1
|
Sasaki T, Hisada S, Kanki H, Nunomura K, Lin B, Nishiyama K, Kawano T, Matsumura S, Mochizuki H. Modulation of Ca 2+ oscillation following ischemia and nicotinic acetylcholine receptors in primary cortical neurons by high-throughput analysis. Sci Rep 2024; 14:27667. [PMID: 39532929 PMCID: PMC11557898 DOI: 10.1038/s41598-024-77882-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Accepted: 10/25/2024] [Indexed: 11/16/2024] Open
Abstract
Calcium oscillations in primary neuronal cultures and iPSCs have been employed to investigate arrhythmogenicity and epileptogenicity in drug development. Previous studies have demonstrated that Ca2+ influx via NMDA and nicotinic acetylcholine receptors (nAChRs) modulates Ca2+ oscillations. Nevertheless, there has been no comprehensive investigation into the impact of ischemia or nAChR-positive allosteric modulators (PAM) drugs on Ca2+ oscillations at a level that would facilitate high-throughput screening. We investigated the effects of ischemia and nAChR subtypes or nAChR PAM agonists on Ca2+ oscillations in high-density 2D and 3D-sphere primary neuronal cultures using 384-well plates with FDSS-7000. Ischemia for 1 and 2 h resulted in an increase in the frequency of Ca2+ oscillations and a decrease in their amplitude in a time-dependent manner. The NMDA and AMPA receptor inhibition significantly suppressed Ca2+ oscillation. Inhibition of NR2A or NR2B had the opposite effect on Ca oscillations. The potentiation of ischemia-induced Ca2+ oscillations was significantly inhibited by the NMDA receptor antagonist, MK-801, and the frequency of these oscillations was suppressed by the NR2B inhibitor, Ro-256981. In the 3D-neurosphere, the application of an α7nAChR agonist increased the frequency of Ca2+ oscillations, whereas the activation of α4β2 had no effect. The combination of nicotine and PNU-120596 (type II PAM) affected the frequency and amplitude of Ca2+ oscillations in a manner distinct from that of type I PAM. These systems may be useful not only for detecting epileptogenicity but also in the search for neuroprotective agents against cerebral ischemia.
Collapse
Affiliation(s)
- Tsutomu Sasaki
- Department of Neurology, Graduate School of Medicine, Osaka University, Yamadaoka 2-2, Suita, Osaka, 565-0871, Japan.
- StemRIM Institute of Regeneration-Inducing Medicine, Osaka University, Yamadaoka 2-2, Suita, Osaka, 565-0871, Japan.
| | - Sunao Hisada
- Department of Neurology, Graduate School of Medicine, Osaka University, Yamadaoka 2-2, Suita, Osaka, 565-0871, Japan
| | - Hideaki Kanki
- Department of Neurology, Graduate School of Medicine, Osaka University, Yamadaoka 2-2, Suita, Osaka, 565-0871, Japan
| | - Kazuto Nunomura
- Center for Supporting Drug Discovery and Life Science Research, Graduate School of Pharmaceutical Science, Osaka University, 1‑6 Yamadaoka, Suita, Osaka, 565‑0871, Japan
| | - Bangzhong Lin
- Center for Supporting Drug Discovery and Life Science Research, Graduate School of Pharmaceutical Science, Osaka University, 1‑6 Yamadaoka, Suita, Osaka, 565‑0871, Japan
| | - Kumiko Nishiyama
- Department of Neurology, Graduate School of Medicine, Osaka University, Yamadaoka 2-2, Suita, Osaka, 565-0871, Japan
| | - Tomohito Kawano
- Department of Neurology, Graduate School of Medicine, Osaka University, Yamadaoka 2-2, Suita, Osaka, 565-0871, Japan
| | - Shigenobu Matsumura
- Graduate School of Comprehensive Rehabilitation, Osaka Prefecture University, Osaka, 583-8555, Japan
| | - Hideki Mochizuki
- Department of Neurology, Graduate School of Medicine, Osaka University, Yamadaoka 2-2, Suita, Osaka, 565-0871, Japan
| |
Collapse
|
2
|
Kreir M, Putri D, Tekle F, Pibiri F, d’Ydewalle C, Van Ammel K, Geys H, Teisman A, Gallacher DJ, Lu HR. Development of a new hazard scoring system in primary neuronal cell cultures for drug-induced acute neuronal toxicity identification in early drug discovery. Front Pharmacol 2024; 15:1308547. [PMID: 38873414 PMCID: PMC11170107 DOI: 10.3389/fphar.2024.1308547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Accepted: 05/03/2024] [Indexed: 06/15/2024] Open
Abstract
We investigated drug-induced acute neuronal electrophysiological changes using Micro-Electrode arrays (MEA) to rat primary neuronal cell cultures. Data based on 6-key MEA parameters were analyzed for plate-to-plate vehicle variability, effects of positive and negative controls, as well as data from over 100 reference drugs, mostly known to have pharmacological phenotypic and clinical outcomes. A Least Absolute Shrinkage and Selection Operator (LASSO) regression, coupled with expert evaluation helped to identify the 6-key parameters from many other MEA parameters to evaluate the drug-induced acute neuronal changes. Calculating the statistical tolerance intervals for negative-positive control effects on those 4-key parameters helped us to develop a new weighted hazard scoring system on drug-induced potential central nervous system (CNS) adverse effects (AEs). The weighted total score, integrating the effects of a drug candidate on the identified six-pivotal parameters, simply determines if the testing compound/concentration induces potential CNS AEs. Hereto, it uses four different categories of hazard scores: non-neuroactive, neuroactive, hazard, or high hazard categories. This new scoring system was successfully applied to differentiate the new compounds with or without CNS AEs, and the results were correlated with the outcome of in vivo studies in mice for one internal program. Furthermore, the Random Forest classification method was used to obtain the probability that the effect of a compound is either inhibitory or excitatory. In conclusion, this new neuronal scoring system on the cell assay is actively applied in the early de-risking of drug development and reduces the use of animals and associated costs.
Collapse
Affiliation(s)
- Mohamed Kreir
- Global Toxicology and Safety Pharmacology, Preclinical Sciences and Translational Safety, Janssen Research and Development, Beerse, Belgium
| | - Dea Putri
- Statistics and Decision Sciences, Global Development, Janssen Research and Development, Beerse, Belgium
| | - Fetene Tekle
- Statistics and Decision Sciences, Global Development, Janssen Research and Development, Beerse, Belgium
| | - Francesca Pibiri
- Global Toxicology and Safety Pharmacology, Preclinical Sciences and Translational Safety, Janssen Research and Development, Beerse, Belgium
| | | | - Karel Van Ammel
- Global Toxicology and Safety Pharmacology, Preclinical Sciences and Translational Safety, Janssen Research and Development, Beerse, Belgium
| | - Helena Geys
- Statistics and Decision Sciences, Global Development, Janssen Research and Development, Beerse, Belgium
| | - Ard Teisman
- Global Toxicology and Safety Pharmacology, Preclinical Sciences and Translational Safety, Janssen Research and Development, Beerse, Belgium
| | - David J. Gallacher
- Global Toxicology and Safety Pharmacology, Preclinical Sciences and Translational Safety, Janssen Research and Development, Beerse, Belgium
| | - Hua Rong Lu
- Global Toxicology and Safety Pharmacology, Preclinical Sciences and Translational Safety, Janssen Research and Development, Beerse, Belgium
| |
Collapse
|
3
|
Makino K, Fukuda R, Sueki S, Anada M. Total Synthesis of Alanense A through an Intramolecular Friedel-Crafts Alkylation. J Org Chem 2024; 89:2050-2054. [PMID: 38241043 DOI: 10.1021/acs.joc.3c02481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2024]
Abstract
The first total synthesis of cadinane sesquiterpenoid alanense A, in which an intramolecular dehydrative Friedel-Crafts alkylation of 2,5-diaryl-2-pentanol is incorporated as a key step, has been achieved. The combinatorial use of p-TsOH·H2O as a catalyst and 1,1,1,3,3,3-hexafluoro-2-propanol (HFIP) as a solvent provides 1,1-disubstituted tetrahydronaphthalene in 97% yield. It was also found that the combination of p-TsOH and HFIP is effective for the removal of phenolic MOM ether.
Collapse
Affiliation(s)
- Kosho Makino
- Faculty of Pharmacy, Musashino University, Nishitokyo, Tokyo 202-8585, Japan
- Institute of Pharmaceutical Sciences, Musashino University, 1-1-20 Shinmachi, Nishitokyo, Tokyo 202-8585, Japan
| | - Rio Fukuda
- Faculty of Pharmacy, Musashino University, Nishitokyo, Tokyo 202-8585, Japan
| | - Shunsuke Sueki
- Faculty of Pharmacy, Musashino University, Nishitokyo, Tokyo 202-8585, Japan
- Institute of Pharmaceutical Sciences, Musashino University, 1-1-20 Shinmachi, Nishitokyo, Tokyo 202-8585, Japan
| | - Masahiro Anada
- Faculty of Pharmacy, Musashino University, Nishitokyo, Tokyo 202-8585, Japan
- Institute of Pharmaceutical Sciences, Musashino University, 1-1-20 Shinmachi, Nishitokyo, Tokyo 202-8585, Japan
| |
Collapse
|
4
|
Pham T, Hussein T, Calis D, Bischof H, Skrabak D, Cruz Santos M, Maier S, Spähn D, Kalina D, Simonsig S, Ehinger R, Groschup B, Knipper M, Plesnila N, Ruth P, Lukowski R, Matt L. BK channels sustain neuronal Ca 2+ oscillations to support hippocampal long-term potentiation and memory formation. Cell Mol Life Sci 2023; 80:369. [PMID: 37989805 PMCID: PMC10663188 DOI: 10.1007/s00018-023-05016-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 09/25/2023] [Accepted: 10/24/2023] [Indexed: 11/23/2023]
Abstract
Mutations of large conductance Ca2+- and voltage-activated K+ channels (BK) are associated with cognitive impairment. Here we report that CA1 pyramidal neuron-specific conditional BK knock-out (cKO) mice display normal locomotor and anxiety behavior. They do, however, exhibit impaired memory acquisition and retrieval in the Morris Water Maze (MWM) when compared to littermate controls (CTRL). In line with cognitive impairment in vivo, electrical and chemical long-term potentiation (LTP) in cKO brain slices were impaired in vitro. We further used a genetically encoded fluorescent K+ biosensor and a Ca2+-sensitive probe to observe cultured hippocampal neurons during chemical LTP (cLTP) induction. cLTP massively reduced intracellular K+ concentration ([K+]i) while elevating L-Type Ca2+ channel- and NMDA receptor-dependent Ca2+ oscillation frequencies. Both, [K+]i decrease and Ca2+ oscillation frequency increase were absent after pharmacological BK inhibition or in cells lacking BK. Our data suggest that L-Type- and NMDAR-dependent BK-mediated K+ outflow significantly contributes to hippocampal LTP, as well as learning and memory.
Collapse
Affiliation(s)
- Thomas Pham
- Department of Pharmacology, Toxicology and Clinical Pharmacy, Institute of Pharmacy, University of Tübingen, Tübingen, Germany
| | - Tamara Hussein
- Department of Pharmacology, Toxicology and Clinical Pharmacy, Institute of Pharmacy, University of Tübingen, Tübingen, Germany
| | - Dila Calis
- Department of Otolaryngology, Head and Neck Surgery, Molecular Physiology of Hearing, Tübingen Hearing Research Centre, University of Tübingen, Tübingen, Germany
| | - Helmut Bischof
- Department of Pharmacology, Toxicology and Clinical Pharmacy, Institute of Pharmacy, University of Tübingen, Tübingen, Germany
| | - David Skrabak
- Department of Pharmacology, Toxicology and Clinical Pharmacy, Institute of Pharmacy, University of Tübingen, Tübingen, Germany
| | - Melanie Cruz Santos
- Department of Pharmacology, Toxicology and Clinical Pharmacy, Institute of Pharmacy, University of Tübingen, Tübingen, Germany
| | - Selina Maier
- Department of Pharmacology, Toxicology and Clinical Pharmacy, Institute of Pharmacy, University of Tübingen, Tübingen, Germany
| | - David Spähn
- Department of Pharmacology, Toxicology and Clinical Pharmacy, Institute of Pharmacy, University of Tübingen, Tübingen, Germany
| | - Daniel Kalina
- Department of Pharmacology, Toxicology and Clinical Pharmacy, Institute of Pharmacy, University of Tübingen, Tübingen, Germany
| | - Stefanie Simonsig
- Department of Pharmacology, Toxicology and Clinical Pharmacy, Institute of Pharmacy, University of Tübingen, Tübingen, Germany
| | - Rebekka Ehinger
- Department of Pharmacology, Toxicology and Clinical Pharmacy, Institute of Pharmacy, University of Tübingen, Tübingen, Germany
| | - Bernhard Groschup
- Laboratory of Experimental Stroke Research, Institute for Stroke and Dementia Research (ISD), University Hospital, Ludwig-Maximilians-University Munich (LMU), Munich, Germany
| | - Marlies Knipper
- Department of Otolaryngology, Head and Neck Surgery, Molecular Physiology of Hearing, Tübingen Hearing Research Centre, University of Tübingen, Tübingen, Germany
| | - Nikolaus Plesnila
- Laboratory of Experimental Stroke Research, Institute for Stroke and Dementia Research (ISD), University Hospital, Ludwig-Maximilians-University Munich (LMU), Munich, Germany
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - Peter Ruth
- Department of Pharmacology, Toxicology and Clinical Pharmacy, Institute of Pharmacy, University of Tübingen, Tübingen, Germany
| | - Robert Lukowski
- Department of Pharmacology, Toxicology and Clinical Pharmacy, Institute of Pharmacy, University of Tübingen, Tübingen, Germany
| | - Lucas Matt
- Department of Pharmacology, Toxicology and Clinical Pharmacy, Institute of Pharmacy, University of Tübingen, Tübingen, Germany.
| |
Collapse
|
5
|
Imredy JP, Roussignol G, Clouse H, Salvagiotto G, Mazelin-Winum L. Comparative assessment of Ca 2+ oscillations in 2- and 3-dimensional hiPSC derived and isolated cortical neuronal networks. J Pharmacol Toxicol Methods 2023; 123:107281. [PMID: 37390871 DOI: 10.1016/j.vascn.2023.107281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 06/09/2023] [Accepted: 06/16/2023] [Indexed: 07/02/2023]
Abstract
Human induced Pluripotent Stem Cell (hiPSC) derived neural cells offer great potential for modelling neurological diseases and toxicities and have found application in drug discovery and toxicology. As part of the European Innovative Medicines Initiative (IMI2) NeuroDeRisk (Neurotoxicity De-Risking in Preclinical Drug Discovery), we here explore the Ca2+ oscillation responses of 2D and 3D hiPSC derived neuronal networks of mixed Glutamatergic/GABAergic activity with a compound set encompassing both clinically as well as experimentally determined seizurogenic compounds. Both types of networks are scored against Ca2+ responses of a primary mouse cortical neuronal 2D network model serving as an established comparator assay. Parameters of frequency and amplitude of spontaneous global network Ca2+ oscillations and the drug-dependent directional changes to these were assessed, and predictivity of seizurogenicity scored using contingency table analysis. In addition, responses between models were compared between both 2D models as well as between 2D and 3D models. Concordance of parameter responses was best between the hiPSC neurospheroid and the mouse primary cortical neuron model (77% for frequency and 65% for amplitude). Decreases in spontaneous Ca2+ oscillation frequency and amplitude were found to be the most basic shared determinants of risk of seizurogenicity between the mouse and the neurospheroid model based on testing of clinical compounds with documented seizurogenic activity. Increases in spontaneous Ca2+ oscillation frequency were primarily observed with the 2D hIPSC model, though the specificity of this effect to seizurogenic clinical compounds was low (33%), while decreases to spike amplitude in this model were more predictive of seizurogenicity. Overall predictivities of the models were similar, with sensitivity of the assays typically exceeding specificity due to high false positive rates. Higher concordance of the hiPSC 3D model over the 2D model when compared to mouse cortical 2D responses may be the result of both a longer maturation time of the neurospheroid (84-87 days for 3D vs. 22-24 days for 2D maturation) as well as the 3-dimensional nature of network connections established. The simplicity and reproducibility of spontaneous Ca2+ oscillation readouts support further investigation of hiPSC derived neuronal sources and their 2- and 3-dimensional networks for neuropharmacological safety screening.
Collapse
Affiliation(s)
- John P Imredy
- In Vitro Safety Pharmacology, Merck & Co., Inc., Rahway, NJ, USA.
| | | | - Holly Clouse
- In Vitro Safety Pharmacology, Merck & Co., Inc., Rahway, NJ, USA
| | | | | |
Collapse
|
6
|
Lu HR, Seo M, Kreir M, Tanaka T, Yamoto R, Altrocchi C, van Ammel K, Tekle F, Pham L, Yao X, Teisman A, Gallacher DJ. High-Throughput Screening Assay for Detecting Drug-Induced Changes in Synchronized Neuronal Oscillations and Potential Seizure Risk Based on Ca 2+ Fluorescence Measurements in Human Induced Pluripotent Stem Cell (hiPSC)-Derived Neuronal 2D and 3D Cultures. Cells 2023; 12:cells12060958. [PMID: 36980298 PMCID: PMC10046961 DOI: 10.3390/cells12060958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 03/06/2023] [Accepted: 03/13/2023] [Indexed: 03/30/2023] Open
Abstract
Drug-induced seizure liability is a significant safety issue and the basis for attrition in drug development. Occurrence in late development results in increased costs, human risk, and delayed market availability of novel therapeutics. Therefore, there is an urgent need for biologically relevant, in vitro high-throughput screening assays (HTS) to predict potential risks for drug-induced seizure early in drug discovery. We investigated drug-induced changes in neural Ca2+ oscillations, using fluorescent dyes as a potential indicator of seizure risk, in hiPSC-derived neurons co-cultured with human primary astrocytes in both 2D and 3D forms. The dynamics of synchronized neuronal calcium oscillations were measured with an FDSS kinetics reader. Drug responses in synchronized Ca2+ oscillations were recorded in both 2D and 3D hiPSC-derived neuron/primary astrocyte co-cultures using positive controls (4-aminopyridine and kainic acid) and negative control (acetaminophen). Subsequently, blinded tests were carried out for 25 drugs with known clinical seizure incidence. Positive predictive value (accuracy) based on significant changes in the peak number of Ca2+ oscillations among 25 reference drugs was 91% in 2D vs. 45% in 3D hiPSC-neuron/primary astrocyte co-cultures. These data suggest that drugs that alter neuronal activity and may have potential risk for seizures can be identified with high accuracy using an HTS approach using the measurements of Ca2+ oscillations in hiPSC-derived neurons co-cultured with primary astrocytes in 2D.
Collapse
Affiliation(s)
- Hua-Rong Lu
- Global Safety Pharmacology, Preclinical Sciences and Translational Safety, Janssen R&D, A Division of Janssen Pharmaceutica NV, B-2340 Beerse, Belgium
| | - Manabu Seo
- Elixirgen Scientific, Incorporated, Baltimore, MD 21205, USA
| | - Mohamed Kreir
- Global Safety Pharmacology, Preclinical Sciences and Translational Safety, Janssen R&D, A Division of Janssen Pharmaceutica NV, B-2340 Beerse, Belgium
| | - Tetsuya Tanaka
- Elixirgen Scientific, Incorporated, Baltimore, MD 21205, USA
| | - Rie Yamoto
- Healthcare Business Group, Drug Discovery Business Department, Ricoh Company Ltd., Tokyo 143-8555, Japan
| | - Cristina Altrocchi
- Global Safety Pharmacology, Preclinical Sciences and Translational Safety, Janssen R&D, A Division of Janssen Pharmaceutica NV, B-2340 Beerse, Belgium
| | - Karel van Ammel
- Global Safety Pharmacology, Preclinical Sciences and Translational Safety, Janssen R&D, A Division of Janssen Pharmaceutica NV, B-2340 Beerse, Belgium
| | - Fetene Tekle
- Statistics and Decision Sciences, Global Development, Janssen R&D, A Division of Janssen Pharmaceutica NV, B-2340 Beerse, Belgium
| | - Ly Pham
- Computational Biology & Toxicology, Preclinical Sciences and Translational Safety, A Division of Janssen Pharmaceutica NV, San Diego, CA 921921, USA
| | - Xiang Yao
- Computational Biology & Toxicology, Preclinical Sciences and Translational Safety, A Division of Janssen Pharmaceutica NV, San Diego, CA 921921, USA
| | - Ard Teisman
- Global Safety Pharmacology, Preclinical Sciences and Translational Safety, Janssen R&D, A Division of Janssen Pharmaceutica NV, B-2340 Beerse, Belgium
| | - David J Gallacher
- Global Safety Pharmacology, Preclinical Sciences and Translational Safety, Janssen R&D, A Division of Janssen Pharmaceutica NV, B-2340 Beerse, Belgium
| |
Collapse
|
7
|
Kim DS, Pessah IN, Santana CM, Purnell BS, Li R, Buchanan GF, Rumbeiha WK. Investigations into hydrogen sulfide-induced suppression of neuronal activity in vivo and calcium dysregulation in vitro. Toxicol Sci 2023; 192:kfad022. [PMID: 36882182 PMCID: PMC10109532 DOI: 10.1093/toxsci/kfad022] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/09/2023] Open
Abstract
Acute exposure to high concentrations of hydrogen sulfide (H2S) leads to sudden death and, if survived, lingering neurological disorders. Clinical signs include seizures, loss of consciousness, and dyspnea. The proximate mechanisms underlying H2S-induced acute toxicity and death have not been clearly elucidated. We investigated electrocerebral, cardiac and respiratory activity during H2S exposure using electroencephalogram (EEG), electrocardiogram (EKG) and plethysmography. H2S suppressed electrocerebral activity and disrupted breathing. Cardiac activity was comparatively less affected. To test whether Ca2+ dysregulation contributes to H2S-induced EEG suppression, we developed an in vitro real-time rapid throughput assay measuring patterns of spontaneous synchronized Ca2+ oscillations in cultured primary cortical neuronal networks loaded with the indicator Fluo-4 using the fluorescent imaging plate reader (FLIPR-Tetra®). Sulfide >5 ppm dysregulated synchronous calcium oscillation (SCO) patterns in a dose-dependent manner. Inhibitors of NMDA and AMPA receptors magnified H2S-induced SCO suppression. Inhibitors of L-type voltage gated Ca2+ channels and transient receptor potential channels prevented H2S-induced SCO suppression. Inhibitors of T-type voltage gated Ca2+ channels, ryanodine receptors, and sodium channels had no measurable influence on H2S-induced SCO suppression. Exposures to > 5 ppm sulfide also suppressed neuronal electrical activity in primary cortical neurons measured by multi-electrode array (MEA), an effect alleviated by pretreatment with the nonselective transient receptor potential channel inhibitor, 2-APB. 2-APB also reduced primary cortical neuronal cell death from sulfide exposure. These results improve our understanding of the role of different Ca2+ channels in acute H2S-induced neurotoxicity and identify transient receptor potential channel modulators as novel structures with potential therapeutic benefits.
Collapse
Affiliation(s)
- Dong-Suk Kim
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California, Davis, Davis, California 95616, USA
| | - Isaac N Pessah
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California, Davis, Davis, California 95616, USA
| | - Cristina M Santana
- VDPAM, College of Veterinary Medicine, Iowa State University, Ames, Iowa 50011, USA
- MRIGlobal, Kansas City, Missouri 64110, USA
| | - Benton S Purnell
- Department of Neurology, Iowa Neuroscience Institute, Carver College of Medicine, University of Iowa, Iowa City, Iowa 52246, USA
- Department of Nerosurgery, Robert Wood Johnson Medical School, Rutgers University, Piscataway, New Jersey 08854, USA
| | - Rui Li
- Department of Neurology, Iowa Neuroscience Institute, Carver College of Medicine, University of Iowa, Iowa City, Iowa 52246, USA
| | - Gordon F Buchanan
- Department of Neurology, Iowa Neuroscience Institute, Carver College of Medicine, University of Iowa, Iowa City, Iowa 52246, USA
| | - Wilson K Rumbeiha
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California, Davis, Davis, California 95616, USA
| |
Collapse
|
8
|
BmK NSPK, a Potent Potassium Channel Inhibitor from Scorpion Buthus martensii Karsch, Promotes Neurite Outgrowth via NGF/TrkA Signaling Pathway. Toxins (Basel) 2021; 13:toxins13010033. [PMID: 33466524 PMCID: PMC7824859 DOI: 10.3390/toxins13010033] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 12/30/2020] [Accepted: 12/31/2020] [Indexed: 12/31/2022] Open
Abstract
Scorpion toxins represent a variety of tools to explore molecular mechanisms and cellular signaling pathways of many biological functions. These toxins are also promising lead compounds for developing treatments for many neurological diseases. In the current study, we purified a new scorpion toxin designated as BmK NSPK (Buthus martensii Karsch neurite-stimulating peptide targeting Kv channels) from the BmK venom. The primary structure was determined using Edman degradation. BmK NSPK directly inhibited outward K+ current without affecting sodium channel activities, depolarized membrane, and increased spontaneous calcium oscillation in spinal cord neurons (SCNs) at low nanomolar concentrations. BmK NSPK produced a nonmonotonic increase on the neurite extension that peaked at ~10 nM. Mechanistic studies demonstrated that BmK NSPK increased the release of nerve growth factor (NGF). The tyrosine kinases A (TrkA) receptor inhibitor, GW 441756, eliminated the BmK NSPK-induced neurite outgrowth. BmK NSPK also increased phosphorylation levels of protein kinase B (Akt) that is the downstream regulator of TrkA receptors. These data demonstrate that BmK NSPK is a new voltage-gated potassium (Kv) channel inhibitor that augments neurite extension via NGF/TrkA signaling pathway. Kv channels may represent molecular targets to modulate SCN development and regeneration and to develop the treatments for spinal cord injury.
Collapse
|
9
|
Spitznagel BD, Mishra NM, Qunies AM, Prael FJ, Du Y, Kozek KA, Lazarenko RM, Denton JS, Emmitte KA, Weaver CD. VU0606170, a Selective Slack Channels Inhibitor, Decreases Calcium Oscillations in Cultured Cortical Neurons. ACS Chem Neurosci 2020; 11:3658-3671. [PMID: 33143429 DOI: 10.1021/acschemneuro.0c00583] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Malignant migrating partial seizures of infancy is a rare, devastating form of epilepsy most commonly associated with gain-of-function mutations in the potassium channel, Slack. Not only is this condition almost completely pharmacoresistant, there are not even selective drug-like tools available to evaluate whether inhibition of these overactivated, mutant Slack channels may represent a viable path forward toward new antiepileptic therapies. Therefore, we used a high-throughput thallium flux assay to screen a drug-like, 100 000-compound library in search of inhibitors of both wild-type and a disease-associated mutant Slack channel. Using this approach, we discovered VU0606170, a selective Slack channel inhibitor with low micromolar potency. Critically, VU0606170 also proved effective at significantly decreasing the firing rate in overexcited, spontaneously firing cortical neuron cultures. Taken together, our data provide compelling evidence that selective inhibition of Slack channel activity can be achieved with small molecules and that inhibition of Slack channel activity in neurons produces efficacy consistent with an antiepileptic effect. Thus, the identification of VU0606170 provides a much-needed tool for advancing our understanding of the role of the Slack channel in normal physiology and disease as well as its potential as a target for therapeutic intervention.
Collapse
Affiliation(s)
- Brittany D. Spitznagel
- Department of Pharmacology, Vanderbilt University, Nashville, Tennessee 37232, United States
| | - Nigam M. Mishra
- Department of Pharmaceutical Sciences, UNT System College of Pharmacy, University of North Texas Health Science Center, Fort Worth, Texas 76107, United States
| | - Alshaima’a M. Qunies
- Department of Pharmaceutical Sciences, UNT System College of Pharmacy, University of North Texas Health Science Center, Fort Worth, Texas 76107, United States
- Graduate School of Biomedical Sciences, University of North Texas Health Science Center, Fort Worth, Texas 76107, United States
| | - Francis J. Prael
- Department of Pharmacology, Vanderbilt University, Nashville, Tennessee 37232, United States
- Vanderbilt Institute of Chemical Biology, Vanderbilt University, Nashville, Tennessee 37240, United States
| | - Yu Du
- Department of Pharmacology, Vanderbilt University, Nashville, Tennessee 37232, United States
- Vanderbilt Institute of Chemical Biology, Vanderbilt University, Nashville, Tennessee 37240, United States
| | - Krystian A. Kozek
- Department of Pharmacology, Vanderbilt University, Nashville, Tennessee 37232, United States
- Vanderbilt Institute of Chemical Biology, Vanderbilt University, Nashville, Tennessee 37240, United States
- Vanderbilt Medical Scientist Training Program, Vanderbilt University, Nashville, Tennessee 37232, United States
| | - Roman M. Lazarenko
- Department of Anesthesiology, Vanderbilt University, Nashville, Tennessee 37212, United States
| | - Jerod S. Denton
- Department of Pharmacology, Vanderbilt University, Nashville, Tennessee 37232, United States
- Department of Anesthesiology, Vanderbilt University, Nashville, Tennessee 37212, United States
| | - Kyle A. Emmitte
- Department of Pharmaceutical Sciences, UNT System College of Pharmacy, University of North Texas Health Science Center, Fort Worth, Texas 76107, United States
| | - C. David Weaver
- Department of Pharmacology, Vanderbilt University, Nashville, Tennessee 37232, United States
- Vanderbilt Institute of Chemical Biology, Vanderbilt University, Nashville, Tennessee 37240, United States
| |
Collapse
|
10
|
Woodruff G, Phillips N, Carromeu C, Guicherit O, White A, Johnson M, Zanella F, Anson B, Lovenberg T, Bonaventure P, Harrington AW. Screening for modulators of neural network activity in 3D human iPSC-derived cortical spheroids. PLoS One 2020; 15:e0240991. [PMID: 33091047 PMCID: PMC7581002 DOI: 10.1371/journal.pone.0240991] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Accepted: 10/06/2020] [Indexed: 11/30/2022] Open
Abstract
Human induced Pluripotent Stem Cells (iPSCs) are a powerful tool to dissect the biology of complex human cell types such as those of the central nervous system (CNS). However, robust, high-throughput platforms for reliably measuring activity in human iPSC-derived neuronal cultures are lacking. Here, we assessed 3D cultures of cortical neurons and astrocytes displaying spontaneous, rhythmic, and highly synchronized neural activity that can be visualized as calcium oscillations on standard high-throughput fluorescent readers as a platform for CNS-based discovery efforts. Spontaneous activity and spheroid structure were highly consistent from well-to-well, reference compounds such as TTX, 4-AP, AP5, and NBQX, had expected effects on neural spontaneous activity, demonstrating the presence of functionally integrated neuronal circuitry. Neurospheroid biology was challenged by screening the LOPAC®1280 library, a collection of 1280 pharmacologically active small molecules. The primary screen identified 111 compounds (8.7%) that modulated neural network activity across a wide range of neural and cellular processes and 16 of 17 compounds chosen for follow-up confirmed the primary screen results. Together, these data demonstrate the suitability and utility of human iPSC-derived neurospheroids as a screening platform for CNS-based drug discovery.
Collapse
Affiliation(s)
- Grace Woodruff
- Neuroscience Discovery, Janssen Research and Development, LLC., San Diego, California, United States of America
| | - Naomi Phillips
- Neuroscience Discovery, Janssen Research and Development, LLC., San Diego, California, United States of America
| | | | - Oivin Guicherit
- StemoniX, Inc, Maple Grove, Minnesota, United States of America
| | - Alistair White
- StemoniX, Inc, Maple Grove, Minnesota, United States of America
| | - McCay Johnson
- StemoniX, Inc, Maple Grove, Minnesota, United States of America
| | - Fabian Zanella
- StemoniX, Inc, Maple Grove, Minnesota, United States of America
| | - Blake Anson
- StemoniX, Inc, Maple Grove, Minnesota, United States of America
| | - Timothy Lovenberg
- Neuroscience Discovery, Janssen Research and Development, LLC., San Diego, California, United States of America
| | - Pascal Bonaventure
- Neuroscience Discovery, Janssen Research and Development, LLC., San Diego, California, United States of America
| | - Anthony W. Harrington
- Neuroscience Discovery, Janssen Research and Development, LLC., San Diego, California, United States of America
- * E-mail:
| |
Collapse
|
11
|
Matsui T, Miyamoto N, Saito F, Shinozawa T. Molecular Profiling of Human Induced Pluripotent Stem Cell-Derived Cells and their Application for Drug Safety Study. Curr Pharm Biotechnol 2020; 21:807-828. [PMID: 32321398 DOI: 10.2174/1389201021666200422090952] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Revised: 12/10/2019] [Accepted: 03/02/2020] [Indexed: 12/13/2022]
Abstract
Drug-induced toxicity remains one of the leading causes of discontinuation of the drug candidate and post-marketing withdrawal. Thus, early identification of the drug candidates with the potential for toxicity is crucial in the drug development process. With the recent discovery of human- Induced Pluripotent Stem Cells (iPSC) and the establishment of the differentiation protocol of human iPSC into the cell types of interest, the differentiated cells from human iPSC have garnered much attention because of their potential applicability in toxicity evaluation as well as drug screening, disease modeling and cell therapy. In this review, we expanded on current information regarding the feasibility of human iPSC-derived cells for the evaluation of drug-induced toxicity with a focus on human iPSCderived hepatocyte (iPSC-Hep), cardiomyocyte (iPSC-CMs) and neurons (iPSC-Neurons). Further, we CSAHi, Consortium for Safety Assessment using Human iPS Cells, reported our gene expression profiling data with DNA microarray using commercially available human iPSC-derived cells (iPSC-Hep, iPSC-CMs, iPSC-Neurons), their relevant human tissues and primary cultured human cells to discuss the future direction of the three types of human iPSC-derived cells.
Collapse
Affiliation(s)
- Toshikatsu Matsui
- Consortium for Safety Assessment using Human iPS Cells (CSAHi), Japan
| | - Norimasa Miyamoto
- Consortium for Safety Assessment using Human iPS Cells (CSAHi), Japan
| | - Fumiyo Saito
- Consortium for Safety Assessment using Human iPS Cells (CSAHi), Japan
| | | |
Collapse
|
12
|
Pierce ML, French JA, Murray TF. Comparison of the pharmacological profiles of arginine vasopressin and oxytocin analogs at marmoset, macaque, and human vasopressin 1a receptor. Biomed Pharmacother 2020; 126:110060. [PMID: 32145592 DOI: 10.1016/j.biopha.2020.110060] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2020] [Revised: 02/22/2020] [Accepted: 02/25/2020] [Indexed: 01/14/2023] Open
Abstract
Arginine vasopressin (AVP) and oxytocin (OT) are nonapeptides that bind to G-protein coupled receptors and influence social behaviors. Consensus mammalian AVP and OT (Leu8-OT) sequences are highly conserved. In marmosets, an amino acid change in the 8th position of the peptide (Pro8-OT) exhibits unique structural and functional properties. There is ∼85 % structural homology between the OT receptor (OTR) and vasopressin 1a receptor (V1aR) resulting in significant cross-reactivity between the ligands and receptors. Chinese hamster ovary (CHO) cells expressing marmoset (mV1aR), macaque (qV1aR), or human vasopressin receptor 1a (hV1aR) were used to assess AVP, Leu8-OT and Pro8-OT pharmacological profiles. To assess activation of Gq, functional assays were performed using Fluo-3 to measure ligand-induced Ca2+ mobilization. In all three V1aR-expressing cell lines, AVP was more potent than the OT ligands. To assess ligand-induced hyperpolarization, FLIPR Membrane Potential (FMP) assays were performed. In all three V1aR lines, AVP was more potent than the OT analogs. The distinctive U-shaped concentration-response curve displayed by AVP may reflect enhanced desensitization of the mV1aR and hV1aR, which is not observed with qV1aR. Evaluation of Ca2+-activated potassium (K+) channels using the inhibitors apamin, paxilline, and TRAM-34 demonstrated that both intermediate and large conductance Ca2+-activated K+ channels contributed to membrane hyperpolarization, with different pharmacological profiles identified for distinct ligand-receptor combinations. Taken together, these data suggest differences in ligand-receptor signaling that may underlie differences in social behavior. Integrative studies of behavior, genetics and ligand-receptor interaction will help elucidate the connection between receptor pharmacology and social behaviors.
Collapse
Affiliation(s)
- Marsha L Pierce
- Department of Pharmacology, Creighton University School of Medicine, 2500 California Plaza, Omaha, NE 68178, USA
| | - Jeffrey A French
- Department of Psychology, University of Nebraska Omaha, 6001 Dodge St., Omaha, NE 68182, USA
| | - Thomas F Murray
- Department of Pharmacology, Creighton University School of Medicine, 2500 California Plaza, Omaha, NE 68178, USA.
| |
Collapse
|
13
|
Pierce ML, French JA, Murray TF. Comparison of the pharmacologic profiles of arginine vasopressin and oxytocin analogs at marmoset, titi monkey, macaque, and human oxytocin receptors. Biomed Pharmacother 2020; 125:109832. [PMID: 32018219 PMCID: PMC7196279 DOI: 10.1016/j.biopha.2020.109832] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Revised: 12/05/2019] [Accepted: 12/13/2019] [Indexed: 11/27/2022] Open
Abstract
The oxytocin-arginine vasopressin (OT-AVP) ligand-receptor family influences a variety of physiological, behavioral, and social behavioral processes in the brain and periphery. The OT-AVP family is highly conserved in mammals, but recent discoveries have revealed remarkable diversity in OT ligands and receptors in New World Monkeys (NWMs) providing a unique opportunity to assess the effects of genetic variation on pharmacological signatures of peptide ligands. The consensus mammalian OT sequence has leucine in the 8th position (Leu8-OT), whereas a number of NWMs, including the marmoset, have proline in the 8th position (Pro8-OT) resulting in a more rigid tail structure. OT and AVP bind to OT’s cognate G-protein coupled receptor (OTR), which couples to various G-proteins (Gi/o, Gq, Gs) to stimulate diverse signaling pathways. CHO cells expressing marmoset (mOTR), titi monkey (tOTR), macaque (qOTR), or human (hOTR) OT receptors were used to compare AVP and OT analog-induced signaling. Assessment of Gq-mediated increase in intracellular calcium (Ca2+) demonstrated that AVP was less potent than OT analogs at OTRs from species whose endogenous ligand is Leu8-OT (tOTR, qOTR, hOTR), relative to Pro8-OT. Likewise, AVP-induced membrane hyperpolarization was less potent at these same OTRs. Evaluation of (Ca2+)-activated potassium (K+) channels using the inhibitors apamin, paxilline, and TRAM-34 demonstrated that both intermediate and large conductance Ca2+-activated K+ channels contributed to membrane hyperpolarization, with different pharmacological profiles identified for distinct ligand-receptor combinations. Understanding more fully the contributions of structure activity relationships for these peptide ligands at vasopressin and OT receptors will help guide the development of OT-mediated therapeutics.
Collapse
Affiliation(s)
- Marsha L Pierce
- Department of Pharmacology, Creighton University School of Medicine, 2500 California Plaza, Omaha, NE, 68178, USA; Department of Pharmacology, Midwestern University, 555 31St., Downers Grove, IL, 60515, USA.
| | - Jeffrey A French
- Department of Psychology, University of Nebraska Omaha, 6001 Dodge St., Omaha, NE, 68182, USA.
| | - Thomas F Murray
- Department of Pharmacology, Creighton University School of Medicine, 2500 California Plaza, Omaha, NE, 68178, USA.
| |
Collapse
|
14
|
Sirenko O, Parham F, Dea S, Sodhi N, Biesmans S, Mora-Castilla S, Ryan K, Behl M, Chandy G, Crittenden C, Vargas-Hurlston S, Guicherit O, Gordon R, Zanella F, Carromeu C. Functional and Mechanistic Neurotoxicity Profiling Using Human iPSC-Derived Neural 3D Cultures. Toxicol Sci 2019; 167:58-76. [PMID: 30169818 DOI: 10.1093/toxsci/kfy218] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Neurological disorders affect millions of people worldwide and appear to be on the rise. Whereas the reason for this increase remains unknown, environmental factors are a suspected contributor. Hence, there is an urgent need to develop more complex, biologically relevant, and predictive in vitro assays to screen larger sets of compounds with the potential for neurotoxicity. Here, we employed a human induced pluripotent stem cell (iPSC)-based 3D neural platform composed of mature cortical neurons and astrocytes as a model for this purpose. The iPSC-derived human 3D cortical neuron/astrocyte co-cultures (3D neural cultures) present spontaneous synchronized, readily detectable calcium oscillations. This advanced neural platform was optimized for high-throughput screening in 384-well plates and displays highly consistent, functional performance across different wells and plates. Characterization of oscillation profiles in 3D neural cultures was performed through multi-parametric analysis that included the calcium oscillation rate and peak width, amplitude, and waveform irregularities. Cellular and mitochondrial toxicity were assessed by high-content imaging. For assay characterization, we used a set of neuromodulators with known mechanisms of action. We then explored the neurotoxic profile of a library of 87 compounds that included pharmaceutical drugs, pesticides, flame retardants, and other chemicals. Our results demonstrated that 57% of the tested compounds exhibited effects in the assay. The compounds were then ranked according to their effective concentrations based on in vitro activity. Our results show that a human iPSC-derived 3D neural culture assay platform is a promising biologically relevant tool to assess the neurotoxic potential of drugs and environmental toxicants.
Collapse
Affiliation(s)
| | - Frederick Parham
- Division of the National Toxicology Program, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina
| | - Steven Dea
- StemoniX, Inc, Maple Grove, Minnesota 55311
| | - Neha Sodhi
- StemoniX, Inc, Maple Grove, Minnesota 55311
| | | | | | - Kristen Ryan
- Division of the National Toxicology Program, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina
| | - Mamta Behl
- Division of the National Toxicology Program, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina
| | | | | | | | | | | | | | | |
Collapse
|
15
|
Matta C, Juhász T, Fodor J, Hajdú T, Katona É, Szűcs-Somogyi C, Takács R, Vágó J, Oláh T, Bartók Á, Varga Z, Panyi G, Csernoch L, Zákány R. N-methyl-D-aspartate (NMDA) receptor expression and function is required for early chondrogenesis. Cell Commun Signal 2019; 17:166. [PMID: 31842918 PMCID: PMC6915923 DOI: 10.1186/s12964-019-0487-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Accepted: 11/26/2019] [Indexed: 12/19/2022] Open
Abstract
Background In vitro chondrogenesis depends on the concerted action of numerous signalling pathways, many of which are sensitive to the changes of intracellular Ca2+ concentration. N-methyl-D-aspartate (NMDA) glutamate receptor is a cation channel with high permeability for Ca2+. Whilst there is now accumulating evidence for the expression and function of NMDA receptors in non-neural tissues including mature cartilage and bone, the contribution of glutamate signalling to the regulation of chondrogenesis is yet to be elucidated. Methods We studied the role of glutamatergic signalling during the course of in vitro chondrogenesis in high density chondrifying cell cultures using single cell fluorescent calcium imaging, patch clamp, transient gene silencing, and western blotting. Results Here we show that key components of the glutamatergic signalling pathways are functional during in vitro chondrogenesis in a primary chicken chondrogenic model system. We also present the full glutamate receptor subunit mRNA and protein expression profile of these cultures. This is the first study to report that NMDA-mediated signalling may act as a key factor in embryonic limb bud-derived chondrogenic cultures as it evokes intracellular Ca2+ transients, which are abolished by the GluN2B subunit-specific inhibitor ifenprodil. The function of NMDARs is essential for chondrogenesis as their functional knock-down using either ifenprodil or GRIN1 siRNA temporarily blocks the differentiation of chondroprogenitor cells. Cartilage formation was fully restored with the re-expression of the GluN1 protein. Conclusions We propose a key role for NMDARs during the transition of chondroprogenitor cells to cartilage matrix-producing chondroblasts.
Collapse
Affiliation(s)
- Csaba Matta
- Department of Anatomy, Histology and Embryology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary.
| | - Tamás Juhász
- Department of Anatomy, Histology and Embryology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - János Fodor
- Department of Physiology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Tibor Hajdú
- Department of Anatomy, Histology and Embryology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Éva Katona
- Department of Anatomy, Histology and Embryology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Csilla Szűcs-Somogyi
- Department of Anatomy, Histology and Embryology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Roland Takács
- Department of Anatomy, Histology and Embryology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Judit Vágó
- Department of Anatomy, Histology and Embryology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Tamás Oláh
- Department of Physiology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary.,Center of Experimental Orthopaedics, Saarland University, Homburg, Germany
| | - Ádám Bartók
- Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary.,Department of Medical Biochemistry, Semmelweis University, Budapest, Hungary
| | - Zoltan Varga
- Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Gyorgy Panyi
- Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - László Csernoch
- Department of Physiology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Róza Zákány
- Department of Anatomy, Histology and Embryology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary.
| |
Collapse
|
16
|
Larsen HM, Hansen SK, Mikkelsen JD, Hyttel P, Stummann TC. Alpha7 nicotinic acetylcholine receptors and neural network synaptic transmission in human induced pluripotent stem cell-derived neurons. Stem Cell Res 2019; 41:101642. [PMID: 31707211 DOI: 10.1016/j.scr.2019.101642] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Revised: 10/09/2019] [Accepted: 10/28/2019] [Indexed: 01/09/2023] Open
Abstract
The α7 nicotinic acetylcholine receptor has been extensively researched as a target for treatment of cognitive impairment in Alzheimer's disease and schizophrenia. Investigation of the α7 receptor is commonly performed in animals but it is critical to increase the biologically relevance of the model systems to fully capture the physiological role of the α7 receptor in humans. For example most humans, in contrast to animals, express the hybrid gene CHRFAM7A, the product of which modulates α7 receptor activity. In the present study, we used human induced pluripotent stem cell (hiPSC) derived neurons to establish a humanized α7 model. We established a cryobank of neural stem cells (NSCs) that could reproducibly be matured into neurons expressing neuronal markers and CHRNA7 and CHRFAM7A. The neurons responded to NMDA, GABA, and acetylcholine and exhibited synchronized spontaneous calcium oscillations. Gene expression studies and application of a range of α7 positive allosteric modulators (PNU-120595, TQS, JNJ-39393406 and AF58801) together with the α7 agonist PNU-282987 during measurement of intracellular calcium levels demonstrated the presence of functional α7 receptors in matured hiPSC-derived neuronal cultures. Pharmacological α7 activation also resulted in intracellular signaling as measured by ERK 1/2 phosphorylation and c-Fos protein expression. Moreover, PNU-120596 increased the frequency of the spontaneous calcium oscillations demonstrating implication of α7 receptors in human synaptic networks activity. Overall, we show that hiPSC derived neurons are an advanced in vitro model for studying human α7 receptor pharmacology and the involvement of this receptor in cellular processes as intracellular signaling and synaptic transmission.
Collapse
Affiliation(s)
- Hjalte M Larsen
- Stem Cells and Embryology Group, Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
| | - Susanne K Hansen
- Stem Cells and Embryology Group, Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
| | - Jens D Mikkelsen
- Neurobiology Research Unit, University Hospital Copenhagen, Rigshospitalet, Denmark
| | - Poul Hyttel
- Stem Cells and Embryology Group, Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
| | | |
Collapse
|
17
|
Robinson S, Courtney MJ. Spatial quantification of the synaptic activity phenotype across large populations of neurons with Markov random fields. Bioinformatics 2019; 34:3196-3204. [PMID: 29897415 DOI: 10.1093/bioinformatics/bty322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2017] [Accepted: 04/25/2018] [Indexed: 11/12/2022] Open
Abstract
Motivation The collective and co-ordinated synaptic activity of large neuronal populations is relevant to neuronal development as well as a range of neurological diseases. Quantification of synaptically-mediated neuronal signalling permits further downstream analysis as well as potential application in target validation and in vitro screening assays. Our aim is to develop a phenotypic quantification for neuronal activity imaging data of large populations of neurons, in particular relating to the spatial component of the activity. Results We extend the use of Markov random field (MRF) models to achieve this aim. In particular, we consider Bayesian posterior densities of model parameters in Gaussian MRFs to directly model changes in calcium fluorescence intensity rather than using spike trains. The basis of our model is defining neuron 'neighbours' by the relative spatial positions of the neuronal somata as obtained from the image data whereas previously this has been limited to defining an artificial square grid across the field of view and spike binning. We demonstrate that our spatial phenotypic quantification is applicable for both in vitro and in vivo data consisting of thousands of neurons over hundreds of time points. We show how our approach provides insight beyond that attained by conventional spike counting and discuss how it could be used to facilitate screening assays for modifiers of disease-associated defects of communication between cells. Availability and implementation We supply the MATLAB code and data to obtain all of the results in the paper. Supplementary information Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Sean Robinson
- Department of Mathematics and Statistics, University of Turku, Turku, Finland.,Université Grenoble Alpes, CEA, INSERM, Biology of Cancer and Infection UMR S 1036, Grenoble, France
| | - Michael J Courtney
- Neuronal Signalling Lab, Turku Centre for Biotechnology, University of Turku and Åbo Akademi University, Turku, Finland.,Screening Unit, Turku Centre for Biotechnology, University of Turku and Åbo Akademi University, and Institute of Biomedicine, University of Turku, Turku, Finland.,Turku Brain and Mind Center, University of Turku and Åbo Akademi University, Turku, Finland
| |
Collapse
|
18
|
Yang G, Wang Y, Yu Y, Zheng J, Chen J, Li S, Chen R, Zhang C, Naman CB, Yu D, Cao Z. Schekwanglupaside C, a new lupane saponin from Schefflera kwangsiensis, is a potent activator of sarcoplasmic reticulum Ca2+-ATPase. Fitoterapia 2019; 137:104150. [DOI: 10.1016/j.fitote.2019.04.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2019] [Revised: 04/06/2019] [Accepted: 04/13/2019] [Indexed: 12/12/2022]
|
19
|
Zheng J, Yu Y, Feng W, Li J, Liu J, Zhang C, Dong Y, Pessah IN, Cao Z. Influence of Nanomolar Deltamethrin on the Hallmarks of Primary Cultured Cortical Neuronal Network and the Role of Ryanodine Receptors. ENVIRONMENTAL HEALTH PERSPECTIVES 2019; 127:67003. [PMID: 31166131 PMCID: PMC6792378 DOI: 10.1289/ehp4583] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Revised: 05/09/2019] [Accepted: 05/10/2019] [Indexed: 05/19/2023]
Abstract
BACKGROUND The pyrethroid deltamethrin (DM) is broadly used for insect control. Although DM hyperexcites neuronal networks by delaying inactivation of axonal voltage-dependent [Formula: see text] channels, this mechanism is unlikely to mediate neurotoxicity at lower exposure levels during critical perinatal periods in mammals. OBJECTIVES We aimed to identify mechanisms by which acute and subchronic DM altered axonal and dendritic growth, patterns of synchronous [Formula: see text] oscillations (SCOs), and electrical spike activity (ESA) functions critical to neuronal network formation. METHODS Measurements of SCOs using [Formula: see text] imaging, ESA using microelectrode array (MEA) technology, and dendritic complexity using Sholl analysis were performed in primary murine cortical neurons from wild-type (WT) and/or ryanodine receptor 1 ([Formula: see text]) mice between 5 and 14 d in vitro (DIV). [Formula: see text] binding analysis and a single-channel voltage clamp were utilized to measure engagement of RyRs as a direct target of DM. RESULTS Neuronal networks responded to DM ([Formula: see text]) as early as 5 DIV, reducing SCO amplitude and depressing ESA and burst frequencies by 60-70%. DM ([Formula: see text]) enhanced axonal growth in a nonmonotonic manner. [Formula: see text] enhanced dendritic complexity. DM stabilized channel open states of RyR1, RyR2, and cortical preparations expressing all three isoforms. DM ([Formula: see text]) altered gating kinetics of RyR1 channels, increasing mean open time, decreasing mean closed time, and thereby enhancing overall open probability. SCO patterns from cortical networks expressing [Formula: see text] were more responsive to DM than WT. [Formula: see text] neurons showed inherently longer axonal lengths than WT neurons and maintained less length-promoting responses to nanomolar DM. CONCLUSIONS Our findings suggested that RyRs were sensitive molecular targets of DM with functional consequences likely relevant for mediating abnormal neuronal network connectivity in vitro. https://doi.org/10.1289/EHP4583.
Collapse
Affiliation(s)
- Jing Zheng
- State Key Laboratory of Natural Medicines, Jiangsu Provincial Key Laboratory for TCM Evaluation and Translational Research, Department of TCM Pharmacology, School of Traditional Pharmacy, China Pharmaceutical University, Nanjing, China
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California, Davis, California, USA
| | - Yiyi Yu
- State Key Laboratory of Natural Medicines, Jiangsu Provincial Key Laboratory for TCM Evaluation and Translational Research, Department of TCM Pharmacology, School of Traditional Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Wei Feng
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California, Davis, California, USA
| | - Jing Li
- State Key Laboratory of Natural Medicines, Jiangsu Provincial Key Laboratory for TCM Evaluation and Translational Research, Department of TCM Pharmacology, School of Traditional Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Ju Liu
- State Key Laboratory of Natural Medicines, Jiangsu Provincial Key Laboratory for TCM Evaluation and Translational Research, Department of TCM Pharmacology, School of Traditional Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Chunlei Zhang
- State Key Laboratory of Natural Medicines, Jiangsu Provincial Key Laboratory for TCM Evaluation and Translational Research, Department of TCM Pharmacology, School of Traditional Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Yao Dong
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California, Davis, California, USA
| | - Isaac N. Pessah
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California, Davis, California, USA
| | - Zhengyu Cao
- State Key Laboratory of Natural Medicines, Jiangsu Provincial Key Laboratory for TCM Evaluation and Translational Research, Department of TCM Pharmacology, School of Traditional Pharmacy, China Pharmaceutical University, Nanjing, China
| |
Collapse
|
20
|
Pierce ML, Mehrotra S, Mustoe AC, French JA, Murray TF. A Comparison of the Ability of Leu 8- and Pro 8-Oxytocin to Regulate Intracellular Ca 2+ and Ca 2+-Activated K + Channels at Human and Marmoset Oxytocin Receptors. Mol Pharmacol 2019; 95:376-385. [PMID: 30739093 DOI: 10.1124/mol.118.114744] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Accepted: 01/30/2019] [Indexed: 02/02/2023] Open
Abstract
The neurohypophyseal hormone oxytocin (OT) regulates biologic functions in both peripheral tissues and the central nervous system. In the central nervous system, OT influences social processes, including peer relationships, maternal-infant bonding, and affiliative social relationships. In mammals, the nonapeptide OT structure is highly conserved with leucine in the eighth position (Leu8-OT). In marmosets (Callithrix), a nonsynonymous nucleotide substitution in the OXT gene codes for proline in the eighth residue position (Pro8-OT). OT binds to its cognate G protein-coupled receptor (OTR) and exerts diverse effects, including stimulation (Gs) or inhibition (Gi/o) of adenylyl cyclase, stimulation of potassium channel currents (Gi), and activation of phospholipase C (Gq). Chinese hamster ovary cells expressing marmoset or human oxytocin receptors (mOTRs or hOTRs, respectively) were used to characterize OT signaling. At the mOTR, Pro8-OT was more efficacious than Leu8-OT in measures of Gq activation, with both peptides displaying subnanomolar potencies. At the hOTR, neither the potency nor efficacy of Pro8-OT and Leu8-OT differed with respect to Gq signaling. In both mOTR- and hOTR-expressing cells, Leu8-OT was more potent and modestly more efficacious than Pro8-OT in inducing hyperpolarization. In mOTR cells, Leu8-OT-induced hyperpolarization was modestly inhibited by pretreatment with pertussis toxin (PTX), consistent with a minor role for Gi/o activation; however, the Pro8-OT response in mOTR and hOTR cells was PTX insensitive. These findings are consistent with membrane hyperpolarization being largely mediated by a Gq signaling mechanism leading to Ca2+-dependent activation of K+ channels. Evaluation of the influence of apamin, charybdotoxin, paxilline, and TRAM-34 demonstrated involvement of both intermediate and large conductance Ca2+-activated K+ channels.
Collapse
Affiliation(s)
- Marsha L Pierce
- Department of Pharmacology, Creighton University School of Medicine, Omaha, Nebraska (M.L.P., S.M., T.F.M.); and Department of Psychology, University of Nebraska, Omaha, Nebraska (A.C.M., J.A.F.)
| | - Suneet Mehrotra
- Department of Pharmacology, Creighton University School of Medicine, Omaha, Nebraska (M.L.P., S.M., T.F.M.); and Department of Psychology, University of Nebraska, Omaha, Nebraska (A.C.M., J.A.F.)
| | - Aaryn C Mustoe
- Department of Pharmacology, Creighton University School of Medicine, Omaha, Nebraska (M.L.P., S.M., T.F.M.); and Department of Psychology, University of Nebraska, Omaha, Nebraska (A.C.M., J.A.F.)
| | - Jeffrey A French
- Department of Pharmacology, Creighton University School of Medicine, Omaha, Nebraska (M.L.P., S.M., T.F.M.); and Department of Psychology, University of Nebraska, Omaha, Nebraska (A.C.M., J.A.F.)
| | - Thomas F Murray
- Department of Pharmacology, Creighton University School of Medicine, Omaha, Nebraska (M.L.P., S.M., T.F.M.); and Department of Psychology, University of Nebraska, Omaha, Nebraska (A.C.M., J.A.F.)
| |
Collapse
|
21
|
Lassus B, Naudé J, Faure P, Guedin D, Von Boxberg Y, Mannoury la Cour C, Millan MJ, Peyrin JM. Glutamatergic and dopaminergic modulation of cortico-striatal circuits probed by dynamic calcium imaging of networks reconstructed in microfluidic chips. Sci Rep 2018; 8:17461. [PMID: 30498197 PMCID: PMC6265304 DOI: 10.1038/s41598-018-35802-9] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Accepted: 11/07/2018] [Indexed: 11/21/2022] Open
Abstract
Although the prefrontal cortex and basal ganglia are functionally interconnected by parallel loops, cellular substrates underlying their interaction remain poorly understood. One novel approach for addressing this issue is microfluidics, a methodology which recapitulates several intrinsic and synaptic properties of cortico-subcortical networks. We developed a microfluidic device where cortical neurons projected onto striatal neurons in a separate compartment. We exploited real-time (low-resolution/high-output) calcium imaging to register network dynamics and characterize the response to glutamatergic and dopaminergic agents. Reconstructed cortico-striatal networks revealed the progressive appearance of cortical VGLUT1 clusters on striatal dendrites, correlating with the emergence of spontaneous and synchronous glutamatergic responses of striatal neurons to concurrent cortical stimulation. Striatal exposure to the NMDA receptor GluN2A subunit antagonist TCN201 did not affect network rhythm, whereas the GluN2B subunit antagonist RO256981 significantly decreased striatal activity. Dopamine application or the D2/D3 receptor agonist, quinpirole, decreased cortico-striatal synchrony whereas the D1 receptor agonist, SKF38393, was ineffective. These data show that cortico-striatal networks reconstructed in a microfluidic environment are synchronized and present characteristics close to those of their in situ counterparts. They should prove instructive for deciphering the molecular substrates of CNS disorders and evaluating the actions of novel therapeutic agents.
Collapse
Affiliation(s)
- Benjamin Lassus
- CNRS UMR 8256, Biological Adaptation and Ageing, Paris, 75005, France.,Sorbonne Universités, UPMC, Institut de Biologie Paris-Seine, 75005, Paris, France
| | - Jérémie Naudé
- CNRS UMR 8246, Neurosciences, Paris, 75005, France.,Sorbonne Universités, UPMC, Institut de Biologie Paris-Seine, 75005, Paris, France
| | - Philippe Faure
- CNRS UMR 8246, Neurosciences, Paris, 75005, France.,Sorbonne Universités, UPMC, Institut de Biologie Paris-Seine, 75005, Paris, France
| | - Denis Guedin
- Servier Biotechnology, Chemogenetic Laboratory @ ICM Brain & Spine Institue, Pitié-Salpétrière Hospital, 52 boulevard Vincent Auriol, 75013, Paris, France
| | - Ysander Von Boxberg
- CNRS UMR 8246, Neurosciences, Paris, 75005, France.,Sorbonne Universités, UPMC, Institut de Biologie Paris-Seine, 75005, Paris, France
| | - Clotilde Mannoury la Cour
- Centre for Therapeutic Innovation in Neuropsychiatry, Institut de Recherches Servier, Centre de Recherches de Croissy, 78290, Croissy-sur-Seine, France
| | - Mark J Millan
- Centre for Therapeutic Innovation in Neuropsychiatry, Institut de Recherches Servier, Centre de Recherches de Croissy, 78290, Croissy-sur-Seine, France
| | - Jean-Michel Peyrin
- CNRS UMR 8246, Neurosciences, Paris, 75005, France. .,Sorbonne Universités, UPMC, Institut de Biologie Paris-Seine, 75005, Paris, France.
| |
Collapse
|
22
|
Huang Q, Chen J, Zhang W, Zhou B, Zhang C, Gerwick WH, Cao Z. Alkaloids from Corydalis decumbens suppress neuronal excitability in primary cultures of mouse neocortical neurons. PHYTOCHEMISTRY 2018; 150:85-92. [PMID: 29571149 DOI: 10.1016/j.phytochem.2018.03.006] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Revised: 02/05/2018] [Accepted: 03/11/2018] [Indexed: 06/08/2023]
Abstract
Eight previously undescribed alkaloids, named corydemine, dihydrocorydemine, corydedine, 8,13-dioxo-14-hydroxytetrahydropalmatine, egenine-α-N-oxide, egenine-β-N-oxide, 7'-O-ethylegenine-α-N-oxide, and 7'-O-ethylegenine-β-N-oxide, together with three known ones, muramine, l-tetrahydropalmatine, and (+)-egenine, were isolated from the bulbs of Corydalis decumbens. Their structures were elucidated by comprehensive spectroscopic analysis and chemical correlation. The isolated compounds were tested for their ability to modulate neuronal excitability in primary cultured neocortical neurons. Four of the compounds, corydemine, dihydrocorydemine, muramine, and l-tetrahydropalmatine, inhibited neuronal excitability with IC50 values of 3.6, 16.7, 13.5 and 14.0 μM, respectively.
Collapse
Affiliation(s)
- Qilong Huang
- Jiangsu Provincial Key Laboratory for TCM Evaluation and Translational Development, School of Triditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu, 211198, China
| | - Juan Chen
- Jiangsu Provincial Key Laboratory for TCM Evaluation and Translational Development, School of Triditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu, 211198, China
| | - Wanjin Zhang
- Jiangsu Provincial Key Laboratory for TCM Evaluation and Translational Development, School of Triditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu, 211198, China
| | - Baoping Zhou
- Jiangsu Provincial Key Laboratory for TCM Evaluation and Translational Development, School of Triditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu, 211198, China
| | - Chunlei Zhang
- Jiangsu Provincial Key Laboratory for TCM Evaluation and Translational Development, School of Triditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu, 211198, China.
| | - William H Gerwick
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California, San Diego, La Jolla, CA 92093, United States; Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, CA 92093, United States
| | - Zhengyu Cao
- Jiangsu Provincial Key Laboratory for TCM Evaluation and Translational Development, School of Triditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu, 211198, China.
| |
Collapse
|
23
|
Tao Y, Li P, Zhang D, Glukhov E, Gerwick L, Zhang C, Murray TF, Gerwick WH. Samholides, Swinholide-Related Metabolites from a Marine Cyanobacterium cf. Phormidium sp. J Org Chem 2018; 83:3034-3046. [PMID: 29457979 PMCID: PMC5859247 DOI: 10.1021/acs.joc.8b00028] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
![]()
Cancer cell cytotoxicity was used
to guide the isolation of nine
new swinholide-related compounds, named samholides A–I (1–9), from an American Samoan marine cyanobacterium
cf. Phormidium sp. Their structures were determined
by extensive analysis of 1D and 2D NMR spectroscopic data. The new
compounds share an unusual 20-demethyl 44-membered lactone ring composed
of two monomers, and they demonstrate structural diversity arising
from geometric isomerization of double bonds, sugar units with unique
glyceryl moieties and varied methylation patterns. All of the new
samholides were potently active against the H-460 human lung cancer
cell line with IC50 values ranging from 170 to 910 nM.
The isolation of these new swinholide-related compounds from a marine
cyanobacterium reinvigorates questions concerning the evolution and
biosynthetic origin of these natural products.
Collapse
Affiliation(s)
- Yiwen Tao
- Key Laboratory of Molecular Target & Clinical Pharmacology, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital , Guangzhou Medical University , Guangzhou 511436 , People's Republic of China.,Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography , University of California San Diego , La Jolla , California 92093 , United States
| | - Pinglin Li
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy , Ocean University of China , Qingdao 266003 , People's Republic of China.,Laboratory for Marine Drugs and Bioproducts , Qingdao National Laboratory for Marine Science and Technology , Qingdao 266235 , People's Republic of China.,Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography , University of California San Diego , La Jolla , California 92093 , United States
| | - Daojing Zhang
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography , University of California San Diego , La Jolla , California 92093 , United States.,State Key Laboratory of Bioreactor Engineering , East China University of Science & Technology , Shanghai 200237 , People's Republic of China
| | - Evgenia Glukhov
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography , University of California San Diego , La Jolla , California 92093 , United States
| | - Lena Gerwick
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography , University of California San Diego , La Jolla , California 92093 , United States
| | - Chen Zhang
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography , University of California San Diego , La Jolla , California 92093 , United States
| | - Thomas F Murray
- Department of Pharmacology , Creighton University School of Medicine , Omaha , Nebraska 68178 , United States
| | - William H Gerwick
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography , University of California San Diego , La Jolla , California 92093 , United States.,Skaggs School of Pharmacy and Pharmaceutical Sciences , University of California San Diego , La Jolla , California 92093 , United States
| |
Collapse
|
24
|
3D nerve cell cultures and complex physiological relevance. Drug Discov Today 2017; 23:22-25. [PMID: 29074438 DOI: 10.1016/j.drudis.2017.10.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2017] [Revised: 10/01/2017] [Accepted: 10/16/2017] [Indexed: 11/20/2022]
Abstract
The field of tissue engineering has not yet provided knowledge on which a consensus for the complex physiological relevance (CPR) of neuronal cultures could be established. The CPR of 3D neuronal cultures can have a profound impact on the drug discovery process through the validation of in vitro models for the study of neuropsychiatric and degenerative diseases, as well as screening for neurotoxicity during drug development. Herein, we assemble evidence in support of the potential of [Ca2+]i oscillation frequency as a CPR outcome that can demonstrate the in vivo-like behavior of 3D cultures and differentiate them from 2D monolayers. We demonstrate that [Ca2+]i oscillation frequencies in 2D cultures are significantly higher than those found in 3D cultures, and provide a possible molecular explanation.
Collapse
|
25
|
Zhang C, Chen J, Zhao F, Chen R, Yu D, Cao Z. Iritectol G, a novel iridal-type triterpenoid from Iris tectorum displays anti-epileptic activity in vitro through inhibition of sodium channels. Fitoterapia 2017; 122:20-25. [DOI: 10.1016/j.fitote.2017.08.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Revised: 08/04/2017] [Accepted: 08/11/2017] [Indexed: 10/19/2022]
|
26
|
Kato-Negishi M, Onoe H, Ito A, Takeuchi S. Rod-Shaped Neural Units for Aligned 3D Neural Network Connection. Adv Healthc Mater 2017; 6. [PMID: 28429415 DOI: 10.1002/adhm.201700143] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Revised: 03/13/2017] [Indexed: 12/12/2022]
Abstract
This paper proposes neural tissue units with aligned nerve fibers (called rod-shaped neural units) that connect neural networks with aligned neurons. To make the proposed units, 3D fiber-shaped neural tissues covered with a calcium alginate hydrogel layer are prepared with a microfluidic system and are cut in an accurate and reproducible manner. These units have aligned nerve fibers inside the hydrogel layer and connectable points on both ends. By connecting the units with a poly(dimethylsiloxane) guide, 3D neural tissues can be constructed and maintained for more than two weeks of culture. In addition, neural networks can be formed between the different neural units via synaptic connections. Experimental results indicate that the proposed rod-shaped neural units are effective tools for the construction of spatially complex connections with aligned nerve fibers in vitro.
Collapse
Affiliation(s)
- Midori Kato-Negishi
- Institute of Industrial Science; The University of Tokyo; 4-6-1, Komaba Meguro-ku Tokyo 153-8505 Japan
- Exploratory Research for Advanced Technology (ERATO); Japan Science and Technology Agency (JST); 4-6-1 Komaba Meguro-ku Tokyo 153-8505 Japan
| | - Hiroaki Onoe
- Institute of Industrial Science; The University of Tokyo; 4-6-1, Komaba Meguro-ku Tokyo 153-8505 Japan
- Exploratory Research for Advanced Technology (ERATO); Japan Science and Technology Agency (JST); 4-6-1 Komaba Meguro-ku Tokyo 153-8505 Japan
| | - Akane Ito
- Institute of Industrial Science; The University of Tokyo; 4-6-1, Komaba Meguro-ku Tokyo 153-8505 Japan
| | - Shoji Takeuchi
- Institute of Industrial Science; The University of Tokyo; 4-6-1, Komaba Meguro-ku Tokyo 153-8505 Japan
- Exploratory Research for Advanced Technology (ERATO); Japan Science and Technology Agency (JST); 4-6-1 Komaba Meguro-ku Tokyo 153-8505 Japan
| |
Collapse
|
27
|
Nagy J, Kobolák J, Berzsenyi S, Ábrahám Z, Avci HX, Bock I, Bekes Z, Hodoscsek B, Chandrasekaran A, Téglási A, Dezső P, Koványi B, Vörös ET, Fodor L, Szél T, Németh K, Balázs A, Dinnyés A, Lendvai B, Lévay G, Román V. Altered neurite morphology and cholinergic function of induced pluripotent stem cell-derived neurons from a patient with Kleefstra syndrome and autism. Transl Psychiatry 2017; 7:e1179. [PMID: 28742076 PMCID: PMC5538124 DOI: 10.1038/tp.2017.144] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Accepted: 04/28/2017] [Indexed: 01/05/2023] Open
Abstract
The aim of the present study was to establish an in vitro Kleefstra syndrome (KS) disease model using the human induced pluripotent stem cell (hiPSC) technology. Previously, an autism spectrum disorder (ASD) patient with Kleefstra syndrome (KS-ASD) carrying a deleterious premature termination codon mutation in the EHMT1 gene was identified. Patient specific hiPSCs generated from peripheral blood mononuclear cells of the KS-ASD patient were differentiated into post-mitotic cortical neurons. Lower levels of EHMT1 mRNA as well as protein expression were confirmed in these cells. Morphological analysis on neuronal cells differentiated from the KS-ASD patient-derived hiPSC clones showed significantly shorter neurites and reduced arborization compared to cells generated from healthy controls. Moreover, density of dendritic protrusions of neuronal cells derived from KS-ASD hiPSCs was lower than that of control cells. Synaptic connections and spontaneous neuronal activity measured by live cell calcium imaging could be detected after 5 weeks of differentiation, when KS-ASD cells exhibited higher sensitivity of calcium responses to acetylcholine stimulation indicating a lower nicotinic cholinergic tone at baseline condition in KS-ASD cells. In addition, gene expression profiling of differentiated neuronal cells from the KS-ASD patient revealed higher expression of proliferation-related genes and lower mRNA levels of genes involved in neuronal maturation and migration. Our data demonstrate anomalous neuronal morphology, functional activity and gene expression in KS-ASD patient-specific hiPSC-derived neuronal cultures, which offers an in vitro system that contributes to a better understanding of KS and potentially other neurodevelopmental disorders including ASD.
Collapse
Affiliation(s)
- J Nagy
- Pharmacology and Drug Safety Research, Gedeon Richter Plc., Budapest, Hungary,Laboratory of Molecular Cell Biology, Gedeon Richter Plc. Gyömrői út 19-21., Budapest 1103, Hungary. E-mail:
| | | | - S Berzsenyi
- Pharmacology and Drug Safety Research, Gedeon Richter Plc., Budapest, Hungary
| | - Z Ábrahám
- Pharmacology and Drug Safety Research, Gedeon Richter Plc., Budapest, Hungary
| | - H X Avci
- BioTalentum Ltd., Gödöllő, Hungary
| | - I Bock
- BioTalentum Ltd., Gödöllő, Hungary
| | - Z Bekes
- Pharmacology and Drug Safety Research, Gedeon Richter Plc., Budapest, Hungary
| | - B Hodoscsek
- Pharmacology and Drug Safety Research, Gedeon Richter Plc., Budapest, Hungary
| | | | | | - P Dezső
- Pharmacology and Drug Safety Research, Gedeon Richter Plc., Budapest, Hungary
| | - B Koványi
- Pharmacology and Drug Safety Research, Gedeon Richter Plc., Budapest, Hungary
| | - E T Vörös
- Pharmacology and Drug Safety Research, Gedeon Richter Plc., Budapest, Hungary
| | - L Fodor
- Pharmacology and Drug Safety Research, Gedeon Richter Plc., Budapest, Hungary
| | - T Szél
- Pharmacology and Drug Safety Research, Gedeon Richter Plc., Budapest, Hungary
| | - K Németh
- Autism Foundation, Budapest, Hungary
| | - A Balázs
- Autism Foundation, Budapest, Hungary
| | | | - B Lendvai
- Pharmacology and Drug Safety Research, Gedeon Richter Plc., Budapest, Hungary
| | - G Lévay
- Pharmacology and Drug Safety Research, Gedeon Richter Plc., Budapest, Hungary
| | - V Román
- Pharmacology and Drug Safety Research, Gedeon Richter Plc., Budapest, Hungary
| |
Collapse
|
28
|
Cao Z, Xu J, Hulsizer S, Cui Y, Dong Y, Pessah IN. Influence of tetramethylenedisulfotetramine on synchronous calcium oscillations at distinct developmental stages of hippocampal neuronal cultures. Neurotoxicology 2016; 58:11-22. [PMID: 27984050 DOI: 10.1016/j.neuro.2016.10.015] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Revised: 10/18/2016] [Accepted: 10/18/2016] [Indexed: 12/20/2022]
Abstract
The spatial and temporal patterns of spontaneous synchronous Ca2+ oscillations (SCOs) regulate physiological pathways that influence neuronal development, excitability, and health. Hippocampal neuronal cultures (HN) and neuron/glia co-cultures (HNG) produced from neonatal mice were loaded with Fluo-4/AM and SCOs recorded in real-time using a Fluorescence Imaging Plate Reader at different developmental stages in vitro. HNG showed an earlier onset of SCOs, with low amplitude and low frequency SCOs at 4days in vitro (DIV), whereas HN were quiescent at this point. SCO amplitude peaked at 9 DIV for both cultures. SCO network frequency peaked at 12 DIV in HN, whereas in HNG the frequency peaked at 6 DIV. SCO patterns were associated with the temporal development of neuronal networks and their ratio of glutamatergic to GABAergic markers of excitatory/inhibitory balance. HN and HNG exhibited differential responses to the convulsant tetramethylenedisulfotetramine (TETS) and were highly dependent on DIV. In HN, TETS triggered an acute rise of intracellular Ca2+ (Phase I response) only in 14 DIV and a sustained decrease of SCO frequency with increased amplitude (Phase II response) at all developmental stages. In HNG, TETS decreased the SCO frequency and increased the amplitude at 6 and 14 but not 9 DIV. There was no acute Ca2+ rise (Phase I response) in any age of HNG tested with TETS. These data demonstrated the importance of glia and developmental stage in modulating neuronal responses to TETS. Our results illustrate the applicability of the model for investigating how caged convulsants elicit abnormal network activity during the development of HN and HNG cultures in vitro.
Collapse
Affiliation(s)
- Zhengyu Cao
- State Key Laboratory of Natural Medicines & Jiangsu Provincial Key Laboratory for TCM Evaluation and Translational Development, China Pharmaceutical University, Nanjing, 211198, PR China; Department of Molecular Biosciences, School of Veterinary Medicine, University of California, Davis, 95616, United States.
| | - Jian Xu
- State Key Laboratory of Natural Medicines & Jiangsu Provincial Key Laboratory for TCM Evaluation and Translational Development, China Pharmaceutical University, Nanjing, 211198, PR China
| | - Susan Hulsizer
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California, Davis, 95616, United States
| | - Yanjun Cui
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California, Davis, 95616, United States
| | - Yao Dong
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California, Davis, 95616, United States
| | - Isaac N Pessah
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California, Davis, 95616, United States.
| |
Collapse
|
29
|
Borra S, Amrutapu SK, Pabbaraja S, Singh YJ. Stereoselective total synthesis of palmyrolide A via intramolecular trans N-methyl enamide formation. Tetrahedron Lett 2016. [DOI: 10.1016/j.tetlet.2016.08.054] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
30
|
Hansen SK, Stummann TC, Borland H, Hasholt LF, Tümer Z, Nielsen JE, Rasmussen MA, Nielsen TT, Daechsel JCA, Fog K, Hyttel P. Induced pluripotent stem cell - derived neurons for the study of spinocerebellar ataxia type 3. Stem Cell Res 2016; 17:306-317. [PMID: 27596958 DOI: 10.1016/j.scr.2016.07.004] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2016] [Revised: 06/09/2016] [Accepted: 07/18/2016] [Indexed: 11/29/2022] Open
Abstract
The neurodegenerative disease spinocerebellar ataxia type 3 (SCA3) is caused by a CAG-repeat expansion in the ATXN3 gene. In this study, induced pluripotent stem cell (iPSC) lines were established from two SCA3 patients. Dermal fibroblasts were reprogrammed using an integration-free method and the resulting SCA3 iPSCs were differentiated into neurons. These neuronal lines harbored the disease causing mutation, expressed comparable levels of several neuronal markers and responded to the neurotransmitters, glutamate/glycine, GABA and acetylcholine. Additionally, all neuronal cultures formed networks displaying synchronized spontaneous calcium oscillations within 28days of maturation, and expressed the mature neuronal markers NeuN and Synapsin 1 implying a relatively advanced state of maturity, although not comparable to that of the adult human brain. Interestingly, we were not able to recapitulate the glutamate-induced ataxin-3 aggregation shown in a previously published iPSC-derived SCA3 model. In conclusion, we have generated a panel of SCA3 patient iPSCs and a robust protocol to derive neurons of relatively advanced maturity, which could potentially be valuable for the study of SCA3 disease mechanisms.
Collapse
Affiliation(s)
- Susanne K Hansen
- Department of Veterinary Clinical and Animal Sciences, University of Copenhagen, Groennegårdsvej 7, 1870 Frb C, Denmark; H. Lundbeck A/S, Ottiliavej 9, Valby 2500, Denmark.
| | | | | | - Lis F Hasholt
- Institute of Cellular and Molecular Medicine, University of Copenhagen, Blegdamsvej 3B, 2200 N, Denmark
| | - Zeynep Tümer
- Applied Human Molecular Genetics, Kennedy Center, Department of Clinical Genetics, Copenhagen University Hospital, Rigshospitalet, Gl. Landevej 7, Glostrup 2600, Denmark
| | - Jørgen E Nielsen
- Institute of Cellular and Molecular Medicine, University of Copenhagen, Blegdamsvej 3B, 2200 N, Denmark; Neurogenetics Clinic & Research Laboratory, Danish Dementia Research Centre, Rigshospitalet, University of Copenhagen, Blegdamsvej 9, 2100 Copenhagen, Denmark
| | - Mikkel A Rasmussen
- Department of Veterinary Clinical and Animal Sciences, University of Copenhagen, Groennegårdsvej 7, 1870 Frb C, Denmark
| | - Troels T Nielsen
- Neurogenetics Clinic & Research Laboratory, Danish Dementia Research Centre, Rigshospitalet, University of Copenhagen, Blegdamsvej 9, 2100 Copenhagen, Denmark
| | | | - Karina Fog
- H. Lundbeck A/S, Ottiliavej 9, Valby 2500, Denmark
| | - Poul Hyttel
- Department of Veterinary Clinical and Animal Sciences, University of Copenhagen, Groennegårdsvej 7, 1870 Frb C, Denmark
| |
Collapse
|
31
|
Human Pluripotent Stem Cell-derived Cortical Neurons for High Throughput Medication Screening in Autism: A Proof of Concept Study in SHANK3 Haploinsufficiency Syndrome. EBioMedicine 2016; 9:293-305. [PMID: 27333044 PMCID: PMC4972535 DOI: 10.1016/j.ebiom.2016.05.032] [Citation(s) in RCA: 66] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2016] [Revised: 05/18/2016] [Accepted: 05/26/2016] [Indexed: 01/10/2023] Open
Abstract
Autism spectrum disorders affect millions of individuals worldwide, but their heterogeneity complicates therapeutic intervention that is essentially symptomatic. A versatile yet relevant model to rationally screen among hundreds of therapeutic options would help improving clinical practice. Here we investigated whether neurons differentiated from pluripotent stem cells can provide such a tool using SHANK3 haploinsufficiency as a proof of principle. A library of compounds was screened for potential to increase SHANK3 mRNA content in neurons differentiated from control human embryonic stem cells. Using induced pluripotent stem cell technology, active compounds were then evaluated for efficacy in correcting dysfunctional networks of neurons differentiated from individuals with deleterious point mutations of SHANK3. Among 202 compounds tested, lithium and valproic acid showed the best efficacy at corrected SHANK3 haploinsufficiency associated phenotypes in cellulo. Lithium pharmacotherapy was subsequently provided to one patient and, after one year, an encouraging decrease in autism severity was observed. This demonstrated that pluripotent stem cell-derived neurons provide a novel cellular paradigm exploitable in the search for specific disease-modifying treatments. Human neurons were used to screen for compounds correcting symptoms associated with SHANK3 haploinsufficiency syndrome. Screening criteria were the ability to increase SHANK3 expression and to increase glutamatergic transmission. Selected hit compounds were then validated using neurons differentiated from individuals with SHANK3 disrupting mutations. Lithium was selected and delivered to one of SHANK3 patient showing encouraging positive clinical outcomes after one year.
The clinical heterogeneity between individuals affected by autism makes it difficult to anticipate the effectiveness of a treatment. Furthermore, clinical practice lacks biological tools to help make such decisions. Here we use neurons, produced from pluripotent stem cells derived from patients affected by SHANK3 haploinsufficiency syndrome, to test the efficiency of therapeutic compounds. We screened the biological activity of more than 200 compounds on SHANK3 expression. Lithium was ultimately selected and delivered to one patient with a SHANK3-disruptive mutation. This resulted in a positive outcome, as determined by improved autistic core symptoms, thus supporting the usefulness of this type of predictive approach.
Collapse
|
32
|
Wang J, Wang Y, Guo F, Feng Z, Wang X, Lu C. Nicotinic modulation of Ca2+ oscillations in rat cortical neurons in vitro. Am J Physiol Cell Physiol 2016; 310:C748-54. [DOI: 10.1152/ajpcell.00197.2015] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2015] [Accepted: 01/29/2016] [Indexed: 01/28/2023]
Abstract
The roles of nicotine on Ca2+ oscillations [intracellular Ca2+ ([Ca2+]i) oscillation] in rat primary cultured cortical neurons were studied. The spontaneous [Ca2+]i oscillations (SCO) were recorded in a portion of the neurons (65%) cultured for 7–10 days in vitro. Application of nicotine enhanced [Ca2+]i oscillation frequency and amplitude, which were reduced by the selective α4β2-nicotinic acetylcholine receptors (nAChRs) antagonist dihydro-β-erythroidine (DHβE) hydrobromide, and the selective α7-nAChRs antagonist methyllycaconitine citrate (MLA, 20 nM). DHβE reduced SCO frequency and prevented the nicotinic increase in the frequency. DHβE somewhat enhanced SCO amplitude and prevented nicotinic increase in the amplitude. MLA (20 nM) itself reduced SCO frequency without affecting the amplitude but blocked nicotinic increase in [Ca2+]i oscillation frequency and amplitude. Furthermore, coadministration of both α4β2- and α7-nAChRs antagonists completely prevented nicotinic increment in [Ca2+]i oscillation frequency and amplitude. Thus, our results indicate that both α4β2- and α7-nAChRs mediated nicotine-induced [Ca2+]i oscillations, and two nAChR subtypes differentially regulated SCO.
Collapse
Affiliation(s)
- JianGang Wang
- Henan Province Key Laboratory of Brain Research, Xinxiang Medical University, Xinxiang, Henan, Peoples Republic of China
- Department of Pathophysiology, Xinxiang Medical University, Xinxiang, Henan, Peoples Republic of China
| | - YaLi Wang
- Henan Province Key Laboratory of Brain Research, Xinxiang Medical University, Xinxiang, Henan, Peoples Republic of China
- Department of Physiology and Neurobiology, Xinxiang Medical University, Xinxiang, Henan, Peoples Republic of China; and
| | - FangLi Guo
- Henan Province Key Laboratory of Brain Research, Xinxiang Medical University, Xinxiang, Henan, Peoples Republic of China
- Department of Physiology and Neurobiology, Xinxiang Medical University, Xinxiang, Henan, Peoples Republic of China; and
| | - ZhiBo Feng
- Department of Anatomy, Xinxiang Medical University, Xinxiang, Henan, Peoples Republic of China
| | - XiangFang Wang
- Henan Province Key Laboratory of Brain Research, Xinxiang Medical University, Xinxiang, Henan, Peoples Republic of China
| | - ChengBiao Lu
- Henan Province Key Laboratory of Brain Research, Xinxiang Medical University, Xinxiang, Henan, Peoples Republic of China
- Department of Physiology and Neurobiology, Xinxiang Medical University, Xinxiang, Henan, Peoples Republic of China; and
| |
Collapse
|
33
|
|
34
|
Bruun DA, Cao Z, Inceoglu B, Vito ST, Austin AT, Hulsizer S, Hammock BD, Tancredi DJ, Rogawski MA, Pessah IN, Lein PJ. Combined treatment with diazepam and allopregnanolone reverses tetramethylenedisulfotetramine (TETS)-induced calcium dysregulation in cultured neurons and protects TETS-intoxicated mice against lethal seizures. Neuropharmacology 2015; 95:332-42. [PMID: 25882826 DOI: 10.1016/j.neuropharm.2015.03.035] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2015] [Revised: 03/15/2015] [Accepted: 03/31/2015] [Indexed: 01/09/2023]
Abstract
Tetramethylenedisulfotetramine (TETS) is a potent convulsant GABAA receptor blocker. Mice receiving a lethal dose of TETS (0.15 mg/kg i.p.) are rescued from death by a high dose of diazepam (5 mg/kg i.p.) administered shortly after the second clonic seizure (∼20 min post-TETS). However, this high dose of diazepam significantly impairs blood pressure and mobility, and does not prevent TETS-induced neuroinflammation in the brain. We previously demonstrated that TETS alters synchronous Ca(2+) oscillations in primary mouse hippocampal neuronal cell cultures and that pretreatment with the combination of diazepam and allopregnanolone at concentrations having negligible effects individually prevents TETS effects on intracellular Ca(2+) dynamics. Here, we show that treatment with diazepam and allopregnanolone (0.1 μM) 20 min after TETS challenge normalizes synchronous Ca(2+) oscillations when added in combination but not when added singly. Similarly, doses (0.03-0.1 mg/kg i.p.) of diazepam and allopregnanolone that provide minimal protection when administered singly to TETS intoxicated mice increase survival from 10% to 90% when given in combination either 10 min prior to TETS or following the second clonic seizure. This therapeutic combination has negligible effects on blood pressure or mobility. Combined treatment with diazepam and allopregnanolone also decreases TETS-induced microglial activation. Diazepam and allopregnanolone have distinct actions as positive allosteric modulators of GABAA receptors that in combination enhance survival and mitigate neuropathology following TETS intoxication without the adverse side effects associated with high dose benzodiazepines. Combination therapy with a benzodiazepine and neurosteroid represents a novel neurotherapeutic strategy with potentially broad application.
Collapse
Affiliation(s)
- Donald A Bruun
- Department of Molecular Biosciences, School of Veterinary Medicine, Davis, CA 95616, USA
| | - Zhengyu Cao
- Department of Molecular Biosciences, School of Veterinary Medicine, Davis, CA 95616, USA
| | - Bora Inceoglu
- Department of Entomology, College of Agricultural and Environmental Sciences, University of California, Davis, Davis, CA 95616, USA
| | - Stephen T Vito
- Department of Entomology, College of Agricultural and Environmental Sciences, University of California, Davis, Davis, CA 95616, USA
| | | | - Susan Hulsizer
- Department of Molecular Biosciences, School of Veterinary Medicine, Davis, CA 95616, USA
| | - Bruce D Hammock
- Department of Entomology, College of Agricultural and Environmental Sciences, University of California, Davis, Davis, CA 95616, USA; Comprehensive Cancer Center, Sacramento, CA 95817, USA
| | | | - Michael A Rogawski
- Department of Neurology, School of Medicine, University of California, Davis, Sacramento, CA 95817, USA
| | - Isaac N Pessah
- Department of Molecular Biosciences, School of Veterinary Medicine, Davis, CA 95616, USA
| | - Pamela J Lein
- Department of Molecular Biosciences, School of Veterinary Medicine, Davis, CA 95616, USA.
| |
Collapse
|
35
|
Cao Z, Zou X, Cui Y, Hulsizer S, Lein PJ, Wulff H, Pessah IN. Rapid throughput analysis demonstrates that chemicals with distinct seizurogenic mechanisms differentially alter Ca2+ dynamics in networks formed by hippocampal neurons in culture. Mol Pharmacol 2015; 87:595-605. [PMID: 25583085 DOI: 10.1124/mol.114.096701] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Primary cultured hippocampal neurons (HN) form functional networks displaying synchronous Ca(2+) oscillations (SCOs) whose patterns influence plasticity. Whether chemicals with distinct seizurogenic mechanisms differentially alter SCO patterns was investigated using mouse HN loaded with the Ca(2+) indicator fluo-4-AM. Intracellular Ca(2+) dynamics were recorded from 96 wells simultaneously in real-time using fluorescent imaging plate reader. Although quiescent at 4 days in vitro (DIV), HN acquired distinctive SCO patterns as they matured to form extensive dendritic networks by 16 DIV. Challenge with kainate, a kainate receptor (KAR) agonist, 4-aminopyridine (4-AP), a K(+) channel blocker, or pilocarpine, a muscarinic acetylcholine receptor agonist, caused distinct changes in SCO dynamics. Kainate at <1 µM produced a rapid rise in baseline Ca(2+) (Phase I response) associated with high-frequency and low-amplitude SCOs (Phase II response), whereas SCOs were completely repressed with >1 µM kainate. KAR competitive antagonist CNQX [6-cyano-7-nitroquinoxaline-2,3-dione] (1-10 µM) normalized Ca(2+) dynamics to the prekainate pattern. Pilocarpine lacked Phase I activity but caused a sevenfold prolongation of Phase II SCOs without altering either their frequency or amplitude, an effect normalized by atropine (0.3-1 µM). 4-AP (1-30 µM) elicited a delayed Phase I response associated with persistent high-frequency, low-amplitude SCOs, and these disturbances were mitigated by pretreatment with the KCa activator SKA-31 [naphtho[1,2-d]thiazol-2-ylamine]. Consistent with its antiepileptic and neuroprotective activities, nonselective voltage-gated Na(+) and Ca(2+) channel blocker lamotrigine partially resolved kainate- and pilocarpine-induced Ca(2+) dysregulation. This rapid throughput approach can discriminate among distinct seizurogenic mechanisms that alter Ca(2+) dynamics in neuronal networks and may be useful in screening antiepileptic drug candidates.
Collapse
Affiliation(s)
- Zhengyu Cao
- State Key Laboratory of Natural Medicines and Jiangsu Provincial Key laboratory for TCM Evaluation and Translational Development, China Pharmaceutical University, Nanjing, P.R. China (Z.C., X.Z., Y.C.); Department of Molecular Biosciences, School of Veterinary Medicine (Z.C., Y.C., S.H., P.J.L., I.N.P.) and Department of Pharmacology, School of Medicine (H.W.),University of California, Davis, California
| | - Xiaohan Zou
- State Key Laboratory of Natural Medicines and Jiangsu Provincial Key laboratory for TCM Evaluation and Translational Development, China Pharmaceutical University, Nanjing, P.R. China (Z.C., X.Z., Y.C.); Department of Molecular Biosciences, School of Veterinary Medicine (Z.C., Y.C., S.H., P.J.L., I.N.P.) and Department of Pharmacology, School of Medicine (H.W.),University of California, Davis, California
| | - Yanjun Cui
- State Key Laboratory of Natural Medicines and Jiangsu Provincial Key laboratory for TCM Evaluation and Translational Development, China Pharmaceutical University, Nanjing, P.R. China (Z.C., X.Z., Y.C.); Department of Molecular Biosciences, School of Veterinary Medicine (Z.C., Y.C., S.H., P.J.L., I.N.P.) and Department of Pharmacology, School of Medicine (H.W.),University of California, Davis, California
| | - Susan Hulsizer
- State Key Laboratory of Natural Medicines and Jiangsu Provincial Key laboratory for TCM Evaluation and Translational Development, China Pharmaceutical University, Nanjing, P.R. China (Z.C., X.Z., Y.C.); Department of Molecular Biosciences, School of Veterinary Medicine (Z.C., Y.C., S.H., P.J.L., I.N.P.) and Department of Pharmacology, School of Medicine (H.W.),University of California, Davis, California
| | - Pamela J Lein
- State Key Laboratory of Natural Medicines and Jiangsu Provincial Key laboratory for TCM Evaluation and Translational Development, China Pharmaceutical University, Nanjing, P.R. China (Z.C., X.Z., Y.C.); Department of Molecular Biosciences, School of Veterinary Medicine (Z.C., Y.C., S.H., P.J.L., I.N.P.) and Department of Pharmacology, School of Medicine (H.W.),University of California, Davis, California
| | - Heike Wulff
- State Key Laboratory of Natural Medicines and Jiangsu Provincial Key laboratory for TCM Evaluation and Translational Development, China Pharmaceutical University, Nanjing, P.R. China (Z.C., X.Z., Y.C.); Department of Molecular Biosciences, School of Veterinary Medicine (Z.C., Y.C., S.H., P.J.L., I.N.P.) and Department of Pharmacology, School of Medicine (H.W.),University of California, Davis, California
| | - Isaac N Pessah
- State Key Laboratory of Natural Medicines and Jiangsu Provincial Key laboratory for TCM Evaluation and Translational Development, China Pharmaceutical University, Nanjing, P.R. China (Z.C., X.Z., Y.C.); Department of Molecular Biosciences, School of Veterinary Medicine (Z.C., Y.C., S.H., P.J.L., I.N.P.) and Department of Pharmacology, School of Medicine (H.W.),University of California, Davis, California
| |
Collapse
|
36
|
Cao Z, Cui Y, Busse E, Mehrotra S, Rainier JD, Murray TF. Gambierol inhibition of voltage-gated potassium channels augments spontaneous Ca2+ oscillations in cerebrocortical neurons. J Pharmacol Exp Ther 2014; 350:615-23. [PMID: 24957609 DOI: 10.1124/jpet.114.215319] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Gambierol is a marine polycyclic ether toxin produced by the marine dinoflagellate Gambierdiscus toxicus and is a member of the ciguatoxin toxin family. Gambierol has been demonstrated to be either a low-efficacy partial agonist/antagonist of voltage-gated sodium channels or a potent blocker of voltage-gated potassium channels (Kvs). Here we examined the influence of gambierol on intact cerebrocortical neurons. We found that gambierol produced both a concentration-dependent augmentation of spontaneous Ca(2+) oscillations, and an inhibition of Kv channel function with similar potencies. In addition, an array of selective as well as universal Kv channel inhibitors mimicked gambierol in augmenting spontaneous Ca(2+) oscillations in cerebrocortical neurons. These data are consistent with a gambierol blockade of Kv channels underlying the observed increase in spontaneous Ca(2+) oscillation frequency. We also found that gambierol produced a robust stimulation of phosphorylation of extracellular signal-regulated kinases 1/2 (ERK1/2). Gambierol-stimulated ERK1/2 activation was dependent on both inotropic [N-methyl-d-aspartate (NMDA)] and type I metabotropic glutamate receptors (mGluRs) inasmuch as MK-801 [NMDA receptor inhibitor; (5S,10R)-(+)-5-methyl-10,11-dihydro-5H-dibenzo[a,d]cyclohepten-5,10-imine maleate], S-(4)-CGP [S-(4)-carboxyphenylglycine], and MTEP [type I mGluR inhibitors; 3-((2-methyl-4-thiazolyl)ethynyl) pyridine] attenuated the response. In addition, 2-aminoethoxydiphenylborane, an inositol 1,4,5-trisphosphate receptor inhibitor, and U73122 (1-[6-[[(17b)-3-methoxyestra-1,3,5(10)-trien-17-yl]amino]hexyl]-1H-pyrrole-2,5-dione), a phospholipase C inhibitor, both suppressed gambierol-induced ERK1/2 activation, further confirming the role of type I mGluR-mediated signaling in the observed ERK1/2 activation. Finally, we found that gambierol produced a concentration-dependent stimulation of neurite outgrowth that was mimicked by 4-aminopyridine, a universal potassium channel inhibitor. Considered together, these data demonstrate that gambierol alters both Ca(2+) signaling and neurite outgrowth in cerebrocortical neurons as a consequence of blockade of Kv channels.
Collapse
Affiliation(s)
- Zhengyu Cao
- State Key Laboratory of Natural Medicines, Department of Complex Prescription of Traditional Chinese Medicine, China Pharmaceutical University, Nanjing, People's Republic of China (Z.C.); Department of Pharmacology, School of Medicine, Creighton University, Omaha, Nebraska (Z.C., Y.C., E.B., S.M., T.F.M.); and Department of Chemistry, University of Utah, Salt Lake City, Utah (J.D.R.)
| | - Yanjun Cui
- State Key Laboratory of Natural Medicines, Department of Complex Prescription of Traditional Chinese Medicine, China Pharmaceutical University, Nanjing, People's Republic of China (Z.C.); Department of Pharmacology, School of Medicine, Creighton University, Omaha, Nebraska (Z.C., Y.C., E.B., S.M., T.F.M.); and Department of Chemistry, University of Utah, Salt Lake City, Utah (J.D.R.)
| | - Eric Busse
- State Key Laboratory of Natural Medicines, Department of Complex Prescription of Traditional Chinese Medicine, China Pharmaceutical University, Nanjing, People's Republic of China (Z.C.); Department of Pharmacology, School of Medicine, Creighton University, Omaha, Nebraska (Z.C., Y.C., E.B., S.M., T.F.M.); and Department of Chemistry, University of Utah, Salt Lake City, Utah (J.D.R.)
| | - Suneet Mehrotra
- State Key Laboratory of Natural Medicines, Department of Complex Prescription of Traditional Chinese Medicine, China Pharmaceutical University, Nanjing, People's Republic of China (Z.C.); Department of Pharmacology, School of Medicine, Creighton University, Omaha, Nebraska (Z.C., Y.C., E.B., S.M., T.F.M.); and Department of Chemistry, University of Utah, Salt Lake City, Utah (J.D.R.)
| | - Jon D Rainier
- State Key Laboratory of Natural Medicines, Department of Complex Prescription of Traditional Chinese Medicine, China Pharmaceutical University, Nanjing, People's Republic of China (Z.C.); Department of Pharmacology, School of Medicine, Creighton University, Omaha, Nebraska (Z.C., Y.C., E.B., S.M., T.F.M.); and Department of Chemistry, University of Utah, Salt Lake City, Utah (J.D.R.)
| | - Thomas F Murray
- State Key Laboratory of Natural Medicines, Department of Complex Prescription of Traditional Chinese Medicine, China Pharmaceutical University, Nanjing, People's Republic of China (Z.C.); Department of Pharmacology, School of Medicine, Creighton University, Omaha, Nebraska (Z.C., Y.C., E.B., S.M., T.F.M.); and Department of Chemistry, University of Utah, Salt Lake City, Utah (J.D.R.)
| |
Collapse
|
37
|
Cao Z, Cui Y, Nguyen HM, Jenkins DP, Wulff H, Pessah IN. Nanomolar bifenthrin alters synchronous Ca2+ oscillations and cortical neuron development independent of sodium channel activity. Mol Pharmacol 2014; 85:630-9. [PMID: 24482397 DOI: 10.1124/mol.113.090076] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Bifenthrin, a relatively stable type I pyrethroid that causes tremors and impairs motor activity in rodents, is broadly used. We investigated whether nanomolar bifenthrin alters synchronous Ca(2+) oscillations (SCOs) necessary for activity-dependent dendritic development. Primary mouse cortical neurons were cultured 8 or 9 days in vitro (DIV), loaded with the Ca(2+) indicator Fluo-4, and imaged using a Fluorescence Imaging Plate Reader Tetra. Acute exposure to bifenthrin rapidly increased the frequency of SCOs by 2.7-fold (EC50 = 58 nM) and decreased SCO amplitude by 36%. Changes in SCO properties were independent of modifications in voltage-gated sodium channels since 100 nM bifenthrin had no effect on the whole-cell Na(+) current, nor did it influence neuronal resting membrane potential. The L-type Ca(2+) channel blocker nifedipine failed to ameliorate bifenthrin-triggered SCO activity. By contrast, the metabotropic glutamate receptor (mGluR)5 antagonist MPEP [2-methyl-6-(phenylethynyl)pyridine] normalized bifenthrin-triggered increase in SCO frequency without altering baseline SCO activity, indicating that bifenthrin amplifies mGluR5 signaling independent of Na(+) channel modification. Competitive [AP-5; (-)-2-amino-5-phosphonopentanoic acid] and noncompetitive (dizocilpine, or MK-801 [(5S,10R)-(+)-5-methyl-10,11-dihydro-5H-dibenzo[a,d]cyclohepten-5,10-imine maleate]) N-methyl-d-aspartate antagonists partially decreased both basal and bifenthrin-triggered SCO frequency increase. Bifenthrin-modified SCO rapidly enhanced the phosphorylation of cAMP response element-binding protein (CREB). Subacute (48 hours) exposure to bifenthrin commencing 2 DIV-enhanced neurite outgrowth and persistently increased SCO frequency and reduced SCO amplitude. Bifenthrin-stimulated neurite outgrowth and CREB phosphorylation were dependent on mGluR5 activity since MPEP normalized both responses. Collectively these data identify a new mechanism by which bifenthrin potently alters Ca(2+) dynamics and Ca(2+)-dependent signaling in cortical neurons that have long term impacts on activity driven neuronal plasticity.
Collapse
Affiliation(s)
- Zhengyu Cao
- Department of Molecular Biosciences, School of Veterinary Medicine (Z.C., Y.C., I.N.P.), and Department of Pharmacology, School of Medicine (H.M.N., D.P.J., H.W.), University of California Davis, Davis, California
| | | | | | | | | | | |
Collapse
|
38
|
Pacico N, Mingorance-Le Meur A. New in vitro phenotypic assay for epilepsy: fluorescent measurement of synchronized neuronal calcium oscillations. PLoS One 2014; 9:e84755. [PMID: 24416277 PMCID: PMC3885603 DOI: 10.1371/journal.pone.0084755] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2013] [Accepted: 11/18/2013] [Indexed: 12/20/2022] Open
Abstract
Research in the epilepsy field is moving from a primary focus on controlling seizures to addressing disease pathophysiology. This requires the adoption of resource- and time-consuming animal models of chronic epilepsy which are no longer able to sustain the testing of even moderate numbers of compounds. Therefore, new in vitro functional assays of epilepsy are needed that are able to provide a medium throughput while still preserving sufficient biological context to allow for the identification of compounds with new modes of action. Here we describe a robust and simple fluorescence-based calcium assay to measure epileptiform network activity using rat primary cortical cultures in a 96-well format. The assay measures synchronized intracellular calcium oscillations occurring in the population of primary neurons and is amenable to medium throughput screening. We have adapted this assay format to the low magnesium and the 4-aminopyridine epilepsy models and confirmed the contribution of voltage-gated ion channels and AMPA, NMDA and GABA receptors to epileptiform activity in both models. We have also evaluated its translatability using a panel of antiepileptic drugs with a variety of modes of action. Given its throughput and translatability, the calcium oscillations assay bridges the gap between simplified target-based screenings and compound testing in animal models of epilepsy. This phenotypic assay also has the potential to be used directly as a functional screen to help identify novel antiepileptic compounds with new modes of action, as well as pathways with previously unknown contribution to disease pathophysiology.
Collapse
Affiliation(s)
- Nathalie Pacico
- Neurosciences Therapeutic Area, New Medicines, UCB Pharma, Braine-L’Alleud, Belgium
| | - Ana Mingorance-Le Meur
- Neurosciences Therapeutic Area, New Medicines, UCB Pharma, Braine-L’Alleud, Belgium
- * E-mail:
| |
Collapse
|
39
|
Um JW, Kaufman AC, Kostylev M, Heiss JK, Stagi M, Takahashi H, Kerrisk ME, Vortmeyer A, Wisniewski T, Koleske AJ, Gunther EC, Nygaard HB, Strittmatter SM. Metabotropic glutamate receptor 5 is a coreceptor for Alzheimer aβ oligomer bound to cellular prion protein. Neuron 2013; 79:887-902. [PMID: 24012003 DOI: 10.1016/j.neuron.2013.06.036] [Citation(s) in RCA: 450] [Impact Index Per Article: 37.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/17/2013] [Indexed: 02/07/2023]
Abstract
Soluble amyloid-β oligomers (Aβo) trigger Alzheimer's disease (AD) pathophysiology and bind with high affinity to cellular prion protein (PrP(C)). At the postsynaptic density (PSD), extracellular Aβo bound to lipid-anchored PrP(C) activates intracellular Fyn kinase to disrupt synapses. Here, we screened transmembrane PSD proteins heterologously for the ability to couple Aβo-PrP(C) with Fyn. Only coexpression of the metabotropic glutamate receptor, mGluR5, allowed PrP(C)-bound Aβo to activate Fyn. PrP(C) and mGluR5 interact physically, and cytoplasmic Fyn forms a complex with mGluR5. Aβo-PrP(C) generates mGluR5-mediated increases of intracellular calcium in Xenopus oocytes and in neurons, and the latter is also driven by human AD brain extracts. In addition, signaling by Aβo-PrP(C)-mGluR5 complexes mediates eEF2 phosphorylation and dendritic spine loss. For mice expressing familial AD transgenes, mGluR5 antagonism reverses deficits in learning, memory, and synapse density. Thus, Aβo-PrP(C) complexes at the neuronal surface activate mGluR5 to disrupt neuronal function.
Collapse
Affiliation(s)
- Ji Won Um
- Cellular Neuroscience, Neurodegeneration and Repair Program, Departments of Neurology and Neurobiology, Yale University School of Medicine, New Haven, CT 06536, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Huang L, Liu Y, Zhang P, Kang R, Liu Y, Li X, Bo L, Dong Z. In vitro dose-dependent inhibition of the intracellular spontaneous calcium oscillations in developing hippocampal neurons by ketamine. PLoS One 2013; 8:e59804. [PMID: 23555787 PMCID: PMC3610914 DOI: 10.1371/journal.pone.0059804] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2013] [Accepted: 02/19/2013] [Indexed: 01/28/2023] Open
Abstract
Spatial and temporal abnormalities in the frequency and amplitude of the cytosolic calcium oscillations can impact the normal physiological functions of neuronal cells. Recent studies have shown that ketamine can affect the growth and development and even induce the apoptotic death of neurons. This study used isolated developing hippocampal neurons as its study subjects to observe the effect of ketamine on the intracellular calcium oscillations in developing hippocampal neurons and to further explore its underlying mechanism using Fluo-4-loaded laser scanning confocal microscopy. Using a semi-quantitative method to analyze the spontaneous calcium oscillatory activities, a typical type of calcium oscillation was observed in developing hippocampal neurons. In addition, the administration of NMDA (N-Methyl-D-aspartate) at a concentration of 100 µM increased the calcium oscillation amplitude. The administration of MK801 at a concentration of 40 µM inhibited the amplitude and frequency of the calcium oscillations. Our results demonstrated that an increase in the ketamine concentration, starting from 30 µM, gradually decreased the neuronal calcium oscillation amplitude. The inhibition of the calcium oscillation frequency by 300 µM ketamine was statistically significant, and the neuronal calcium oscillations were completely eliminated with the administration of 3,000 µM Ketamine. The administration of 100, 300, and 1,000 µM NMDA to the 1 mM ketamine-pretreated hippocampal neurons restored the frequency and amplitude of the calcium oscillations in a dose-dependent manner. In fact, a concentration of 1,000 µM NMDA completely reversed the decrease in the calcium oscillation frequency and amplitude that was induced by 1 mM ketamine. This study revealed that ketamine can inhibit the frequency and amplitude of the calcium oscillations in developing hippocampal neurons though the NMDAR (NMDA receptor) in a dose-dependent manner, which might highlight a possible underlying mechanism of ketamine toxicity on the rat hippocampal neurons during development.
Collapse
Affiliation(s)
- Lining Huang
- Department of Anesthesiology, the Second Hospital of Hebei Medical University, Shijiazhuang, Hebei Province, China
| | - Yue Liu
- Department of Anesthesiology, the Second Hospital of Hebei Medical University, Shijiazhuang, Hebei Province, China
| | - Pei Zhang
- Department of Anesthesiology, the Second Hospital of Hebei Medical University, Shijiazhuang, Hebei Province, China
| | - Rongtian Kang
- Department of Anesthesiology, the Second Hospital of Hebei Medical University, Shijiazhuang, Hebei Province, China
| | - Ya Liu
- Department of Anesthesiology, the Second Hospital of Hebei Medical University, Shijiazhuang, Hebei Province, China
| | - Xuze Li
- Department of Anesthesiology, the Second Hospital of Hebei Medical University, Shijiazhuang, Hebei Province, China
| | - Lijun Bo
- Department of Anesthesiology, the Second Hospital of Hebei Medical University, Shijiazhuang, Hebei Province, China
| | - Zhenming Dong
- Department of Anesthesiology, the Second Hospital of Hebei Medical University, Shijiazhuang, Hebei Province, China
| |
Collapse
|
41
|
Bidirectional influence of sodium channel activation on NMDA receptor-dependent cerebrocortical neuron structural plasticity. Proc Natl Acad Sci U S A 2012; 109:19840-5. [PMID: 23150561 DOI: 10.1073/pnas.1212584109] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Neuronal activity regulates brain development and synaptic plasticity through N-methyl-D-aspartate receptors (NMDARs) and calcium-dependent signaling pathways. Intracellular sodium ([Na(+)](i)) also exerts a regulatory influence on NMDAR channel activity, and [Na(+)](i) may, therefore, function as a signaling molecule. In an attempt to mimic the influence of neuronal activity on synaptic plasticity, we used brevetoxin-2 (PbTx-2), a voltage-gated sodium channel (VGSC) gating modifier, to manipulate [Na(+)](i) in cerebrocortical neurons. The acute application of PbTx-2 produced concentration-dependent increments in both intracellular [Na(+)] and [Ca(2+)]. Pharmacological evaluation showed that PbTx-2-induced Ca(2+) influx primarily involved VGSC activation and NMDAR-mediated entry. Additionally, PbTx-2 robustly potentiated NMDA-induced Ca(2+) influx. PbTx-2-exposed neurons showed enhanced neurite outgrowth, increased dendritic arbor complexity, and increased dendritic filopodia density. The appearance of spontaneous calcium oscillations, reflecting synchronous neuronal activity, was accelerated by PbTx-2 treatment. Parallel to this response, PbTx-2 increased cerebrocortical neuron synaptic density. PbTx-2 stimulation of neurite outgrowth, dendritic arborization, and synaptogenesis all exhibited bidirectional concentration-response profiles. This profile paralleled that of NMDA, which also produced bidirectional concentration-response profiles for neurite outgrowth and synaptogenesis. These data are consistent with the hypothesis that PbTx-2-enhanced neuronal plasticity involves NMDAR-dependent signaling. Our results demonstrate that PbTx-2 mimics activity-dependent neuronal structural plasticity in cerebrocortical neurons through an increase in [Na(+)](i), up-regulation of NMDAR function, and engagement of downstream Ca(2+)-dependent signaling pathways. These data suggest that VGSC gating modifiers may represent a pharmacologic strategy to regulate neuronal plasticity through NMDAR-dependent mechanisms.
Collapse
|
42
|
Kononov AV, Bal’ NV, Zinchenko VP. Control of spontaneous synchronous Ca2+ oscillations in hippocampal neurons by GABAergic neurons containing kainate receptors without desensitization. BIOCHEMISTRY MOSCOW SUPPLEMENT SERIES A-MEMBRANE AND CELL BIOLOGY 2012. [DOI: 10.1134/s1990747812010072] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
43
|
Pharmacological profiling of native group II metabotropic glutamate receptors in primary cortical neuronal cultures using a FLIPR. Neuropharmacology 2012; 66:264-73. [PMID: 22659090 DOI: 10.1016/j.neuropharm.2012.05.023] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2011] [Revised: 05/14/2012] [Accepted: 05/15/2012] [Indexed: 01/12/2023]
Abstract
The group II metabotropic glutamate (mGlu) receptors comprised of the mGlu2 and mGlu3 receptor subtypes have gained recognition in recent years as potential targets for psychiatric disorders, including anxiety and schizophrenia. In addition to studies already indicating which subtype mediates the anxiolytic and anti-psychotic effects observed in disease models, studies to help further define the preferred properties of selective group II mGlu receptor ligands will be essential. Comparison of the in vitro properties of these ligands to their in vivo efficacy and tolerance profiles may help provide these additional insights. We have developed a relatively high-throughput native group II mGlu receptor functional assay to aid this characterisation. We have utilised dissociated primary cortical neuronal cultures, which after 7 days in vitro have formed functional synaptic connections and display periodic and spontaneous synchronised calcium (Ca(2+)) oscillations in response to intrinsic action potential bursts. We herein demonstrate that in addition to non-selective group II mGlu receptor agonists, (2R,4R)-APDC, LY379268 and DCG-IV, a selective mGlu2 agonist, LY541850, and mGlu2 positive allosteric modulators, BINA and CBiPES, inhibit the frequency of synchronised Ca(2+) oscillations in primary cultures of rat and mouse cortical neurons. Use of cultures from wild-type, mGlu2(-/-), mGlu3(-/-) and mGlu2/3(-/-) mice allowed us to further probe the contribution of mGlu2 and mGlu3, and revealed LY541850 to be a partial mGlu2 agonist and a full mGlu3 antagonist. Overnight pre-treatment of cultures with these ligands revealed a preferred desensitisation profile after treatment with a positive allosteric modulator. This article is part of a Special Issue entitled 'Metabotropic Glutamate Receptors'.
Collapse
|
44
|
Liu J, Koscielska KA, Cao Z, Hulsizer S, Grace N, Mitchell G, Nacey C, Githinji J, McGee J, Garcia-Arocena D, Hagerman RJ, Nolta J, Pessah IN, Hagerman PJ. Signaling defects in iPSC-derived fragile X premutation neurons. Hum Mol Genet 2012; 21:3795-805. [PMID: 22641815 DOI: 10.1093/hmg/dds207] [Citation(s) in RCA: 108] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Fragile X-associated tremor/ataxia syndrome (FXTAS) is a leading monogenic neurodegenerative disorder affecting premutation carriers of the fragile X (FMR1) gene. To investigate the underlying cellular neuropathology, we produced induced pluripotent stem cell-derived neurons from isogenic subclones of primary fibroblasts of a female premutation carrier, with each subclone bearing exclusively either the normal or the expanded (premutation) form of the FMR1 gene as the active allele. We show that neurons harboring the stably-active, expanded allele (EX-Xa) have reduced postsynaptic density protein 95 protein expression, reduced synaptic puncta density and reduced neurite length. Importantly, such neurons are also functionally abnormal, with calcium transients of higher amplitude and increased frequency than for neurons harboring the normal-active allele. Moreover, a sustained calcium elevation was found in the EX-Xa neurons after glutamate application. By excluding the individual genetic background variation, we have demonstrated neuronal phenotypes directly linked to the FMR1 premutation. Our approach represents a unique isogenic, X-chromosomal epigenetic model to aid the development of targeted therapeutics for FXTAS, and more broadly as a model for the study of common neurodevelopmental (e.g. autism) and neurodegenerative (e.g. Parkinsonism, dementias) disorders.
Collapse
Affiliation(s)
- Jing Liu
- Stem Cell Program and Institute for Regenerative Cures, Health System, University of California, Davis, Health System, Sacramento CA, 95817, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Malloy KL, Suyama TL, Engene N, Debonsi H, Cao Z, Matainaho T, Spadafora C, Murray TF, Gerwick WH. Credneramides A and B: neuromodulatory phenethylamine and isopentylamine derivatives of a vinyl chloride-containing fatty acid from cf. Trichodesmium sp. nov. JOURNAL OF NATURAL PRODUCTS 2012; 75:60-6. [PMID: 22148360 PMCID: PMC3336157 DOI: 10.1021/np200611f] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Credneramides A (1) and B (2), two vinyl chloride-containing metabolites, were isolated from a Papua New Guinea collection of cf. Trichodesmium sp. nov. and expand a recently described class of vinyl chloride-containing natural products. The precursor fatty acid, credneric acid (3), was isolated from both the aqueous and organic fractions of the parent fraction as well as from another geographically and phylogenetically distinct cyanobacterial collection (Panama). Credneramides A and B inhibited spontaneous calcium oscillations in murine cerebrocortical neurons at low micromolar concentrations (1, IC(50) 4.0 μM; 2, IC(50) 3.8 μM).
Collapse
Affiliation(s)
- Karla L. Malloy
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography and Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California at San Diego, La Jolla, California 92093
| | - Takashi L. Suyama
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography and Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California at San Diego, La Jolla, California 92093
| | - Niclas Engene
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography and Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California at San Diego, La Jolla, California 92093
| | - Hosana Debonsi
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography and Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California at San Diego, La Jolla, California 92093
- FCFRP - Universidade de São Paulo, Ribeirão Preto, Brazil
| | - Zhengyu Cao
- Creighton University School of Medicine, Omaha, NE 68178
| | - Teatulohi Matainaho
- Discipline of Pharmacology, School of Medicine and Health Sciences, University of Papua New Guinea, National Capital District, Papua New Guinea
| | - Carmenza Spadafora
- Instituto de Investigaciones Científicas Avanzados y Sevicios de Alta Tecnología, Center of Celluar Molecular Biology of Diseases, Clayton, Bldg. 219 P.O. Box 7250, Panama 5, Republic of Panama
| | | | - William H. Gerwick
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography and Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California at San Diego, La Jolla, California 92093
- Author to whom correspondence should be addressed. Tel: (858) 534-0578. Fax: (858) 534-0529.
| |
Collapse
|
46
|
Kelamangalath L, Dravid SM, George J, Aldrich JV, Murray TF. κ-Opioid receptor inhibition of calcium oscillations in spinal cord neurons. Mol Pharmacol 2011; 79:1061-71. [PMID: 21422300 DOI: 10.1124/mol.111.071456] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Mouse embryonic spinal cord neurons in culture exhibit spontaneous calcium oscillations from day in vitro (DIV) 6 through DIV 10. Such spontaneous activity in developing spinal cord contributes to maturation of synapses and development of pattern-generating circuits. Here we demonstrate that these calcium oscillations are regulated by κ opioid receptors (KORs). The κ opioid agonist dynorphin (Dyn)-A (1-13) suppressed calcium oscillations in a concentration-dependent manner, and both the nonselective opioid antagonist naloxone and the κ-selective blocker norbinaltorphimine eliminated this effect. The KOR-selective agonist (+)-(5α,7α,8β)-N-methyl-N-[7-(1-pyrrolidinyl)-1-oxaspiro[4.5]dec-8-yl]-benzeneacetamide (U69593) mimicked the effect of Dyn-A (1-13) on calcium oscillations. A κ-specific peptide antagonist, zyklophin, was also able to prevent the suppression of calcium oscillations caused by Dyn-A (1-13). These spontaneous calcium oscillations were blocked by 1 μM tetrodotoxin, indicating that they are action potential-dependent. Although the L-type voltage-gated calcium channel blocker nifedipine did not suppress calcium oscillations, the N-type calcium channel blocker ω-conotoxin inhibited this spontaneous response. Blockers of ionotropic glutamate receptors, 2,3-dihydroxy-6-nitro-7-sulfamoylbenzo(f)quinoxaline and dizocilpine maleate (MK-801), also suppressed calcium oscillations, revealing a dependence on glutamate-mediated signaling. Finally, we have demonstrated expression of KORs in glutamatergic spinal neurons and localization in a presynaptic compartment, consistent with previous reports of KOR-mediated inhibition of glutamate release. The KOR-mediated inhibition of spontaneous calcium oscillations may therefore be a consequence of presynaptic inhibition of glutamate release.
Collapse
|
47
|
Surprising toxicity and assembly behaviour of amyloid β-protein oxidized to sulfone. Biochem J 2011; 433:323-32. [PMID: 21044048 DOI: 10.1042/bj20101391] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Aβ (amyloid β-peptide) is believed to cause AD (Alzheimer's disease). Aβ42 (Aβ comprising 42 amino acids) is substantially more neurotoxic than Aβ40 (Aβ comprising 40 amino acids), and this increased toxicity correlates with the existence of unique Aβ42 oligomers. Met³⁵ oxidation to sulfoxide or sulfone eliminates the differences in early oligomerization between Aβ40 and Aβ42. Met³⁵ oxidation to sulfoxide has been reported to decrease Aβ assembly kinetics and neurotoxicity, whereas oxidation to sulfone has rarely been studied. Based on these data, we expected that oxidation of Aβ to sulfone would also decrease its toxicity and assembly kinetics. To test this hypothesis, we compared systematically the effect of the wild-type, sulfoxide and sulfone forms of Aβ40 and Aβ42 on neuronal viability, dendritic spine morphology and macroscopic Ca²(+) currents in primary neurons, and correlated the data with assembly kinetics. Surprisingly, we found that, in contrast with Aβ-sulfoxide, Aβ-sulfone was as toxic and aggregated as fast, as wild-type Aβ. Thus, although Aβ-sulfone is similar to Aβ-sulfoxide in its dipole moment and oligomer size distribution, it behaves similarly to wild-type Aβ in its aggregation kinetics and neurotoxicity. These surprising data decouple the toxicity of oxidized Aβ from its initial oligomerization, and suggest that our current understanding of the effect of methionine oxidation in Aβ is limited.
Collapse
|
48
|
Pereira AR, Cao Z, Engene N, Soria-Mercado IE, Murray TF, Gerwick WH. Palmyrolide A, an unusually stabilized neuroactive macrolide from Palmyra Atoll cyanobacteria. Org Lett 2010; 12:4490-3. [PMID: 20845912 PMCID: PMC2965064 DOI: 10.1021/ol101752n] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Palmyrolide A (1) is a new neuroactive macrolide isolated from a marine cyanobacterial assemblage composed of Leptolyngbya cf. and Oscillatoria spp. collected from Palmyra Atoll. It features a rare N-methyl enamide and an intriguing t-butyl branch; the latter renders the adjacent lactone ester bond resistant to hydrolysis. Consistent with its significant suppression of calcium influx in cerebrocortical neurons (IC(50) = 3.70 μM), palmyrolide A (1) showed a relatively potent sodium channel blocking activity in neuro-2a cells (IC(50) = 5.2 μM), without appreciable cytotoxicity.
Collapse
Affiliation(s)
- Alban R. Pereira
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography and Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, California 92037
| | - Zhengyu Cao
- Department of Pharmacology, Creighton University School of Medicine, Omaha, Nebraska 68178
| | - Niclas Engene
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography and Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, California 92037
| | - Irma E. Soria-Mercado
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography and Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, California 92037
- Facultad de Ciencias Marinas, Universidad Autonoma de Baja California, Ensenada, BC, 22830, Mexico
| | - Thomas F. Murray
- Department of Pharmacology, Creighton University School of Medicine, Omaha, Nebraska 68178
| | - William H. Gerwick
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography and Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, California 92037
| |
Collapse
|
49
|
Phase-dependent effects of stimuli locked to oscillatory activity in cultured cortical networks. Biophys J 2010; 98:2452-8. [PMID: 20513388 DOI: 10.1016/j.bpj.2010.02.026] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2009] [Revised: 02/05/2010] [Accepted: 02/16/2010] [Indexed: 11/20/2022] Open
Abstract
The archetypal activity pattern in cultures of dissociated neurons is spontaneous network-wide bursting. Bursts may interfere with controlled activation of synaptic plasticity, but can be suppressed by the application of stimuli at a sufficient rate. We sinusoidally modulated (4 Hz) the pulse rate of random background stimulation (RBS) and found that cultures were more active, burst less frequently, and expressed oscillatory activity. Next, we studied the effect of phase-locked tetani (four pulses, 200 s(-1)) on network activity. Tetani were applied to one electrode at the peak or trough of mRBS stimulation. We found that when tetani were applied at the peak of modulated RBS (mRBS), a significant potentiation of poststimulus histograms (PSTHs) occurred. Conversely, tetani applied at the trough resulted in a small but insignificant depression of PSTHs. In addition to PSTHs, electrode-specific firing rate profiles within spontaneous bursts before and after mRBS were analyzed. Here, significant changes in firing rate profiles were found only for stimulation at the peak of mRBS. Our study shows that rhythmic activity in culture is possible, and that the network responds differentially to strong stimuli depending on the phase at which they are delivered. This suggests that plasticity mechanisms may be differentially accessible in an oscillatory state.
Collapse
|
50
|
Choi H, Pereira AR, Cao Z, Shuman CF, Engene N, Byrum T, Matainaho T, Murray TF, Mangoni A, Gerwick WH. The hoiamides, structurally intriguing neurotoxic lipopeptides from Papua New Guinea marine cyanobacteria. JOURNAL OF NATURAL PRODUCTS 2010; 73:1411-21. [PMID: 20687534 PMCID: PMC3227549 DOI: 10.1021/np100468n] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Two related peptide metabolites, one a cyclic depsipeptide, hoiamide B (2), and the other a linear lipopeptide, hoiamide C (3), were isolated from two different collections of marine cyanobacteria obtained in Papua New Guinea. Their structures were elucidated by combining various techniques in spectroscopy, chromatography, and synthetic chemistry. Both metabolites belong to the unique hoiamide structural class, characterized by possessing an acetate extended and S-adenosyl methionine modified isoleucine unit, a central triheterocyclic system comprised of two alpha-methylated thiazolines and one thiazole, and a highly oxygenated and methylated C-15 polyketide unit. In neocortical neurons, the cyclic depsipeptide 2 stimulated sodium influx and suppressed spontaneous Ca(2+) oscillations with EC(50) values of 3.9 microM and 79.8 nM, respectively, while 3 had no significant effects in these assays.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Alfonso Mangoni
- To whom correspondence should be addressed. Tel: (858) 534-0578. Fax: (858) 534-0529. ,
| | - William H. Gerwick
- To whom correspondence should be addressed. Tel: (858) 534-0578. Fax: (858) 534-0529. ,
| |
Collapse
|