1
|
Myrov V, Siebenhühner F, Juvonen JJ, Arnulfo G, Palva S, Palva JM. Rhythmicity of neuronal oscillations delineates their cortical and spectral architecture. Commun Biol 2024; 7:405. [PMID: 38570628 PMCID: PMC10991572 DOI: 10.1038/s42003-024-06083-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 03/20/2024] [Indexed: 04/05/2024] Open
Abstract
Neuronal oscillations are commonly analyzed with power spectral methods that quantify signal amplitude, but not rhythmicity or 'oscillatoriness' per se. Here we introduce a new approach, the phase-autocorrelation function (pACF), for the direct quantification of rhythmicity. We applied pACF to human intracerebral stereoelectroencephalography (SEEG) and magnetoencephalography (MEG) data and uncovered a spectrally and anatomically fine-grained cortical architecture in the rhythmicity of single- and multi-frequency neuronal oscillations. Evidencing the functional significance of rhythmicity, we found it to be a prerequisite for long-range synchronization in resting-state networks and to be dynamically modulated during event-related processing. We also extended the pACF approach to measure 'burstiness' of oscillatory processes and characterized regions with stable and bursty oscillations. These findings show that rhythmicity is double-dissociable from amplitude and constitutes a functionally relevant and dynamic characteristic of neuronal oscillations.
Collapse
Affiliation(s)
- Vladislav Myrov
- Department of Neuroscience and Biomedical Engineering, Aalto University, Espoo, Finland.
| | - Felix Siebenhühner
- Neuroscience Center, Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland
- BioMag Laboratory, HUS Medical Imaging Center, Helsinki, Finland
| | - Joonas J Juvonen
- Department of Neuroscience and Biomedical Engineering, Aalto University, Espoo, Finland
- Neuroscience Center, Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland
| | - Gabriele Arnulfo
- Neuroscience Center, Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland
- Department of Informatics, Bioengineering, Robotics and System Engineering, University of Genoa, Genoa, Italy
| | - Satu Palva
- Neuroscience Center, Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland
- Centre for Cognitive Neuroimaging, School of Psychology and Neuroscience, University of Glasgow, Glasgow, UK
| | - J Matias Palva
- Department of Neuroscience and Biomedical Engineering, Aalto University, Espoo, Finland
- Neuroscience Center, Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland
- Centre for Cognitive Neuroimaging, School of Psychology and Neuroscience, University of Glasgow, Glasgow, UK
| |
Collapse
|
2
|
Winter NR, Blanke J, Leenings R, Ernsting J, Fisch L, Sarink K, Barkhau C, Emden D, Thiel K, Flinkenflügel K, Winter A, Goltermann J, Meinert S, Dohm K, Repple J, Gruber M, Leehr EJ, Opel N, Grotegerd D, Redlich R, Nitsch R, Bauer J, Heindel W, Gross J, Risse B, Andlauer TFM, Forstner AJ, Nöthen MM, Rietschel M, Hofmann SG, Pfarr JK, Teutenberg L, Usemann P, Thomas-Odenthal F, Wroblewski A, Brosch K, Stein F, Jansen A, Jamalabadi H, Alexander N, Straube B, Nenadić I, Kircher T, Dannlowski U, Hahn T. A Systematic Evaluation of Machine Learning-Based Biomarkers for Major Depressive Disorder. JAMA Psychiatry 2024; 81:386-395. [PMID: 38198165 PMCID: PMC10782379 DOI: 10.1001/jamapsychiatry.2023.5083] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 11/05/2023] [Indexed: 01/11/2024]
Abstract
Importance Biological psychiatry aims to understand mental disorders in terms of altered neurobiological pathways. However, for one of the most prevalent and disabling mental disorders, major depressive disorder (MDD), no informative biomarkers have been identified. Objective To evaluate whether machine learning (ML) can identify a multivariate biomarker for MDD. Design, Setting, and Participants This study used data from the Marburg-Münster Affective Disorders Cohort Study, a case-control clinical neuroimaging study. Patients with acute or lifetime MDD and healthy controls aged 18 to 65 years were recruited from primary care and the general population in Münster and Marburg, Germany, from September 11, 2014, to September 26, 2018. The Münster Neuroimaging Cohort (MNC) was used as an independent partial replication sample. Data were analyzed from April 2022 to June 2023. Exposure Patients with MDD and healthy controls. Main Outcome and Measure Diagnostic classification accuracy was quantified on an individual level using an extensive ML-based multivariate approach across a comprehensive range of neuroimaging modalities, including structural and functional magnetic resonance imaging and diffusion tensor imaging as well as a polygenic risk score for depression. Results Of 1801 included participants, 1162 (64.5%) were female, and the mean (SD) age was 36.1 (13.1) years. There were a total of 856 patients with MDD (47.5%) and 945 healthy controls (52.5%). The MNC replication sample included 1198 individuals (362 with MDD [30.1%] and 836 healthy controls [69.9%]). Training and testing a total of 4 million ML models, mean (SD) accuracies for diagnostic classification ranged between 48.1% (3.6%) and 62.0% (4.8%). Integrating neuroimaging modalities and stratifying individuals based on age, sex, treatment, or remission status does not enhance model performance. Findings were replicated within study sites and also observed in structural magnetic resonance imaging within MNC. Under simulated conditions of perfect reliability, performance did not significantly improve. Analyzing model errors suggests that symptom severity could be a potential focus for identifying MDD subgroups. Conclusion and Relevance Despite the improved predictive capability of multivariate compared with univariate neuroimaging markers, no informative individual-level MDD biomarker-even under extensive ML optimization in a large sample of diagnosed patients-could be identified.
Collapse
Affiliation(s)
- Nils R. Winter
- Institute for Translational Psychiatry, University of Münster, Münster, Germany
- Otto Creutzfeldt Center for Cognitive and Behavioral Neuroscience, University of Münster, Münster, Germany
| | - Julian Blanke
- Institute for Translational Psychiatry, University of Münster, Münster, Germany
| | - Ramona Leenings
- Institute for Translational Psychiatry, University of Münster, Münster, Germany
- Faculty of Mathematics and Computer Science, University of Münster, Münster, Germany
| | - Jan Ernsting
- Institute for Translational Psychiatry, University of Münster, Münster, Germany
- Faculty of Mathematics and Computer Science, University of Münster, Münster, Germany
- Institute for Geoinformatics, University of Münster, Münster, Germany
| | - Lukas Fisch
- Institute for Translational Psychiatry, University of Münster, Münster, Germany
| | - Kelvin Sarink
- Institute for Translational Psychiatry, University of Münster, Münster, Germany
| | - Carlotta Barkhau
- Institute for Translational Psychiatry, University of Münster, Münster, Germany
| | - Daniel Emden
- Institute for Translational Psychiatry, University of Münster, Münster, Germany
| | - Katharina Thiel
- Institute for Translational Psychiatry, University of Münster, Münster, Germany
| | - Kira Flinkenflügel
- Institute for Translational Psychiatry, University of Münster, Münster, Germany
| | - Alexandra Winter
- Institute for Translational Psychiatry, University of Münster, Münster, Germany
| | - Janik Goltermann
- Institute for Translational Psychiatry, University of Münster, Münster, Germany
| | - Susanne Meinert
- Institute for Translational Psychiatry, University of Münster, Münster, Germany
- Institute for Translational Neuroscience, University of Münster, Münster, Germany
| | - Katharina Dohm
- Institute for Translational Psychiatry, University of Münster, Münster, Germany
| | - Jonathan Repple
- Institute for Translational Psychiatry, University of Münster, Münster, Germany
- Department of Psychiatry, Psychosomatic Medicine and Psychotherapy, University Hospital Frankfurt, Goethe University, Frankfurt am Main, Germany
| | - Marius Gruber
- Institute for Translational Psychiatry, University of Münster, Münster, Germany
- Department of Psychiatry, Psychosomatic Medicine and Psychotherapy, University Hospital Frankfurt, Goethe University, Frankfurt am Main, Germany
| | - Elisabeth J. Leehr
- Institute for Translational Psychiatry, University of Münster, Münster, Germany
| | - Nils Opel
- Institute for Translational Psychiatry, University of Münster, Münster, Germany
- Department of Psychiatry and Psychotherapy, University Hospital Jena, Jena, Germany
- Center for Intervention and Research on Adaptive and Maladaptive Brain Circuits Underlying Mental Health, Jena, Germany
- German Center for Mental Health (DZPG), Jena, Germany
| | - Dominik Grotegerd
- Institute for Translational Psychiatry, University of Münster, Münster, Germany
| | - Ronny Redlich
- Institute for Translational Psychiatry, University of Münster, Münster, Germany
- Center for Intervention and Research on Adaptive and Maladaptive Brain Circuits Underlying Mental Health, Jena, Germany
- Department of Psychology, University of Halle, Halle, Germany
- German Center for Mental Health (DZPG), Halle, Germany
| | - Robert Nitsch
- Otto Creutzfeldt Center for Cognitive and Behavioral Neuroscience, University of Münster, Münster, Germany
- Institute for Translational Neuroscience, University of Münster, Münster, Germany
| | - Jochen Bauer
- Clinic for Radiology, University of Münster, University Hospital Münster, Münster, Germany
| | - Walter Heindel
- Clinic for Radiology, University of Münster, University Hospital Münster, Münster, Germany
| | - Joachim Gross
- Otto Creutzfeldt Center for Cognitive and Behavioral Neuroscience, University of Münster, Münster, Germany
- Institute for Biomagnetism and Biosignalanalysis, University of Münster, Münster, Germany
| | - Benjamin Risse
- Otto Creutzfeldt Center for Cognitive and Behavioral Neuroscience, University of Münster, Münster, Germany
- Faculty of Mathematics and Computer Science, University of Münster, Münster, Germany
- Institute for Geoinformatics, University of Münster, Münster, Germany
| | - Till F. M. Andlauer
- Department of Neurology, Klinikum rechts der Isar, School of Medicine, Technical University of Munich, Munich, Germany
| | - Andreas J. Forstner
- Institute of Human Genetics, University of Bonn, School of Medicine and University Hospital Bonn, Bonn, Germany
- Institute of Neuroscience and Medicine (INM-1), Research Centre Jülich, Jülich, Germany
| | - Markus M. Nöthen
- Institute of Human Genetics, University of Bonn, School of Medicine and University Hospital Bonn, Bonn, Germany
| | - Marcella Rietschel
- Department of Genetic Epidemiology, Central Institute of Mental Health, Faculty of Medicine Mannheim, University of Heidelberg, Mannheim, Germany
| | - Stefan G. Hofmann
- Department of Clinical Psychology, Philipps-University Marburg, Marburg, Germany
| | - Julia-Katharina Pfarr
- Department of Psychiatry and Psychotherapy, Philipps-University Marburg, Marburg, Germany
- Center for Mind, Brain and Behavior (CMBB), Marburg, Germany
| | - Lea Teutenberg
- Department of Psychiatry and Psychotherapy, Philipps-University Marburg, Marburg, Germany
- Center for Mind, Brain and Behavior (CMBB), Marburg, Germany
| | - Paula Usemann
- Department of Psychiatry and Psychotherapy, Philipps-University Marburg, Marburg, Germany
- Center for Mind, Brain and Behavior (CMBB), Marburg, Germany
| | - Florian Thomas-Odenthal
- Department of Psychiatry and Psychotherapy, Philipps-University Marburg, Marburg, Germany
- Center for Mind, Brain and Behavior (CMBB), Marburg, Germany
| | - Adrian Wroblewski
- Department of Psychiatry and Psychotherapy, Philipps-University Marburg, Marburg, Germany
- Center for Mind, Brain and Behavior (CMBB), Marburg, Germany
| | - Katharina Brosch
- Department of Psychiatry and Psychotherapy, Philipps-University Marburg, Marburg, Germany
- Center for Mind, Brain and Behavior (CMBB), Marburg, Germany
| | - Frederike Stein
- Department of Psychiatry and Psychotherapy, Philipps-University Marburg, Marburg, Germany
- Center for Mind, Brain and Behavior (CMBB), Marburg, Germany
| | - Andreas Jansen
- Department of Psychiatry and Psychotherapy, Philipps-University Marburg, Marburg, Germany
- Center for Mind, Brain and Behavior (CMBB), Marburg, Germany
- Core Facility Brain Imaging, Faculty of Medicine, Philipps-University Marburg, Marburg, Germany
| | - Hamidreza Jamalabadi
- Department of Psychiatry and Psychotherapy, Philipps-University Marburg, Marburg, Germany
| | - Nina Alexander
- Department of Psychiatry and Psychotherapy, Philipps-University Marburg, Marburg, Germany
- Center for Mind, Brain and Behavior (CMBB), Marburg, Germany
| | - Benjamin Straube
- Department of Psychiatry and Psychotherapy, Philipps-University Marburg, Marburg, Germany
- Center for Mind, Brain and Behavior (CMBB), Marburg, Germany
| | - Igor Nenadić
- Department of Psychiatry and Psychotherapy, Philipps-University Marburg, Marburg, Germany
- Center for Mind, Brain and Behavior (CMBB), Marburg, Germany
| | - Tilo Kircher
- Department of Psychiatry and Psychotherapy, Philipps-University Marburg, Marburg, Germany
- Center for Mind, Brain and Behavior (CMBB), Marburg, Germany
| | - Udo Dannlowski
- Institute for Translational Psychiatry, University of Münster, Münster, Germany
- Otto Creutzfeldt Center for Cognitive and Behavioral Neuroscience, University of Münster, Münster, Germany
| | - Tim Hahn
- Institute for Translational Psychiatry, University of Münster, Münster, Germany
- Otto Creutzfeldt Center for Cognitive and Behavioral Neuroscience, University of Münster, Münster, Germany
| |
Collapse
|
3
|
Tavella A, Uhlhaas PJ. Magnetoencephalography in Psychiatry: A Perspective on Translational Research and Applications. ADVANCES IN NEUROBIOLOGY 2024; 40:143-156. [PMID: 39562444 DOI: 10.1007/978-3-031-69491-2_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2024]
Abstract
Magnetoencephalography (MEG) is a neuroimaging technique that has excellent temporal as well as good spatial resolution for measuring neural activity and has been extensively employed in cognitive neuroscience. However, MEG has only been more recently applied to investigations of brain networks and biomarkers in psychiatry. Besides providing new insights into the pathophysiology of major psychiatry syndromes, especially in schizophrenia, a major objective of current research is the identification of biomarkers that could inform early intervention and novel treatments. This chapter will provide a state-of-the-art overview of MEG as applied to schizophrenia, autism spectrum disorders, and Alzheimer's disease, summarizing methodological approaches and studies investigating alterations during resting-state and task-related paradigms. In addition, we will highlight future methodological developments and their potential for applications of MEG in psychiatry.
Collapse
Affiliation(s)
- Angelantonio Tavella
- Department of Translational Biomedicine and Neuroscience, University of Bari, Bari, Italy
- Department of Mental Health, ASL Bari, Bari, Italy
| | - Peter J Uhlhaas
- Institute of Neuroscience and Psychology, University of Glasgow, Glasgow, UK.
- Department of Child and Adolescent Psychiatry, Charité Universitätsmedizin, Berlin, Germany.
| |
Collapse
|
4
|
Dimitriadis SI, Routley B, Linden DEJ, Singh KD. Multiplexity of human brain oscillations as a personal brain signature. Hum Brain Mapp 2023; 44:5624-5640. [PMID: 37668332 PMCID: PMC10619372 DOI: 10.1002/hbm.26466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 07/11/2023] [Accepted: 08/08/2023] [Indexed: 09/06/2023] Open
Abstract
Human individuality is likely underpinned by the constitution of functional brain networks that ensure consistency of each person's cognitive and behavioral profile. These functional networks should, in principle, be detectable by noninvasive neurophysiology. We use a method that enables the detection of dominant frequencies of the interaction between every pair of brain areas at every temporal segment of the recording period, the dominant coupling modes (DoCM). We apply this method to brain oscillations, measured with magnetoencephalography (MEG) at rest in two independent datasets, and show that the spatiotemporal evolution of DoCMs constitutes an individualized brain fingerprint. Based on this successful fingerprinting we suggest that DoCMs are important targets for the investigation of neural correlates of individual psychological parameters and can provide mechanistic insight into the underlying neurophysiological processes, as well as their disturbance in brain diseases.
Collapse
Affiliation(s)
- Stavros I. Dimitriadis
- Cardiff University Brain Research Imaging Centre, School of PsychologyCardiff UniversityCardiffWalesUK
- MRC Centre for Neuropsychiatric Genetics and Genomics, Division of Psychological Medicine and Clinical Neurosciences, School of MedicineCardiff UniversityCardiffWalesUK
- Department of Clinical Psychology and PsychobiologyUniversity of BarcelonaBarcelonaSpain
| | - B. Routley
- Cardiff University Brain Research Imaging Centre, School of PsychologyCardiff UniversityCardiffWalesUK
| | - David E. J. Linden
- Cardiff University Brain Research Imaging Centre, School of PsychologyCardiff UniversityCardiffWalesUK
- MRC Centre for Neuropsychiatric Genetics and Genomics, Division of Psychological Medicine and Clinical Neurosciences, School of MedicineCardiff UniversityCardiffWalesUK
- School for Mental Health and Neuroscience, Faculty of Health Medicine and Life SciencesMaastricht UniversityMaastrichtThe Netherlands
| | - Krish D. Singh
- Cardiff University Brain Research Imaging Centre, School of PsychologyCardiff UniversityCardiffWalesUK
| |
Collapse
|
5
|
Sibilska S, Mofleh R, Kocsis B. Development of network oscillations through adolescence in male and female rats. Front Cell Neurosci 2023; 17:1135154. [PMID: 37213214 PMCID: PMC10196069 DOI: 10.3389/fncel.2023.1135154] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Accepted: 04/19/2023] [Indexed: 05/23/2023] Open
Abstract
The primary aim of this research was to study the developmental trajectory of oscillatory synchronization in neural networks of normal healthy rats during adolescence, corresponding to the vulnerable age of schizophrenia prodrome in human. To monitor the development of oscillatory networks through adolescence we used a "pseudo-longitudinal" design. Recordings were performed in terminal experiments under urethane anesthesia, every day from PN32 to PN52 using rats-siblings from the same mother, to reduce individual innate differences between subjects. We found that hippocampal theta power decreased and delta power in prefrontal cortex increased through adolescence, indicating that the oscillations in the two different frequency bands follow distinct developmental trajectories to reach the characteristic oscillatory activity found in adults. Perhaps even more importantly, theta rhythm showed age-dependent stabilization toward late adolescence. Furthermore, sex differences was found in both networks, more prominent in the prefrontal cortex compared with hippocampus. Delta increase was stronger in females and theta stabilization was completed earlier in females, in postnatal days PN41-47, while in males it was only completed in late adolescence. Our finding of a protracted maturation of theta-generating networks in late adolescence is overall consistent with the findings of longitudinal studies in human adolescents, in which oscillatory networks demonstrated a similar pattern of maturation.
Collapse
|
6
|
Smith EE, Bel-Bahar TS, Kayser J. A systematic data-driven approach to analyze sensor-level EEG connectivity: Identifying robust phase-synchronized network components using surface Laplacian with spectral-spatial PCA. Psychophysiology 2022; 59:e14080. [PMID: 35478408 PMCID: PMC9427703 DOI: 10.1111/psyp.14080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 04/04/2022] [Accepted: 04/07/2022] [Indexed: 11/27/2022]
Abstract
Although conventional averaging across predefined frequency bands reduces the complexity of EEG functional connectivity (FC), it obscures the identification of resting-state brain networks (RSN) and impedes accurate estimation of FC reliability. Extending prior work, we combined scalp current source density (CSD; spherical spline surface Laplacian) and spectral-spatial PCA to identify FC components. Phase-based FC was estimated via debiased-weighted phase-locking index from CSD-transformed resting EEGs (71 sensors, 8 min, eyes open/closed, 35 healthy adults, 1-week retest). Spectral PCA extracted six robust alpha and theta components (86.6% variance). Subsequent spatial PCA for each spectral component revealed seven robust regionally focused (posterior, central, and frontal) and long-range (posterior-anterior) alpha components (peaks at 8, 10, and 13 Hz) and a midfrontal theta (6 Hz) component, accounting for 37.0% of FC variance. These spatial FC components were consistent with well-known networks (e.g., default mode, visual, and sensorimotor), and four were sensitive to eyes open/closed conditions. Most FC components had good-to-excellent internal consistency (odd/even epochs, eyes open/closed) and test-retest reliability (ICCs ≥ .8). Moreover, the FC component structure was generally present in subsamples (session × odd/even epoch, or smaller subgroups [n = 7-10]), as indicated by high similarity of component loadings across PCA solutions. Apart from systematically reducing FC dimensionality, our approach avoids arbitrary thresholds and allows quantification of meaningful and reliable network components that may prove to be of high relevance for basic and clinical research applications.
Collapse
Affiliation(s)
- Ezra E. Smith
- Division of Translational Epidemiology, New York State Psychiatric Institute, New York, NY, USA
| | - Tarik S. Bel-Bahar
- Division of Translational Epidemiology, New York State Psychiatric Institute, New York, NY, USA
| | - Jürgen Kayser
- Division of Translational Epidemiology, New York State Psychiatric Institute, New York, NY, USA
- Department of Psychiatry, Vagelos College of Physicians & Surgeons, Columbia University, New York, NY, USA
| |
Collapse
|
7
|
Jiang S, Carpenter LL, Jiang H. Optical neuroimaging: advancing transcranial magnetic stimulation treatments of psychiatric disorders. Vis Comput Ind Biomed Art 2022; 5:22. [PMID: 36071259 PMCID: PMC9452613 DOI: 10.1186/s42492-022-00119-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Accepted: 08/22/2022] [Indexed: 11/10/2022] Open
Abstract
Transcranial magnetic stimulation (TMS) has been established as an important and effective treatment for various psychiatric disorders. However, its effectiveness has likely been limited due to the dearth of neuronavigational tools for targeting purposes, unclear ideal stimulation parameters, and a lack of knowledge regarding the physiological response of the brain to TMS in each psychiatric condition. Modern optical imaging modalities, such as functional near-infrared spectroscopy and diffuse optical tomography, are promising tools for the study of TMS optimization and functional targeting in psychiatric disorders. They possess a unique combination of high spatial and temporal resolutions, portability, real-time capability, and relatively low costs. In this mini-review, we discuss the advent of optical imaging techniques and their innovative use in several psychiatric conditions including depression, panic disorder, phobias, and eating disorders. With further investment and research in the development of these optical imaging approaches, their potential will be paramount for the advancement of TMS treatment protocols in psychiatry.
Collapse
|
8
|
Winter NR, Leenings R, Ernsting J, Sarink K, Fisch L, Emden D, Blanke J, Goltermann J, Opel N, Barkhau C, Meinert S, Dohm K, Repple J, Mauritz M, Gruber M, Leehr EJ, Grotegerd D, Redlich R, Jansen A, Nenadic I, Nöthen MM, Forstner A, Rietschel M, Groß J, Bauer J, Heindel W, Andlauer T, Eickhoff SB, Kircher T, Dannlowski U, Hahn T. Quantifying Deviations of Brain Structure and Function in Major Depressive Disorder Across Neuroimaging Modalities. JAMA Psychiatry 2022; 79:879-888. [PMID: 35895072 PMCID: PMC9330277 DOI: 10.1001/jamapsychiatry.2022.1780] [Citation(s) in RCA: 72] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Accepted: 04/12/2022] [Indexed: 12/21/2022]
Abstract
Importance Identifying neurobiological differences between patients with major depressive disorder (MDD) and healthy individuals has been a mainstay of clinical neuroscience for decades. However, recent meta-analyses have raised concerns regarding the replicability and clinical relevance of brain alterations in depression. Objective To quantify the upper bounds of univariate effect sizes, estimated predictive utility, and distributional dissimilarity of healthy individuals and those with depression across structural magnetic resonance imaging (MRI), diffusion-tensor imaging, and functional task-based as well as resting-state MRI, and to compare results with an MDD polygenic risk score (PRS) and environmental variables. Design, Setting, and Participants This was a cross-sectional, case-control clinical neuroimaging study. Data were part of the Marburg-Münster Affective Disorders Cohort Study. Patients with depression and healthy controls were recruited from primary care and the general population in Münster and Marburg, Germany. Study recruitment was performed from September 11, 2014, to September 26, 2018. The sample comprised patients with acute and chronic MDD as well as healthy controls in the age range of 18 to 65 years. Data were analyzed from October 29, 2020, to April 7, 2022. Main Outcomes and Measures Primary analyses included univariate partial effect size (η2), classification accuracy, and distributional overlapping coefficient for healthy individuals and those with depression across neuroimaging modalities, controlling for age, sex, and additional modality-specific confounding variables. Secondary analyses included patient subgroups for acute or chronic depressive status. Results A total of 1809 individuals (861 patients [47.6%] and 948 controls [52.4%]) were included in the analysis (mean [SD] age, 35.6 [13.2] years; 1165 female patients [64.4%]). The upper bound of the effect sizes of the single univariate measures displaying the largest group difference ranged from partial η2 of 0.004 to 0.017, and distributions overlapped between 87% and 95%, with classification accuracies ranging between 54% and 56% across neuroimaging modalities. This pattern remained virtually unchanged when considering either only patients with acute or chronic depression. Differences were comparable with those found for PRS but substantially smaller than for environmental variables. Conclusions and Relevance Results of this case-control study suggest that even for maximum univariate biological differences, deviations between patients with MDD and healthy controls were remarkably small, single-participant prediction was not possible, and similarity between study groups dominated. Biological psychiatry should facilitate meaningful outcome measures or predictive approaches to increase the potential for a personalization of the clinical practice.
Collapse
Affiliation(s)
- Nils R. Winter
- University of Münster, Institute for Translational Psychiatry, Münster, Germany
| | - Ramona Leenings
- University of Münster, Institute for Translational Psychiatry, Münster, Germany
- University of Münster, Department of Mathematics and Computer Science, Münster, Germany
| | - Jan Ernsting
- University of Münster, Institute for Translational Psychiatry, Münster, Germany
- University of Münster, Department of Mathematics and Computer Science, Münster, Germany
| | - Kelvin Sarink
- University of Münster, Institute for Translational Psychiatry, Münster, Germany
| | - Lukas Fisch
- University of Münster, Institute for Translational Psychiatry, Münster, Germany
| | - Daniel Emden
- University of Münster, Institute for Translational Psychiatry, Münster, Germany
| | - Julian Blanke
- University of Münster, Institute for Translational Psychiatry, Münster, Germany
| | - Janik Goltermann
- University of Münster, Institute for Translational Psychiatry, Münster, Germany
| | - Nils Opel
- University of Münster, Institute for Translational Psychiatry, Münster, Germany
| | - Carlotta Barkhau
- University of Münster, Institute for Translational Psychiatry, Münster, Germany
| | - Susanne Meinert
- University of Münster, Institute for Translational Psychiatry, Münster, Germany
- University of Münster, Institute for Translational Neuroscience, Münster, Germany
| | - Katharina Dohm
- University of Münster, Institute for Translational Psychiatry, Münster, Germany
| | - Jonathan Repple
- University of Münster, Institute for Translational Psychiatry, Münster, Germany
| | - Marco Mauritz
- University of Münster, Institute for Translational Psychiatry, Münster, Germany
| | - Marius Gruber
- University of Münster, Institute for Translational Psychiatry, Münster, Germany
| | - Elisabeth J. Leehr
- University of Münster, Institute for Translational Psychiatry, Münster, Germany
| | - Dominik Grotegerd
- University of Münster, Institute for Translational Psychiatry, Münster, Germany
| | - Ronny Redlich
- University of Münster, Institute for Translational Psychiatry, Münster, Germany
- Institute of Psychology, University of Halle, Halle, Germany
| | - Andreas Jansen
- Department of Psychiatry and Psychotherapy, Philipps University Marburg, Marburg, Germany
| | - Igor Nenadic
- Department of Psychiatry and Psychotherapy, Philipps University Marburg, Marburg, Germany
| | - Markus M. Nöthen
- Institute of Human Genetics, University of Bonn, School of Medicine and University Hospital Bonn, Bonn, Germany
| | - Andreas Forstner
- Institute of Human Genetics, University of Bonn, School of Medicine and University Hospital Bonn, Bonn, Germany
- Centre for Human Genetics, University of Marburg, Marburg, Germany
- Institute of Neuroscience and Medicine (INM-1), Research Centre Jülich, Jülich, Germany
| | - Marcella Rietschel
- Department of Genetic Epidemiology in Psychiatry, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - Joachim Groß
- Institute for Biomagnetism and Biosignalanalysis, University of Münster, Münster, Germany
| | - Jochen Bauer
- Department of Clinical Radiology, University of Münster, Münster, Germany
| | - Walter Heindel
- Department of Clinical Radiology, University of Münster, Münster, Germany
| | - Till Andlauer
- Department of Neurology, Klinikum rechts der Isar, School of Medicine, Technical University of Munich, Munich, Germany
| | - Simon B. Eickhoff
- Institute of Systems Neuroscience, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
- Institute of Neuroscience and Medicine (INM-7), Research Centre Jülich, Jülich, Germany
| | - Tilo Kircher
- Department of Psychiatry and Psychotherapy, Philipps University Marburg, Marburg, Germany
| | - Udo Dannlowski
- University of Münster, Institute for Translational Psychiatry, Münster, Germany
| | - Tim Hahn
- University of Münster, Institute for Translational Psychiatry, Münster, Germany
| |
Collapse
|
9
|
Zhang S, Litvak V, Tian S, Dai Z, Tang H, Wang X, Yao Z, Lu Q. Spontaneous transient states of fronto-temporal and default-mode networks altered by suicide attempt in major depressive disorder. Eur Arch Psychiatry Clin Neurosci 2022; 272:1547-1557. [PMID: 35088122 PMCID: PMC8794625 DOI: 10.1007/s00406-021-01371-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Accepted: 12/10/2021] [Indexed: 11/30/2022]
Abstract
Major depressive disorder (MDD) is associated with increased suicidality, and it's still challenging to identify suicide in clinical practice. Although suicide attempt (SA) is the most relevant precursor with multiple functional abnormalities reported from neuroimaging studies, little is known about how the spontaneous transient activated patterns organize and coordinate brain networks underlying SA. Thus, we obtained resting-state magnetoencephalography data for two MDD subgroups of 44 non-suicide patients and 34 suicide-attempted patients, together with 49 matched health-controls. For the source-space signals, Hidden Markov Model (HMM) helped to capture the sub-second dynamic activity via a hidden sequence of finite number of states. Temporal parameters and spectral activation were acquired for each state and then compared between groups. Here, HMM states characterized the spatiotemporal signatures of eight networks. The activity of suicide attempters switches more frequently into the fronto-temporal network, as the time spent occupancy of fronto-temporal state is increased and interval time is decreased compared with the non-suicide patients. Moreover, these changes are significantly correlated with Nurses' Global Assessment of Suicide Risk scores. Suicide attempters also exhibit increased state-wise activations in the theta band (4-8 Hz) in the posterior default mode network centered on posterior cingulate cortex, which can't be detected in the static spectral analysis. These alternations may disturb the time allocations of cognitive control regulations and cause inflexible decision making to SA. As the better sensitivity of dynamic study in reflecting SA diathesis than the static is validated, dynamic stability could serve as a potential neuronal marker for SA.
Collapse
Affiliation(s)
- Siqi Zhang
- Key Laboratory of Child Development and Learning Science of Ministry of Education, School of Biological Sciences & Medical Engineering, Southeast University, No. 2 Sipailou, Nanjing, 210096 Jiangsu China
| | - Vladimir Litvak
- Wellcome Centre for Human Neuroimaging, UCL Institute of Neurology, London, UK
| | - Shui Tian
- Key Laboratory of Child Development and Learning Science of Ministry of Education, School of Biological Sciences & Medical Engineering, Southeast University, No. 2 Sipailou, Nanjing, 210096 Jiangsu China
| | - Zhongpeng Dai
- Key Laboratory of Child Development and Learning Science of Ministry of Education, School of Biological Sciences & Medical Engineering, Southeast University, No. 2 Sipailou, Nanjing, 210096 Jiangsu China
| | - Hao Tang
- Department of Psychiatry, the Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Xinyi Wang
- Key Laboratory of Child Development and Learning Science of Ministry of Education, School of Biological Sciences & Medical Engineering, Southeast University, No. 2 Sipailou, Nanjing, 210096 Jiangsu China
| | - Zhijian Yao
- Department of Psychiatry, the Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China ,Nanjing Brain Hospital, Medical School of Nanjing University, Nanjing, China
| | - Qing Lu
- Key Laboratory of Child Development and Learning Science of Ministry of Education, School of Biological Sciences & Medical Engineering, Southeast University, No. 2 Sipailou, Nanjing, 210096, Jiangsu, China.
| |
Collapse
|
10
|
Reduced evoked activity and cortical oscillations are correlated with anisometric amblyopia and impairment of visual acuity. Sci Rep 2021; 11:8310. [PMID: 33859272 PMCID: PMC8050307 DOI: 10.1038/s41598-021-87545-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Accepted: 03/25/2021] [Indexed: 02/02/2023] Open
Abstract
Amblyopia is a developmental disorder associated with abnormal visual experience during early childhood commonly arising from strabismus and/or anisometropia and leading to dysfunctions in visual cortex and to various visual deficits. The different forms of neuronal activity that are attenuated in amblyopia have been only partially characterized. In electrophysiological recordings of healthy human brain, the presentation of visual stimuli is associated with event-related activity and oscillatory responses. It has remained poorly understood whether these forms of activity are reduced in amblyopia and whether possible dysfunctions would arise from lower- or higher-order visual areas. We recorded neuronal activity with magnetoencephalography (MEG) from anisometropic amblyopic patients and control participants during two visual tasks presented separately for each eye and estimated neuronal activity from source-reconstructed MEG data. We investigated whether event-related and oscillatory responses would be reduced for amblyopia and localized their cortical sources. Oscillation amplitudes and evoked responses were reduced for stimuli presented to the amblyopic eye in higher-order visual areas and in parietal and prefrontal cortices. Importantly, the reduction of oscillation amplitudes but not that of evoked responses was correlated with decreased visual acuity in amblyopia. These results show that attenuated oscillatory responses are correlated with visual deficits in anisometric amblyopia.
Collapse
|
11
|
Hirano Y, Uhlhaas PJ. Editorial: Current MEG Research in Psychiatry. Front Psychiatry 2021; 12:647085. [PMID: 33603691 PMCID: PMC7884450 DOI: 10.3389/fpsyt.2021.647085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Accepted: 01/08/2021] [Indexed: 11/13/2022] Open
Affiliation(s)
- Yoji Hirano
- Department of Neuropsychiatry, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan.,Department of Psychiatry, Harvard Medical School, VA Boston Healthcare System, Boston, MA, United States
| | - Peter J Uhlhaas
- Department of Child and Adolescent Psychiatry, Charité - Universitätsmedizin, Berlin, Germany.,Institute of Neuroscience and Psychology, University of Glasgow, Glasgow, United Kingdom
| |
Collapse
|
12
|
Amoruso L, Geng S, Molinaro N, Timofeeva P, Gisbert-Muñoz S, Gil-Robles S, Pomposo I, Quiñones I, Carreiras M. Oscillatory and structural signatures of language plasticity in brain tumor patients: A longitudinal study. Hum Brain Mapp 2020; 42:1777-1793. [PMID: 33368838 PMCID: PMC7978121 DOI: 10.1002/hbm.25328] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 12/12/2020] [Accepted: 12/14/2020] [Indexed: 12/29/2022] Open
Abstract
Recent evidence suggests that damage to the language network triggers its functional reorganization. Yet, the spectro‐temporal fingerprints of this plastic rearrangement and its relation to anatomical changes is less well understood. Here, we combined magnetoencephalographic recordings with a proxy measure of white matter to investigate oscillatory activity supporting language plasticity and its relation to structural reshaping. First, cortical dynamics were acquired in a group of healthy controls during object and action naming. Results showed segregated beta (13–28 Hz) power decreases in left ventral and dorsal pathways, in a time‐window associated to lexico‐semantic processing (~250–500 ms). Six patients with left tumors invading either ventral or dorsal regions performed the same naming task before and 3 months after surgery for tumor resection. When longitudinally comparing patients' responses we found beta compensation mimicking the category‐based segregation showed by controls, with ventral and dorsal damage leading to selective compensation for object and action naming, respectively. At the structural level, all patients showed preoperative changes in white matter tracts possibly linked to plasticity triggered by tumor growth. Furthermore, in some patients, structural changes were also evident after surgery and showed associations with longitudinal changes in beta power lateralization toward the contralesional hemisphere. Overall, our findings support the existence of anatomo‐functional dependencies in language reorganization and highlight the potential role of oscillatory markers in tracking longitudinal plasticity in brain tumor patients. By doing so, they provide valuable information for mapping preoperative and postoperative neural reshaping and plan surgical strategies to preserve language function and patient's quality of life.
Collapse
Affiliation(s)
- Lucia Amoruso
- Basque Center on Cognition, Brain and Language (BCBL), San Sebastian, Spain.,IKERBASQUE, Basque Foundation for Science, Bilbao, Spain
| | - Shuang Geng
- Basque Center on Cognition, Brain and Language (BCBL), San Sebastian, Spain.,University of the Basque Country, UPV/EHU, Bilbao, Spain
| | - Nicola Molinaro
- Basque Center on Cognition, Brain and Language (BCBL), San Sebastian, Spain.,IKERBASQUE, Basque Foundation for Science, Bilbao, Spain
| | - Polina Timofeeva
- Basque Center on Cognition, Brain and Language (BCBL), San Sebastian, Spain.,University of the Basque Country, UPV/EHU, Bilbao, Spain
| | - Sandra Gisbert-Muñoz
- Basque Center on Cognition, Brain and Language (BCBL), San Sebastian, Spain.,University of the Basque Country, UPV/EHU, Bilbao, Spain
| | - Santiago Gil-Robles
- Department of Neurosurgery, Hospital Quiron, Madrid, Spain.,BioCruces Research Institute, Bilbao, Spain
| | | | - Ileana Quiñones
- Basque Center on Cognition, Brain and Language (BCBL), San Sebastian, Spain
| | - Manuel Carreiras
- Basque Center on Cognition, Brain and Language (BCBL), San Sebastian, Spain.,IKERBASQUE, Basque Foundation for Science, Bilbao, Spain.,University of the Basque Country, UPV/EHU, Bilbao, Spain
| |
Collapse
|
13
|
Verbitsky A, Dopfel D, Zhang N. Rodent models of post-traumatic stress disorder: behavioral assessment. Transl Psychiatry 2020; 10:132. [PMID: 32376819 PMCID: PMC7203017 DOI: 10.1038/s41398-020-0806-x] [Citation(s) in RCA: 87] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 03/17/2020] [Accepted: 04/08/2020] [Indexed: 12/29/2022] Open
Abstract
Although the etiology and expression of psychiatric disorders are complex, mammals show biologically preserved behavioral and neurobiological responses to valent stimuli which underlie the use of rodent models of post-traumatic stress disorder (PTSD). PTSD is a complex phenotype that is difficult to model in rodents because it is diagnosed by patient interview and influenced by both environmental and genetic factors. However, given that PTSD results from traumatic experiences, rodent models can simulate stress induction and disorder development. By manipulating stress type, intensity, duration, and frequency, preclinical models reflect core PTSD phenotypes, measured through various behavioral assays. Paradigms precipitate the disorder by applying physical, social, and psychological stressors individually or in combination. This review discusses the methods used to trigger and evaluate PTSD-like phenotypes. It highlights studies employing each stress model and evaluates their translational efficacies against DSM-5, validity criteria, and criteria proposed by Yehuda and Antelman's commentary in 1993. This is intended to aid in paradigm selection by informing readers about rodent models, their benefits to the clinical community, challenges associated with the translational models, and opportunities for future work. To inform PTSD model validity and relevance to human psychopathology, we propose that models incorporate behavioral test batteries, individual differences, sex differences, strain and stock differences, early life stress effects, biomarkers, stringent success criteria for drug development, Research Domain Criteria, technological advances, and cross-species comparisons. We conclude that, despite the challenges, animal studies will be pivotal to advances in understanding PTSD and the neurobiology of stress.
Collapse
Affiliation(s)
- Alexander Verbitsky
- Department of Engineering Science and Mechanics, The Pennsylvania State University, University Park, PA, 16802, USA
| | - David Dopfel
- Department of Biomedical Engineering, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Nanyin Zhang
- Department of Biomedical Engineering, The Pennsylvania State University, University Park, PA, 16802, USA.
- The Huck Institutes of Life Sciences, The Pennsylvania State University, University Park, PA, 16802, USA.
| |
Collapse
|
14
|
Morris KA, Grace SA, Woods W, Dean B, Rossell SL. The influence of COMT rs4680 on functional connectivity in healthy adults: A systematic review. Eur J Neurosci 2020; 52:3851-3878. [PMID: 32306439 DOI: 10.1111/ejn.14748] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Revised: 04/09/2020] [Accepted: 04/10/2020] [Indexed: 12/01/2022]
Abstract
The aim of this systematic review was to qualitatively synthesise the available research that investigated the influence of COMT genotype at SNP rs4680 on both task-based and resting-state connectivity in healthy adults. Thirty-five studies were identified that met inclusion criteria. Of the included studies, 20 studies reported resting-state findings and 16 studies reported task-based findings (emotion-processing, memory, working memory, reward-based learning and executive function). Studies were highly heterogeneous but an overall trend towards an association of the Val allele with greater resting-state connectivity and the Met allele with greater task-based connectivity is reported. A possible interpretation of current findings is discussed, whereby the Val allele is associated with improved cognitive flexibility allowing integration of novel relevant stimuli, and the Met allele allows improved sustained attention and targeted neural processing, particularly between limbic regions and prefrontal cortex. The most promising brain regions implicated in a COMT genotype influence on functional connectivity include prefrontal regions, amygdala and hippocampus.
Collapse
Affiliation(s)
- Kim A Morris
- Centre for Mental health, Swinburne University, Melbourne, Vic., Australia
| | - Sally A Grace
- Centre for Mental health, Swinburne University, Melbourne, Vic., Australia
| | - Will Woods
- Centre for Mental health, Swinburne University, Melbourne, Vic., Australia
| | - Brian Dean
- Centre for Mental health, Swinburne University, Melbourne, Vic., Australia.,The Florey Institute for Neuroscience and Mental Health, Melbourne, Vic., Australia
| | - Susan L Rossell
- Centre for Mental health, Swinburne University, Melbourne, Vic., Australia.,Psychiatry, St Vincent's Hospital, Melbourne, Vic., Australia
| |
Collapse
|
15
|
Candelaria-Cook FT, Schendel ME, Ojeda CJ, Bustillo JR, Stephen JM. Reduced parietal alpha power and psychotic symptoms: Test-retest reliability of resting-state magnetoencephalography in schizophrenia and healthy controls. Schizophr Res 2020; 215:229-240. [PMID: 31706785 PMCID: PMC7036030 DOI: 10.1016/j.schres.2019.10.023] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Revised: 10/07/2019] [Accepted: 10/09/2019] [Indexed: 11/29/2022]
Abstract
BACKGROUND Despite increased reporting of resting-state magnetoencephalography (MEG), reliability of those measures remains scarce and predominately reported in healthy controls (HC). As such, there is limited knowledge on MEG resting-state reliability in schizophrenia (SZ). METHODS To address test-retest reliability in psychosis, a reproducibility study of 26 participants (13-SZ, 13-HC) was performed. We collected eyes open and eyes closed resting-state data during 4 separate instances (2 Visits, 2 runs per visit) to estimate spectral power reliability (power, normalized power, alpha reactivity) across one hour and one week. Intraclass correlation coefficients (ICCs) were calculated. For source modeling, we applied an anatomically constrained linear estimation inverse model known as dynamic statistical parametric mapping (MNE dSPM) and source-based connectivity using the weighted phase lag index. RESULTS Across one week there was excellent test-retest reliability in global spectral measures in theta-gamma bands (HC ICCAvg = 0.87, SZ ICCAvg = 0.87), regional spectral measures in all bands (HC ICCAvg = 0.86, SZ ICCAvg = 0.80), and parietal alpha measures (HC ICCAvg = 0.90, SZ ICCAvg = 0.84). Conversely, functional connectivity had poor reliability, as did source spectral power across one hour for SZ. Relative to HC, SZ also had reduced parietal alpha normalized power during eyes closed only, reduced alpha reactivity, and an association between higher PANSS positive scores and lower parietal alpha power. CONCLUSIONS There was excellent to good test-retest reliability in most MEG spectral measures with a few exceptions in the schizophrenia patient group. Overall, these findings encourage the use of resting-state MEG while emphasizing the importance of determining reliability in clinical populations.
Collapse
Affiliation(s)
| | | | - Cesar J. Ojeda
- Department of Psychiatry and Behavioral Sciences, Center for Psychiatric Research, University of New Mexico School of Medicine, Albuquerque, New Mexico
| | - Juan R. Bustillo
- Department of Psychiatry and Behavioral Sciences, Center for Psychiatric Research, University of New Mexico School of Medicine, Albuquerque, New Mexico
| | | |
Collapse
|
16
|
Hironaga N, Takei Y, Mitsudo T, Kimura T, Hirano Y. Prospects for Future Methodological Development and Application of Magnetoencephalography Devices in Psychiatry. Front Psychiatry 2020; 11:863. [PMID: 32973591 PMCID: PMC7472776 DOI: 10.3389/fpsyt.2020.00863] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Accepted: 08/07/2020] [Indexed: 12/18/2022] Open
Abstract
Magnetoencephalography (MEG) is a functional neuroimaging tool that can record activity from the entire cortex on the order of milliseconds. MEG has been used to investigate numerous psychiatric disorders, such as schizophrenia, bipolar disorder, major depression, dementia, and autism spectrum disorder. Although several review papers on the subject have been published, perspectives and opinions regarding the use of MEG in psychiatric research have primarily been discussed from a psychiatric research point of view. Owing to a newly developed MEG sensor, the use of MEG devices will soon enter a critical period, and now is a good time to discuss the future of MEG use in psychiatric research. In this paper, we will discuss MEG devices from a methodological point of view. We will first introduce the utilization of MEG in psychiatric research and the development of its technology. Then, we will describe the principle theory of MEG and common algorithms, which are useful for applying MEG tools to psychiatric research. Next, we will consider three topics-child psychiatry, resting-state networks, and cortico-subcortical networks-and address the future use of MEG in psychiatry from a broader perspective. Finally, we will introduce the newly developed device, the optically-pumped magnetometer, and discuss its future use in MEG systems in psychiatric research from a methodological point of view. We believe that state-of-the-art electrophysiological tools, such as this new MEG system, will further contribute to our understanding of the core pathology in various psychiatric disorders and translational research.
Collapse
Affiliation(s)
- Naruhito Hironaga
- Brain Center, Faculty of Medicine, Kyushu University, Fukuoka, Japan
| | - Yuichi Takei
- Department of Psychiatry and Neuroscience, Gunma University Graduate School of Medicine, Maebashi, Japan
| | - Takako Mitsudo
- Department of Neuropsychiatry, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Takahiro Kimura
- Institute of Liberal Arts and Science, Kanazawa University, Kanazawa, Japan
| | - Yoji Hirano
- Department of Neuropsychiatry, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| |
Collapse
|
17
|
Tian S, Chattun MR, Zhang S, Bi K, Tang H, Yan R, Wang Q, Yao Z, Lu Q. Dynamic community structure in major depressive disorder: A resting-state MEG study. Prog Neuropsychopharmacol Biol Psychiatry 2019; 92:39-47. [PMID: 30572002 DOI: 10.1016/j.pnpbp.2018.12.006] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Revised: 12/11/2018] [Accepted: 12/14/2018] [Indexed: 11/25/2022]
Abstract
BACKGROUND Major Depressive Disorder (MDD), characterized by depressed mood or anhedonia, is associated with altered functional connectivity (FC) within and between large scale networks such as the Default Mode Network (DMN), the Central Executive Network (CEN) and the Salience Network (SN). Since aberrant FC exhibits temporal variability and could give rise to distorted reconfiguration of functional brain networks, an in-depth analysis of the community structure could provide further insight into the synchrony of networks. We hypothesized that alterations in dynamic network community structure in MDD could be temporally accompanied by disrupted conscious states of these three networks. METHODS 26 MDD patients and 25 healthy controls were scanned using a whole-head resting-state Magnetoencephalography (MEG) machine. A novel multilayer modularity framework explored the functional modulation of these networks. Recruitment (R) and integration (I) provided the strength of interaction within networks or across networks, respectively. RESULTS The brain regions in the DMN, CEN and SN were transiently integrated and segmented in both patients and controls. R of CEN and I of SN were significantly greater in MDD compared to controls. CONCLUSION Intrinsic resting-state networks dynamically interact and reorganize into distinct functional modules in both patients and controls. However, the CEN "hyper-intertwines" with itself and SN "hyper-integrates" among the network of interest in depressed patients compared to controls. Network-level alterations in R and I revealed a more generalized system-level effect rather than a focal-wise effect from a neural dynamic perspective. This could potentially highlight an abnormal network-based mechanism in depression.
Collapse
Affiliation(s)
- Shui Tian
- School of Biological Sciences & Medical Engineering, Southeast University, Nanjing 210096, China; Child Development and Learning Science, Key Laboratory of Ministry of Education, China
| | - Mohammad Ridwan Chattun
- Department of Psychiatry, The Affiliated Nanjing Brain Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Siqi Zhang
- School of Biological Sciences & Medical Engineering, Southeast University, Nanjing 210096, China; Child Development and Learning Science, Key Laboratory of Ministry of Education, China
| | - Kun Bi
- School of Biological Sciences & Medical Engineering, Southeast University, Nanjing 210096, China; Child Development and Learning Science, Key Laboratory of Ministry of Education, China
| | - Hao Tang
- Department of Psychiatry, The Affiliated Nanjing Brain Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Rui Yan
- Department of Psychiatry, The Affiliated Nanjing Brain Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Qiang Wang
- Department of Psychiatry, The Affiliated Nanjing Brain Hospital of Nanjing Medical University, Nanjing 210029, China; Nanjing Brain Hospital, Medical School of Nanjing University, Nanjing 210093, China
| | - Zhijian Yao
- Department of Psychiatry, The Affiliated Nanjing Brain Hospital of Nanjing Medical University, Nanjing 210029, China; Nanjing Brain Hospital, Medical School of Nanjing University, Nanjing 210093, China.
| | - Qing Lu
- School of Biological Sciences & Medical Engineering, Southeast University, Nanjing 210096, China; Child Development and Learning Science, Key Laboratory of Ministry of Education, China.
| |
Collapse
|
18
|
Zeev-Wolf M, Levy J, Jahshan C, Peled A, Levkovitz Y, Grinshpoon A, Goldstein A. MEG resting-state oscillations and their relationship to clinical symptoms in schizophrenia. NEUROIMAGE-CLINICAL 2018; 20:753-761. [PMID: 30238919 PMCID: PMC6154766 DOI: 10.1016/j.nicl.2018.09.007] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/01/2018] [Revised: 08/24/2018] [Accepted: 09/12/2018] [Indexed: 01/21/2023]
Abstract
Neuroimaging studies suggest that schizophrenia is characterized by disturbances in oscillatory activity, although at present it remains unclear whether these neural abnormalities are driven by dimensions of symptomatology. Examining different subgroups of patients based on their symptomatology is thus very informative in understanding the role of neural oscillation patterns in schizophrenia. In the present study we examined whether neural oscillations in the delta, theta, alpha, beta and gamma bands correlate with positive and negative symptoms in individuals with schizophrenia (SZ) during rest. Resting-state brain activity of 39 SZ and 25 neurotypical controls was recorded using magnetoencephalography. Patients were categorized based on the severity of their positive and negative symptoms. Spectral analyses of beamformer data revealed that patients high in positive symptoms showed widespread low alpha power, and alpha power was negatively correlated with positive symptoms. In contrast, patients high in negative symptoms showed greater beta power in left hemisphere regions than those low in negative symptoms, and beta power was positively correlated with negative symptoms. We further discuss these findings and suggest that different neural mechanisms may underlie positive and negative symptoms in schizophrenia.
Collapse
Affiliation(s)
- Maor Zeev-Wolf
- Gonda Brain Research Center, Bar Ilan University, Ramat-Gan, Israel; Department of Education, Ben Gurion University, Beer Sheva, Israel.
| | - Jonathan Levy
- Gonda Brain Research Center, Bar Ilan University, Ramat-Gan, Israel; Interdisciplinary Center, Herzliya, Israel
| | - Carol Jahshan
- VISN-22 Mental Illness Research, Education and Clinical Center (MIRECC), VA Greater Los Angeles Healthcare System, Los Angeles, CA, USA; Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
| | - Abraham Peled
- Sha'ar Menashe Mental Health Center, Hadera, Israel, and Rappaport Faculty of Medicine, Technion, Israel Institute of Technology, Haifa, Israel
| | - Yechiel Levkovitz
- Beer-Ya'akov-Ness-Ziona-Maban Mental Health Center, Affiliated to Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Alexander Grinshpoon
- Sha'ar Menashe Mental Health Center, Hadera, Israel, and Rappaport Faculty of Medicine, Technion, Israel Institute of Technology, Haifa, Israel
| | - Abraham Goldstein
- Gonda Brain Research Center, Bar Ilan University, Ramat-Gan, Israel; Department of Psychology, Bar Ilan University, Ramat-Gan, Israel
| |
Collapse
|
19
|
Dimitriadis SI, Routley B, Linden DE, Singh KD. Reliability of Static and Dynamic Network Metrics in the Resting-State: A MEG-Beamformed Connectivity Analysis. Front Neurosci 2018; 12:506. [PMID: 30127710 PMCID: PMC6088195 DOI: 10.3389/fnins.2018.00506] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Accepted: 07/04/2018] [Indexed: 11/17/2022] Open
Abstract
The resting activity of the brain can be described by so-called intrinsic connectivity networks (ICNs), which consist of spatially and temporally distributed, but functionally connected, nodes. The coordinated activity of the resting state can be explored via magnetoencephalography (MEG) by studying frequency-dependent functional brain networks at the source level. Although many algorithms for the analysis of brain connectivity have been proposed, the reliability of network metrics derived from both static and dynamic functional connectivity is still unknown. This is a particular problem for studies of associations between ICN metrics and personality variables or other traits, and for studies of differences between patient and control groups, which both depend critically on the reliability of the metrics used. A detailed investigation of the reliability of metrics derived from resting-state MEG repeat scans is therefore a prerequisite for the development of connectomic biomarkers. Here, we first estimated both static (SFC) and dynamic functional connectivity (DFC) after beamforming source reconstruction using the imaginary part of the phase locking index (iPLV) and the correlation of the amplitude envelope (CorEnv). Using our approach, functional network microstates (FCμstates) were derived from the DFC and chronnectomics were computed from the evolution of FCμstates across experimental time. In both temporal scales, the reliability of network metrics (SFC), the FCμstates and the related chronnectomics were evaluated for every frequency band. Chronnectomic statistics and FCμstates were generally more reliable than node-wise static network metrics. CorEnv-based network metrics were more reproducible at the static approach. The reliability of chronnectomics have been evaluated also in a second dataset. This study encourages the analysis of MEG resting-state via DFC.
Collapse
Affiliation(s)
- Stavros I. Dimitriadis
- Cardiff University Brain Research Imaging Centre, School of Psychology, Cardiff University, Cardiff, United Kingdom
- Neuroinformatics Group, Cardiff University Brain Research Imaging Centre, School of Psychology, Cardiff University, Cardiff, United Kingdom
- Division of Psychological Medicine and Clinical Neurosciences, School of Medicine, Cardiff University, Cardiff, United Kingdom
- School of Psychology, Cardiff University, Cardiff, United Kingdom
- Neuroscience and Mental Health Research Institute, Cardiff University, Cardiff, United Kingdom
- MRC Centre for Neuropsychiatric Genetics and Genomics, School of Medicine, Cardiff University, Cardiff, United Kingdom
| | - Bethany Routley
- Cardiff University Brain Research Imaging Centre, School of Psychology, Cardiff University, Cardiff, United Kingdom
- School of Psychology, Cardiff University, Cardiff, United Kingdom
| | - David E. Linden
- Cardiff University Brain Research Imaging Centre, School of Psychology, Cardiff University, Cardiff, United Kingdom
- Division of Psychological Medicine and Clinical Neurosciences, School of Medicine, Cardiff University, Cardiff, United Kingdom
- School of Psychology, Cardiff University, Cardiff, United Kingdom
- Neuroscience and Mental Health Research Institute, Cardiff University, Cardiff, United Kingdom
- MRC Centre for Neuropsychiatric Genetics and Genomics, School of Medicine, Cardiff University, Cardiff, United Kingdom
| | - Krish D. Singh
- Cardiff University Brain Research Imaging Centre, School of Psychology, Cardiff University, Cardiff, United Kingdom
- School of Psychology, Cardiff University, Cardiff, United Kingdom
| |
Collapse
|
20
|
Alamian G, Hincapié AS, Pascarella A, Thiery T, Combrisson E, Saive AL, Martel V, Althukov D, Haesebaert F, Jerbi K. Measuring alterations in oscillatory brain networks in schizophrenia with resting-state MEG: State-of-the-art and methodological challenges. Clin Neurophysiol 2017; 128:1719-1736. [DOI: 10.1016/j.clinph.2017.06.246] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Revised: 05/08/2017] [Accepted: 06/19/2017] [Indexed: 02/06/2023]
|
21
|
Cho RY. Magnetoencephalography as a Tool for Neuropsychiatric Research. BIOLOGICAL PSYCHIATRY. COGNITIVE NEUROSCIENCE AND NEUROIMAGING 2017; 2:207-208. [PMID: 29528289 DOI: 10.1016/j.bpsc.2017.03.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Accepted: 03/03/2017] [Indexed: 11/15/2022]
Affiliation(s)
- Raymond Y Cho
- Department of Psychiatry and Behavioral Sciences, University of Texas Health Science Center at Houston, Houston, Texas.
| |
Collapse
|
22
|
Alamian G, Hincapié AS, Combrisson E, Thiery T, Martel V, Althukov D, Jerbi K. Alterations of Intrinsic Brain Connectivity Patterns in Depression and Bipolar Disorders: A Critical Assessment of Magnetoencephalography-Based Evidence. Front Psychiatry 2017; 8:41. [PMID: 28367127 PMCID: PMC5355450 DOI: 10.3389/fpsyt.2017.00041] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Accepted: 02/28/2017] [Indexed: 12/21/2022] Open
Abstract
Despite being the object of a thriving field of clinical research, the investigation of intrinsic brain network alterations in psychiatric illnesses is still in its early days. Because the pathological alterations are predominantly probed using functional magnetic resonance imaging (fMRI), many questions about the electrophysiological bases of resting-state alterations in psychiatric disorders, particularly among mood disorder patients, remain unanswered. Alongside important research using electroencephalography (EEG), the specific recent contributions and future promise of magnetoencephalography (MEG) in this field are not fully recognized and valued. Here, we provide a critical review of recent findings from MEG resting-state connectivity within major depressive disorder (MDD) and bipolar disorder (BD). The clinical MEG resting-state results are compared with those previously reported with fMRI and EEG. Taken together, MEG appears to be a promising but still critically underexploited technique to unravel the neurophysiological mechanisms that mediate abnormal (both hyper- and hypo-) connectivity patterns involved in MDD and BD. In particular, a major strength of MEG is its ability to provide source-space estimations of neuromagnetic long-range rhythmic synchronization at various frequencies (i.e., oscillatory coupling). The reviewed literature highlights the relevance of probing local and interregional rhythmic synchronization to explore the pathophysiological underpinnings of each disorder. However, before we can fully take advantage of MEG connectivity analyses in psychiatry, several limitations inherent to MEG connectivity analyses need to be understood and taken into account. Thus, we also discuss current methodological challenges and outline paths for future research. MEG resting-state studies provide an important window onto perturbed spontaneous oscillatory brain networks and hence supply an important complement to fMRI-based resting-state measurements in psychiatric populations.
Collapse
Affiliation(s)
- Golnoush Alamian
- Department of Psychology, University of Montreal , Montreal, QC , Canada
| | - Ana-Sofía Hincapié
- Department of Psychology, University of Montreal, Montreal, QC, Canada; Department of Computer Science, Pontificia Universidad Católica de Chile, Santiago de Chile, Chile; Interdisciplinary Center for Neurosciences, School of Psychology, Pontificia Universidad Católica de Chile, Santiago de Chile, Chile
| | - Etienne Combrisson
- Department of Psychology, University of Montreal, Montreal, QC, Canada; Center of Research and Innovation in Sport, Mental Processes and Motor Performance, University Claude Bernard Lyon I, University of Lyon, Villeurbanne, France; Brain Dynamics and Cognition, Lyon Neuroscience Research Center, INSERM U1028, UMR 5292, University of Lyon, Villeurbanne, France
| | - Thomas Thiery
- Department of Psychology, University of Montreal , Montreal, QC , Canada
| | - Véronique Martel
- Department of Psychology, University of Montreal , Montreal, QC , Canada
| | - Dmitrii Althukov
- Department of Psychology, University of Montreal, Montreal, QC, Canada; Department of Computer Sciences, National Research Institution Higher School of Economics, Moscow, Russia; MEG Center, Moscow State University of Pedagogics and Education, Moscow, Russia
| | - Karim Jerbi
- Department of Psychology, University of Montreal, Montreal, QC, Canada; Centre de recherche de l'Institut universitaire en santé mentale de Montréal, Montreal, QC, Canada
| |
Collapse
|