1
|
Linsley JW, Reisine T, Finkbeiner S. Three dimensional and four dimensional live imaging to study mechanisms of progressive neurodegeneration. J Biol Chem 2024; 300:107433. [PMID: 38825007 PMCID: PMC11261153 DOI: 10.1016/j.jbc.2024.107433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 05/20/2024] [Accepted: 05/26/2024] [Indexed: 06/04/2024] Open
Abstract
Neurodegenerative diseases are complex and progressive, posing challenges to their study and understanding. Recent advances in microscopy imaging technologies have enabled the exploration of neurons in three spatial dimensions (3D) over time (4D). When applied to 3D cultures, tissues, or animals, these technologies can provide valuable insights into the dynamic and spatial nature of neurodegenerative diseases. This review focuses on the use of imaging techniques and neurodegenerative disease models to study neurodegeneration in 4D. Imaging techniques such as confocal microscopy, two-photon microscopy, miniscope imaging, light sheet microscopy, and robotic microscopy offer powerful tools to visualize and analyze neuronal changes over time in 3D tissue. Application of these technologies to in vitro models of neurodegeneration such as mouse organotypic culture systems and human organoid models provide versatile platforms to study neurodegeneration in a physiologically relevant context. Additionally, use of 4D imaging in vivo, including in mouse and zebrafish models of neurodegenerative diseases, allows for the investigation of early dysfunction and behavioral changes associated with neurodegeneration. We propose that these studies have the power to overcome the limitations of two-dimensional monolayer neuronal cultures and pave the way for improved understanding of the dynamics of neurodegenerative diseases and the development of effective therapeutic strategies.
Collapse
Affiliation(s)
- Jeremy W Linsley
- Center for Systems and Therapeutics, Gladstone Institutes, San Francisco, California, USA; Operant Biopharma, San Francisco, California, USA
| | - Terry Reisine
- Independent Scientific Consultant, Santa Cruz, California, USA
| | - Steven Finkbeiner
- Center for Systems and Therapeutics, Gladstone Institutes, San Francisco, California, USA; Operant Biopharma, San Francisco, California, USA; Taube/Koret Center for Neurodegenerative Disease, Gladstone Institutes, San Francisco, California, USA; Departments of Neurology and Physiology, University of California, San Francisco, California, USA; Neuroscience Graduate Program, University of California, San Francisco, California, USA; Biomedical Sciences Graduate Program, University of California, San Francisco, California, USA.
| |
Collapse
|
2
|
Werner L, Gliem M, Rychlik N, Pavic G, Reiche L, Kirchhoff F, Silva Oliveira Junior M, Gruchot J, Meuth SG, Küry P, Göttle P. A Novel Ex Vivo Model to Study Therapeutic Treatments for Myelin Repair following Ischemic Damage. Int J Mol Sci 2023; 24:10972. [PMID: 37446147 DOI: 10.3390/ijms241310972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 06/19/2023] [Accepted: 06/26/2023] [Indexed: 07/15/2023] Open
Abstract
Stroke is a major reason for persistent disability due to insufficient treatment strategies beyond reperfusion, leading to oligodendrocyte death and axon demyelination, persistent inflammation and astrogliosis in peri-infarct areas. After injury, oligodendroglial precursor cells (OPCs) have been shown to compensate for myelin loss and prevent axonal loss through the replacement of lost oligodendrocytes, an inefficient process leaving axons chronically demyelinated. Phenotypic screening approaches in demyelinating paradigms revealed substances that promote myelin repair. We established an ex vivo adult organotypic coronal slice culture (OCSC) system to study repair after stroke in a resource-efficient way. Post-photothrombotic OCSCs can be manipulated for 8 d by exposure to pharmacologically active substances testing remyelination activity. OCSCs were isolated from a NG2-CreERT2-td-Tomato knock-in transgenic mouse line to analyze oligodendroglial fate/differentiation and kinetics. Parbendazole boosted differentiation of NG2+ cells and stabilized oligodendroglial fate reflected by altered expression of associated markers PDGFR-α, CC1, BCAS1 and Sox10 and GFAP. In vitro scratch assay and chemical ischemia confirmed the observed effects upon parbendazole treatment. Adult OCSCs represent a fast, reproducible, and quantifiable model to study OPC differentiation competence after stroke. Pharmacological stimulation by means of parbendazole promoted OPC differentiation.
Collapse
Affiliation(s)
- Luisa Werner
- Department of Neurology, Medical Faculty, Heinrich Heine University, 40225 Düsseldorf, Germany
| | - Michael Gliem
- Department of Neurology, Medical Faculty, Heinrich Heine University, 40225 Düsseldorf, Germany
| | - Nicole Rychlik
- Department of Neurology, Medical Faculty, Heinrich Heine University, 40225 Düsseldorf, Germany
| | - Goran Pavic
- Department of Neurology, Medical Faculty, Heinrich Heine University, 40225 Düsseldorf, Germany
| | - Laura Reiche
- Department of Neurology, Medical Faculty, Heinrich Heine University, 40225 Düsseldorf, Germany
| | - Frank Kirchhoff
- Molecular Physiology, Center for Integrative Physiology and Molecular Medicine, University of Saarland, 66424 Homburg, Germany
| | | | - Joel Gruchot
- Department of Neurology, Medical Faculty, Heinrich Heine University, 40225 Düsseldorf, Germany
| | - Sven G Meuth
- Department of Neurology, Medical Faculty, Heinrich Heine University, 40225 Düsseldorf, Germany
| | - Patrick Küry
- Department of Neurology, Medical Faculty, Heinrich Heine University, 40225 Düsseldorf, Germany
| | - Peter Göttle
- Department of Neurology, Medical Faculty, Heinrich Heine University, 40225 Düsseldorf, Germany
| |
Collapse
|
3
|
Kemppainen S, Huber N, Willman RM, Zamora A, Mäkinen P, Martiskainen H, Takalo M, Haapasalo A, Sobrino T, González Gómez MA, Piñeiro Y, Rivas J, Himmelreich U, Hiltunen M. Organotypic Hippocampal Slice Cultures from Adult Tauopathy Mice and Theragnostic Evaluation of Nanomaterial Phospho-TAU Antibody-Conjugates. Cells 2023; 12:1422. [PMID: 37408256 DOI: 10.3390/cells12101422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 05/12/2023] [Accepted: 05/15/2023] [Indexed: 07/07/2023] Open
Abstract
Organotypic slice culture models surpass conventional in vitro methods in many aspects. They retain all tissue-resident cell types and tissue hierarchy. For studying multifactorial neurodegenerative diseases such as tauopathies, it is crucial to maintain cellular crosstalk in an accessible model system. Organotypic slice cultures from postnatal tissue are an established research tool, but adult tissue-originating systems are missing, yet necessary, as young tissue-originating systems cannot fully model adult or senescent brains. To establish an adult-originating slice culture system for tauopathy studies, we made hippocampal slice cultures from transgenic 5-month-old hTau.P301S mice. In addition to the comprehensive characterization, we set out to test a novel antibody for hyperphosphorylated TAU (pTAU, B6), with and without a nanomaterial conjugate. Adult hippocampal slices retained intact hippocampal layers, astrocytes, and functional microglia during culturing. The P301S-slice neurons expressed pTAU throughout the granular cell layer and secreted pTAU to the culture medium, whereas the wildtype slices did not. Additionally, cytotoxicity and inflammation-related determinants were increased in the P301S slices. Using fluorescence microscopy, we showed target engagement of the B6 antibody to pTAU-expressing neurons and a subtle but consistent decrease in intracellular pTAU with the B6 treatment. Collectively, this tauopathy slice culture model enables measuring the extracellular and intracellular effects of different mechanistic or therapeutic manipulations on TAU pathology in adult tissue without the hindrance of the blood-brain barrier.
Collapse
Affiliation(s)
- Susanna Kemppainen
- Institute of Biomedicine, University of Eastern Finland, 70211 Kuopio, Finland
| | - Nadine Huber
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, 70211 Kuopio, Finland
| | - Roosa-Maria Willman
- Institute of Biomedicine, University of Eastern Finland, 70211 Kuopio, Finland
| | - Ana Zamora
- Molecular Imaging and Photonics, KU Leuven, 3001 Leuven, Belgium
- Biomedical MRI, Department of Imaging and Pathology, KU Leuven, 3000 Leuven, Belgium
| | - Petra Mäkinen
- Institute of Biomedicine, University of Eastern Finland, 70211 Kuopio, Finland
| | - Henna Martiskainen
- Institute of Biomedicine, University of Eastern Finland, 70211 Kuopio, Finland
| | - Mari Takalo
- Institute of Biomedicine, University of Eastern Finland, 70211 Kuopio, Finland
| | - Annakaisa Haapasalo
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, 70211 Kuopio, Finland
| | - Tomás Sobrino
- NeuroAging Group (NEURAL), Clinical Neurosciences Research Laboratory (LINC), Health Research Institute of Santiago de Compostela (IDIS), 15706 Santiago de Compostela, Spain
| | - Manuel Antonio González Gómez
- Institute of Materials, Applied Physics Department, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Yolanda Piñeiro
- Institute of Materials, Applied Physics Department, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - José Rivas
- Institute of Materials, Applied Physics Department, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Uwe Himmelreich
- Biomedical MRI, Department of Imaging and Pathology, KU Leuven, 3000 Leuven, Belgium
| | - Mikko Hiltunen
- Institute of Biomedicine, University of Eastern Finland, 70211 Kuopio, Finland
| |
Collapse
|
4
|
McKenna M, Filteau JR, Butler B, Sluis K, Chungyoun M, Schimek N, Nance E. Organotypic whole hemisphere brain slice models to study the effects of donor age and oxygen-glucose-deprivation on the extracellular properties of cortical and striatal tissue. J Biol Eng 2022; 16:14. [PMID: 35698088 PMCID: PMC9195469 DOI: 10.1186/s13036-022-00293-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Accepted: 05/21/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The brain extracellular environment is involved in many critical processes associated with neurodevelopment, neural function, and repair following injury. Organization of the extracellular matrix and properties of the extracellular space vary throughout development and across different brain regions, motivating the need for platforms that provide access to multiple brain regions at different stages of development. We demonstrate the utility of organotypic whole hemisphere brain slices as a platform to probe regional and developmental changes in the brain extracellular environment. We also leverage whole hemisphere brain slices to characterize the impact of cerebral ischemia on different regions of brain tissue. RESULTS Whole hemisphere brain slices taken from postnatal (P) day 10 and P17 rats retained viable, metabolically active cells through 14 days in vitro (DIV). Oxygen-glucose-deprivation (OGD), used to model a cerebral ischemic event in vivo, resulted in reduced slice metabolic activity and elevated cell death, regardless of slice age. Slices from P10 and P17 brains showed an oligodendrocyte and microglia-driven proliferative response after OGD exposure, higher than the proliferative response seen in DIV-matched normal control slices. Multiple particle tracking in oxygen-glucose-deprived brain slices revealed that oxygen-glucose-deprivation impacts the extracellular environment of brain tissue differently depending on brain age and brain region. In most instances, the extracellular space was most difficult to navigate immediately following insult, then gradually provided less hindrance to extracellular nanoparticle diffusion as time progressed. However, changes in diffusion were not universal across all brain regions and ages. CONCLUSIONS We demonstrate whole hemisphere brain slices from P10 and P17 rats can be cultured up to two weeks in vitro. These brain slices provide a viable platform for studying both normal physiological processes and injury associated mechanisms with control over brain age and region. Ex vivo OGD impacted cortical and striatal brain tissue differently, aligning with preexisting data generated in in vivo models. These data motivate the need to account for both brain region and age when investigating mechanisms of injury and designing potential therapies for cerebral ischemia.
Collapse
Affiliation(s)
- Michael McKenna
- Department of Chemical Engineering, University of Washington, 105 Benson Hall, Box 351750, Seattle, WA, 98195-1750, USA
| | - Jeremy R Filteau
- Department of Chemical Engineering, University of Washington, 105 Benson Hall, Box 351750, Seattle, WA, 98195-1750, USA
| | - Brendan Butler
- Department of Chemical Engineering, University of Washington, 105 Benson Hall, Box 351750, Seattle, WA, 98195-1750, USA
| | - Kenneth Sluis
- Department of Chemical Engineering, University of Washington, 105 Benson Hall, Box 351750, Seattle, WA, 98195-1750, USA
| | - Michael Chungyoun
- Department of Chemical Engineering, University of Washington, 105 Benson Hall, Box 351750, Seattle, WA, 98195-1750, USA
| | - Nels Schimek
- Department of Chemistry, University of Washington, Seattle, WA, USA
| | - Elizabeth Nance
- Department of Chemical Engineering, University of Washington, 105 Benson Hall, Box 351750, Seattle, WA, 98195-1750, USA. .,e-Science Institute, University of Washington, Seattle, WA, USA. .,Department of Bioengineering, University of Washington, Seattle, WA, USA.
| |
Collapse
|
5
|
Slice Culture Modeling of CNS Viral Infection. Methods Mol Biol 2021. [PMID: 34033080 DOI: 10.1007/978-1-0716-1437-2_8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
The complexity of the central nervous system (CNS) is not recapitulated in cell culture models. Thin slicing and subsequent culture of CNS tissue has become a valued means to study neuronal and glial biology within the context of the physiologically relevant tissue milieu. Modern membrane-interface slice culturing methodology allows for straightforward access to both CNS tissue and feeding medium, enabling experimental manipulations and analyses that would otherwise be impossible in vivo. CNS slices can be successfully maintained in culture for up to several weeks for investigation of evolving pathology and long-term intervention in models of chronic neurologic disease.Herein, membrane-interface slice culture models for studying viral encephalitis and myelitis are detailed, with emphasis on the use of these models for investigation of pathogenesis and evaluation of novel treatment strategies. We describe techniques to (1) generate brain and spinal cord slices from rodent donors, (2) virally infect slices, (3) monitor viral replication, (4) assess virally induced injury/apoptosis, (5) characterize "CNS-specific" cytokine production, and, (6) treat slices with cytokines/pharmaceuticals. Although our focus is on CNS viral infection, we anticipate that the described methods can be adapted to address a wide range of investigations within the fields of neuropathology, neuroimmunology, and neuropharmacology.
Collapse
|
6
|
Grüßer L, Blaumeiser-Debarry R, Rossaint R, Krings M, Kremer B, Höllig A, Coburn M. A 6-Step Approach to Gain Higher Quality Results From Organotypic Hippocampal Brain Slices in a Traumatic Brain Injury Model. Basic Clin Neurosci 2020; 10:485-498. [PMID: 32284838 PMCID: PMC7149959 DOI: 10.32598/bcn.9.10.235] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Revised: 09/27/2018] [Accepted: 03/22/2019] [Indexed: 01/20/2023] Open
Abstract
Introduction Organotypic Hippocampal Brain Slices (OHBS) provide an advantageous alternative to in vivo models to scrutinize Traumatic Brain Injury (TBI). We followed a well-established TBI protocol, but noticed that several factors may influence the results in such a setup. Here, we describe a structured approach to generate more comparable results and discuss why specific eligibility criteria should be applied. Methods We defined necessary checkpoints and developed inclusion and exclusion criteria that take the observed variation in such a model into consideration. Objective measures include the identification and exclusion of pre-damaged slices and outliers. Six steps were outlined in this study. Results A six-step approach to enhance comparability is proposed and summarized in a flowchart. We applied the suggested measures to data derived from our TBI-experiments examining the impact of three different interventions in 1459 OHBS. Our exemplary results show that through equal requirements set for all slices more precise findings are ensured. Conclusion Results in a TBI experiment on OHBS should be analyzed critically as inhomogeneities may occur. In order to ensure more precise findings, a structured approach of comparing the results should be followed. Further research is recommended to confirm and further develop this framework.
Collapse
Affiliation(s)
- Linda Grüßer
- Department of Anesthesiology, RWTH Aachen University Hospital, Aachen, Germany
| | | | - Rolf Rossaint
- Department of Anesthesiology, RWTH Aachen University Hospital, Aachen, Germany
| | - Matthias Krings
- Department of Anesthesiology and Intensive Care, Medizinisches Zentrum StaedteRegion Aachen, Aachen, Germany
| | - Benedikt Kremer
- Department of Neurosurgery, RWTH Aachen University Hospital, Aachen, Germany
| | - Anke Höllig
- Department of Neurosurgery, RWTH Aachen University Hospital, Aachen, Germany
| | - Mark Coburn
- Department of Anesthesiology, RWTH Aachen University Hospital, Aachen, Germany
| |
Collapse
|
7
|
Humpel C. Organotypic Brain Slices of ADULT Transgenic Mice: A Tool to Study Alzheimer's Disease. Curr Alzheimer Res 2020; 16:172-181. [PMID: 30543174 DOI: 10.2174/1567205016666181212153138] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Revised: 11/23/2018] [Accepted: 11/29/2018] [Indexed: 01/21/2023]
Abstract
Transgenic mice have been extensively used to study the Alzheimer pathology. In order to reduce, refine and replace (3Rs) the number of animals, ex vivo cultures are used and optimized. Organotypic brain slices are the most potent ex vivo slice culture models, keeping the 3-dimensional structure of the brain and being closest to the in vivo situation. Organotypic brain slice cultures have been used for many decades but were mainly prepared from postnatal (day 8-10) old rats or mice. More recent work (including our lab) now aims to culture organotypic brain slices from adult mice including transgenic mice. Especially in Alzheimer´s disease research, brain slices from adult transgenic mice will be useful to study beta-amyloid plaques, tau pathology and glial activation. This review will summarize the studies using organotypic brain slice cultures from adult mice to mimic Alzheimer's disease and will highlight advantages and also pitfalls using this technique.
Collapse
Affiliation(s)
- Christian Humpel
- Laboratory of Psychiatry and Experimental Alzheimer's Research, Medical University of Innsbruck, Innsbruck, Austria
| |
Collapse
|
8
|
Xiao L, Wei F, Zhou Y, Anderson GJ, Frazer DM, Lim YC, Liu T, Xiao Y. Dihydrolipoic Acid-Gold Nanoclusters Regulate Microglial Polarization and Have the Potential To Alter Neurogenesis. NANO LETTERS 2020; 20:478-495. [PMID: 31789044 DOI: 10.1021/acs.nanolett.9b04216] [Citation(s) in RCA: 72] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Microglia-mediated neuroinflammation is one of the most significant features in a variety of central nervous system (CNS) disorders such as traumatic brain injury, stroke, and many neurodegenerative diseases. Microglia become polarized upon stimulation. The two extremes of the polarization are the neuron-destructive proinflammatory M1-like and the neuron-regenerative M2-like phenotypes. Thus, manipulating microglial polarization toward the M2 phenotype is a promising therapeutic approach for CNS repair and regeneration. It has been reported that nanoparticles are potential tools for regulating microglial polarization. Gold nanoclusters (AuNCs) could penetrate the blood-brain barrier and have neuroprotective effects, suggesting the possibility of utilizing AuNCs to regulate microglial polarization and improve neuronal regeneration in CNS. In the current study, AuNCs functionalized with dihydrolipoic acid (DHLA-AuNCs), an antioxidant with demonstrated neuroprotective roles, were prepared, and their effects on polarization of a microglial cell line (BV2) were examined. DHLA-AuNCs effectively suppressed proinflammatory processes in BV2 cells by inducing polarization toward the M2-like phenotype. This was associated with a decrease in reactive oxygen species and reduced NF-kB signaling and an improvement in cell survival coupled with enhanced autophagy and inhibited apoptosis. Conditioned medium from DHLA-AuNC-treated BV2 cells was able to enhance neurogenesis in both the neuronal cell line N2a and in an ex vivo brain slice stroke model. The direct treatment of brain slices with DHLA-AuNCs also ameliorated stroke-related tissue injury and reduced astrocyte activation (astrogliosis). This study suggests that by regulating neuroinflammation to improve neuronal regeneration, DHLA-AuNCs could be a potential therapeutic agent in CNS disorders.
Collapse
Affiliation(s)
- Lan Xiao
- Institute of Health and Biomedical Innovation , Queensland University of Technology , 60 Musk Avenue , Kelvin Grove, Brisbane , QLD 4059 , Australia
| | - Fei Wei
- Institute of Health and Biomedical Innovation , Queensland University of Technology , 60 Musk Avenue , Kelvin Grove, Brisbane , QLD 4059 , Australia
| | - Yinghong Zhou
- Institute of Health and Biomedical Innovation , Queensland University of Technology , 60 Musk Avenue , Kelvin Grove, Brisbane , QLD 4059 , Australia
- The Australia-China Centre for Tissue Engineering and Regenerative Medicine (ACCTERM) , https://research.qut.edu.au/accterm/
| | - Gregory J Anderson
- QIMR Berghofer Medical Research Institute , 300 Herston Road , Brisbane , QLD 4006 , Australia
| | - David M Frazer
- QIMR Berghofer Medical Research Institute , 300 Herston Road , Brisbane , QLD 4006 , Australia
| | - Yi Chieh Lim
- QIMR Berghofer Medical Research Institute , 300 Herston Road , Brisbane , QLD 4006 , Australia
| | - Tianqing Liu
- QIMR Berghofer Medical Research Institute , 300 Herston Road , Brisbane , QLD 4006 , Australia
| | - Yin Xiao
- Institute of Health and Biomedical Innovation , Queensland University of Technology , 60 Musk Avenue , Kelvin Grove, Brisbane , QLD 4059 , Australia
- The Australia-China Centre for Tissue Engineering and Regenerative Medicine (ACCTERM) , https://research.qut.edu.au/accterm/
| |
Collapse
|
9
|
Croft CL, Futch HS, Moore BD, Golde TE. Organotypic brain slice cultures to model neurodegenerative proteinopathies. Mol Neurodegener 2019; 14:45. [PMID: 31791377 PMCID: PMC6889333 DOI: 10.1186/s13024-019-0346-0] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Accepted: 11/13/2019] [Indexed: 01/30/2023] Open
Abstract
Organotypic slice cultures of brain or spinal cord have been a longstanding tool in neuroscience research but their utility for understanding Alzheimer's disease (AD) and other neurodegenerative proteinopathies has only recently begun to be evaluated. Organotypic brain slice cultures (BSCs) represent a physiologically relevant three-dimensional model of the brain. BSCs support all the central nervous system (CNS) cell types and can be produced from brain areas involved in neurodegenerative disease. BSCs can be used to better understand the induction and significance of proteinopathies underlying the development and progression of AD and other neurodegenerative disorders, and in the future may serve as bridging technologies between cell culture and in vivo experiments for the development and evaluation of novel therapeutic targets and strategies. We review the initial development and general use of BSCs in neuroscience research and highlight the advantages of these cultures as an ex vivo model. Subsequently we focus on i) BSC-based modeling of AD and other neurodegenerative proteinopathies ii) use of BSCs to understand mechanisms underlying these diseases and iii) how BSCs can serve as tools to screen for suitable therapeutics prior to in vivo investigations. Finally, we will examine i) open questions regarding the use of such cultures and ii) how emerging technologies such as recombinant adeno-associated viruses (rAAV) may be combined with these models to advance translational research relevant to neurodegenerative disorders.
Collapse
Affiliation(s)
- C L Croft
- Department of Neuroscience, College of Medicine, University of Florida, Gainesville, FL, 32610, USA.,Center for Translational Research in Neurodegenerative Disease, College of Medicine, University of Florida, Gainesville, FL, 32610, USA
| | - H S Futch
- Department of Neuroscience, College of Medicine, University of Florida, Gainesville, FL, 32610, USA.,Center for Translational Research in Neurodegenerative Disease, College of Medicine, University of Florida, Gainesville, FL, 32610, USA
| | - B D Moore
- Department of Neuroscience, College of Medicine, University of Florida, Gainesville, FL, 32610, USA.,Center for Translational Research in Neurodegenerative Disease, College of Medicine, University of Florida, Gainesville, FL, 32610, USA
| | - T E Golde
- Department of Neuroscience, College of Medicine, University of Florida, Gainesville, FL, 32610, USA. .,Center for Translational Research in Neurodegenerative Disease, College of Medicine, University of Florida, Gainesville, FL, 32610, USA. .,McKnight Brain Institute, College of Medicine, University of Florida, Gainesville, FL, 32610, USA.
| |
Collapse
|
10
|
Koziakova M, Harris K, Edge CJ, Franks NP, White IL, Dickinson R. Noble gas neuroprotection: xenon and argon protect against hypoxic-ischaemic injury in rat hippocampus in vitro via distinct mechanisms. Br J Anaesth 2019; 123:601-609. [PMID: 31470983 PMCID: PMC6871267 DOI: 10.1016/j.bja.2019.07.010] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Revised: 07/18/2019] [Accepted: 07/19/2019] [Indexed: 12/11/2022] Open
Abstract
Background Noble gases may provide novel treatments for neurological injuries such as ischaemic and traumatic brain injury. Few studies have evaluated the complete series of noble gases under identical conditions in the same model. Methods We used an in vitro model of hypoxia–ischaemia to evaluate the neuroprotective properties of the series of noble gases, helium, neon, argon, krypton, and xenon. Organotypic hippocampal brain slices from mice were subjected to oxygen-glucose deprivation, and injury was quantified using propidium iodide fluorescence. Results Both xenon and argon were equally effective neuroprotectants, with 0.5 atm of xenon or argon reducing injury by 96% (P<0.0001), whereas helium, neon, and krypton were devoid of any protective effect. Neuroprotection by xenon, but not argon, was reversed by elevated glycine. Conclusions Xenon and argon are equally effective as neuroprotectants against hypoxia–ischaemia in vitro, with both gases preventing injury development. Although xenon's neuroprotective effect may be mediated by inhibition of the N-methyl-d-aspartate receptor at the glycine site, argon acts via a different mechanism. These findings may have important implications for their clinical use as neuroprotectants.
Collapse
Affiliation(s)
- Mariia Koziakova
- Anaesthetics, Pain Medicine and Intensive Care Section, Department of Surgery and Cancer, Imperial College London, London, UK
| | - Katie Harris
- Anaesthetics, Pain Medicine and Intensive Care Section, Department of Surgery and Cancer, Imperial College London, London, UK
| | - Christopher J Edge
- Department of Life Sciences, Imperial College London, London, UK; Department of Anaesthetics, Royal Berkshire Hospital NHS Foundation Trust, London Road, Reading, UK
| | | | - Ian L White
- Department of Anaesthetics, St Peter's Hospital, Chertsey, UK
| | - Robert Dickinson
- Anaesthetics, Pain Medicine and Intensive Care Section, Department of Surgery and Cancer, Imperial College London, London, UK; Royal British Legion Centre for Blast Injury Studies, Department of Bioengineering, Imperial College London, London, UK.
| |
Collapse
|
11
|
Toricelli M, Evangelista SR, Oliveira LR, Viel TA, Buck HS. Neuroprotective Effects of Kinin B2 Receptor in Organotypic Hippocampal Cultures of Middle-Aged Mice. Front Aging Neurosci 2019; 11:168. [PMID: 31354470 PMCID: PMC6639675 DOI: 10.3389/fnagi.2019.00168] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Accepted: 06/17/2019] [Indexed: 11/13/2022] Open
Abstract
Aging is a multifactorial phenomenon that results in several changes at cellular and molecular levels and is considered the main risk factor for some neurodegenerative diseases. Several evidence show the participation of the kallikrein-kinin system (KKS) in neurodegeneration and this system has been associated with inflammation and immunogenic responses in the central and peripheral systems by the activation of the B1 and B2 receptors. Previous work by our group showed that bradykinin (BK) and the B2 receptor played a possible role in neuroprotection. Therefore, the objective of this study was to evaluate the participation of B2 receptors in cell viability, neuroinflammatory response and neuroplasticity in organotypic hippocampal cultures (OHCs) of 6- and 12-month-old mice. It was observed that activation of the B2 receptor by bradykinin decreased the inflammatory response and increased plasticity in 12-month-old slices. Conversely, there was an increase in the inflammatory response and a decrease in neural plasticity in the 6-month-old slices. In both ages, an increase in cell viability was observed. This data suggests that the function of the kinin B2 receptor in the hippocampus is modulated by age, providing neuroprotective action in old age.
Collapse
Affiliation(s)
- Mariana Toricelli
- Department of Physiological Sciences, Santa Casa de São Paulo School of Medical Sciences, São Paulo, Brazil.,Research Group on Neuropharmacology of Aging-ReGNA, São Paulo, Brazil
| | - Sebastiana Ribeiro Evangelista
- Department of Physiological Sciences, Santa Casa de São Paulo School of Medical Sciences, São Paulo, Brazil.,Research Group on Neuropharmacology of Aging-ReGNA, São Paulo, Brazil
| | - Larissa Rolim Oliveira
- Department of Physiological Sciences, Santa Casa de São Paulo School of Medical Sciences, São Paulo, Brazil
| | - Tania Araujo Viel
- Research Group on Neuropharmacology of Aging-ReGNA, São Paulo, Brazil.,School of Arts, Sciences and Humanities, University of São Paulo, São Paulo, Brazil
| | - Hudson Sousa Buck
- Department of Physiological Sciences, Santa Casa de São Paulo School of Medical Sciences, São Paulo, Brazil.,Research Group on Neuropharmacology of Aging-ReGNA, São Paulo, Brazil
| |
Collapse
|
12
|
Campos-Pires R, Koziakova M, Yonis A, Pau A, Macdonald W, Harris K, Edge CJ, Franks NP, Mahoney PF, Dickinson R. Xenon Protects against Blast-Induced Traumatic Brain Injury in an In Vitro Model. J Neurotrauma 2018; 35:1037-1044. [PMID: 29285980 PMCID: PMC5899289 DOI: 10.1089/neu.2017.5360] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The aim of this study was to evaluate the neuroprotective efficacy of the inert gas xenon as a treatment for patients with blast-induced traumatic brain injury in an in vitro laboratory model. We developed a novel blast traumatic brain injury model using C57BL/6N mouse organotypic hippocampal brain-slice cultures exposed to a single shockwave, with the resulting injury quantified using propidium iodide fluorescence. A shock tube blast generator was used to simulate open field explosive blast shockwaves, modeled by the Friedlander waveform. Exposure to blast shockwave resulted in significant (p < 0.01) injury that increased with peak-overpressure and impulse of the shockwave, and which exhibited a secondary injury development up to 72 h after trauma. Blast-induced propidium iodide fluorescence overlapped with cleaved caspase-3 immunofluorescence, indicating that shock-wave–induced cell death involves apoptosis. Xenon (50% atm) applied 1 h after blast exposure reduced injury 24 h (p < 0.01), 48 h (p < 0.05), and 72 h (p < 0.001) later, compared with untreated control injury. Xenon-treated injured slices were not significantly different from uninjured sham slices at 24 h and 72 h. We demonstrate for the first time that xenon treatment after blast traumatic brain injury reduces initial injury and prevents subsequent injury development in vitro. Our findings support the idea that xenon may be a potential first-line treatment for those with blast-induced traumatic brain injury.
Collapse
Affiliation(s)
- Rita Campos-Pires
- 1 Anaesthetics, Pain Medicine and Intensive Care Section, Department of Surgery and Cancer, Imperial College London , London, United Kingdom .,2 Royal British Legion Centre for Blast Injury Studies, Department of Bioengineering, Imperial College London , London, United Kingdom
| | - Mariia Koziakova
- 1 Anaesthetics, Pain Medicine and Intensive Care Section, Department of Surgery and Cancer, Imperial College London , London, United Kingdom .,2 Royal British Legion Centre for Blast Injury Studies, Department of Bioengineering, Imperial College London , London, United Kingdom
| | - Amina Yonis
- 1 Anaesthetics, Pain Medicine and Intensive Care Section, Department of Surgery and Cancer, Imperial College London , London, United Kingdom
| | - Ashni Pau
- 1 Anaesthetics, Pain Medicine and Intensive Care Section, Department of Surgery and Cancer, Imperial College London , London, United Kingdom
| | - Warren Macdonald
- 2 Royal British Legion Centre for Blast Injury Studies, Department of Bioengineering, Imperial College London , London, United Kingdom .,3 Department of Bioengineering, Imperial College London , London, United Kingdom
| | - Katie Harris
- 1 Anaesthetics, Pain Medicine and Intensive Care Section, Department of Surgery and Cancer, Imperial College London , London, United Kingdom
| | - Christopher J Edge
- 4 Department of Life Sciences, Imperial College London , London, United Kingdom .,5 Department of Anaesthetics, Royal Berkshire Hospital NHS Foundation Trust , Reading, United Kingdom
| | - Nicholas P Franks
- 4 Department of Life Sciences, Imperial College London , London, United Kingdom
| | - Peter F Mahoney
- 6 Royal Centre for Defence Medicine , Medical Directorate Joint Force Command, ICT Centre, Birmingham, United Kingdom
| | - Robert Dickinson
- 1 Anaesthetics, Pain Medicine and Intensive Care Section, Department of Surgery and Cancer, Imperial College London , London, United Kingdom .,2 Royal British Legion Centre for Blast Injury Studies, Department of Bioengineering, Imperial College London , London, United Kingdom
| |
Collapse
|
13
|
Jang S, Kim H, Kim HJ, Lee SK, Kim EW, Namkoong K, Kim E. Long-Term Culture of Organotypic Hippocampal Slice from Old 3xTg-AD Mouse: An ex vivo Model of Alzheimer's Disease. Psychiatry Investig 2018; 15:205-213. [PMID: 29475217 PMCID: PMC5900409 DOI: 10.30773/pi.2017.04.02] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/07/2017] [Revised: 03/14/2017] [Accepted: 04/02/2017] [Indexed: 12/11/2022] Open
Abstract
OBJECTIVE Conventional methods for organotypic hippocampal tissue slice culture (OHSC) have shown several disadvantages or limitations regarding age of animals used, duration of culture and difficulty using neurodegenerative models. Therefore, we tried to establish OHSC from old 3xTg-Alzheimer's disease (AD) mice for longer period (over 4 weeks) and to validate utility of this system as a valid platform for translational neuroscience of AD. METHODS OHSC was performed with old 3xTg-AD mice (12-14 months), old wild type mice (12-14 months) and young 3xTg-AD mice (2-4 months) using serum-free medium for 4 weeks. Hippocampal structure was evaluated by 4', 6-diamidino-2-phenylindole (DAPI) intensity and neuronal metabolism was measured by Alamarblue assay. Pathologic characteristics of AD were also investigated; β-amyloid levels by ELISA, amyloid plaque deposition by Thioflavin-S staining, and glial activation by immunohistochemistry. RESULTS Following 4-week culture in serum-free media, hippocampal cells and layers were well preserved in cultured slices from old AD mice as was in those from young AD and old wild type mice. On the contrary, excessive regression of total visible cells was observed in conventional serum-containing medium regardless of genotype of mice. In parallel with this well preserved structure, major pathologic characteristics of AD were also well manifested in hippocampal slices from old AD mice. CONCLUSION Our findings suggest that long-term OHSC from old 3xTg-AD mouse can serve as a promising ex vivo system for studies on pathophysiology of AD, especially with the minimum number of sacrifice of experimental animals.
Collapse
Affiliation(s)
- Sooah Jang
- Department of Psychiatry, Yonsei University College of Medicine, Seoul, Republic of Korea.,Institute of Behavioral Science in Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Hyunjeong Kim
- Department of Psychiatry, Yonsei University College of Medicine, Seoul, Republic of Korea.,Brain Korea 21 Plus Project for Medical Science, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Hye-Jin Kim
- Department of Psychiatry, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Su Kyoung Lee
- Department of Psychiatry, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Eun Woo Kim
- Department of Psychiatry, Yonsei University College of Medicine, Seoul, Republic of Korea.,Brain Korea 21 Plus Project for Medical Science, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Kee Namkoong
- Department of Psychiatry, Yonsei University College of Medicine, Seoul, Republic of Korea.,Institute of Behavioral Science in Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Eosu Kim
- Department of Psychiatry, Yonsei University College of Medicine, Seoul, Republic of Korea.,Institute of Behavioral Science in Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea.,Brain Korea 21 Plus Project for Medical Science, Yonsei University College of Medicine, Seoul, Republic of Korea
| |
Collapse
|
14
|
Tan GA, Furber KL, Thangaraj MP, Sobchishin L, Doucette JR, Nazarali AJ. Organotypic Cultures from the Adult CNS: A Novel Model to Study Demyelination and Remyelination Ex Vivo. Cell Mol Neurobiol 2018; 38:317-328. [PMID: 28795301 DOI: 10.1007/s10571-017-0529-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2017] [Accepted: 07/31/2017] [Indexed: 12/11/2022]
Abstract
Experimental models of multiple sclerosis (MS) have significantly advanced our understanding of pathophysiology and therapeutic interventions. Although in vivo rodent models are considered to most closely represent the complex cellular and molecular disease states of the human central nervous system (CNS), these can be costly to maintain and require long timelines. Organotypic slice cultures maintain the cytotypic organization observed in the intact CNS, yet provide many of the experimental advantages of in vitro cell culture models. Cerebellar organotypic cultures have proven useful for studying myelination and remyelination, but this model has only been established using early postnatal tissue. This young brain tissue allows for neuro development ex vivo to mimic the 'mature' CNS; however, there are many differences between postnatal and adult organotypic cultures. This may be particularly relevant to MS, as a major barrier to myelin regeneration is age. This paper describes a modified protocol to study demyelination and remyelination in adult cerebellar tissue, which has been used to demonstrate neuroprotection with omega-3 fatty acids. Thus, adult cerebellar organotypic cultures provide a novel ex vivo platform for screening potential therapies in myelin degeneration and repair.
Collapse
Affiliation(s)
- Glaiza A Tan
- Laboratory of Molecular Cell Biology, College of Pharmacy and Nutrition, University of Saskatchewan, Saskatoon, SK, Canada
- Neuroscience Research Cluster, University of Saskatchewan, Saskatoon, SK, Canada
| | - Kendra L Furber
- Laboratory of Molecular Cell Biology, College of Pharmacy and Nutrition, University of Saskatchewan, Saskatoon, SK, Canada.
- Neuroscience Research Cluster, University of Saskatchewan, Saskatoon, SK, Canada.
| | - Merlin P Thangaraj
- Laboratory of Molecular Cell Biology, College of Pharmacy and Nutrition, University of Saskatchewan, Saskatoon, SK, Canada
- Neuroscience Research Cluster, University of Saskatchewan, Saskatoon, SK, Canada
| | - LaRhonda Sobchishin
- Laboratory of Molecular Cell Biology, College of Pharmacy and Nutrition, University of Saskatchewan, Saskatoon, SK, Canada
- Neuroscience Research Cluster, University of Saskatchewan, Saskatoon, SK, Canada
| | - J Ronald Doucette
- Department of Anatomy and Cell Biology, College of Medicine, University of Saskatchewan, Saskatoon, SK, Canada
- Neuroscience Research Cluster, University of Saskatchewan, Saskatoon, SK, Canada
- Cameco Multiple Sclerosis Neuroscience Research Center, City Hospital, Saskatoon, SK, Canada
| | - Adil J Nazarali
- Laboratory of Molecular Cell Biology, College of Pharmacy and Nutrition, University of Saskatchewan, Saskatoon, SK, Canada
- Neuroscience Research Cluster, University of Saskatchewan, Saskatoon, SK, Canada
- Cameco Multiple Sclerosis Neuroscience Research Center, City Hospital, Saskatoon, SK, Canada
| |
Collapse
|
15
|
Perez-Alcazar M, Culley G, Lyckenvik T, Mobarrez K, Bjorefeldt A, Wasling P, Seth H, Asztely F, Harrer A, Iglseder B, Aigner L, Hanse E, Illes S. Human Cerebrospinal Fluid Promotes Neuronal Viability and Activity of Hippocampal Neuronal Circuits In Vitro. Front Cell Neurosci 2016; 10:54. [PMID: 26973467 PMCID: PMC4777716 DOI: 10.3389/fncel.2016.00054] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2016] [Accepted: 02/22/2016] [Indexed: 11/13/2022] Open
Abstract
For decades it has been hypothesized that molecules within the cerebrospinal fluid (CSF) diffuse into the brain parenchyma and influence the function of neurons. However, the functional consequences of CSF on neuronal circuits are largely unexplored and unknown. A major reason for this is the absence of appropriate neuronal in vitro model systems, and it is uncertain if neurons cultured in pure CSF survive and preserve electrophysiological functionality in vitro. In this article, we present an approach to address how human CSF (hCSF) influences neuronal circuits in vitro. We validate our approach by comparing the morphology, viability, and electrophysiological function of single neurons and at the network level in rat organotypic slice and primary neuronal cultures cultivated either in hCSF or in defined standard culture media. Our results demonstrate that rodent hippocampal slices and primary neurons cultured in hCSF maintain neuronal morphology and preserve synaptic transmission. Importantly, we show that hCSF increases neuronal viability and the number of electrophysiologically active neurons in comparison to the culture media. In summary, our data indicate that hCSF represents a physiological environment for neurons in vitro and a superior culture condition compared to the defined standard media. Moreover, this experimental approach paves the way to assess the functional consequences of CSF on neuronal circuits as well as suggesting a novel strategy for central nervous system (CNS) disease modeling.
Collapse
Affiliation(s)
- Marta Perez-Alcazar
- Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg Gothenburg, Sweden
| | - Georgia Culley
- Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg Gothenburg, Sweden
| | - Tim Lyckenvik
- Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg Gothenburg, Sweden
| | - Kristoffer Mobarrez
- Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg Gothenburg, Sweden
| | - Andreas Bjorefeldt
- Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg Gothenburg, Sweden
| | - Pontus Wasling
- Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg Gothenburg, Sweden
| | - Henrik Seth
- Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg Gothenburg, Sweden
| | - Frederik Asztely
- Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg Gothenburg, Sweden
| | - Andrea Harrer
- Department of Neurology, Christian-Doppler-Klinik, Paracelsus Medical University Salzburg, Austria
| | - Bernhard Iglseder
- Department of Geriatric Medicine, Christian-Doppler-Klinik, Paracelsus Medical University Salzburg, Austria
| | - Ludwig Aigner
- Institute of Molecular Regenerative Medicine, Paracelsus Medical UniversitySalzburg, Austria; Spinal Cord Injury and Tissue Regeneration Center Salzburg (SCI-TReCS), Paracelsus Medical UniversitySalzburg, Austria
| | - Eric Hanse
- Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg Gothenburg, Sweden
| | - Sebastian Illes
- Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of GothenburgGothenburg, Sweden; Institute of Molecular Regenerative Medicine, Paracelsus Medical UniversitySalzburg, Austria; Spinal Cord Injury and Tissue Regeneration Center Salzburg (SCI-TReCS), Paracelsus Medical UniversitySalzburg, Austria
| |
Collapse
|
16
|
Abstract
Organotypic hippocampal slice cultures (OHSCs) have been used as a powerful ex vivo model for decades. They have been used successfully in studies of neuronal death, microglial activation, mossy fiber regeneration, neurogenesis, and drug screening. As a pre-animal experimental phase for physiologic and pathologic brain research, OHSCs offer outcomes that are relatively closer to those of whole-animal studies than outcomes obtained from cell culture in vitro. At the same time, mechanisms can be studied more precisely in OHSCs than they can be in vivo. Here, we summarize stroke and traumatic brain injury research that has been carried out in OHSCs and review classic experimental applications of OHSCs and its limitations.
Collapse
|
17
|
Activation of NMDA receptors thickens the postsynaptic density via proteolysis. Neurosci Res 2015; 101:6-14. [PMID: 26188126 DOI: 10.1016/j.neures.2015.07.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2015] [Revised: 06/22/2015] [Accepted: 07/06/2015] [Indexed: 01/25/2023]
Abstract
The postsynaptic density (PSD) is a protein complex that is critical for synaptic transmission. Ultrastructural changes in the PSD are therefore likely to modify synaptic functions. In this study, we investigated the ultrastructural changes in the PSD in the hippocampal CA1 stratum radiatum following neuronal excitation. Oxygen-glucose deprivation-induced PSD thickening in hippocampal slice cultures was blocked by the N-methyl-d-aspartate (NMDA) receptor antagonist MK801. To gain more insight into the mechanisms underlying NMDA receptor-mediated PSD thickening, we assessed the area, length, and thickness of the PSD after NMDA treatment. The PSDs thickened with just 2 min of NMDA receptor stimulation, and this treatment was considered sublethal. When N-acetyl-leucyl-leucyl-norleucinal, an inhibitor of calpain, cathepsins, and the proteasome, was applied, NMDA-induced PSD thickening was abolished. Furthermore, the calcium-induced calcium release inhibitor, ryanodine, reduced NMDA receptor-mediated PSD thickening. These results suggest that NMDA receptor activation induces PSD thickening by proteolysis through intracellular calcium increase, including that induced by calcium.
Collapse
|
18
|
Humpel C. Organotypic vibrosections from whole brain adult Alzheimer mice (overexpressing amyloid-precursor-protein with the Swedish-Dutch-Iowa mutations) as a model to study clearance of beta-amyloid plaques. Front Aging Neurosci 2015; 7:47. [PMID: 25914642 PMCID: PMC4391240 DOI: 10.3389/fnagi.2015.00047] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2014] [Accepted: 03/24/2015] [Indexed: 01/01/2023] Open
Abstract
Alzheimer's disease is a severe neurodegenerative disorder of the brain, pathologically characterized by extracellular beta-amyloid plaques, intraneuronal Tau inclusions, inflammation, reactive glial cells, vascular pathology and neuronal cell death. The degradation and clearance of beta-amyloid plaques is an interesting therapeutic approach, and the proteases neprilysin (NEP), insulysin and matrix metalloproteinases (MMP) are of particular interest. The aim of this project was to establish and characterize a simple in vitro model to study the degrading effects of these proteases. Organoytpic brain vibrosections (120 μm thick) were sectioned from adult (9 month old) wildtype and transgenic mice (expressing amyloid precursor protein (APP) harboring the Swedish K670N/M671L, Dutch E693Q, and Iowa D694N mutations; APP_SDI) and cultured for 2 weeks. Plaques were stained by immunohistochemistry for beta-amyloid and Thioflavin S. Our data show that plaques were evident in 2 week old cultures from 9 month old transgenic mice. These plaques were surrounded by reactive GFAP+ astroglia and Iba1+ microglia. Incubation of fresh slices for 2 weeks with 1-0.1-0.01 μg/ml of NEP, insulysin, MMP-2, or MMP-9 showed that NEP, insulysin, and MMP-9 markedly degraded beta-amyloid plaques but only at the highest concentration. Our data provide for the first time a potent and powerful living brain vibrosection model containing a high number of plaques, which allows to rapidly and simply study the degradation and clearance of beta-amyloid plaques in vitro.
Collapse
Affiliation(s)
- Christian Humpel
- Laboratory of Psychiatry and Experimental Alzheimer's Research, Department of Psychiatry and Psychotherapy, Medical University of Innsbruck Innsbruck, Austria
| |
Collapse
|
19
|
The organotypic longitudinal spinal cord slice culture for stem cell study. Stem Cells Int 2015; 2015:471216. [PMID: 25802530 PMCID: PMC4329758 DOI: 10.1155/2015/471216] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2014] [Revised: 12/29/2014] [Accepted: 01/06/2015] [Indexed: 01/05/2023] Open
Abstract
The objective of this paper is to describe in detail the method of organotypic longitudinal spinal cord slice culture and the scientific basis for its potential utility. The technique is based on the interface method, which was described previously and thereafter was modified in our laboratory. The most important advantage of the presented model is the preservation of the intrinsic spinal cord fiber tract and the ventrodorsal polarity of the spinal cord. All the processes occurring during axonal growth, regeneration, synapse formation, and myelination could be visualized while being cultured in vitro for up to 4-5 weeks after the slices had been isolated. Both pups and adult animals can undergo the same, equally efficient procedures when going by the protocol in question. The urgent need for an appropriate in vitro model for spinal cord regeneration results from a greater number of clinical trials concerning regenerative medicine in the spinal cord injury and from still insufficient knowledge of the molecular mechanisms involved in the neuroreparative processes. The detailed method of organotypic longitudinal spinal cord slice culture is accompanied by examples of its application to studying biological processes to which both the CNS inhabiting and grafted cells are subjected.
Collapse
|
20
|
Thal SC, Neuhaus W. The blood-brain barrier as a target in traumatic brain injury treatment. Arch Med Res 2014; 45:698-710. [PMID: 25446615 DOI: 10.1016/j.arcmed.2014.11.006] [Citation(s) in RCA: 97] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2014] [Accepted: 11/12/2014] [Indexed: 02/07/2023]
Abstract
Traumatic brain injury (TBI) is one of the most frequent causes of death in the young population. Several clinical trials have unsuccessfully focused on direct neuroprotective therapies. Recently immunotherapeutic strategies shifted into focus of translational research in acute CNS diseases. Cross-talk between activated microglia and blood-brain barrier (BBB) could initiate opening of the BBB and subsequent recruitment of systemic immune cells and mediators into the brain. Stabilization of the BBB after TBI could be a promising strategy to limit neuronal inflammation, secondary brain damage and acute neurodegeneration. This review provides an overview on the pathophysiology of TBI and brain edema formation including definitions and classification of TBI, current clinical treatment strategies, as well as current understanding on the underlying cellular processes. A summary of in vivo and in vitro models to study different aspects of TBI is presented. Three mechanisms proposed for stabilization of the BBB, myosin light chain kinases, glucocorticoid receptors and peroxisome proliferator-activated receptors are reviewed for their influence on barrier-integrity and outcome after TBI. In conclusion, the BBB is recommended as a promising target for the treatment of traumatic brain injury, and it is suggested that a combination of BBB stabilization and neuroprotectants may improve therapeutic success.
Collapse
Affiliation(s)
- Serge C Thal
- Department of Anesthesia and Critical Care, Johannes Gutenberg University, Mainz, Germany
| | - Winfried Neuhaus
- Department of Pharmaceutical Chemistry, University of Vienna, Althanstrasse, Vienna, Austria; Department of Anesthesia and Critical Care, University Hospital Wuerzburg, Wuerzburg, Germany.
| |
Collapse
|
21
|
O'Carroll SJ, Becker DL, Davidson JO, Gunn AJ, Nicholson LFB, Green CR. The use of connexin-based therapeutic approaches to target inflammatory diseases. Methods Mol Biol 2014; 1037:519-46. [PMID: 24029957 DOI: 10.1007/978-1-62703-505-7_31] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Alterations in Connexin43 (Cx43) expression levels have been shown to play a role in inflammatory processes including skin wounding and neuroinflammation. Cx43 protein levels increase following a skin wound and can inhibit wound healing. Increased Cx43 has been observed following stroke, epilepsy, ischemia, optic nerve damage, and spinal cord injury with gap junctional communication and hemichannel opening leading to increased secondary damage via the inflammatory response. Connexin43 modulation has been identified as a potential target for protection and repair in neuroinflammation and skin wound repair. This review describes the use of a Cx43 specific antisense oligonucleotide (Cx43 AsODN) and peptide mimetics of the connexin extracellular loop domain to modulate Cx43 expression and/or function in inflammatory disorders of the skin and central nervous system. An overview of the role of connexin43 in inflammatory conditions, how antisense and peptide have allowed us to elucidate the role of Cx43 in these diseases, create models of diseases to test interventions and their potential for use clinically or in current clinical trials is presented. Antisense oligonucleotides are applied topically and have been used to improve wound healing following skin injury. They have also been used to develop ex vivo models of neuroinflammatory diseases that will allow testing of intervention strategies. The connexin mimetic peptides have shown potential in a number of neuroinflammatory disorders in ex vivo models as well as in vivo when delivered directly to the injury site or when delivered systemically.
Collapse
Affiliation(s)
- Simon J O'Carroll
- Department of Anatomy with Radiology, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | | | | | | | | | | |
Collapse
|
22
|
Katada R, Akdemir G, Asavapanumas N, Ratelade J, Zhang H, Verkman AS. Greatly improved survival and neuroprotection in aquaporin-4-knockout mice following global cerebral ischemia. FASEB J 2013; 28:705-14. [PMID: 24186965 DOI: 10.1096/fj.13-231274] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Aquaporin-4 (AQP4), the principal water channel in astrocytes, is involved in brain water movement, inflammation, and neuroexcitation. In this study, there was strong neuroprotection in mice lacking AQP4 in a model of global cerebral ischemia produced by transient, bilateral carotid artery occlusion (BCAO). Survival and neurological outcome were greatly improved in the AQP4(-/-) vs. AQP4(+/+) mice after occlusion, with large and robust differences in both outbred (CD1) and inbred (C57bl/6) mouse strains without or with mechanical ventilation. Improved survival was also seen in mice lacking the scaffold protein α-syntrophin, which manifest reduced astrocyte water permeability secondary to defective AQP4 plasma membrane targeting. Intracranial pressure elevation and brain water accumulation were much reduced in the AQP4(-/-) vs. AQP4(+/+) mice after carotid artery occlusion, as were blood-brain barrier (BBB) disruption and neuronal loss. Brain slices from AQP4(-/-) mice showed significantly reduced cell swelling and cytotoxicity in response to oxygen-glucose deprivation, compared with slices from AQP4(+/+) mice. Our findings suggest that the neuroprotective effect of AQP4 deletion in global cerebral ischemia involves reduced astrocyte swelling and brain water accumulation, resulting in reduced BBB disruption, inflammation, and neuron death. AQP4 water transport inhibition may improve survival and neurological outcome after cardiac arrest and in other conditions associated with global cerebral ischemia.
Collapse
Affiliation(s)
- Ryuichi Katada
- 1University of California, 1246 Health Sciences East Tower, Box 0521, San Francisco, CA 94143-0521, USA;
| | | | | | | | | | | |
Collapse
|
23
|
Neuroprotection against Traumatic Brain Injury by Xenon, but Not Argon, Is Mediated by Inhibition at the N-Methyl-d-Aspartate Receptor Glycine Site. Anesthesiology 2013; 119:1137-48. [DOI: 10.1097/aln.0b013e3182a2a265] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Abstract
Background:
Xenon, the inert anesthetic gas, is neuroprotective in models of brain injury. The authors investigate the neuroprotective mechanisms of the inert gases such as xenon, argon, krypton, neon, and helium in an in vitro model of traumatic brain injury.
Methods:
The authors use an in vitro model using mouse organotypic hippocampal brain slices, subjected to a focal mechanical trauma, with injury quantified by propidium iodide fluorescence. Patch clamp electrophysiology is used to investigate the effect of the inert gases on N-methyl-d-aspartate receptors and TREK-1 channels, two molecular targets likely to play a role in neuroprotection.
Results:
Xenon (50%) and, to a lesser extent, argon (50%) are neuroprotective against traumatic injury when applied after injury (xenon 43 ± 1% protection at 72 h after injury [N = 104]; argon 30 ± 6% protection [N = 44]; mean ± SEM). Helium, neon, and krypton are devoid of neuroprotective effect. Xenon (50%) prevents development of secondary injury up to 48 h after trauma. Argon (50%) attenuates secondary injury, but is less effective than xenon (xenon 50 ± 5% reduction in secondary injury at 72 h after injury [N = 104]; argon 34 ± 8% reduction [N = 44]; mean ± SEM). Glycine reverses the neuroprotective effect of xenon, but not argon, consistent with competitive inhibition at the N-methyl-d-aspartate receptor glycine site mediating xenon neuroprotection against traumatic brain injury. Xenon inhibits N-methyl-d-aspartate receptors and activates TREK-1 channels, whereas argon, krypton, neon, and helium have no effect on these ion channels.
Conclusions:
Xenon neuroprotection against traumatic brain injury can be reversed by increasing the glycine concentration, consistent with inhibition at the N-methyl-d-aspartate receptor glycine site playing a significant role in xenon neuroprotection. Argon and xenon do not act via the same mechanism.
Collapse
|
24
|
Daviaud N, Garbayo E, Lautram N, Franconi F, Lemaire L, Perez-Pinzon M, Montero-Menei CN. Modeling nigrostriatal degeneration in organotypic cultures, a new ex vivo model of Parkinson's disease. Neuroscience 2013; 256:10-22. [PMID: 24161279 DOI: 10.1016/j.neuroscience.2013.10.021] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2013] [Revised: 09/30/2013] [Accepted: 10/10/2013] [Indexed: 12/24/2022]
Abstract
Parkinson's disease (PD) is the second most frequent neurodegenerative disorder afflicting 2% of the population older than 65 years worldwide. Recently, brain organotypic slices have been used to model neurodegenerative disorders, including PD. They conserve brain three-dimensional architecture, synaptic connectivity and its microenvironment. This model has allowed researchers a simple and rapid method to observe cellular interactions and mechanisms. In the present study, we developed an organotypic PD model from rat brains that includes all the areas involved in the nigrostriatal pathway in a single slice preparation, without using neurotoxins to induce the dopaminergic lesion. The mechanical transection of the nigrostriatal pathway obtained during slice preparation induced PD-like histopathology. Progressive nigrostriatal degeneration was monitored combining innovative approaches, such as diffusion tensor magnetic resonance imaging (DT-RMI) to follow fiber degeneration and mass spectrometry to quantify striatal dopamine content, together with bright-field and fluorescence microscopy imaging. A substantia nigra dopaminergic cell number decrease was observed by immunohistochemistry against rat tyrosine hydroxylase (TH) reaching 80% after 2 days in culture associated with a 30% decrease of striatal TH-positive fiber density, a 15% loss of striatal dopamine content quantified by mass spectrometry and a 70% reduction of nigrostriatal fiber fractional anisotropy quantified by DT-RMI. In addition, a significant decline of medium spiny neuron density was observed from days 7 to 16. These sagittal organotypic slices could be used to study the early stage of PD, namely dopaminergic degeneration, and the late stage of the pathology with dopaminergic and GABAergic neuron loss. This novel model might improve the understanding of PD and may represent a promising tool to refine the evaluation of new therapeutic approaches.
Collapse
Affiliation(s)
- N Daviaud
- LUNAM University, Angers University, France; INSERM UMR S_1066, Angers University, France
| | - E Garbayo
- LUNAM University, Angers University, France; INSERM UMR S_1066, Angers University, France; Pharmacy and Pharmaceutical Technology Department, University of Navarra, Pamplona, Spain
| | - N Lautram
- LUNAM University, Angers University, France; INSERM UMR S_1066, Angers University, France
| | - F Franconi
- CIFAB-PRIMEX, LUNAM University, Angers University, France
| | - L Lemaire
- LUNAM University, Angers University, France; INSERM UMR S_1066, Angers University, France
| | - M Perez-Pinzon
- University of Miami, Miller School of Medicine, Miami, FL, USA
| | - C N Montero-Menei
- LUNAM University, Angers University, France; INSERM UMR S_1066, Angers University, France.
| |
Collapse
|
25
|
Daviaud N, Garbayo E, Schiller PC, Perez-Pinzon M, Montero-Menei CN. Organotypic cultures as tools for optimizing central nervous system cell therapies. Exp Neurol 2013; 248:429-40. [DOI: 10.1016/j.expneurol.2013.07.012] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2013] [Revised: 07/15/2013] [Accepted: 07/18/2013] [Indexed: 01/01/2023]
|
26
|
Kim H, Kim E, Park M, Lee E, Namkoong K. Organotypic hippocampal slice culture from the adult mouse brain: a versatile tool for translational neuropsychopharmacology. Prog Neuropsychopharmacol Biol Psychiatry 2013; 41:36-43. [PMID: 23159795 DOI: 10.1016/j.pnpbp.2012.11.004] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/08/2012] [Revised: 11/05/2012] [Accepted: 11/07/2012] [Indexed: 01/09/2023]
Abstract
One of the most significant barriers towards translational neuropsychiatry would be an unavailability of living brain tissues. Although organotypic brain tissue culture could be a useful alternative enabling observation of temporal changes induced by various drugs in living brain tissues, a proper method to establish a stable organotypic brain slice culture system using adult (rather than neonatal) hippocampus has been still elusive. In this study, we evaluated our simple method using the serum-free culture medium for successful adult organotypic hippocampal slice culture. Several tens of hippocampal slices from a single adult mouse (3-5 months old) were cultured in serum-free versus serum-containing conventional culture medium for 30 days and underwent various experiments to validate the effects of the existence of serum in the culture medium. Neither the excessive regression of neuronal viability nor metabolic deficiency was observed in the serum-free medium culture in contrast to the serum-containing medium culture. Despite such viability, newly generated immature neurons were scarcely detected in the serum-free culture, suggesting that the original neurons in the brain slice persist rather than being replaced by neurogenesis. Key structural features of in vivo neural tissue constituting astrocytes, neural processes, and pre- and post-synapses were also well preserved in the serum-free culture. In conclusion, using the serum-free culture medium, the adult hippocampal slice culture system will serve as a promising ex vivo tool for various fields of neuroscience, especially for studies on aging-related neuropsychiatric disorders or for high throughput screening of potential agents working against such disorders.
Collapse
Affiliation(s)
- Hyunjeong Kim
- Department of Psychiatry, Yonsei University College of Medicine, Seoul, Republic of Korea
| | | | | | | | | |
Collapse
|
27
|
Abstract
The complexity of the central nervous system (CNS) is not recapitulated in cell culture models. Thin slicing and subsequent culture of CNS tissue has become a valued means to study neuronal and glial biology within the context of the physiologically relevant tissue milieu. Modern membrane-interface slice culturing methodology allows straightforward access to both CNS tissue and feeding medium, enabling experimental manipulations and analyses that would otherwise be impossible in vivo. CNS slices can be successfully maintained in culture for up to several weeks for investigation of evolving pathology and long-term intervention in models of chronic neurologic disease.Herein, membrane-interface slice culture models for studying viral encephalitis and myelitis are detailed, with emphasis on the use of these models for investigation of pathogenesis and evaluation of novel treatment strategies. We describe techniques to (1) generate brain and spinal cord slices from rodent donors, (2) virally infect slices, (3) assess virally induced injury/apoptosis, (4) characterize "CNS-specific" cytokine production, and (5) treat slices with cytokines/pharmaceuticals. Although our focus is on CNS viral infection, we anticipate that the described methods can be adapted to address a wide range of investigations within the fields of neuropathology, neuroimmunology, and neuropharmacology.
Collapse
|
28
|
Mewes A, Franke H, Singer D. Organotypic brain slice cultures of adult transgenic P301S mice--a model for tauopathy studies. PLoS One 2012; 7:e45017. [PMID: 22984603 PMCID: PMC3439393 DOI: 10.1371/journal.pone.0045017] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2012] [Accepted: 08/14/2012] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND Organotypic brain slice cultures represent an excellent compromise between single cell cultures and complete animal studies, in this way replacing and reducing the number of animal experiments. Organotypic brain slices are widely applied to model neuronal development and regeneration as well as neuronal pathology concerning stroke, epilepsy and Alzheimer's disease (AD). AD is characterized by two protein alterations, namely tau hyperphosphorylation and excessive amyloid β deposition, both causing microglia and astrocyte activation. Deposits of hyperphosphorylated tau, called neurofibrillary tangles (NFTs), surrounded by activated glia are modeled in transgenic mice, e.g. the tauopathy model P301S. METHODOLOGY/PRINCIPAL FINDINGS In this study we explore the benefits and limitations of organotypic brain slice cultures made of mature adult transgenic mice as a potential model system for the multifactorial phenotype of AD. First, neonatal (P1) and adult organotypic brain slice cultures from 7- to 10-month-old transgenic P301S mice have been compared with regard to vitality, which was monitored with the lactate dehydrogenase (LDH)- and the MTT (3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) assays over 15 days. Neonatal slices displayed a constant high vitality level, while the vitality of adult slice cultures decreased significantly upon cultivation. Various preparation and cultivation conditions were tested to augment the vitality of adult slices and improvements were achieved with a reduced slice thickness, a mild hypothermic cultivation temperature and a cultivation CO(2) concentration of 5%. Furthermore, we present a substantial immunohistochemical characterization analyzing the morphology of neurons, astrocytes and microglia in comparison to neonatal tissue. CONCLUSION/SIGNIFICANCE Until now only adolescent animals with a maximum age of two months have been used to prepare organotypic brain slices. The current study provides evidence that adult organotypic brain slice cultures from 7- to 10-month-old mice independently of the transgenic modification undergo slow programmed cell death, caused by a dysfunction of the neuronal repair systems.
Collapse
Affiliation(s)
- Agneta Mewes
- Institute of Bioanalytical Chemistry, Center for Biotechnology and Biomedicine (BBZ), University of Leipzig, Leipzig, Germany
| | - Heike Franke
- Rudolf-Boehm-Institute of Pharmacology and Toxicology, University of Leipzig, Leipzig, Germany
| | - David Singer
- Institute of Bioanalytical Chemistry, Center for Biotechnology and Biomedicine (BBZ), University of Leipzig, Leipzig, Germany
- * E-mail:
| |
Collapse
|
29
|
Schoeler M, Loetscher PD, Rossaint R, Fahlenkamp AV, Eberhardt G, Rex S, Weis J, Coburn M. Dexmedetomidine is neuroprotective in an in vitro model for traumatic brain injury. BMC Neurol 2012; 12:20. [PMID: 22494498 PMCID: PMC3350422 DOI: 10.1186/1471-2377-12-20] [Citation(s) in RCA: 93] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2011] [Accepted: 04/11/2012] [Indexed: 11/10/2022] Open
Abstract
Background The α2-adrenoreceptor agonist dexmedetomidine is known to provide neuroprotection under ischemic conditions. In this study we investigated whether dexmedetomidine has a protective effect in an in vitro model for traumatic brain injury. Methods Organotypic hippocampal slice cultures were subjected to a focal mechanical trauma and then exposed to varying concentrations of dexmedetomidine. After 72 h cell injury was assessed using propidium iodide. In addition, the effects of delayed dexmedetomidine application, of hypothermia and canonical signalling pathway inhibitors were examined. Results Dexmedetomidine showed a protective effect on traumatically injured hippocampal cells with a maximum effect at a dosage of 1 μM. This effect was partially reversed by the simultaneous administration of the ERK inhibitor PD98059. Conclusion In this TBI model dexmedetomidine had a significant neuroprotective effect. Our results indicate that activation of ERK might be involved in mediating this effect.
Collapse
Affiliation(s)
- Marc Schoeler
- Department of Anesthesiology, University Hospital of the RWTH Aachen, Pauwelsstraße 30, 52074 Aachen, Germany
| | | | | | | | | | | | | | | |
Collapse
|
30
|
Su T, Paradiso B, Long YS, Liao WP, Simonato M. Evaluation of cell damage in organotypic hippocampal slice culture from adult mouse: a potential model system to study neuroprotection. Brain Res 2012; 1385:68-76. [PMID: 21303673 DOI: 10.1016/j.brainres.2011.01.115] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2010] [Revised: 11/04/2010] [Accepted: 01/31/2011] [Indexed: 12/20/2022]
Abstract
The use of organotypic hippocampal slice culture (OHSC) has become a powerful tool for studying cell damage in different neuropathological states, since it reproduces the basic morphological and functional properties of hippocampal neuronal network. However, the conventional OHSCs are established from postnatal animals rather than adult. Here we reevaluated the features of cell death in adult OHSC in detail and found potential utility for the study of neuroprotection. Organotypic culture of hippocampal slices from adult mice under conventional conditions led to a time-dependent and reproducible cell death. Around 6days in vitro (DIV), slices lost 50% of the cells, based on LDH release assessment. The cell death was greater than 90% after DIV 15. The cell loss was linearly correlated (r=0.944, P<0.01) with the time in culture. The electrophysiological responses to the stimulus in the cultured adult slices were accordingly reduced. The cell degeneration during adult OHSC might be utilized as a tool for studying neuroprotective effects in drug development. To illustrate this potential use, adult OHSCs were challenged with brain-derived neurotrophic factor (BDNF). We found that the continuous supplementation of 300ng/ml BDNF promoted cell survival of adult OHSC. Using immunohistochemistry and Western blot analyses of neuronal markers, we also demonstrated the pro-survival effects of BDNF on neurons in the adult OHSC system. It is suggested that OHSCs from adult mice might provide an alternative model system for neuronal degeneration, suitable for studying physiological factors and pharmacological compounds contributing to neuronal survival.
Collapse
Affiliation(s)
- Tao Su
- Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and Ministry of Education of China, Institute of Neuroscience and the Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.
| | | | | | | | | |
Collapse
|
31
|
Krajewska M, You Z, Rong J, Kress C, Huang X, Yang J, Kyoda T, Leyva R, Banares S, Hu Y, Sze CH, Whalen MJ, Salmena L, Hakem R, Head BP, Reed JC, Krajewski S. Neuronal deletion of caspase 8 protects against brain injury in mouse models of controlled cortical impact and kainic acid-induced excitotoxicity. PLoS One 2011; 6:e24341. [PMID: 21957448 PMCID: PMC3174961 DOI: 10.1371/journal.pone.0024341] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2011] [Accepted: 08/09/2011] [Indexed: 11/25/2022] Open
Abstract
Background Acute brain injury is an important health problem. Given the critical position of caspase 8 at the crossroads of cell death pathways, we generated a new viable mouse line (Ncasp8−/−), in which the gene encoding caspase 8 was selectively deleted in neurons by cre-lox system. Methodology/Principal Findings Caspase 8 deletion reduced rates of neuronal cell death in primary neuronal cultures and in whole brain organotypic coronal slice cultures prepared from 4 and 8 month old mice and cultivated up to 14 days in vitro. Treatments of cultures with recombinant murine TNFα (100 ng/ml) or TRAIL (250 ng/mL) plus cyclohexamide significantly protected neurons against cell death induced by these apoptosis-inducing ligands. A protective role of caspase 8 deletion in vivo was also demonstrated using a controlled cortical impact (CCI) model of traumatic brain injury (TBI) and seizure-induced brain injury caused by kainic acid (KA). Morphometric analyses were performed using digital imaging in conjunction with image analysis algorithms. By employing virtual images of hundreds of brain sections, we were able to perform quantitative morphometry of histological and immunohistochemical staining data in an unbiased manner. In the TBI model, homozygous deletion of caspase 8 resulted in reduced lesion volumes, improved post-injury motor performance, superior learning and memory retention, decreased apoptosis, diminished proteolytic processing of caspases and caspase substrates, and less neuronal degeneration, compared to wild type, homozygous cre, and caspase 8-floxed control mice. In the KA model, Ncasp8−/− mice demonstrated superior survival, reduced seizure severity, less apoptosis, and reduced caspase 3 processing. Uninjured aged knockout mice showed improved learning and memory, implicating a possible role for caspase 8 in cognitive decline with aging. Conclusions Neuron-specific deletion of caspase 8 reduces brain damage and improves post-traumatic functional outcomes, suggesting an important role for this caspase in pathophysiology of acute brain trauma.
Collapse
Affiliation(s)
- Maryla Krajewska
- Sanford-Burnham Medical Research Institute, La Jolla, California, United States of America
| | - Zerong You
- Neuroscience Center, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts, United States of America
| | - Juan Rong
- Sanford-Burnham Medical Research Institute, La Jolla, California, United States of America
| | - Christina Kress
- Sanford-Burnham Medical Research Institute, La Jolla, California, United States of America
| | - Xianshu Huang
- Sanford-Burnham Medical Research Institute, La Jolla, California, United States of America
| | - Jinsheng Yang
- Neuroscience Center, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts, United States of America
| | - Tiffany Kyoda
- Sanford-Burnham Medical Research Institute, La Jolla, California, United States of America
| | - Ricardo Leyva
- Sanford-Burnham Medical Research Institute, La Jolla, California, United States of America
| | - Steven Banares
- Sanford-Burnham Medical Research Institute, La Jolla, California, United States of America
| | - Yue Hu
- Department of Anesthesiology, University of California San Diego, La Jolla, California, United States of America
- VA San Diego Healthcare System, San Diego, California, United States of America
| | - Chia-Hung Sze
- Sanford-Burnham Medical Research Institute, La Jolla, California, United States of America
| | - Michael J. Whalen
- Neuroscience Center, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts, United States of America
| | - Leonardo Salmena
- Department of Medical Biophysics, Ontario Cancer Institute, Toronto, Ontario, Canada
| | - Razqallah Hakem
- Department of Medical Biophysics, Ontario Cancer Institute, Toronto, Ontario, Canada
| | - Brian P. Head
- Department of Anesthesiology, University of California San Diego, La Jolla, California, United States of America
| | - John C. Reed
- Sanford-Burnham Medical Research Institute, La Jolla, California, United States of America
- * E-mail: (SK); (JCR)
| | - Stan Krajewski
- Sanford-Burnham Medical Research Institute, La Jolla, California, United States of America
- * E-mail: (SK); (JCR)
| |
Collapse
|
32
|
Estevez AY, Pritchard S, Harper K, Aston JW, Lynch A, Lucky JJ, Ludington JS, Chatani P, Mosenthal WP, Leiter JC, Andreescu S, Erlichman JS. Neuroprotective mechanisms of cerium oxide nanoparticles in a mouse hippocampal brain slice model of ischemia. Free Radic Biol Med 2011; 51:1155-63. [PMID: 21704154 DOI: 10.1016/j.freeradbiomed.2011.06.006] [Citation(s) in RCA: 168] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/12/2011] [Revised: 06/02/2011] [Accepted: 06/03/2011] [Indexed: 11/24/2022]
Abstract
Cerium oxide nanoparticles (nanoceria) are widely used as catalysts in industrial applications because of their potent free radical-scavenging properties. Given that free radicals play a prominent role in the pathology of many neurological diseases, we explored the use of nanoceria as a potential therapeutic agent for stroke. Using a mouse hippocampal brain slice model of cerebral ischemia, we show here that ceria nanoparticles reduce ischemic cell death by approximately 50%. The neuroprotective effects of nanoceria were due to a modest reduction in reactive oxygen species, in general, and ~15% reductions in the concentrations of superoxide (O(2)(•-)) and nitric oxide, specifically. Moreover, treatment with nanoceria markedly decreased (~70% reduction) the levels of ischemia-induced 3-nitrotyrosine, a modification to tyrosine residues in proteins induced by the peroxynitrite radical. These findings suggest that scavenging of peroxynitrite may be an important mechanism by which cerium oxide nanoparticles mitigate ischemic brain injury. Peroxynitrite plays a pivotal role in the dissemination of oxidative injury in biological tissues. Therefore, nanoceria may be useful as a therapeutic intervention to reduce oxidative and nitrosative damage after a stroke.
Collapse
Affiliation(s)
- A Y Estevez
- Biology Department, St. Lawrence University, Canton, NY, USA.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Staal JA, Alexander SR, Liu Y, Dickson TD, Vickers JC. Characterization of cortical neuronal and glial alterations during culture of organotypic whole brain slices from neonatal and mature mice. PLoS One 2011; 6:e22040. [PMID: 21789209 PMCID: PMC3137607 DOI: 10.1371/journal.pone.0022040] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2011] [Accepted: 06/14/2011] [Indexed: 01/19/2023] Open
Abstract
Background Organotypic brain slice culturing techniques are extensively used in a wide range of experimental procedures and are particularly useful in providing mechanistic insights into neurological disorders or injury. The cellular and morphological alterations associated with hippocampal brain slice cultures has been well established, however, the neuronal response of mouse cortical neurons to culture is not well documented. Methods In the current study, we compared the cell viability, as well as phenotypic and protein expression changes in cortical neurons, in whole brain slice cultures from mouse neonates (P4–6), adolescent animals (P25–28) and mature adults (P50+). Cultures were prepared using the membrane interface method. Results Propidium iodide labeling of nuclei (due to compromised cell membrane) and AlamarBlue™ (cell respiration) analysis demonstrated that neonatal tissue was significantly less vulnerable to long-term culture in comparison to the more mature brain tissues. Cultures from P6 animals showed a significant increase in the expression of synaptic markers and a decrease in growth-associated proteins over the entire culture period. However, morphological analysis of organotypic brain slices cultured from neonatal tissue demonstrated that there were substantial changes to neuronal and glial organization within the neocortex, with a distinct loss of cytoarchitectural stratification and increased GFAP expression (p<0.05). Additionally, cultures from neonatal tissue had no glial limitans and, after 14 DIV, displayed substantial cellular protrusions from slice edges, including cells that expressed both glial and neuronal markers. Conclusion In summary, we present a substantial evaluation of the viability and morphological changes that occur in the neocortex of whole brain tissue cultures, from different ages, over an extended period of culture.
Collapse
Affiliation(s)
- Jerome A Staal
- Menzies Research Institute, University of Tasmania, Hobart, Tasmania, Australia
| | | | | | | | | |
Collapse
|
34
|
Dionne KR, Leser JS, Lorenzen KA, Beckham JD, Tyler KL. A brain slice culture model of viral encephalitis reveals an innate CNS cytokine response profile and the therapeutic potential of caspase inhibition. Exp Neurol 2011; 228:222-31. [PMID: 21241693 DOI: 10.1016/j.expneurol.2011.01.006] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2010] [Revised: 12/30/2010] [Accepted: 01/08/2011] [Indexed: 01/04/2023]
Abstract
Viral encephalitis is a significant cause of human morbidity and mortality in large part due to suboptimal diagnosis and treatment. Murine reovirus infection serves as a classic experimental model of viral encephalitis. Infection of neonatal mice with T3 reoviruses results in lethal encephalitis associated with neuronal infection, apoptosis, and CNS tissue injury. We have developed an ex vivo brain slice culture (BSC) system that recapitulates the basic pathological features and kinetics of viral replication seen in vivo. We utilize the BSC model to identify an innate, brain-tissue specific inflammatory cytokine response to reoviral infection, which is characterized by the release of IL6, CXCL10, RANTES, and murine IL8 analog (KC). Additionally, we demonstrate the potential utility of this system as a pharmaceutical screening platform by inhibiting reovirus-induced apoptosis and CNS tissue injury with the pan-caspase inhibitor, Q-VD-OPh. Cultured brain slices not only serve to model events occurring during viral encephalitis, but can also be utilized to investigate aspects of pathogenesis and therapy that are not experimentally accessible in vivo.
Collapse
Affiliation(s)
- Kalen R Dionne
- Medical Scientist Training Program, University of Colorado Denver, Anschutz Medical Campus, Aurora, CO 80045, USA
| | | | | | | | | |
Collapse
|
35
|
Morrison B, Cullen DK, LaPlaca M. In Vitro Models for Biomechanical Studies of Neural Tissues. NEURAL TISSUE BIOMECHANICS 2011. [DOI: 10.1007/8415_2011_79] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
36
|
Legradi A, Varszegi S, Szigeti C, Gulya K. Adult rat hippocampal slices as in vitro models for neurodegeneration: Studies on cell viability and apoptotic processes. Brain Res Bull 2010; 84:39-44. [PMID: 21056637 DOI: 10.1016/j.brainresbull.2010.10.008] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2010] [Revised: 10/26/2010] [Accepted: 10/28/2010] [Indexed: 10/18/2022]
Abstract
Adult hippocampal slice cultures were used in the modeling of apoptotic aspects of neurodegeneration. Slice viability was determined by the use of trypan blue (TB) staining, and apoptosis was assessed by caspase-3 immunohistochemistry. A large number of pyramidal cells showed signs of degeneration 30 min after sectioning (58.4% of the total number of pyramidal cells), as they exhibited TB uptake, and about 71.6% of these neurons became stained by the third day in culture, when patches in the stratum oriens also demonstrated distinct TB staining. By the sixth day of culturing, almost all cells in the pyramidal cell layer became TB positive (88.4%). The caspase-3 immunoreactivity displayed a different pattern, as the most intense immunoreactivity, detected mainly in the pyramidal cells, peaked 6 h after culturing, and then decreased steadily. The present data show that in adult hippocampal slices a large number of pyramidal cells initiate apoptotic processes as a result of irreparable damage sustained during slice preparation and culture maintenance, and support the notion that apoptosis is an integral part of the neurodegenerative processes not only in vivo but also in vitro. Elucidation of mechanisms for the apoptotic processes in adult hippocampal slice cultures could lead to the development of new therapeutic strategies; moreover, the utilization of adult hippocampal slice cultures could be a viable alternative technique to in vivo experiments in studying the mechanisms responsible for neurodegeneration.
Collapse
Affiliation(s)
- Adam Legradi
- Department of Cell Biology and Molecular Medicine, University of Szeged, Hungary
| | | | | | | |
Collapse
|
37
|
Cho S, Wood A, Bowlby MR. Brain slices as models for neurodegenerative disease and screening platforms to identify novel therapeutics. Curr Neuropharmacol 2010; 5:19-33. [PMID: 18615151 DOI: 10.2174/157015907780077105] [Citation(s) in RCA: 172] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2006] [Revised: 12/07/2006] [Accepted: 01/01/2007] [Indexed: 11/22/2022] Open
Abstract
Recent improvements in brain slice technology have made this biological preparation increasingly useful for examining pathophysiology of brain diseases in a tissue context. Brain slices maintain many aspects of in vivo biology, including functional local synaptic circuitry with preserved brain architecture, while allowing good experimental access and precise control of the extracellular environment, making them ideal platforms for dissection of molecular pathways underlying neuronal dysfunction. Importantly, these ex vivo systems permit direct treatment with pharmacological agents modulating these responses and thus provide surrogate therapeutic screening systems without recourse to whole animal studies. Virus or particle mediated transgenic expression can also be accomplished relatively easily to study the function of novel genes in a normal or injured brain tissue context.In this review we will discuss acute brain injury models in organotypic hippocampal and co-culture systems and the effects of pharmacological modulation on neurodegeneration. The review will also cover the evidence of developmental plasticity in these ex vivo models, demonstrating emergence of injury-stimulated neuronal progenitor cells, and neurite sprouting and axonal regeneration following pathway lesioning. Neuro-and axo-genesis are emerging as significant factors contributing to brain repair following many acute and chronic neurodegenerative disorders. Therefore brain slice models may provide a critical contextual experimental system to explore regenerative mechanisms in vitro.
Collapse
Affiliation(s)
- Seongeun Cho
- Discovery Neuroscience, Wyeth Research, CN8000, Princeton, NJ 08543, USA.
| | | | | |
Collapse
|
38
|
Loetscher PD, Rossaint J, Rossaint R, Weis J, Fries M, Fahlenkamp A, Ryang YM, Grottke O, Coburn M. Argon: neuroprotection in in vitro models of cerebral ischemia and traumatic brain injury. CRITICAL CARE : THE OFFICIAL JOURNAL OF THE CRITICAL CARE FORUM 2009; 13:R206. [PMID: 20017934 PMCID: PMC2811924 DOI: 10.1186/cc8214] [Citation(s) in RCA: 108] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/22/2009] [Revised: 11/23/2009] [Accepted: 12/17/2009] [Indexed: 02/06/2023]
Abstract
INTRODUCTION Recently, it has been shown in several experimental settings that the noble gases xenon and helium have neuroprotective properties. In this study we tested the hypothesis that the noble gas argon has a neuroprotective potential as well. Since traumatic brain injury and stroke are widespread and generate an enormous economic and social burden, we investigated the possible neuroprotective effect in in vitro models of traumatic brain injury and cerebral ischemia. METHODS Organotypic hippocampal slice cultures from mice pups were subjected to either oxygen-glucose deprivation or to a focal mechanical trauma and subsequently treated with three different concentrations (25, 50 and 74%) of argon immediately after trauma or with a two-or-three-hour delay. After 72 hours of incubation tissue injury assessment was performed using propidium iodide, a staining agent that becomes fluorescent when it diffuses into damaged cells via disintegrated cell membranes. RESULTS We could show argon's neuroprotective effects at different concentrations when applied directly after oxygen-glucose deprivation or trauma. Even three hours after application, argon was still neuroprotective. CONCLUSIONS Argon showed a neuroprotective effect in both in vitro models of oxygen-glucose deprivation and traumatic brain injury. Our promising results justify further in vivo animal research.
Collapse
Affiliation(s)
- Philip D Loetscher
- Department of Anesthesiology, University Hospital of the RWTH Aachen, Aachen, Germany.
| | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Zurich M, Monnet-Tschudi F. Contribution of in vitro neurotoxicology studies to the elucidation of neurodegenerative processes. Brain Res Bull 2009; 80:211-6. [DOI: 10.1016/j.brainresbull.2009.06.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2009] [Revised: 06/16/2009] [Accepted: 06/17/2009] [Indexed: 01/26/2023]
|
40
|
Cell death and proliferation in acute slices and organotypic cultures of mammalian CNS. Prog Neurobiol 2009; 88:221-45. [DOI: 10.1016/j.pneurobio.2009.01.002] [Citation(s) in RCA: 112] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2008] [Revised: 12/09/2008] [Accepted: 01/07/2009] [Indexed: 11/24/2022]
|
41
|
Rossaint J, Rossaint R, Weis J, Fries M, Rex S, Coburn M. Propofol: neuroprotection in an in vitro model of traumatic brain injury. CRITICAL CARE : THE OFFICIAL JOURNAL OF THE CRITICAL CARE FORUM 2009; 13:R61. [PMID: 19397790 PMCID: PMC2689510 DOI: 10.1186/cc7795] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/26/2009] [Revised: 03/18/2009] [Accepted: 04/27/2009] [Indexed: 02/01/2023]
Abstract
Introduction The anaesthetic agent propofol (2,6-diisopropylphenol) has been shown to be an effective neuroprotective agent in different in vitro models of brain injury induced by oxygen and glucose deprivation. We examined its neuroprotective properties in an in vitro model of traumatic brain injury. Methods In this controlled laboratory study organotypic hippocampal brain-slice cultures were gained from six- to eight-day-old mice pups. After 14 days in culture, hippocampal brain slices were subjected to a focal mechanical trauma and subsequently treated with different molar concentrations of propofol under both normo- and hypothermic conditions. After 72 hours of incubation, tissue injury assessment was performed using propidium iodide (PI), a staining agent that becomes fluorescent only when it enters damaged cells via perforated cell membranes. Inside the cell, PI forms a fluorescent complex with nuclear DNA. Results A dose-dependent reduction of both total and secondary tissue injury could be observed in the presence of propofol under both normo- and hypothermic conditions. This effect was further amplified when the slices were incubated at 32°C after trauma. Conclusions When used in combination, the dose-dependent neuroprotective effect of propofol is additive to the neuroprotective effect of hypothermia in an in vitro model of traumatic brain injury.
Collapse
Affiliation(s)
- Jan Rossaint
- Department of Anesthesiology, RWTH Aachen University Hospital, Pauwelsstrasse 30, 52074 Aachen, Germany
| | | | | | | | | | | |
Collapse
|
42
|
The neuroprotective effects of xenon and helium in an in vitro model of traumatic brain injury*. Crit Care Med 2008; 36:588-95. [DOI: 10.1097/01.ccm.0b013e3181611f8a6] [Citation(s) in RCA: 113] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
43
|
Neuroprotective properties of xenon and helium in an in vitro model of traumatic brain injury: one small step or one big jump? Crit Care Med 2008; 36:647-8. [PMID: 18216631 DOI: 10.1097/ccm.0b013e318162eda3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
44
|
Lipski J, Wan CK, Bai JZ, Pi R, Li D, Donnelly D. Neuroprotective potential of ceftriaxone in in vitro models of stroke. Neuroscience 2007; 146:617-29. [PMID: 17363173 DOI: 10.1016/j.neuroscience.2007.02.003] [Citation(s) in RCA: 124] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2006] [Revised: 02/01/2007] [Accepted: 02/03/2007] [Indexed: 12/01/2022]
Abstract
Astrocytic glutamate transporters are considered an important target for neuroprotective therapies as the function of these transporters is abnormal in stroke and other neurological disorders associated with excitotoxicity. Recently, Rothstein et al., [Rothstein JD, Patel S, Regan MR, Haenggeli C, Huang YH, Bergles DE, Jin L, Dykes Hoberg M, Vidensky S, Chung DS, Toan SV, Bruijn LI, Su ZZ, Gupta P, Fisher PB (2005) Beta-lactam antibiotics offer neuroprotection by increasing glutamate transporter expression. Nature 433:73-77] reported that beta-lactam antibiotics (including ceftriaxone, which easily crosses the blood-brain barrier) increase glutamate transporter 1 (GLT-1) expression and reduce cell death resulting from oxygen-glucose deprivation (OGD) in dissociated embryonic cortical cultures. To determine whether a similar neuroprotective mechanism operates in more mature neurons, which show a different pattern of response to ischemia than primary cultures, we exposed acute hippocampal slices obtained from rats treated with ceftriaxone for 5 days (200 mg/kg; i.p.) to OGD. Whole-cell patch clamp recording of glutamate-induced N-methyl-d-aspartate (NMDA) currents from CA1 pyramidal neurons showed a larger potentiation of these currents after application of 15 microM dl-threo-beta-benzyloxyaspartic acid (TBOA; a potent blocker of glutamate transporters) in ceftriaxone-injected animals than in untreated animals, indicating increased glutamate transporter activity. Western blot analysis did not reveal GLT-1 upregulation in the hippocampus. Delay to OGD-induced hypoxic spreading depression (HSD) recorded in slices obtained from ceftriaxone-treated rats was longer (6.3+/-0.2 vs. 5.2+/-0.2 min; P<0.001) than that in the control group, demonstrating a neuroprotective action of the antibiotic in this model. The effect of ceftriaxone was also tested in organotypic hippocampal slices obtained from P7-9 rats (>14 days in vitro). OGD or glutamate (3.5-5.0 mM) damaged CA1 pyramidal neurons as assessed by propidium iodide (PI) fluorescence. Similar damage was observed after pre-treatment with ceftriaxone (10-200 microM; 5 days) and ceftriaxone exposure did not result in GLT-1 upregulation as assayed by Western blot. Treatment of slice cultures with dibutyryl cAMP (100-250 microM; 5 days) increased GLT-1 expression but did not reduce cell damage induced by OGD or glutamate. Thus we confirm the neuroprotective effect of antibiotic exposure on OGD-induced injury, but suggest that this action is related to independent modulation of transporter activity rather than to the level of GLT-1 protein expression. In addition, our results indicate that the protective effects of beta-lactam antibiotics are highly dependent on the experimental model.
Collapse
Affiliation(s)
- J Lipski
- Department of Physiology, Faculty of Medical and Health Sciences, University of Auckland, Private Bag 92-019, Auckland 1142, New Zealand.
| | | | | | | | | | | |
Collapse
|
45
|
Katnik C, Guerrero WR, Pennypacker KR, Herrera Y, Cuevas J. Sigma-1 receptor activation prevents intracellular calcium dysregulation in cortical neurons during in vitro ischemia. J Pharmacol Exp Ther 2006; 319:1355-65. [PMID: 16988055 DOI: 10.1124/jpet.106.107557] [Citation(s) in RCA: 89] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Sigma receptors are putative targets for neuroprotection following ischemia; however, little is known on their mechanism of action. One of the key components in the demise of neurons following ischemic injury is the disruption of intracellular calcium homeostasis. Fluorometric calcium imaging was used to examine the effects of sigma receptor activation on changes in intracellular calcium concentrations ([Ca(2+)](i)) evoked by in vitro ischemia in cultured cortical neurons from embryonic rats. The sigma receptor agonist, 1,3-di-o-tolyl-guanidine (DTG), was shown to depress [Ca(2+)](i) elevations observed in response to ischemia induced by sodium azide and glucose deprivation. Two sigma receptor antagonists, metaphit [1-(1-(3-isothiocyanatophenyl)-cyclohexyl)-piperidine] and BD-1047 (N-[2-3,4-dichlorophenyl)-ethyl]-N-methyl-2-(dimethylamino)ethylamine), were shown to blunt the ability of DTG to inhibit ischemia-evoked increases in [Ca(2+)](i), revealing that the effects are mediated by activation of sigma receptors and not via the actions of DTG on nonspecific targets such as N-methyl-d-aspartate receptors. DTG inhibition of ischemia-induced increases in [Ca(2+)](i) was mimicked by the sigma-1 receptor-selective agonists, carbetapentane, (+)-pentazocine and PRE-084 [2-(4-morpholinethyl) 1-phenylcyclohexanecarboxylate hydrochloride], but not by the sigma-2-selective agonist, ibogaine, showing that activation of sigma-1 receptors is responsible for the effects. In contrast, DTG, carbetapentane, and ibogaine blocked spontaneous, synchronous calcium transients observed in our preparation at concentrations consistent with sigma receptor-mediated effects, indicating that both sigma-1 and sigma-2 receptors regulate events that affect [Ca(2+)](i) in cortical neurons. Our studies show that activation of sigma receptors can ameliorate [Ca(2+)](i) dysregulation associated with ischemia in cortical neurons and, thus, identify one of the mechanisms by which these receptors may exert their neuroprotective properties.
Collapse
Affiliation(s)
- Christopher Katnik
- Department of Molecular Pharmacology and Physiology, University of South Florida College of Medicine, 12901 Bruce B. Downs Boulevard, MDC 9, Tampa, FL 33612-4799, USA
| | | | | | | | | |
Collapse
|
46
|
Wilkins LH, Prendergast MA, Blanchard J, Holley RC, Chambers ER, Littleton JM. Potential Value of Changes in Cell Markers in Organotypic Hippocampal Cultures Associated With Chronic EtOH Exposure and Withdrawal: Comparison with NMDA-Induced Changes. Alcohol Clin Exp Res 2006; 30:1768-80. [PMID: 17010144 DOI: 10.1111/j.1530-0277.2006.00210.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
BACKGROUND Previous studies have shown that withdrawal from ethanol (EtOH) exposure induces neuronal damage, as indicated by propidium iodide (PI) uptake, in organotypic hippocampal slice cultures. This is prevented by MK801, suggesting that damage is "excitotoxic," resulting from activation of N-methyl-d-aspartate (NMDA) receptors by endogenous glutamate. To avoid reliance on a single indicator, and to enable assessment of recovery from the EtOH withdrawal (EWD) insult, we assessed changes in cell markers for neurons and glia, as well as cell division, following either EWD or NMDA challenge (as a positive control). METHODS Organotypic cultures from postnatal day (PND) 8 rats were cultured for 5 days before exposure to EtOH (mean concentration approximately 65 mM) for 10 days before EWD. Cultures of the same "days in vitro" age (DIV16) were exposed to NMDA (200 microM) for 1 hour. Neuronal injury was visualized using PI and indices of neurons, glia, or cell division were measured at intervals up to 10 days following the neurotoxic insults. Each time point and measurement used separate slice cultures, and these were treated as separate experiments with paired controls. Regional neuronal content was assessed by neuronal nuclear protein (NeuN) and calbindin D28k (Calb), glial content by glial fibrillary acidic protein (GFAP), and cell division by bromodeoxyuridine (BrdU) incorporation, all measured immunohistochemically. RESULTS Chronic exposure to EtOH was associated with a dramatic reduction in BrdU incorporation in all regions of cultures. Propidium iodide fluorescence in the CA1 region was elevated significantly after EWD and more so after NMDA challenge. Reduced immunoreactivity (IR) of NeuN and Calb suggested that loss of neurons resulted from the EWD insult. Bromodeoxyuridine incorporation was initially depressed even further by EWD, but had returned to control levels after 3 days. In contrast, following NMDA insult, BrdU incorporation was significantly and persistently elevated above control levels after 3 days. Glial fibrillary acidic protein was reduced immediately after both EWD and NMDA challenge. Several days after EWD, expression of neuronal and glial markers, although variable, had generally returned to control levels. In contrast, NeuN IR remained significantly reduced after NMDA challenge. CONCLUSIONS In general, the use of additional markers supports data obtained with PI uptake alone and suggests that neurons (and glia) are lost from the culture following EWD or NMDA challenge. These cell markers recover several days after EWD, but it is unclear whether functional recovery accompanies these changes. If the dramatic effect of EtOH exposure and EWD on BrdU incorporation reflects reduced neuro- and gliogenesis, it is likely that this adversely affects long-term recovery from EWD. Finally, some markers showed significant and consistent changes after EWD, whereas others did not. This information may facilitate the use of this model in evaluation of potential medications that protect against and/or promote recovery from neurotoxicity.
Collapse
Affiliation(s)
- Lincoln H Wilkins
- Department of Behavioral Sciences, University of Kentucky, Lexington, Kentucky 40536-0298, USA
| | | | | | | | | | | |
Collapse
|
47
|
Zou JY, Crews FT. TNF alpha potentiates glutamate neurotoxicity by inhibiting glutamate uptake in organotypic brain slice cultures: neuroprotection by NF kappa B inhibition. Brain Res 2005; 1034:11-24. [PMID: 15713255 DOI: 10.1016/j.brainres.2004.11.014] [Citation(s) in RCA: 302] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/16/2004] [Indexed: 11/23/2022]
Abstract
Glutamate and the proinflammatory cytokine, tumor necrosis factor alpha (TNF alpha), have been suggested to contribute to neurodegenerative diseases. We investigated the interaction of TNF alpha and glutamate on neuronal cell death using fluorescence propidium iodide uptake in rat organotypic hippocampal-entorhinal cortex (HEC) brain slice culture that maintains the cytoarchitecture of the intact brain. Time course and concentration studies indicate that glutamate produced significant neuronal cell death in all four brain areas examined, for example, entorhinal cortex, hippocampal CA1 and CA3 fields, and dentate gyrus. TNF alpha alone at concentration of 20 ng/ml caused little or no detectable neuronal cell death, however, when combined with submaximal glutamate (3.3 mM), TNF alpha significantly increased and accelerated glutamate neurotoxicity. TNF alpha potentiation of glutamate neurotoxicity is blocked by NMDA receptor antagonists but not by AMPA antagonists CNQX and NBQX. Studies directly measuring [14C]-glutamate uptake in HEC slices indicate that TNF alpha dose-dependently inhibited glutamate uptake. Further, inhibitors of glial glutamate transporters potentiated glutamate neurotoxicity similar to TNF alpha. The antioxidant butylated hydroxytoluene (BHT) and the NF kappa B inhibitor PTD-p65 peptide inhibit NF kappa B activation and TNF alpha potentiation of glutamate neurotoxicity. BHT prevented the inhibition of TNFalpha on glutamate transport in HEC slices and also blocked nuclear translocation of NF kappa B subunit p65. These data indicate that TNF alpha and glutamate can act synergistically to induce neuronal cell death. TNF alpha potentiation of glutamate neurotoxicity through the blockade of glutamate transporter activity may represent an important mechanism of neurodegeneration associated with neuroinflammation.
Collapse
Affiliation(s)
- Jian Y Zou
- Bowles Center for Alcohol Studies, CB #7178 Thurston-Bowles Building, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-7178, USA
| | | |
Collapse
|