1
|
Surani Z, Turesky TK, Sullivan E, Shama T, Haque R, Islam N, Hafiz Kakon S, Yu X, Petri WA, Nelson C, Gaab N. Examining the relationship between psychosocial adversity and inhibitory control: A functional magnetic resonance imaging study of children growing up in extreme poverty. J Exp Child Psychol 2025; 249:106072. [PMID: 39316885 PMCID: PMC11635096 DOI: 10.1016/j.jecp.2024.106072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 08/10/2024] [Accepted: 08/22/2024] [Indexed: 09/26/2024]
Abstract
Exposure to psychosocial adversity (PA) is associated with poor behavioral, physical, and mental health outcomes in adulthood. As these outcomes are related to alterations in developmental processes, growing evidence suggests that deficits in executive functions-inhibitory control in particular-may in part explain this relationship. However, literature examining the development of inhibitory control has been based on children in higher-resource environments, and little is known how low-resource settings might exacerbate the link between inhibitory control and health outcomes. In this context, we collected functional magnetic resonance imaging data during a Go/No-Go inhibitory control task and PA variables for 68 children aged 5 to 7 years living in Dhaka, Bangladesh, an area with a high prevalence of PA. The children's mothers completed behavioral questionnaires to assess the children's PA and their own PA. Whole-brain activation underlying inhibitory control was examined using the No-Go versus Go contrast, and associations with PA variables were assessed using whole-brain regressions. Childhood neglect was associated with weaker activation in the right posterior cingulate, whereas greater family conflict, economic stress, and maternal PA factors were associated with greater activation in the left medial frontal gyrus, right superior and middle frontal gyri, and left cingulate gyrus. These data suggest that neural networks supporting inhibitory control processes may vary as a function of exposure to different types of PA, particularly between those related to threat and deprivation. Furthermore, increased activation in children with greater PA may serve as a compensatory mechanism, allowing them to maintain similar behavioral task performance.
Collapse
Affiliation(s)
- Zoya Surani
- Harvard Graduate School of Education, Cambridge, MA 02138, USA
| | - Ted K Turesky
- Harvard Graduate School of Education, Cambridge, MA 02138, USA
| | - Eileen Sullivan
- Laboratories of Cognitive Neuroscience, Division of Developmental Medicine, Department of Medicine, Boston Children's Hospital, Boston, MA 02115, USA
| | - Talat Shama
- Infectious Diseases Division, International Centre for Diarrheal Disease Research, Dhaka 1213, Bangladesh
| | - Rashidul Haque
- Infectious Diseases Division, International Centre for Diarrheal Disease Research, Dhaka 1213, Bangladesh
| | - Nazrul Islam
- National Institute of Neuroscience and Hospital, Dhaka 1207, Bangladesh
| | - Shahria Hafiz Kakon
- Infectious Diseases Division, International Centre for Diarrheal Disease Research, Dhaka 1213, Bangladesh
| | - Xi Yu
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing 100875, China
| | - William A Petri
- Division of Infectious Diseases and International Health, Department of Medicine, School of Medicine, University of Virginia, Charlottesville, VA 22903, USA
| | - Charles Nelson
- Laboratories of Cognitive Neuroscience, Division of Developmental Medicine, Department of Medicine, Boston Children's Hospital, Boston, MA 02115, USA; Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA
| | - Nadine Gaab
- Harvard Graduate School of Education, Cambridge, MA 02138, USA.
| |
Collapse
|
2
|
Marzuki AA, Wong KY, Chan JK, Na SY, Thanaraju A, Phon-Amnuaisuk P, Vafa S, Yap J, Lim WG, Yip WZ, Arokiaraj AS, Shee D, Lee LGL, Chia YC, Jenkins M, Schaefer A. Mapping computational cognitive profiles of aging to dissociable brain and sociodemographic factors. NPJ AGING 2024; 10:50. [PMID: 39482289 PMCID: PMC11527976 DOI: 10.1038/s41514-024-00171-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Accepted: 09/24/2024] [Indexed: 11/03/2024]
Abstract
Aging is associated with declines in cognition and brain structural integrity. However, there is equivocality over (1) the specificity of affected domains in different people, (2) the location of associated patterns of brain structural deterioration, and (3) the sociodemographic factors contributing to 'unhealthy' cognition. We aimed to identify cognitive profiles displayed by older adults and determine brain and sociodemographic features potentially shaping these profiles. A sample of Southeast-Asian older adults (N = 386) participated in a multi-session study comprising cognitive testing, neuroimaging, and a structured interview. We used computational models to extract latent mechanisms underlying cognitive flexibility and response inhibition. Data-driven methods were used to construct cognitive profiles based on standard performance measures and model parameters. We also investigated grey matter volume and machine-learning derived 'brain-ages'. A profile associated with poor set-shifting and rigid focusing was associated with widespread grey matter reduction in cognitive control regions. A slow responding profile was associated with advanced brain-age. Both profiles were correlated with poor socioeconomic standing and cognitive reserve. We found that the impact of sociodemographic factors on cognitive profiles was partially mediated by total grey and white matter, and dorsolateral prefrontal and cerebellar volumes. This study furthers understanding of how distinct aging profiles of cognitive impairment uniquely correspond to specific vs. global brain deterioration and the significance of socioeconomic factors in informing cognitive performance in older age.
Collapse
Affiliation(s)
- Aleya A Marzuki
- Department of Psychiatry and Psychotherapy, Medical School and University Hospital, Eberhard Karls University of Tübingen, Tübingen, Germany.
- German Center for Mental Health (DZPG), Tübingen, Germany.
- Department of Psychology, School of Medical and Life Sciences, Sunway University, Subang Jaya, Selangor, Malaysia.
| | - Kean Yung Wong
- Sensory Neuroscience and Nutrition Lab, University of Otago, Dunedin, New Zealand
| | - Jee Kei Chan
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University, Subang Jaya, Malaysia
| | - Sze Yie Na
- School of Liberal Arts and Sciences, Taylor's University, Subang Jaya, Malaysia
| | - Arjun Thanaraju
- Department of Biological Sciences, School of Medical and Life Sciences, Sunway University, Subang Jaya, Malaysia
| | | | - Samira Vafa
- Department of Psychology, School of Medical and Life Sciences, Sunway University, Subang Jaya, Selangor, Malaysia
| | - Jie Yap
- Department of Psychology, School of Medical and Life Sciences, Sunway University, Subang Jaya, Selangor, Malaysia
| | - Wei Gene Lim
- Department of Biological Sciences, School of Medical and Life Sciences, Sunway University, Subang Jaya, Malaysia
| | - Wei Zern Yip
- Department of Psychology, School of Medical and Life Sciences, Sunway University, Subang Jaya, Selangor, Malaysia
| | - Annette Shamala Arokiaraj
- Centre for Research in Psychology and Human Well-Being, Faculty of Social Sciences and Humanities, National University of Malaysia, Subang Jaya, Malaysia
| | - Dexter Shee
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University, Subang Jaya, Malaysia
| | - Louisa Gee Ling Lee
- Department of Psychology, School of Medical and Life Sciences, Sunway University, Subang Jaya, Selangor, Malaysia
| | - Yook Chin Chia
- Department of Medical Sciences, School of Medical and Life Sciences, Sunway University, Subang Jaya, Malaysia
- Department of Primary Care Medicine, Faculty of Medicine, Universiti Malaya, Kuala Lumpur, Malaysia
| | - Michael Jenkins
- Department of Psychology, School of Medical and Life Sciences, Sunway University, Subang Jaya, Selangor, Malaysia.
| | - Alexandre Schaefer
- Department of Psychology, School of Medical and Life Sciences, Sunway University, Subang Jaya, Selangor, Malaysia
| |
Collapse
|
3
|
Hardee JE, Weigard AS, Heitzeg MM, Martz ME, Cope LM. Sex differences in distributed error-related neural activation in problem-drinking young adults. Drug Alcohol Depend 2024; 263:112421. [PMID: 39208693 PMCID: PMC11500318 DOI: 10.1016/j.drugalcdep.2024.112421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 07/18/2024] [Accepted: 08/14/2024] [Indexed: 09/04/2024]
Abstract
BACKGROUND Detecting and responding to errors is central to goal-directed behavior and cognitive control and is thought to be supported by a network of structures that includes the anterior cingulate cortex and anterior insula. Sex differences in the maturational timing of cognitive control systems create differential periods of vulnerability for psychiatric conditions, such as substance use disorders. METHODS We examined sex differences in error-related activation across an array of distributed brain regions during a Go/No-Go task in young adults with problem alcohol use (N=69; 34 females; M=19.4 years). Regions of interest previously linked to error-related activation, including anterior cingulate cortex, insula, and frontoparietal structures, were selected in a term-based meta-analysis. Individual differences in their responses to false alarm (FA) inhibitory errors relative to "go" trials (FA>GO) and correct rejections (FA>CR) were indexed using multivariate summary measures derived from principal components analysis. RESULTS FA>GO and FA>CR activation both revealed a first component that explained the majority of the variance across error-associated regions and displayed the strongest loadings on salience network structures. Compared to females, males exhibited significantly higher levels of the FA>GO component but not the FA>CR component. CONCLUSIONS Males exhibit greater salience network activation in response to inhibitory errors, which could be attributed to sex differences in error-monitoring processes or to other functions (e.g., novelty detection). The findings are relevant for the further characterization of sex differences in cognitive control and may have implications for understanding individual differences in those at risk for substance use or other cognitive control disorders.
Collapse
Affiliation(s)
- Jillian E Hardee
- Department of Psychiatry and Addiction Center, University of Michigan, 4250 Plymouth Rd, Ann Arbor, MI 48109, USA.
| | - Alexander S Weigard
- Department of Psychiatry and Addiction Center, University of Michigan, 4250 Plymouth Rd, Ann Arbor, MI 48109, USA
| | - Mary M Heitzeg
- Department of Psychiatry and Addiction Center, University of Michigan, 4250 Plymouth Rd, Ann Arbor, MI 48109, USA
| | - Meghan E Martz
- Department of Psychiatry and Addiction Center, University of Michigan, 4250 Plymouth Rd, Ann Arbor, MI 48109, USA
| | - Lora M Cope
- Department of Psychiatry and Addiction Center, University of Michigan, 4250 Plymouth Rd, Ann Arbor, MI 48109, USA
| |
Collapse
|
4
|
Weigard A, Angstadt M, Taxali A, Heathcote A, Heitzeg MM, Sripada C. Flexible adaptation of task-positive brain networks predicts efficiency of evidence accumulation. Commun Biol 2024; 7:801. [PMID: 38956310 PMCID: PMC11220037 DOI: 10.1038/s42003-024-06506-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 06/25/2024] [Indexed: 07/04/2024] Open
Abstract
Efficiency of evidence accumulation (EEA), an individual's ability to selectively gather goal-relevant information to make adaptive choices, is thought to be a key neurocomputational mechanism associated with cognitive functioning and transdiagnostic risk for psychopathology. However, the neural basis of individual differences in EEA is poorly understood, especially regarding the role of largescale brain network dynamics. We leverage data from 5198 participants from the Human Connectome Project and Adolescent Brain Cognitive Development Study to demonstrate a strong association between EEA and flexible adaptation to cognitive demand in the "task-positive" frontoparietal and dorsal attention networks. Notably, individuals with higher EEA displayed divergent task-positive network activation across n-back task conditions: higher activation under high cognitive demand (2-back) and lower activation under low demand (0-back). These findings suggest that brain networks' flexible adaptation to cognitive demands is a key neural underpinning of EEA.
Collapse
Affiliation(s)
| | - Mike Angstadt
- Department of Psychiatry, University of Michigan, Ann Arbor, USA
| | - Aman Taxali
- Department of Psychiatry, University of Michigan, Ann Arbor, USA
| | - Andrew Heathcote
- Department of Psychological Methods, University of Amsterdam, Amsterdam, Netherlands
| | - Mary M Heitzeg
- Department of Psychiatry, University of Michigan, Ann Arbor, USA
| | - Chandra Sripada
- Department of Psychiatry, University of Michigan, Ann Arbor, USA
| |
Collapse
|
5
|
Zhu S, Liu Q, Zhang X, Zhou M, Zhou X, Ding F, Zhang R, Becker B, Kendrick KM, Zhao W. Transcutaneous auricular vagus nerve stimulation enhanced emotional inhibitory control via increasing intrinsic prefrontal couplings. Int J Clin Health Psychol 2024; 24:100462. [PMID: 38665809 PMCID: PMC11044052 DOI: 10.1016/j.ijchp.2024.100462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 04/11/2024] [Indexed: 04/28/2024] Open
Abstract
Background Inhibitory control represents a core executive function that critically facilitates adaptive behavior and survival in an ever-changing environment. Non-invasive transcutaneous auricular vagus nerve stimulation (taVNS) has been hypothesized to improve behavioral inhibition performance, however the neurocomputational mechanism of taVNS-induced neuroenhancement remains elusive. Method In the current study, we investigated the efficacy of taVNS in a sham-controlled between-subject functional near infrared spectroscopy (fNIRS) experiment with an emotional face Go/No-Go paradigm in ninety healthy young adults. Results After a data quality check, eighty-two subjects were included in the final data analysis. Behaviorally, the taVNS improved No-Go response accuracy, together with computational modeling using Hierarchical Bayesian estimation of the Drift Diffusion Model (HDDM) indicating that it specifically reduced the information accumulation rate for Go responses, and this was negatively associated with increased accuracy of No-Go responses. On the neural level, taVNS enhanced engagement of the bilateral inferior frontal gyrus (IFG) during inhibition of angry expression faces and modulated functional couplings (FCs) within the prefrontal inhibitory control network. Mediation models revealed that taVNS-induced facilitation of inhibitory control was critically mediated by a decreased information accumulation for Go responses and concomitantly enhanced neurofunctional coupling between the inferior and orbital frontal cortex. Discussion Our findings demonstrate a potential for taVNS to improve emotional inhibitory control via reducing pre-potent responses and enhancing FCs within prefrontal inhibitory control networks, suggesting a promising therapeutic role in treating specific disorders characterized by inhibitory control deficits.
Collapse
Affiliation(s)
- Siyu Zhu
- The Center of Psychosomatic Medicine, Sichuan Provincial Center for Mental Health, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, 611731, PR China
- The Laboratory of Sport Psychology, School of Sport Training, Chengdu Sport University, Chengdu, 610041, PR China
- Sichuan Key Laboratory of Psychology and Behavior of Discipline Inspection and Supervision, Sichuan Normal University, Chengdu 610066, PR China
| | - Qi Liu
- The Center of Psychosomatic Medicine, Sichuan Provincial Center for Mental Health, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, 611731, PR China
| | - Xiaolu Zhang
- Anhui Children's Hospital, Pediatric Hospital Affiliated to Fudan University, Hefei 230051, PR China
| | - Menghan Zhou
- The Center of Psychosomatic Medicine, Sichuan Provincial Center for Mental Health, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, 611731, PR China
| | - Xinqi Zhou
- Institute of Brain and Psychological Science, Sichuan Normal University, Chengdu, 610066, PR China
| | - Fangyuan Ding
- College of National Culture and Cognitive Science, Guizhou Minzu University, Guiyang, 550025, PR China
| | - Rong Zhang
- Neuroscience Research Institute, Key Laboratory for Neuroscience, Ministry of Education of China, National Committee of Health and Family Planning of China and Department of Neurobiology, School of Basic Medical Sciences, Peking University, Beijing, 100191, PR China
| | - Benjamin Becker
- The Center of Psychosomatic Medicine, Sichuan Provincial Center for Mental Health, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, 611731, PR China
- The State Key Laboratory of Brain and Cognitive Sciences, The University of Hong Kong, Department of Psychology, Hong Kong, 999077, PR China
| | - Keith M Kendrick
- The Center of Psychosomatic Medicine, Sichuan Provincial Center for Mental Health, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, 611731, PR China
| | - Weihua Zhao
- The Center of Psychosomatic Medicine, Sichuan Provincial Center for Mental Health, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, 611731, PR China
| |
Collapse
|
6
|
Tervo-Clemmens B, Calabro FJ, Parr AC, Fedor J, Foran W, Luna B. A canonical trajectory of executive function maturation from adolescence to adulthood. Nat Commun 2023; 14:6922. [PMID: 37903830 PMCID: PMC10616171 DOI: 10.1038/s41467-023-42540-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Accepted: 10/13/2023] [Indexed: 11/01/2023] Open
Abstract
Theories of human neurobehavioral development suggest executive functions mature from childhood through adolescence, underlying adolescent risk-taking and the emergence of psychopathology. Investigations with relatively small datasets or narrow subsets of measures have identified general executive function development, but the specific maturational timing and independence of potential executive function subcomponents remain unknown. Integrating four independent datasets (N = 10,766; 8-35 years old) with twenty-three measures from seventeen tasks, we provide a precise charting, multi-assessment investigation, and replication of executive function development from adolescence to adulthood. Across assessments and datasets, executive functions follow a canonical non-linear trajectory, with rapid and statistically significant development in late childhood to mid-adolescence (10-15 years old), before stabilizing to adult-levels in late adolescence (18-20 years old). Age effects are well captured by domain-general processes that generate reproducible developmental templates across assessments and datasets. Results provide a canonical trajectory of executive function maturation that demarcates the boundaries of adolescence and can be integrated into future studies.
Collapse
Affiliation(s)
- Brenden Tervo-Clemmens
- Department of Psychiatry & Behavioral Sciences, University of Minnesota, Minneapolis, MN, USA.
- Masonic Institute for the Developing Brain, University of Minnesota, Minneapolis, MN, USA.
- Department of Psychology, University of Pittsburgh, Pittsburgh, PA, USA.
| | - Finnegan J Calabro
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA
| | - Ashley C Parr
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA
| | - Jennifer Fedor
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Biostatistics, University of Pittsburgh, Pittsburgh, PA, USA
| | - William Foran
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA
| | - Beatriz Luna
- Department of Psychology, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA
| |
Collapse
|
7
|
Weigard A, Sripada C. Task-general efficiency of evidence accumulation as a computationally-defined neurocognitive trait: Implications for clinical neuroscience. BIOLOGICAL PSYCHIATRY GLOBAL OPEN SCIENCE 2022; 1:5-15. [PMID: 35317408 DOI: 10.1016/j.bpsgos.2021.02.001] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Quantifying individual differences in higher-order cognitive functions is a foundational area of cognitive science that also has profound implications for research on psychopathology. For the last two decades, the dominant approach in these fields has been to attempt to fractionate higher-order functions into hypothesized components (e.g., "inhibition", "updating") through a combination of experimental manipulation and factor analysis. However, the putative constructs obtained through this paradigm have recently been met with substantial criticism on both theoretical and empirical grounds. Concurrently, an alternative approach has emerged focusing on parameters of formal computational models of cognition that have been developed in mathematical psychology. These models posit biologically plausible and experimentally validated explanations of the data-generating process for cognitive tasks, allowing them to be used to measure the latent mechanisms that underlie performance. One of the primary insights provided by recent applications of such models is that individual and clinical differences in performance on a wide variety of cognitive tasks, ranging from simple choice tasks to complex executive paradigms, are largely driven by efficiency of evidence accumulation (EEA), a computational mechanism defined by sequential sampling models. This review assembles evidence for the hypothesis that EEA is a central individual difference dimension that explains neurocognitive deficits in multiple clinical disorders and identifies ways in which in this insight can advance clinical neuroscience research. We propose that recognition of EEA as a major driver of neurocognitive differences will allow the field to make clearer inferences about cognitive abnormalities in psychopathology and their links to neurobiology.
Collapse
|
8
|
Ging-Jehli NR, Arnold LE, Roley-Roberts ME, deBeus R. Characterizing Underlying Cognitive Components of ADHD Presentations and Co-morbid Diagnoses: A Diffusion Decision Model Analysis. J Atten Disord 2022; 26:706-722. [PMID: 34085557 DOI: 10.1177/10870547211020087] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
OBJECTIVE To Explore whether subtypes and comorbidities of attention-deficit hyperactivity disorder (ADHD) induce distinct biases in cognitive components involved in information processing. METHOD Performance on the Integrated Visual and Auditory Continuous Performance Test (IVA-CPT) was compared between 150 children (aged 7 to 10) with ADHD, grouped by DSM-5 presentation (ADHD-C, ADHD-I) or co-morbid diagnoses (anxiety, oppositional defiant disorder [ODD], both, neither), and 60 children without ADHD. Diffusion decision modeling decomposed performance into cognitive components. RESULTS Children with ADHD had poorer information integration than controls. Children with ADHD-C were more sensitive to changes in presentation modality (auditory/visual) than those with ADHD-I and controls. Above and beyond these results, children with ADHD+anxiety+ODD had larger increases in response biases when targets became frequent than children with ADHD-only or with ADHD and one comorbidity. CONCLUSION ADHD presentations and comorbidities have distinct cognitive characteristics quantifiable using DDM and IVA-CPT. We discuss implications for tailored cognitive-behavioral therapy.
Collapse
|
9
|
Weigard A, Clark DA, Sripada C. Cognitive efficiency beats top-down control as a reliable individual difference dimension relevant to self-control. Cognition 2021; 215:104818. [PMID: 34252724 PMCID: PMC8378481 DOI: 10.1016/j.cognition.2021.104818] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 06/18/2021] [Accepted: 06/19/2021] [Indexed: 12/18/2022]
Abstract
Top-down control of responses is a key construct in cognitive science that is thought to be critical for self-control. It is typically measured by subtracting performance in experimental conditions in which top-down control is theoretically present against performance in matched conditions in which it is assumed to be absent. Recently, however, subtraction-based metrics of top-down control have been criticized for having low test-retest reliability, weak intercorrelations, and little relation to self-report measures of self-control. Concurrently, there is growing evidence that task-general cognitive efficiency, indexed by the drift rate parameter of the diffusion model (Ratcliff, 1978), constitutes a cohesive, reliable individual difference dimension relevant to self-control. However, no previous studies have directly compared latent factors for top-down control (derived from subtraction metrics) with factors for task-general efficiency "head-to-head" in the same sample in terms of their cohesiveness, temporal stability, and relation to self-control. In this re-analysis of a large open data set (Eisenberg et al., 2019; N = 522), we find that top-down control metrics fail to form cohesive latent factors, that the resulting factors have poor temporal stability, and that they exhibit tenuous connections to questionnaire measures of self-control. In contrast, cognitive efficiency measures-drawn from conditions of the same tasks that both are, and are not, assumed to demand top-down control-form a robust, temporally stable factor that correlates with questionnaire measures of self-control. These findings suggest that task-general efficiency is a central individual difference dimension relevant to self-control. Moreover, they go beyond recent measurement-based critiques of top-down control metrics, and instead suggest problems with key theoretical assumptions that have long guided this research paradigm.
Collapse
Affiliation(s)
- Alexander Weigard
- Department of Psychiatry, University of Michigan, United States of America.
| | - D Angus Clark
- Department of Psychiatry, University of Michigan, United States of America
| | - Chandra Sripada
- Department of Psychiatry, University of Michigan, United States of America
| |
Collapse
|
10
|
Weigard AS, Brislin SJ, Cope LM, Hardee JE, Martz ME, Ly A, Zucker RA, Sripada C, Heitzeg MM. Evidence accumulation and associated error-related brain activity as computationally-informed prospective predictors of substance use in emerging adulthood. Psychopharmacology (Berl) 2021; 238:2629-2644. [PMID: 34173032 PMCID: PMC8452274 DOI: 10.1007/s00213-021-05885-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Accepted: 05/27/2021] [Indexed: 01/05/2023]
Abstract
RATIONALE Substance use peaks during the developmental period known as emerging adulthood (ages 18-25), but not every individual who uses substances during this period engages in frequent or problematic use. Although individual differences in neurocognition appear to predict use severity, mechanistic neurocognitive risk factors with clear links to both behavior and neural circuitry have yet to be identified. Here, we aim to do so with an approach rooted in computational psychiatry, an emerging field in which formal models are used to identify candidate biobehavioral dimensions that confer risk for psychopathology. OBJECTIVES We test whether lower efficiency of evidence accumulation (EEA), a computationally characterized individual difference variable that drives performance on the go/no-go and other neurocognitive tasks, is a risk factor for substance use in emerging adults. METHODS AND RESULTS In an fMRI substudy within a sociobehavioral longitudinal study (n = 106), we find that lower EEA and reductions in a robust neural-level correlate of EEA (error-related activations in salience network structures) measured at ages 18-21 are both prospectively related to greater substance use during ages 22-26, even after adjusting for other well-known risk factors. Results from Bayesian model comparisons corroborated inferences from conventional hypothesis testing and provided evidence that both EEA and its neuroimaging correlates contain unique predictive information about substance use involvement. CONCLUSIONS These findings highlight EEA as a computationally characterized neurocognitive risk factor for substance use during a critical developmental period, with clear links to both neuroimaging measures and well-established formal theories of brain function.
Collapse
Affiliation(s)
- Alexander S Weigard
- Department of Psychiatry, University of Michigan, Rachel Upjohn Building, 4250 Plymouth Road, Ann Arbor, MI, 48109, USA.
| | - Sarah J Brislin
- Department of Psychiatry, University of Michigan, Rachel Upjohn Building, 4250 Plymouth Road, Ann Arbor, MI, 48109, USA
| | - Lora M Cope
- Department of Psychiatry, University of Michigan, Rachel Upjohn Building, 4250 Plymouth Road, Ann Arbor, MI, 48109, USA
| | - Jillian E Hardee
- Department of Psychiatry, University of Michigan, Rachel Upjohn Building, 4250 Plymouth Road, Ann Arbor, MI, 48109, USA
| | - Meghan E Martz
- Department of Psychiatry, University of Michigan, Rachel Upjohn Building, 4250 Plymouth Road, Ann Arbor, MI, 48109, USA
| | - Alexander Ly
- Department of Psychological Methods, University of Amsterdam, Amsterdam, The Netherlands
- Machine Learning Group, Centrum Wiskunde & Informatica, Amsterdam, The Netherlands
| | - Robert A Zucker
- Department of Psychiatry, University of Michigan, Rachel Upjohn Building, 4250 Plymouth Road, Ann Arbor, MI, 48109, USA
| | - Chandra Sripada
- Department of Psychiatry, University of Michigan, Rachel Upjohn Building, 4250 Plymouth Road, Ann Arbor, MI, 48109, USA
| | - Mary M Heitzeg
- Department of Psychiatry, University of Michigan, Rachel Upjohn Building, 4250 Plymouth Road, Ann Arbor, MI, 48109, USA
| |
Collapse
|
11
|
Gerhardt S, Luderer M, Bumb JM, Sobanski E, Moggi F, Kiefer F, Vollstädt-Klein S. Stop What You're Doing!-An fMRI Study on Comparisons of Neural Subprocesses of Response Inhibition in ADHD and Alcohol Use Disorder. Front Psychiatry 2021; 12:691930. [PMID: 34603097 PMCID: PMC8481878 DOI: 10.3389/fpsyt.2021.691930] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Accepted: 08/13/2021] [Indexed: 01/20/2023] Open
Abstract
Rationale: Both attention deficit-/hyperactivity disorder (ADHD) and alcohol use disorder (AUD) are accompanied by deficits in response inhibition. Furthermore, the prevalence of comorbidity of ADHD and AUD is high. However, there is a lack of research on whether the same neuronal subprocesses of inhibition (i.e., interference inhibition, action withholding and action cancellation) exhibit deficits in both psychiatric disorders. Methods: We examined these three neural subprocesses of response inhibition in patient groups and healthy controls: non-medicated individuals with ADHD (ADHD; N = 16), recently detoxified and abstinent individuals with alcohol use disorder (AUD; N = 15), and healthy controls (HC; N = 15). A hybrid response inhibition task covering interference inhibition, action withholding, and action cancellation was applied using a 3T functional magnetic resonance imaging (fMRI). Results: Individuals with ADHD showed an overall stronger hypoactivation in attention related brain areas compared to AUD or HC during action withholding. Further, this hypoactivation was more accentuated during action cancellation. Individuals with AUD recruited a broader network, including the striatum, compared to HC during action withholding. During action cancellation, however, they showed hypoactivation in motor regions. Additionally, specific neural activation profiles regarding group and subprocess became apparent. Conclusions: Even though deficits in response inhibition are related to both ADHD and AUD, neural activation and recruited networks during response inhibition differ regarding both neuronal subprocesses and examined groups. While a replication of this study is needed in a larger sample, the results suggest that tasks have to be carefully selected when examining neural activation patterns of response inhibition either in research on various psychiatric disorders or transdiagnostic questions.
Collapse
Affiliation(s)
- Sarah Gerhardt
- Department of Addictive Behavior and Addiction Medicine, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - Mathias Luderer
- Department of Psychiatry, Psychosomatic Medicine and Psychotherapy, University Hospital, Goethe University Frankfurt, Frankfurt, Germany
| | - Jan M Bumb
- Department of Addictive Behavior and Addiction Medicine, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - Esther Sobanski
- Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany.,Department of Child and Adolescent Psychiatry, University Medical Center Mainz, Mainz, Germany
| | - Franz Moggi
- Translational Research Center, University Hospital of Psychiatry and Psychotherapy, University of Bern, Bern, Switzerland
| | - Falk Kiefer
- Department of Addictive Behavior and Addiction Medicine, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany.,Mannheim Center for Translational Neurosciences, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany.,Feuerlein Center on Translational Addiction Medicine, University of Heidelberg, Heidelberg, Germany
| | - Sabine Vollstädt-Klein
- Department of Addictive Behavior and Addiction Medicine, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany.,Mannheim Center for Translational Neurosciences, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| |
Collapse
|
12
|
Garavan H. Stopping to Think About Stopping. BIOLOGICAL PSYCHIATRY. COGNITIVE NEUROSCIENCE AND NEUROIMAGING 2020; 5:476-477. [PMID: 32386686 DOI: 10.1016/j.bpsc.2020.03.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Accepted: 03/30/2020] [Indexed: 06/11/2023]
Affiliation(s)
- Hugh Garavan
- Department of Psychiatry, University of Vermont, Burlington, Vermont.
| |
Collapse
|