstract
Bacillus spp. produce numerous antimicrobial metabolites. Among these metabolites, cyclic lipopeptides (CLP) including fengycins, iturins, and surfactins are known to have varying antifungal activity against phytopathogenic fungi. The differential activities of CLP have been attributed to diverse mechanisms of action on fungal membranes. However, the precise biochemical determinants driving their antifungal modes of action have not been conclusively identified. In this study, three plant pathogenic fungi of varying lipopeptide sensitivities, Alternaria solani, Cladosporium cucumerinum, and Fusarium sambucinum, were studied to determine how their cell membrane lipid compositions may confer sensitivity and/or tolerance to fengycin, iturin, and surfactin. Results indicated that sensitivity to all three lipopeptides correlated with lower ergosterol content and elevated phospholipid fatty acid unsaturation. Fungal sensitivity to surfactin was also notably different than fengycin and iturin, as surfactin was influenced more by lower phosphatidylethanolamine amounts, higher levels of phosphatidylinositol, and less by phospholipid fatty acyl chain length. Results from this study provide insight into the fungal membrane composition of A. solani, F. sambucinum, and C. cucumerinum and the specific membrane characteristics influencing the antifungal effectiveness of fengycin, iturin, and surfactin. Understanding of these determinants should enable more accurate prediction of sensitivity-tolerance outcomes for other fungal species exposed to these important CLP.
Collapse
Affiliation(s)
- Charlotte Bakker
- Institute of Biochemistry, Carleton University, 1125 Colonel By Drive, Ottawa, ON, K1S 5B6, Canada
| | - Hailey R Graham
- Department of Chemistry, Carleton University, 1125 Colonel By Drive, Ottawa, ON, K1S 5B6, Canada
| | - Irina Popescu
- Department of Chemistry, Carleton University, 1125 Colonel By Drive, Ottawa, ON, K1S 5B6, Canada
| | - Melody Li
- Department of Chemistry, Carleton University, 1125 Colonel By Drive, Ottawa, ON, K1S 5B6, Canada
| | - David R McMullin
- Institute of Biochemistry, Carleton University, 1125 Colonel By Drive, Ottawa, ON, K1S 5B6, Canada; Department of Chemistry, Carleton University, 1125 Colonel By Drive, Ottawa, ON, K1S 5B6, Canada
| | - Tyler J Avis
- Institute of Biochemistry, Carleton University, 1125 Colonel By Drive, Ottawa, ON, K1S 5B6, Canada; Department of Chemistry, Carleton University, 1125 Colonel By Drive, Ottawa, ON, K1S 5B6, Canada.
| |
Collapse
|
3
|
Sanchez LRS, Untiveros DPM, Tengco MTT, Cao EP. Genome assembly, characterization, and mining of biosynthetic gene clusters (BGCs) from Chlorogloeopsis sp. ULAP02 isolated from Mt. Ulap, Itogon, Benguet, Philippines. Front Genet 2024; 15:1422274. [PMID: 39280101 PMCID: PMC11392904 DOI: 10.3389/fgene.2024.1422274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 08/19/2024] [Indexed: 09/18/2024] Open
Affiliation(s)
- Libertine Rose S Sanchez
- Plant Molecular Biology and Genetics Laboratory, Institute of Biology, College of Science, University of the Philippines Diliman, Quezon City, Philippines
| | - Danica Pearl M Untiveros
- Plant Molecular Biology and Genetics Laboratory, Institute of Biology, College of Science, University of the Philippines Diliman, Quezon City, Philippines
| | - Maria Theresa T Tengco
- Plant Molecular Biology and Genetics Laboratory, Institute of Biology, College of Science, University of the Philippines Diliman, Quezon City, Philippines
| | - Ernelea P Cao
- Plant Molecular Biology and Genetics Laboratory, Institute of Biology, College of Science, University of the Philippines Diliman, Quezon City, Philippines
| |
Collapse
|
4
|
Hernández-Ortiz N, Sánchez-Murcia PA, Gil-Campillo C, Domenech M, Lucena-Agell D, Hortigüela R, Velázquez S, Camarasa MJ, Bustamante N, de Castro S, Menéndez M. Design, synthesis and structure-activity relationship (SAR) studies of an unusual class of non-cationic fatty amine-tripeptide conjugates as novel synthetic antimicrobial agents. Front Pharmacol 2024; 15:1428409. [PMID: 39156106 PMCID: PMC11329928 DOI: 10.3389/fphar.2024.1428409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Accepted: 07/01/2024] [Indexed: 08/20/2024] Open
Abstract
Cationic ultrashort lipopeptides (USLPs) are promising antimicrobial candidates to combat multidrug-resistant bacteria. Using DICAMs, a newly synthesized family of tripeptides with net charges from -2 to +1 and a fatty amine conjugated to the C-terminus, we demonstrate that anionic and neutral zwitterionic USLPs can possess potent antimicrobial and membrane-disrupting activities against prevalent human pathogens such as Streptococcus pneumoniae and Streptococcus pyogenes. The strongest antimicrobials completely halt bacterial growth at low micromolar concentrations, reduce bacterial survival by several orders of magnitude, and may kill planktonic cells and biofilms. All of them comprise either an anionic or neutral zwitterionic peptide attached to a long fatty amine (16-18 carbon atoms) and show a preference for anionic lipid membranes enriched in phosphatidylglycerol (PG), which excludes electrostatic interactions as the main driving force for DICAM action. Hence, the hydrophobic contacts provided by the long aliphatic chains of their fatty amines are needed for DICAM's membrane insertion, while negative-charge shielding by salt counterions would reduce electrostatic repulsions. Additionally, we show that other components of the bacterial envelope, including the capsular polysaccharide, can influence the microbicidal activity of DICAMs. Several promising candidates with good-to-tolerable therapeutic ratios are identified as potential agents against S. pneumoniae and S. pyogenes. Structural characteristics that determine the preference for a specific pathogen or decrease DICAM toxicity have also been investigated.
Collapse
Affiliation(s)
- Noelia Hernández-Ortiz
- Instituto de Química-Física “Blas Cabrera” (IQF), Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
| | - Pedro A. Sánchez-Murcia
- Instituto de Química Médica (IQM), Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
- Laboratory of Computer-Aided Molecular Design, Division of Medicinal Chemistry, Otto-Loewi Research Center, Medical University of Graz, Graz, Austria
| | - Celia Gil-Campillo
- Instituto de Química-Física “Blas Cabrera” (IQF), Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
| | - Mirian Domenech
- Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III, Madrid, Spain
- Departamento Genética, Fisiología y Microbiología, Facultad Ciencias Biológicas, Universidad Complutense de Madrid, Madrid, Spain
| | - Daniel Lucena-Agell
- Centro de Investigaciones Biológicas Margarita Salas (CIB), Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
| | - Rafael Hortigüela
- Centro de Investigaciones Biológicas Margarita Salas (CIB), Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
| | - Sonsoles Velázquez
- Instituto de Química Médica (IQM), Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
| | - María José Camarasa
- Instituto de Química Médica (IQM), Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
| | - Noemí Bustamante
- Instituto de Química-Física “Blas Cabrera” (IQF), Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III, Madrid, Spain
| | - Sonia de Castro
- Instituto de Química Médica (IQM), Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
| | - Margarita Menéndez
- Instituto de Química-Física “Blas Cabrera” (IQF), Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
5
|
Ortiz J, Aranda FJ, Teruel JA, Ortiz A. Cryptotanshinone-Induced Permeabilization of Model Phospholipid Membranes: A Biophysical Study. MEMBRANES 2024; 14:118. [PMID: 38921485 PMCID: PMC11205401 DOI: 10.3390/membranes14060118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 05/14/2024] [Accepted: 05/16/2024] [Indexed: 06/27/2024]
Abstract
The Danshen terpenoid cryptotanshinone (CPT) is gaining enormous interest in light of its various outstanding biological activities. Among those, CPT has been shown to interact with cell membranes and, for instance, to have antibacterial activity. Several works have shown that CPT alone, or in combination with other drugs, can effectively act as an antibiotic against various infectious bacteria. Some authors have related the mechanism underlying this action to CPT-membrane interaction. This work shows that CPT readily partitions into phosphatidylcholine membranes, but there is a limiting capacity of accommodation of ca. 1 mol CPT to 3 mol phospholipid. The addition of CPT to unilamellar liposomes composed of 1-palmitoyl-2-oleoylphosphatidylcholine (POPC) causes membrane permeabilization, as shown by fluorescent probe leakage. This process has been kinetically studied, as well as its modulation by incorporation of phosphatidylethanolamine or phosphatidylglycerol, as a model for pathogenic cell membranes. The thermotropic behavior of 1,2-dimyristoylphosphatidylcholine (DMPC) model membranes is weakly affected by CPT, but the terpenoid causes significant dehydration of the polar region of the bilayer and weak disordering of the acyl chain palisade, as observed in Fourier-transform infrared spectroscopy (FTIR) results. Small-angle X-ray scattering (SAXS) shows that CPT increases DMPC bilayer thickness, which could be due to localization near the phospholipid/water interface. Molecular dynamics (MD) simulations show that the lateral diffusion coefficient of the phospholipid increases with the presence of CPT. CPT extends from the polar head region to the center of the bilayer, being centered between the carbonyl groups and the unsaturated region of the POPC, where there is greater overlap. Interestingly, the free energy profiles of a water molecule crossing the lipid membrane show that the POPC membrane becomes more permeable in the presence of CPT. In summary, our results show that CPT perturbs the physicochemical properties of the phospholipid membrane and compromises its barrier function, which could be of relevance to explain part of its antimicrobial or anticancer activities.
Collapse
Affiliation(s)
| | | | | | - Antonio Ortiz
- Departamento de Bioquímica y Biología Molecular-A, Facultad de Veterinaria, Campus de Espinardo, Universidad de Murcia, E-30100 Murcia, Spain; (J.O.); (F.J.A.); (J.A.T.)
| |
Collapse
|
6
|
Gilliard G, Demortier T, Boubsi F, Jijakli MH, Ongena M, De Clerck C, Deleu M. Deciphering the distinct biocontrol activities of lipopeptides fengycin and surfactin through their differential impact on lipid membranes. Colloids Surf B Biointerfaces 2024; 239:113933. [PMID: 38729019 DOI: 10.1016/j.colsurfb.2024.113933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 04/24/2024] [Accepted: 04/26/2024] [Indexed: 05/12/2024]
Abstract
Lipopeptides produced by beneficial bacilli present promising alternatives to chemical pesticides for plant biocontrol purposes. Our research explores the distinct plant biocontrol activities of lipopeptides surfactin (SRF) and fengycin (FGC) by examining their interactions with lipid membranes. Our study shows that FGC exhibits a direct antagonistic activity against Botrytis cinerea and no marked immune-eliciting activity in Arabidopsis thaliana while SRF only demonstrates an ability to stimulate plant immunity. It also reveals that SRF and FGC exhibit diverse effects on membrane integrity and lipid packing. SRF primarily influences membrane physical state without significant membrane permeabilization, while FGC permeabilizes membranes without significantly affecting lipid packing. From our results, we can suggest that the direct antagonistic activity of lipopeptides is linked to their capacity to permeabilize lipid membrane while the stimulation of plant immunity is more likely the result of their ability to alter the mechanical properties of the membrane. Our work also explores how membrane lipid composition modulates the activities of SRF and FGC. Sterols negatively impact both lipopeptides' activities while sphingolipids mitigate the effects on membrane lipid packing but enhance membrane leakage. In conclusion, our findings emphasize the importance of considering both membrane lipid packing and leakage mechanisms in predicting the biological effects of lipopeptides. It also sheds light on the intricate interplay between the membrane composition and the effectiveness of the lipopeptides, providing insights for targeted biocontrol agent design.
Collapse
Affiliation(s)
- Guillaume Gilliard
- Laboratory of Molecular Biophysics at Interfaces, UMRt BioEcoAgro 1158 INRAE, TERRA teaching and research centre, Gembloux Agro-Bio Tech, University of Liège, Gembloux 5030, Belgium
| | - Thomas Demortier
- Laboratory of Molecular Biophysics at Interfaces, UMRt BioEcoAgro 1158 INRAE, TERRA teaching and research centre, Gembloux Agro-Bio Tech, University of Liège, Gembloux 5030, Belgium
| | - Farah Boubsi
- Microbial Processes and Interactions laboratory, UMRt BioEcoAgro 1158 INRAE, TERRA teaching and research centre, Gembloux Agro-Bio Tech, University of Liège, Gembloux 5030, Belgium
| | - M Haissam Jijakli
- Integrated and Urban Plant Pathology Laboratory, UMRt BioEcoAgro 1158 INRAE, Gembloux Agro-Bio Tech, University of Liège, Gembloux 5030, Belgium
| | - Marc Ongena
- Microbial Processes and Interactions laboratory, UMRt BioEcoAgro 1158 INRAE, TERRA teaching and research centre, Gembloux Agro-Bio Tech, University of Liège, Gembloux 5030, Belgium
| | - Caroline De Clerck
- AgricultureIsLife, UMRt BioEcoAgro 1158 INRAE, Gembloux Agro-Bio Tech, University of Liège, Gembloux 5030, Belgium
| | - Magali Deleu
- Laboratory of Molecular Biophysics at Interfaces, UMRt BioEcoAgro 1158 INRAE, TERRA teaching and research centre, Gembloux Agro-Bio Tech, University of Liège, Gembloux 5030, Belgium.
| |
Collapse
|
7
|
Sreelakshmi KP, Madhuri M, Swetha R, Rangarajan V, Roy U. Microbial lipopeptides: their pharmaceutical and biotechnological potential, applications, and way forward. World J Microbiol Biotechnol 2024; 40:135. [PMID: 38489053 DOI: 10.1007/s11274-024-03908-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 01/24/2024] [Indexed: 03/17/2024]
Abstract
As lead molecules, cyclic lipopeptides with antibacterial, antifungal, and antiviral properties have garnered a lot of attention in recent years. Because of their potential, cyclic lipopeptides have earned recognition as a significant class of antimicrobial compounds with applications in pharmacology and biotechnology. These lipopeptides, often with biosurfactant properties, are amphiphilic, consisting of a hydrophilic moiety, like a carboxyl group, peptide backbone, or carbohydrates, and a hydrophobic moiety, mostly a fatty acid. Besides, several lipopeptides also have cationic groups that play an important role in biological activities. Antimicrobial lipopeptides can be considered as possible substitutes for antibiotics that are conventional to address the current drug-resistant issues as pharmaceutical industries modify the parent antibiotic molecules to render them more effective against antibiotic-resistant bacteria and fungi, leading to the development of more resistant microbial strains. Bacillus species produce lipopeptides, which are secondary metabolites that are amphiphilic and are typically synthesized by non-ribosomal peptide synthetases (NRPSs). They have been identified as potential biocontrol agents as they exhibit a broad spectrum of antimicrobial activity. A further benefit of lipopeptides is that they can be produced and purified biotechnologically or biochemically in a sustainable manner using readily available, affordable, renewable sources without harming the environment. In this review, we discuss the biochemical and functional characterization of antifungal lipopeptides, as well as their various modes of action, method of production and purification (in brief), and potential applications as novel antibiotic agents.
Collapse
Affiliation(s)
- K P Sreelakshmi
- Department of Biological Sciences, Birla Institute of Technology and Science-KK Birla Goa Campus Goa, NH 17 B Bypass Rd., Goa, 403726, India
| | - M Madhuri
- Department of Biological Sciences, Birla Institute of Technology and Science-KK Birla Goa Campus Goa, NH 17 B Bypass Rd., Goa, 403726, India
| | - R Swetha
- Department of Biological Sciences, Birla Institute of Technology and Science-KK Birla Goa Campus Goa, NH 17 B Bypass Rd., Goa, 403726, India
| | - Vivek Rangarajan
- Department of Chemical Engineering, Birla Institute of Technology and Science-KK Birla Goa Campus Goa, NH 17 B Bypass Rd., Goa, 403726, India
| | - Utpal Roy
- Department of Biological Sciences, Birla Institute of Technology and Science-KK Birla Goa Campus Goa, NH 17 B Bypass Rd., Goa, 403726, India.
| |
Collapse
|
8
|
Rainsford P, Rylandsholm FG, Jakubec M, Silk M, Juskewitz E, Ericson JU, Svendsen JS, Engh RA, Isaksson J. Label-free measurement of antimicrobial peptide interactions with lipid vesicles and nanodiscs using microscale thermophoresis. Sci Rep 2023; 13:12619. [PMID: 37537266 PMCID: PMC10400562 DOI: 10.1038/s41598-023-39785-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Accepted: 07/31/2023] [Indexed: 08/05/2023] Open
Abstract
One strategy to combat antimicrobial resistance is the discovery of new classes of antibiotics. Most antibiotics will at some point interact with the bacterial membrane to either interfere with its integrity or to cross it. Reliable and efficient tools for determining the dissociation constant for membrane binding (KD) and the partitioning coefficient between the aqueous- and membrane phases (KP) are therefore important tools for discovering and optimizing antimicrobial hits. Here we demonstrate that microscale thermophoresis (MST) can be used for label-free measurement of KD by utilising the intrinsic fluorescence of tryptophan and thereby removing the need for chromophore labelling. As proof of principle, we have used the method to measure the binding of a set of small cyclic AMPs to large unilamellar vesicles (LUVs) and two types of lipid nanodiscs assembled by styrene maleic acid (SMA) and quaternary ammonium SMA (SMA-QA). The measured KD values correlate well with the corresponding measurements using surface plasmon resonance (SPR), also broadly reflecting the tested AMPs' minimal inhibition concentration (MIC) towards S. aureus and E. coli. We conclude that MST is a promising method for fast and cost-efficient detection of peptide-lipid interactions or mapping of sample conditions in preparation for more advanced studies that rely on expensive sample preparation, labelling and/or instrument time.
Collapse
Affiliation(s)
- Philip Rainsford
- Department of Chemistry, Faculty of Science and Technology, UiT the Arctic University of Norway, 9019, Tromsø, Norway
| | - Fredrik G Rylandsholm
- Department of Chemistry, Faculty of Science and Technology, UiT the Arctic University of Norway, 9019, Tromsø, Norway
| | - Martin Jakubec
- Department of Chemistry, Faculty of Science and Technology, UiT the Arctic University of Norway, 9019, Tromsø, Norway
| | - Mitchell Silk
- Department of Chemistry, Faculty of Science and Technology, UiT the Arctic University of Norway, 9019, Tromsø, Norway
| | - Eric Juskewitz
- Research Group for Host Microbe Interactions, Department of Medical Biology, Faculty of Health Sciences, UiT the Arctic University of Norway, 9019, Tromsø, Norway
| | - Johanna U Ericson
- Research Group for Host Microbe Interactions, Department of Medical Biology, Faculty of Health Sciences, UiT the Arctic University of Norway, 9019, Tromsø, Norway
| | - John-Sigurd Svendsen
- Department of Chemistry, Faculty of Science and Technology, UiT the Arctic University of Norway, 9019, Tromsø, Norway
| | - Richard A Engh
- Department of Chemistry, Faculty of Science and Technology, UiT the Arctic University of Norway, 9019, Tromsø, Norway
| | - Johan Isaksson
- Department of Chemistry, Faculty of Science and Technology, UiT the Arctic University of Norway, 9019, Tromsø, Norway.
- Natural Products and Medicinal Chemistry, Department of Pharmacy, Faculty of Health Sciences, UiT the Arctic University of Norway, 9037, Tromsø, Norway.
| |
Collapse
|
9
|
Zhang S, Chen Y, Zhu J, Lu Q, Cryle MJ, Zhang Y, Yan F. Structural diversity, biosynthesis, and biological functions of lipopeptides from Streptomyces. Nat Prod Rep 2023; 40:557-594. [PMID: 36484454 DOI: 10.1039/d2np00044j] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Covering: up to 2022Streptomyces are ubiquitous in terrestrial and marine environments, where they display a fascinating metabolic diversity. As a result, these bacteria are a prolific source of active natural products. One important class of these natural products is the nonribosomal lipopeptides, which have diverse biological activities and play important roles in the lifestyle of Streptomyces. The importance of this class is highlighted by the use of related antibiotics in the clinic, such as daptomycin (tradename Cubicin). By virtue of recent advances spanning chemistry and biology, significant progress has been made in biosynthetic studies on the lipopeptide antibiotics produced by Streptomyces. This review will serve as a comprehensive guide for researchers working in this multidisciplinary field, providing a summary of recent progress regarding the investigation of lipopeptides from Streptomyces. In particular, we highlight the structures, properties, biosynthetic mechanisms, chemical and chemoenzymatic synthesis, and biological functions of lipopeptides. In addition, the application of genome mining techniques to Streptomyces that have led to the discovery of many novel lipopeptides is discussed, further demonstrating the potential of lipopeptides from Streptomyces for future development in modern medicine.
Collapse
Affiliation(s)
- Songya Zhang
- CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Yunliang Chen
- Helmholtz International Lab for Anti-Infectives, Shandong University-Helmholtz Institute of Biotechnology, State Key Laboratory of Microbial Technology, Shandong University, Qingdao, Shandong 266237, China.
- The Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 1000050, China.
| | - Jing Zhu
- CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Qiujie Lu
- Helmholtz International Lab for Anti-Infectives, Shandong University-Helmholtz Institute of Biotechnology, State Key Laboratory of Microbial Technology, Shandong University, Qingdao, Shandong 266237, China.
| | - Max J Cryle
- Department of Biochemistry and Molecular Biology, Monash Biomedicine Discovery Institute, Monash University, Clayton, Victoria, 3800 Australia
- EMBL Australia, Monash University, Clayton, Victoria, 3800 Australia
- ARC Centre of Excellence for Innovations in Peptide and Protein Science, Monash University, Clayton, Victoria, 3800 Australia
| | - Youming Zhang
- CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
- Helmholtz International Lab for Anti-Infectives, Shandong University-Helmholtz Institute of Biotechnology, State Key Laboratory of Microbial Technology, Shandong University, Qingdao, Shandong 266237, China.
| | - Fu Yan
- Helmholtz International Lab for Anti-Infectives, Shandong University-Helmholtz Institute of Biotechnology, State Key Laboratory of Microbial Technology, Shandong University, Qingdao, Shandong 266237, China.
| |
Collapse
|
10
|
Steigenberger J, Verleysen Y, Geudens N, Madder A, Martins JC, Heerklotz H. Complex electrostatic effects on the selectivity of membrane-permeabilizing cyclic lipopeptides. Biophys J 2023; 122:950-963. [PMID: 35927958 PMCID: PMC10111218 DOI: 10.1016/j.bpj.2022.07.033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Revised: 05/04/2022] [Accepted: 07/28/2022] [Indexed: 11/28/2022] Open
Abstract
Cyclic lipopeptides (CLiPs) have many biological functions, including the selective permeabilization of target membranes, and technical and medical applications. We studied the anionic CLiP viscosin from Pseudomonas along with a neutral analog, pseudodesmin A, and the cationic viscosin-E2K to better understand electrostatic effects on target selectivity. Calcein leakage from liposomes of anionic phosphatidylglycerol (PG) and phosphatidylethanolamine (PE) is measured in comparison with net-neutral phosphatidylcholine by time-resolved fluorescence. By contrast to the typical selectivity of cationic peptides against anionic membranes, we find viscosin more active against PG/PE at 30 μM lipid than viscosin-E2K. At very low lipid concentration, the selectivity is reversed. An equi-activity analysis reveals the reciprocal partition coefficients, 1/K, and the CLiP-to-lipid mole ratio within the membrane as leakage after 1 h reaches 50%, Re50. As expected, 1/K to PG/PE is much lower (higher affinity) for viscosin-E2K (3 μM) than viscosin (15 μM). However, the local damage to the PG/PE membrane caused by a viscosin molecule is much stronger than that of viscosin-E2K. This can be explained by the strong membrane expansion due to PG/viscosin repulsion inducing asymmetry stress between the two leaflets and, ultimately, transient limited leakage at Re50 = 0.08. PG/viscosin-E2K attraction opposes expansion and leakage starts only as the PG charges in the outer leaflet are essentially compensated by the cationic peptide (Re50 = 0.32). In the high-lipid regime (at lipid concentrations cL ≫ 1/K), virtually all CLiP is membrane bound anyway and Re50 governs selectivity, favoring viscosin. In the low-lipid regime at cL ≪ 1/K, virtually all CLiP is in solution, 1/K becomes important and the "cation attacks anionic membrane" selectivity gets restored. Overall, activity and selectivity data can only properly be interpreted if the lipid regime is known and predictions for other lipid concentrations or cell counts require knowledge of 1/K and Re50.
Collapse
Affiliation(s)
- Jessica Steigenberger
- Department of Pharmaceutics, Institute of Pharmaceutical Sciences, University of Freiburg, Freiburg, Germany.
| | - Yentl Verleysen
- NMR and Structure Analysis Research Group, Department of Organic and Macromolecular Chemistry, Ghent University, Ghent, Belgium; Organic and Biomimetic Chemistry Research Group, Department of Organic and Macromolecular Chemistry, Ghent University, Ghent, Belgium
| | - Niels Geudens
- NMR and Structure Analysis Research Group, Department of Organic and Macromolecular Chemistry, Ghent University, Ghent, Belgium
| | - Annemieke Madder
- Organic and Biomimetic Chemistry Research Group, Department of Organic and Macromolecular Chemistry, Ghent University, Ghent, Belgium
| | - José C Martins
- NMR and Structure Analysis Research Group, Department of Organic and Macromolecular Chemistry, Ghent University, Ghent, Belgium
| | - Heiko Heerklotz
- Department of Pharmaceutics, Institute of Pharmaceutical Sciences, University of Freiburg, Freiburg, Germany; Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, Ontario, Canada; Signaling Research Centers BIOSS and CIBSS, University of Freiburg, Freiburg, Germany.
| |
Collapse
|
11
|
Ortiz J, Teruel JA, Aranda FJ, Ortiz A. On the Mechanism of Membrane Permeabilization by Tamoxifen and 4-Hydroxytamoxifen. MEMBRANES 2023; 13:292. [PMID: 36984678 PMCID: PMC10058083 DOI: 10.3390/membranes13030292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 02/17/2023] [Accepted: 02/27/2023] [Indexed: 06/18/2023]
Abstract
Tamoxifen (TMX), commonly used in complementary therapy for breast cancer, also displays known effects on the structure and function of biological membranes. This work presents an experimental and simulation study on the permeabilization of model phospholipid membranes by TMX and its derivative 4-hydroxytamoxifen (HTMX). TMX induces rapid and extensive vesicle contents leakage in phosphatidylcholine (PC) liposomes, with the effect of HTMX being much weaker. Fitting of the leakage curves for TMX, yields two rate constants, corresponding to a fast and a slow process, whereas in the case of HTMX, only the slow process takes place. Interestingly, incorporation of phosphatidylglycerol (PG) or phosphatidylethanolamine (PE) protects PC membranes from TMXinduced permeabilization. Fourier-transform infrared spectroscopy (FTIR) shows that, in the presence of TMX there is a shift in the νCH2 band frequency, corresponding to an increase in gauche conformers, and a shift in the νC=O band frequency, indicating a dehydration of the polar region. A preferential association of TMX with PC, in mixed PC/PE systems, is observed by differential scanning calorimetry. Molecular dynamics (MD) simulations support the experimental results, and provide feasible explanations to the protecting effect of PG and PE. These findings add new information to explain the various mechanisms of the anticancer actions of TMX, not related to the estrogen receptor, and potential side effects of this drug.
Collapse
|
12
|
Steigenberger J, Mergen C, De Roo V, Geudens N, Martins JC, Heerklotz H. The effect of membrane thickness on the membrane permeabilizing activity of the cyclic lipopeptide tolaasin II. Front Mol Biosci 2022; 9:1064742. [PMID: 36619163 PMCID: PMC9817028 DOI: 10.3389/fmolb.2022.1064742] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Accepted: 11/21/2022] [Indexed: 12/25/2022] Open
Abstract
Tolaasin II is an amphiphilic, membrane-active, cyclic lipopeptide produced by Pseudomonas tolaasii and is responsible for brown blotch disease in mushroom. To better understand the mode of action and membrane selectivity of tolaasin II and related lipopeptides, its permeabilizing effect on liposomes of different membrane thickness was characterized. An equi-activity analysis served to distinguish between the effects of membrane partitioning and the intrinsic activity of the membrane-bound peptide. It was found that thicker membranes require higher local peptide concentrations to become leaky. More specifically, the mole ratio of membrane-bound peptide per lipid needed to induce 50% leakage of calcein within 1 h, Re 50, increased monotonically with membrane thickness from 0.0016 for the 14:1 to 0.0070 for the 20:1 lipid-chains. Moreover, fast but limited leakage kinetics in the low-lipid regime were observed implying a mode of action based on membrane asymmetry stress in this time and concentration window. While the assembly of the peptide to oligomeric pores of defined length along the bilayer z-axis can in principle explain inhibition by increasing membrane thickness, it cannot account for the observed limited leakage. Therefore, reduced intrinsic membrane-permeabilizing activity with increasing membrane thickness is attributed here to the increased mechanical strength and order of thicker membranes.
Collapse
Affiliation(s)
- Jessica Steigenberger
- Department of Pharmaceutics, Institute of Pharmaceutical Sciences, University of Freiburg, Freiburg, Germany,*Correspondence: Jessica Steigenberger, ; Heiko Heerklotz,
| | - Catherine Mergen
- Department of Pharmaceutics, Institute of Pharmaceutical Sciences, University of Freiburg, Freiburg, Germany
| | - Vic De Roo
- NMR and Structure Analysis Research Group, Department of Organic and Macromolecular Chemistry, Ghent University, Ghent, Belgium
| | - Niels Geudens
- NMR and Structure Analysis Research Group, Department of Organic and Macromolecular Chemistry, Ghent University, Ghent, Belgium
| | - José C. Martins
- NMR and Structure Analysis Research Group, Department of Organic and Macromolecular Chemistry, Ghent University, Ghent, Belgium
| | - Heiko Heerklotz
- Department of Pharmaceutics, Institute of Pharmaceutical Sciences, University of Freiburg, Freiburg, Germany,Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, ON, Canada,Signaling Research Centers BIOSS and CIBSS, University of Freiburg, Freiburg, Germany,*Correspondence: Jessica Steigenberger, ; Heiko Heerklotz,
| |
Collapse
|
13
|
Kang BR, Park JS, Ryu GR, Jung WJ, Choi JS, Shin HM. Effect of Chitosan Coating for Efficient Encapsulation and Improved Stability under Loading Preparation and Storage Conditions of Bacillus Lipopeptides. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:4189. [PMID: 36500812 PMCID: PMC9737214 DOI: 10.3390/nano12234189] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 11/21/2022] [Accepted: 11/22/2022] [Indexed: 06/17/2023]
Abstract
This study aims to evaluate the effect of chitosan coating on the formation and properties of Bacillus cyclic lipopeptide (CLP)-loaded liposomes. A nanoencapsulation strategy for a chitosan-coated liposomal system using lecithin phospholipids for the entrapment of antibiotic CLP prepared from Bacillus subtilis KB21 was developed. The produced chitosan-coated CLP liposome had mean size in the range of 118.47-121.67 nm. Transmission electron microscopy showed the spherical-shaped vesicles. Fourier transform infrared spectroscopy findings indicated the successful coating of the produced CLP-loaded liposomes by the used chitosan. Liposomes coated with 0.2% and 0.5% chitosan concentration decreased the surface tension by 7.3-12.1%, respectively, and increased the CLP content by 15.1-27.0%, respectively, compared to the uncoating liposomes. The coated concentration of chitosan influenced their CLP loading encapsulation efficiency and release kinetics. The physicochemical results of the dynamic light scattering, CLP capture efficiency and long-term storage capacity of nanocapsules increased with chitosan coating concentration. Furthermore, the chitosan-coated liposomes exhibited a significant enhancement in the stability of CLP loading liposomes. These results may suggest the potential application of chitosan-coated liposomes as a carrier of antibiotics in the development of the functional platform.
Collapse
Affiliation(s)
- Beom Ryong Kang
- Institute of Environmentally-Friendly Agriculture, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Joon Seong Park
- Gwangju Metropolitan City Agricultural Extension Center, Gwangju Metropolitan City 61945, Republic of Korea
| | - Gwang Rok Ryu
- Department of Agricultural Chemistry, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Woo-Jin Jung
- Institute of Environmentally-Friendly Agriculture, Chonnam National University, Gwangju 61186, Republic of Korea
- Department of Agricultural Chemistry, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Jun-Seok Choi
- Department of Agricultural Chemistry, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Hye-Min Shin
- Department of Agricultural Chemistry, Chonnam National University, Gwangju 61186, Republic of Korea
| |
Collapse
|
14
|
Added Value of Biophysics to Study Lipid-Driven Biological Processes: The Case of Surfactins, a Class of Natural Amphiphile Molecules. Int J Mol Sci 2022; 23:ijms232213831. [PMID: 36430318 PMCID: PMC9693386 DOI: 10.3390/ijms232213831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 11/04/2022] [Accepted: 11/07/2022] [Indexed: 11/12/2022] Open
Abstract
The role of membrane lipids is increasingly claimed to explain biological activities of natural amphiphile molecules. To decipher this role, biophysical studies with biomimetic membrane models are often helpful to obtain insights at the molecular and atomic levels. In this review, the added value of biophysics to study lipid-driven biological processes is illustrated using the case of surfactins, a class of natural lipopeptides produced by Bacillus sp. showing a broad range of biological activities. The mechanism of interaction of surfactins with biomimetic models showed to be dependent on the surfactins-to-lipid ratio with action as membrane disturber without membrane lysis at low and intermediate ratios and a membrane permeabilizing effect at higher ratios. These two mechanisms are relevant to explain surfactins' biological activities occurring without membrane lysis, such as their antiviral and plant immunity-eliciting activities, and the one involving cell lysis, such as their antibacterial and hemolytic activities. In both biological and biophysical studies, influence of surfactin structure and membrane lipids on the mechanisms was observed with a similar trend. Hence, biomimetic models represent interesting tools to elucidate the biological mechanisms targeting membrane lipids and can contribute to the development of new molecules for pharmaceutical or agronomic applications.
Collapse
|
15
|
Cordelier S, Crouzet J, Gilliard G, Dorey S, Deleu M, Dhondt-Cordelier S. Deciphering the role of plant plasma membrane lipids in response to invasion patterns: how could biology and biophysics help? JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:2765-2784. [PMID: 35560208 DOI: 10.1093/jxb/erab517] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Accepted: 11/25/2021] [Indexed: 06/15/2023]
Abstract
Plants have to constantly face pathogen attacks. To cope with diseases, they have to detect the invading pathogen as early as possible via the sensing of conserved motifs called invasion patterns. The first step of perception occurs at the plasma membrane. While many invasion patterns are perceived by specific proteinaceous immune receptors, several studies have highlighted the influence of the lipid composition and dynamics of the plasma membrane in the sensing of invasion patterns. In this review, we summarize current knowledge on how some microbial invasion patterns could interact with the lipids of the plasma membrane, leading to a plant immune response. Depending on the invasion pattern, different mechanisms are involved. This review outlines the potential of combining biological with biophysical approaches to decipher how plasma membrane lipids are involved in the perception of microbial invasion patterns.
Collapse
Affiliation(s)
- Sylvain Cordelier
- Université de Reims Champagne Ardenne, RIBP EA 4707, USC INRAE 1488, SFR Condorcet FR CNRS 3417, 51100 Reims, France
| | - Jérôme Crouzet
- Université de Reims Champagne Ardenne, RIBP EA 4707, USC INRAE 1488, SFR Condorcet FR CNRS 3417, 51100 Reims, France
| | - Guillaume Gilliard
- Laboratoire de Biophysique Moléculaire aux Interfaces, SFR Condorcet FR CNRS 3417, TERRA Research Center, Gembloux Agro-Bio Tech, Université de Liège, 2 Passage des Déportés, B-5030 Gembloux, Belgium
| | - Stéphan Dorey
- Université de Reims Champagne Ardenne, RIBP EA 4707, USC INRAE 1488, SFR Condorcet FR CNRS 3417, 51100 Reims, France
| | - Magali Deleu
- Laboratoire de Biophysique Moléculaire aux Interfaces, SFR Condorcet FR CNRS 3417, TERRA Research Center, Gembloux Agro-Bio Tech, Université de Liège, 2 Passage des Déportés, B-5030 Gembloux, Belgium
| | - Sandrine Dhondt-Cordelier
- Université de Reims Champagne Ardenne, RIBP EA 4707, USC INRAE 1488, SFR Condorcet FR CNRS 3417, 51100 Reims, France
| |
Collapse
|
16
|
Target Mechanism of Iturinic Lipopeptide on Differential Expression Patterns of Defense-Related Genes against Colletotrichum acutatum in Pepper. PLANTS 2022; 11:plants11091267. [PMID: 35567268 PMCID: PMC9102045 DOI: 10.3390/plants11091267] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 05/02/2022] [Accepted: 05/05/2022] [Indexed: 12/02/2022]
Abstract
Bacillus subtilis KB21 is an isolate with broad spectrum antifungal activity against plant pathogenic fungi. Our aim was to produce and purify antifungal lipopeptides via fermentation using B. subtilis KB21 and verify their antifungal mechanism against pepper anthracnose. When the KB21 strain was cultured in tryptic soy broth medium, the antifungal activity against pepper anthracnose correlated with biosurfactant production. However, there was no antifungal activity when cultured in Luria-Bertani medium. KB21 filtrates showed the highest degree of inhibition of mycelia (91.1%) and spore germination (98.9%) of Colletotrichum acutatum via increases in the biosurfactant levels. Using liquid chromatography-mass spectrometry (LC-MS) and LC-tandem MS (LC-MS/MS) analyses, the component with antifungal activity in the fermentation medium of the KB21 strain was determined to be the cyclic lipopeptide (CLP) antibiotic, iturin A. When the iturin fractions were applied to pepper fruits inoculated with conidia of C. acutatum, the lesion diameter and hyphal growth on the fruit were significantly suppressed. In addition, iturin CLP elevated the gene expression of PAL, LOX, and GLU in the treatments both with and without following fungal pathogens. Overall, the results of this study show that iturin CLPs from B. subtilis KB21 may be potential biological control agents for plant fungal diseases.
Collapse
|
17
|
Saurav K, Caso A, Urajová P, Hrouzek P, Esposito G, Delawská K, Macho M, Hájek J, Cheel J, Saha S, Divoká P, Arsin S, Sivonen K, Fewer DP, Costantino V. Fatty Acid Substitutions Modulate the Cytotoxicity of Puwainaphycins/Minutissamides Isolated from the Baltic Sea Cyanobacterium Nodularia harveyana UHCC-0300. ACS OMEGA 2022; 7:11818-11828. [PMID: 35449984 PMCID: PMC9016887 DOI: 10.1021/acsomega.1c07160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Accepted: 03/15/2022] [Indexed: 05/08/2023]
Abstract
Puwainaphycins (PUW) and minutissamides (MIN) are structurally homologous cyclic lipopeptides that exhibit high structural variability and possess antifungal and cytotoxic activities. While only a minor variation can be found in the amino acid composition of the peptide cycle, the fatty acid (FA) moiety varies largely. The effect of FA functionalization on the bioactivity of PUW/MIN chemical variants is poorly understood. A rapid and selective liquid chromatography-mass spectrometry-based method led us to identify 13 PUW/MIN (1-13) chemical variants from the benthic cyanobacterium Nodularia harveyana strain UHCC-0300 from the Baltic Sea. Five new variants identified were designated as PUW H (1), PUW I (2), PUW J (4), PUW K (10), and PUW L (13) and varied slightly in the peptidic core composition, but a larger variation was observed in the oxo-, chloro-, and hydroxy-substitutions on the FA moiety. To address the effect of FA substitution on the cytotoxic effect, the major variants (3 and 5-11) together with four other PUW/MIN variants (14-17) previously isolated were included in the study. The data obtained showed that hydroxylation of the FA moiety abolishes the cytotoxicity or significantly reduces it when compared with the oxo-substituted C18-FA (compounds 5-8). The oxo-substitution had only a minor effect on the cytotoxicity of the compound when compared to variants bearing no substitution. The activity of PUW/MIN variants with chlorinated FA moieties varied depending on the position of the chlorine atom on the FA chain. This study also shows that variation in the amino acids distant from the FA moiety (position 4-8 of the peptide cycle) does not play an important role in determining the cytotoxicity of the compound. These findings confirmed that the lipophilicity of FA is essential to maintain the cytotoxicity of PUW/MIN lipopeptides. Further, a 63 kb puwainaphycin biosynthetic gene cluster from a draft genome of the N. harveyana strain UHCC-0300 was identified. This pathway encoded two specific lipoinitiation mechanisms as well as enzymes needed for the modification of the FA moiety. Examination on biosynthetic gene clusters and the structural variability of the produced PUW/MIN suggested different mechanisms of fatty-acyl-AMP ligase cooperation with accessory enzymes leading to a new set of PUW/MIN variants bearing differently substituted FA.
Collapse
Affiliation(s)
- Kumar Saurav
- Laboratory
of Algal Biotechnology-Centre Algatech, Institute of Microbiology of the Czech Academy of Sciences, 37901 Třeboň, Czech Republic
- ,
| | - Alessia Caso
- TheBlue
Chemistry Lab, Università Degli Studi
di Napoli “Federico II”, task Force “BigFed2”, Napoli 80131, Italy
| | - Petra Urajová
- Laboratory
of Algal Biotechnology-Centre Algatech, Institute of Microbiology of the Czech Academy of Sciences, 37901 Třeboň, Czech Republic
| | - Pavel Hrouzek
- Laboratory
of Algal Biotechnology-Centre Algatech, Institute of Microbiology of the Czech Academy of Sciences, 37901 Třeboň, Czech Republic
| | - Germana Esposito
- TheBlue
Chemistry Lab, Università Degli Studi
di Napoli “Federico II”, task Force “BigFed2”, Napoli 80131, Italy
| | - Kateřina Delawská
- Laboratory
of Algal Biotechnology-Centre Algatech, Institute of Microbiology of the Czech Academy of Sciences, 37901 Třeboň, Czech Republic
- Faculty
of Science, University of South Bohemia, Branišovská 1760 České Budějovice, Czech Republic
| | - Markéta Macho
- Laboratory
of Algal Biotechnology-Centre Algatech, Institute of Microbiology of the Czech Academy of Sciences, 37901 Třeboň, Czech Republic
- Faculty
of Science, University of South Bohemia, Branišovská 1760 České Budějovice, Czech Republic
| | - Jan Hájek
- Laboratory
of Algal Biotechnology-Centre Algatech, Institute of Microbiology of the Czech Academy of Sciences, 37901 Třeboň, Czech Republic
| | - José Cheel
- Laboratory
of Algal Biotechnology-Centre Algatech, Institute of Microbiology of the Czech Academy of Sciences, 37901 Třeboň, Czech Republic
| | - Subhasish Saha
- Laboratory
of Algal Biotechnology-Centre Algatech, Institute of Microbiology of the Czech Academy of Sciences, 37901 Třeboň, Czech Republic
| | - Petra Divoká
- Laboratory
of Algal Biotechnology-Centre Algatech, Institute of Microbiology of the Czech Academy of Sciences, 37901 Třeboň, Czech Republic
| | - Sila Arsin
- Department
of Microbiology, Viikki Biocenter, University
of Helsinki, FI-00014 Helsinki, Finland
| | - Kaarina Sivonen
- Department
of Microbiology, Viikki Biocenter, University
of Helsinki, FI-00014 Helsinki, Finland
| | - David P. Fewer
- Department
of Microbiology, Viikki Biocenter, University
of Helsinki, FI-00014 Helsinki, Finland
| | - Valeria Costantino
- TheBlue
Chemistry Lab, Università Degli Studi
di Napoli “Federico II”, task Force “BigFed2”, Napoli 80131, Italy
| |
Collapse
|
18
|
Effects of Cholesterol on the mechanism of fengycin, a biofungicide. Biophys J 2022; 121:1963-1974. [DOI: 10.1016/j.bpj.2022.04.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 09/15/2021] [Accepted: 04/05/2022] [Indexed: 11/21/2022] Open
|
19
|
Steigenberger J, Verleysen Y, Geudens N, Martins JC, Heerklotz H. The Optimal Lipid Chain Length of a Membrane-Permeabilizing Lipopeptide Results From the Balance of Membrane Partitioning and Local Damage. Front Microbiol 2021; 12:669709. [PMID: 34594308 PMCID: PMC8476953 DOI: 10.3389/fmicb.2021.669709] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Accepted: 08/20/2021] [Indexed: 11/13/2022] Open
Abstract
Pseudodesmin A (PSD) is a cyclic lipodepsipeptide produced by Pseudomonas that kills certain bacteria at MIC1/2 in the single micromolar range, probably by permeabilizing their cellular membranes. Synthetic PSD variants, where the native decanoic (C10) acyl chain is varied in length from C4 to C8 and C12 to C14 carbons, were described to be not or less active against a panel of gram-positive strains, as compared to native PSD-C10. Here, we test the membrane-permeabilizing activity of PSD-C4 through PSD-C14 in terms of calcein release from liposomes, which is characterized in detail by the fluorescence-lifetime based leakage assay. Antagonistic concentrations and their chain length dependence agree well for liposome leakage and antimicrobial activity. The optimal chain length is governed by a balance between membrane partitioning (favoring longer chains) and the local perturbation or “damage” inflicted by a membrane-bound molecule (weakening for longer chains). Local perturbation, in turn, may involve at least two modes of action. Asymmetry stress between outer and inner leaflet builds up as the lipopeptides enter the outer leaflet and when it reaches a system-specific stability threshold, it causes a transient membrane failure that allows for the flip of some molecules from the outer to the inner leaflet. This cracking-in may be accompanied by transient, incomplete leakage from the aqueous cores of the liposomes observed, typically, for some seconds or less. The mismatch of the lipopeptide with the lipid leaflet geometry, expressed for example in terms of a spontaneous curvature, has two effects. First, it affects the threshold for transient leakage as described. Second, it controls the rate of equilibrium leakage proceeding as the lipopeptide has reached sufficient local concentrations in both leaflets to form quasi-toroidal defects or pores. Both modes of action, transient and equilibrium leakage, synergize for intermediate chain lengths such as the native, i.e., for PSD-C10. These mechanisms may also account for the reported chain-length dependent specificities of antibiotic action against the target bacteria.
Collapse
Affiliation(s)
- Jessica Steigenberger
- Department of Pharmaceutical Technology and Biopharmacy, University of Freiburg, Freiburg, Germany
| | - Yentl Verleysen
- NMR and Structure Analysis Research Group, Department of Organic and Macromolecular Chemistry, Ghent University, Ghent, Belgium
| | - Niels Geudens
- NMR and Structure Analysis Research Group, Department of Organic and Macromolecular Chemistry, Ghent University, Ghent, Belgium
| | - José C Martins
- NMR and Structure Analysis Research Group, Department of Organic and Macromolecular Chemistry, Ghent University, Ghent, Belgium
| | - Heiko Heerklotz
- Department of Pharmaceutical Technology and Biopharmacy, University of Freiburg, Freiburg, Germany.,Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, ON, Canada.,Signaling Research Centers BIOSS and CIBSS, University of Freiburg, Freiburg, Germany
| |
Collapse
|
20
|
Juhaniewicz-Dębińska J, Lasek R, Tymecka D, Burdach K, Bartosik D, Sęk S. Physicochemical and Biological Characterization of Novel Membrane-Active Cationic Lipopeptides with Antimicrobial Properties. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:12900-12910. [PMID: 33085895 PMCID: PMC7660941 DOI: 10.1021/acs.langmuir.0c02135] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 10/07/2020] [Indexed: 06/02/2023]
Abstract
We have designed and synthesized new short lipopeptides composed of tetrapeptide conjugated to fatty acids with different chain lengths. The amino acid sequence of the peptide moiety included d-phenylalanine, two residues of l-2,4-diaminobutyric acid and l-leucine. To explore the possible mechanism of lipopeptide action, we have provided a physicochemical characterization of their interactions with artificial lipid membranes. For this purpose, we have used monolayers and bilayers composed of lipids representative of Gram-negative and Gram-positive bacterial membranes. Using surface pressure measurements and atomic force microscopy, we were able to monitor the changes occurring within the films upon exposure to lipopeptides. Our experiments revealed that all lipopeptides can penetrate the lipid membranes and affect their molecular ordering. The latter results in membrane thinning and fluidization. However, the effect is stronger in the lipid films mimicking Gram-positive bacterial membranes. The results of the physicochemical characterization were compared with the biological activity of lipopeptides. The effect of lipopeptides on bacterial growth was tested on several strains of bacteria. It was revealed that lipopeptides show stronger antimicrobial activity against Gram-positive bacteria. At the same time, all tested compounds display relatively low hemolytic activity.
Collapse
Affiliation(s)
- Joanna Juhaniewicz-Dębińska
- Faculty
of Chemistry, Biological and Chemical Research Centre, University of Warsaw, Żwirki i Wigury101, 02-089 Warsaw, Poland
| | - Robert Lasek
- Faculty
of Biology, Institute of Microbiology, Department of Bacterial Genetics, University of Warsaw, Miecznikowa 1, 02-096 Warsaw, Poland
| | - Dagmara Tymecka
- Faculty
of Chemistry, University of Warsaw, Pasteura 1, 02-093 Warsaw, Poland
| | - Kinga Burdach
- Faculty
of Chemistry, Biological and Chemical Research Centre, University of Warsaw, Żwirki i Wigury101, 02-089 Warsaw, Poland
| | - Dariusz Bartosik
- Faculty
of Biology, Institute of Microbiology, Department of Bacterial Genetics, University of Warsaw, Miecznikowa 1, 02-096 Warsaw, Poland
| | - Sławomir Sęk
- Faculty
of Chemistry, Biological and Chemical Research Centre, University of Warsaw, Żwirki i Wigury101, 02-089 Warsaw, Poland
| |
Collapse
|
21
|
Pinkas D, Fišer R, Kozlík P, Dolejšová T, Hryzáková K, Konopásek I, Mikušová G. Bacillus subtilis cardiolipin protects its own membrane against surfactin-induced permeabilization. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2020; 1862:183405. [DOI: 10.1016/j.bbamem.2020.183405] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 05/15/2020] [Accepted: 06/19/2020] [Indexed: 11/16/2022]
|
22
|
Dietel L, Kalie L, Heerklotz H. Lipid Scrambling Induced by Membrane-Active Substances. Biophys J 2020; 119:767-779. [PMID: 32738218 DOI: 10.1016/j.bpj.2020.07.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 07/03/2020] [Accepted: 07/07/2020] [Indexed: 11/26/2022] Open
Abstract
The functional roles of the lipid asymmetry of biomembranes are attracting increasing attention. This study characterizes the activity of surfactants to induce transmembrane flip-flop of lipids and thus "scramble" this asymmetry. Detergent-induced lipid scrambling of liposomes mimicking the charge asymmetry of bacterial membranes with 20 mol % of 1-palmitoyl-2-oleoyl-sn-glycero-3-phospho-rac-glycerol in the outer leaflet only was quantified by ζ-potential measurements for octaethylene glycol dodecyl ether (C12EO8), octyl glucoside (OG), and dodecyl maltoside. Membrane leakage was separately measured by the fluorescence lifetime-based calcein leakage assay and the onset of the membrane-to-micelle transition by isothermal titration calorimetry. Partition coefficients and partial molar areas were obtained as well. For the quickly membrane-permeant C12EO8 and OG, leakage proceeds at a rather sharp threshold content in the membrane, which is well below the onset of solubilization and little dependent on incubation time; it is accompanied by fast lipid scrambling. However, unlike leakage, flip-flop is a relaxation process that speeds up gradually from taking weeks in the detergent-free membrane to minutes or less in the leaking membrane. Hence, after 24 h of incubation, 10 mol % of C12EO8 or 50 mol % of OG in the membrane suffice for virtually complete lipid scrambling, whereas leakage remains below 10% for up to 14 mol % of C12EO8 and 88 mol % of OG. There is thus a concentration window in which lipid scrambling proceeds without leakage. This implies that lipid scrambling must be considered a possible mode of action of antimicrobial peptides and other membrane-active drugs or biomolecules. A related, detergent-based protocol for scrambling the lipid asymmetry of liposomes and maybe cells without compromising their overall integrity would be a very valuable tool to study functions of lipid asymmetry.
Collapse
Affiliation(s)
- Lisa Dietel
- Institute of Pharmaceutical Sciences, University of Freiburg, Freiburg, Germany.
| | - Louma Kalie
- Institute of Pharmaceutical Sciences, University of Freiburg, Freiburg, Germany
| | - Heiko Heerklotz
- Institute of Pharmaceutical Sciences, University of Freiburg, Freiburg, Germany; Signaling Research Centers BIOSS and CIBSS, University of Freiburg, Freiburg, Germany; Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, Ontario, Canada.
| |
Collapse
|
23
|
Fu T, Islam MS, Ali M, Wu J, Dong W. Two antimicrobial genes from Aegilops tauschii Cosson identified by the Bacillus subtilis expression system. Sci Rep 2020; 10:13346. [PMID: 32770019 PMCID: PMC7414872 DOI: 10.1038/s41598-020-70314-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Accepted: 07/21/2020] [Indexed: 01/08/2023] Open
Abstract
Antimicrobial genes play an important role as a primary defense mechanism in all multicellular organisms. We chose Bacillus subtilis as a target pathogen indicator and transferred the Aegilops tauschii Cosson cDNA library into B. subtilis cells. Expression of the candidate antimicrobial gene can inhibit B. subtilis cell growth. Using this strategy, we screened six genes that have an internal effect on the indicator bacteria. Then, the secreted proteins were extracted and tested; two genes, AtR100 and AtR472, were found to have strong external antimicrobial activities with broad-spectrum resistance against Xanthomonas oryzae pv. oryzicola, Clavibacter fangii, and Botrytis cinerea. Additionally, thermal stability tests indicated that the antimicrobial activities of both proteins were thermostable. Furthermore, these two proteins exhibited no significant hemolytic activities. To test the feasibility of application at the industrial level, liquid fermentation and spray drying of these two proteins were conducted. Powder dilutions were shown to have significant inhibitory effects on B. cinerea. Fluorescence microscopy and flow cytometry results showed that the purified protein impaired and targeted the cell membranes. This study revealed that these two antimicrobial peptides could potentially be used for replacing antibiotics, which would provide the chance to reduce the emergence of drug resistance.
Collapse
Affiliation(s)
- Tingting Fu
- Department of Plant Pathology, College of Plant Science and Technology and the Key Lab of Crop Disease Monitoring and Safety Control in Hubei Province, Huazhong Agricultural University, Wuhan, 430070, Hubei Province, China
| | - Md Samiul Islam
- Department of Plant Pathology, College of Plant Science and Technology and the Key Lab of Crop Disease Monitoring and Safety Control in Hubei Province, Huazhong Agricultural University, Wuhan, 430070, Hubei Province, China
| | - Mohsin Ali
- Department of Plant Pathology, College of Plant Science and Technology and the Key Lab of Crop Disease Monitoring and Safety Control in Hubei Province, Huazhong Agricultural University, Wuhan, 430070, Hubei Province, China
| | - Jia Wu
- Department of Plant Pathology, College of Plant Science and Technology and the Key Lab of Crop Disease Monitoring and Safety Control in Hubei Province, Huazhong Agricultural University, Wuhan, 430070, Hubei Province, China
| | - Wubei Dong
- Department of Plant Pathology, College of Plant Science and Technology and the Key Lab of Crop Disease Monitoring and Safety Control in Hubei Province, Huazhong Agricultural University, Wuhan, 430070, Hubei Province, China.
| |
Collapse
|
24
|
Andrić S, Meyer T, Ongena M. Bacillus Responses to Plant-Associated Fungal and Bacterial Communities. Front Microbiol 2020; 11:1350. [PMID: 32655531 PMCID: PMC7324712 DOI: 10.3389/fmicb.2020.01350] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Accepted: 05/26/2020] [Indexed: 12/22/2022] Open
Abstract
Some members of root-associated Bacillus species have been developed as biocontrol agents due to their contribution to plant protection by directly interfering with the growth of pathogens or by stimulating systemic resistance in their host. As rhizosphere-dwelling bacteria, these bacilli are surrounded and constantly interacting with other microbes via different types of communications. With this review, we provide an updated vision of the molecular and phenotypic responses of Bacillus upon sensing other rhizosphere microorganisms and/or their metabolites. We illustrate how Bacillus spp. may react by modulating the production of secondary metabolites, such as cyclic lipopeptides or polyketides. On the other hand, some developmental processes, such as biofilm formation, motility, and sporulation may also be modified upon interaction, reflecting the adaptation of Bacillus multicellular communities to microbial competitors for preserving their ecological persistence. This review also points out the limited data available and a global lack of knowledge indicating that more research is needed in order to, not only better understand the ecology of bacilli in their natural soil niche, but also to better assess and improve their promising biocontrol potential.
Collapse
Affiliation(s)
- Sofija Andrić
- Microbial Processes and Interactions Laboratory, Terra Teaching and Research Center, Gembloux Agro-Bio Tech, University of Liège, Gembloux, Belgium
| | - Thibault Meyer
- Microbial Processes and Interactions Laboratory, Terra Teaching and Research Center, Gembloux Agro-Bio Tech, University of Liège, Gembloux, Belgium
| | - Marc Ongena
- Microbial Processes and Interactions Laboratory, Terra Teaching and Research Center, Gembloux Agro-Bio Tech, University of Liège, Gembloux, Belgium
| |
Collapse
|
25
|
Pavlova M, Asaturova A, Allakhverdian V, Sidorova T. Physiological and biochemical aspects of the fungicidal action of promising biocontrol Bacillus subtilis strains against phytopathogenic fungi pp. Fusarium and Pyrenophora. BIO WEB OF CONFERENCES 2020. [DOI: 10.1051/bioconf/20202100016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The article presents some aspects of the interaction between biocontrol Bacillus subtilis strains and phytopathogenic fungi Fusarium and Pyrenophora. The presence of antifungal metabolites complexes in the culture fluid of the strains, including surfactin and iturin A has been found. The nature of the changes in the mycelium of phytopathogenic fungi is examined when co-cultivated with B.subtilis strains.
Collapse
|
26
|
Chauhan V, Kanwar SS. Lipopeptide(s) associated with human microbiome as potent cancer drug. Semin Cancer Biol 2020; 70:128-133. [PMID: 32574814 DOI: 10.1016/j.semcancer.2020.06.012] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2020] [Revised: 06/09/2020] [Accepted: 06/09/2020] [Indexed: 02/07/2023]
Abstract
Human microbiota comprises of trillions of microbes which have evolved with and continued to live on/ within their human hosts. Different environmental factors and diet have a large impact upon human microbiota population. These microorganisms live in synergy with their hosts and are beneficial to the host in many different ways. Many microorganisms help to fight against human diseases. Cancer is one such diseases which effects a large human population often leading to death. Cancer is also one of the most fatal human diseases killing millions of people world-wide every year. Though many treatment procedures are available but none is 100 % effective in curing cancer. In this review, we seek to understand the role of human microbiota in cancer treatment. Lipopeptide(s) (LPs) produced by different microorganisms can act as efficient drug(s) against cancer. LPs are low molecular weight lipo-proteins that are also known for their anti-cancer activities. As human microbiota belongs to an environment within the host body, a drug prepared using these microorganisms will be easily accepted by the body. This novel approach of using LPs produced by human microbiota can be considered for the much needed change in cancer treatment. Therefore, it is proposed that research should focus on the host-microbe interaction which could pave the way in understanding role played by these microorganisms in cancer treatment.
Collapse
Affiliation(s)
- Vivek Chauhan
- Department of Biotechnology, Himachal Pradesh University, Summer Hill, Shimla, 171 005, India
| | - Shamsher S Kanwar
- Department of Biotechnology, Himachal Pradesh University, Summer Hill, Shimla, 171 005, India.
| |
Collapse
|
27
|
Furlan AL, Laurin Y, Botcazon C, Rodríguez-Moraga N, Rippa S, Deleu M, Lins L, Sarazin C, Buchoux S. Contributions and Limitations of Biophysical Approaches to Study of the Interactions between Amphiphilic Molecules and the Plant Plasma Membrane. PLANTS 2020; 9:plants9050648. [PMID: 32443858 PMCID: PMC7285231 DOI: 10.3390/plants9050648] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 05/07/2020] [Accepted: 05/15/2020] [Indexed: 12/20/2022]
Abstract
Some amphiphilic molecules are able to interact with the lipid matrix of plant plasma membranes and trigger the immune response in plants. This original mode of perception is not yet fully understood and biophysical approaches could help to obtain molecular insights. In this review, we focus on such membrane-interacting molecules, and present biophysically grounded methods that are used and are particularly interesting in the investigation of this mode of perception. Rather than going into overly technical details, the aim of this review was to provide to readers with a plant biochemistry background a good overview of how biophysics can help to study molecular interactions between bioactive amphiphilic molecules and plant lipid membranes. In particular, we present the biomimetic membrane models typically used, solid-state nuclear magnetic resonance, molecular modeling, and fluorescence approaches, because they are especially suitable for this field of research. For each technique, we provide a brief description, a few case studies, and the inherent limitations, so non-specialists can gain a good grasp on how they could extend their toolbox and/or could apply new techniques to study amphiphilic bioactive compound and lipid interactions.
Collapse
Affiliation(s)
- Aurélien L. Furlan
- Laboratoire de Biophysique Moléculaire aux Interfaces, Gembloux Agro-Bio Tech, TERRA Research Center, Université de Liège, B5030 Gembloux, Belgium; (A.L.F.); (Y.L.); (M.D.); (L.L.)
| | - Yoann Laurin
- Laboratoire de Biophysique Moléculaire aux Interfaces, Gembloux Agro-Bio Tech, TERRA Research Center, Université de Liège, B5030 Gembloux, Belgium; (A.L.F.); (Y.L.); (M.D.); (L.L.)
- Unité de Génie Enzymatique et Cellulaire, UMR 7025 CNRS/UPJV/UTC, Université de Picardie Jules Verne, 80039 Amiens, France; (C.B.); (N.R.-M.); (C.S.)
| | - Camille Botcazon
- Unité de Génie Enzymatique et Cellulaire, UMR 7025 CNRS/UPJV/UTC, Université de Picardie Jules Verne, 80039 Amiens, France; (C.B.); (N.R.-M.); (C.S.)
- Unité de Génie Enzymatique et Cellulaire, UMR 7025 CNRS/UPJV/UTC, Université de Technologie de Compiègne, 60200 Compiègne, France;
| | - Nely Rodríguez-Moraga
- Unité de Génie Enzymatique et Cellulaire, UMR 7025 CNRS/UPJV/UTC, Université de Picardie Jules Verne, 80039 Amiens, France; (C.B.); (N.R.-M.); (C.S.)
| | - Sonia Rippa
- Unité de Génie Enzymatique et Cellulaire, UMR 7025 CNRS/UPJV/UTC, Université de Technologie de Compiègne, 60200 Compiègne, France;
| | - Magali Deleu
- Laboratoire de Biophysique Moléculaire aux Interfaces, Gembloux Agro-Bio Tech, TERRA Research Center, Université de Liège, B5030 Gembloux, Belgium; (A.L.F.); (Y.L.); (M.D.); (L.L.)
| | - Laurence Lins
- Laboratoire de Biophysique Moléculaire aux Interfaces, Gembloux Agro-Bio Tech, TERRA Research Center, Université de Liège, B5030 Gembloux, Belgium; (A.L.F.); (Y.L.); (M.D.); (L.L.)
| | - Catherine Sarazin
- Unité de Génie Enzymatique et Cellulaire, UMR 7025 CNRS/UPJV/UTC, Université de Picardie Jules Verne, 80039 Amiens, France; (C.B.); (N.R.-M.); (C.S.)
| | - Sébastien Buchoux
- Unité de Génie Enzymatique et Cellulaire, UMR 7025 CNRS/UPJV/UTC, Université de Picardie Jules Verne, 80039 Amiens, France; (C.B.); (N.R.-M.); (C.S.)
- Correspondence: ; Tel.: +33-(0)3-2282-7473
| |
Collapse
|
28
|
De Vleeschouwer M, Van Kersavond T, Verleysen Y, Sinnaeve D, Coenye T, Martins JC, Madder A. Identification of the Molecular Determinants Involved in Antimicrobial Activity of Pseudodesmin A, a Cyclic Lipopeptide From the Viscosin Group. Front Microbiol 2020; 11:646. [PMID: 32373092 PMCID: PMC7187754 DOI: 10.3389/fmicb.2020.00646] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Accepted: 03/20/2020] [Indexed: 12/24/2022] Open
Abstract
Cyclic lipo(depsi)peptides (CLiPs) from Pseudomonas constitute a class of natural products involved in a broad range of biological functions for their producers. They also display interesting antimicrobial potential including activity against Gram-positive bacteria. Literature has indicated that these compounds can induce membrane permeabilization, possibly through pore-formation, leading to the general view that the cellular membrane constitutes the primary target in their mode of action. In support of this view, we previously demonstrated that the enantiomer of pseudodesmin A, a member of the viscosin group of CLiPs, shows identical activity against a test panel of six Gram-positive bacterial strains. Here, a previously developed total organic synthesis route is used and partly adapted to generate 20 novel pseudodesmin A analogs in an effort to derive links between molecular constitution, structure and activity. From these, the importance of a macrocycle closed by an ester bond as well as a critical length of β-OH fatty acid chain capping the N-terminus is conclusively demonstrated, providing further evidence for the importance of peptide-membrane interactions in the mode of action. Moreover, an alanine scan is used to unearth the contribution of specific amino acid residues to biological activity. Subsequent interpretation in terms of a structural model describing the location and orientation of pseudodesmin A in a membrane environment, allows first insight in the peptide-membrane interactions involved. The biological screening also identified residue positions that appear less sensitive to conservative modifications, allowing the introduction of a non-perturbing tryptophan residue which will pave the way toward biophysical studies using fluorescence spectroscopy.
Collapse
Affiliation(s)
- Matthias De Vleeschouwer
- Organic and Biomimetic Chemistry Research Group, Department of Organic and Macromolecular Chemistry, Ghent University, Ghent, Belgium.,NMR and Structure Analysis Research Group, Department of Organic and Macromolecular Chemistry, Ghent University, Ghent, Belgium
| | - Tim Van Kersavond
- Organic and Biomimetic Chemistry Research Group, Department of Organic and Macromolecular Chemistry, Ghent University, Ghent, Belgium.,NMR and Structure Analysis Research Group, Department of Organic and Macromolecular Chemistry, Ghent University, Ghent, Belgium
| | - Yentl Verleysen
- Organic and Biomimetic Chemistry Research Group, Department of Organic and Macromolecular Chemistry, Ghent University, Ghent, Belgium.,NMR and Structure Analysis Research Group, Department of Organic and Macromolecular Chemistry, Ghent University, Ghent, Belgium
| | - Davy Sinnaeve
- NMR and Structure Analysis Research Group, Department of Organic and Macromolecular Chemistry, Ghent University, Ghent, Belgium
| | - Tom Coenye
- Laboratory of Pharmaceutical Microbiology, Department of Pharmaceutical Analysis, Ghent University, Ghent, Belgium
| | - José C Martins
- NMR and Structure Analysis Research Group, Department of Organic and Macromolecular Chemistry, Ghent University, Ghent, Belgium
| | - Annemieke Madder
- Organic and Biomimetic Chemistry Research Group, Department of Organic and Macromolecular Chemistry, Ghent University, Ghent, Belgium
| |
Collapse
|
29
|
Zicca S, De Bellis P, Masiello M, Saponari M, Saldarelli P, Boscia D, Sisto A. Antagonistic activity of olive endophytic bacteria and of Bacillus spp. strains against Xylella fastidiosa. Microbiol Res 2020; 236:126467. [PMID: 32248049 DOI: 10.1016/j.micres.2020.126467] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 03/06/2020] [Accepted: 03/15/2020] [Indexed: 11/29/2022]
Abstract
Strains of Xylella fastidiosa subsp. pauca characterized by a specific genotype, the so called sequence type "ST53", have been associated with a severe disease named Olive Quick Decline Syndrome (OQDS). Despite the relevant research efforts devoted to control the disease caused by X. fastidiosa, so far there are no therapeutic means able to cure the infected host plants. As such, the aim of this study was the identification of antagonistic bacteria potentially deployable as bio-control agents against X. fastidiosa. To this end, two approaches were used, i.e. the evaluation of the antagonistic activity of: i) endophytic bacteria isolated from olive trees located in an infected area but showing mild or no symptoms, and ii) Bacillus strains, as they are already known as bio-control agents. Characterization of endophytic bacterial isolates revealed that the majority belonged to different species of the genera Sphingomonas, Methylobacterium, Micrococcus and Curtobacterium. However, when they were tested in vitro against X. fastidiosa ST53 none of them showed antagonistic activity. On the contrary, when strains belonging to different species of the genus Bacillus were included in these tests, remarkable antagonistic activities were recorded. Some B. velezensis strains also produced culture filtrates with inhibitory activity against X. fastidiosa ST53. Taking also into account that two of these B. velezensis strains (namely strains D747 and QST713) are already registered and commercially available as bio-control agents, our results pave the way for further studies aimed at the development of a sustainable bio-control strategy of the OQDS.
Collapse
Affiliation(s)
- Stefania Zicca
- Institute for Sustainable Plant Protection, National Research Council, Via Amendola 122/D, 70126 Bari, Italy
| | - Palmira De Bellis
- Institute of Sciences of Food Production, National Research Council, Via Amendola 122/O, 70126 Bari, Italy
| | - Mario Masiello
- Institute of Sciences of Food Production, National Research Council, Via Amendola 122/O, 70126 Bari, Italy
| | - Maria Saponari
- Institute for Sustainable Plant Protection, National Research Council, Via Amendola 122/D, 70126 Bari, Italy
| | - Pasquale Saldarelli
- Institute for Sustainable Plant Protection, National Research Council, Via Amendola 122/D, 70126 Bari, Italy
| | - Donato Boscia
- Institute for Sustainable Plant Protection, National Research Council, Via Amendola 122/D, 70126 Bari, Italy
| | - Angelo Sisto
- Institute of Sciences of Food Production, National Research Council, Via Amendola 122/O, 70126 Bari, Italy.
| |
Collapse
|
30
|
Maksimov IV, Singh BP, Cherepanova EA, Burkhanova GF, Khairullin RM. Prospects and Applications of Lipopeptide-Producing Bacteria for Plant Protection (Review). APPL BIOCHEM MICRO+ 2020. [DOI: 10.1134/s0003683820010135] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
31
|
Munusamy S, Conde R, Bertrand B, Munoz-Garay C. Biophysical approaches for exploring lipopeptide-lipid interactions. Biochimie 2020; 170:173-202. [PMID: 31978418 PMCID: PMC7116911 DOI: 10.1016/j.biochi.2020.01.009] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Accepted: 01/19/2020] [Indexed: 02/07/2023]
Abstract
In recent years, lipopeptides (LPs) have attracted a lot of attention in the pharmaceutical industry due to their broad-spectrum of antimicrobial activity against a variety of pathogens and their unique mode of action. This class of compounds has enormous potential for application as an alternative to conventional antibiotics and for pest control. Understanding how LPs work from a structural and biophysical standpoint through investigating their interaction with cell membranes is crucial for the rational design of these biomolecules. Various analytical techniques have been developed for studying intramolecular interactions with high resolution. However, these tools have been barely exploited in lipopeptide-lipid interactions studies. These biophysical approaches would give precise insight on these interactions. Here, we reviewed these state-of-the-art analytical techniques. Knowledge at this level is indispensable for understanding LPs activity and particularly their potential specificity, which is relevant information for safe application. Additionally, the principle of each analytical technique is presented and the information acquired is discussed. The key challenges, such as the selection of the membrane model are also been briefly reviewed.
Collapse
Affiliation(s)
- Sathishkumar Munusamy
- Instituto de Ciencias Físicas, Universidad Nacional Autónoma de México, Av. Universidad 2001, Col. Chamilpa, 62210, Cuernavaca, Mexico
| | - Renaud Conde
- Centro de Investigación Sobre Enfermedades Infecciosas, Instituto Nacional de Salud Pública, Cuernavaca, Morelos, Mexico
| | - Brandt Bertrand
- Instituto de Ciencias Físicas, Universidad Nacional Autónoma de México, Av. Universidad 2001, Col. Chamilpa, 62210, Cuernavaca, Mexico
| | - Carlos Munoz-Garay
- Instituto de Ciencias Físicas, Universidad Nacional Autónoma de México, Av. Universidad 2001, Col. Chamilpa, 62210, Cuernavaca, Mexico.
| |
Collapse
|
32
|
Medeot DB, Fernandez M, Morales GM, Jofré E. Fengycins From Bacillus amyloliquefaciens MEP 218 Exhibit Antibacterial Activity by Producing Alterations on the Cell Surface of the Pathogens Xanthomonas axonopodis pv. vesicatoria and Pseudomonas aeruginosa PA01. Front Microbiol 2020; 10:3107. [PMID: 32038550 PMCID: PMC6985098 DOI: 10.3389/fmicb.2019.03107] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Accepted: 12/23/2019] [Indexed: 12/11/2022] Open
Abstract
Bacillus amyloliquefaciens MEP218 is an autochthonous bacterial isolate with antibacterial and antifungal activities against a wide range of phytopathogenic microorganisms. Cyclic lipopeptides (CLP), particularly fengycins, produced by this bacterium; are the main antimicrobial compounds responsible for the growth inhibition of phytopathogens. In this work, the CLP fraction containing fengycins with antibacterial activity was characterized by LC-ESI-MS/MS. In addition, the antibacterial activity of these fengycins was evaluated on the pathogens Xanthomonas axonopodis pv. vesicatoria (Xav), a plant pathogen causing the bacterial spot disease, and Pseudomonas aeruginosa PA01, an opportunistic human pathogen. In vitro inhibition assays showed bactericidal effects on Xav and PA01. Atomic force microscopy images revealed dramatic alterations in the bacterial surface topography in response to fengycins exposure. Cell damage was evidenced by a decrease in bacterial cell heights and the loss of intracellular content measured by potassium efflux assays. Furthermore, the viability of MRC-5 human normal lung fibroblasts was not affected by the treatment with fengycins. This study shows in vivo evidence on the less-known properties of fengycins as antibacterial molecules and leaves open the possibility of using this CLP as a novel antibiotic.
Collapse
Affiliation(s)
- Daniela B Medeot
- Instituto de Biotecnología Ambiental y Salud, Consejo Nacional de Investigaciones Científicas y Técnicas, Río Cuarto, Argentina
| | - Maricruz Fernandez
- Departamento de Ciencias Naturales, Facultad de Ciencias Exactas, Físico-Químicas y Naturales, Universidad Nacional de Río Cuarto, Río Cuarto, Argentina
| | - Gustavo M Morales
- Departamento de Química, Facultad de Ciencias Exactas, Físico-Químicas y Naturales - Instituto de Investigaciones en Tecnologías Energéticas y Materiales Avanzados, Consejo Nacional de Investigaciones Científicas y Técnicas, Universidad Nacional de Río Cuarto, Río Cuarto, Argentina
| | - Edgardo Jofré
- Instituto de Biotecnología Ambiental y Salud, Consejo Nacional de Investigaciones Científicas y Técnicas, Río Cuarto, Argentina.,Departamento de Ciencias Naturales, Facultad de Ciencias Exactas, Físico-Químicas y Naturales, Universidad Nacional de Río Cuarto, Río Cuarto, Argentina
| |
Collapse
|
33
|
Fengycin induces ion channels in lipid bilayers mimicking target fungal cell membranes. Sci Rep 2019; 9:16034. [PMID: 31690786 PMCID: PMC6831686 DOI: 10.1038/s41598-019-52551-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Accepted: 10/18/2019] [Indexed: 12/28/2022] Open
Abstract
The one-sided addition of fengycin (FE) to planar lipid bilayers mimicking target fungal cell membranes up to 0.1 to 0.5 μM in the membrane bathing solution leads to the formation of well-defined and well-reproducible single-ion channels of various conductances in the picosiemens range. FE channels were characterized by asymmetric conductance-voltage characteristic. Membranes treated with FE showed nonideal cationic selectivity in potassium chloride bathing solutions. The membrane conductance induced by FE increased with the second power of the lipopeptide aqueous concentration, suggesting that at least FE dimers are involved in the formation of conductive subunits. The pore formation ability of FE was not distinctly affected by the molecular shape of membrane lipids but strongly depended on the presence of negatively charged species in the bilayer. FE channels were characterized by weakly pronounced voltage gating. Small molecules known to modify the transmembrane distribution of electrical potential and the lateral pressure profile were used to modulate the channel-forming activity of FE. The observed effects of membrane modifiers were attributed to changes in lipid packing and lipopeptide oligomerization in the membrane.
Collapse
|
34
|
Mantil E, Buznytska I, Daly G, Ianoul A, Avis TJ. Role of Lipid Composition in the Interaction and Activity of the Antimicrobial Compound Fengycin with Complex Membrane Models. J Membr Biol 2019; 252:627-638. [DOI: 10.1007/s00232-019-00100-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Accepted: 09/27/2019] [Indexed: 10/25/2022]
|
35
|
Kaspar F, Neubauer P, Gimpel M. Bioactive Secondary Metabolites from Bacillus subtilis: A Comprehensive Review. JOURNAL OF NATURAL PRODUCTS 2019; 82:2038-2053. [PMID: 31287310 DOI: 10.1021/acs.jnatprod.9b00110] [Citation(s) in RCA: 129] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Bacillus subtilis is widely underappreciated for its inherent biosynthetic potential. This report comprehensively summarizes the known bioactive secondary metabolites from B. subtilis and highlights potential applications as plant pathogen control agents, drugs, and biosurfactants. B. subtilis is well known for the production of cyclic lipopeptides exhibiting strong surfactant and antimicrobial activities, such as surfactins, iturins, and fengycins. Several polyketide-derived macrolides as well as nonribosomal peptides, dihydroisocoumarins, and linear lipopeptides with antimicrobial properties have been reported, demonstrating the biosynthetic arsenal of this bacterium. Promising efforts toward the application of B. subtilis strains and their natural products in areas of agriculture and medicine are underway. However, industrial-scale availability of these compounds is currently limited by low fermentation yields and challenging accessibility via synthesis, necessitating the development of genetically engineered strains and optimized cultivation processes. We hope that this review will attract renewed interest in this often-overlooked bacterium and its impressive biosynthetic skill set.
Collapse
Affiliation(s)
- Felix Kaspar
- Institute of Biotechnology , Technical University of Berlin , Ackerstraße 76 , 13355 Berlin , Germany
| | - Peter Neubauer
- Institute of Biotechnology , Technical University of Berlin , Ackerstraße 76 , 13355 Berlin , Germany
| | - Matthias Gimpel
- Institute of Biotechnology , Technical University of Berlin , Ackerstraße 76 , 13355 Berlin , Germany
| |
Collapse
|
36
|
Mantil E, Crippin T, Avis TJ. Supported lipid bilayers using extracted microbial lipids: domain redistribution in the presence of fengycin. Colloids Surf B Biointerfaces 2019; 178:94-102. [DOI: 10.1016/j.colsurfb.2019.02.050] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Revised: 02/17/2019] [Accepted: 02/24/2019] [Indexed: 10/27/2022]
|
37
|
Role of Lipid Composition, Physicochemical Interactions, and Membrane Mechanics in the Molecular Actions of Microbial Cyclic Lipopeptides. J Membr Biol 2019; 252:131-157. [PMID: 31098678 DOI: 10.1007/s00232-019-00067-4] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Accepted: 05/02/2019] [Indexed: 10/26/2022]
Abstract
Several experimental and theoretical studies have extensively investigated the effects of a large diversity of antimicrobial peptides (AMPs) on model lipid bilayers and living cells. Many of these peptides disturb cells by forming pores in the plasma membrane that eventually lead to the cell death. The complexity of these peptide-lipid interactions is mainly related to electrostatic, hydrophobic and topological issues of these counterparts. Diverse studies have shed some light on how AMPs act on lipid bilayers composed by different phospholipids, and how mechanical properties of membranes could affect the antimicrobial effects of such compounds. On the other hand, cyclic lipopeptides (cLPs), an important class of microbial secondary metabolites, have received comparatively less attention. Due to their amphipathic structures, cLPs exhibit interesting biological activities including interactions with biofilms, anti-bacterial, anti-fungal, antiviral, and anti-tumoral properties, which deserve more investigation. Understanding how physicochemical properties of lipid bilayers contribute and determining the antagonistic activity of these secondary metabolites over a broad spectrum of microbial pathogens could establish a framework to design and select effective strategies of biological control. This implies unravelling-at the biophysical level-the complex interactions established between cLPs and lipid bilayers. This review presents, in a systematic manner, the diversity of lipidated antibiotics produced by different microorganisms, with a critical analysis of the perturbing actions that have been reported in the literature for this specific set of membrane-active lipopeptides during their interactions with model membranes and in vivo. With an overview on the mechanical properties of lipid bilayers that can be experimentally determined, we also discuss which parameters are relevant in the understanding of those perturbation effects. Finally, we expose in brief, how this knowledge can help to design novel strategies to use these biosurfactants in the agronomic and pharmaceutical industries.
Collapse
|
38
|
Mantil E, Crippin T, Avis TJ. Domain redistribution within ergosterol-containing model membranes in the presence of the antimicrobial compound fengycin. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2019; 1861:738-747. [DOI: 10.1016/j.bbamem.2019.01.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2018] [Revised: 12/01/2018] [Accepted: 01/08/2019] [Indexed: 01/25/2023]
|
39
|
Fungal Competitors Affect Production of Antimicrobial Lipopeptides in Bacillus subtilis Strain B9-5. J Chem Ecol 2018; 44:374-383. [PMID: 29492723 DOI: 10.1007/s10886-018-0938-0] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Revised: 02/09/2018] [Accepted: 02/16/2018] [Indexed: 10/17/2022]
Abstract
Bacillus subtilis has shown success in antagonizing plant pathogens where strains of the bacterium produce antimicrobial cyclic lipopeptides (CLPs) in response to microbial competitors in their ecological niche. To gain insight into the inhibitory role of these CLPs, B. subtilis strain B9-5 was co-cultured with three pathogenic fungi. Inhibition of mycelial growth and spore germination was assessed and CLPs produced by B. subtilis B9-5 were quantified over the entire period of microbial interaction. B. subtilis B9-5 significantly inhibited mycelial growth and spore germination of Fusarium sambucinum and Verticillium dahliae, but not Rhizopus stolonifer. LC-MS analysis revealed that B. subtilis differentially produced fengycin and surfactin homologs depending on the competitor. CLP quantification suggested that the presence of Verticillium dahliae, a fungus highly sensitive to the compounds, caused an increase followed by a decrease in CLP production by the bacterium. In co-cultures with Fusarium sambucinum, a moderately sensitive fungus, CLP production increased more gradually, possibly because of its slower rate of spore germination. With co-cultures of the tolerant fungus Rhizopus stolonifer, B. subtilis produced high amounts of CLPs (per bacterial cell) for the duration of the interaction. Variations in CLP production could be explained, in part, by the pathogens' overall sensitivities to the bacterial lipopeptides and/or the relative growth rates between the plant pathogen and B. subtilis. CLP production varied substantially temporally depending on the targeted fungus, which provides valuable insight concerning the effectiveness of B. subtilis B9-5 protecting its ecological niche against the ingress of these pathogens.
Collapse
|
40
|
Sur S, Romo TD, Grossfield A. Selectivity and Mechanism of Fengycin, an Antimicrobial Lipopeptide, from Molecular Dynamics. J Phys Chem B 2018; 122:2219-2226. [PMID: 29376372 DOI: 10.1021/acs.jpcb.7b11889] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Fengycin is a cyclic lipopeptide used as an agricultural fungicide. It is synthesized by Bacillus subtilis as an immune response against fungal infection and functions by damaging the target's cell membrane. Previous molecular dynamics simulations and experiments have led to the hypothesis that the aggregation of fengycins on the membrane surface plays a key role in cell disruption. Here, we used microsecond-scale all-atom molecular dynamics simulations to understand the specificity, selectivity, and structure of fengycin oligomers. Our simulations suggest that fengycin is more likely to form stable oligomers in model fungal membranes (phosphatidylcholine) compared to the model bacterial membranes (phosphatidylethanolamine:phosphatidylglycerol). Furthermore, we characterize the differences in the structure and kinetics of the membrane-bound aggregates and discuss their functional implications.
Collapse
Affiliation(s)
- Sreyoshi Sur
- Department of Chemistry, University of Rochester , 404 Hutchison Hall, Box 270216, Rochester, New York 14627, United States
| | - Tod D Romo
- Center for Integrated Research Computing, University of Rochester , 601 Elmwood Avenue, Box 712, Rochester, New York 14642, United States
| | - Alan Grossfield
- Department of Biochemistry and Biophysics, University of Rochester Medical Center , Rochester, 601 Elmwood Avenue, Box 712, New York 14642, United States
| |
Collapse
|
41
|
Markones M, Drechsler C, Kaiser M, Kalie L, Heerklotz H, Fiedler S. Engineering Asymmetric Lipid Vesicles: Accurate and Convenient Control of the Outer Leaflet Lipid Composition. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2018; 34:1999-2005. [PMID: 29294294 DOI: 10.1021/acs.langmuir.7b03189] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
The asymmetric distribution of lipids between the two bilayer leaflets represents a typical feature of biological membranes. The loss of this asymmetry, for example the exposure of negatively charged lipids on the extracellular membrane leaflet of mammalian cells, is involved in apoptosis and occurs in tumor cells. Thus, the controlled production of asymmetric liposomes helps to better understand such crucial cellular processes. Here, we present an approach that allows us to design asymmetric model-membrane experiments on a rational basis and predict the fraction of exchanged lipid. In addition, we developed a label-free and nondestructive assay to quantify the asymmetric uptake of negatively charged lipids in terms of the zeta potential. This significantly enhances the applicability, impact, and predictive power of model membranes.
Collapse
Affiliation(s)
- Marie Markones
- Institute for Pharmaceutical Sciences, University of Freiburg , Hermann-Herder-Straße 9, Freiburg im Breisgau 79104, Germany
- BIOSS Centre for Biological Signalling Studies, University of Freiburg , Schänzlestraße 18, Freiburg im Breisgau 79104, Germany
| | - Carina Drechsler
- Institute for Pharmaceutical Sciences, University of Freiburg , Hermann-Herder-Straße 9, Freiburg im Breisgau 79104, Germany
- BIOSS Centre for Biological Signalling Studies, University of Freiburg , Schänzlestraße 18, Freiburg im Breisgau 79104, Germany
| | - Michael Kaiser
- Institute for Pharmaceutical Sciences, University of Freiburg , Hermann-Herder-Straße 9, Freiburg im Breisgau 79104, Germany
| | - Louma Kalie
- Institute for Pharmaceutical Sciences, University of Freiburg , Hermann-Herder-Straße 9, Freiburg im Breisgau 79104, Germany
| | - Heiko Heerklotz
- Institute for Pharmaceutical Sciences, University of Freiburg , Hermann-Herder-Straße 9, Freiburg im Breisgau 79104, Germany
- BIOSS Centre for Biological Signalling Studies, University of Freiburg , Schänzlestraße 18, Freiburg im Breisgau 79104, Germany
- Leslie Dan Faculty of Pharmacy, University of Toronto , 144 College Street, Toronto, Ontario M5S 3M2, Canada
| | - Sebastian Fiedler
- Leslie Dan Faculty of Pharmacy, University of Toronto , 144 College Street, Toronto, Ontario M5S 3M2, Canada
| |
Collapse
|
42
|
Ilinskaya ON, Ulyanova VV, Yarullina DR, Gataullin IG. Secretome of Intestinal Bacilli: A Natural Guard against Pathologies. Front Microbiol 2017; 8:1666. [PMID: 28919884 PMCID: PMC5586196 DOI: 10.3389/fmicb.2017.01666] [Citation(s) in RCA: 85] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Accepted: 08/17/2017] [Indexed: 12/12/2022] Open
Abstract
Current studies of human gut microbiome usually do not consider the special functional role of transient microbiota, although some of its members remain in the host for a long time and produce broad spectrum of biologically active substances. Getting into the gastrointestinal tract (GIT) with food, water and probiotic preparations, two representatives of Bacilli class, genera Bacillus and Lactobacillus, colonize epithelium blurring the boundaries between resident and transient microbiota. Despite their minor proportion in the microbiome composition, these bacteria can significantly affect both the intestinal microbiota and the entire body thanks to a wide range of secreted compounds. Recently, insufficiency and limitations of pure genome-based analysis of gut microbiota became known. Thus, the need for intense functional studies is evident. This review aims to characterize the Bacillus and Lactobacillus in GIT, as well as the functional roles of the components released by these members of microbial intestinal community. Complex of their secreted compounds is referred by us as the "bacillary secretome." The composition of the bacillary secretome, its biological effects in GIT and role in counteraction to infectious diseases and oncological pathologies in human organism is the subject of the review.
Collapse
Affiliation(s)
| | - Vera V. Ulyanova
- Department of Microbiology, Kazan Federal UniversityKazan, Russia
| | | | - Ilgiz G. Gataullin
- Department of Surgery and Oncology, Regional Clinical Cancer CenterKazan, Russia
| |
Collapse
|
43
|
González-Jaramillo LM, Aranda FJ, Teruel JA, Villegas-Escobar V, Ortiz A. Antimycotic activity of fengycin C biosurfactant and its interaction with phosphatidylcholine model membranes. Colloids Surf B Biointerfaces 2017; 156:114-122. [DOI: 10.1016/j.colsurfb.2017.05.021] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2016] [Revised: 05/05/2017] [Accepted: 05/08/2017] [Indexed: 12/21/2022]
|
44
|
Geudens N, Nasir MN, Crowet JM, Raaijmakers JM, Fehér K, Coenye T, Martins JC, Lins L, Sinnaeve D, Deleu M. Membrane Interactions of Natural Cyclic Lipodepsipeptides of the Viscosin Group. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2017; 1859:331-339. [DOI: 10.1016/j.bbamem.2016.12.013] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2016] [Revised: 12/12/2016] [Accepted: 12/16/2016] [Indexed: 11/16/2022]
|
45
|
Mohamed R, Groulx E, Defilippi S, Erak T, Tambong JT, Tweddell RJ, Tsopmo A, Avis TJ. Physiological and molecular characterization of compost bacteria antagonistic to soil-borne plant pathogens. Can J Microbiol 2017; 63:411-426. [PMID: 28178423 DOI: 10.1139/cjm-2016-0599] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Disease suppressive composts have the potential to mitigate the risks associated with chemical pesticides. One of the main characteristics responsible for the suppressive nature of composts is their microbiological populations. To gain insight into the determinants responsible for their suppressive effects, we assayed composts to (i) isolate and identify beneficial antagonistic bacteria, (ii) quantify their antifungal and anti-oomycetal activities, (iii) extract inhibitory compounds produced by the bacteria, and (iv) identify antimicrobial lipopeptides produced by these bacteria. The antagonistic bacteria belonged to the genera Arthrobacter, Pseudomonas, Bacillus, Brevibacillus, Paenibacillus, and Rummeliibacillus and had the ability to antagonise the growth of Fusarium sambucinum, Verticillium dahliae, and (or) Pythium sulcatum. These bacteria produced antimicrobial compounds that affected the mycelial growth and (or) conidial germination of the pathogens. Mass spectrometry analyses showed the presence of various antimicrobial lipopeptides in Bacillus and Bacillus-related spp. extracts, demonstrating that they are responsible, at least in part, for the antagonistic activity of the bacteria. Results from this work provide greater insight into some of the biological, biochemical, and physiological determinants of suppressiveness in composts involved in the control of plant pathogens.
Collapse
Affiliation(s)
- Rowida Mohamed
- a Department of Chemistry, Carleton University, Ottawa, ON K1S 5B6, Canada
| | - Emma Groulx
- a Department of Chemistry, Carleton University, Ottawa, ON K1S 5B6, Canada
| | - Stefanie Defilippi
- a Department of Chemistry, Carleton University, Ottawa, ON K1S 5B6, Canada
| | - Tamara Erak
- a Department of Chemistry, Carleton University, Ottawa, ON K1S 5B6, Canada
| | - James T Tambong
- b Ottawa Research and Development Centre, Agriculture and Agri-Food Canada, Ottawa, ON K1A 0C6, Canada
| | - Russell J Tweddell
- c Centre de recherche en innovation sur les végétaux, Université Laval, Québec, QC G1V 0A6, Canada
| | - Apollinaire Tsopmo
- a Department of Chemistry, Carleton University, Ottawa, ON K1S 5B6, Canada
| | - Tyler J Avis
- a Department of Chemistry, Carleton University, Ottawa, ON K1S 5B6, Canada
| |
Collapse
|
46
|
Therrien A, Fournier A, Lafleur M. Role of the Cationic C-Terminal Segment of Melittin on Membrane Fragmentation. J Phys Chem B 2016; 120:3993-4002. [PMID: 27054924 DOI: 10.1021/acs.jpcb.5b11705] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The widespread distribution of cationic antimicrobial peptides capable of membrane fragmentation in nature underlines their importance to living organisms. In the present work, we determined the impact of the electrostatic interactions associated with the cationic C-terminal segment of melittin, a 26-amino acid peptide from bee venom (net charge +6), on its binding to model membranes and on the resulting fragmentation. In order to detail the role played by the C-terminal charges, we prepared a melittin analogue for which the four cationic amino acids in positions 21-24 were substituted with the polar residue citrulline, providing a peptide with the same length and amphiphilicity but with a lower net charge (+2). We compared the peptide bilayer affinity and the membrane fragmentation for bilayers prepared from 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC)/1,2-dipalmitoyl-sn-glycero-3-phospho-l-serine (DPPS) mixtures. It is shown that neutralization of the C-terminal considerably increased melittin affinity for zwitterionic membranes. The unfavorable contribution associated with transferring the cationic C-terminal in a less polar environment was reduced, leaving the hydrophobic interactions, which drive the peptide insertion in bilayers, with limited counterbalancing interactions. The presence of negatively charged lipids (DPPS) in bilayers increased melittin binding by introducing attractive electrostatic interactions, the augmentation being, as expected, greater for native melittin than for its citrullinated analogue. The membrane fragmentation power of the peptide was shown to be controlled by electrostatic interactions and could be modulated by the charge carried by both the membrane and the lytic peptide. The analysis of the lipid composition of the extracted fragments from DPPC/DPPS bilayers revealed no lipid specificity. It is proposed that extended phase separations are more susceptible to lead to the extraction of a lipid species in a specific manner than a specific lipid-peptide affinity. The present work on the lipid extraction by melittin and citrullinated melittin with model membranes emphasizes the complex relation between the affinity, the lipid extraction/membrane fragmentation, and the lipid specificity.
Collapse
Affiliation(s)
- Alexandre Therrien
- Department of Chemistry, Center for Self-Assembled Chemical Structures (CSACS), Université de Montréal , C.P. 6128, Succ. Centre Ville, Montréal (Québec) H3C 3J7, Canada
| | - Alain Fournier
- Centre INRS-Institut Armand-Frappier, Institut National de la Recherche Scientifique, 531 Boul. des Prairies, Ville de Laval (Québec) H7V 1B7, Canada
| | - Michel Lafleur
- Department of Chemistry, Center for Self-Assembled Chemical Structures (CSACS), Université de Montréal , C.P. 6128, Succ. Centre Ville, Montréal (Québec) H3C 3J7, Canada
| |
Collapse
|