1
|
Wolff A, Northoff G. Temporal imprecision of phase coherence in schizophrenia and psychosis-dynamic mechanisms and diagnostic marker. Mol Psychiatry 2024; 29:425-438. [PMID: 38228893 DOI: 10.1038/s41380-023-02337-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 11/03/2023] [Accepted: 11/23/2023] [Indexed: 01/18/2024]
Abstract
Schizophrenia (SCZ) is a complex disorder in which various pathophysiological models have been postulated. Brain imaging studies using EEG/MEG and fMRI show altered amplitude and, more recently, decrease in phase coherence in response to external stimuli. What are the dynamic mechanisms of such phase incoherence, and can it serve as a differential-diagnostic marker? Addressing this gap in our knowledge, we uniquely combine a review of previous findings, novel empirical data, and computational-dynamic simulation. The main findings are: (i) the review shows decreased phase coherence in SCZ across a variety of different tasks and frequencies, e.g., task- and frequency-unspecific, which is further supported by our own novel data; (ii) our own data demonstrate diagnostic specificity of decreased phase coherence for SCZ as distinguished from major depressive disorder; (iii) simulation data exhibit increased phase offset in SCZ leading to a precision index, in the millisecond range, of the phase coherence relative to the timing of the external stimulus. Together, we demonstrate the key role of temporal imprecision in phase coherence of SCZ, including its mechanisms (phase offsets, precision index) on the basis of which we propose a phase-based temporal imprecision model of psychosis (PTP). The PTP targets a deeper dynamic layer of a basic disturbance. This converges well with other models of psychosis like the basic self-disturbance and time-space experience changes, as discussed in phenomenological and spatiotemporal psychopathology, as well as with the models of aberrant predictive coding and disconnection as in computational psychiatry. Finally, our results show that temporal imprecision as manifest in decreased phase coherence is a promising candidate biomarker for clinical differential diagnosis of SCZ, and more broadly, psychosis.
Collapse
Affiliation(s)
- Annemarie Wolff
- University of Ottawa Institute of Mental Health Research, 1145 Carling Avenue, Ottawa, ON, K1Z 7K4, Canada.
| | - Georg Northoff
- University of Ottawa Institute of Mental Health Research, 1145 Carling Avenue, Ottawa, ON, K1Z 7K4, Canada.
| |
Collapse
|
2
|
Nakanishi S, Tamura S, Hirano S, Takahashi J, Kitajima K, Takai Y, Mitsudo T, Togao O, Nakao T, Onitsuka T, Hirano Y. Abnormal phase entrainment of low- and high-gamma-band auditory steady-state responses in schizophrenia. Front Neurosci 2023; 17:1277733. [PMID: 37942136 PMCID: PMC10627971 DOI: 10.3389/fnins.2023.1277733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Accepted: 10/09/2023] [Indexed: 11/10/2023] Open
Abstract
Introduction Gamma-band oscillatory deficits have attracted considerable attention as promising biomarkers of schizophrenia (SZ). Notably, a reduced auditory steady-state response (ASSR) in the low gamma band (40 Hz) is widely recognized as a robust finding among SZ patients. However, a comprehensive investigation into the potential utility of the high-gamma-band ASSR in detecting altered neural oscillations in SZ has not yet been conducted. Methods The present study aimed to assess the ASSR using magnetoencephalography (MEG) data obtained during steady-state stimuli at frequencies of 20, 30, 40, and 80 Hz from 23 SZ patients and 21 healthy controls (HCs). To evaluate the ASSR, we examined the evoked power and phase-locking factor (PLF) in the time-frequency domain for both the primary and secondary auditory cortices. Furthermore, we calculated the phase-locking angle (PLA) to examine oscillatory phase lead or delay in SZ patients. Taking advantage of the high spatial resolution of MEG, we also focused on the hemispheric laterality of low- and high-gamma-band ASSR deficits in SZ. Results We found abnormal phase delay in the 40 Hz ASSR within the bilateral auditory cortex of SZ patients. Regarding the 80 Hz ASSR, our investigation identified an aberrant phase lead in the left secondary auditory cortex in SZ, accompanied by reduced evoked power in both auditory cortices. Discussion Given that abnormal phase lead on 80 Hz ASSR exhibited the highest discriminative power between HC and SZ, we propose that the examination of PLA in the 80 Hz ASSR holds significant promise as a robust candidate for identifying neurophysiological endophenotypes associated with SZ. Furthermore, the left-hemisphere phase lead observed in the deficits of 80 Hz PLA aligns with numerous prior studies, which have consistently proposed that SZ is characterized by left-lateralized brain dysfunctions.
Collapse
Affiliation(s)
- Shoichiro Nakanishi
- Department of Neuropsychiatry, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Shunsuke Tamura
- Department of Neuropsychiatry, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
- Department of Psychiatry, Division of Clinical Neuroscience, Faculty of Medicine, University of Miyazaki, Miyazaki, Japan
| | - Shogo Hirano
- Department of Neuropsychiatry, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Junichi Takahashi
- Department of Neuropsychiatry, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Kazutoshi Kitajima
- Department of Neuropsychiatry, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Yoshifumi Takai
- Department of Neuropsychiatry, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Takako Mitsudo
- Department of Neuropsychiatry, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Osamu Togao
- Department of Molecular Imaging and Diagnosis, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Tomohiro Nakao
- Department of Neuropsychiatry, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Toshiaki Onitsuka
- Department of Neuropsychiatry, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
- National Hospital Organization Sakakibara Hospital, Mie, Japan
| | - Yoji Hirano
- Department of Neuropsychiatry, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
- Department of Psychiatry, Division of Clinical Neuroscience, Faculty of Medicine, University of Miyazaki, Miyazaki, Japan
- Institute of Industrial Science, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
3
|
Roach BJ, Hirano Y, Ford JM, Spencer KM, Mathalon DH. Phase Delay of the 40 Hz Auditory Steady-State Response Localizes to Left Auditory Cortex in Schizophrenia. Clin EEG Neurosci 2023; 54:370-378. [PMID: 36213937 PMCID: PMC10311936 DOI: 10.1177/15500594221130896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 07/11/2022] [Accepted: 09/01/2022] [Indexed: 11/16/2022]
Abstract
Background. The auditory steady state response (ASSR) is generated in bilateral auditory cortex and is the most used electroencephalographic (EEG) or magnetoencephalographic measure of gamma band abnormalities in schizophrenia. While the finding of reduced 40-Hz ASSR power and phase consistency in schizophrenia have been replicated many times, the 40-Hz ASSR phase locking angle (PLA), which assesses oscillation latency or phase delay, has rarely been examined. Furthermore, whether 40-Hz ASSR phase delay in schizophrenia is lateralized or common to left and right auditory cortical generators is unknown. Methods. Previously analyzed EEG data recorded from 24 schizophrenia patients and 24 healthy controls presented with 20-, 30-, and 40-Hz click trains to elicit ASSRs were re-analyzed to assess PLA in source space. Dipole moments in the right and left hemisphere were used to assess both frequency and hemisphere specificity of ASSR phase delay in schizophrenia. Results. Schizophrenia patients exhibited significantly reduced (ie, phase delayed) 40-Hz PLA in the left, but not the right, hemisphere, but their 20- and 30-Hz PLA values were normal. This left-lateralized 40-Hz phase delay was unrelated to symptoms or to previously reported left-lateralized PLF reductions in the schizophrenia patients. Conclusions. Consistent with sensor-based studies, the 40-Hz ASSR source-localized to left, but not right, auditory cortex was phase delayed in schizophrenia. Consistent with prior studies showing left temporal lobe volume deficits in schizophrenia, our findings suggest sluggish entrainment to 40-Hz auditory stimulation specific to left auditory cortex that are distinct from well-established deficits in gamma ASSR power and phase synchrony.
Collapse
Affiliation(s)
- Brian J. Roach
- Mental Health Service, Veterans Affairs San Francisco Healthcare System, San Francisco, USA
- Northern California Institute for Research and Education (NCIRE), San Francisco, USA
| | - Yoji Hirano
- Neural Dynamics Laboratory, Research Service, Veterans Affairs Boston Healthcare System, Boston, USA
- Department of Psychiatry, Harvard Medical School, Boston, USA
- Department of Neuropsychiatry, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Judith M. Ford
- Mental Health Service, Veterans Affairs San Francisco Healthcare System, San Francisco, USA
- Department of Psychiatry and Behavioral Sciences and Weill Institute for Neurosciences, University of California at San Francisco, San Francisco, USA
| | - Kevin M. Spencer
- Neural Dynamics Laboratory, Research Service, Veterans Affairs Boston Healthcare System, Boston, USA
- Department of Psychiatry, Harvard Medical School, Boston, USA
| | - Daniel H. Mathalon
- Mental Health Service, Veterans Affairs San Francisco Healthcare System, San Francisco, USA
- Department of Psychiatry and Behavioral Sciences and Weill Institute for Neurosciences, University of California at San Francisco, San Francisco, USA
| |
Collapse
|
4
|
Onitsuka T, Tsuchimoto R, Oribe N, Spencer KM, Hirano Y. Neuronal imbalance of excitation and inhibition in schizophrenia: a scoping review of gamma-band ASSR findings. Psychiatry Clin Neurosci 2022; 76:610-619. [PMID: 36069299 DOI: 10.1111/pcn.13472] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Revised: 08/04/2022] [Accepted: 08/16/2022] [Indexed: 12/01/2022]
Abstract
Recent empirical findings suggest that altered neural synchronization, which is hypothesized to be associated with an imbalance of excitatory (E) and inhibitory (I) neuronal activities, may underlie a core pathophysiological mechanism in patients with schizophrenia. The auditory steady-state response (ASSR) examined by electroencephalography (EEG) and magnetoencephalography (MEG) has been proposed as a potential biomarker for evaluating altered neural synchronization in schizophrenia. For this review, we performed a comprehensive literature search for papers published between 1999 and 2021 examining ASSRs in patients with schizophrenia. Almost all EEG-ASSR studies reported gamma-band ASSR reductions, especially to 40-Hz stimuli both in power and/or phase synchronization in chronic and first-episode schizophrenia. In addition, similar to EEG-ASSR findings, MEG-ASSR deficits to 80-Hz stimuli (high gamma) have been reported in patients with schizophrenia. Moreover, the 40-Hz ASSR is likely to be a predictor of the onset of schizophrenia. Notably, increased spontaneous (or ongoing) broadband (30-100 Hz) gamma power has been reported during ASSR tasks, which resembles the increased spontaneous gamma activity reported in animal models of E/I imbalance. Further research on ASSRs and evoked and spontaneous gamma oscillations is expected to elucidate the pathophysiology of schizophrenia with translational implications.
Collapse
Affiliation(s)
- Toshiaki Onitsuka
- Department of Neuroimaging Psychiatry, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Rikako Tsuchimoto
- Department of Neuropsychiatry, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Naoya Oribe
- Department of Neuropsychiatry, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
- Division of Clinical Research, National Hospital Organization, Hizen Psychiatric Medical Center, Saga, Japan
| | - Kevin M Spencer
- Neural Dynamics Laboratory, Research Service, Veterans Affairs Boston Healthcare System, and Department of Psychiatry, Harvard Medical School, Boston, Massachusetts, 02130, USA
- Clinical Neuroscience Division, Laboratory of Neuroscience, Department of Psychiatry, Boston VA Healthcare System, Brockton Division and Harvard Medical School, Brockton, Massachusetts, USA
| | - Yoji Hirano
- Department of Neuropsychiatry, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
- Neural Dynamics Laboratory, Research Service, Veterans Affairs Boston Healthcare System, and Department of Psychiatry, Harvard Medical School, Boston, Massachusetts, 02130, USA
- Clinical Neuroscience Division, Laboratory of Neuroscience, Department of Psychiatry, Boston VA Healthcare System, Brockton Division and Harvard Medical School, Brockton, Massachusetts, USA
| |
Collapse
|
5
|
Erickson MA, Lopez-Calderon J, Robinson B, Gold JM, Luck SJ. Gamma-band entrainment abnormalities in schizophrenia: Modality-specific or cortex-wide impairment? JOURNAL OF PSYCHOPATHOLOGY AND CLINICAL SCIENCE 2022; 131:895-905. [PMID: 36326630 PMCID: PMC9641553 DOI: 10.1037/abn0000778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
A growing body of literature suggests that cognitive impairment in people with schizophrenia (PSZ) results from disrupted cortical excitatory/inhibitory (E-I) balance, which may be linked to gamma entrainment and can be measured noninvasively using electroencephalography (EEG). However, it is not yet known the degree to which these entrainment abnormalities covary within subjects across sensory modalities. Furthermore, the degree to which cross-modal gamma entrainment reflects variation in biological processes associated with cognitive performance remains unclear. We used EEG to measure entrainment to repetitive auditory and visual stimulation at beta (20 Hz) and gamma (30 and 40 Hz) frequencies in PSZ (n = 78) and healthy control subjects (HCS; n = 80). Three indices were measured for each frequency and modality: event-related spectral perturbation (ERSP), intertrial coherence (ITC), and phase-lag angle (PLA). Cognition and symptom severity were also assessed. We found little evidence that gamma entrainment covaried across sensory modalities. PSZ exhibited a modest correlation between modalities at 40 Hz for ERSP and ITC measures (r = 0.23-0.24); however, no other significant correlations between modalities emerged for either HCS or PSZ. Both univariate and multivariate analyses revealed that (a) the pattern of entrainment abnormalities in PSZ differed across modalities, and (b) modality rather than frequency band was the main source of variance. Finally, we observed a significant association between cognition and gamma entrainment in the auditory domain only in HCS. Gamma-band EEG entrainment does not reflect a unitary transcortical mechanism but is instead modality specific. To the extent that entrainment reflects the integrity of cortical E-I balance, the deficits observed in PSZ appear to be modality specific and not consistently associated with cognitive impairment. (PsycInfo Database Record (c) 2022 APA, all rights reserved).
Collapse
Affiliation(s)
- Molly A. Erickson
- University of Chicago Department of Psychiatry & Behavioral Neuroscience
| | | | - Ben Robinson
- Maryland Psychiatric Research Center, University of Maryland
| | - James M. Gold
- Maryland Psychiatric Research Center, University of Maryland
| | - Steven J. Luck
- Center for Mind & Brain and Department of Psychology, University of California, Davis
| |
Collapse
|
6
|
Yanagi M, Tsuchiya A, Hosomi F, Terada T, Ozaki S, Shirakawa O, Hashimoto M. Evaluating delay of gamma oscillations in patients with schizophrenia using evoked response audiometry system. Sci Rep 2022; 12:11327. [PMID: 35790750 PMCID: PMC9256618 DOI: 10.1038/s41598-022-15311-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 06/22/2022] [Indexed: 11/11/2022] Open
Abstract
Impaired gamma oscillations found in a 40-Hz auditory steady-state response (ASSR) in patients with schizophrenia are the robust findings that can be used for future biomarker-based therapeutics. To apply these significant observations into the clinical practice, a clinical system for evoked response audiometry (ERA) may be available. In this study, the delayed 40-Hz ASSR, which was reported as a potent biomarker for schizophrenia, was examined using the ERA system in patients with schizophrenia and its clinical relevance was investigated. The phase of ASSR was significantly delayed in patients with schizophrenia compared with the healthy subjects. The delayed phase was associated with severity of the disease symptoms in the patients. A phase delay with aging was found in healthy subjects, but not in patients with schizophrenia. These findings show availability of the ERA system to identify the delayed 40-Hz ASSR and its clinical implication in patients with schizophrenia. Further applications of the ERA system in clinical psychiatry are warranted in developing biological assessments of schizophrenia with 40-Hz ASSR.
Collapse
Affiliation(s)
- Masaya Yanagi
- Department of Neuropsychiatry, Faculty of Medicine, Kindai University, 377-2 Ohnohigashi, Osaka-sayama, Osaka, 589-8511, Japan.
| | - Aki Tsuchiya
- Department of Neuropsychiatry, Faculty of Medicine, Kindai University, 377-2 Ohnohigashi, Osaka-sayama, Osaka, 589-8511, Japan
| | - Fumiharu Hosomi
- Department of Neuropsychiatry, Faculty of Medicine, Kindai University, 377-2 Ohnohigashi, Osaka-sayama, Osaka, 589-8511, Japan
| | - Toru Terada
- Department of Neuropsychiatry, Faculty of Medicine, Kindai University, 377-2 Ohnohigashi, Osaka-sayama, Osaka, 589-8511, Japan
| | | | - Osamu Shirakawa
- Department of Neuropsychiatry, Faculty of Medicine, Kindai University, 377-2 Ohnohigashi, Osaka-sayama, Osaka, 589-8511, Japan
| | - Mamoru Hashimoto
- Department of Neuropsychiatry, Faculty of Medicine, Kindai University, 377-2 Ohnohigashi, Osaka-sayama, Osaka, 589-8511, Japan
| |
Collapse
|
7
|
Ahmed S, Lepock JR, Mizrahi R, Bagby RM, Gerritsen CJ, Korostil M, Light GA, Kiang M. Decreased Gamma Auditory Steady-State Response Is Associated With Impaired Real-World Functioning in Unmedicated Patients at Clinical High Risk for Psychosis. Clin EEG Neurosci 2021; 52:400-405. [PMID: 33356513 DOI: 10.1177/1550059420982706] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
AIM Deficits in synchronous, gamma-frequency neural oscillations may contribute to schizophrenia patients' real-world functional impairment and can be measured electroencephalographically using the auditory steady-state response (ASSR). Gamma ASSR deficits have been reported in schizophrenia patients and individuals at clinical high risk (CHR) for developing psychosis. We hypothesized that, in CHR patients, gamma ASSR would correlate with real-world functioning, consistent with a role for gamma synchrony deficits in functional impairment. METHODS A total of 35 CHR patients rated on Global Functioning: Social and Role scales had EEG recorded while listening to 1-ms, 93-dB clicks presented at 40 Hz in 500-ms trains, in response to which 40-Hz evoked power and intertrial phase-locking factor (PLF) were measured. RESULTS In CHR patients, lower 40-Hz PLF correlated with lower social functioning. CONCLUSIONS Gamma synchrony deficits may be a biomarker of real-world impairment at early stages of the schizophrenia disease trajectory.
Collapse
Affiliation(s)
- Sarah Ahmed
- Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada.,Centre for Addiction and Mental Health, Toronto, Ontario, Canada
| | - Jennifer R Lepock
- Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada.,Centre for Addiction and Mental Health, Toronto, Ontario, Canada
| | - Romina Mizrahi
- Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada.,Centre for Addiction and Mental Health, Toronto, Ontario, Canada.,Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada
| | - R Michael Bagby
- Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada.,Centre for Addiction and Mental Health, Toronto, Ontario, Canada.,Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada.,Graduate Department of Psychological Clinical Science, University of Toronto, Toronto, Ontario, Canada
| | - Cory J Gerritsen
- Centre for Addiction and Mental Health, Toronto, Ontario, Canada.,Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada.,Graduate Department of Psychological Clinical Science, University of Toronto, Toronto, Ontario, Canada
| | - Michele Korostil
- Centre for Addiction and Mental Health, Toronto, Ontario, Canada.,Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada
| | - Gregory A Light
- Department of Psychiatry, University of California, San Diego, La Jolla, CA, USA
| | - Michael Kiang
- Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada.,Centre for Addiction and Mental Health, Toronto, Ontario, Canada.,Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
8
|
Raza MU, Sivarao DV. Test-retest reliability of tone- and 40 Hz train-evoked gamma oscillations in female rats and their sensitivity to low-dose NMDA channel blockade. Psychopharmacology (Berl) 2021; 238:2325-2334. [PMID: 33944972 DOI: 10.1007/s00213-021-05856-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Accepted: 04/15/2021] [Indexed: 10/21/2022]
Abstract
RATIONALE Schizophrenia patients consistently show deficits in sensory-evoked broadband gamma oscillations and click-evoked entrainment at 40 Hz, called the 40-Hz auditory steady-state response (ASSR). Since such evoked oscillations depend on cortical N-methyl D-aspartic acid (NMDA)-mediated network activity, they can serve as pharmacodynamic biomarkers in the preclinical and clinical development of drug candidates engaging these circuits. However, there are few test-retest reliability data in preclinical species, a prerequisite for within-subject testing paradigms. OBJECTIVE We investigated the long-term psychometric stability of these measures in a rodent model. METHODS Female rats with chronic epidural implants were used to record tone- and 40 Hz click-evoked responses at multiple time points and across six sessions, spread over 3 weeks. We assessed reliability using intraclass correlation coefficients (ICC). Separately, we used mixed-effects ANOVA to examine time and session effects. Individual subject variability was determined using the coefficient of variation (CV). Lastly, to illustrate the importance of long-term measure stability for within-subject testing design, we used low to moderate doses of an NMDA antagonist MK801 (0.025-0.15 mg/kg) to disrupt the evoked response. RESULTS We found that 40-Hz ASSR showed good reliability (ICC=0.60-0.75), while the reliability of tone-evoked gamma ranged from poor to good (0.33-0.67). We noted time but no session effects. Subjects showed a lower variance for ASSR over tone-evoked gamma. Both measures were dose-dependently attenuated by NMDA antagonism. CONCLUSION Overall, while both evoked gamma measures use NMDA transmission, 40-Hz ASSR showed superior psychometric properties of higher ICC and lower CV, relative to tone-evoked gamma.
Collapse
Affiliation(s)
- Muhammad Ummear Raza
- Department of Pharmaceutical Sciences, Bill Gatton College of Pharmacy, East Tennessee State University, VA Building 7, Room 324, Maple Ave, Johnson City, TN, 37604, USA
| | - Digavalli V Sivarao
- Department of Pharmaceutical Sciences, Bill Gatton College of Pharmacy, East Tennessee State University, VA Building 7, Room 324, Maple Ave, Johnson City, TN, 37604, USA.
| |
Collapse
|
9
|
Donati FL, Fecchio M, Maestri D, Cornali M, Derchi CC, Casetta C, Zalaffi M, Sinigaglia C, Sarasso S, D'Agostino A. Reduced readiness potential and post-movement beta synchronization reflect self-disorders in early course schizophrenia. Sci Rep 2021; 11:15044. [PMID: 34294767 PMCID: PMC8298598 DOI: 10.1038/s41598-021-94356-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Accepted: 07/06/2021] [Indexed: 02/05/2023] Open
Abstract
Disturbances of conscious awareness, or self-disorders, are a defining feature of schizophrenia. These include symptoms such as delusions of control, i.e. the belief that one's actions are controlled by an external agent. Models of self-disorders point at altered neural mechanisms of source monitoring, i.e. the ability of the brain to discriminate self-generated stimuli from those driven by the environment. However, evidence supporting this putative relationship is currently lacking. We performed electroencephalography (EEG) during self-paced, brisk right fist closures in ten (M = 9; F = 1) patients with Early-Course Schizophrenia (ECSCZ) and age and gender-matched healthy volunteers. We measured the Readiness Potential (RP), i.e. an EEG feature preceding self-generated movements, and movement-related EEG spectral changes. Self-disorders in ECSCZ were assessed with the Examination of Anomalous Self-Experience (EASE). Patients showed a markedly reduced RP and altered post-movement Event-Related Synchronization (ERS) in the beta frequency band (14-24 Hz) compared to healthy controls. Importantly, smaller RP and weaker ERS were associated with higher EASE scores in ECSCZ. Our data suggest that disturbances of neural correlates preceding and following self-initiated movements may reflect the severity of self-disorders in patients suffering from ECSCZ. These findings point towards deficits in basic mechanisms of sensorimotor integration as a substrate for self-disorders.
Collapse
Affiliation(s)
- Francesco Luciano Donati
- Department of Health Sciences, University of Milan, Ospedale San Paolo, Blocco A, Piano 9. Via Antonio di Rudinì, 8, 20142, Milan, MI, Italy.
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA.
| | - Matteo Fecchio
- Department of Biomedical and Clinical Sciences 'L. Sacco', University of Milan, Padiglione 'LITA', Piano 5, Via Gian Battista Grassi, 74, 20157, Milan, MI, Italy
- Center for Neurotechnology and Neurorecovery, Department of Neurology, Massachusetts General Hospital, Boston, MA, USA
| | - Davide Maestri
- Department of Health Sciences, University of Milan, Ospedale San Paolo, Blocco A, Piano 9. Via Antonio di Rudinì, 8, 20142, Milan, MI, Italy
| | - Mattia Cornali
- Department of Health Sciences, University of Milan, Ospedale San Paolo, Blocco A, Piano 9. Via Antonio di Rudinì, 8, 20142, Milan, MI, Italy
| | | | - Cecilia Casetta
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
- National Psychosis Service, South London and Maudsley NHS Foundation Trust, London, UK
| | - Maristella Zalaffi
- Department of Biomedical and Clinical Sciences 'L. Sacco', University of Milan, Padiglione 'LITA', Piano 5, Via Gian Battista Grassi, 74, 20157, Milan, MI, Italy
| | | | - Simone Sarasso
- Department of Biomedical and Clinical Sciences 'L. Sacco', University of Milan, Padiglione 'LITA', Piano 5, Via Gian Battista Grassi, 74, 20157, Milan, MI, Italy.
| | - Armando D'Agostino
- Department of Health Sciences, University of Milan, Ospedale San Paolo, Blocco A, Piano 9. Via Antonio di Rudinì, 8, 20142, Milan, MI, Italy
| |
Collapse
|
10
|
Tada M, Kirihara K, Koshiyama D, Fujioka M, Usui K, Uka T, Komatsu M, Kunii N, Araki T, Kasai K. Gamma-Band Auditory Steady-State Response as a Neurophysiological Marker for Excitation and Inhibition Balance: A Review for Understanding Schizophrenia and Other Neuropsychiatric Disorders. Clin EEG Neurosci 2020; 51:234-243. [PMID: 31402699 DOI: 10.1177/1550059419868872] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Altered gamma oscillations have attracted considerable attention as an index of the excitation/inhibition (E/I) imbalance in schizophrenia and other neuropsychiatric disorders. The auditory steady-state response (ASSR) has been the most robust probe of abnormal gamma oscillatory dynamics in schizophrenia. Here, we review recent ASSR studies in patients with schizophrenia and other neuropsychiatric disorders. Preclinical ASSR research, which has contributed to the elucidation of the underlying pathophysiology of these diseases, is also discussed. The developmental trajectory of the ASSR has been explored and may show signs of the maturation and disruption of E/I balance in adolescence. Animal model studies have shown that synaptic interactions between parvalbumin-positive GABAergic interneurons and pyramidal neurons contribute to the regulation of E/I balance, which is related to the generation of gamma oscillation. Therefore, ASSR alteration may be a significant electrophysiological finding related to the E/I imbalance in neuropsychiatric disorders, which is a cross-disease feature and may reflect clinical staging. Future studies regarding ASSR generation, especially in nonhuman primate models, will advance our understanding of the brain circuit and the molecular mechanisms underlying neuropsychiatric disorders.
Collapse
Affiliation(s)
- Mariko Tada
- Department of Neuropsychiatry, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo, Japan.,International Research Center for Neurointelligence (WPI-IRCN), UTIAS, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Kenji Kirihara
- Department of Neuropsychiatry, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Daisuke Koshiyama
- Department of Neuropsychiatry, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Mao Fujioka
- Department of Neuropsychiatry, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Kaori Usui
- Department of Neuropsychiatry, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Takanori Uka
- Department of Integrative Physiology, Graduate School of Medicine, University of Yamanashi, Chuo, Yamanashi, Japan
| | - Misako Komatsu
- Laboratory for Molecular Analysis of Higher Brain Function, RIKEN Center for Brain Science, Hirosawa, Wako, Saitama, Japan
| | - Naoto Kunii
- Department of Neuropsychiatry, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo, Japan.,Department of Neurosurgery, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Tsuyoshi Araki
- Department of Neuropsychiatry, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Kiyoto Kasai
- Department of Neuropsychiatry, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo, Japan.,International Research Center for Neurointelligence (WPI-IRCN), UTIAS, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| |
Collapse
|
11
|
Translational neurophysiological biomarkers of N-methyl-d-aspartate receptor dysfunction in serine racemase knockout mice. Biomark Neuropsychiatry 2020; 2. [PMID: 34308374 PMCID: PMC8301266 DOI: 10.1016/j.bionps.2020.100019] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Alterations in glutamatergic function are well established in schizophrenia (Sz), but new treatment development is hampered by the lack of translational pathophysiological and target engagement biomarkers as well as by the lack of animal models that recapitulate the pathophysiological features of Sz. Here, we evaluated the rodent auditory steady state response (ASSR) and long-latency auditory event-related potential (aERP) as potential translational markers. These biomarkers were assessed for their sensitivity to both the N-methyl-d-aspartate receptor (NMDAR) antagonist phencyclidine (PCP) and to knock-out (KO) of Serine Racemase (SR), which is known to lead to Sz-like alterations in function of parvalbumin (PV)-type cortical interneurons. PCP led to significant increases of ASSR that were further increased in SRKO−/−, consistent with PV interneuron effects. Similar effects were observed in mice with selective NMDAR KO on PV interneurons. By contrast, PCP but not SRKO reduced the amplitude of the rodent analog of the human N1 potential. Overall, these findings support use of rodent ASSR and long-latency aERP, along with previously described measures such as mismatch negativity (MMN), as translational biomarkers, and support SRKO mice as a potential rodent model for PV interneuron dysfunction in Sz.
Collapse
|
12
|
Edgar JC. Identifying electrophysiological markers of autism spectrum disorder and schizophrenia against a backdrop of normal brain development. Psychiatry Clin Neurosci 2020; 74:1-11. [PMID: 31472015 PMCID: PMC10150852 DOI: 10.1111/pcn.12927] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Revised: 08/26/2019] [Accepted: 08/27/2019] [Indexed: 01/25/2023]
Abstract
An examination of electroencephalographic and magnetoencephalographic studies demonstrates how age-related changes in brain neural function temporally constrain their use as diagnostic markers. A first example shows that, given maturational changes in the resting-state peak alpha frequency in typically developing children but not in children who have autism spectrum disorder (ASD), group differences in alpha-band activity characterize only a subset of children who have ASD. A second example, auditory encoding processes in schizophrenia, shows that the complication of normal age-related brain changes on detecting and interpreting group differences in neural activity is not specific to children. MRI studies reporting group differences in the rate of brain maturation demonstrate that a group difference in brain maturation may be a concern for all diagnostic brain markers. Attention to brain maturation is needed whether one takes a DSM-5 or a Research Domain Criteria approach to research. For example, although there is interest in cross-diagnostic studies comparing brain measures in ASD and schizophrenia, such studies are difficult given that measures are obtained in one group well after and in the other much closer to the onset of symptoms. In addition, given differences in brain activity among infants, toddlers, children, adolescents, and younger and older adults, creating tasks and research designs that produce interpretable findings across the life span and yet allow for development is difficult at best. To conclude, brain imaging findings show an effect of brain maturation on diagnostic markers separate from (and potentially difficult to distinguish from) effects of disease processes. Available research with large samples already provides direction about the age range(s) when diagnostic markers are most robust and informative.
Collapse
Affiliation(s)
- J Christopher Edgar
- Department of Radiology, Children's Hospital of Philadelphia, Philadelphia, USA
| |
Collapse
|
13
|
Roach BJ, D'Souza DC, Ford JM, Mathalon DH. Test-retest reliability of time-frequency measures of auditory steady-state responses in patients with schizophrenia and healthy controls. Neuroimage Clin 2019; 23:101878. [PMID: 31228795 PMCID: PMC6587022 DOI: 10.1016/j.nicl.2019.101878] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Revised: 04/18/2019] [Accepted: 05/25/2019] [Indexed: 11/29/2022]
Abstract
BACKGROUND Auditory steady-state response (ASSR) paradigms have consistently demonstrated gamma band abnormalities in schizophrenia at a 40-Hz driving frequency with both electroencephalography (EEG) and magnetoencephalography (MEG). Various time-frequency measures have been used to assess the 40-Hz ASSR, including evoked power, single trial total power, phase-locking factor (PLF), and phase-locking angle (PLA). While both EEG and MEG studies have shown power and PLF ASSR measures to exhibit excellent test-retest reliability in healthy adults, the reliability of these measures in patients with schizophrenia has not been determined. METHODS ASSRs were obtained by recording EEG data during presentation of repeated 20-Hz, 30-Hz and 40-Hz auditory click trains from nine schizophrenia patients (SZ) and nine healthy controls (HC) tested on two occasions. Similar ASSR data were collected from a separate group of 30 HC on two to three test occasions. A subset of these HC subjects had EEG recordings during two tasks, passively listening and actively attending to click train stimuli. Evoked power, total power, PLF, and PLA were calculated following Morlet wavelet time-frequency decomposition of EEG data and test-retest generalizability (G) coefficients were calculated for each ASSR condition, time-frequency measure, and subject group. RESULTS G-coefficients ranged from good to excellent (> 0.6) for most 40-Hz time-frequency measures and participant groups, whereas 20-Hz G-coefficients were much more variable. Importantly, test-retest reliability was excellent for the various 40-Hz ASSR measures in SZ, similar to reliabilities in HC. Active attention to click train stimuli modestly reduced G-coefficients in HC relative to the passive listening condition. DISCUSSION The excellent test-retest reliability of 40-Hz ASSR measures replicates previous EEG and MEG studies. PLA, a relatively new time-frequency measure, was shown for the first time to have excellent reliability, comparable to power and PLF measures. Excellent reliability of 40 Hz ASSR measures in SZ supports their use in clinical trials and longitudinal observational studies.
Collapse
Affiliation(s)
- Brian J Roach
- Psychiatry Service, San Francisco VA, San Francisco, CA, USA
| | - Deepak Cyril D'Souza
- Psychiatry Service, VA Connecticut Healthcare System, West Haven, CT, USA; Abraham Ribicoff Research Facilities, Connecticut Mental Health Center, New Haven, CT, USA; Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
| | - Judith M Ford
- Psychiatry Service, San Francisco VA, San Francisco, CA, USA; Department of Psychiatry, UCSF, San Francisco, CA, USA
| | - Daniel H Mathalon
- Psychiatry Service, San Francisco VA, San Francisco, CA, USA; Department of Psychiatry, UCSF, San Francisco, CA, USA.
| |
Collapse
|