1
|
Zhang S, Gu B, Zhen K, Du L, Lv Y, Yu L. Effects of exercise on brain-derived neurotrophic factor in Alzheimer's disease models: A systematic review and meta-analysis. Arch Gerontol Geriatr 2024; 126:105538. [PMID: 38878598 DOI: 10.1016/j.archger.2024.105538] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 05/27/2024] [Accepted: 06/10/2024] [Indexed: 09/05/2024]
Abstract
A growing body of research examining effects of exercise on brain-derived neurotrophic factor (BDNF) in Alzheimer's disease (AD) models, while due to differences in gender, age, disease severity, brain regions examined, and type of exercise intervention, findings of available studies were conflicting. In this study, we aimed to evaluate current evidence regarding effects of exercise on BDNF in AD models. Searches were performed in PubMed, Web of Science, Cochrane, and EBSCO electronic databases, through July 20, 2023. We included studies that satisfied the following criteria: eligible studies should (1) report evidence on experimental work with AD models; (2) include an exercise group and a control group (sedentary); (3) use BDNF as the outcome indicator; and (4) be randomized controlled trials (RCTs). From 1196 search records initially identified, 36 studies met the inclusion criteria. There was a significant effect of exercise on increasing BDNF levels in AD models [standardized mean differences (SMD) = 0.98, P < 0.00001]. Subgroup analysis showed that treadmill exercise (SMD = 0.92, P< 0.0001), swimming (SMD = 1.79, P< 0.0001), and voluntary wheel running (SMD = 0.51, P= 0.04) were all effective in increasing BDNF levels in AD models. In addition, exercise significantly increased BDNF levels in the hippocampus (SMD = 0.92, P< 0.00001) and cortex (SMD = 1.56, P= 0.02) of AD models. Exercise, especially treadmill exercise, swimming, and voluntary wheel running, significantly increased BDNF levels in hippocampus and cortex of AD models, with swimming being the most effective intervention type.
Collapse
Affiliation(s)
- Shiyan Zhang
- Beijing Key Laboratory of Sports Performance and Skill Assessment, Beijing Sport University, Beijing, China; Department of Strength and Conditioning Assessment and Monitoring, Beijing Sport University, Beijing, China
| | - Boya Gu
- Beijing Key Laboratory of Sports Performance and Skill Assessment, Beijing Sport University, Beijing, China
| | - Kai Zhen
- Department of Strength and Conditioning Assessment and Monitoring, Beijing Sport University, Beijing, China
| | - Liwen Du
- Department of Strength and Conditioning Assessment and Monitoring, Beijing Sport University, Beijing, China
| | - Yuanyuan Lv
- Beijing Key Laboratory of Sports Performance and Skill Assessment, Beijing Sport University, Beijing, China; China Institute of Sport and Health Science, Beijing Sport University, Beijing, China
| | - Laikang Yu
- Beijing Key Laboratory of Sports Performance and Skill Assessment, Beijing Sport University, Beijing, China; Department of Strength and Conditioning Assessment and Monitoring, Beijing Sport University, Beijing, China.
| |
Collapse
|
2
|
Hou Y, Wang Y, Deng J, Song X. Effects of different exercise interventions on executive function in children with autism spectrum disorder: a network meta-analysis. Front Psychiatry 2024; 15:1440123. [PMID: 39345918 PMCID: PMC11427388 DOI: 10.3389/fpsyt.2024.1440123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Accepted: 08/06/2024] [Indexed: 10/01/2024] Open
Abstract
Background A large body of research has identified the positive effects of physical activity on children with autism spectrum disorders (ASD). However, the specific benefits of different types of sports on executive functioning in children with ASD remain unclear. The aim of this study was to further analyze the effects of different sports on executive functioning in children with ASD using reticulated meta-analysis and to establish their effectiveness ranking. Methods This study conducted a comprehensive online search in Web of Science, PubMed, Cochrane, Embase, and CNKI databases. It included randomized controlled trials and quasi-experimental studies, and synthesized the data using a Bayesian framework. Results Several relevant studies were included. The results showed that physical activity significantly improved all three dimensions of executive functioning (inhibitory control, cognitive flexibility, and working memory) in children with ASD. The improvement in cognitive flexibility and inhibitory control both reached a medium effect size. However, the improvement in inhibitory control was better than that in cognitive flexibility, while the improvement in working memory did not reach the level of a medium effect. Mini Basketball was effective in improving inhibitory control and cognitive flexibility, but not working memory. Ping Pong was more effective in cognitive flexibility and working memory, but weaker in inhibitory control. Fixed Bicycle was less effective in all three dimensions. Among other interventions, Learning Bicycles, Animal-assisted therapy, and Exergaming performed better in cognitive flexibility. SPARK, Neiyang Gong, and Martial Arts were also effective in improving inhibitory control. However, SPARK and Fixed Bicycle were not significant in improving working memory. Conclusion Physical activity as an intervention can significantly improve the executive function of children with ASD. The intervention effects of different sports on different dimensions of executive function vary. Mini Basketball was outstanding in improving inhibitory control and cognitive flexibility. Ping Pong was effective in improving cognitive flexibility and working memory. Fixed Bicycle was not effective in any dimension.
Collapse
Affiliation(s)
| | | | | | - Xiangqin Song
- College of Physical Education and Sports, Beijing Normal University, Beijing, China
| |
Collapse
|
3
|
Martins LA, Schiavo A, Paz LV, Xavier LL, Mestriner RG. Neural underpinnings of fine motor skills under stress and anxiety: A review. Physiol Behav 2024; 282:114593. [PMID: 38782244 DOI: 10.1016/j.physbeh.2024.114593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 05/17/2024] [Accepted: 05/21/2024] [Indexed: 05/25/2024]
Abstract
This review offers a comprehensive examination of how stress and anxiety affect motor behavior, particularly focusing on fine motor skills and gait adaptability. We explore the role of several neurochemicals, including brain-derived neurotrophic factor (BDNF) and dopamine, in modulating neural plasticity and motor control under these affective states. The review highlights the importance of developing therapeutic strategies that enhance motor performance by leveraging the interactions between key neurochemicals. Additionally, we investigate the complex interplay between emotional-cognitive states and sensorimotor behaviors, showing how stress and anxiety disrupt neural integration, leading to impairments in skilled movements and negatively impacting quality of life. Synthesizing evidence from human and rodent studies, we provide a detailed understanding of the relationships among stress, anxiety, and motor behavior. Our findings reveal neurophysiological pathways, behavioral outcomes, and potential therapeutic targets, emphasizing the intricate connections between neurobiological mechanisms, environmental factors, and motor performance.
Collapse
Affiliation(s)
- Lucas Athaydes Martins
- Pontifical Catholic University of Rio Grande do Sul (PUCRS). Graduate Program in Biomedical Gerontology, Av. Ipiranga, 6681, Porto Alegre, Brazil; Pontifical Catholic University of Rio Grande do Sul (PUCRS). Neuroscience, Motor Behavior, and Rehabilitation Research Group (NECORE-CNPq), Av. Ipiranga, 6681, Porto Alegre, Brazil
| | - Aniuska Schiavo
- Pontifical Catholic University of Rio Grande do Sul (PUCRS). Graduate Program in Biomedical Gerontology, Av. Ipiranga, 6681, Porto Alegre, Brazil; Pontifical Catholic University of Rio Grande do Sul (PUCRS). Neuroscience, Motor Behavior, and Rehabilitation Research Group (NECORE-CNPq), Av. Ipiranga, 6681, Porto Alegre, Brazil
| | - Lisiê Valéria Paz
- Pontifical Catholic University of Rio Grande do Sul (PUCRS). Graduate Program in Cellular and Molecular Biology, Av. Ipiranga, 6681, Porto Alegre, Brazil
| | - Léder Leal Xavier
- Pontifical Catholic University of Rio Grande do Sul (PUCRS). Neuroscience, Motor Behavior, and Rehabilitation Research Group (NECORE-CNPq), Av. Ipiranga, 6681, Porto Alegre, Brazil; Pontifical Catholic University of Rio Grande do Sul (PUCRS). Graduate Program in Cellular and Molecular Biology, Av. Ipiranga, 6681, Porto Alegre, Brazil
| | - Régis Gemerasca Mestriner
- Pontifical Catholic University of Rio Grande do Sul (PUCRS). Graduate Program in Biomedical Gerontology, Av. Ipiranga, 6681, Porto Alegre, Brazil; Pontifical Catholic University of Rio Grande do Sul (PUCRS). Neuroscience, Motor Behavior, and Rehabilitation Research Group (NECORE-CNPq), Av. Ipiranga, 6681, Porto Alegre, Brazil; Pontifical Catholic University of Rio Grande do Sul (PUCRS). Graduate Program in Cellular and Molecular Biology, Av. Ipiranga, 6681, Porto Alegre, Brazil.
| |
Collapse
|
4
|
Milbocker KA, Smith IF, Klintsova AY. Maintaining a Dynamic Brain: A Review of Empirical Findings Describing the Roles of Exercise, Learning, and Environmental Enrichment in Neuroplasticity from 2017-2023. Brain Plast 2024; 9:75-95. [PMID: 38993580 PMCID: PMC11234674 DOI: 10.3233/bpl-230151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/19/2023] [Indexed: 07/13/2024] Open
Abstract
Brain plasticity, also termed neuroplasticity, refers to the brain's life-long ability to reorganize itself in response to various changes in the environment, experiences, and learning. The brain is a dynamic organ capable of responding to stimulating or depriving environments, activities, and circumstances from changes in gene expression, release of neurotransmitters and neurotrophic factors, to cellular reorganization and reprogrammed functional connectivity. The rate of neuroplastic alteration varies across the lifespan, creating further challenges for understanding and manipulating these processes to benefit motor control, learning, memory, and neural remodeling after injury. Neuroplasticity-related research spans several decades, and hundreds of reviews have been written and published since its inception. Here we present an overview of the empirical papers published between 2017 and 2023 that address the unique effects of exercise, plasticity-stimulating activities, and the depriving effect of social isolation on brain plasticity and behavior.
Collapse
Affiliation(s)
| | - Ian F. Smith
- Department of Psychological and Brain Sciences, University of Delaware, University of Delaware, Newark, USA
| | - Anna Y. Klintsova
- Department of Psychological and Brain Sciences, University of Delaware, University of Delaware, Newark, USA
| |
Collapse
|
5
|
Lalonde R, Hernandez M, Strazielle C. BDNF and Cerebellar Ataxia. Curr Drug Res Rev 2024; 16:300-307. [PMID: 37609676 DOI: 10.2174/2589977515666230811093021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 06/06/2023] [Accepted: 06/16/2023] [Indexed: 08/24/2023]
Abstract
Brain-derived neurotrophic factor (BDNF) has been proposed as a treatment for neurodegeneration, including diseases of the cerebellum, where BDNF levels or those of its main receptor, TrkB, are often diminished relative to controls, thereby serving as replacement therapy. Experimental evidence indicates that BDNF signaling countered cerebellar degeneration, sensorimotor deficits, or both, in transgenic ATXN1 mice mutated for ataxin-1, Cacna1a knock-in mice mutated for ataxin-6, mice injected with lentivectors encoding RNA sequences against human FXN into the cerebellar cortex, Kcnj6Wv (Weaver) mutant mice with granule cell degeneration, and rats with olivocerebellar transaction, similar to a BDNF-overexpressing transgenic line interbred with Cacng2stg mutant mice. In this regard, this study discusses whether BDNF is effective in cerebellar pathologies where BDNF levels are normal and whether it is effective in cases with combined cerebellar and basal ganglia damage.
Collapse
Affiliation(s)
- Robert Lalonde
- Université de Lorraine, Laboratoire Stress, Immunité, Pathogènes EA 7300, Campus Santé, 9 avenue de la Forêt de Haye, 54500 Vandoeuvre-les-Nancy, France
| | - Magali Hernandez
- Université de Lorraine, Laboratoire Stress, Immunité, Pathogènes EA 7300, Campus Santé, 9 avenue de la Forêt de Haye, 54500 Vandoeuvre-les-Nancy, France
- CHRU Nancy, allée du Morvan, 54500 Vandoeuvre-les-Nancy, France
| | - Catherine Strazielle
- Université de Lorraine, Laboratoire Stress, Immunité, Pathogènes EA 7300, Campus Santé, 9 avenue de la Forêt de Haye, 54500 Vandoeuvre-les-Nancy, France
- CHRU Nancy, allée du Morvan, 54500 Vandoeuvre-les-Nancy, France
| |
Collapse
|
6
|
Afzal A, Thomas N, Warraich Z, Barbay S, Mocco J. Hematopoietic Endothelial Progenitor cells enhance motor function and cortical motor map integrity following cerebral ischemia. Restor Neurol Neurosci 2024; 42:139-149. [PMID: 38820024 DOI: 10.3233/rnn-231378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/02/2024]
Abstract
Background Hematopoietic stem cells (HSC) are recruited to ischemic areas in the brain and contribute to improved functional outcome in animals. However, little is known regarding the mechanisms of improvement following HSC administration post cerebral ischemia. To better understand how HSC effect post-stroke improvement, we examined the effect of HSC in ameliorating motor impairment and cortical dysfunction following cerebral ischemia. Methods Baseline motor performance of male adult rats was established on validated motor tests. Animals were assigned to one of three experimental cohorts: control, stroke, stroke + HSC. One, three and five weeks following a unilateral stroke all animals were tested on motor skills after which intracortical microstimulation was used to derive maps of forelimb movement representations within the motor cortex ipsilateral to the ischemic injury. Results Stroke + HSC animals significantly outperformed stroke animals on single pellet reaching at weeks 3 and 5 (28±3% and 33±3% versus 11±4% and 17±3%, respectively, p < 0.05 at both time points). Control animals scored 44±1% and 47±1%, respectively. Sunflower seed opening task was significantly improved in the stroke + HSC cohort versus the stroke cohort at week five-post stroke (79±4 and 48±5, respectively, p < 0.05). Furthermore, Stroke + HSC animals had significantly larger forelimb motor maps than animals in the stroke cohort. Overall infarct size did not significantly differ between the two stroked cohorts. Conclusion These data suggest that post stroke treatment of HSC enhances the functional integrity of residual cortical tissue, which in turn supports improved behavioral outcome, despite no observed reduction in infarct size.
Collapse
Affiliation(s)
- Aqeela Afzal
- Department of Neurological Surgery, Vanderbilt University, Nashville, TN, USA
| | - Nagheme Thomas
- Department of Physiology and Functional Genomics, University of Florida, Gainesville, FL, USA
| | | | - Scott Barbay
- Department of Physical Medicine and Rehabilitation, University of Kansas Medical Center, Kansas City, Kansas, KS, USA
| | - J Mocco
- Department of Neurological Surgery, Mount Sinai Health, New York, NY, USA
| |
Collapse
|
7
|
Lee DY, Im SC, Kang NY, Kim K. Analysis of Effect of Intensity of Aerobic Exercise on Cognitive and Motor Functions and Neurotrophic Factor Expression Patterns in an Alzheimer's Disease Rat Model. J Pers Med 2023; 13:1622. [PMID: 38003937 PMCID: PMC10672300 DOI: 10.3390/jpm13111622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 11/13/2023] [Accepted: 11/16/2023] [Indexed: 11/26/2023] Open
Abstract
The effect of aerobic exercise at different intensities on Alzheimer's disease (AD) still remains unclear. We investigated the effect of aerobic exercise at different intensities on cognitive and motor functions and neurotrophic factor expression. Thirty-two AD-induced rats were randomly assigned to control (CG), low-intensity (Group I), medium-intensity (Group II), and high-intensity (Group III) exercise groups. Each group, except for the CG, performed aerobic exercise for 20 min a day five times a week. After performing aerobic exercise for 4 weeks, their cognitive and motor functions and neurotrophic factor expression patterns were analyzed and compared between the groups. All variables of cognitive and motor functions and neurotrophic factor expression were significantly improved in Groups I, II, and III compared to those in the CG (p < 0.05). Among the neurotrophic factors, brain-derived neurotrophic factor (BDNF) expression was significantly improved in Group III compared to that in Groups I and II (p < 0.05). In the intra-group comparison of cognitive and motor functions, no significant difference was observed in CG, but the aerobic exercise groups showed improvements. Only Group III showed a significant improvement in the time it took to find eight food items accurately (p < 0.05). Aerobic exercise improved the cognitive and motor functions and neurotrophic factor expression patterns in the AD-induced rat model, with high-intensity aerobic exercise having greater effects on cognitive function and BDNF expression.
Collapse
Affiliation(s)
| | | | | | - Kyoung Kim
- Department of Physical Therapy, College of Rehabilitation Science, Daegu University, Gyeongsan 38453, Republic of Korea; (D.-Y.L.); (S.-C.I.); (N.-Y.K.)
| |
Collapse
|
8
|
Ferrari N, Schmidt N, Bae-Gartz I, Vohlen C, Alcazar MAA, Brockmeier K, Dötsch J, Mahabir E, Joisten C. Maternal Exercise during Pregnancy Impacts Motor Performance in 9-Year-Old Children: A Pilot Study. CHILDREN (BASEL, SWITZERLAND) 2023; 10:1797. [PMID: 38002888 PMCID: PMC10670111 DOI: 10.3390/children10111797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 11/02/2023] [Accepted: 11/03/2023] [Indexed: 11/26/2023]
Abstract
The benefits of maternal physical activity during pregnancy are well documented, but long-term effects on the child have been less studied. Therefore, we conducted a pilot follow-up study of a lifestyle intervention during pregnancy that aimed to investigate whether exercise (endurance and strength training) during pregnancy affects motor performance and body composition of children up to 9 years of age, as well as possible influencing factors like brain-derived neurotrophic factor (BDNF) and lifestyle. Eleven mother-child pairs from the intervention and eight mother-child pairs from the control group were included. From birth up to 9 years of age, no differences in body mass index (BMI) or body mass index standard deviation scores (BMI-SDS) were found between the groups. Lifestyle intervention was one of the influencing factors for children's cardiorespiratory endurance capacity and coordination. Moreover, maternal BDNF in the last trimester was significantly associated with running performance, which may be due to better neuronal development. This is the first study evaluating the effects of a lifestyle intervention during pregnancy on the motor performance 9 years after birth. Children's participation in exercise programs over the past 9 years was not continuously recorded and therefore not included in the analysis. Even a cautious interpretation of these results indicates that a healthy lifestyle during pregnancy is essential in promoting child health. Larger studies and randomized control trials are necessary to confirm our results, especially those pertaining to the role of BDNF.
Collapse
Affiliation(s)
- Nina Ferrari
- Cologne Center for Prevention in Childhood, Youth/Heart Center Cologne, University Hospital of Cologne, 50937 Cologne, Germany
- Department for Physical Activity in Public Health, Institute of Movement and Neurosciences, German Sport University Cologne, 50933 Cologne, Germany
- Department for Pediatric Cardiology, Heart Center, University of Cologne, 50937 Cologne, Germany
| | - Nikola Schmidt
- Department for Physical Activity in Public Health, Institute of Movement and Neurosciences, German Sport University Cologne, 50933 Cologne, Germany
| | - Inga Bae-Gartz
- Department of Pediatrics and Adolescent Medicine, Faculty of Medicine, University of Cologne, 50931 Cologne, Germany
| | - Christina Vohlen
- Department of Pediatrics and Adolescent Medicine, Faculty of Medicine, University of Cologne, 50931 Cologne, Germany
- Department of Pediatric and Adolescent Medicine, Translational Experimental Pediatrics-Experimental Pulmonology, Cologne Excellence Cluster on Stress Responses in Aging-Associated Diseases (CECAD), Faculty of Medicine and University Hospital Cologne, University of Cologne, 50937 Cologne, Germany
| | - Miguel A Alejandre Alcazar
- Department of Pediatric and Adolescent Medicine, Translational Experimental Pediatrics-Experimental Pulmonology, Cologne Excellence Cluster on Stress Responses in Aging-Associated Diseases (CECAD), Faculty of Medicine and University Hospital Cologne, University of Cologne, 50937 Cologne, Germany
- The German Centre for Lung Research (DZL), Institute for Lung Health (ILH), Cardiopulmonary Institute (CPI), University of Giessen and Marburg Lung Centre (UGMLC), Justus-Liebig University Gießen, 35392 Gießen, Germany
| | - Konrad Brockmeier
- Cologne Center for Prevention in Childhood, Youth/Heart Center Cologne, University Hospital of Cologne, 50937 Cologne, Germany
- Department for Pediatric Cardiology, Heart Center, University of Cologne, 50937 Cologne, Germany
| | - Jörg Dötsch
- Cologne Center for Prevention in Childhood, Youth/Heart Center Cologne, University Hospital of Cologne, 50937 Cologne, Germany
- Department of Pediatrics and Adolescent Medicine, Faculty of Medicine, University of Cologne, 50931 Cologne, Germany
| | - Esther Mahabir
- Comparative Medicine, Center for Molecular Medicine, Faculty of Medicine and University Hospital of Cologne, University of Cologne, 50931 Cologne, Germany
| | - Christine Joisten
- Cologne Center for Prevention in Childhood, Youth/Heart Center Cologne, University Hospital of Cologne, 50937 Cologne, Germany
- Department for Physical Activity in Public Health, Institute of Movement and Neurosciences, German Sport University Cologne, 50933 Cologne, Germany
| |
Collapse
|
9
|
Ross RE, VanDerwerker CJ, George MS, Gregory CM. Feasibility of performing a multi-arm clinical trial examining the novel combination of repetitive transcranial magnetic stimulation and aerobic exercise for post-stroke depression. Top Stroke Rehabil 2023; 30:649-662. [PMID: 36606675 PMCID: PMC10323040 DOI: 10.1080/10749357.2023.2165258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Accepted: 01/02/2023] [Indexed: 01/07/2023]
Abstract
BACKGROUND Post-stroke depression (PSD) occurs in approximately one-third of chronic stroke survivors. Although pharmacotherapy reduces depressive symptoms, side effects are common and stroke survivors have increased likelihood of multimorbidity and subsequent polypharmacy. Thus, alternative non-pharmacological treatments are needed. Combining two non-pharmacological anti-depressant treatments, aerobic exercise (AEx) and repetitive transcranial magnetic stimulation (rTMS), has been demonstrated to be feasible and well-tolerated in chronic stroke survivors. OBJECTIVES The purpose of this trial was to determine the feasibility of conducting a multi-arm combinatorial trial of rTMS and AEx and to provide an estimate of effect size of rTMS+AEx on PSD symptoms. METHODS Twenty-four participants were allocated to one of four treatment arms AEx, rTMS, rTMS+AEx, or non-depressed Control receiving AEx. All participants received a total of 24 treatment sessions. Participant adherence was the primary outcome measure for feasibility and within group effect sizes in Patient Health Questionnaire-9 (PHQ-9) score was the primary outcome for preliminary efficacy. RESULTS Mean adherence rates to the exercise intervention for AEx, rTMS+AEx, and Control subjects were 83%, 98%, and 95%, respectively. Mean adherence rates for rTMS and rTMS+AEx subjects were 97% and 99%, respectively. The rTMS and rTMS+AEx treatment groups demonstrated clinically significant reductions of 10.5 and 6.2 points in PHQ-9 scores, respectively. CONCLUSION Performing a multi-arm combinatorial trial examining the effect of rTMS+AEx on PSD appears feasible. All treatment arms demonstrated strong adherence to their respective interventions and were well received. rTMS and the combination of AEx with rTMS may be alternative treatments for PSD.
Collapse
Affiliation(s)
- Ryan E. Ross
- Ralph H. Johnson Veterans Affairs Health Care System, Charleston, SC
- Department of Health Sciences and Research, Medical University of South Carolina, Charleston, SC
| | | | - Mark S. George
- Ralph H. Johnson Veterans Affairs Health Care System, Charleston, SC
- Department of Psychiatry and Behavioral Sciences, Medical University of South Carolina, Charleston, SC
| | - Chris M. Gregory
- Ralph H. Johnson Veterans Affairs Health Care System, Charleston, SC
- Department of Health Sciences and Research, Medical University of South Carolina, Charleston, SC
| |
Collapse
|
10
|
Cook AA, Jayabal S, Sheng J, Fields E, Leung TCS, Quilez S, McNicholas E, Lau L, Huang S, Watt AJ. Activation of TrkB-Akt signaling rescues deficits in a mouse model of SCA6. SCIENCE ADVANCES 2022; 8:eabh3260. [PMID: 36112675 PMCID: PMC9481119 DOI: 10.1126/sciadv.abh3260] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Accepted: 07/29/2022] [Indexed: 06/01/2023]
Abstract
Spinocerebellar ataxia type 6 (SCA6) is a neurodegenerative disease resulting in motor coordination deficits and cerebellar pathology. Expression of brain-derived neurotrophic factor (BDNF) is reduced in postmortem tissue from SCA6 patients. Here, we show that levels of cerebellar BDNF and its receptor, tropomyosin receptor kinase B (TrkB), are reduced at an early disease stage in a mouse model of SCA6 (SCA684Q/84Q). One month of exercise elevated cerebellar BDNF expression and improved ataxia and cerebellar Purkinje cell firing rate deficits. A TrkB agonist, 7,8-dihydroxyflavone (7,8-DHF), likewise improved motor coordination and Purkinje cell firing rate and elevated downstream Akt signaling. Prolonged 7,8-DHF administration persistently improved ataxia when treatment commenced near disease onset but was ineffective when treatment was started late. These data suggest that 7,8-DHF, which is orally bioavailable and crosses the blood-brain barrier, is a promising therapeutic for SCA6 and argue for the importance of early intervention for SCA6.
Collapse
Affiliation(s)
- Anna A. Cook
- Biology Department, McGill University, Montreal, QC, Canada
| | - Sriram Jayabal
- Biology Department, McGill University, Montreal, QC, Canada
- Integrated Neuroscience Program, McGill University, Montreal, QC, Canada
- Department of Neurobiology, Stanford School of Medicine, Stanford, CA, USA
| | - Jacky Sheng
- Biology Department, McGill University, Montreal, QC, Canada
| | - Eviatar Fields
- Biology Department, McGill University, Montreal, QC, Canada
- Integrated Neuroscience Program, McGill University, Montreal, QC, Canada
| | | | - Sabrina Quilez
- Biology Department, McGill University, Montreal, QC, Canada
| | | | - Lois Lau
- Biology Department, McGill University, Montreal, QC, Canada
| | - Shixia Huang
- Department of Molecular and Cellular Biology, Department of Education, Innovation and Technology, Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, TX, USA
| | - Alanna J. Watt
- Biology Department, McGill University, Montreal, QC, Canada
| |
Collapse
|
11
|
Trevarrow M, Sanmann JN, Wilson TW, Kurz MJ. A Val 66Met polymorphism is associated with weaker somatosensory cortical activity in individuals with cerebral palsy. Heliyon 2022; 8:e10545. [PMID: 36119851 PMCID: PMC9474307 DOI: 10.1016/j.heliyon.2022.e10545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 06/21/2022] [Accepted: 08/31/2022] [Indexed: 11/27/2022] Open
Abstract
Background The brain-derived neurotrophic factor (BDNF) protein plays a prominent role in the capacity for neuroplastic change. However, a single nucleotide polymorphism at codon 66 of the BDNF gene results in significant reductions in neuroplastic change. Potentially, this polymorphism also contributes to the weaker somatosensory cortical activity that has been extensively reported in the neuroimaging literature on cerebral palsy (CP). Aims The primary objective of this study was to use magnetoencephalography (MEG) to probe if BDNF genotype affects the strength of the somatosensory-evoked cortical activity seen within individuals with CP. Methods and procedures and Procedures: Twenty individuals with CP and eighteen neurotypical controls participated. Standardized low resolution brain electromagnetic tomography (sLORETA) was used to image the somatosensory cortical activity evoked by stimulation of the tibial nerve. BDNF genotypes were determined from saliva samples. Outcomes and results The somatosensory cortical activity was weaker in individuals with CP compared to healthy controls (P = 0.04). The individuals with a Val66Met or Met66Met BDNF polymorphism also showed a reduced response compared to the individuals without the polymorphism (P = 0.03), had higher GMFCS levels (P = 0.04), and decreased walking velocity (P = 0.05). Conclusions and implications These results convey that BDNF genotype influences the strength of the somatosensory activity and mobility in individuals with CP. What this paper adds Previous literature has extensively documented altered sensorimotor cortical activity in individuals with CP, which ultimately contributes to the clinical deficits in sensorimotor processing documented in this population. While some individuals with CP see vast improvements in their sensorimotor functioning following therapeutic intervention, others are clear non-responders. The underlying basis for this discrepancy is not well understood. Our study is the first to identify that a polymorphism at the gene that codes for brain derived neurotrophic factor (BDNF), a protein well-known to be involved in the capacity for neuroplastic change, may influence the altered sensorimotor cortical activity within this population. Potentially, individuals with CP that have a polymorphism at the BDNF gene may reflect those that have difficulties in achieving beneficial outcomes following intervention. Thus, these individuals may require different therapeutic approaches in order to stimulate neuroplastic change and get similar benefits from therapy as their neurotypical peers.
Collapse
Affiliation(s)
- Michael Trevarrow
- Institute for Human Neuroscience, Boys Town National Research Hospital, Omaha, NE, USA
| | - Jennifer N Sanmann
- Department of Genetic Medicine, Munroe-Meyer Institute, University of Nebraska Medical Center, Omaha, NE, USA
| | - Tony W Wilson
- Institute for Human Neuroscience, Boys Town National Research Hospital, Omaha, NE, USA.,Department of Pharmacology and Neuroscience, College of Medicine, Creighton University, Omaha, NE, USA
| | - Max J Kurz
- Institute for Human Neuroscience, Boys Town National Research Hospital, Omaha, NE, USA.,Department of Pharmacology and Neuroscience, College of Medicine, Creighton University, Omaha, NE, USA
| |
Collapse
|
12
|
Martini APR, Hoeper E, Pedroso TA, Carvalho AVS, Odorcyk FK, Fabres RB, Pereira NDSC, Netto CA. Effects of acrobatic training on spatial memory and astrocytic scar in CA1 subfield of hippocampus after chronic cerebral hypoperfusion in male and female rats. Behav Brain Res 2022; 430:113935. [PMID: 35605797 DOI: 10.1016/j.bbr.2022.113935] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 05/07/2022] [Accepted: 05/17/2022] [Indexed: 12/22/2022]
Abstract
Chronic cerebral hypoperfusion leads to neuronal loss in the hippocampus and spatial memory impairments. Physical exercise is known to prevent cognitive deficits in animal models; and there is evidence of sex differences in behavioral neuroprotective approaches. The aim of present study was to investigate the effects of acrobatic training in male and female rats submitted to chronic cerebral hypoperfusion. Males and females rats underwent 2VO (two-vessel occlusion) surgery and were randomly allocated into 4 groups of males and 4 groups of females, as follows: 2VO acrobatic, 2VO sedentary, Sham acrobatic and Sham sedentary. The acrobatic training started 45 days after surgery and lasted 4 weeks; animals were then submitted to object recognition and water maze testing. Brain samples were collected for histological and morphological assessment and flow cytometry. 2VO causes cognitive impairments and acrobatic training prevented spatial memory deficits assessed in the water maze, mainly for females. Morphological analysis showed that 2VO animals had less NeuN labeling and acrobatic training prevented it. Increased number of GFAP positive cells was observerd in females; moreover, males had more branched astrocytes and acrobatic training prevented the branching after 2VO. Flow cytometry showed higher mitochondrial potential in trained animals and more reactive oxygen species production in males. Acrobatic training promoted neuronal survival and improved mitochondrial function in both sexes, and influenced the glial scar in a sex-dependent manner, associated to greater cognitive benefit to females after chronic cerebral hypoperfusion.
Collapse
Affiliation(s)
- Ana Paula Rodrigues Martini
- Graduate Program in Neuroscience, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil; Department of Biochemistry, Institute of Basic Health Sciences, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil; Institute of Basic Health Sciences, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil.
| | - Eduarda Hoeper
- Department of Biochemistry, Institute of Basic Health Sciences, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil; Graduation in Biological Sciences, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Thales Avila Pedroso
- Department of Biochemistry, Institute of Basic Health Sciences, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil; Graduation in Physical Therapy, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Andrey Vinicios Soares Carvalho
- Graduate Program in Neuroscience, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil; Department of Biochemistry, Institute of Basic Health Sciences, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil; Institute of Basic Health Sciences, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Felipe Kawa Odorcyk
- Department of Biochemistry, Institute of Basic Health Sciences, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil; Graduate Program in Physiology, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil; Institute of Basic Health Sciences, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Rafael Bandeira Fabres
- Department of Biochemistry, Institute of Basic Health Sciences, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil; Graduate Program in Physiology, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil; Institute of Basic Health Sciences, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Natividade de Sá Couto Pereira
- Graduate Program in Neuroscience, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil; Department of Biochemistry, Institute of Basic Health Sciences, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil; Institute of Basic Health Sciences, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Carlos Alexandre Netto
- Graduate Program in Neuroscience, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil; Department of Biochemistry, Institute of Basic Health Sciences, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil; Graduate Program in Physiology, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil; Institute of Basic Health Sciences, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| |
Collapse
|
13
|
Caballero-Villarraso J, Medina FJ, Escribano BM, Agüera E, Santamaría A, Pascual-Leone A, Túnez I. Mechanisms Involved in Neuroprotective Effects of Transcranial Magnetic Stimulation. CNS & NEUROLOGICAL DISORDERS DRUG TARGETS 2022; 21:557-573. [PMID: 34370648 DOI: 10.2174/1871527320666210809121922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 04/05/2021] [Accepted: 04/25/2021] [Indexed: 11/22/2022]
Abstract
Transcranial Magnetic Stimulation (TMS) is widely used in neurophysiology to study cortical excitability. Research over the last few decades has highlighted its added value as a potential therapeutic tool in the treatment of a broad range of psychiatric disorders. More recently, a number of studies have reported beneficial and therapeutic effects for TMS in neurodegenerative conditions and strokes. Yet, despite its recognised clinical applications and considerable research using animal models, the molecular and physiological mechanisms through which TMS exerts its beneficial and therapeutic effects remain unclear. They are thought to involve biochemical-molecular events affecting membrane potential and gene expression. In this aspect, the dopaminergic system plays a special role. This is the most directly and selectively modulated neurotransmitter system, producing an increase in the flux of dopamine (DA) in various areas of the brain after the application of repetitive TMS (rTMS). Other neurotransmitters, such as glutamate and gamma-aminobutyric acid (GABA) have shown a paradoxical response to rTMS. In this way, their levels increased in the hippocampus and striatum but decreased in the hypothalamus and remained unchanged in the mesencephalon. Similarly, there are sufficient evidence that TMS up-regulates the gene expression of BDNF (one of the main brain neurotrophins). Something similar occurs with the expression of genes such as c-Fos and zif268 that encode trophic and regenerative action neuropeptides. Consequently, the application of TMS can promote the release of molecules involved in neuronal genesis and maintenance. This capacity may mean that TMS becomes a useful therapeutic resource to antagonize processes that underlie the previously mentioned neurodegenerative conditions.
Collapse
Affiliation(s)
- Javier Caballero-Villarraso
- Departamento de Bioquímica y Biología Molecular, Facultad de Medicina y Enfermería, Universidad de Cordoba, Cordoba, Spain.,Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Cordoba, Spain.,UGC Análisis Clínicos, Hospital Universitario Reina Sofía, Córdoba, Cordoba, Spain
| | - Francisco J Medina
- Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Cordoba, Spain
| | - Begoña M Escribano
- Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Cordoba, Spain.,Departamento de Biología Celular, Fisiología e Inmunología, Facultad de Veterinaria, Universidad de Córdoba, Cordoba, Spain
| | - Eduardo Agüera
- Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Cordoba, Spain.,UGC Neurología, Hospital Universitario Reina Sofía, Córdoba, Cordoba, Spain
| | - Abel Santamaría
- Laboratorio de Aminoácidos Excitadores, Instituto Nacional de Neurología y Neurocirugía, S.S.A. Mexico City, Mexico
| | - Alvaro Pascual-Leone
- Berenson-Allen Center for Noninvasive Brain Stimulation, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA.,Instituto Guttman de Neurorrehabilitación, Universidad Autónoma de Barcelona, Barcelona, Spain
| | - Isaac Túnez
- Departamento de Bioquímica y Biología Molecular, Facultad de Medicina y Enfermería, Universidad de Cordoba, Cordoba, Spain.,Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Cordoba, Spain
| |
Collapse
|
14
|
Bilu C, Einat H, Zimmet P, Vishnevskia-Dai V, Schwartz WJ, Kronfeld-Schor N. Beneficial effects of voluntary wheel running on activity rhythms, metabolic state, and affect in a diurnal model of circadian disruption. Sci Rep 2022; 12:2434. [PMID: 35165331 PMCID: PMC8844006 DOI: 10.1038/s41598-022-06408-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Accepted: 01/19/2022] [Indexed: 12/14/2022] Open
Abstract
Emerging evidence suggests that disruption of circadian rhythmicity contributes to development of comorbid depression, cardiovascular diseases (CVD), and type 2 diabetes mellitus (T2DM). Physical exercise synchronizes the circadian system and has ameliorating effects on the depression- and anxiety-like phenotype induced by circadian disruption in mice and sand rats. We explored the beneficial effects of voluntary wheel running on daily rhythms, and the development of depression, T2DM, and CVD in a diurnal animal model, the fat sand rat (Psammomys obesus). Voluntary exercise strengthened general activity rhythms, improved memory and lowered anxiety- and depressive-like behaviors, enhanced oral glucose tolerance, and decreased plasma insulin levels and liver weight. Animals with access to a running wheel had larger heart weight and heart/body weight ratio, and thicker left ventricular wall. Our results demonstrate that exercising ameliorates pathological-like daily rhythms in activity and blood glucose levels, glucose tolerance and depressive- and anxiety-like behaviors in the sand rat model, supporting the important role of physical activity in modulating the “circadian syndrome” and circadian rhythm-related diseases. We suggest that the utilization of a diurnal rodent animal model may offer an effective way to further explore metabolic, cardiovascular, and affective-like behavioral changes related to chronodisruption and their underlying mechanisms.
Collapse
|
15
|
Hand BJ, Opie GM, Sidhu SK, Semmler JG. Motor cortex plasticity and visuomotor skill learning in upper and lower limbs of endurance-trained cyclists. Eur J Appl Physiol 2021; 122:169-184. [DOI: 10.1007/s00421-021-04825-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 09/30/2021] [Indexed: 11/29/2022]
|
16
|
Sampaio ASB, Real CC, Gutierrez RMS, Singulani MP, Alouche SR, Britto LR, Pires RS. Neuroplasticity induced by the retention period of a complex motor skill learning in rats. Behav Brain Res 2021; 414:113480. [PMID: 34302881 DOI: 10.1016/j.bbr.2021.113480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 07/01/2021] [Accepted: 07/19/2021] [Indexed: 11/16/2022]
Abstract
Learning complex motor skills is an essential process in our daily lives. Moreover, it is an important aspect for the development of therapeutic strategies that refer to rehabilitation processes since motor skills previously acquired can be transferred to similar tasks (motor skill transfer) or recovered without further practice after longer delays (motor skill retention). Different acrobatic exercise training (AE) protocols induce plastic changes in areas involved in motor control and improvement in motor performance. However, the plastic mechanisms involved in the retention of a complex motor skill, essential for motor learning, are not well described. Thus, our objective was to analyze the brain plasticity mechanisms involved in motor skill retention in AE . Motor behavior tests, and the expression of synaptophysin (SYP), synapsin-I (SYS), and early growth response protein 1 (Egr-1) in brain areas involved in motor learning were evaluated. Young male Wistar rats were randomly divided into 3 groups: sedentary (SED), AE, and AE with retention period (AER). AE was performed three times a week for 8 weeks, with 5 rounds in the circuit. After a fifteen-day retention interval, the AER animals was again exposed to the acrobatic circuit. Our results revealed motor performance improvement in the AE and AER groups. In the elevated beam test, the AER group presented a lower time and greater distance, suggesting retention period is important for optimizing motor learning consolidation. Moreover, AE promoted significant plastic changes in the expression of proteins in important areas involved in control and motor learning, some of which were maintained in the AER group. In summary, these data contribute to the understanding of neural mechanisms involved in motor learning in an animal model, and can be useful to the construction of therapeutics strategies that optimize motor learning in a rehabilitative context.
Collapse
Affiliation(s)
| | - Caroline Cristiano Real
- Laboratory of Nuclear Medicine (LIM 43), Institute of Radiology, Faculty of Medicine, University of São Paulo, São Paulo, SP, Brazil; Translational Neuropsychiatry Unit, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark; Laboratory of Cellular Neurobiology, Department of Physiology and Biophysics, Biomedical Science Institute, University of São Paulo, São Paulo, SP, Brazil
| | - Rita Mara Soares Gutierrez
- Master's and Doctoral Programs in Physical Therapy, University of the City of São Paulo, São Paulo, SP, Brazil
| | - Monique Patricio Singulani
- Laboratory of Cellular Neurobiology, Department of Physiology and Biophysics, Biomedical Science Institute, University of São Paulo, São Paulo, SP, Brazil; Laboratory of Neurosciences (LIM 27), Institute of Psychiatry, Faculty of Medicine, University of São Paulo, São Paulo, SP, Brazil
| | - Sandra Regina Alouche
- Master's and Doctoral Programs in Physical Therapy, University of the City of São Paulo, São Paulo, SP, Brazil
| | - Luiz Roberto Britto
- Laboratory of Cellular Neurobiology, Department of Physiology and Biophysics, Biomedical Science Institute, University of São Paulo, São Paulo, SP, Brazil
| | - Raquel Simoni Pires
- Master's and Doctoral Programs in Physical Therapy, University of the City of São Paulo, São Paulo, SP, Brazil.
| |
Collapse
|
17
|
Physical activity, motor performance and skill learning: a focus on primary motor cortex in healthy aging. Exp Brain Res 2021; 239:3431-3438. [PMID: 34499187 DOI: 10.1007/s00221-021-06218-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Accepted: 09/02/2021] [Indexed: 01/03/2023]
Abstract
Participation in physical activity benefits brain health and function. Cognitive function generally demonstrates a noticeable effect of physical activity, but much less is known about areas responsible for controlling movement, such as primary motor cortex (M1). While more physical activity may support M1 plasticity in older adults, the neural mechanisms underlying this beneficial effect remain poorly understood. Aging is inevitably accompanied by diminished motor performance, and the extent of plasticity may also be less in older adults compared with young. Motor complications with aging may, perhaps unsurprisingly, contribute to reduced physical activity in older adults. While the development of non-invasive brain stimulation techniques have identified that human M1 is a crucial site for learning motor skills and recovery of motor function after injury, a considerable lack of knowledge remains about how physical activity impacts M1 with healthy aging. Reducing impaired neural activity in older adults may have important implications after neurological insult, such as stroke, which is more common with advancing age. Therefore, a better understanding about the effects of physical activity on M1 processes and motor learning in older adults may promote healthy aging, but also allow us to facilitate recovery of motor function after neurological injury. This article will initially provide a brief overview of the neurophysiology of M1 in the context of learning motor skills, with a focus on healthy aging in humans. This information will then be proceeded by a more detailed assessment that focuses on whether physical activity benefits motor function and human M1 processes.
Collapse
|
18
|
Cavaleri R, Chipchase LS, Summers SJ, Chalmers J, Schabrun SM. The Relationship Between Corticomotor Reorganization and Acute Pain Severity: A Randomized, Controlled Study Using Rapid Transcranial Magnetic Stimulation Mapping. PAIN MEDICINE 2021; 22:1312-1323. [PMID: 33367763 DOI: 10.1093/pm/pnaa425] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
OBJECTIVE Although acute pain has been shown to reduce corticomotor excitability, it remains unknown whether this response resolves over time or is related to symptom severity. Furthermore, acute pain research has relied upon data acquired from the cranial "hotspot," which do not provide valuable information regarding reorganization, such as changes to the distribution of a painful muscle's representation within M1. Using a novel, rapid transcranial magnetic stimulation (TMS) mapping method, this study aimed to 1) explore the temporal profile and variability of corticomotor reorganization in response to acute pain and 2) determine whether individual patterns of corticomotor reorganization are associated with differences in pain, sensitivity, and somatosensory organization. METHODS Corticomotor (TMS maps), pain processing (pain intensity, pressure pain thresholds), and somatosensory (two-point discrimination, two-point estimation) outcomes were taken at baseline, immediately after injection (hypertonic [n = 20] or isotonic saline [n = 20]), and at pain resolution. Follow-up measures were recorded every 15 minutes until 90 minutes after injection. RESULTS Corticomotor reorganization persisted at least 90 minutes after pain resolution. Corticomotor depression was associated with lower pain intensity than was corticomotor facilitation (r = 0.47 [P = 0.04]). These effects were not related to somatosensory reorganization or peripheral sensitization mechanisms. CONCLUSIONS Individual patterns of corticomotor reorganization during acute pain appear to be related to symptom severity, with early corticomotor depression possibly reflecting a protective response. These findings hold important implications for the management and potential prevention of pain chronicity. However, further research is required to determine whether these adaptations relate to long-term outcomes in clinical populations.
Collapse
Affiliation(s)
- Rocco Cavaleri
- Brain Stimulation and Rehabilitation (BrainStAR) Lab, School of Health Sciences, Western Sydney University, Sydney, New South Wales, Australia
| | - Lucy S Chipchase
- Brain Stimulation and Rehabilitation (BrainStAR) Lab, School of Health Sciences, Western Sydney University, Sydney, New South Wales, Australia.,College of Nursing and Health Sciences, Flinders University, Adelaide, South Australia, Australia
| | - Simon J Summers
- Brain Stimulation and Rehabilitation (BrainStAR) Lab, School of Health Sciences, Western Sydney University, Sydney, New South Wales, Australia.,Discipline of Sport and Exercise Science, Faculty of Health, University of Canberra, Canberra, Australian Capital Territory, Australia
| | - Jane Chalmers
- Brain Stimulation and Rehabilitation (BrainStAR) Lab, School of Health Sciences, Western Sydney University, Sydney, New South Wales, Australia.,IIMPACT in Health, University of South Australia, Adelaide, South Australia, Australia
| | | |
Collapse
|
19
|
Gregor S, Saumur TM, Crosby LD, Powers J, Patterson KK. Study Paradigms and Principles Investigated in Motor Learning Research After Stroke: A Scoping Review. Arch Rehabil Res Clin Transl 2021; 3:100111. [PMID: 34179749 PMCID: PMC8211998 DOI: 10.1016/j.arrct.2021.100111] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
OBJECTIVES To (1) characterize study paradigms used to investigate motor learning (ML) poststroke and (2) summarize the effects of different ML principles in promoting skill acquisition and retention. Our secondary objective is to evaluate the clinical utility of ML principles on stroke rehabilitation. DATA SOURCES Medline, Excerpta Medica Database, Allied and Complementary Medicine, Cumulative Index to Nursing and Allied Health Literature, and Cochrane Central Register of Controlled Trials were searched from inception on October 24, 2018 and repeated on June 23, 2020. Scopus was searched on January 24, 2019 and July 22, 2020 to identify additional studies. STUDY SELECTION Our search included keywords and concepts to represent stroke and "motor learning. An iterative process was used to generate study selection criteria. Three authors independently completed title, abstract, and full-text screening. DATA EXTRACTION Three reviewers independently completed data extraction. DATA SYNTHESIS The Preferred Reporting Items for Systematic Reviews and Meta-Analyses extension guidelines for scoping reviews were used to guide our synthesis. Thirty-nine studies were included. Study designs were heterogeneous, including variability in tasks practiced, acquisition parameters, and retention intervals. ML principles investigated included practice complexity, feedback, motor imagery, mental practice, action observation, implicit and explicit information, aerobic exercise, and neurostimulation. An additional 2 patient-related factors that influence ML were included: stroke characteristics and sleep. Practice complexity, feedback, and mental practice/action observation most consistently promoted ML, while provision of explicit information and more severe strokes were detrimental to ML. Other factors (ie, sleep, practice structure, aerobic exercise, neurostimulation) had a less clear influence on learning. CONCLUSIONS Improved consistency of reporting in ML studies is needed to improve study comparability and facilitate meta-analyses to better understand the influence of ML principles on learning poststroke. Knowledge of ML principles and patient-related factors that influence ML, with clinical judgment can guide neurologic rehabilitation delivery to improve patient motor outcomes.
Collapse
Affiliation(s)
- Sarah Gregor
- KITE, Toronto Rehabilitation Institute, University Health Network, Toronto, Ontario
- Rehabilitation Sciences Institute, University of Toronto, Toronto, Ontario
| | - Tyler M. Saumur
- KITE, Toronto Rehabilitation Institute, University Health Network, Toronto, Ontario
- Rehabilitation Sciences Institute, University of Toronto, Toronto, Ontario
| | - Lucas D. Crosby
- KITE, Toronto Rehabilitation Institute, University Health Network, Toronto, Ontario
- Rehabilitation Sciences Institute, University of Toronto, Toronto, Ontario
| | - Jessica Powers
- KITE, Toronto Rehabilitation Institute, University Health Network, Toronto, Ontario
- Rehabilitation Sciences Institute, University of Toronto, Toronto, Ontario
| | - Kara K. Patterson
- KITE, Toronto Rehabilitation Institute, University Health Network, Toronto, Ontario
- Rehabilitation Sciences Institute, University of Toronto, Toronto, Ontario
- Department of Physical Therapy, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
20
|
Distinct subtypes of proprioceptive dorsal root ganglion neurons regulate adaptive proprioception in mice. Nat Commun 2021; 12:1026. [PMID: 33589589 PMCID: PMC7884389 DOI: 10.1038/s41467-021-21173-9] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Accepted: 01/15/2021] [Indexed: 11/26/2022] Open
Abstract
Proprioceptive neurons (PNs) are essential for the proper execution of all our movements by providing muscle sensory feedback to the central motor network. Here, using deep single cell RNAseq of adult PNs coupled with virus and genetic tracings, we molecularly identify three main types of PNs (Ia, Ib and II) and find that they segregate into eight distinct subgroups. Our data unveil a highly sophisticated organization of PNs into discrete sensory input channels with distinct spatial distribution, innervation patterns and molecular profiles. Altogether, these features contribute to finely regulate proprioception during complex motor behavior. Moreover, while Ib- and II-PN subtypes are specified around birth, Ia-PN subtypes diversify later in life along with increased motor activity. We also show Ia-PNs plasticity following exercise training, suggesting Ia-PNs are important players in adaptive proprioceptive function in adult mice. Molecular diversity of proprioceptive neuron types (Ia, Ib and II PNs) is unclear. Here, the authors characterized the functional organization and development of eight subtypes of PNs in mice. Importantly, Ia subtypes are plastic, suggesting a role in adaptive proprioception during motor behavior.
Collapse
|
21
|
Małczyńska-Sims P, Chalimoniuk M, Sułek A. The Effect of Endurance Training on Brain-Derived Neurotrophic Factor and Inflammatory Markers in Healthy People and Parkinson's Disease. A Narrative Review. Front Physiol 2020; 11:578981. [PMID: 33329027 PMCID: PMC7711132 DOI: 10.3389/fphys.2020.578981] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 10/06/2020] [Indexed: 12/15/2022] Open
Abstract
Background: One purpose of the training conducted by people is to lose bodyweight and improve their physical condition. It is well-known that endurance training provides many positive changes in the body, not only those associated with current beauty standards. It also promotes biochemical changes such as a decreased inflammatory status, memory improvements through increased brain-derived neurotrophic factor levels, and reduced stress hormone levels. The positive effects of training may provide a novel solution for people with Parkinson's disease, as a way to reduce the inflammatory status and decrease neurodegeneration through stimulation of neuroplasticity and improved motor conditions. Aim: This narrative review aims to focus on the relationship between an acute bout of endurance exercise, endurance training (continuous and interval), brain-derived neurotrophic factor and inflammatory status in the three subject groups (young adults, older adult, and patients with Parkinson's disease), and to review the current state of knowledge about the possible causes of the differences in brain-derived neurotrophic factor and inflammatory status response to a bout of endurance exercise and endurance training. Furthermore, short practical recommendations for PD patients were formulated for improving the efficacy of the training process during rehabilitation. Methods: A narrative review was performed following an electronic search of the database PubMed/Medline and Web of Science for English-language articles between January 2010 and January 2020. Results: Analysis of the available publications with partial results revealed (1) a possible connection between the brain-derived neurotrophic factor level and inflammatory status, and (2) a more beneficial influence of endurance training compared with acute bouts of endurance exercise. Conclusion: Despite the lack of direct evidence, the results from studies show that endurance training may have a positive effect on inflammatory status and brain-derived neurotrophic factor levels. Introducing endurance training as part of the rehabilitation in Parkinson's disease might provide benefits for patients in addition to pharmacological therapy supplementation.
Collapse
Affiliation(s)
| | - Małgorzata Chalimoniuk
- Department of Physical Education and Health in Biała Podlaska, Józef Piłsudski University of Physical Education in Warsaw, Warsaw, Poland
| | - Anna Sułek
- Department of Genetics, Institute of Psychiatry and Neurology, Warsaw, Poland
| |
Collapse
|
22
|
de Almeida W, Confortim HD, Deniz BF, Miguel PM, Vieira MC, Bronauth L, Dos Santos AS, Bertoldi K, Siqueira IR, Pereira LO. Acrobatic exercise recovers object recognition memory impairment in hypoxic-ischemic rats. Int J Dev Neurosci 2020; 81:60-70. [PMID: 33135304 DOI: 10.1002/jdn.10075] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 10/17/2020] [Accepted: 10/28/2020] [Indexed: 11/08/2022] Open
Abstract
Neonatal hypoxia-ischemia (HI) can lead to cognitive impairments and motor dysfunction. Acrobatic exercises (AE) were proposing as therapeutic option to manage HI motor deficits, however, the cognitive effects after this treatment are still poorly understood. Therefore, we evaluated the effects of AE protocol on memory impairments and brain plasticity markers after Rice-Vannucci HI rodent model. Wistar rats on the 7th postnatal day (PND) were submitted to HI model and after weaning (PND22) were trained for 5 weeks with AE protocol, then subsequently submitted to cognitive tests. Our results showed recovery in novel object recognition (NOR) memory, but not, spatial Morris Water Maze (WM) memory after AE treatment in HI rats. BDNF and synaptophysin neuroplasticity markers indicate plastic alterations in the hippocampus and striatum, with maintenance of synaptophysin despite the reduction of total volume tissue, besides, hippocampal HI-induced ipsilateral BDNF increased, and striatum contralateral BDNF decreased were noted. Nevertheless, the exercise promoted functional recovery and seems to be a promising strategy for HI treatment, however, future studies identifying neuroplastic pathway for this improvement are needed.
Collapse
Affiliation(s)
- Wellington de Almeida
- Programa de Pós-Graduação em Neurociências, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil.,Departamento de Ciências Morfológicas, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Heloísa Deola Confortim
- Programa de Pós-Graduação em Neurociências, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil.,UNIVEL Centro Universitário, Cascavel, Brazil
| | - Bruna Ferrary Deniz
- Programa de Pós-Graduação em Neurociências, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil.,Departamento de Ciências Morfológicas, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Patrícia Maidana Miguel
- Programa de Pós-Graduação em Neurociências, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil.,Departamento de Ciências Morfológicas, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Milene Cardoso Vieira
- Departamento de Ciências Morfológicas, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Loise Bronauth
- Departamento de Ciências Morfológicas, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Adriana Souza Dos Santos
- Programa de Pós-Graduação em Neurociências, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil.,Departamento de Ciências Morfológicas, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Karine Bertoldi
- Departamento de Farmacologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Ionara Rodrigues Siqueira
- Departamento de Farmacologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil.,Programa de Pós-Graduação em Ciências Biológicas, Fisiologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Lenir Orlandi Pereira
- Programa de Pós-Graduação em Neurociências, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil.,Departamento de Ciências Morfológicas, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| |
Collapse
|
23
|
Effect of Physical Activity on Cognitive Function and Neurogenesis: Roles of BDNF and Oxidative Stress. ACTA ACUST UNITED AC 2020. [DOI: 10.5812/thrita.109723] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Context: Cognitive disorders are one of the most common neurological problems that can be caused by lifestyle patterns, especially sedentary lifestyle, poor nutrition, exposure to a variety of toxins or diseases. Evidence Acquisition: There are various strategies recommended for the prevention and treatment of these disorders, including drug therapy, psychological therapy, dietary pattern changes, and physical activity. Results: It seems that physical activity with biological mechanisms can have beneficial effects on the central nervous system and improve cognitive function, including enhanced learning and memory, as well as reduced depression and anxiety. Conclusions: Of the major mechanisms that physical activity can affect cognitive function include increased neurogenic factors, decreased oxidative stress, decreased inflammatory mediators, and mitochondrial biogenesis. Therefore, it is recommended that people with cognitive impairments can use physical activity as an appropriate strategy to prevent and treat cognitive impairment problems.
Collapse
|
24
|
Post-exposure environment modulates long-term developmental ethanol effects on behavior, neuroanatomy, and cortical oscillations. Brain Res 2020; 1748:147128. [PMID: 32950485 DOI: 10.1016/j.brainres.2020.147128] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 08/25/2020] [Accepted: 09/12/2020] [Indexed: 11/23/2022]
Abstract
Developmental exposure to ethanol has a wide range of anatomical, cellular, physiological and behavioral impacts that can last throughout life. In humans, this cluster of effects is termed fetal alcohol spectrum disorder and is highly prevalent in western cultures. The ultimate expression of the effects of developmental ethanol exposure however can be influenced by post-exposure experience. Here we examined the effects of developmental binge exposure to ethanol (postnatal day 7) in C57BL/6By mice on a specific cohort of inter-related long-term outcomes including contextual memory, hippocampal parvalbumin-expressing neuron density, frontal cortex oscillations related to sleep-wake cycling including delta oscillation amplitude and sleep spindle density, and home-cage behavioral activity. When assessed in adults that were raised in standard housing, all of these factors were altered by early ethanol exposure compared to saline controls except home-cage activity. However, exposure to an enriched environment and exercise from weaning to postnatal day 90 reversed most of these ethanol-induced impairments including memory, CA1 but not dentate gyrus PV+ cell density, delta oscillations and sleep spindles, and enhanced home-cage behavioral activity in Saline- but not EtOH-treated mice. The results are discussed in terms of the inter-dependence of diverse developmental ethanol outcomes and potential mechanisms of post-exposure experiences to regulate those outcomes.
Collapse
|
25
|
Ishihara T, Miyazaki A, Tanaka H, Matsuda T. Identification of the brain networks that contribute to the interaction between physical function and working memory: An fMRI investigation with over 1,000 healthy adults. Neuroimage 2020; 221:117152. [PMID: 32668299 DOI: 10.1016/j.neuroimage.2020.117152] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 06/30/2020] [Accepted: 07/05/2020] [Indexed: 12/14/2022] Open
Abstract
There is a growing consensus regarding the positive relationship between physical function and working memory; however, explanations of task-evoked functional activity regarding this relationship and its differences in physical function domains remain controversial. This study illustrates the cross-sectional relationships between cardiorespiratory fitness, gait speed, hand dexterity, and muscular strength with working memory task (N-back task) performance and the mediating effects of task-evoked functional activity in 1033 adults aged between 22 and 37 years. The results showed that cardiorespiratory fitness and hand dexterity were independently associated with N-back task performance to a greater extent and in contrast to gait speed and muscular strength. These relationships were mediated by task-evoked functional activity in a part of the frontoparietal network (FPN) and default mode network (DMN). Superior cardiorespiratory fitness could contribute to working memory performance by enhancing the compensational role of FPN-related broader region activation. Hand dexterity was associated with moderation of the interaction in terms of task-evoked activation between the FPN and DMN, which in turn, improved N-back task performance. Based on these findings, we conclude that cardiorespiratory fitness and hand dexterity have common and unique mechanisms enhancing working memory.
Collapse
Affiliation(s)
- Toru Ishihara
- Tamagawa University Brain Science Institute, Tokyo, Japan; Japan Society for the Promotion of Science, Tokyo, Japan
| | | | - Hiroki Tanaka
- Tamagawa University Brain Science Institute, Tokyo, Japan; Japan Society for the Promotion of Science, Tokyo, Japan
| | | |
Collapse
|
26
|
Tanaka T, Ito T, Sumizono M, Ono M, Kato N, Honma S, Ueno M. Combinational Approach of Genetic SHP-1 Suppression and Voluntary Exercise Promotes Corticospinal Tract Sprouting and Motor Recovery Following Brain Injury. Neurorehabil Neural Repair 2020; 34:558-570. [PMID: 32441214 DOI: 10.1177/1545968320921827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Background. Brain injury often causes severe motor dysfunction, leading to difficulties with living a self-reliant social life. Injured neural circuits must be reconstructed to restore functions, but the adult brain is limited in its ability to restore neuronal connections. The combination of molecular targeting, which enhances neural plasticity, and rehabilitative motor exercise is an important therapeutic approach to promote neuronal rewiring in the spared circuits and motor recovery. Objective. We tested whether genetic reduction of Src homology 2-containing phosphatase-1 (SHP-1), an inhibitor of brain-derived neurotrophic factor (BDNF)/tropomyosin receptor kinase B (TrkB) signaling, has synergistic effects with rehabilitative training to promote reorganization of motor circuits and functional recovery in a mouse model of brain injury. Methods. Rewiring of the corticospinal circuit was examined using neuronal tracers following unilateral cortical injury in control mice and in Shp-1 mutant mice subjected to voluntary exercise. Recovery of motor functions was assessed using motor behavior tests. Results. We found that rehabilitative exercise decreased SHP-1 and increased BDNF and TrkB expression in the contralesional motor cortex after the injury. Genetic reduction of SHP-1 and voluntary exercise significantly increased sprouting of corticospinal tract axons and enhanced motor recovery in the impaired forelimb. Conclusions. Our data demonstrate that combining voluntary exercise and SHP-1 suppression promotes motor recovery and neural circuit reorganization after brain injury.
Collapse
Affiliation(s)
- Takashi Tanaka
- Kanazawa Medical University, Kahoku, Ishikawa, Japan.,Kindai University, Osaka-Sayama, Osaka, Japan
| | - Tetsufumi Ito
- Kanazawa Medical University, Kahoku, Ishikawa, Japan
| | - Megumi Sumizono
- Kyushu University of Nursing and Social Welfare, Tamana, Kumamoto, Japan
| | - Munenori Ono
- Kanazawa Medical University, Kahoku, Ishikawa, Japan
| | - Nobuo Kato
- Kanazawa Medical University, Kahoku, Ishikawa, Japan
| | - Satoru Honma
- Kanazawa Medical University, Kahoku, Ishikawa, Japan
| | | |
Collapse
|
27
|
Rauf S, Soesatyo MH, Agustiningsih D, Partadiredja G. Moderate intensity intermittent exercise upregulates neurotrophic and neuroprotective genes expression and inhibits Purkinje cell loss in the cerebellum of ovariectomized rats. Behav Brain Res 2020; 382:112481. [PMID: 31954098 DOI: 10.1016/j.bbr.2020.112481] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Revised: 01/01/2020] [Accepted: 01/13/2020] [Indexed: 12/23/2022]
Abstract
Decreases in estrogen levels due to menopause or ovariectomy may disrupt cerebellar motor functions. This study aimed at investigating the effects of Moderate Intensity Intermittent Exercise (MIEx) on the cerebellum of ovariectomized rats by analyzing neurotrophic and neuroprotective markers, as well as cerebellar motor functions. Thirty-two female Sprague Dawley rats were divided into four groups, i.e. Sham and ovariectomy (Ovx) of non-MIEx (NMIEx) groups, and Sham and Ovx with MIEx groups. MIEx was performed 5 days a week on treadmill for 6 weeks. Motor functions were assessed using rotarod, footprint, open field, and wire hanging tests. Real-time polymerase chain reaction was performed to determine messenger RNA (mRNA) expressions of Pgc-1α, BDNF, synaptophysin, Bcl-2, and Bax. Unbiased stereology was used to estimate the total number of cerebellar Purkinje cells. The Ovx MIEx group had higher Pgc-1α and Bcl-2 mRNA expressions, and number of Purkinje cells, but lower Bax mRNA expression than the Ovx NMIEx group. All motor functions of MIEx groups were better than the Sham and Ovx groups without MIEx. Motor functions on rotarod task, OFT, and FPT correlated significantly with the mRNAs expression of Bcl-2, Bax, BDNF, synaptophysin, Pgc-1α, and the number of cerebellar Purkinje cells in ovariectomized rats. MIEx improves cerebellar neurotrophic and neuroprotective markers, as well as motor functions of ovariectomized rats.
Collapse
Affiliation(s)
- Saidah Rauf
- Doctoral Program, Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada, Yogyakarta, Indonesia; Masohi Nursing Study Program, Maluku Health Polytechnic, Maluku, Indonesia.
| | - Marsetyawan Hne Soesatyo
- Department of Histology and Cell Biology, Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada, Yogyakarta, Indonesia
| | - Denny Agustiningsih
- Department of Physiology, Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada, Yogyakarta, Indonesia
| | - Ginus Partadiredja
- Department of Physiology, Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada, Yogyakarta, Indonesia
| |
Collapse
|
28
|
Malone LA, Felling RJ. Pediatric Stroke: Unique Implications of the Immature Brain on Injury and Recovery. Pediatr Neurol 2020; 102:3-9. [PMID: 31371122 PMCID: PMC6959511 DOI: 10.1016/j.pediatrneurol.2019.06.016] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Revised: 06/17/2019] [Accepted: 06/26/2019] [Indexed: 02/07/2023]
Abstract
Pediatric stroke causes significant morbidity for children resulting in lifelong neurological disability. Although hyperacute recanalization therapies are available for pediatric patients, most patients are ineligible for these treatments. Therefore the mainstay for pediatric stroke treatment relies on rehabilitation to improve outcomes. Little is known about the ideal rehabilitation therapies for pediatric patients with stroke and the unique interplay between the developing brain and our models of stroke recovery. In this review, we first discuss the consequences of pediatric stroke. Second, we examine the scientific evidence that exists between the mechanisms of recovery and how they are different in the pediatric developing brain. Finally, we evaluate potential interventions that could improve outcomes.
Collapse
Affiliation(s)
- Laura A. Malone
- Johns Hopkins University School of Medicine, Department of Neurology, Baltimore, MD 21287, United States
| | - Ryan J. Felling
- Johns Hopkins University School of Medicine, Department of Neurology, Baltimore, MD 21287, United States
| |
Collapse
|
29
|
Tercero-Pérez K, Cortés H, Torres-Ramos Y, Rodríguez-Labrada R, Cerecedo-Zapata CM, Hernández-Hernández O, Pérez-González N, González-Piña R, Leyva-García N, Cisneros B, Velázquez-Pérez L, Magaña JJ. Effects of Physical Rehabilitation in Patients with Spinocerebellar Ataxia Type 7. THE CEREBELLUM 2019; 18:397-405. [PMID: 30701400 DOI: 10.1007/s12311-019-1006-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Today, neurorehabilitation has become in a widely used therapeutic approach in spinocerebellar ataxias; however, there are scarce powerful clinical studies supporting this notion, and these studies require extension to other specific SCA subtypes in order to be able to form conclusions concerning its beneficial effects. Therefore, in this study, we perform for the first time a case-control pilot randomized, single-blinded, cross-sectional, and observational study to evaluate the effects of physical neurorehabilitation on the clinical and biochemical features of patients with spinocerebellar ataxia type 7 (SCA7) in 18 patients diagnosed with SCA7. In agreement with the exercise regimen, the participants were assigned to groups as follows: (a) the intensive training group, (b) the moderate training group, and (c) the non-training group (control group).We found that both moderate and intensive training groups showed a reduction in SARA scores but not INAS scores, compared with the control group (p < 0.05). Furthermore, trained patients exhibited improvement in the SARA sub-scores in stance, gait, dysarthria, dysmetria, and tremor, as compared with the control group (p < 0.05). No significant improvements were found in daily living activities, as revealed by Barthel and Lawton scales (p > 0.05). Patients under physical training exhibited significantly decreased levels in lipid-damage biomarkers and malondialdehyde, as well as a significant increase in the activity of the antioxidant enzyme PON-1, compared with the control group (p < 0.05). Physical exercise improved some cerebellar characteristics and the oxidative state of patients with SCA7, which suggest a beneficial effect on the general health condition of patients.
Collapse
Affiliation(s)
- Karla Tercero-Pérez
- Rehabilitation and Social Inclusion Center of Veracruz (CRIS-DIF), Xalapa, Veracruz, Mexico
| | - Hernán Cortés
- Laboratory of Genomic Medicine, Department of Genetics, National Rehabilitation Institute- Luis Guillermo Ibarra Ibarra (INR-LGII), México-Xochimilco No. 289, Col. Arenal Guadalupe, C.P, 14389, Ciudad de México (CDMX), Mexico
| | - Yessica Torres-Ramos
- Department of Immunobiochemistry, National Perinatology Institute (INPer), Mexico City, Mexico
| | - Roberto Rodríguez-Labrada
- Center for Research and Rehabilitation of the Hereditary Ataxias (CIRAH), Carretera Central Km 5 ½ Reparto Edecío Pérez, 80100, Holguín, Cuba
| | | | - Oscar Hernández-Hernández
- Laboratory of Genomic Medicine, Department of Genetics, National Rehabilitation Institute- Luis Guillermo Ibarra Ibarra (INR-LGII), México-Xochimilco No. 289, Col. Arenal Guadalupe, C.P, 14389, Ciudad de México (CDMX), Mexico
| | - Nelson Pérez-González
- Rehabilitation and Social Inclusion Center of Veracruz (CRIS-DIF), Xalapa, Veracruz, Mexico
| | - Rigoberto González-Piña
- Laboratory of Genomic Medicine, Department of Genetics, National Rehabilitation Institute- Luis Guillermo Ibarra Ibarra (INR-LGII), México-Xochimilco No. 289, Col. Arenal Guadalupe, C.P, 14389, Ciudad de México (CDMX), Mexico
| | - Norberto Leyva-García
- Laboratory of Genomic Medicine, Department of Genetics, National Rehabilitation Institute- Luis Guillermo Ibarra Ibarra (INR-LGII), México-Xochimilco No. 289, Col. Arenal Guadalupe, C.P, 14389, Ciudad de México (CDMX), Mexico
| | - Bulmaro Cisneros
- Department of Genetics and Molecular Biology, Center of Research and Advanced Studies (CINVESTAV-IPN), Mexico City, Mexico
| | - Luis Velázquez-Pérez
- Center for Research and Rehabilitation of the Hereditary Ataxias (CIRAH), Carretera Central Km 5 ½ Reparto Edecío Pérez, 80100, Holguín, Cuba. .,Cuban Academy of Sciences, Havana, Cuba.
| | - Jonathan J Magaña
- Laboratory of Genomic Medicine, Department of Genetics, National Rehabilitation Institute- Luis Guillermo Ibarra Ibarra (INR-LGII), México-Xochimilco No. 289, Col. Arenal Guadalupe, C.P, 14389, Ciudad de México (CDMX), Mexico.
| |
Collapse
|
30
|
de Meireles LCF, Galvão F, Walker DM, Cechinel LR, de Souza Grefenhagen ÁI, Andrade G, Palazzo RP, Lovatel GA, Basso CG, Nestler EJ, Siqueira IR. Exercise Modalities Improve Aversive Memory and Survival Rate in Aged Rats: Role of Hippocampal Epigenetic Modifications. Mol Neurobiol 2019; 56:8408-8419. [PMID: 31250382 PMCID: PMC6918477 DOI: 10.1007/s12035-019-01675-w] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Accepted: 06/09/2019] [Indexed: 12/15/2022]
Abstract
We aimed to investigate the effects of aging and different exercise modalities on aversive memory and epigenetic landscapes at brain-derived neurotrophic factor, cFos, and DNA methyltransferase 3 alpha (Bdnf, cFos, and Dnmt3a, respectively) gene promoters in hippocampus of rats. Specifically, active epigenetic histone markers (H3K9ac, H3K4me3, and H4K8ac) and a repressive mark (H3K9me2) were evaluated. Adult and aged male Wistar rats (2 and 22 months old) were subjected to aerobic, acrobatic, resistance, or combined exercise modalities for 20 min, 3 times a week, during 12 weeks. Aging per se altered histone modifications at the promoters of Bdnf, cFos, and Dnmt3a. All exercise modalities improved both survival rate and aversive memory performance in aged animals (n = 7-10). Exercise altered hippocampal epigenetic marks in an age- and modality-dependent manner (n = 4-5). Aerobic and resistance modalities attenuated age-induced effects on hippocampal Bdnf promoter H3K4me3. Besides, exercise modalities which improved memory performance in aged rats were able to modify H3K9ac or H3K4me3 at the cFos promoter, which could increase gene transcription. Our results highlight biological mechanisms which support the efficacy of all tested exercise modalities attenuating memory deficits induced by aging.
Collapse
Affiliation(s)
| | - Fernando Galvão
- Programa de Pós-Graduação em Ciências Biológicas: Fisiologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | - Deena M Walker
- Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Laura Reck Cechinel
- Programa de Pós-Graduação em Ciências Biológicas: Fisiologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | - Ágnis Iohana de Souza Grefenhagen
- Laboratório de Neuropsicofarmacologia, Departamento de Farmacologia, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Rua Sarmento Leite, 500, Porto Alegre, RS, CEP 90050-170, Brazil
| | - Gisele Andrade
- Programa de Pós-Graduação em Ciências Biológicas: Farmacologia e Terapêutica, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | - Roberta Passos Palazzo
- Programa de Pós-Graduação em Ciências Biológicas: Farmacologia e Terapêutica, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | - Gisele Agustini Lovatel
- Departamento de Fisioterapia, Universidade Federal de Santa Catarina, Araranguá, Santa Catarina, Brazil
| | - Carla Giovanna Basso
- Programa de Pós-Graduação em Ciências Biológicas: Fisiologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | - Eric J Nestler
- Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Ionara Rodrigues Siqueira
- Programa de Pós-Graduação em Ciências Biológicas: Fisiologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil.
- Laboratório de Neuropsicofarmacologia, Departamento de Farmacologia, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Rua Sarmento Leite, 500, Porto Alegre, RS, CEP 90050-170, Brazil.
- Programa de Pós-Graduação em Ciências Biológicas: Farmacologia e Terapêutica, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil.
| |
Collapse
|
31
|
Opie GM, Semmler JG. Acute Exercise at Different Intensities Influences Corticomotor Excitability and Performance of a Ballistic Thumb Training Task. Neuroscience 2019; 412:29-39. [DOI: 10.1016/j.neuroscience.2019.05.049] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Revised: 05/24/2019] [Accepted: 05/24/2019] [Indexed: 12/22/2022]
|
32
|
Gu Q, Zou L, Loprinzi PD, Quan M, Huang T. Effects of Open Versus Closed Skill Exercise on Cognitive Function: A Systematic Review. Front Psychol 2019; 10:1707. [PMID: 31507472 PMCID: PMC6718477 DOI: 10.3389/fpsyg.2019.01707] [Citation(s) in RCA: 75] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Accepted: 07/09/2019] [Indexed: 01/08/2023] Open
Abstract
Background Exercise modes can be divided into open skill exercise (OSE) and closed skill exercise (CSE). While research has shown that these two exercise modes may have different effects on cognitive function, this possibility has not been systematically reviewed. Objective The purpose of the present review was to objectively evaluate the research literature regarding the effects of OSE versus CSE on cognitive function. Methods Six electronic databases (Web of Science, EMBASE, Google Scholar, PubMed, PsycINFO, and SPORTDiscus) were searched from inception dates to December 2018 for studies examining the associations of OSE and CSE with cognitive function. The literature searches were conducted using the combinations of two groups of relevant search items related to exercise modes (i.e., OSE and CSE) and cognitive function. Articles were limited to human studies in all age groups. Both intervention and observational studies with full text published in English-language peer-reviewed journals were considered eligible. The search process, study selection, data extraction, and study quality assessment were carried out independently by two researchers. Results A total of 1,573 articles were identified. Fourteen observational and five intervention studies met the inclusion criteria. Twelve of the 14 observational studies found that OSE benefits cognitive function, and seven of these 14 observational studies supported superior effects of OSE compared with CSE for enhancing cognitive function. Three of the five intervention studies found that OSE (versus CSE) led to greater improvements in cognitive function in both children and older adults. Conclusion Although the majority of studies in this review were observational cross-sectional designs, the review tends to support that OSE is more effective for improving some aspects of cognitive function compared with CSE. More rigorous randomized control trials with long-term follow-ups are needed in order to confirm these differential cognitive effects of the two exercise modes.
Collapse
Affiliation(s)
- Qian Gu
- Department of Physical Education, Shanghai Jiao Tong University, Shanghai, China
| | - Liye Zou
- Lifestyle (Mind-Body Movement) Research Center, College of Psychology, Shenzhen University, Shenzhen, China
| | - Paul D Loprinzi
- Exercise & Memory Laboratory, Department of Health, Exercise Science and Recreation Management, The University of Mississippi, University, MS, United States
| | - Minghui Quan
- School of Kinesiology, Shanghai University of Sport, Shanghai, China
| | - Tao Huang
- Department of Physical Education, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
33
|
Graham SA, Roth EJ, Brown DA. Walking and balance outcomes for stroke survivors: a randomized clinical trial comparing body-weight-supported treadmill training with versus without challenging mobility skills. J Neuroeng Rehabil 2018; 15:92. [PMID: 30382860 PMCID: PMC6211560 DOI: 10.1186/s12984-018-0442-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Accepted: 10/18/2018] [Indexed: 01/08/2023] Open
Abstract
Background Treadmill training, with or without body-weight support (BWSTT), typically involves high step count, faster walking speed, and higher heart-rate intensity than overground walking training. The addition of challenging mobility skill practice may offer increased opportunities to improve walking and balance skills. Here we compare walking and balance outcomes of chronic stroke survivors performing BWSTT with BWSTT including challenging mobility skills. Methods Single-blind randomized clinical trial comparing two BWSTT interventions performed in a rehabilitation research laboratory facility over 6 weeks. Participants were 18+ years of age with chronic (≥5 months) poststroke hemiparesis due to a cortical or subcortical ischemic or hemorrhagic stroke and walking speeds < 1.1 m/s at baseline. A hands-free group (HF; n = 15) performed BWSTT without assistance from handrails or assistive devices, and a hands-free plus challenge group (HF + C; n = 14) performed the same protocol while additionally practicing challenging mobility skills. The primary outcome was change in comfortable walking speed (CWS), with secondary outcomes of fast walk speed (FWS), six-minute walk distance, Berg Balance Scale (BBS) scores, and Activities Specific Balance Confidence (ABC) scores. Results Significant pre-post improvement of CWS (Z = − 4.2, p ≤ 0.0001) from a median of 0.35 m/s (range 0.10 to 1.09) to a median of 0.54 m/s (range 0.1 to 1.17), but no difference observed between groups (U = 96.0, p = 0.69). Pre-post improvements across all participants resulted in reclassified baseline ambulation status from sixteen to ten household ambulators, three to seven limited community ambulators, and ten to twelve community ambulators. Secondary outcomes showed similar pre-post improvements with no between-group differences. Conclusions The addition of challenging mobility skills to a hands-free BWSTT protocol did not lead to greater improvements in CWS following 6 weeks of training. One reason for lack of group differences may be that both groups were adequately challenged by walking in an active, self-driven treadmill environment without use of handrails or assistive devices. Trial registration NCT02787759 Falls-based Training for Walking Post-Stroke (FBT); retrospectively registered June 1st, 2016.
Collapse
Affiliation(s)
- Sarah A Graham
- Departments of Physical and Occupational Therapy, University of Alabama at Birmingham, Building 516 20th Street South, Birmingham, AL, 35233-4555, USA.
| | - Elliot J Roth
- Department of Physical Medicine and Rehabilitation, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - David A Brown
- Departments of Physical and Occupational Therapy, University of Alabama at Birmingham, Building 516 20th Street South, Birmingham, AL, 35233-4555, USA
| |
Collapse
|
34
|
Gutierrez RMS, Real CC, Scaranzi CR, Garcia PC, Oliveira DL, Britto LR, Pires RS. Motor improvement requires an increase in presynaptic protein expression and depends on exercise type and age. Exp Gerontol 2018; 113:18-28. [DOI: 10.1016/j.exger.2018.09.013] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2018] [Revised: 08/08/2018] [Accepted: 09/17/2018] [Indexed: 12/12/2022]
|
35
|
Schättin A, Gennaro F, Egloff M, Vogt S, de Bruin ED. Physical Activity, Nutrition, Cognition, Neurophysiology, and Short-Time Synaptic Plasticity in Healthy Older Adults: A Cross-Sectional Study. Front Aging Neurosci 2018; 10:242. [PMID: 30214406 PMCID: PMC6125692 DOI: 10.3389/fnagi.2018.00242] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Accepted: 07/24/2018] [Indexed: 12/15/2022] Open
Abstract
The aging brain undergoes remodeling processes because of biological and environmental factors. To counteract brain aging, neuronal plasticity should be preserved. The aim of this study was to test if the capacity of generating short-time synaptic plasticity in older adults may be related to either physical activity, nutritional status, cognition, or neurophysiological activity. Thirty-six participants (mean age 73.3 ± 5.9 years) received transcranial magnetic stimulation in combination with peripheral nerve stimulation to experimentally induce short-time synaptic plasticity by paired associative stimulation (PAS). Adaptations in neuronal excitability were assessed by motor-evoked potential (MEP) in the right m. tibialis anterior before and after PAS. The Physical Activity Questionnaire 50+ and the StepWatchTM captured physical activity levels. Nutritional status was assessed by the Mini Nutritional Assessment. Cognition was assessed by reaction time for a divided attention test and with the Montreal Cognitive Assessment. Neurophysiological activity was assessed by electroencephalography during the divided attention test. MEPs of the highest stimulation intensity resulted significantly different comparing before, 5 min, or 30 min after PAS (p < 0.05). Data-driven automatic hierarchical classification of the individual recruitment curve slopes over the three-time points indicated four different response types, however, response groups did not significantly differ based on physical activity, nutritional status, cognition, or neurophysiological activity. In a second-level analysis, participants having an increased slope showed a significant higher energy expenditure (z = -2.165, p = 0.030, r = 0.36) and revealed a significant higher power activity in the alpha frequency band (z = -2.008, p = 0.046, r = 0.37) at the prefrontal-located EEG electrodes, compared to the participants having a decreased slope. This study hints toward older adults differing in their neuronal excitability which is strongly associated to their short-time synaptic plasticity levels. Furthermore, a physically active lifestyle and higher EEG power in the alpha frequency band seem to be connected to the capacity of generating long-term potentiation-like synaptic plasticity in older adults. Future studies should consider more sensitive assessments and bigger sample sizes to get a broad scope of the older adults' population.
Collapse
Affiliation(s)
- Alexandra Schättin
- Department of Health Sciences and Technology, Institute of Human Movement Sciences and Sport, ETH Zürich, Zürich, Switzerland
| | - Federico Gennaro
- Department of Health Sciences and Technology, Institute of Human Movement Sciences and Sport, ETH Zürich, Zürich, Switzerland
| | - Martin Egloff
- Department of Health Sciences and Technology, Institute of Human Movement Sciences and Sport, ETH Zürich, Zürich, Switzerland
| | - Simon Vogt
- Department of Health Sciences and Technology, Institute of Human Movement Sciences and Sport, ETH Zürich, Zürich, Switzerland
| | - Eling D. de Bruin
- Department of Health Sciences and Technology, Institute of Human Movement Sciences and Sport, ETH Zürich, Zürich, Switzerland
- Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Solna, Sweden
| |
Collapse
|
36
|
Balkaya M, Cho S. Genetics of stroke recovery: BDNF val66met polymorphism in stroke recovery and its interaction with aging. Neurobiol Dis 2018; 126:36-46. [PMID: 30118755 DOI: 10.1016/j.nbd.2018.08.009] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Revised: 07/24/2018] [Accepted: 08/13/2018] [Indexed: 12/13/2022] Open
Abstract
Stroke leads to long term sensory, motor and cognitive impairments. Most patients experience some degree of spontaneous recovery which is mostly incomplete and varying greatly among individuals. The variation in recovery outcomes has been attributed to numerous factors including lesion size, corticospinal tract integrity, age, gender and race. It is well accepted that genetics play a crucial role in stroke incidence and accumulating evidence suggests that it is also a significant determinant in recovery. Among the number of genes and variations implicated in stroke recovery the val66met single nucleotide polymorphism (SNP) in the BDNF gene influences post-stroke plasticity in the most significant ways. Val66met is the most well characterized BDNF SNP and is common (40-50 % in Asian and 25-32% in Caucasian populations) in humans. It reduces activity-dependent BDNF release, dampens cortical plasticity and is implicated in numerous diseases. Earlier studies on the effects of val66met on stroke outcome and recovery presented primarily a maladaptive role. Novel findings however indicate a much more intricate interaction between val66met and stroke recovery which appears to be influenced by lesion location, post-stroke stage and age. This review will focus on the role of BDNF and val66met SNP in relation to stroke recovery and try to identify potential pathophysiologic mechanisms involved. The effects of age on val66met associated alterations in plasticity and potential consequences in terms of stroke are also discussed.
Collapse
Affiliation(s)
- Mustafa Balkaya
- Burke-Cornell Medical Research Institute, 785 Mamaroneck Ave, White Plains, NY 10605, USA; Feil Family Brain and Mind Research Institute, Weill Cornell Medicine at Burke Medical Research Institute, 785 Mamaroneck Ave, White Plains, NY 10605, USA
| | - Sunghee Cho
- Burke-Cornell Medical Research Institute, 785 Mamaroneck Ave, White Plains, NY 10605, USA; Feil Family Brain and Mind Research Institute, Weill Cornell Medicine at Burke Medical Research Institute, 785 Mamaroneck Ave, White Plains, NY 10605, USA.
| |
Collapse
|
37
|
Kim JH, Liu QF, Urnuhsaikhan E, Jeong HJ, Jeon MY, Jeon S. Moderate-Intensity Exercise Induces Neurogenesis and Improves Cognition in Old Mice by Upregulating Hippocampal Hippocalcin, Otub1, and Spectrin-α. Mol Neurobiol 2018; 56:3069-3078. [DOI: 10.1007/s12035-018-1239-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2018] [Accepted: 07/11/2018] [Indexed: 12/14/2022]
|
38
|
Chagas AP, Monteiro M, Mazer V, Baltar A, Marques D, Carneiro M, Rodrigues de Araújo MDG, Piscitelli D, Monte-Silva K. Cortical excitability variability: Insights into biological and behavioral characteristics of healthy individuals. J Neurol Sci 2018; 390:172-177. [DOI: 10.1016/j.jns.2018.04.036] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2016] [Revised: 04/13/2018] [Accepted: 04/20/2018] [Indexed: 11/16/2022]
|
39
|
The effects of acrobatic exercise on brain plasticity: a systematic review of animal studies. Brain Struct Funct 2018; 223:2055-2071. [DOI: 10.1007/s00429-018-1631-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2017] [Accepted: 02/17/2018] [Indexed: 12/24/2022]
|
40
|
Context-dependent concurrent adaptation to static and moving targets. PLoS One 2018; 13:e0192476. [PMID: 29420650 PMCID: PMC5805303 DOI: 10.1371/journal.pone.0192476] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Accepted: 01/24/2018] [Indexed: 11/20/2022] Open
Abstract
Is the neural control of movements towards moving targets independent to that of static targets? In the following experiments, we used a visuomotor rotation adaptation paradigm to examine the extent to which adapting arm movements to static targets generalize to that of moving targets (i.e. pursuit or tracking). In the first and second experiments, we showed that adaptation to perturbed tracking movements generalizes to reaching movements; reach aftereffects following perturbed tracking were about half the size (≈9°) of those produced following reach training (≈ 19°). Given these findings, in the final experiment we associated opposing perturbations (-30° and +30°) with either reaching or tracking movements and presented them within the same experimental block to determine whether these contexts allow for dual adaptation. We found that the group that experienced opposing perturbations was able to reduce both reaching and tracking errors, as well as produce reach aftereffects following dual training of ≈7°, which were substantially smaller than those produced when reach training was not concurrent with tracking training. This reduction in reach aftereffects is consistent with the extent of the interference from tracking training as measured by the reach aftereffects produced when only that condition was performed. These results suggest partial, but not complete, overlap in the learning processes involved in the acquisition of tracking and reaching movements.
Collapse
|
41
|
Inoue T, Ninuma S, Hayashi M, Okuda A, Asaka T, Maejima H. Effects of long-term exercise and low-level inhibition of GABAergic synapses on motor control and the expression of BDNF in the motor related cortex. Neurol Res 2017; 40:18-25. [DOI: 10.1080/01616412.2017.1382801] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Takahiro Inoue
- Graduate School of Health Sciences, Hokkaido University, Sapporo, Japan
| | - Shuta Ninuma
- Department of Health Sciences, School of Medicine, Hokkaido University, Sapporo, Japan
| | - Masataka Hayashi
- Graduate School of Health Sciences, Hokkaido University, Sapporo, Japan
| | - Akane Okuda
- Department of Health Sciences, School of Medicine, Hokkaido University, Sapporo, Japan
| | - Tadayoshi Asaka
- Department of Rehabilitation Science, Faculty of Health Sciences, Hokkaido University, Sapporo, Japan
| | - Hiroshi Maejima
- Department of Rehabilitation Science, Faculty of Health Sciences, Hokkaido University, Sapporo, Japan
| |
Collapse
|
42
|
Jin JJ, Ko IG, Kim SE, Hwang L, Lee MG, Kim DY, Jung SY. Age-dependent differences of treadmill exercise on spatial learning ability between young- and adult-age rats. J Exerc Rehabil 2017; 13:381-386. [PMID: 29114501 PMCID: PMC5667613 DOI: 10.12965/jer.1735070.535] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Accepted: 08/05/2017] [Indexed: 12/13/2022] Open
Abstract
The effect of exercise, which increases hippocampal neurogenesis and improves memory function, is well documented, however, differences in the effect of exercise on young children and adults are not yet known. In the present study, age-dependent differences of treadmill exercise on spatial learning ability between young- and adult-age rats were investigated. The rats in the exercise groups were forced to run on a motorized treadmill for 30 min once a day for 6 weeks. Radial 8-arm maze test was conducted for the determination of spatial learning ability. Cell proliferation in the hippocampal dentate gyrus was determined by 5-bromo-2′-deoxyuridine immunohistochemistry. Western blot for brain-derived neurotrophic factor (BDNF) and tyrosine kinase B (TrkB) was performed. In the present study, the number of errors in the young-age rats was effectively decreased by treadmill exercise. Hippocampal neurogenesis was more active in the young-age rats than in the adult-age rats. BDNF and TrkB expression in the hippocampus was greater in the adult-age rats than in the young-age rats. The results of this study showed that adults have excellent spatial learning abilities than children, but the improvement of exercise-induced spatial learning ability through neurogenesis is better in children.
Collapse
Affiliation(s)
- Jun-Jang Jin
- Department of Physiology, College of Medicine, Kyung Hee University, Seoul, Korea.,Department of Sports Medicine, College of Physical Education, Kyung Hee University, Yongin, Korea
| | - Il-Gyu Ko
- Department of Physiology, College of Medicine, Kyung Hee University, Seoul, Korea
| | - Sung-Eun Kim
- Department of Physiology, College of Medicine, Kyung Hee University, Seoul, Korea
| | - Lakkyong Hwang
- Department of Physiology, College of Medicine, Kyung Hee University, Seoul, Korea
| | - Man-Gyoon Lee
- Department of Sports Medicine, College of Physical Education, Kyung Hee University, Yongin, Korea
| | - Dae-Young Kim
- Department of Sports Healthcare, College of Humanities & Social Sciences, Inje University, Gimhae, Korea
| | - Sun-Young Jung
- Department of Physical Therapy, Hosan University, Gyeongsan, Korea
| |
Collapse
|
43
|
The influence of high intensity exercise and the Val66Met polymorphism on circulating BDNF and locomotor learning. Neurobiol Learn Mem 2017; 144:77-85. [PMID: 28668279 DOI: 10.1016/j.nlm.2017.06.003] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Revised: 05/04/2017] [Accepted: 06/20/2017] [Indexed: 11/21/2022]
Abstract
Brain-derived neurotrophic factor (BDNF) has been directly related to exercise-enhanced motor performance in the neurologically injured animal model; however literature concerning the role of BDNF in the enhancement of motor learning in the human population is limited. Previous studies in healthy subjects have examined the relationship between intensity of an acute bout of exercise, increases in peripheral BDNF and motor learning of a simple isometric upper extremity task. The current study examined the role of high intensity exercise on upregulation of peripheral BDNF levels as well as the role of high intensity exercise in mediation of motor learning and retention of a novel locomotor task in neurologically intact adults. In addition, the impact of a single nucleotide polymorphism in the BDNF gene (Val66Met) in moderating the relationship between exercise and motor learning was explored. It was hypothesized that participation in high intensity exercise prior to practicing a novel walking task (split-belt treadmill walking) would elicit increases in peripheral BDNF as well as promote an increased rate and magnitude of within session learning and retention on a second day of exposure to the walking task. Within session learning and retention would be moderated by the presence or absence of Val66Met polymorphism. Fifty-four neurologically intact participants participated in two sessions of split-belt treadmill walking. Step length and limb phase were measured to assess learning of spatial and temporal parameters of walking. Serum BDNF was collected prior to and immediately following either high intensity exercise or 5min of quiet rest. The results demonstrated that high intensity exercise provides limited additional benefit to learning of a novel locomotor pattern in neurologically intact adults, despite increases in circulating BDNF. In addition, presence of a single nucleotide polymorphism on the BDNF gene did not moderate the magnitude of serum BDNF increases with high intensity exercise, nor did it moderate the relationship between high intensity exercise and locomotor learning.
Collapse
|
44
|
Dinoff A, Herrmann N, Swardfager W, Lanctôt KL. The effect of acute exercise on blood concentrations of brain-derived neurotrophic factor in healthy adults: a meta-analysis. Eur J Neurosci 2017; 46:1635-1646. [PMID: 28493624 DOI: 10.1111/ejn.13603] [Citation(s) in RCA: 170] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2017] [Revised: 04/20/2017] [Accepted: 05/01/2017] [Indexed: 12/12/2022]
Abstract
It has been hypothesized that one mechanism through which physical activity provides benefits to cognition and mood is via increasing brain-derived neurotrophic factor (BDNF) concentrations. Some studies have reported immediate benefits to mood and various cognitive domains after a single session of exercise. This meta-analysis sought to determine the effect of a single exercise session on concentrations of BDNF in peripheral blood, in order to evaluate the potential role of BDNF in mediating the beneficial effects of exercise on brain health. MEDLINE, Embase, PsycINFO, SPORTDiscus, Rehabilitation & Sports Medicine Source, and CINAHL databases were searched for original, peer-reviewed reports of peripheral blood BDNF concentrations before and after acute exercise interventions. Risk of bias within studies was assessed using standardized criteria. Standardized mean differences (SMDs) were generated from random effects models. Risk of publication bias was assessed using a funnel plot and Egger's test. Potential sources of heterogeneity were explored in subgroup analyses. In 55 studies that met inclusion criteria, concentrations of peripheral blood BDNF were higher after exercise (SMD = 0.59, 95% CI: 0.46-0.72, P < 0.001). In meta-regression analysis, greater duration of exercise was associated with greater increases in BDNF. Subgroup analyses revealed an effect in males but not in females, and a greater BDNF increase in plasma than serum. Acute exercise increased BDNF concentrations in the peripheral blood of healthy adults. This effect was influenced by exercise duration and may be different across genders.
Collapse
Affiliation(s)
- Adam Dinoff
- Neuropsychopharmacology Research Group, Hurvitz Brain Sciences Program, Sunnybrook Research Institute, 2075 Bayview Avenue, Toronto, ON, M4N 3M5, Canada.,Department of Pharmacology and Toxicology, Faculty of Medicine, University of Toronto, 1 King's College Circle, Toronto, ON, Canada
| | - Nathan Herrmann
- Neuropsychopharmacology Research Group, Hurvitz Brain Sciences Program, Sunnybrook Research Institute, 2075 Bayview Avenue, Toronto, ON, M4N 3M5, Canada.,Department of Psychiatry, Faculty of Medicine, University of Toronto, 250 College Street, Toronto, ON, M5T 1R8, Canada
| | - Walter Swardfager
- Neuropsychopharmacology Research Group, Hurvitz Brain Sciences Program, Sunnybrook Research Institute, 2075 Bayview Avenue, Toronto, ON, M4N 3M5, Canada.,Department of Pharmacology and Toxicology, Faculty of Medicine, University of Toronto, 1 King's College Circle, Toronto, ON, Canada
| | - Krista L Lanctôt
- Neuropsychopharmacology Research Group, Hurvitz Brain Sciences Program, Sunnybrook Research Institute, 2075 Bayview Avenue, Toronto, ON, M4N 3M5, Canada.,Department of Pharmacology and Toxicology, Faculty of Medicine, University of Toronto, 1 King's College Circle, Toronto, ON, Canada.,Department of Psychiatry, Faculty of Medicine, University of Toronto, 250 College Street, Toronto, ON, M5T 1R8, Canada
| |
Collapse
|
45
|
Fucà E, Guglielmotto M, Boda E, Rossi F, Leto K, Buffo A. Preventive motor training but not progenitor grafting ameliorates cerebellar ataxia and deregulated autophagy in tambaleante mice. Neurobiol Dis 2017; 102:49-59. [PMID: 28237314 DOI: 10.1016/j.nbd.2017.02.005] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2016] [Revised: 01/20/2017] [Accepted: 02/20/2017] [Indexed: 01/14/2023] Open
Abstract
Treatment options for degenerative cerebellar ataxias are currently very limited. A large fraction of such disorders is represented by hereditary cerebellar ataxias, whose familiar transmission facilitates an early diagnosis and may possibly allow to start preventive treatments before the onset of the neurodegeneration and appearance of first symptoms. In spite of the heterogeneous aetiology, histological alterations of ataxias often include the primary degeneration of the cerebellar cortex caused by Purkinje cells (PCs) loss. Thus, approaches aimed at replacing or preserving PCs could represent promising ways of disease management. In the present study, we compared the efficacy of two different preventive strategies, namely cell replacement and motor training. We used tambaleante (tbl) mice as a model for progressive ataxia caused by selective loss of PCs and evaluated the effectiveness of the preventive transplantation of healthy PCs into early postnatal tbl cerebella, in terms of PC replacement and functional preservation. On the other hand, we investigated the effects of motor training on PC survival, cerebellar circuitry and their behavioral correlates. Our results demonstrate that, despite a good survival rate and integration of grafted PCs, the adopted grafting protocol could not alleviate the ataxic symptoms in tbl mice. Conversely, preventive motor training increases PCs survival with a moderate positive impact on the motor phenotype.
Collapse
Affiliation(s)
- Elisa Fucà
- Department of Neuroscience Rita Levi-Montalcini, University of Turin, Italy; Neuroscience Institute Cavalieri Ottolenghi, Regione Gonzole, 10043 Orbassano, Turin, Italy.
| | - Michela Guglielmotto
- Neuroscience Institute Cavalieri Ottolenghi, Regione Gonzole, 10043 Orbassano, Turin, Italy
| | - Enrica Boda
- Department of Neuroscience Rita Levi-Montalcini, University of Turin, Italy; Neuroscience Institute Cavalieri Ottolenghi, Regione Gonzole, 10043 Orbassano, Turin, Italy
| | - Ferdinando Rossi
- Department of Neuroscience Rita Levi-Montalcini, University of Turin, Italy
| | - Ketty Leto
- Neuroscience Institute Cavalieri Ottolenghi, Regione Gonzole, 10043 Orbassano, Turin, Italy
| | - Annalisa Buffo
- Department of Neuroscience Rita Levi-Montalcini, University of Turin, Italy; Neuroscience Institute Cavalieri Ottolenghi, Regione Gonzole, 10043 Orbassano, Turin, Italy.
| |
Collapse
|
46
|
Nie J, Yang X. Modulation of Synaptic Plasticity by Exercise Training as a Basis for Ischemic Stroke Rehabilitation. Cell Mol Neurobiol 2017; 37:5-16. [PMID: 26910247 DOI: 10.1007/s10571-016-0348-1] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2015] [Accepted: 02/11/2016] [Indexed: 12/23/2022]
Abstract
In recent years, rehabilitation of ischemic stroke draws more and more attention in the world, and has been linked to changes of synaptic plasticity. Exercise training improves motor function of ischemia as well as cognition which is associated with formation of learning and memory. The molecular basis of learning and memory might be synaptic plasticity. Research has therefore been conducted in an attempt to relate effects of exercise training to neuroprotection and neurogenesis adjacent to the ischemic injury brain. The present paper reviews the current literature addressing this question and discusses the possible mechanisms involved in modulation of synaptic plasticity by exercise training. This review shows the pathological process of synaptic dysfunction in ischemic roughly and then discusses the effects of exercise training on scaffold proteins and regulatory protein expression. The expression of scaffold proteins generally increased after training, but the effects on regulatory proteins were mixed. Moreover, the compositions of postsynaptic receptors were changed and the strength of synaptic transmission was enhanced after training. Finally, the recovery of cognition is critically associated with synaptic remodeling in an injured brain, and the remodeling occurs through a number of local regulations including mRNA translation, remodeling of cytoskeleton, and receptor trafficking into and out of the synapse. We do provide a comprehensive knowledge of synaptic plasticity enhancement obtained by exercise training in this review.
Collapse
Affiliation(s)
- Jingjing Nie
- Department of Neurology, Xiang Ya Hospital, Central South University, Xiang Ya Road 87, Changsha, 410008, Hunan, China
| | - Xiaosu Yang
- Department of Neurology, Xiang Ya Hospital, Central South University, Xiang Ya Road 87, Changsha, 410008, Hunan, China.
| |
Collapse
|
47
|
Dinoff A, Herrmann N, Swardfager W, Liu CS, Sherman C, Chan S, Lanctôt KL. The Effect of Exercise Training on Resting Concentrations of Peripheral Brain-Derived Neurotrophic Factor (BDNF): A Meta-Analysis. PLoS One 2016; 11:e0163037. [PMID: 27658238 PMCID: PMC5033477 DOI: 10.1371/journal.pone.0163037] [Citation(s) in RCA: 176] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2016] [Accepted: 09/01/2016] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND The mechanisms through which physical activity supports healthy brain function remain to be elucidated. One hypothesis suggests that increased brain-derived neurotrophic factor (BDNF) mediates some cognitive and mood benefits. This meta-analysis sought to determine the effect of exercise training on resting concentrations of BDNF in peripheral blood. METHODS MEDLINE, Embase, PsycINFO, SPORTDiscus, Rehabilitation & Sports Medicine Source, and CINAHL databases were searched for original, peer-reviewed reports of peripheral blood BDNF concentrations before and after exercise interventions ≥ 2 weeks. Risk of bias was assessed using standardized criteria. Standardized mean differences (SMDs) were generated from random effects models. Risk of publication bias was assessed using funnel plots and Egger's test. Potential sources of heterogeneity were explored in subgroup analyses. RESULTS In 29 studies that met inclusion criteria, resting concentrations of peripheral blood BDNF were higher after intervention (SMD = 0.39, 95% CI: 0.17-0.60, p < 0.001). Subgroup analyses suggested a significant effect in aerobic (SMD = 0.66, 95% CI: 0.33-0.99, p < 0.001) but not resistance training (SMD = 0.07, 95% CI: -0.15-0.30, p = 0.52) interventions. No significant difference in effect was observed between males and females, nor in serum vs plasma. CONCLUSION Aerobic but not resistance training interventions increased resting BDNF concentrations in peripheral blood.
Collapse
Affiliation(s)
- Adam Dinoff
- Neuropsychopharmacology Research Group, Hurvitz Brain Sciences Program, Sunnybrook Research Institute, Toronto, Ontario, Canada
- Department of Pharmacology and Toxicology, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Nathan Herrmann
- Neuropsychopharmacology Research Group, Hurvitz Brain Sciences Program, Sunnybrook Research Institute, Toronto, Ontario, Canada
- Department of Psychiatry, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Walter Swardfager
- Neuropsychopharmacology Research Group, Hurvitz Brain Sciences Program, Sunnybrook Research Institute, Toronto, Ontario, Canada
- Department of Pharmacology and Toxicology, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Celina S. Liu
- Neuropsychopharmacology Research Group, Hurvitz Brain Sciences Program, Sunnybrook Research Institute, Toronto, Ontario, Canada
- Department of Pharmacology and Toxicology, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Chelsea Sherman
- Neuropsychopharmacology Research Group, Hurvitz Brain Sciences Program, Sunnybrook Research Institute, Toronto, Ontario, Canada
| | - Sarah Chan
- Neuropsychopharmacology Research Group, Hurvitz Brain Sciences Program, Sunnybrook Research Institute, Toronto, Ontario, Canada
| | - Krista L. Lanctôt
- Neuropsychopharmacology Research Group, Hurvitz Brain Sciences Program, Sunnybrook Research Institute, Toronto, Ontario, Canada
- Department of Pharmacology and Toxicology, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
- Department of Psychiatry, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
48
|
Mooney RA, Coxon JP, Cirillo J, Glenny H, Gant N, Byblow WD. Acute aerobic exercise modulates primary motor cortex inhibition. Exp Brain Res 2016; 234:3669-3676. [PMID: 27590480 DOI: 10.1007/s00221-016-4767-5] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2016] [Accepted: 08/27/2016] [Indexed: 11/30/2022]
Abstract
Aerobic exercise can enhance neuroplasticity although presently the neural mechanisms underpinning these benefits remain unclear. One possible mechanism is through effects on primary motor cortex (M1) function via down-regulation of the inhibitory neurotransmitter gamma-aminobutyric acid (GABA). The aim of the present study was to examine how corticomotor excitability (CME) and M1 intracortical inhibition are modulated in response to a single bout of moderate intensity aerobic exercise. Ten healthy right-handed adults were participants. Single- and paired-pulse transcranial magnetic stimulation was applied over left M1 to obtain motor-evoked potentials in the right flexor pollicis brevis. We examined CME, cortical silent period (SP) duration, short- and long-interval intracortical inhibition (SICI, LICI), and late cortical disinhibition (LCD), before and after acute aerobic exercise (exercise session) or an equivalent duration without exercise (control session). Aerobic exercise was performed on a cycle ergometer for 30 min at a workload equivalent to 60 % of maximal cardiorespiratory fitness (VO2 peak; heart rate reserve = 75 ± 3 %, perceived exertion = 13.5 ± 0.7). LICI was reduced at 10 (52 ± 17 %, P = 0.03) and 20 min (27 ± 8 %, P = 0.03) post-exercise compared to baseline (13 ± 4 %). No significant changes in CME, SP duration, SICI or LCD were observed. The present study shows that GABAB-mediated intracortical inhibition may be down-regulated after acute aerobic exercise. The potential effects this may have on M1 plasticity remain to be determined.
Collapse
Affiliation(s)
- Ronan A Mooney
- Movement Neuroscience Laboratory, The University of Auckland, Auckland, New Zealand.,Centre for Brain Research, The University of Auckland, Auckland, New Zealand
| | - James P Coxon
- School of Psychological Sciences and Monash Institute of Cognitive and Clinical Neurosciences, Monash University, Melbourne, VIC, Australia.,Centre for Brain Research, The University of Auckland, Auckland, New Zealand
| | - John Cirillo
- Movement Neuroscience Laboratory, The University of Auckland, Auckland, New Zealand.,Centre for Brain Research, The University of Auckland, Auckland, New Zealand
| | - Helen Glenny
- Movement Neuroscience Laboratory, The University of Auckland, Auckland, New Zealand.,Centre for Brain Research, The University of Auckland, Auckland, New Zealand
| | - Nicholas Gant
- Exercise Neurometabolism Laboratory, Department of Exercise Sciences, The University of Auckland, Auckland, New Zealand.,Centre for Brain Research, The University of Auckland, Auckland, New Zealand
| | - Winston D Byblow
- Movement Neuroscience Laboratory, The University of Auckland, Auckland, New Zealand. .,Centre for Brain Research, The University of Auckland, Auckland, New Zealand.
| |
Collapse
|
49
|
Hamilton GF, Bucko PJ, Miller DS, DeAngelis RS, Krebs CP, Rhodes JS. Behavioral deficits induced by third-trimester equivalent alcohol exposure in male C57BL/6J mice are not associated with reduced adult hippocampal neurogenesis but are still rescued with voluntary exercise. Behav Brain Res 2016; 314:96-105. [PMID: 27491590 DOI: 10.1016/j.bbr.2016.07.052] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2016] [Revised: 07/21/2016] [Accepted: 07/30/2016] [Indexed: 01/10/2023]
Abstract
Prenatal alcohol exposure can produce permanent alterations in brain structure and profound behavioral deficits. Mouse models can help discover mechanisms and identify potentially useful interventions. This study examined long-term influences of either a single or repeated alcohol exposure during the third-trimester equivalent on survival of new neurons in the hippocampus, behavioral performance on the Passive avoidance and Rotarod tasks, and the potential role of exercise as a therapeutic intervention. C57BL/6J male mice received either saline or 5g/kg ethanol split into two s.c. injections, two hours apart, on postnatal day (PD)7 (Experiment 1) or on PD5, 7 and 9 (Experiment 2). All mice were weaned on PD21 and received either a running wheel or remained sedentary from PD35-PD80/81. From PD36-45, mice received i.p. injections of 50mg/kg bromodeoxyuridine (BrdU) to label dividing cells. Behavioral testing occurred between PD72-79. Number of surviving BrdU+ cells and immature neurons (doublecortin; DCX+) was measured at PD80-81. Alcohol did not affect number of BrdU+ or DCX+ cells in either experiment. Running significantly increased number of BrdU+ and DCX+ cells in both treatment groups. Alcohol-induced deficits on Rotarod performance and acquisition of the Passive avoidance task (Day 1) were evident only in Experiment 2 and running rescued these deficits. These data suggest neonatal alcohol exposure does not result in long-term impairments in adult hippocampal neurogenesis in the mouse model. Three doses of ethanol were necessary to induce behavioral deficits. Finally, the mechanisms by which exercise ameliorated the neonatal alcohol induced behavioral deficits remain unknown.
Collapse
Affiliation(s)
- G F Hamilton
- Department of Psychology, The Beckman Institute, 405 N Mathews Ave, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA.
| | - P J Bucko
- Department of Psychology, The Beckman Institute, 405 N Mathews Ave, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - D S Miller
- Department of Psychology, The Beckman Institute, 405 N Mathews Ave, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - R S DeAngelis
- Department of Psychology, The Beckman Institute, 405 N Mathews Ave, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - C P Krebs
- Department of Psychology, The Beckman Institute, 405 N Mathews Ave, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - J S Rhodes
- Department of Psychology, The Beckman Institute, 405 N Mathews Ave, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| |
Collapse
|
50
|
Salame S, Garcia PC, Real CC, Borborema J, Mota-Ortiz SR, Britto LR, Pires RS. Distinct neuroplasticity processes are induced by different periods of acrobatic exercise training. Behav Brain Res 2016; 308:64-74. [DOI: 10.1016/j.bbr.2016.04.029] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2015] [Revised: 04/11/2016] [Accepted: 04/15/2016] [Indexed: 12/22/2022]
|