1
|
Simon NM, Kim Y, Gribnau J, Bautista DM, Dutton JR, Brem RB. Stem cell transcriptional profiles from mouse subspecies reveal cis-regulatory evolution at translation genes. Heredity (Edinb) 2024; 133:308-316. [PMID: 39164520 PMCID: PMC11527988 DOI: 10.1038/s41437-024-00715-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 08/06/2024] [Accepted: 08/08/2024] [Indexed: 08/22/2024] Open
Abstract
A key goal of evolutionary genomics is to harness molecular data to draw inferences about selective forces that have acted on genomes. The field progresses in large part through the development of advanced molecular-evolution analysis methods. Here we explored the intersection between classical sequence-based tests for selection and an empirical expression-based approach, using stem cells from Mus musculus subspecies as a model. Using a test of directional, cis-regulatory evolution across genes in pathways, we discovered a unique program of induction of translation genes in stem cells of the Southeast Asian mouse M. m. castaneus relative to its sister taxa. We then mined population-genomic sequences to pursue underlying regulatory mechanisms for this expression divergence, finding robust evidence for alleles unique to M. m. castaneus at the upstream regions of the translation genes. We interpret our data under a model of changes in lineage-specific pressures across Mus musculus in stem cells with high translational capacity. Our findings underscore the rigor of integrating expression and sequence-based methods to generate hypotheses about evolutionary events from long ago.
Collapse
Affiliation(s)
- Noah M Simon
- Biology of Aging Doctoral Program, Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, 90089, USA
- Buck Institute for Research on Aging, Novato, CA, 94945, USA
- Department of Plant and Microbial Biology, University of California, Berkeley, Berkeley, CA, 94720, USA
| | - Yujin Kim
- Stem Cell Institute, University of Minnesota, Minneapolis, MN, 55455, USA
- Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Joost Gribnau
- Department of Reproduction and Development, Erasmus MC, Rotterdam, PO Box 2040, CA, 3000, Netherlands
| | - Diana M Bautista
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, 94720, USA
| | - James R Dutton
- Stem Cell Institute, University of Minnesota, Minneapolis, MN, 55455, USA
- Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Rachel B Brem
- Buck Institute for Research on Aging, Novato, CA, 94945, USA.
- Department of Plant and Microbial Biology, University of California, Berkeley, Berkeley, CA, 94720, USA.
| |
Collapse
|
2
|
Li W, Xu B, Huang Y, Wang X, Yu D. Rodent models in sensorineural hearing loss research: A comprehensive review. Life Sci 2024; 358:123156. [PMID: 39442868 DOI: 10.1016/j.lfs.2024.123156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 10/12/2024] [Accepted: 10/15/2024] [Indexed: 10/25/2024]
Abstract
Sensorineural hearing loss (SNHL) constitutes a major global health challenge, affecting millions of individuals and substantially impairing social integration and quality of life. The complexity of the auditory system and the multifaceted nature of SNHL necessitate advanced methodologies to understand its etiology, progression, and potential therapeutic interventions. This review provides a comprehensive overview of the current animal models used in SNHL research, focusing on their selection based on specific characteristics and their contributions to elucidating pathophysiological mechanisms and evaluating novel treatment strategies. It discusses the most commonly used rodent models in hearing research, including mice, rats, guinea pigs, Mongolian gerbils, and chinchillas. Through a comparative analysis, this review underscores the importance of selecting models that align with specific research objectives in SNHL studies, discussing the advantages and limitations of each model. By advocating for a multidisciplinary approach that leverages the strengths of various animal models with technological advancements, this review aims to facilitate significant advancements in the prevention, diagnosis, and treatment of sensorineural hearing loss.
Collapse
Affiliation(s)
- Wenjing Li
- Department of Otolaryngology-Head and Neck Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200100, PR China
| | - Baoying Xu
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai 200444, PR China
| | - Yuqi Huang
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai 200444, PR China
| | - Xueling Wang
- Department of Otolaryngology-Head and Neck Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200100, PR China
| | - Dehong Yu
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai 200444, PR China.
| |
Collapse
|
3
|
Simon NM, Kim Y, Bautista DM, Dutton JR, Brem RB. Stem cell transcriptional profiles from mouse subspecies reveal cis -regulatory evolution at translation genes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.07.18.549406. [PMID: 37503246 PMCID: PMC10370129 DOI: 10.1101/2023.07.18.549406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/29/2023]
Abstract
A key goal of evolutionary genomics is to harness molecular data to draw inferences about selective forces that have acted on genomes. The field progresses in large part through the development of advanced molecular-evolution analysis methods. Here we explored the intersection between classical sequence-based tests for selection and an empirical expression-based approach, using stem cells from Mus musculus subspecies as a model. Using a test of directional, cis -regulatory evolution across genes in pathways, we discovered a unique program of induction of translation genes in stem cells of the Southeast Asian mouse M. m. castaneus relative to its sister taxa. We then mined population-genomic sequences to pursue underlying regulatory mechanisms for this expression divergence, finding robust evidence for alleles unique to M. m. castaneus at the upstream regions of the translation genes. We interpret our data under a model of changes in lineage-specific pressures across Mus musculus in stem cells with high translational capacity. Our findings underscore the rigor of integrating expression and sequence-based methods to generate hypotheses about evolutionary events from long ago.
Collapse
|
4
|
Simms SS, Milani MN, Kim MJ, Husain R, Infante L, Cooke PS, Someya S. Loss of Esr1 Does Not Affect Hearing and Balance. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.03.583163. [PMID: 38496399 PMCID: PMC10942324 DOI: 10.1101/2024.03.03.583163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/19/2024]
Abstract
Although estrogen affects the structure and function of the nervous system and brain and has a number of effects on cognition, its roles in the auditory and vestibular systems remain unclear. The actions of estrogen are mediated predominately through two classical nuclear estrogen receptors, estrogen receptor 1 (ESR1) and estrogen receptor 2 (ESR2). In the current study, we investigated the roles of ESR1 in normal auditory function and balance performance using 3-month-old wild-type (WT) and Esr1 knockout (KO) mice on a CBA/CaJ background, a normal-hearing strain. As expected, body weight of Esr1 KO females was lower than that of Esr1 KO males. Body weight of Esr1 KO females was higher than that of WT females, while there was no difference in body weight between WT and Esr1 KO males. Similarly, head diameter was higher in Esr1 KO vs. WT females. Contrary to our expectations, there were no differences in auditory brainstem response (ABR) thresholds, ABR waves I-V amplitudes and ABR waves I-V latencies at 8, 16, 32, and 48 kHz, distortion product otoacoustic emission (DPOAE) thresholds and amplitudes at 8, 16, and 32 kHz, and rotarod balance performance (latency to fall) between WT and Esr1 KO mice. Furthermore, there were no sex differences in ABRs, DPOAEs, and rotarod balance performance in Esr1 KO mice. Taken together, our findings show that Esr1 deficiency does not affect auditory function or balance performance in normal hearing mice, and suggest that loss of Esr1 is likely compensated by ESR2 or other estrogen receptors to maintain the structure and function of the auditory and vestibular systems under normal physiological conditions.
Collapse
Affiliation(s)
- Shion S Simms
- Department of Physiology and Aging, University of Florida, Gainesville, FL, USA
- Department of Speech, Language, and Hearing Sciences, University of Florida, Gainesville, FL, USA
| | - Marcus N Milani
- Department of Physiology and Aging, University of Florida, Gainesville, FL, USA
| | - Mi-Jung Kim
- Department of Physiology and Aging, University of Florida, Gainesville, FL, USA
| | - Ryan Husain
- Department of Physiology and Aging, University of Florida, Gainesville, FL, USA
| | - Laura Infante
- Department of Physiology and Aging, University of Florida, Gainesville, FL, USA
- Department of Speech, Language, and Hearing Sciences, University of Florida, Gainesville, FL, USA
| | - Paul S Cooke
- Department of Physiological Sciences, University of Florida, Gainesville, FL, USA
| | - Shinichi Someya
- Department of Physiology and Aging, University of Florida, Gainesville, FL, USA
- Department of Speech, Language, and Hearing Sciences, University of Florida, Gainesville, FL, USA
| |
Collapse
|
5
|
Yin G, Wang XH, Sun Y. Recent advances in CRISPR-Cas system for the treatment of genetic hearing loss. AMERICAN JOURNAL OF STEM CELLS 2023; 12:37-50. [PMID: 37736272 PMCID: PMC10509501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Accepted: 07/31/2023] [Indexed: 09/23/2023]
Abstract
Genetic hearing loss has emerged as a significant public health concern that demands attention. Among the various treatment strategies, gene therapy based on gene editing technology is considered the most promising approach for addressing genetic hearing loss by repairing or eliminating mutated genes. The advent of the clustered regularly interspaced short palindromic repeats (CRISPR)-Cas system has revolutionized gene therapy through its remarkable gene editing capabilities. This system has been extensively employed in mammalian gene editing and is currently being evaluated through clinical trials. Against this backdrop, this review aims to provide an overview of recent advances in utilizing the CRISPR-Cas system to treat genetic hearing loss. Additionally, we delve into the primary challenges and prospects associated with the current application of this system in addressing genetic hearing loss.
Collapse
Affiliation(s)
- Ge Yin
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhan 430022, Hubei, China
| | - Xiao-Hui Wang
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhan 430022, Hubei, China
| | - Yu Sun
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhan 430022, Hubei, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and RegenerationWuhan 430022, Hubei, China
- Institute of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhan 430022, Hubei, China
| |
Collapse
|
6
|
Wu J, Tao Y, Deng D, Meng Z, Zhao Y. The applications of CRISPR/Cas-mediated genome editing in genetic hearing loss. Cell Biosci 2023; 13:93. [PMID: 37210555 DOI: 10.1186/s13578-023-01021-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 03/25/2023] [Indexed: 05/22/2023] Open
Abstract
Hearing loss (HL) can be caused by a number of different genetic factors. Non-syndromic HL refers that HL occurs as an isolated symptom in an individual, whereas syndromic HL refers that HL is associated with other symptoms or abnormalities. To date, more than 140 genes have been identified as being associated with non-syndromic HL, and approximately 400 genetic syndromes can include HL as one of the clinical symptoms. However, no gene therapeutic approaches are currently available to restore or improve hearing. Therefore, there is an urgent necessity to elucidate the possible pathogenesis of specific mutations in HL-associated genes and to investigate the promising therapeutic strategies for genetic HL. The development of the CRISPR/Cas system has revolutionized the field of genome engineering, which has become an efficacious and cost-effective tool to foster genetic HL research. Moreover, several in vivo studies have demonstrated the therapeutic efficacy of the CRISPR/Cas-mediated treatments for specific genetic HL. In this review, we briefly introduce the progress in CRISPR/Cas technique as well as the understanding of genetic HL, and then we detail the recent achievements of CRISPR/Cas technique in disease modeling and therapeutic strategies for genetic HL. Furthermore, we discuss the challenges for the application of CRISPR/Cas technique in future clinical treatments.
Collapse
Affiliation(s)
- Junhao Wu
- Department of Otorhinolaryngology-Head & Neck Surgery, West China Hospital of Sichuan University, Chengdu, 610041, China
- Department of Audiology and Speech Language Pathology, West China Hospital of Sichuan University, Chengdu, China
| | - Yong Tao
- Department of Otorhinolaryngology-Head & Neck Surgery, West China Hospital of Sichuan University, Chengdu, 610041, China
- Department of Audiology and Speech Language Pathology, West China Hospital of Sichuan University, Chengdu, China
| | - Di Deng
- Department of Otorhinolaryngology-Head & Neck Surgery, West China Hospital of Sichuan University, Chengdu, 610041, China
- Department of Audiology and Speech Language Pathology, West China Hospital of Sichuan University, Chengdu, China
| | - Zhaoli Meng
- Department of Otorhinolaryngology-Head & Neck Surgery, West China Hospital of Sichuan University, Chengdu, 610041, China.
- Department of Audiology and Speech Language Pathology, West China Hospital of Sichuan University, Chengdu, China.
| | - Yu Zhao
- Department of Otorhinolaryngology-Head & Neck Surgery, West China Hospital of Sichuan University, Chengdu, 610041, China.
- Department of Audiology and Speech Language Pathology, West China Hospital of Sichuan University, Chengdu, China.
| |
Collapse
|
7
|
Silva MJA, Santana DS, de Oliveira LG, Monteiro EOL, Lima LNGC. The relationship between 896A/G (rs4986790) polymorphism of TLR4 and infectious diseases: A meta-analysis. Front Genet 2022; 13:1045725. [PMID: 36506333 PMCID: PMC9729345 DOI: 10.3389/fgene.2022.1045725] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 11/10/2022] [Indexed: 11/25/2022] Open
Abstract
Toll-like Receptors (TLRs), such as the TLR4, are genes encoding transmembrane receptors of the same name, which induce a pro- or anti-inflammatory response according to their expression as the host's first line of defense against pathogens, such as infectious ones. Single nucleotide polymorphisms (SNPs) are the most common type of mutation in the human genome and can generate functional modification in genes. The aim of this article is to review in which infectious diseases there is an association of susceptibility or protection by the TLR4 SNP rs4986790. A systematic review and meta-analysis of the literature was conducted in the Science Direct, PUBMED, MEDLINE, and SciELO databases between 2011 and 2021 based on the dominant genotypic model of this SNP for general and subgroup analysis of infectious agent type in random effect. Summary odds ratios (ORs) and corresponding 95% confidence intervals (CIs) were calculated for genotypic comparison. I2 statistics were calculated to assess the presence of heterogeneity between studies and funnel plots were inspected for indication of publication bias. A total of 27 articles were included, all in English. Among the results achieved, the categories of diseases that were most associated with the SNP studied were in decreasing order of number of articles: infections by bacteria (29.63%); caused by viruses (22.23%); urinary tract infection-UTI (7.4%), while 11 studies (40.74%) demonstrated a nonsignificant association. In this meta-analysis, a total of 5599 cases and 5871 controls were finalized. The present meta-analysis suggests that there is no significant association between TLR4-rs4986790 SNP and infections (OR = 1,11; 95% CI: 0,75-1,66; p = 0,59), but in the virus subgroup it was associated with a higher risk (OR = 2,16; 95% CI: 1,09-4,30; p = 0,03). The subgroups of bacteria and parasites did not show statistical significance (OR = 0,86; 95% CI: 0,56-1,30; p = 0,47, and no estimate of effects, respectively). Therefore, it has been shown that a diversity of infectious diseases is related to this polymorphism, either by susceptibility or even severity to them, and the receptor generated is also crucial for the generation of cell signaling pathways and immune response against pathogens.
Collapse
Affiliation(s)
| | - Davi Silva Santana
- Institute of Health Sciences (ICS), Federal University of Pará (UFPA), Belém, Brazil
| | | | | | | |
Collapse
|
8
|
Noise overstimulation of young adult UMHET4 mice accelerates age-related hearing loss. Hear Res 2022; 424:108601. [PMID: 36126618 DOI: 10.1016/j.heares.2022.108601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 08/16/2022] [Accepted: 09/03/2022] [Indexed: 11/22/2022]
Abstract
Many factors contribute to hearing loss commonly found in older adults. There can be natural aging of cellular elements, hearing loss previously induced by environmental factors such as noise or ototoxic drugs as well as genetic and epigenetic influences. Even when noise overstimulation does not immediately cause permanent hearing loss it has recently been shown to increase later age-related hearing loss (ARHL). The present study further investigated this condition in the UMHET4 mouse model by comparing a small arms fire (SAF)-like impulse noise exposure that has the greatest immediate effect in more apical cochlear regions to a broadband noise (BBN) exposure that has the greatest immediate effect in more basal cochlear regions. Both noise exposures were given at levels that only induced temporary auditory brainstem response (ABR) threshold shifts (TS). Mice were noise exposed at 5 months of age followed by ABR assessment at 6, 12, 18, 21, and 24 months of age. Mice that received the SAF-like impulse noise had accelerated age-related TS at 4 kHz that appeared at 12 months of age (significantly increased compared to no-noise controls). This increased TS at 4 kHz continued at 18 and 21 months but was no longer significantly greater at 24 months of age. The SAF-like impulse noise also induced a significantly greater mean TS at 48 kHz, first appearing at 18 months of age and continuing to be significantly greater than controls at 21 and 24 months. The BBN induced a different pace and pattern of enhanced age-related ABR TS. The mean TS for the BBN group first became significantly greater than controls at 18 months of age and only at 48 kHz. It remained significantly greater than controls at 21 months but was no longer significantly greater at 24 months of age. Results, therefore, show different influences on ARHL for the two different noise exposure conditions. Noise-induced enhancement appears to provide more an acceleration than overall total increase in ARHL.
Collapse
|
9
|
Miller JL, Bartlett AP, Harman RM, Majhi PD, Jerry DJ, Van de Walle GR. Induced mammary cancer in rat models: pathogenesis, genetics, and relevance to female breast cancer. J Mammary Gland Biol Neoplasia 2022; 27:185-210. [PMID: 35904679 DOI: 10.1007/s10911-022-09522-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 07/05/2022] [Accepted: 07/06/2022] [Indexed: 10/16/2022] Open
Abstract
Mammary cancer, or breast cancer in women, is a polygenic disease with a complex etiopathogenesis. While much remains elusive regarding its origin, it is well established that chemical carcinogens and endogenous estrogens contribute significantly to the initiation and progression of this disease. Rats have been useful models to study induced mammary cancer. They develop mammary tumors with comparable histopathology to humans and exhibit differences in resistance or susceptibility to mammary cancer depending on strain. While some rat strains (e.g., Sprague-Dawley) readily form mammary tumors following treatment with the chemical carcinogen, 7,12-dimethylbenz[a]-anthracene (DMBA), other strains (e.g., Copenhagen) are resistant to DMBA-induced mammary carcinogenesis. Genetic linkage in inbred strains has identified strain-specific quantitative trait loci (QTLs) affecting mammary tumors, via mechanisms that act together to promote or attenuate, and include 24 QTLs controlling the outcome of chemical induction, 10 QTLs controlling the outcome of estrogen induction, and 4 QTLs controlling the outcome of irradiation induction. Moreover, and based on shared factors affecting mammary cancer etiopathogenesis between rats and humans, including orthologous risk regions between both species, rats have served as useful models for identifying methods for breast cancer prediction and treatment. These studies in rats, combined with alternative animal models that more closely mimic advanced stages of breast cancer and/or human lifestyles, will further improve our understanding of this complex disease.
Collapse
Affiliation(s)
- James L Miller
- Baker Institute for Animal Health, College of Veterinary Medicine, Cornell University, 14853, Ithaca, NY, USA
| | - Arianna P Bartlett
- Baker Institute for Animal Health, College of Veterinary Medicine, Cornell University, 14853, Ithaca, NY, USA
| | - Rebecca M Harman
- Baker Institute for Animal Health, College of Veterinary Medicine, Cornell University, 14853, Ithaca, NY, USA
| | - Prabin Dhangada Majhi
- Department of Veterinary & Animal Sciences, University of Massachusetts, 01003, Amherst, MA, USA
| | - D Joseph Jerry
- Department of Veterinary & Animal Sciences, University of Massachusetts, 01003, Amherst, MA, USA
| | - Gerlinde R Van de Walle
- Baker Institute for Animal Health, College of Veterinary Medicine, Cornell University, 14853, Ithaca, NY, USA.
| |
Collapse
|
10
|
Boussaty EC, Friedman RA, Clifford RE. Hearing loss and tinnitus: association studies for complex-hearing disorders in mouse and man. Hum Genet 2022; 141:981-990. [PMID: 34318347 PMCID: PMC8792513 DOI: 10.1007/s00439-021-02317-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Accepted: 07/13/2021] [Indexed: 12/29/2022]
Abstract
Genome-wide association studies (GWAS) provide an unbiased first look at genetic loci involved in aging and noise-induced sensorineural hearing loss and tinnitus. The hearing phenotype, whether audiogram-based or self-report, is regressed against genotyped information at representative single nucleotide polymorphisms (SNPs) across the genome. Findings include the fact that both hearing loss and tinnitus are polygenic disorders, with up to thousands of genes, each of effect size of < 0.02. Smaller human GWAS' were able to use objective measures and identified a few loci; however, hundreds of thousands of participants have been required for the statistical power to identify significant variants, and GWAS is unable to assess rare variants with mean allele frequency < 1%. Animal studies are required as well because of inability to access the human cochlea. Mouse GWAS builds on linkage techniques and the known phenotypic differences in auditory function between inbred strains. With the advantage that the laboratory environment can be controlled for noise and aging, the Hybrid Mouse Diversity Panel (HDMP) combines 100 strains sequenced at high resolution. Lift-over regions between mice and humans have identified over 17,000 homologous genes. Since most significant SNPs are either intergenic or in introns, and binding sites between species are poorly preserved between species, expression quantitative trait locus information is required to bring humans and mice into agreement. Transcriptome-wide analysis studies (TWAS) can prioritize putative causal genes and tissues. Diverse species, each making a distinct contribution, carry a synergistic advantage in the quest for treatment and ultimate cure of sensorineural hearing difficulties.
Collapse
Affiliation(s)
- Ely Cheikh Boussaty
- School of Health Sciences, Division of Otolaryngology, University of California San Diego, La Jolla, San Diego, CA, USA
| | - Rick Adam Friedman
- School of Health Sciences, Division of Otolaryngology, University of California San Diego, La Jolla, San Diego, CA, USA
| | - Royce E Clifford
- School of Health Sciences, Division of Otolaryngology, University of California San Diego, La Jolla, San Diego, CA, USA.
- Research Department, VA Hospitals San Diego, San Diego, CA, USA.
- Visiting Scientist, Department of Environmental Health, Harvard School of Public Health, Boston, MA, USA.
| |
Collapse
|
11
|
Li Y, Xing Z, Yu T, Pao A, Daadi M, Yu YE. Coat Color-Facilitated Efficient Generation and Analysis of a Mouse Model of Down Syndrome Triplicated for All Human Chromosome 21 Orthologous Regions. Genes (Basel) 2021; 12:genes12081215. [PMID: 34440389 PMCID: PMC8393392 DOI: 10.3390/genes12081215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 07/31/2021] [Accepted: 08/05/2021] [Indexed: 11/16/2022] Open
Abstract
Down syndrome (DS) is one of the most complex genetic disorders in humans and a leading genetic cause of developmental delays and intellectual disabilities. The mouse remains an essential model organism in DS research because human chromosome 21 (Hsa21) is orthologously conserved with three regions in the mouse genome. Recent studies have revealed complex interactions among different triplicated genomic regions and Hsa21 gene orthologs that underlie major DS phenotypes. Because we do not know conclusively which triplicated genes are indispensable in such interactions for a specific phenotype, it is desirable that all evolutionarily conserved Hsa21 gene orthologs are triplicated in a complete model. For this reason, the Dp(10)1Yey/+;Dp(16)1Yey/+;Dp(17)1Yey/+ mouse is the most complete model of DS to reflect gene dosage effects because it is the only mutant triplicated for all Hsa21 orthologous regions. Recently, several groups have expressed concerns that efforts needed to generate the triple compound model would be so overwhelming that it may be impractical to take advantage of its unique strength. To alleviate these concerns, we developed a strategy to drastically improve the efficiency of generating the triple compound model with the aid of a targeted coat color, and the results confirmed that the mutant mice generated via this approach exhibited cognitive deficits.
Collapse
Affiliation(s)
- Yichen Li
- The Children’s Guild Foundation Down Syndrome Research Program, Genetics and Genomics Program and Department of Cancer Genetics and Genomics, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA; (Y.L.); (Z.X.); (T.Y.); (A.P.)
| | - Zhuo Xing
- The Children’s Guild Foundation Down Syndrome Research Program, Genetics and Genomics Program and Department of Cancer Genetics and Genomics, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA; (Y.L.); (Z.X.); (T.Y.); (A.P.)
| | - Tao Yu
- The Children’s Guild Foundation Down Syndrome Research Program, Genetics and Genomics Program and Department of Cancer Genetics and Genomics, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA; (Y.L.); (Z.X.); (T.Y.); (A.P.)
| | - Annie Pao
- The Children’s Guild Foundation Down Syndrome Research Program, Genetics and Genomics Program and Department of Cancer Genetics and Genomics, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA; (Y.L.); (Z.X.); (T.Y.); (A.P.)
| | - Marcel Daadi
- Regenerative Medicine and Aging Unit, Texas Biomedical Research Institute, Long School of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX 78245, USA;
| | - Y. Eugene Yu
- The Children’s Guild Foundation Down Syndrome Research Program, Genetics and Genomics Program and Department of Cancer Genetics and Genomics, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA; (Y.L.); (Z.X.); (T.Y.); (A.P.)
- Genetics, Genomics and Bioinformatics Program, State University of New York at Buffalo, Buffalo, NY 14203, USA
- Correspondence:
| |
Collapse
|
12
|
Nolte T, Baumgärtner W, Colbatzky F, Knippel A, Marxfeld H, Nehrbass D, Odin M, Popp A, Treumann S, Yen HY, Zellmer J, Deschl U. Proceedings of the 2020 Classic Examples in Toxicologic Pathology XXVII. Toxicol Pathol 2021; 49:1206-1228. [PMID: 34259102 DOI: 10.1177/01926233211019288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The histopathology slide seminar "Classic Examples in Toxicologic Pathology XXVII" was held on February 21 and 22, 2020, at the Department of Pathology at the University of Veterinary Medicine in Hannover, Germany, with joint organization by the European Society of Toxicologic Pathology. The goal of this annual seminar is to present and discuss classical and actual cases of toxicologic pathology. This article summarizes the presentations given during the seminar, including images of representative lesions. Ten actual and classical cases of toxicologic pathology, mostly induced by a test article, were presented. These included small intestine pathology and transcriptomics induced by a γ-secretase modulator, liver findings in nonhuman primates induced by gene therapy, drug-induced neutropenia in dogs, device-induced growth plate lesions, polycystic lesions in CAR/PXR double knockout mice, inner ear lesions in transgenic mice, findings in Beagle dogs induced by an inhibitor of the myeloid leukemia cell differentiation protein MCL1, findings induced by a monovalent fibroblast growth factor receptor 1 antagonist, kidney lesions induced by a mammalian target of rapamycin inhibitor in combination therapy, and findings in mutation-specific drugs.
Collapse
Affiliation(s)
- Thomas Nolte
- 84647Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach (Riss), Germany
| | - Wolfgang Baumgärtner
- Institut für Pathologie, Stiftung 26556Tierärztliche Hochschule Hannover, Germany
| | - Florian Colbatzky
- 84647Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach (Riss), Germany
| | | | | | - Dirk Nehrbass
- 161930AO Research Institute Davos (ARI), Davos, Switzerland
| | - Marielle Odin
- 123188Roche Innovation Center Basel, Pharma Research & Early Development, F. Hoffmann-La Roche Ltd, Basel, Switzerland
| | - Andreas Popp
- 385330Abbvie GmbH & Co. KG, Ludwigshafen, Germany
| | | | - Hsi-Yu Yen
- 9184Technical University, Munich, Germany
| | | | - Ulrich Deschl
- 84647Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach (Riss), Germany
| |
Collapse
|
13
|
Mitochondrial calcium uniporter is essential for hearing and hair cell preservation in congenic FVB/NJ mice. Sci Rep 2021; 11:9660. [PMID: 33958614 PMCID: PMC8102556 DOI: 10.1038/s41598-021-88841-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Accepted: 04/13/2021] [Indexed: 12/12/2022] Open
Abstract
Mitochondrial Ca2+ regulates a wide range of cell processes, including morphogenesis, metabolism, excitotoxicity, and survival. In cochlear hair cells, the activation of mechano-electrical transduction and voltage-gated Ca2+ channels result in a large influx of Ca2+. The intracellular rise in Ca2+ is partly balanced by the mitochondria which rapidly uptakes Ca2+ via a highly selective channel comprised of the main pore-forming subunit, the mitochondrial Ca2+ uniporter (MCU), and associated regulatory proteins. MCU thus contributes to Ca2+ buffering, ensuring cytosolic homeostasis, and is posited to have a critical role in hair cell function and hearing. To test this hypothesis, Ca2+ homeostasis in hair cells and cochlear function were investigated in FVB/NJ mice carrying the knockout allele of Mcu (Mcu+/− or Mcu−/−). The Mcu knockout allele, which originated in C57BL/6 strain cosegregated along with Cdh23ahl allele to the FVB/NJ strain, due to the close proximity of these genes. Neither Mcu+/− nor Mcu−/− genotypes affected cochlear development, morphology, or Ca2+ homeostasis of auditory hair cells in the first two postnatal weeks. However, Mcu−/− mice displayed high-frequency hearing impairment as early as 3 weeks postnatal, which then progressed to profound hearing loss at all frequencies in about 6 months. In Mcu+/− mice, significantly elevated ABR thresholds were observed at 6 months and 9 months of age only at 32 kHz frequency. In three-month-old Mcu−/− mice, up to 18% of the outer hair cells and occasionally some inner hair cells were missing in the mid-cochlear region. In conclusion, mitochondrial Ca2+ uniporter is not required for the development of cochlea in mice, but is essential for hearing and hair cell preservation in congenic FVB/NJ mice.
Collapse
|
14
|
Altschuler RA, Kabara L, Martin C, Kanicki A, Stewart CE, Kohrman DC, Dolan DF. Rapamycin Added to Diet in Late Mid-Life Delays Age-Related Hearing Loss in UMHET4 Mice. Front Cell Neurosci 2021; 15:658972. [PMID: 33897373 PMCID: PMC8058174 DOI: 10.3389/fncel.2021.658972] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Accepted: 03/11/2021] [Indexed: 01/30/2023] Open
Abstract
Our previous study demonstrated rapamycin added to diet at 4 months of age had significantly less age-related outer hair cell loss in the basal half of the cochlea at 22 months of age compared to mice without rapamycin. The present study tested adding rapamycin to diet later in life, at 14 months of age, and added a longitudinal assessment of auditory brain stem response (ABR). The present study used UMHET4 mice, a 4 way cross in which all grandparental strains lack the Cdh23753A allele that predisposes to early onset, progressive hearing loss. UMHET4 mice typically have normal hearing until 16-17 months, then exhibit threshold shifts at low frequencies/apical cochlea and later in more basal high frequency regions. ABR thresholds at 4, 12, 24, and 48 kHz were assessed at 12, 18, and 24 months of age and compared to baseline ABR thresholds acquired at 5 months of age to determine threshold shifts (TS). There was no TS at 12 months of age at any frequency tested. At 18 months of age mice with rapamycin added to diet at 14 months had a significantly lower mean TS at 4 and 12 kHz compared to mice on control diet with no significant difference at 24 and 48 kHz. At 24 months of age, the mean 4 kHz TS in rapamycin diet group was no longer significantly lower than the control diet group, while the 12 kHz mean remained significantly lower. Mean TS at 24 and 48 kHz in the rapamycin diet group became significantly lower than in the control diet group at 24 months. Hair cell counts at 24 months showed large loss in the apical half of most rapamycin and control diet mice cochleae with no significant difference between groups. There was only mild outer hair cell loss in the basal half of rapamycin and control diet mice cochleae with no significant difference between groups. The results show that a later life addition of rapamycin can decrease age-related hearing loss in the mouse model, however, it also suggests that this decrease is a delay/deceleration rather than a complete prevention.
Collapse
Affiliation(s)
- Richard A Altschuler
- Kresge Hearing Research Institute, Department of Otolaryngology, Head and Neck Surgery, University of Michigan, Ann Arbor, MI, United States.,VA Ann Arbor Health Care System, Ann Arbor, MI, United States.,Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, MI, United States
| | - Lisa Kabara
- Kresge Hearing Research Institute, Department of Otolaryngology, Head and Neck Surgery, University of Michigan, Ann Arbor, MI, United States
| | - Catherine Martin
- Kresge Hearing Research Institute, Department of Otolaryngology, Head and Neck Surgery, University of Michigan, Ann Arbor, MI, United States
| | - Ariane Kanicki
- Kresge Hearing Research Institute, Department of Otolaryngology, Head and Neck Surgery, University of Michigan, Ann Arbor, MI, United States
| | - Courtney E Stewart
- Kresge Hearing Research Institute, Department of Otolaryngology, Head and Neck Surgery, University of Michigan, Ann Arbor, MI, United States.,VA Ann Arbor Health Care System, Ann Arbor, MI, United States
| | - David C Kohrman
- Kresge Hearing Research Institute, Department of Otolaryngology, Head and Neck Surgery, University of Michigan, Ann Arbor, MI, United States
| | - David F Dolan
- Kresge Hearing Research Institute, Department of Otolaryngology, Head and Neck Surgery, University of Michigan, Ann Arbor, MI, United States
| |
Collapse
|
15
|
Garrigos D, Martínez-Morga M, Toval A, Kutsenko Y, Barreda A, Do Couto BR, Navarro-Mateu F, Ferran JL. A Handful of Details to Ensure the Experimental Reproducibility on the FORCED Running Wheel in Rodents: A Systematic Review. Front Endocrinol (Lausanne) 2021; 12:638261. [PMID: 34040580 PMCID: PMC8141847 DOI: 10.3389/fendo.2021.638261] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2020] [Accepted: 04/16/2021] [Indexed: 12/21/2022] Open
Abstract
A well-documented method and experimental design are essential to ensure the reproducibility and reliability in animal research. Experimental studies using exercise programs in animal models have experienced an exponential increase in the last decades. Complete reporting of forced wheel and treadmill exercise protocols would help to ensure the reproducibility of training programs. However, forced exercise programs are characterized by a poorly detailed methodology. Also, current guidelines do not cover the minimum data that must be included in published works to reproduce training programs. For this reason, we have carried out a systematic review to determine the reproducibility of training programs and experimental designs of published research in rodents using a forced wheel system. Having determined that most of the studies were not detailed enough to be reproducible, we have suggested guidelines for animal research using FORCED exercise wheels, which could also be applicable to any form of forced exercise.
Collapse
Affiliation(s)
- Daniel Garrigos
- Department of Human Anatomy and Psychobiology, Faculty of Medicine, University of Murcia, Murcia, Spain
- Institute of Biomedical Research of Murcia—IMIB, Virgen de la Arrixaca University Hospital, University of Murcia, Murcia, Spain
| | - Marta Martínez-Morga
- Department of Human Anatomy and Psychobiology, Faculty of Medicine, University of Murcia, Murcia, Spain
- Institute of Biomedical Research of Murcia—IMIB, Virgen de la Arrixaca University Hospital, University of Murcia, Murcia, Spain
| | - Angel Toval
- Department of Human Anatomy and Psychobiology, Faculty of Medicine, University of Murcia, Murcia, Spain
- Institute of Biomedical Research of Murcia—IMIB, Virgen de la Arrixaca University Hospital, University of Murcia, Murcia, Spain
| | - Yevheniy Kutsenko
- Department of Human Anatomy and Psychobiology, Faculty of Medicine, University of Murcia, Murcia, Spain
- Institute of Biomedical Research of Murcia—IMIB, Virgen de la Arrixaca University Hospital, University of Murcia, Murcia, Spain
| | - Alberto Barreda
- Department of Human Anatomy and Psychobiology, Faculty of Medicine, University of Murcia, Murcia, Spain
- Institute of Biomedical Research of Murcia—IMIB, Virgen de la Arrixaca University Hospital, University of Murcia, Murcia, Spain
| | - Bruno Ribeiro Do Couto
- Department of Human Anatomy and Psychobiology, Faculty of Medicine, University of Murcia, Murcia, Spain
- Institute of Biomedical Research of Murcia—IMIB, Virgen de la Arrixaca University Hospital, University of Murcia, Murcia, Spain
- Faculty of Psychology, University of Murcia, Murcia, Spain
| | - Fernando Navarro-Mateu
- Institute of Biomedical Research of Murcia—IMIB, Virgen de la Arrixaca University Hospital, University of Murcia, Murcia, Spain
- Unidad de Docencia, Investigación y Formación en Salud Mental (UDIF-SM), Servicio Murciano de Salud, Murcia, Spain
- CIBER de Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
- Departamento de Psicología Básica y Metodología, Universidad de Murcia, Murcia, Spain
| | - José Luis Ferran
- Department of Human Anatomy and Psychobiology, Faculty of Medicine, University of Murcia, Murcia, Spain
- Institute of Biomedical Research of Murcia—IMIB, Virgen de la Arrixaca University Hospital, University of Murcia, Murcia, Spain
- *Correspondence: José Luis Ferran,
| |
Collapse
|
16
|
Kakizaki T, Ohshiro T, Itakura M, Konno K, Watanabe M, Mushiake H, Yanagawa Y. Rats deficient in the GAD65 isoform exhibit epilepsy and premature lethality. FASEB J 2020; 35:e21224. [PMID: 33236473 DOI: 10.1096/fj.202001935r] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 10/27/2020] [Accepted: 11/11/2020] [Indexed: 02/02/2023]
Abstract
GABA is synthesized by glutamate decarboxylase (GAD), which has two isoforms, namely, GAD65 and GAD67, encoded by the Gad2 and Gad1 genes, respectively. GAD65-deficient (Gad2-/- ) mice exhibit a reduction in brain GABA content after 1 month of age and show spontaneous seizures in adulthood. Approximately 25% of Gad2-/- mice died by 6 months of age. Our Western blot analysis demonstrated that the protein expression ratio of GAD65 to GAD67 in the brain was greater in rats than in mice during postnatal development, suggesting that the contribution of each GAD isoform to GABA functions differs between these two species. To evaluate whether GAD65 deficiency causes different phenotypes between rats and mice, we generated Gad2-/- rats using TALEN genome editing technology. Western blot and immunohistochemical analyses with new antibodies demonstrated that the GAD65 protein was undetectable in the Gad2-/- rat brain. Gad2-/- pups exhibited spontaneous seizures and paroxysmal discharge in EEG at postnatal weeks 3-4. More than 80% of the Gad2-/- rats died at postnatal days (PNDs) 17-23. GABA content in Gad2-/- brains was significantly lower than those in Gad2+/- and Gad2+/+ brains at PND17-19. These results suggest that the low levels of brain GABA content in Gad2-/- rats may lead to epilepsy followed by premature death, and that Gad2-/- rats are more severely affected than Gad2-/- mice. Considering that the GAD65/GAD67 ratio in human brains is more similar to that in rat brains than in mouse brains, Gad2-/- rats would be useful for further investigating the roles of GAD65 in vivo.
Collapse
Affiliation(s)
- Toshikazu Kakizaki
- Department of Genetic and Behavioral Neuroscience, Gunma University Graduate School of Medicine, Maebashi, Japan
| | - Tomokazu Ohshiro
- Department of Physiology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Makoto Itakura
- Department of Biochemistry, Kitasato University School of Medicine, Sagamihara, Japan
| | - Kohtarou Konno
- Department of Anatomy, Faculty of Medicine, Hokkaido University, Sapporo, Japan
| | - Masahiko Watanabe
- Department of Anatomy, Faculty of Medicine, Hokkaido University, Sapporo, Japan
| | - Hajime Mushiake
- Department of Physiology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Yuchio Yanagawa
- Department of Genetic and Behavioral Neuroscience, Gunma University Graduate School of Medicine, Maebashi, Japan
| |
Collapse
|
17
|
Mroczek M, Sanchez MG. Genetic modifiers and phenotypic variability in neuromuscular disorders. J Appl Genet 2020; 61:547-558. [PMID: 32918245 DOI: 10.1007/s13353-020-00580-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 08/31/2020] [Accepted: 09/06/2020] [Indexed: 12/13/2022]
Abstract
Neuromuscular disorders are mostly rare diseases with autosomal dominant, recessive, or X-linked inheritance. Interestingly, among patients carrying the same mutations, a range of phenotypic severity is reported. This phenotypic variability in neuromuscular disorders is still not fully understood. This review will focus on genetic modifiers and will briefly describe metabolic pathways, in which they are involved. Genetic modifiers are variants in the same or other genes that modulate the phenotype. Proteins encoded by genetic modifiers in neuromuscular diseases are taking part in different metabolic processes, most commonly in inflammation, growth and regeneration, endoplasmic reticulum metabolism, and cytoskeletal activities. Recent advances in omics technologies, development of computational algorithms, and establishing large international consortia intensified discovery sped up investigation of genetic modifiers. As more individuals affected by neuromuscular disorders are tested, it is often suggested that classic models of genetic causation cannot explain phenotypic variability. There is a growing interest in their discovery and identifying shared metabolic pathways can contribute to design targeted therapies. We provide an update on variants acting as genetic modifiers in neuromuscular disorders and strategies used for their discovery.
Collapse
Affiliation(s)
- Magdalena Mroczek
- John Walton Muscular Dystrophy Research Centre, Translational and Clinical Research Institute, Newcastle University and Newcastle Hospitals NHS Foundation Trust, Central Parkway, Newcastle upon Tyne, NE1 3BZ, UK.
| | - Maria Gabriela Sanchez
- Molecular Biology Department, Simon Bolivar University, Sartenejas Valley, Caracas, Venezuela
| |
Collapse
|
18
|
Yasuda SP, Seki Y, Suzuki S, Ohshiba Y, Hou X, Matsuoka K, Wada K, Shitara H, Miyasaka Y, Kikkawa Y. c.753A>G genome editing of a Cdh23 ahl allele delays age-related hearing loss and degeneration of cochlear hair cells in C57BL/6J mice. Hear Res 2020; 389:107926. [PMID: 32101784 DOI: 10.1016/j.heares.2020.107926] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Revised: 11/20/2019] [Accepted: 02/11/2020] [Indexed: 11/27/2022]
Abstract
C57BL/6J mice have long been studied as a model of age-related hearing loss (ARHL). In C57BL/6J mice, ARHL begins in the high-frequency range at 3 months of age and spreads toward low frequencies by 10 months of age. We previously confirmed that c.753A>G genome editing of an ahl allele (c.753A) in the cadherin 23 gene (Cdh23) suppressed the onset of ARHL until 12 months of age. We further investigated the hearing phenotypes of the original and genome-edited C57BL/6J-Cdh23+/+ (c.753G/G) mice until 24 months of age. The hearing tests revealed that most of the C57BL/6J mice maintained good hearing levels until 14 months of age following genome editing of a Cdh23ahl allele. However, the hearing levels of the C57BL/6J-Cdh23+/+ mice gradually declined, and severe ARHL developed with increasing age. ARHL in the C57BL/6J mice was correlated with degeneration of the stereocilia in cochlear hair cells. The stereocilia degeneration was rescued in the C57BL/6J-Cdh23+/+ mice at 12 months of age, but the stereocilia bundles exhibited abnormal phenotypes similar to those of the original C57BL/6J mice at more advanced ages. Therefore, genome editing of Cdh23ahl did not completely suppress ARHL in C57BL/6J mice. We also compared the hearing levels of C57BL/6J-Cdh23+/+ mice with those of C3H/HeN and MSM/Ms mice, which carry the Cdh23+ allele. The severity and onset patterns of ARHL in the C57BL/6J-Cdh23+/+ mice differed from those observed in other Cdh23+/+ mice. Therefore, we hypothesize that other susceptible and/or resistant alleles of ARHL exist in the genetic backgrounds of these mice.
Collapse
Affiliation(s)
- Shumpei P Yasuda
- Mammalian Genetics Project, Department of Genome Medicine, Tokyo Metropolitan Institute of Medical Science, 2-1-6 Kamikitazawa, Setagaya-ku, Tokyo, 156-8506, Japan
| | - Yuta Seki
- Mammalian Genetics Project, Department of Genome Medicine, Tokyo Metropolitan Institute of Medical Science, 2-1-6 Kamikitazawa, Setagaya-ku, Tokyo, 156-8506, Japan
| | - Sari Suzuki
- Mammalian Genetics Project, Department of Genome Medicine, Tokyo Metropolitan Institute of Medical Science, 2-1-6 Kamikitazawa, Setagaya-ku, Tokyo, 156-8506, Japan; Department of Pharmacology, Faculty of Medicine, Fukuoka University, 8-19-1 Nanakuma, Jonan-ku, Fukuoka, 814-0180, Japan
| | - Yasuhiro Ohshiba
- Mammalian Genetics Project, Department of Genome Medicine, Tokyo Metropolitan Institute of Medical Science, 2-1-6 Kamikitazawa, Setagaya-ku, Tokyo, 156-8506, Japan; Graduate School of Medical and Dental Sciences, Niigata University, 1-757 Asahimachi, Niigata, 951-8510, Japan
| | - Xuehan Hou
- Mammalian Genetics Project, Department of Genome Medicine, Tokyo Metropolitan Institute of Medical Science, 2-1-6 Kamikitazawa, Setagaya-ku, Tokyo, 156-8506, Japan; Graduate School of Medical and Dental Sciences, Niigata University, 1-757 Asahimachi, Niigata, 951-8510, Japan
| | - Kunie Matsuoka
- Mammalian Genetics Project, Department of Genome Medicine, Tokyo Metropolitan Institute of Medical Science, 2-1-6 Kamikitazawa, Setagaya-ku, Tokyo, 156-8506, Japan
| | - Kenta Wada
- Mammalian Genetics Project, Department of Genome Medicine, Tokyo Metropolitan Institute of Medical Science, 2-1-6 Kamikitazawa, Setagaya-ku, Tokyo, 156-8506, Japan; Graduate School of Bioindustry, Tokyo University of Agriculture, 196 Yasaka, Abashiri, Hokkaido, 099-2493, Japan
| | - Hiroshi Shitara
- Laboratory for Transgenic Technology, Center for Basic Technology Research, Tokyo Metropolitan Institute of Medical Science, 2-1-6 Kamikitazawa, Setagaya-ku, Tokyo, 156-8506, Japan
| | - Yuki Miyasaka
- Mammalian Genetics Project, Department of Genome Medicine, Tokyo Metropolitan Institute of Medical Science, 2-1-6 Kamikitazawa, Setagaya-ku, Tokyo, 156-8506, Japan; Division of Experimental Animals, Graduate School of Medicine, Nagoya University, 65 Tsurumai-cho, Showa-ku, Nagoya, Aichi, 466-8550, Japan
| | - Yoshiaki Kikkawa
- Mammalian Genetics Project, Department of Genome Medicine, Tokyo Metropolitan Institute of Medical Science, 2-1-6 Kamikitazawa, Setagaya-ku, Tokyo, 156-8506, Japan; Graduate School of Medical and Dental Sciences, Niigata University, 1-757 Asahimachi, Niigata, 951-8510, Japan.
| |
Collapse
|
19
|
Deficiency of the ER-stress-regulator MANF triggers progressive outer hair cell death and hearing loss. Cell Death Dis 2020; 11:100. [PMID: 32029702 PMCID: PMC7005028 DOI: 10.1038/s41419-020-2286-6] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Revised: 01/16/2020] [Accepted: 01/17/2020] [Indexed: 11/28/2022]
Abstract
The non-conventional neurotrophic factor mesencephalic astrocyte-derived neurotrophic factor (MANF) is an endoplasmic reticulum (ER)-resident protein that promotes ER homeostasis. MANF has a cytoprotective function, shown in the central nervous system neurons and pancreatic beta cells. Here, we report that MANF is expressed in the hair cells and neurons and in selected non-sensory cells of the cochlea and that Manf inactivation triggers upregulation of the ER chaperones in these cells. However, Manf inactivation resulted in the death of only outer hair cells (OHCs), the cells responsible for sound amplification in the cochlea. All OHCs were formed in Manf-inactivated mice, but progressive OHC death started soon after the onset of hearing function. The robust OHC loss was accompanied by strongly elevated hearing thresholds. Conditional Manf inactivation demonstrated that MANF has a local function in the cochlea. Immunostainings revealed the upregulation of CHOP, the pro-apoptotic component of the unfolded protein response (UPR), in Manf-inactivated OHCs, linking the UPR to the loss of these cells. The phenotype of Manf-inactivated OHCs was distinctly dependent on the mouse strain, such that the strains characterized by early-onset age-related hearing loss (C57BL/6J and CD-1) were affected. These results suggest that Manf deficiency becomes detrimental when accompanied by gene mutations that predispose to hearing loss, by intensifying ER dyshomeostasis. Together, MANF is the first growth factor shown to antagonize ER stress-mediated OHC death. MANF might serve as a therapeutic candidate for protection against hearing loss induced by the ER-machinery-targeting stressors.
Collapse
|
20
|
Kollmus H, Fuchs H, Lengger C, Haselimashhadi H, Bogue MA, Östereicher MA, Horsch M, Adler T, Aguilar-Pimentel JA, Amarie OV, Becker L, Beckers J, Calzada-Wack J, Garrett L, Hans W, Hölter SM, Klein-Rodewald T, Maier H, Mayer-Kuckuk P, Miller G, Moreth K, Neff F, Rathkolb B, Rácz I, Rozman J, Spielmann N, Treise I, Busch D, Graw J, Klopstock T, Wolf E, Wurst W, Yildirim AÖ, Mason J, Torres A, Balling R, Mehaan T, Gailus-Durner V, Schughart K, Hrabě de Angelis M. A comprehensive and comparative phenotypic analysis of the collaborative founder strains identifies new and known phenotypes. Mamm Genome 2020; 31:30-48. [PMID: 32060626 PMCID: PMC7060152 DOI: 10.1007/s00335-020-09827-3] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Accepted: 01/31/2020] [Indexed: 01/21/2023]
Abstract
The collaborative cross (CC) is a large panel of mouse-inbred lines derived from eight founder strains (NOD/ShiLtJ, NZO/HILtJ, A/J, C57BL/6J, 129S1/SvImJ, CAST/EiJ, PWK/PhJ, and WSB/EiJ). Here, we performed a comprehensive and comparative phenotyping screening to identify phenotypic differences and similarities between the eight founder strains. In total, more than 300 parameters including allergy, behavior, cardiovascular, clinical blood chemistry, dysmorphology, bone and cartilage, energy metabolism, eye and vision, immunology, lung function, neurology, nociception, and pathology were analyzed; in most traits from sixteen females and sixteen males. We identified over 270 parameters that were significantly different between strains. This study highlights the value of the founder and CC strains for phenotype-genotype associations of many genetic traits that are highly relevant to human diseases. All data described here are publicly available from the mouse phenome database for analyses and downloads.
Collapse
Affiliation(s)
- Heike Kollmus
- Department of Infection Genetics, Helmholtz Centre for Infection Research, Inhoffenstr.7, 38124, Braunschweig, Germany
| | - Helmut Fuchs
- German Mouse Clinic, Institute of Experimental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health, Ingolstädter Landstrasse 1, 85764, Neuherberg, Germany
| | - Christoph Lengger
- German Mouse Clinic, Institute of Experimental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health, Ingolstädter Landstrasse 1, 85764, Neuherberg, Germany
| | - Hamed Haselimashhadi
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, CB10 1SD, UK
| | | | - Manuela A Östereicher
- German Mouse Clinic, Institute of Experimental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health, Ingolstädter Landstrasse 1, 85764, Neuherberg, Germany
| | - Marion Horsch
- German Mouse Clinic, Institute of Experimental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health, Ingolstädter Landstrasse 1, 85764, Neuherberg, Germany
| | - Thure Adler
- German Mouse Clinic, Institute of Experimental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health, Ingolstädter Landstrasse 1, 85764, Neuherberg, Germany
| | - Juan Antonio Aguilar-Pimentel
- German Mouse Clinic, Institute of Experimental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health, Ingolstädter Landstrasse 1, 85764, Neuherberg, Germany
| | - Oana Veronica Amarie
- German Mouse Clinic, Institute of Experimental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health, Ingolstädter Landstrasse 1, 85764, Neuherberg, Germany
- Institute of Developmental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health, Ingolstädter Landstrasse 1, 85764, Neuherberg, Germany
| | - Lore Becker
- German Mouse Clinic, Institute of Experimental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health, Ingolstädter Landstrasse 1, 85764, Neuherberg, Germany
| | - Johannes Beckers
- German Mouse Clinic, Institute of Experimental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health, Ingolstädter Landstrasse 1, 85764, Neuherberg, Germany
- Chair of Experimental Genetics, School of Life Science Weihenstephan, Technische Universität München, Alte Akademie 8, 85354, Freising, Germany
- German Center for Diabetes Research (DZD), Ingolstädter Landstr. 1, 85764, Neuherberg, Germany
| | - Julia Calzada-Wack
- German Mouse Clinic, Institute of Experimental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health, Ingolstädter Landstrasse 1, 85764, Neuherberg, Germany
| | - Lillian Garrett
- German Mouse Clinic, Institute of Experimental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health, Ingolstädter Landstrasse 1, 85764, Neuherberg, Germany
- Institute of Developmental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health, Ingolstädter Landstrasse 1, 85764, Neuherberg, Germany
| | - Wolfgang Hans
- German Mouse Clinic, Institute of Experimental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health, Ingolstädter Landstrasse 1, 85764, Neuherberg, Germany
| | - Sabine M Hölter
- German Mouse Clinic, Institute of Experimental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health, Ingolstädter Landstrasse 1, 85764, Neuherberg, Germany
- Institute of Developmental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health, Ingolstädter Landstrasse 1, 85764, Neuherberg, Germany
| | - Tanja Klein-Rodewald
- German Mouse Clinic, Institute of Experimental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health, Ingolstädter Landstrasse 1, 85764, Neuherberg, Germany
| | - Holger Maier
- German Mouse Clinic, Institute of Experimental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health, Ingolstädter Landstrasse 1, 85764, Neuherberg, Germany
| | - Philipp Mayer-Kuckuk
- German Mouse Clinic, Institute of Experimental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health, Ingolstädter Landstrasse 1, 85764, Neuherberg, Germany
| | - Gregor Miller
- German Mouse Clinic, Institute of Experimental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health, Ingolstädter Landstrasse 1, 85764, Neuherberg, Germany
| | - Kristin Moreth
- German Mouse Clinic, Institute of Experimental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health, Ingolstädter Landstrasse 1, 85764, Neuherberg, Germany
| | - Frauke Neff
- German Mouse Clinic, Institute of Experimental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health, Ingolstädter Landstrasse 1, 85764, Neuherberg, Germany
| | - Birgit Rathkolb
- German Mouse Clinic, Institute of Experimental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health, Ingolstädter Landstrasse 1, 85764, Neuherberg, Germany
- German Center for Diabetes Research (DZD), Ingolstädter Landstr. 1, 85764, Neuherberg, Germany
- Institute of Molecular Animal Breeding and Biotechnology, Gene Center, Ludwig-Maximilians-University München, Feodor-Lynen Str. 25, 81377, Munich, Germany
| | - Ildikó Rácz
- German Mouse Clinic, Institute of Experimental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health, Ingolstädter Landstrasse 1, 85764, Neuherberg, Germany
- Clinic of Neurodegenerative Diseases and Gerontopsychiatry, University of Bonn Medical Center, Bonn, Germany
| | - Jan Rozman
- German Mouse Clinic, Institute of Experimental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health, Ingolstädter Landstrasse 1, 85764, Neuherberg, Germany
- German Center for Diabetes Research (DZD), Ingolstädter Landstr. 1, 85764, Neuherberg, Germany
| | - Nadine Spielmann
- German Mouse Clinic, Institute of Experimental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health, Ingolstädter Landstrasse 1, 85764, Neuherberg, Germany
| | - Irina Treise
- German Mouse Clinic, Institute of Experimental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health, Ingolstädter Landstrasse 1, 85764, Neuherberg, Germany
| | - Dirk Busch
- German Mouse Clinic, Institute of Experimental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health, Ingolstädter Landstrasse 1, 85764, Neuherberg, Germany
- Institute for Medical Microbiology, Immunology and Hygiene, Technische Universität München, Trogerstrasse 30, 81675, Munich, Germany
| | - Jochen Graw
- Institute of Developmental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health, Ingolstädter Landstrasse 1, 85764, Neuherberg, Germany
| | - Thomas Klopstock
- Department of Neurology, Friedrich-Baur-Institute, Klinikum Der Ludwig-Maximilians-Universität München, Ziemssenstr. 1a, 80336, Munich, Germany
- Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE) Site Munich, Feodor-Lynen-Str. 17, 81377, Munich, Germany
- Munich Cluster for Systems Neurology (SyNergy), Adolf-Butenandt-Institut, Ludwig-Maximilians-Universität München, Feodor-Lynen-Str. 17, 81377, Munich, Germany
| | - Eckhard Wolf
- Institute of Molecular Animal Breeding and Biotechnology, Gene Center, Ludwig-Maximilians-University München, Feodor-Lynen Str. 25, 81377, Munich, Germany
| | - Wolfgang Wurst
- Institute of Developmental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health, Ingolstädter Landstrasse 1, 85764, Neuherberg, Germany
- Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE) Site Munich, Feodor-Lynen-Str. 17, 81377, Munich, Germany
- Munich Cluster for Systems Neurology (SyNergy), Adolf-Butenandt-Institut, Ludwig-Maximilians-Universität München, Feodor-Lynen-Str. 17, 81377, Munich, Germany
- Chair of Developmental Genetics, Technische Universität München-Weihenstephan, C/O Helmholtz Zentrum München, Ingolstädter Landstr. 1, 85764, Neuherberg, Germany
| | - Ali Önder Yildirim
- Institute of Lung Biology and Disease, Helmholtz Zentrum München, German Research Center for Environmental Health, Ingolstädter Landstrasse 1, 85764, Neuherberg, Germany
- German Center for Lung Research, Marburg, Germany
| | - Jeremy Mason
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, CB10 1SD, UK
| | - Arturo Torres
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, CB10 1SD, UK
| | - Rudi Balling
- Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, Luxembourg, Luxembourg
| | - Terry Mehaan
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, CB10 1SD, UK
| | - Valerie Gailus-Durner
- German Mouse Clinic, Institute of Experimental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health, Ingolstädter Landstrasse 1, 85764, Neuherberg, Germany
| | - Klaus Schughart
- Department of Infection Genetics, Helmholtz Centre for Infection Research, Inhoffenstr.7, 38124, Braunschweig, Germany.
- University of Veterinary Medicine Hannover, Hanover, Germany.
- University of Tennessee Health Science Center, Memphis, TN, USA.
| | - Martin Hrabě de Angelis
- German Mouse Clinic, Institute of Experimental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health, Ingolstädter Landstrasse 1, 85764, Neuherberg, Germany
- Chair of Experimental Genetics, School of Life Science Weihenstephan, Technische Universität München, Alte Akademie 8, 85354, Freising, Germany
- German Center for Diabetes Research (DZD), Ingolstädter Landstr. 1, 85764, Neuherberg, Germany
| |
Collapse
|
21
|
Suzuki J, Inada H, Han C, Kim MJ, Kimura R, Takata Y, Honkura Y, Owada Y, Kawase T, Katori Y, Someya S, Osumi N. "Passenger gene" problem in transgenic C57BL/6 mice used in hearing research. Neurosci Res 2019; 158:6-15. [PMID: 31622631 DOI: 10.1016/j.neures.2019.10.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2019] [Revised: 09/24/2019] [Accepted: 10/08/2019] [Indexed: 12/21/2022]
Abstract
Despite recent advances in genome engineering technologies, traditional transgenic mice generated on a mixed genetic background of C57BL/6 and 129/Sv mice remain widely used in age-related hearing loss (AHL) research, since C57BL/6 mice exhibit early onset and progression of AHL due to a mutation in cadherin 23-encoding gene (Cdh23753G>A). In these transgenic mice, backcrossing for more than 10 generations results in replacement of the donor background (129/Sv) with that of the recipient (C57BL/6), so that approximately 99.9% of genes are C57BL/6-derived and are considered congenic. However, the regions flanking the target gene may still be of 129/Sv origin, creating a so-called "passenger gene problem" where the normal 129/Sv-derived Cdh23753G allele can travel with the target gene. In this study, we investigated the role of fatty acid-binding protein 7 (Fabp7), which is important for cellular uptake and intracellular trafficking of fatty acids in the cochlea, using traditional Fabp7 knockout (KO) mice on the C57BL/6 background. We found that Fabp7 KO mice showed delayed AHL progression and milder cochlear degeneration. However, the genotype of the Cdh23 region flanking Fabp7 was still that of 129/Sv origin (Cdh23753GG). Our findings reveal the potential risk of contamination for traditional transgenic mice generated on the C57BL/6 background.
Collapse
Affiliation(s)
- Jun Suzuki
- Department of Otolaryngology-Head and Neck Surgery, Tohoku University Graduate School of Medicine, Sendai, Miyagi 980-8574, Japan; Department of Developmental Neuroscience, Centers for Neuroscience, Tohoku University Graduate School of Medicine, Sendai, Miyagi 980-8575, Japan.
| | - Hitoshi Inada
- Department of Developmental Neuroscience, Centers for Neuroscience, Tohoku University Graduate School of Medicine, Sendai, Miyagi 980-8575, Japan
| | - Chul Han
- Departments of Aging and Geriatric Research, University of Florida, Gainesville, FA 32610-0143, USA; Barrow Aneurysm & AVM Research Center, Barrow Neurological Institute, Phoenix, AZ 85013, USA
| | - Mi-Jung Kim
- Departments of Aging and Geriatric Research, University of Florida, Gainesville, FA 32610-0143, USA
| | - Ryuichi Kimura
- Department of Developmental Neuroscience, Centers for Neuroscience, Tohoku University Graduate School of Medicine, Sendai, Miyagi 980-8575, Japan
| | - Yusuke Takata
- Department of Otolaryngology, Tokyo Women's Medical University Medical Center East, Arakawa, Tokyo 116-8567, Japan
| | - Yohei Honkura
- Department of Otolaryngology-Head and Neck Surgery, Tohoku University Graduate School of Medicine, Sendai, Miyagi 980-8574, Japan
| | - Yuji Owada
- Department of Organ Anatomy, Tohoku University Graduate School of Medicine, Sendai, Miyagi 980-8575, Japan
| | - Tetsuaki Kawase
- Department of Otolaryngology-Head and Neck Surgery, Tohoku University Graduate School of Medicine, Sendai, Miyagi 980-8574, Japan; Laboratory of Rehabilitative Auditory Science, Tohoku University Graduate School of Biomedical Engineering, Sendai, Miyagi 980-8574, Japan
| | - Yukio Katori
- Department of Otolaryngology-Head and Neck Surgery, Tohoku University Graduate School of Medicine, Sendai, Miyagi 980-8574, Japan
| | - Shinichi Someya
- Departments of Aging and Geriatric Research, University of Florida, Gainesville, FA 32610-0143, USA
| | - Noriko Osumi
- Department of Developmental Neuroscience, Centers for Neuroscience, Tohoku University Graduate School of Medicine, Sendai, Miyagi 980-8575, Japan
| |
Collapse
|
22
|
Dunbar LA, Patni P, Aguilar C, Mburu P, Corns L, Wells HRR, Delmaghani S, Parker A, Johnson S, Williams D, Esapa CT, Simon MM, Chessum L, Newton S, Dorning J, Jeyarajan P, Morse S, Lelli A, Codner GF, Peineau T, Gopal SR, Alagramam KN, Hertzano R, Dulon D, Wells S, Williams FM, Petit C, Dawson SJ, Brown SDM, Marcotti W, El‐Amraoui A, Bowl MR. Clarin-2 is essential for hearing by maintaining stereocilia integrity and function. EMBO Mol Med 2019; 11:e10288. [PMID: 31448880 PMCID: PMC6728604 DOI: 10.15252/emmm.201910288] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Revised: 07/23/2019] [Accepted: 07/26/2019] [Indexed: 11/21/2022] Open
Abstract
Hearing relies on mechanically gated ion channels present in the actin-rich stereocilia bundles at the apical surface of cochlear hair cells. Our knowledge of the mechanisms underlying the formation and maintenance of the sound-receptive structure is limited. Utilizing a large-scale forward genetic screen in mice, genome mapping and gene complementation tests, we identified Clrn2 as a new deafness gene. The Clrn2clarinet/clarinet mice (p.Trp4* mutation) exhibit a progressive, early-onset hearing loss, with no overt retinal deficits. Utilizing data from the UK Biobank study, we could show that CLRN2 is involved in human non-syndromic progressive hearing loss. Our in-depth morphological, molecular and functional investigations establish that while it is not required for initial formation of cochlear sensory hair cell stereocilia bundles, clarin-2 is critical for maintaining normal bundle integrity and functioning. In the differentiating hair bundles, lack of clarin-2 leads to loss of mechano-electrical transduction, followed by selective progressive loss of the transducing stereocilia. Together, our findings demonstrate a key role for clarin-2 in mammalian hearing, providing insights into the interplay between mechano-electrical transduction and stereocilia maintenance.
Collapse
Affiliation(s)
- Lucy A Dunbar
- Mammalian Genetics UnitMRC Harwell InstituteHarwellUK
| | - Pranav Patni
- Déficits Sensoriels ProgressifsInstitut PasteurINSERM UMR‐S 1120Sorbonne UniversitésParisFrance
| | | | | | - Laura Corns
- Department of Biomedical ScienceUniversity of SheffieldSheffieldUK
| | - Helena RR Wells
- Department of Twin Research & Genetic EpidemiologyKing's College LondonLondonUK
| | - Sedigheh Delmaghani
- Déficits Sensoriels ProgressifsInstitut PasteurINSERM UMR‐S 1120Sorbonne UniversitésParisFrance
| | - Andrew Parker
- Mammalian Genetics UnitMRC Harwell InstituteHarwellUK
| | - Stuart Johnson
- Department of Biomedical ScienceUniversity of SheffieldSheffieldUK
| | | | | | | | | | | | | | | | - Susan Morse
- Mammalian Genetics UnitMRC Harwell InstituteHarwellUK
| | - Andrea Lelli
- Génétique et Physiologie de l'AuditionInstitut PasteurINSERM UMR‐S 1120Collège de FranceSorbonne UniversitésParisFrance
| | | | - Thibault Peineau
- Laboratoire de Neurophysiologie de la Synapse AuditiveUniversité de BordeauxBordeauxFrance
| | - Suhasini R Gopal
- Department of Otolaryngology – Head and Neck SurgeryUniversity Hospitals Cleveland Medical CenterCase Western Reserve UniversityClevelandOHUSA
| | - Kumar N Alagramam
- Department of Otolaryngology – Head and Neck SurgeryUniversity Hospitals Cleveland Medical CenterCase Western Reserve UniversityClevelandOHUSA
| | - Ronna Hertzano
- Department of Otorhinolaryngology Head and Neck Surgery, Anatomy and Neurobiology and Institute for Genome SciencesUniversity of Maryland School of MedicineBaltimoreMDUSA
| | - Didier Dulon
- Laboratoire de Neurophysiologie de la Synapse AuditiveUniversité de BordeauxBordeauxFrance
| | - Sara Wells
- Mary Lyon CentreMRC Harwell InstituteHarwellUK
| | - Frances M Williams
- Department of Twin Research & Genetic EpidemiologyKing's College LondonLondonUK
| | - Christine Petit
- Génétique et Physiologie de l'AuditionInstitut PasteurINSERM UMR‐S 1120Collège de FranceSorbonne UniversitésParisFrance
| | | | | | - Walter Marcotti
- Department of Biomedical ScienceUniversity of SheffieldSheffieldUK
| | - Aziz El‐Amraoui
- Déficits Sensoriels ProgressifsInstitut PasteurINSERM UMR‐S 1120Sorbonne UniversitésParisFrance
| | | |
Collapse
|
23
|
Increased burden of mitochondrial DNA deletions and point mutations in early-onset age-related hearing loss in mitochondrial mutator mice. Exp Gerontol 2019; 125:110675. [PMID: 31344454 DOI: 10.1016/j.exger.2019.110675] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Revised: 07/14/2019] [Accepted: 07/20/2019] [Indexed: 11/20/2022]
Abstract
Mitochondrial DNA (mtDNA) mutations are thought to have a causal role in a variety of age-related neurodegenerative diseases, including age-related hearing loss (AHL). In the current study, we investigated the roles of mtDNA deletions and point mutations in AHL in mitochondrial mutator mice (Polgmut/mut) that were backcrossed onto CBA/CaJ mice, a well-established model of late-onset AHL. mtDNA deletions accumulated significantly with age in the inner ears of Polgmut/mut mice, while there were no differences in mtDNA deletion frequencies in the inner ears between 5 and 17 months old Polg+/+ mice or 5 months old Polg+/+ and Polgmut/mut mice. mtDNA deletions also accumulated significantly in the inner ears of CBA/CaJ mice during normal aging. In contrast, 5 months old Polgmut/mut mice displayed a 238-fold increase in mtDNA point mutation frequencies in the inner ears compared to age-matched Polg+/+ mice, but there were no differences in mtDNA point mutation frequencies in the inner ears between 5 and 17 months old Polgmut/mut mice. Seventeen-month-old Polgmut/mut mice also displayed early-onset severe hearing loss associated with a significant reduction in neural output of the cochlea, while age-matched Polg+/+ mice displayed little or no hearing impairment. Consistent with the physiological and mtDNA deletion test result, 17-month-old Polgmut/mut mice displayed a profound loss of spiral ganglion neurons in the cochlea. Thus, our data suggest that a higher burden of mtDNA point mutations from a young age and age-related accumulation of mtDNA deletions likely contribute to early-onset AHL in mitochondrial mutator mice.
Collapse
|
24
|
Fischer N, Johnson Chacko L, Majerus A, Potrusil T, Riechelmann H, Schmutzhard J, Schrott-Fischer A, Glueckert R. Age-Dependent Calcium-Binding Protein Expression in the Spiral Ganglion and Hearing Performance of C57BL/6J and 129/SvJ Mice. ORL J Otorhinolaryngol Relat Spec 2019; 81:138-154. [PMID: 31170714 DOI: 10.1159/000499472] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Accepted: 03/08/2019] [Indexed: 11/19/2022]
Abstract
BACKGROUND/AIMS Calcium-binding proteins in neurons buffer intracellular free Ca2+ ions, which interact with proteins controlling enzymatic and ion channel activity. The heterogeneous distribution of calretinin, calbindin, and parvalbumin influences calcium homeostasis, and calcium-related neuronal processes play an important role in neuronal aging and degeneration. This study evaluated age-related changes in calretinin, calbindin, and parvalbumin immune reactivity in spiral ganglion cells. METHODS A total of 16 C57BL/6J and 16 129/SvJ mice at different ages (2, 4, 7, and 12 months) were included in the study. Hearing thresholds were assessed using auditory brainstem response before inner ears were excised for further evaluation. Semiquantitative immunohistochemistry for the aforementioned calcium-binding proteins was performed at the cellular level. RESULTS The hearing thresholds of C57BL/6J and 129/SvJ mice increased significantly by 7 months of age. The average immune reactivity of calbin-din as well as the relative number of positive cells increased significantly with aging, but no significant alterations in calretinin or parvalbumin were observed. CONCLUSIONS Upregulation of calbindin could serve as a protection to compensate for functional deficits that occur with aging. Expression of both calretinin and parvalbumin seem to be stabilizing factors in murine inner ears up to the age of 12 months in C57BL/6J and 129/SvJ mice.
Collapse
Affiliation(s)
- Natalie Fischer
- Department of Otorhinolaryngology, Medical University Innsbruck, Innsbruck, Austria
| | - Lejo Johnson Chacko
- Department of Otorhinolaryngology, Medical University Innsbruck, Innsbruck, Austria
| | - Alexandra Majerus
- Department of Otorhinolaryngology, Medical University Innsbruck, Innsbruck, Austria
| | - Thomas Potrusil
- Department of Otorhinolaryngology, Medical University Innsbruck, Innsbruck, Austria
| | - Herbert Riechelmann
- Department of Otorhinolaryngology, Medical University Innsbruck, Innsbruck, Austria
| | - Joachim Schmutzhard
- Department of Otorhinolaryngology, Medical University Innsbruck, Innsbruck, Austria
| | | | - Rudolf Glueckert
- Department of Otorhinolaryngology, Medical University Innsbruck, Innsbruck, Austria.,Department of Otorhinolaryngology, Tirol Kliniken, University Clinics of Innsbruck, Innsbruck, Austria
| |
Collapse
|
25
|
Huebner AK, Maier H, Maul A, Nietzsche S, Herrmann T, Praetorius J, Hübner CA. Early Hearing Loss upon Disruption of Slc4a10 in C57BL/6 Mice. J Assoc Res Otolaryngol 2019; 20:233-245. [PMID: 31001720 DOI: 10.1007/s10162-019-00719-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Accepted: 03/25/2019] [Indexed: 12/13/2022] Open
Abstract
The unique composition of the endolymph with a high extracellular K+ concentration is essential for sensory transduction in the inner ear. It is secreted by a specialized epithelium, the stria vascularis, that is connected to the fibrocyte meshwork of the spiral ligament in the lateral wall of the cochlea via gap junctions. In this study, we show that in mice the expression of the bicarbonate transporter Slc4a10/Ncbe/Nbcn2 in spiral ligament fibrocytes starts shortly before hearing onset. Its disruption in a C57BL/6 background results in early onset progressive hearing loss. This hearing loss is characterized by a reduced endocochlear potential from hearing onset onward and progressive degeneration of outer hair cells. Notably, the expression of a related bicarbonate transporter, i.e., Slc4a7/Nbcn1, is also lost in spiral ligament fibrocytes of Slc4a10 knockout mice. The histological analysis of the spiral ligament of Slc4a10 knockout mice does not reveal overt fibrocyte loss as reported for Slc4a7 knockout mice. The ultrastructural analysis, however, shows mitochondrial alterations in fibrocytes of Slc4a10 knockout mice. Our data suggest that Slc4a10 and Slc4a7 are functionally related and essential for inner ear homeostasis.
Collapse
Affiliation(s)
- Antje K Huebner
- Institute of Human Genetics, Jena University Hospital, Friedrich Schiller Universität, Am Klinikum 1, 07747, Jena, Germany
| | - Hannes Maier
- Department of Otolaryngology and Cluster of Excellence Hearing4all, Deutsches HörZentrum Hannover, Medical University Hannover, Karl-Wiechert-Allee 3, 30625, Hannover, Germany
| | - Alena Maul
- Max-Delbrück Centrum für Molekulare Medizin (MDC) and NeuroCure, Robert-Rössle-Str. 10, 13092, Berlin, Germany
| | - Sandor Nietzsche
- Electron Microscopy Center, Jena University Hospital, Friedrich Schiller Universität, Ziegelmühlenweg 1, 07743, Jena, Germany
| | - Tanja Herrmann
- Institute of Human Genetics, Jena University Hospital, Friedrich Schiller Universität, Am Klinikum 1, 07747, Jena, Germany
| | - Jeppe Praetorius
- Department of Biomedicine, Health, Aarhus University, Aarhus, Denmark
| | - Christian A Hübner
- Institute of Human Genetics, Jena University Hospital, Friedrich Schiller Universität, Am Klinikum 1, 07747, Jena, Germany.
| |
Collapse
|
26
|
Genetic variation in thyroid folliculogenesis influences susceptibility to hypothyroidism-induced hearing impairment. Mamm Genome 2019; 30:5-22. [PMID: 30778664 DOI: 10.1007/s00335-019-09792-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Accepted: 01/09/2019] [Indexed: 10/27/2022]
Abstract
Maternal and fetal sources of thyroid hormone are important for the development of many organ systems. Thyroid hormone deficiency causes variable intellectual disability and hearing impairment in mouse and man, but the basis for this variation is not clear. To explore this variation, we studied two thyroid hormone-deficient mouse mutants with mutations in pituitary-specific transcription factors, POU1F1 and PROP1, that render them unable to produce thyroid stimulating hormone. DW/J-Pou1f1dw/dw mice have profound deafness and both neurosensory and conductive hearing impairment, while DF/B-Prop1df/df mice have modest elevations in hearing thresholds consistent with developmental delay, eventually achieving normal hearing ability. The thyroid glands of Pou1f1 mutants are more severely affected than those of Prop1df/df mice, and they produce less thyroglobulin during the neonatal period critical for establishing hearing. We previously crossed DW/J-Pou1f1dw/+ and Cast/Ei mice and mapped a major locus on Chromosome 2 that protects against hypothyroidism-induced hearing impairment in Pou1f1dw/dw mice: modifier of dw hearing (Mdwh). Here we refine the location of Mdwh by genotyping 196 animals with 876 informative SNPs, and we conduct novel mapping with a DW/J-Pou1f1dw/+ and 129/P2 cross that reveals 129/P2 mice also have a protective Mdwh locus. Using DNA sequencing of DW/J and DF/B strains, we determined that the genes important for thyroid gland function within Mdwh vary in amino acid sequence between strains that are susceptible or resistant to hypothyroidism-induced hearing impairment. These results suggest that the variable effects of congenital hypothyroidism on the development of hearing ability are attributable to genetic variation in postnatal thyroid gland folliculogenesis and function.
Collapse
|
27
|
Hereditary hearing loss; about the known and the unknown. Hear Res 2019; 376:58-68. [PMID: 30665849 DOI: 10.1016/j.heares.2019.01.003] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Revised: 12/11/2018] [Accepted: 01/07/2019] [Indexed: 01/01/2023]
Abstract
Hereditary hearing loss is both clinically and genetically very heterogeneous. Despite the large number of genes that have been associated with the condition, many cases remain unexplained. Novel gene associations with hearing loss are to be expected but also are defects of regulatory regions of the genome which are currently not routinely addressed in molecular genetic testing and research. Inheritance patterns other than monogenic might be more common than assumed in isolated cases and diagnoses might have been missed because of misinterpretation of identified DNA variants. This review summarizes current insights in the genetics of hearing loss, the next steps that are being taken in research, and their challenges. Furthermore, genotype-phenotype correlations and modifying factors are discussed as these are instrumental in counselling hearing impaired individuals and/or their family members.
Collapse
|
28
|
Helios is a key transcriptional regulator of outer hair cell maturation. Nature 2018; 563:696-700. [PMID: 30464345 PMCID: PMC6542691 DOI: 10.1038/s41586-018-0728-4] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Accepted: 10/25/2018] [Indexed: 11/09/2022]
Abstract
The sensory cells that are responsible for hearing include the cochlear inner hair cells (IHCs) and outer hair cells (OHCs), with the OHCs being necessary for sound sensitivity and tuning1. Both cell types are thought to arise from common progenitors; however, our understanding of the factors that control the fate of IHCs and OHCs remains limited. Here we identify Ikzf2 (which encodes Helios) as an essential transcription factor in mice that is required for OHC functional maturation and hearing. Helios is expressed in postnatal mouse OHCs, and in the cello mouse model a point mutation in Ikzf2 causes early-onset sensorineural hearing loss. Ikzf2cello/cello OHCs have greatly reduced prestin-dependent electromotile activity, a hallmark of OHC functional maturation, and show reduced levels of crucial OHC-expressed genes such as Slc26a5 (which encodes prestin) and Ocm. Moreover, we show that ectopic expression of Ikzf2 in IHCs: induces the expression of OHC-specific genes; reduces the expression of canonical IHC genes; and confers electromotility to IHCs, demonstrating that Ikzf2 can partially shift the IHC transcriptome towards an OHC-like identity.
Collapse
|
29
|
Altschuler RA, Kanicki A, Martin C, Kohrman DC, Miller RA. Rapamycin but not acarbose decreases age-related loss of outer hair cells in the mouse Cochlea. Hear Res 2018; 370:11-15. [PMID: 30245283 DOI: 10.1016/j.heares.2018.09.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Revised: 08/15/2018] [Accepted: 09/05/2018] [Indexed: 11/18/2022]
Abstract
Adding rapamycin or acarbose to diet at 9-10 months of age has been shown to significantly increase life span in both male and female UM-HET3 mice. The current study examined cochleae of male and female UM-HET3 mice at 22 months of age to determine if either treatment also influenced age-related loss of cochlear hair cells. A large loss of cochlear outer hair cells was observed at 22 months of age in untreated mice in both apical and basal halves of the cochlear spiral. Addition of acarbose to diet had no significant effect on the amount of outer hair cell loss at 22 months of age or in its pattern, with large loss in both apical and basal halves. The addition of rapamycin to diet, however, significantly reduced outer hair cell loss in the basal half of the cochlea at 22 months of age when compared to untreated mice. There was no significant difference between male and female mice in any of the conditions. Age-related outer hair cell loss in the apical cochlea precedes outer hair cell loss in the base in many mouse strains. The results of the present study suggest that rapamycin but not acarbose treatment can delay age-related loss of outer hair cells at doses at which each drug increases life span.
Collapse
Affiliation(s)
- R A Altschuler
- Kresge Hearing Research Institute, Department of Otolaryngology, University of Michigan, 1150 West Medical Center Drive, Ann Arbor, MI, 48109-0506, United States; Dept. of Cell and Developmental Biology, University of Michigan, Ann Arbor, MI, United States; VA Ann Arbor Health System, United States.
| | - A Kanicki
- Kresge Hearing Research Institute, Department of Otolaryngology, University of Michigan, 1150 West Medical Center Drive, Ann Arbor, MI, 48109-0506, United States
| | - C Martin
- Kresge Hearing Research Institute, Department of Otolaryngology, University of Michigan, 1150 West Medical Center Drive, Ann Arbor, MI, 48109-0506, United States
| | - D C Kohrman
- Kresge Hearing Research Institute, Department of Otolaryngology, University of Michigan, 1150 West Medical Center Drive, Ann Arbor, MI, 48109-0506, United States; Dept. of Human Genetics, University of Michigan, Ann Arbor, MI, United States
| | - R A Miller
- Dept. of Pathology and Geriatrics Center, University of Michigan, Ann Arbor, MI, United States
| |
Collapse
|
30
|
Resistance to neomycin ototoxicity in the extreme basal (hook) region of the mouse cochlea. Histochem Cell Biol 2018; 150:281-289. [PMID: 29862415 DOI: 10.1007/s00418-018-1683-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/26/2018] [Indexed: 10/14/2022]
Abstract
Aminoglycoside ototoxicity results in permanent loss of the sensory hair cells in the mammalian cochlea. It usually begins at the basal turn causing high-frequency hearing loss. Here we describe previously unreported resistance of hair cells to neomycin ototoxicity in the extreme basal (hook) region of the developing cochlea of the C57BL/6 mouse. Organ of Corti explants from mice at postnatal day 3 were incubated (37 °C, 5% CO2) in normal culture medium for 19.5 h prior to and after exposure to neomycin (1 mM, 3 h). To study neomycin uptake in the hair cells, cochlear explants were incubated with Neomycin Texas-red (NTR) conjugate. As expected, exposure to neomycin significantly reduced the survival of inner (IHC) and outer hair cells (OHC). IHC survival rate was high in the apical segment and low in the basal segment. OHC were well preserved in the apical and hook regions, with substantial OHC loss in the basal segment. The NTR uptake study demonstrated that the high survival rate in the extreme basal turn OHC was associated with low NTR uptake. Treatment with a calcium chelator (BAPTA), which disrupts the opening of mechanoelectrical (MET) transduction channels, abolished or reduced NTR uptake in the hair cells throughout the cochlea. This confirmed the essential role of MET channels in neomycin uptake and implied that the transduction channels could be impaired in the hook region of the developing mouse cochlea, possibly as a result of the cadherin 23 mutation responsible for the progressive deafness in C57BL/6 mice.
Collapse
|
31
|
Milon B, Mitra S, Song Y, Margulies Z, Casserly R, Drake V, Mong JA, Depireux DA, Hertzano R. The impact of biological sex on the response to noise and otoprotective therapies against acoustic injury in mice. Biol Sex Differ 2018; 9:12. [PMID: 29530094 PMCID: PMC5848513 DOI: 10.1186/s13293-018-0171-0] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Accepted: 02/27/2018] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Noise-induced hearing loss (NIHL) is the most prevalent form of acquired hearing loss and affects about 40 million US adults. Among the suggested therapeutics tested in rodents, suberoylanilide hydroxamic acid (SAHA) has been shown to be otoprotective from NIHL; however, these results were limited to male mice. METHODS Here we tested the effect of SAHA on the hearing of 10-week-old B6CBAF1/J mice of both sexes, which were exposed to 2 h of octave-band noise (101 dB SPL centered at 11.3 kHz). Hearing was assessed by measuring auditory brainstem responses (ABR) at 8, 16, 24, and 32 kHz, 1 week before, as well as at 24 h and 15-21 days following exposure (baseline, compound threshold shift (CTS) and permanent threshold shift (PTS), respectively), followed by histologic analyses. RESULTS We found significant differences in the CTS and PTS of the control (vehicle injected) mice to noise, where females had a significantly smaller CTS at 16 and 24 kHz (p < 0.0001) and PTS at 16, 24, and 32 kHz (16 and 24 kHz p < 0.001, 32 kHz p < 0.01). This sexual dimorphic effect could not be explained by a differential loss of sensory cells or synapses but was reflected in the amplitude and amplitude progression of wave I of the ABR, which correlates with outer hair cell (OHC) function. Finally, the frequency of the protective effect of SAHA differed significantly between males (PTS, 24 kHz, p = 0.002) and females (PTS, 16 kHz, p = 0.003), and the magnitude of the protection was smaller in females than in males. Importantly, the magnitude of the protection by SAHA was smaller than the effect of sex as a biological factor in the vehicle-injected mice. CONCLUSIONS These results indicate that female mice are significantly protected from NIHL in comparison to males and that therapeutics for NIHL may have a different effect in males and females. The data highlight the importance of analyzing NIHL experiments from males and females, separately. Finally, these data also raise the possibility of effectors in the estrogen signaling pathway as novel therapeutics for NIHL.
Collapse
Affiliation(s)
- Béatrice Milon
- 0000 0001 2175 4264grid.411024.2Department of Otorhinolaryngology - Head and Neck Surgery, University of Maryland, 16 South Eutaw Street, Suite 500, Baltimore, MD 21201 USA
| | - Sunayana Mitra
- 0000 0001 2175 4264grid.411024.2Department of Otorhinolaryngology - Head and Neck Surgery, University of Maryland, 16 South Eutaw Street, Suite 500, Baltimore, MD 21201 USA
| | - Yang Song
- 0000 0001 2175 4264grid.411024.2Institute for Genome Science, University of Maryland School of Medicine, Baltimore, MD 21201 USA
| | - Zachary Margulies
- 0000 0001 2175 4264grid.411024.2Department of Otorhinolaryngology - Head and Neck Surgery, University of Maryland, 16 South Eutaw Street, Suite 500, Baltimore, MD 21201 USA
| | - Ryan Casserly
- 0000 0001 2175 4264grid.411024.2Department of Otorhinolaryngology - Head and Neck Surgery, University of Maryland, 16 South Eutaw Street, Suite 500, Baltimore, MD 21201 USA
| | - Virginia Drake
- 0000 0001 2175 4264grid.411024.2Department of Otorhinolaryngology - Head and Neck Surgery, University of Maryland, 16 South Eutaw Street, Suite 500, Baltimore, MD 21201 USA
| | - Jessica A. Mong
- 0000 0001 2175 4264grid.411024.2Department of Pharmacology, University of Maryland School of Medicine, Baltimore, MD 21201 USA
| | - Didier A. Depireux
- 0000 0001 2175 4264grid.411024.2Department of Otorhinolaryngology - Head and Neck Surgery, University of Maryland, 16 South Eutaw Street, Suite 500, Baltimore, MD 21201 USA ,0000 0001 0941 7177grid.164295.dInstitute for Systems Research, University of Maryland, College Park, MD 20742 USA
| | - Ronna Hertzano
- Department of Otorhinolaryngology - Head and Neck Surgery, University of Maryland, 16 South Eutaw Street, Suite 500, Baltimore, MD, 21201, USA. .,Institute for Genome Science, University of Maryland School of Medicine, Baltimore, MD, 21201, USA. .,Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, MD, 21201, USA.
| |
Collapse
|
32
|
Jayakody DMP, Friedland PL, Martins RN, Sohrabi HR. Impact of Aging on the Auditory System and Related Cognitive Functions: A Narrative Review. Front Neurosci 2018; 12:125. [PMID: 29556173 PMCID: PMC5844959 DOI: 10.3389/fnins.2018.00125] [Citation(s) in RCA: 99] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Accepted: 02/15/2018] [Indexed: 12/15/2022] Open
Abstract
Age-related hearing loss (ARHL), presbycusis, is a chronic health condition that affects approximately one-third of the world's population. The peripheral and central hearing alterations associated with age-related hearing loss have a profound impact on perception of verbal and non-verbal auditory stimuli. The high prevalence of hearing loss in the older adults corresponds to the increased frequency of dementia in this population. Therefore, researchers have focused their attention on age-related central effects that occur independent of the peripheral hearing loss as well as central effects of peripheral hearing loss and its association with cognitive decline and dementia. Here we review the current evidence for the age-related changes of the peripheral and central auditory system and the relationship between hearing loss and pathological cognitive decline and dementia. Furthermore, there is a paucity of evidence on the relationship between ARHL and established biomarkers of Alzheimer's disease, as the most common cause of dementia. Such studies are critical to be able to consider any causal relationship between dementia and ARHL. While this narrative review will examine the pathophysiological alterations in both the peripheral and central auditory system and its clinical implications, the question remains unanswered whether hearing loss causes cognitive impairment or vice versa.
Collapse
Affiliation(s)
- Dona M P Jayakody
- Clinical Research, Ear Science Institute Australia, Subiaco, WA, Australia.,School of Surgery, University of Western Australia, Perth, WA, Australia
| | - Peter L Friedland
- Clinical Research, Ear Science Institute Australia, Subiaco, WA, Australia.,School of Surgery, University of Western Australia, Perth, WA, Australia.,School of Medicine, University of Notre Dame Australia, Fremantle, WA, Australia
| | - Ralph N Martins
- Biomedical Sciences, Macquarie University, Sydney, NSW, Australia.,School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA, Australia
| | - Hamid R Sohrabi
- Biomedical Sciences, Macquarie University, Sydney, NSW, Australia.,School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA, Australia
| |
Collapse
|
33
|
McGraw CM, Ward CS, Samaco RC. Genetic rodent models of brain disorders: Perspectives on experimental approaches and therapeutic strategies. AMERICAN JOURNAL OF MEDICAL GENETICS PART C-SEMINARS IN MEDICAL GENETICS 2018; 175:368-379. [PMID: 28910526 PMCID: PMC5659732 DOI: 10.1002/ajmg.c.31570] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/23/2017] [Accepted: 06/28/2017] [Indexed: 12/14/2022]
Abstract
Neurobehavioral disorders comprised of neurodegenerative, neurodevelopmental, and psychiatric disorders together represent leading causes of morbidity and mortality. Despite significant academic research and industry efforts to elucidate the disease mechanisms operative in these disorders and to develop mechanism‐based therapies, our understanding remains incomplete and our access to tractable therapeutic interventions severely limited. The magnitude of these short‐comings can be measured by the growing list of disappointing clinical trials based on initially promising compounds identified in genetic animal models. This review and commentary will explore why this may be so, focusing on the central role that genetic models of neurobehavioral disorders have come to occupy in current efforts to identify disease mechanisms and therapies. In particular, we will highlight the unique pitfalls and challenges that have hampered success in these models as compared to genetic models of non‐neurological diseases as well as to symptom‐based models of the early 20th century that led to the discovery of all major classes of psychoactive pharmaceutical compounds still used today. Using examples from specific genetic rodent models of human neurobehavioral disorders, we will highlight issues of reproducibility, construct validity, and translational relevance in the hopes that these examples will be instructive toward greater success in future endeavors. Lastly, we will champion a two‐pronged approach toward identifying novel therapies for neurobehavioral disorders that makes greater use of the historically more successful symptom‐based approaches in addition to more mechanism‐based approaches.
Collapse
Affiliation(s)
- Christopher M McGraw
- Department of Neurology, University of California, San Francisco, San Francisco, California
| | - Christopher S Ward
- Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, Texas.,Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas
| | - Rodney C Samaco
- Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, Texas.,Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas.,Program in Translational Biology and Molecular Medicine, Baylor College of Medicine, Houston, Texas
| |
Collapse
|
34
|
Allen PD, Luebke AE. Reflex Modification Audiometry Reveals Dual Roles for Olivocochlear Neurotransmission. Front Cell Neurosci 2017; 11:361. [PMID: 29213229 PMCID: PMC5702649 DOI: 10.3389/fncel.2017.00361] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2017] [Accepted: 11/03/2017] [Indexed: 11/23/2022] Open
Abstract
Approximately 15% of American adults report some degree of difficulty hearing in a noisy environment or have auditory filtering difficulties. There are objective clinical tests of auditory filtering, yet few tests exist for mouse models that do not rely on extensive training. We have used reflex modification audiometry (RMA) and developed exclusion criteria for the mouse model. This RMA based test makes use of the acoustic startle response (ASR) and the ability of prepulses to inhibit the ASR [i.e., prepulse inhibition (PPI)] to assess the mouse's ability to detect prepulse signals presented in quiet or embedded in masking noise. We have studied PPI behavior across four inbred mouse strains with normal cochlear function and developed pre-testing exclusion criteria and test/retest reliability measures. Moreover, because both the medial (MOC) and the lateral (LOC) olivocochlear efferent feedback systems have been proposed to improve auditory behavior performance, especially in noisy backgrounds, we have examined PPI abilities in mice (with their littermate controls) either lacking the MOC receptor subunit α9 nicotinic acetylcholine receptor [α9 nAChR (–/–)] or expressing an overactive receptor [Ld'T mutation in α9 nAChR KI], or lacking an LOC efferent neuropeptide, alpha calcitonin gene-related peptide [αCGRP (–/–)] only in the CNS. Because CGRP receptor formation has been shown to mature from juvenile to adult ages, we also studied if this maturation would be reflected in PPI behavioral responses in juvenile and adult (+/+) controls and in adult αCGRP (–/–) animals. We show that 50% PPI response thresholds (sound level with 50% correct responses) in quiet are decreased in the (–/–) α9 nAChR animals, and 50% PPI responses are increased for mice with an overactive receptor (α9 nAChR KI) and are increased in adult mice lacking αCGRP (–/–). However, in background noise, only mice lacking αCGRP exhibited increased 50% PPI response thresholds, as there were no significant differences between α9 nAChR adult mouse lines and their littermate controls. These findings suggest that MOC and LOC olivocochlear neurotransmission work in tandem to improve behavioral responses to sound. These experiments further pave the way for rapid behavioral hearing assessments in other mouse models.
Collapse
Affiliation(s)
- Paul D Allen
- Department of Otolaryngology, University of Rochester Medical Center, Rochester, NY, United States
| | - Anne E Luebke
- Department of Neuroscience and the Ernst J. Del Monte Institute for Neuroscience, University of Rochester Medical Center, Rochester, NY, United States.,Department of Biomedical Engineering, University of Rochester, Rochester, NY, United States
| |
Collapse
|
35
|
Ebbers L, Weber M, Nothwang HG. Activity-dependent formation of a vesicular inhibitory amino acid transporter gradient in the superior olivary complex of NMRI mice. BMC Neurosci 2017; 18:75. [PMID: 29073893 PMCID: PMC5659004 DOI: 10.1186/s12868-017-0393-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Accepted: 10/13/2017] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND In the mammalian superior olivary complex (SOC), synaptic inhibition contributes to the processing of binaural sound cues important for sound localization. Previous analyses demonstrated a tonotopic gradient for postsynaptic proteins mediating inhibitory neurotransmission in the lateral superior olive (LSO), a major nucleus of the SOC. To probe, whether a presynaptic molecular gradient exists as well, we investigated immunoreactivity against the vesicular inhibitory amino acid transporter (VIAAT) in the mouse auditory brainstem. RESULTS Immunoreactivity against VIAAT revealed a gradient in the LSO and the superior paraolivary nucleus (SPN) of NMRI mice, with high expression in the lateral, low frequency processing limb and low expression in the medial, high frequency processing limb of both nuclei. This orientation is opposite to the previously reported gradient of glycine receptors in the LSO. Other nuclei of the SOC showed a uniform distribution of VIAAT-immunoreactivity. No gradient was observed for the glycine transporter GlyT2 and the neuronal protein NeuN. Formation of the VIAAT gradient was developmentally regulated and occurred around hearing-onset between postnatal days 8 and 16. Congenital deaf Claudin14 -/- mice bred on an NMRI background showed a uniform VIAAT-immunoreactivity in the LSO, whereas cochlear ablation in NMRI mice after hearing-onset did not affect the gradient. Additional analysis of C57Bl6/J, 129/SvJ and CBA/J mice revealed a strain-specific formation of the gradient. CONCLUSIONS Our results identify an activity-regulated gradient of VIAAT in the SOC of NRMI mice. Its absence in other mouse strains adds a novel layer of strain-specific features in the auditory system, i.e. tonotopic organization of molecular gradients. This calls for caution when comparing data from different mouse strains frequently used in studies involving transgenic animals. The presence of strain-specific differences offers the possibility of genetic mapping to identify molecular factors involved in activity-dependent developmental processes in the auditory system. This would provide an important step forward concerning improved auditory rehabilitation in cases of congenital deafness.
Collapse
Affiliation(s)
- Lena Ebbers
- Neurogenetics Group, Center of Excellence Hearing4All, School of Medicine and Health Sciences, Carl von Ossietzky University Oldenburg, 26111 Oldenburg, Germany
| | - Maren Weber
- Neurogenetics Group, Center of Excellence Hearing4All, School of Medicine and Health Sciences, Carl von Ossietzky University Oldenburg, 26111 Oldenburg, Germany
| | - Hans Gerd Nothwang
- Neurogenetics Group, Center of Excellence Hearing4All, School of Medicine and Health Sciences, Carl von Ossietzky University Oldenburg, 26111 Oldenburg, Germany
- Research Center for Neurosensory Science, Carl von Ossietzky University Oldenburg, 26111 Oldenburg, Germany
| |
Collapse
|
36
|
Fuchs H, Aguilar-Pimentel JA, Amarie OV, Becker L, Calzada-Wack J, Cho YL, Garrett L, Hölter SM, Irmler M, Kistler M, Kraiger M, Mayer-Kuckuk P, Moreth K, Rathkolb B, Rozman J, da Silva Buttkus P, Treise I, Zimprich A, Gampe K, Hutterer C, Stöger C, Leuchtenberger S, Maier H, Miller M, Scheideler A, Wu M, Beckers J, Bekeredjian R, Brielmeier M, Busch DH, Klingenspor M, Klopstock T, Ollert M, Schmidt-Weber C, Stöger T, Wolf E, Wurst W, Yildirim AÖ, Zimmer A, Gailus-Durner V, Hrabě de Angelis M. Understanding gene functions and disease mechanisms: Phenotyping pipelines in the German Mouse Clinic. Behav Brain Res 2017; 352:187-196. [PMID: 28966146 DOI: 10.1016/j.bbr.2017.09.048] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Revised: 09/18/2017] [Accepted: 09/25/2017] [Indexed: 02/07/2023]
Abstract
Since decades, model organisms have provided an important approach for understanding the mechanistic basis of human diseases. The German Mouse Clinic (GMC) was the first phenotyping facility that established a collaboration-based platform for phenotype characterization of mouse lines. In order to address individual projects by a tailor-made phenotyping strategy, the GMC advanced in developing a series of pipelines with tests for the analysis of specific disease areas. For a general broad analysis, there is a screening pipeline that covers the key parameters for the most relevant disease areas. For hypothesis-driven phenotypic analyses, there are thirteen additional pipelines with focus on neurological and behavioral disorders, metabolic dysfunction, respiratory system malfunctions, immune-system disorders and imaging techniques. In this article, we give an overview of the pipelines and describe the scientific rationale behind the different test combinations.
Collapse
Affiliation(s)
- Helmut Fuchs
- German Mouse Clinic, Institute of Experimental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health, Ingolstädter-Landstr. 1, 85764 Neuherberg, Germany
| | - Juan Antonio Aguilar-Pimentel
- German Mouse Clinic, Institute of Experimental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health, Ingolstädter-Landstr. 1, 85764 Neuherberg, Germany
| | - Oana V Amarie
- German Mouse Clinic, Institute of Experimental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health, Ingolstädter-Landstr. 1, 85764 Neuherberg, Germany; Institute of Developmental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health, Ingolstädter-Landstr. 1, 85764 Neuherberg, Germany
| | - Lore Becker
- German Mouse Clinic, Institute of Experimental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health, Ingolstädter-Landstr. 1, 85764 Neuherberg, Germany
| | - Julia Calzada-Wack
- German Mouse Clinic, Institute of Experimental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health, Ingolstädter-Landstr. 1, 85764 Neuherberg, Germany
| | - Yi-Li Cho
- German Mouse Clinic, Institute of Experimental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health, Ingolstädter-Landstr. 1, 85764 Neuherberg, Germany
| | - Lillian Garrett
- German Mouse Clinic, Institute of Experimental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health, Ingolstädter-Landstr. 1, 85764 Neuherberg, Germany; Institute of Developmental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health, Ingolstädter-Landstr. 1, 85764 Neuherberg, Germany
| | - Sabine M Hölter
- German Mouse Clinic, Institute of Experimental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health, Ingolstädter-Landstr. 1, 85764 Neuherberg, Germany; Institute of Developmental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health, Ingolstädter-Landstr. 1, 85764 Neuherberg, Germany
| | - Martin Irmler
- German Mouse Clinic, Institute of Experimental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health, Ingolstädter-Landstr. 1, 85764 Neuherberg, Germany
| | - Martin Kistler
- German Mouse Clinic, Institute of Experimental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health, Ingolstädter-Landstr. 1, 85764 Neuherberg, Germany
| | - Markus Kraiger
- German Mouse Clinic, Institute of Experimental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health, Ingolstädter-Landstr. 1, 85764 Neuherberg, Germany
| | - Philipp Mayer-Kuckuk
- German Mouse Clinic, Institute of Experimental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health, Ingolstädter-Landstr. 1, 85764 Neuherberg, Germany
| | - Kristin Moreth
- German Mouse Clinic, Institute of Experimental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health, Ingolstädter-Landstr. 1, 85764 Neuherberg, Germany
| | - Birgit Rathkolb
- German Mouse Clinic, Institute of Experimental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health, Ingolstädter-Landstr. 1, 85764 Neuherberg, Germany; German Center for Diabetes Research (DZD), Ingolstädter-Landstr. 1, 85764 Neuherberg, Germany; Institute of Molecular Animal Breeding and Biotechnology, Gene Center, Ludwig-Maximilians-University München, Feodor-Lynen-Str. 25, 81377 Munich, Germany
| | - Jan Rozman
- German Mouse Clinic, Institute of Experimental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health, Ingolstädter-Landstr. 1, 85764 Neuherberg, Germany; German Center for Diabetes Research (DZD), Ingolstädter-Landstr. 1, 85764 Neuherberg, Germany
| | - Patricia da Silva Buttkus
- German Mouse Clinic, Institute of Experimental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health, Ingolstädter-Landstr. 1, 85764 Neuherberg, Germany
| | - Irina Treise
- German Mouse Clinic, Institute of Experimental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health, Ingolstädter-Landstr. 1, 85764 Neuherberg, Germany
| | - Annemarie Zimprich
- German Mouse Clinic, Institute of Experimental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health, Ingolstädter-Landstr. 1, 85764 Neuherberg, Germany; Institute of Developmental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health, Ingolstädter-Landstr. 1, 85764 Neuherberg, Germany
| | - Kristine Gampe
- German Mouse Clinic, Institute of Experimental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health, Ingolstädter-Landstr. 1, 85764 Neuherberg, Germany
| | - Christine Hutterer
- German Mouse Clinic, Institute of Experimental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health, Ingolstädter-Landstr. 1, 85764 Neuherberg, Germany
| | - Claudia Stöger
- German Mouse Clinic, Institute of Experimental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health, Ingolstädter-Landstr. 1, 85764 Neuherberg, Germany
| | - Stefanie Leuchtenberger
- German Mouse Clinic, Institute of Experimental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health, Ingolstädter-Landstr. 1, 85764 Neuherberg, Germany
| | - Holger Maier
- German Mouse Clinic, Institute of Experimental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health, Ingolstädter-Landstr. 1, 85764 Neuherberg, Germany
| | - Manuel Miller
- Research Unit Comparative Medicine, Helmholtz Zentrum München, German Research Center for Environmental Health, Ingolstädter-Landstr. 1, 85764 Neuherberg, Germany
| | - Angelika Scheideler
- Research Unit Comparative Medicine, Helmholtz Zentrum München, German Research Center for Environmental Health, Ingolstädter-Landstr. 1, 85764 Neuherberg, Germany
| | - Moya Wu
- German Mouse Clinic, Institute of Experimental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health, Ingolstädter-Landstr. 1, 85764 Neuherberg, Germany
| | - Johannes Beckers
- German Mouse Clinic, Institute of Experimental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health, Ingolstädter-Landstr. 1, 85764 Neuherberg, Germany; German Center for Diabetes Research (DZD), Ingolstädter-Landstr. 1, 85764 Neuherberg, Germany; Chair of Experimental Genetics, School of Life Science Weihenstephan, Technische Universität München, Alte Akademie 8, 85354 Freising, Germany
| | - Raffi Bekeredjian
- Department of Cardiology, University of Heidelberg, Im Neuenheimer Feld 410, 69120 Heidelberg, Germany
| | - Markus Brielmeier
- Research Unit Comparative Medicine, Helmholtz Zentrum München, German Research Center for Environmental Health, Ingolstädter-Landstr. 1, 85764 Neuherberg, Germany
| | - Dirk H Busch
- Institute for Medical Microbiology, Immunology and Hygiene, Technische Universität München, Trogerstr. 30, 81675 Munich, Germany
| | - Martin Klingenspor
- Chair of Molecular Nutritional Medicine, Technical University Munich, EKFZ - Else Kröner Fresenius Center for Nutritional Medicine, Gregor-Mendel-Str. 2, 85350 Freising-Weihenstephan, Germany; ZIEL - Institute for Food and Health, Technical University Munich, Gregor-Mendel-Str. 2, 85350 Freising-Weihenstephan, Germany
| | - Thomas Klopstock
- Department of Neurology, Friedrich-Baur-Institute, Klinikum der Ludwig-Maximilians-Universität München, Ziemssenstr. 1a, 80336 Munich, Germany; German Center for Neurodegenerative Diseases (DZNE), 80336 Munich, Germany; Munich Cluster for Systems Neurology (SyNergy), Adolf-Butenandt-Institut, Ludwig-Maximilians-Universität München, Schillerstr. 44, 80336 Munich, Germany; German Center for Vertigo and Balance Disorders, 81377 Munich, Germany
| | - Markus Ollert
- Department of Infection and Immunity, Luxembourg Institute of Health, 29, Rue Henri Koch, 4354 Esch-sur-Alzette, Luxembourg; Department of Dermatology and Allergy Center, Odense Research Center for Anaphylaxis, University of Southern Denmark, 5000 Odense C, Denmark
| | - Carsten Schmidt-Weber
- Center of Allergy & Environment (ZAUM), Technische Universität München, and Helmholtz Zentrum München, Ingolstädter-Landstr., 85764 Neuherberg, Germany
| | - Tobias Stöger
- Institute of Lung Biology and Disease, Member of the German Center for Lung Research (DZL), Helmholtz Zentrum München, German Research Center for Environmental Health, Ingolstädter-Landstr. 1, D-85764 Neuherberg, Germany
| | - Eckhard Wolf
- Institute of Molecular Animal Breeding and Biotechnology, Gene Center, Ludwig-Maximilians-University München, Feodor-Lynen-Str. 25, 81377 Munich, Germany
| | - Wolfgang Wurst
- Institute of Developmental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health, Ingolstädter-Landstr. 1, 85764 Neuherberg, Germany; German Center for Neurodegenerative Diseases (DZNE), 80336 Munich, Germany; Munich Cluster for Systems Neurology (SyNergy), Adolf-Butenandt-Institut, Ludwig-Maximilians-Universität München, Schillerstr. 44, 80336 Munich, Germany; Chair of Developmental Genetics, Technische Universität München Freising-Weihenstephan, c/o Helmholtz Zentrum München Ingolstädter-Landstr. 1, 85764 Neuherberg, Germany
| | - Ali Önder Yildirim
- Institute of Lung Biology and Disease, Member of the German Center for Lung Research (DZL), Helmholtz Zentrum München, German Research Center for Environmental Health, Ingolstädter-Landstr. 1, D-85764 Neuherberg, Germany
| | - Andreas Zimmer
- Institute of Molecular Psychiatry, Medical Faculty, University of Bonn, Sigmund Freud Str. 25, 53127 Bonn, Germany
| | - Valérie Gailus-Durner
- German Mouse Clinic, Institute of Experimental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health, Ingolstädter-Landstr. 1, 85764 Neuherberg, Germany
| | - Martin Hrabě de Angelis
- German Mouse Clinic, Institute of Experimental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health, Ingolstädter-Landstr. 1, 85764 Neuherberg, Germany; German Center for Diabetes Research (DZD), Ingolstädter-Landstr. 1, 85764 Neuherberg, Germany; Chair of Experimental Genetics, School of Life Science Weihenstephan, Technische Universität München, Alte Akademie 8, 85354 Freising, Germany.
| |
Collapse
|
37
|
Jackson SJ, Andrews N, Ball D, Bellantuono I, Gray J, Hachoumi L, Holmes A, Latcham J, Petrie A, Potter P, Rice A, Ritchie A, Stewart M, Strepka C, Yeoman M, Chapman K. Does age matter? The impact of rodent age on study outcomes. Lab Anim 2017; 51:160-169. [PMID: 27307423 PMCID: PMC5367550 DOI: 10.1177/0023677216653984] [Citation(s) in RCA: 200] [Impact Index Per Article: 28.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Rodent models produce data which underpin biomedical research and non-clinical drug trials, but translation from rodents into successful clinical outcomes is often lacking. There is a growing body of evidence showing that improving experimental design is key to improving the predictive nature of rodent studies and reducing the number of animals used in research. Age, one important factor in experimental design, is often poorly reported and can be overlooked. The authors conducted a survey to assess the age used for a range of models, and the reasoning for age choice. From 297 respondents providing 611 responses, researchers reported using rodents most often in the 6-20 week age range regardless of the biology being studied. The age referred to as 'adult' by respondents varied between six and 20 weeks. Practical reasons for the choice of rodent age were frequently given, with increased cost associated with using older animals and maintenance of historical data comparability being two important limiting factors. These results highlight that choice of age is inconsistent across the research community and often not based on the development or cellular ageing of the system being studied. This could potentially result in decreased scientific validity and increased experimental variability. In some cases the use of older animals may be beneficial. Increased scientific rigour in the choice of the age of rodent may increase the translation of rodent models to humans.
Collapse
Affiliation(s)
- Samuel J Jackson
- National Centre for the Replacement, Refinement and Reduction of Animals in Research, London, UK
| | - Nick Andrews
- Division of Neurology, Kirby Center for Neurobiology, Boston Children’s Hospital, Boston, US
| | - Doug Ball
- Immunoinflammation TAU, GlaxoSmithKline, Stevenage, UK
| | - Ilaria Bellantuono
- Centre for Integrated Research into Musculoskeletal Ageing, University of Sheffield, Sheffield, UK
| | - James Gray
- Immunoinflammation TAU, GlaxoSmithKline, Stevenage, UK
| | - Lamia Hachoumi
- Pharmacy and Biomolecular Sciences, University of Brighton, Brighton, UK
| | - Alan Holmes
- Centre for Rheumatology, UCL Division of Medicine, Royal Free Campus, London, UK
| | - Judy Latcham
- Laboratory Animal Science, GlaxoSmithKline, Stevenage, UK
| | - Anja Petrie
- Rowett Institute of Nutrition & Health, University of Aberdeen, Aberdeen, UK
| | - Paul Potter
- Disease Models and Translation, Mammalian Genetics Unit, MRC Harwell, Harwell, UK
| | - Andrew Rice
- Pain Research, Department of Surgery & Cancer, Imperial College London, London, UK
| | - Alison Ritchie
- Division of Cancer & Stem Cells, University of Nottingham, Nottingham, UK
| | | | | | - Mark Yeoman
- Pharmacy and Biomolecular Sciences, University of Brighton, Brighton, UK
| | - Kathryn Chapman
- National Centre for the Replacement, Refinement and Reduction of Animals in Research, London, UK
| |
Collapse
|
38
|
Leduc RY, Singh P, McDermid HE. Genetic backgrounds and modifier genes of NTD mouse models: An opportunity for greater understanding of the multifactorial etiology of neural tube defects. Birth Defects Res 2017; 109:140-152. [DOI: 10.1002/bdra.23554] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2016] [Revised: 07/22/2016] [Accepted: 07/26/2016] [Indexed: 01/02/2023]
Affiliation(s)
- Renee Y.M. Leduc
- Department of Biological Sciences; University of Alberta; Edmonton Alberta Canada
| | - Parmveer Singh
- Department of Biological Sciences; University of Alberta; Edmonton Alberta Canada
| | - Heather E. McDermid
- Department of Biological Sciences; University of Alberta; Edmonton Alberta Canada
| |
Collapse
|
39
|
Kõks S, Dogan S, Tuna BG, González-Navarro H, Potter P, Vandenbroucke RE. Mouse models of ageing and their relevance to disease. Mech Ageing Dev 2016; 160:41-53. [PMID: 27717883 DOI: 10.1016/j.mad.2016.10.001] [Citation(s) in RCA: 71] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2016] [Revised: 09/26/2016] [Accepted: 10/03/2016] [Indexed: 12/28/2022]
Abstract
Ageing is a process that gradually increases the organism's vulnerability to death. It affects different biological pathways, and the underlying cellular mechanisms are complex. In view of the growing disease burden of ageing populations, increasing efforts are being invested in understanding the pathways and mechanisms of ageing. We review some mouse models commonly used in studies on ageing, highlight the advantages and disadvantages of the different strategies, and discuss their relevance to disease susceptibility. In addition to addressing the genetics and phenotypic analysis of mice, we discuss examples of models of delayed or accelerated ageing and their modulation by caloric restriction.
Collapse
Affiliation(s)
- Sulev Kõks
- University of Tartu, Tartu, Estonia and Estonian University of Life Sciences, Tartu, Estonia.
| | - Soner Dogan
- Yeditepe University, School of Medicine, Department of Medical Biology, Istanbul, Turkey.
| | - Bilge Guvenc Tuna
- Yeditepe University, School of Medicine, Department of Biophysics, Istanbul, Turkey.
| | - Herminia González-Navarro
- Institute of Health Research-INCLIVA, 46010 Valencia, Spain and CIBER de Diabetes y Enfermedades Metabólicas (CIBERDEM), 28029 Madrid, Spain.
| | - Paul Potter
- Mammalian Genetics Unit, MRC Harwell, Oxfordshire, UK.
| | - Roosmarijn E Vandenbroucke
- Inflammation Research Center, VIB, Ghent, Belgium, Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium.
| |
Collapse
|
40
|
Potter PK, Bowl MR, Jeyarajan P, Wisby L, Blease A, Goldsworthy ME, Simon MM, Greenaway S, Michel V, Barnard A, Aguilar C, Agnew T, Banks G, Blake A, Chessum L, Dorning J, Falcone S, Goosey L, Harris S, Haynes A, Heise I, Hillier R, Hough T, Hoslin A, Hutchison M, King R, Kumar S, Lad HV, Law G, MacLaren RE, Morse S, Nicol T, Parker A, Pickford K, Sethi S, Starbuck B, Stelma F, Cheeseman M, Cross SH, Foster RG, Jackson IJ, Peirson SN, Thakker RV, Vincent T, Scudamore C, Wells S, El-Amraoui A, Petit C, Acevedo-Arozena A, Nolan PM, Cox R, Mallon AM, Brown SDM. Novel gene function revealed by mouse mutagenesis screens for models of age-related disease. Nat Commun 2016; 7:12444. [PMID: 27534441 PMCID: PMC4992138 DOI: 10.1038/ncomms12444] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Accepted: 07/01/2016] [Indexed: 12/19/2022] Open
Abstract
Determining the genetic bases of age-related disease remains a major challenge requiring a spectrum of approaches from human and clinical genetics to the utilization of model organism studies. Here we report a large-scale genetic screen in mice employing a phenotype-driven discovery platform to identify mutations resulting in age-related disease, both late-onset and progressive. We have utilized N-ethyl-N-nitrosourea mutagenesis to generate pedigrees of mutagenized mice that were subject to recurrent screens for mutant phenotypes as the mice aged. In total, we identify 105 distinct mutant lines from 157 pedigrees analysed, out of which 27 are late-onset phenotypes across a range of physiological systems. Using whole-genome sequencing we uncover the underlying genes for 44 of these mutant phenotypes, including 12 late-onset phenotypes. These genes reveal a number of novel pathways involved with age-related disease. We illustrate our findings by the recovery and characterization of a novel mouse model of age-related hearing loss.
Collapse
Affiliation(s)
- Paul K. Potter
- MRC Harwell Institute, Mammalian Genetics Unit, Harwell Campus, Oxfordshire OX11 0RD, UK
| | - Michael R. Bowl
- MRC Harwell Institute, Mammalian Genetics Unit, Harwell Campus, Oxfordshire OX11 0RD, UK
| | - Prashanthini Jeyarajan
- MRC Harwell Institute, Mammalian Genetics Unit, Harwell Campus, Oxfordshire OX11 0RD, UK
| | - Laura Wisby
- MRC Harwell Institute, Mammalian Genetics Unit, Harwell Campus, Oxfordshire OX11 0RD, UK
| | - Andrew Blease
- MRC Harwell Institute, Mammalian Genetics Unit, Harwell Campus, Oxfordshire OX11 0RD, UK
| | | | - Michelle M. Simon
- MRC Harwell Institute, Mammalian Genetics Unit, Harwell Campus, Oxfordshire OX11 0RD, UK
| | - Simon Greenaway
- MRC Harwell Institute, Mammalian Genetics Unit, Harwell Campus, Oxfordshire OX11 0RD, UK
| | - Vincent Michel
- Génétique et Physiologie de l'Audition, Institut Pasteur, INSERM UMR-S 1120, Sorbonne Universités, UPMC Univ Paris 06, Collège de France, 25 rue Dr Roux, Paris 75015, France
| | - Alun Barnard
- The Nuffield Laboratory of Ophthalmology & NIHR Oxford Biomedical Research Centre, University of Oxford, Oxford OX3 9DU, UK
| | - Carlos Aguilar
- MRC Harwell Institute, Mammalian Genetics Unit, Harwell Campus, Oxfordshire OX11 0RD, UK
| | - Thomas Agnew
- MRC Harwell Institute, Mammalian Genetics Unit, Harwell Campus, Oxfordshire OX11 0RD, UK
| | - Gareth Banks
- MRC Harwell Institute, Mammalian Genetics Unit, Harwell Campus, Oxfordshire OX11 0RD, UK
| | - Andrew Blake
- MRC Harwell Institute, Mammalian Genetics Unit, Harwell Campus, Oxfordshire OX11 0RD, UK
| | - Lauren Chessum
- MRC Harwell Institute, Mammalian Genetics Unit, Harwell Campus, Oxfordshire OX11 0RD, UK
| | - Joanne Dorning
- MRC Harwell Institute, Mammalian Genetics Unit, Harwell Campus, Oxfordshire OX11 0RD, UK
| | - Sara Falcone
- MRC Harwell Institute, Mammalian Genetics Unit, Harwell Campus, Oxfordshire OX11 0RD, UK
| | - Laurence Goosey
- MRC Harwell Institute, Mammalian Genetics Unit, Harwell Campus, Oxfordshire OX11 0RD, UK
| | - Shelley Harris
- MRC Harwell Institute, Mammalian Genetics Unit, Harwell Campus, Oxfordshire OX11 0RD, UK
| | - Andy Haynes
- MRC Harwell Institute, Mammalian Genetics Unit, Harwell Campus, Oxfordshire OX11 0RD, UK
| | - Ines Heise
- MRC Harwell Institute, Mammalian Genetics Unit, Harwell Campus, Oxfordshire OX11 0RD, UK
| | - Rosie Hillier
- MRC Harwell Institute, Mammalian Genetics Unit, Harwell Campus, Oxfordshire OX11 0RD, UK
| | - Tertius Hough
- MRC Harwell Institute, Mammalian Genetics Unit, Harwell Campus, Oxfordshire OX11 0RD, UK
| | - Angela Hoslin
- MRC Harwell Institute, Mammalian Genetics Unit, Harwell Campus, Oxfordshire OX11 0RD, UK
| | - Marie Hutchison
- MRC Harwell Institute, Mammalian Genetics Unit, Harwell Campus, Oxfordshire OX11 0RD, UK
| | - Ruairidh King
- MRC Harwell Institute, Mammalian Genetics Unit, Harwell Campus, Oxfordshire OX11 0RD, UK
| | - Saumya Kumar
- MRC Harwell Institute, Mammalian Genetics Unit, Harwell Campus, Oxfordshire OX11 0RD, UK
| | - Heena V. Lad
- MRC Harwell Institute, Mammalian Genetics Unit, Harwell Campus, Oxfordshire OX11 0RD, UK
| | - Gemma Law
- MRC Harwell Institute, Mammalian Genetics Unit, Harwell Campus, Oxfordshire OX11 0RD, UK
| | - Robert E. MacLaren
- The Nuffield Laboratory of Ophthalmology & NIHR Oxford Biomedical Research Centre, University of Oxford, Oxford OX3 9DU, UK
| | - Susan Morse
- MRC Harwell Institute, Mammalian Genetics Unit, Harwell Campus, Oxfordshire OX11 0RD, UK
| | - Thomas Nicol
- MRC Harwell Institute, Mammalian Genetics Unit, Harwell Campus, Oxfordshire OX11 0RD, UK
| | - Andrew Parker
- MRC Harwell Institute, Mammalian Genetics Unit, Harwell Campus, Oxfordshire OX11 0RD, UK
| | - Karen Pickford
- MRC Harwell Institute, Mammalian Genetics Unit, Harwell Campus, Oxfordshire OX11 0RD, UK
| | - Siddharth Sethi
- MRC Harwell Institute, Mammalian Genetics Unit, Harwell Campus, Oxfordshire OX11 0RD, UK
| | - Becky Starbuck
- MRC Harwell Institute, Mammalian Genetics Unit, Harwell Campus, Oxfordshire OX11 0RD, UK
| | - Femke Stelma
- MRC Harwell Institute, Mammalian Genetics Unit, Harwell Campus, Oxfordshire OX11 0RD, UK
| | - Michael Cheeseman
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh EH25 9RG, UK
| | - Sally H. Cross
- MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Western General Hospital, Edinburgh EH4 2XU, UK
| | - Russell G. Foster
- Nuffield Department of Clinical Neurosciences (Nuffield Laboratory of Ophthalmology), John Radcliffe Hospital, University of Oxford, Oxford OX3 9DU, UK
| | - Ian J. Jackson
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh EH25 9RG, UK
- MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Western General Hospital, Edinburgh EH4 2XU, UK
| | - Stuart N. Peirson
- Nuffield Department of Clinical Neurosciences (Nuffield Laboratory of Ophthalmology), John Radcliffe Hospital, University of Oxford, Oxford OX3 9DU, UK
| | - Rajesh V. Thakker
- Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, Churchill Hospital, Oxford OX3 7LJ, UK
| | - Tonia Vincent
- Kennedy Institute of Rheumatology, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford OX3 7FY, UK
| | - Cheryl Scudamore
- MRC Harwell Institute, Mammalian Genetics Unit, Harwell Campus, Oxfordshire OX11 0RD, UK
| | - Sara Wells
- MRC Harwell Institute, Mammalian Genetics Unit, Harwell Campus, Oxfordshire OX11 0RD, UK
| | - Aziz El-Amraoui
- Génétique et Physiologie de l'Audition, Institut Pasteur, INSERM UMR-S 1120, Sorbonne Universités, UPMC Univ Paris 06, Collège de France, 25 rue Dr Roux, Paris 75015, France
| | - Christine Petit
- Génétique et Physiologie de l'Audition, Institut Pasteur, INSERM UMR-S 1120, Sorbonne Universités, UPMC Univ Paris 06, Collège de France, 25 rue Dr Roux, Paris 75015, France
| | | | - Patrick M. Nolan
- MRC Harwell Institute, Mammalian Genetics Unit, Harwell Campus, Oxfordshire OX11 0RD, UK
| | - Roger Cox
- MRC Harwell Institute, Mammalian Genetics Unit, Harwell Campus, Oxfordshire OX11 0RD, UK
| | - Anne-Marie Mallon
- MRC Harwell Institute, Mammalian Genetics Unit, Harwell Campus, Oxfordshire OX11 0RD, UK
| | - Steve D. M. Brown
- MRC Harwell Institute, Mammalian Genetics Unit, Harwell Campus, Oxfordshire OX11 0RD, UK
| |
Collapse
|
41
|
Han C, Linser P, Park HJ, Kim MJ, White K, Vann JM, Ding D, Prolla TA, Someya S. Sirt1 deficiency protects cochlear cells and delays the early onset of age-related hearing loss in C57BL/6 mice. Neurobiol Aging 2016; 43:58-71. [PMID: 27255815 DOI: 10.1016/j.neurobiolaging.2016.03.023] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2015] [Revised: 02/29/2016] [Accepted: 03/22/2016] [Indexed: 10/22/2022]
Abstract
Hearing gradually declines with age in both animals and humans, and this condition is known as age-related hearing loss (AHL). Here, we investigated the effects of deficiency of Sirt1, a member of the mammalian sirtuin family, on age-related cochlear pathology and associated hearing loss in C57BL/6 mice, a mouse model of early-onset AHL. Sirt1 deficiency reduced age-related oxidative damage of cochlear hair cells and spiral ganglion neurons and delayed the early onset of AHL. In cultured mouse inner ear cell lines, Sirt1 knockdown increased cell viability under oxidative stress conditions, induced nuclear translocation of Foxo3a, and increased acetylation status of Foxo3a. This resulted in increased activity of the antioxidant enzyme catalase. In young wild-type mice, both Sirt1 and Foxo3a proteins resided in the cytoplasm of the supporting cells within the organ of Corti of the cochlea. Therefore, our findings suggest that SIRT1 promotes early-onset AHL through suppressing FOXO3a-mediated oxidative stress resistance in the cochlea of C57BL/6 mice.
Collapse
Affiliation(s)
- Chul Han
- Department of Aging and Geriatric Research, University of Florida, Gainesville, FL, USA
| | - Paul Linser
- Whitney Laboratory, University of Florida, St Augustine, FL, USA
| | - Hyo-Jin Park
- Department of Neurology, University of Florida, Gainesville, FL, USA
| | - Mi-Jung Kim
- Department of Aging and Geriatric Research, University of Florida, Gainesville, FL, USA
| | - Karessa White
- Department of Aging and Geriatric Research, University of Florida, Gainesville, FL, USA
| | - James M Vann
- Department of Genetics, University of Wisconsin, Madison, WI, USA; Department of Medical Genetics, University of Wisconsin, Madison, WI, USA
| | - Dalian Ding
- Center for Hearing and Deafness, State University of New York at Buffalo, NY, USA
| | - Tomas A Prolla
- Department of Genetics, University of Wisconsin, Madison, WI, USA; Department of Medical Genetics, University of Wisconsin, Madison, WI, USA
| | - Shinichi Someya
- Department of Aging and Geriatric Research, University of Florida, Gainesville, FL, USA.
| |
Collapse
|
42
|
Mianné J, Chessum L, Kumar S, Aguilar C, Codner G, Hutchison M, Parker A, Mallon AM, Wells S, Simon MM, Teboul L, Brown SDM, Bowl MR. Correction of the auditory phenotype in C57BL/6N mice via CRISPR/Cas9-mediated homology directed repair. Genome Med 2016; 8:16. [PMID: 26876963 PMCID: PMC4753642 DOI: 10.1186/s13073-016-0273-4] [Citation(s) in RCA: 94] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2015] [Accepted: 01/26/2016] [Indexed: 11/27/2022] Open
Abstract
BACKGROUND Nuclease-based technologies have been developed that enable targeting of specific DNA sequences directly in the zygote. These approaches provide an opportunity to modify the genomes of inbred mice, and allow the removal of strain-specific mutations that confound phenotypic assessment. One such mutation is the Cdh23 (ahl) allele, present in several commonly used inbred mouse strains, which predisposes to age-related progressive hearing loss. RESULTS We have used targeted CRISPR/Cas9-mediated homology directed repair (HDR) to correct the Cdh23 (ahl) allele directly in C57BL/6NTac zygotes. Employing offset-nicking Cas9 (D10A) nickase with paired RNA guides and a single-stranded oligonucleotide donor template we show that allele repair was successfully achieved. To investigate potential Cas9-mediated 'off-target' mutations in our corrected mouse, we undertook whole-genome sequencing and assessed the 'off-target' sites predicted for the guide RNAs (≤4 nucleotide mis-matches). No induced sequence changes were identified at any of these sites. Correction of the progressive hearing loss phenotype was demonstrated using auditory-evoked brainstem response testing of mice at 24 and 36 weeks of age, and rescue of the progressive loss of sensory hair cell stereocilia bundles was confirmed using scanning electron microscopy of dissected cochleae from 36-week-old mice. CONCLUSIONS CRISPR/Cas9-mediated HDR has been successfully utilised to efficiently correct the Cdh23 (ahl) allele in C57BL/6NTac mice, and rescue the associated auditory phenotype. The corrected mice described in this report will allow age-related auditory phenotyping studies to be undertaken using C57BL/6NTac-derived models, such as those generated by the International Mouse Phenotyping Consortium (IMPC) programme.
Collapse
Affiliation(s)
- Joffrey Mianné
- Mary Lyon Centre, MRC Harwell, Harwell, Oxford, OX11 0RD, UK
| | - Lauren Chessum
- Mammalian Genetics Unit, MRC Harwell, Harwell, Oxford, OX11 0RD, UK
| | - Saumya Kumar
- Mammalian Genetics Unit, MRC Harwell, Harwell, Oxford, OX11 0RD, UK
| | - Carlos Aguilar
- Mammalian Genetics Unit, MRC Harwell, Harwell, Oxford, OX11 0RD, UK
| | - Gemma Codner
- Mary Lyon Centre, MRC Harwell, Harwell, Oxford, OX11 0RD, UK
| | - Marie Hutchison
- Mary Lyon Centre, MRC Harwell, Harwell, Oxford, OX11 0RD, UK
| | - Andrew Parker
- Mammalian Genetics Unit, MRC Harwell, Harwell, Oxford, OX11 0RD, UK
| | - Ann-Marie Mallon
- Mammalian Genetics Unit, MRC Harwell, Harwell, Oxford, OX11 0RD, UK
| | - Sara Wells
- Mary Lyon Centre, MRC Harwell, Harwell, Oxford, OX11 0RD, UK
| | - Michelle M Simon
- Mammalian Genetics Unit, MRC Harwell, Harwell, Oxford, OX11 0RD, UK
| | - Lydia Teboul
- Mary Lyon Centre, MRC Harwell, Harwell, Oxford, OX11 0RD, UK
| | - Steve D M Brown
- Mammalian Genetics Unit, MRC Harwell, Harwell, Oxford, OX11 0RD, UK.
| | - Michael R Bowl
- Mammalian Genetics Unit, MRC Harwell, Harwell, Oxford, OX11 0RD, UK.
| |
Collapse
|
43
|
McKay SE, Yan W, Nouws J, Thormann MJ, Raimundo N, Khan A, Santos-Sacchi J, Song L, Shadel GS. Auditory Pathology in a Transgenic mtTFB1 Mouse Model of Mitochondrial Deafness. THE AMERICAN JOURNAL OF PATHOLOGY 2015; 185:3132-40. [PMID: 26552864 DOI: 10.1016/j.ajpath.2015.08.014] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2014] [Revised: 07/31/2015] [Accepted: 08/14/2015] [Indexed: 12/13/2022]
Abstract
The A1555G mutation in the 12S rRNA gene of human mitochondrial DNA causes maternally inherited, nonsyndromic deafness, an extreme case of tissue-specific mitochondrial pathology. A transgenic mouse strain that robustly overexpresses the mitochondrial 12S ribosomal RNA methyltransferase TFB1M (Tg-mtTFB1 mice) exhibits progressive hearing loss that we proposed models aspects of A1555G-related pathology in humans. Although our previous studies of Tg-mtTFB1 mice implicated apoptosis in the spiral ganglion and stria vascularis because of mitochondrial reactive oxygen species-mediated activation of AMP kinase (AMPK) and the nuclear transcription factor E2F1, detailed auditory pathology was not delineated. Herein, we show that Tg-mtTFB1 mice have reduced endocochlear potential, indicative of significant stria vascularis dysfunction, but without obvious signs of strial atrophy. We also observed decreased auditory brainstem response peak 1 amplitude and prolonged wave I latency, consistent with apoptosis of spiral ganglion neurons. Although no major loss of hair cells was observed, there was a mild impairment of voltage-dependent electromotility of outer hair cells. On the basis of these results, we propose that these events conspire to produce the progressive hearing loss phenotype in Tg-mtTFB1 mice. Finally, genetically reducing AMPK α1 rescues hearing loss in Tg-mtTFB1 mice, confirming that aberrant up-regulation of AMPK signaling promotes the observed auditory pathology. The relevance of these findings to human A1555G patients and the potential therapeutic value of reducing AMPK activity are discussed.
Collapse
Affiliation(s)
- Sharen E McKay
- Department of Pathology, Yale School of Medicine, New Haven, Connecticut; Department of Psychology, University of Bridgeport, Bridgeport, Connecticut
| | - Wayne Yan
- Department of Surgery, Yale School of Medicine, New Haven, Connecticut
| | - Jessica Nouws
- Department of Pathology, Yale School of Medicine, New Haven, Connecticut
| | | | - Nuno Raimundo
- Institute of Cell Biology, University Medical Center Göettingen, Göttingen, Germany
| | - Abdul Khan
- Department of Pathology, Yale School of Medicine, New Haven, Connecticut
| | - Joseph Santos-Sacchi
- Department of Surgery, Yale School of Medicine, New Haven, Connecticut; Department of Cellular and Molecular Physiology, Yale School of Medicine, New Haven, Connecticut; Department of Neurobiology, Yale School of Medicine, New Haven, Connecticut.
| | - Lei Song
- Department of Surgery, Yale School of Medicine, New Haven, Connecticut.
| | - Gerald S Shadel
- Department of Pathology, Yale School of Medicine, New Haven, Connecticut; Department of Genetics, Yale School of Medicine, New Haven, Connecticut.
| |
Collapse
|
44
|
Johnson KR, Longo-Guess CM, Gagnon LH. A QTL on Chr 5 modifies hearing loss associated with the fascin-2 variant of DBA/2J mice. Mamm Genome 2015; 26:338-47. [PMID: 26092689 DOI: 10.1007/s00335-015-9574-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2015] [Accepted: 06/02/2015] [Indexed: 12/16/2022]
Abstract
Inbred mouse strains serve as important models for human presbycusis or age-related hearing loss. We previously mapped a locus (ahl8) contributing to the progressive hearing loss of DBA/2J (D2) mice and later showed that a missense variant of the Fscn2 gene, unique to the D2 inbred strain, was responsible for the ahl8 effect. Although ahl8 can explain much of the hearing loss difference between C57BL/6J (B6) and D2 strain mice, other loci also contribute. Here, we present results of our linkage analyses to map quantitative trait loci (QTLs) that modify the severity of hearing loss associated with the D2 strain Fscn2 (ahl8) allele. We searched for modifier loci by analyzing 31 BXD recombinant inbred (RI) lines fixed for the predisposing D2-derived Fscn2 (ahl8/ahl8) genotype and found a statistically significant linkage association of threshold means with a QTL on Chr 5, which we designated M5ahl8. The highest association (LOD 4.6) was with markers at the 84-90 Mb position of Chr 5, which could explain about 46 % of the among-RI strain variation in auditory brainstem response (ABR) threshold means. The semidominant nature of the modifying effect of M5ahl8 on the Fscn2 (ahl8/ahl8) phenotype was demonstrated by analysis of a backcross involving D2 and B6.D2-Chr11D/LusJ strain mice. The Chr 5 map position of M5ahl8 and the D2 origin of its susceptibility allele correspond to Tmc1m4, a previously reported QTL that modifies outer hair cell degeneration in Tmc1 (Bth) mutant mice, suggesting that M5ahl8 and Tmc1m4 may represent the same gene affecting maintenance of stereocilia structure and function during aging.
Collapse
MESH Headings
- Aging/genetics
- Aging/metabolism
- Aging/pathology
- Alleles
- Animals
- Carrier Proteins/genetics
- Carrier Proteins/metabolism
- Chromosome Mapping
- Chromosomes, Mammalian/chemistry
- Disease Models, Animal
- Evoked Potentials, Auditory, Brain Stem
- Female
- Gene Expression
- Genetic Linkage
- Genetic Predisposition to Disease
- Genotype
- Hair Cells, Auditory, Outer/metabolism
- Hair Cells, Auditory, Outer/pathology
- Humans
- Male
- Mice
- Mice, Inbred C57BL
- Mice, Inbred DBA
- Microfilament Proteins/genetics
- Microfilament Proteins/metabolism
- Phenotype
- Presbycusis/genetics
- Presbycusis/metabolism
- Presbycusis/pathology
- Quantitative Trait Loci
- Severity of Illness Index
- Species Specificity
Collapse
|
45
|
A short splice form of Xin-actin binding repeat containing 2 (XIRP2) lacking the Xin repeats is required for maintenance of stereocilia morphology and hearing function. J Neurosci 2015; 35:1999-2014. [PMID: 25653358 DOI: 10.1523/jneurosci.3449-14.2015] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Approximately one-third of known deafness genes encode proteins located in the hair bundle, the sensory hair cell's mechanoreceptive organelle. In previous studies, we used mass spectrometry to characterize the hair bundle's proteome, resulting in the discovery of novel bundle proteins. One such protein is Xin-actin binding repeat containing 2 (XIRP2), an actin-cross-linking protein previously reported to be specifically expressed in striated muscle. Because mutations in other actin-cross-linkers result in hearing loss, we investigated the role of XIRP2 in hearing function. In the inner ear, XIRP2 is specifically expressed in hair cells, colocalizing with actin-rich structures in bundles, the underlying cuticular plate, and the circumferential actin belt. Analysis using peptide mass spectrometry revealed that the bundle harbors a previously uncharacterized XIRP2 splice variant, suggesting XIRP2's role in the hair cell differs significantly from that reported in myocytes. To determine the role of XIRP2 in hearing, we applied clustered regularly interspaced short palindromic repeat (CRISPR)/Cas9-mediated genome-editing technology to induce targeted mutations into the mouse Xirp2 gene, resulting in the elimination of XIRP2 protein expression in the inner ear. Functional analysis of hearing in the resulting Xirp2-null mice revealed high-frequency hearing loss, and ultrastructural scanning electron microscopy analyses of hair cells demonstrated stereocilia degeneration in these mice. We thus conclude that XIRP2 is required for long-term maintenance of hair cell stereocilia, and that its dysfunction causes hearing loss in the mouse.
Collapse
|
46
|
Abstract
Hearing loss is the most common form of sensory impairment in humans and affects more than 40 million people in the United States alone. No drug-based therapy has been approved by the Food and Drug Administration, and treatment mostly relies on devices such as hearing aids and cochlear implants. Over recent years, more than 100 genetic loci have been linked to hearing loss and many of the affected genes have been identified. This understanding of the genetic pathways that regulate auditory function has revealed new targets for pharmacological treatment of the disease. Moreover, approaches that are based on stem cells and gene therapy, which may have the potential to restore or maintain auditory function, are beginning to emerge.
Collapse
Affiliation(s)
- Ulrich Müller
- Department of Molecular and Cellular Neuroscience, Dorris Neuroscience Center, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, San Diego, California 92037, USA
| | - Peter G Barr-Gillespie
- Oregon Hearing Research Center, Vollum Institute, Oregon Health &Science University, 3181 South West Sam Jackson Park Road, Portland, Oregon 97239, USA
| |
Collapse
|
47
|
Validation of simple sequence length polymorphism regions of commonly used mouse strains for marker assisted speed congenics screening. Int J Genomics 2015; 2015:735845. [PMID: 25815306 PMCID: PMC4359823 DOI: 10.1155/2015/735845] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2014] [Revised: 12/30/2014] [Accepted: 01/10/2015] [Indexed: 11/28/2022] Open
Abstract
Marker assisted speed congenics technique is commonly used to facilitate backcrossing of mouse strains in nearly half the time it normally takes otherwise. Traditionally, the technique is performed by analyzing PCR amplified regions of simple sequence length polymorphism (SSLP) markers between the recipient and donor strains: offspring with the highest number of markers showing the recipient genome across all chromosomes is chosen for the next generation. Although there are well-defined panels of SSLP makers established between certain pairs of mice strains, they are incomplete for most strains. The availability of well-established marker sets for speed congenic screens would enable the scientific community to transfer mutations across strain backgrounds. In this study, we tested the suitability of over 400 SSLP marker sets among 10 mouse strains commonly used for generating genetically engineered models. The panel of markers presented here can readily identify the specified strains and will be quite useful in marker assisted speed congenic screens. Moreover, unlike newer single nucleotide polymorphism (SNP) array methods which require sophisticated equipment, the SSLP markers panel described here only uses PCR and agarose gel electrophoresis of amplified products; therefore it can be performed in most research laboratories.
Collapse
|
48
|
Altschuler RA, Dolan DF, Halsey K, Kanicki A, Deng N, Martin C, Eberle J, Kohrman DC, Miller RA, Schacht J. Age-related changes in auditory nerve-inner hair cell connections, hair cell numbers, auditory brain stem response and gap detection in UM-HET4 mice. Neuroscience 2015; 292:22-33. [PMID: 25665752 DOI: 10.1016/j.neuroscience.2015.01.068] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2014] [Revised: 01/12/2015] [Accepted: 01/29/2015] [Indexed: 01/24/2023]
Abstract
This study compared the timing of appearance of three components of age-related hearing loss that determine the pattern and severity of presbycusis: the functional and structural pathologies of sensory cells and neurons and changes in gap detection (GD), the latter as an indicator of auditory temporal processing. Using UM-HET4 mice, genetically heterogeneous mice derived from four inbred strains, we studied the integrity of inner and outer hair cells by position along the cochlear spiral, inner hair cell-auditory nerve connections, spiral ganglion neurons (SGN), and determined auditory thresholds, as well as pre-pulse and gap inhibition of the acoustic startle reflex (ASR). Comparisons were made between mice of 5-7, 22-24 and 27-29 months of age. There was individual variability among mice in the onset and extent of age-related auditory pathology. At 22-24 months of age a moderate to large loss of outer hair cells was restricted to the apical third of the cochlea and threshold shifts in the auditory brain stem response were minimal. There was also a large and significant loss of inner hair cell-auditory nerve connections and a significant reduction in GD. The expression of Ntf3 in the cochlea was significantly reduced. At 27-29 months of age there was no further change in the mean number of synaptic connections per inner hair cell or in GD, but a moderate to large loss of outer hair cells was found across all cochlear turns as well as significantly increased ABR threshold shifts at 4, 12, 24 and 48 kHz. A statistical analysis of correlations on an individual animal basis revealed that neither the hair cell loss nor the ABR threshold shifts correlated with loss of GD or with the loss of connections, consistent with independent pathological mechanisms.
Collapse
Affiliation(s)
- R A Altschuler
- Kresge Hearing Research Institute, Dept. of Otolaryngology, University of Michigan, Ann Arbor, MI, USA; Dept. of Cell and Developmental Biology, University of Michigan, Ann Arbor, MI, USA
| | - D F Dolan
- Kresge Hearing Research Institute, Dept. of Otolaryngology, University of Michigan, Ann Arbor, MI, USA
| | - K Halsey
- Kresge Hearing Research Institute, Dept. of Otolaryngology, University of Michigan, Ann Arbor, MI, USA
| | - A Kanicki
- Kresge Hearing Research Institute, Dept. of Otolaryngology, University of Michigan, Ann Arbor, MI, USA
| | - N Deng
- Kresge Hearing Research Institute, Dept. of Otolaryngology, University of Michigan, Ann Arbor, MI, USA
| | - C Martin
- Kresge Hearing Research Institute, Dept. of Otolaryngology, University of Michigan, Ann Arbor, MI, USA
| | - J Eberle
- Kresge Hearing Research Institute, Dept. of Otolaryngology, University of Michigan, Ann Arbor, MI, USA
| | - D C Kohrman
- Kresge Hearing Research Institute, Dept. of Otolaryngology, University of Michigan, Ann Arbor, MI, USA; Dept. of Human Genetics, University of Michigan, Ann Arbor, MI, USA
| | - R A Miller
- Dept. of Pathology, University of Michigan, Ann Arbor, MI, USA
| | - J Schacht
- Kresge Hearing Research Institute, Dept. of Otolaryngology, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
49
|
Vijayakumar S, Lever TE, Pierce J, Zhao X, Bergstrom D, Lundberg YW, Jones TA, Jones SM. Vestibular dysfunction, altered macular structure and trait localization in A/J inbred mice. Mamm Genome 2015; 26:154-72. [PMID: 25645995 DOI: 10.1007/s00335-015-9556-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2014] [Accepted: 01/13/2015] [Indexed: 11/30/2022]
Abstract
A/J mice develop progressive hearing loss that begins before 1 month of age and is attributed to cochlear hair cell degeneration. Screening tests indicated that this strain also develops early onset vestibular dysfunction and has otoconial deficits. The purpose of this study was to characterize the vestibular dysfunction and macular structural pathology over the lifespan of A/J mice. Vestibular function was measured using linear vestibular evoked potentials (VsEPs). Macular structural pathology was evaluated using light microscopy, scanning electron microscopy, transmission electron microscopy, confocal microscopy and Western blotting. Individually, vestibular functional deficits in mice ranged from mild to profound. On average, A/J mice had significantly reduced vestibular sensitivity (elevated VsEP response thresholds and smaller amplitudes), whereas VsEP onset latency was prolonged compared to age-matched controls (C57BL/6). A limited age-related vestibular functional loss was also present. Structural analysis identified marked age-independent otoconial abnormalities in concert with some stereociliary bundle defects. Macular epithelia were incompletely covered by otoconial membranes with significantly reduced opacity and often contained abnormally large or giant otoconia as well as normal-appearing otoconia. Elevated expression of key otoconins (i.e., otoconin 90, otolin and keratin sulfate proteoglycan) ruled out the possibility of reduced levels contributing to otoconial dysgenesis. The phenotype of A/J was partially replicated in a consomic mouse strain (C57BL/6J-Chr 17(A/J)/NaJ), thus indicating that Chr 17(A/J) contained a trait locus for a new gene variant responsible to some extent for the A/J vestibular phenotype. Quantitative trait locus analysis identified additional epistatic influences associated with chromosomes 1, 4, 9 and X. Results indicate that the A/J phenotype represents a complex trait, and the A/J mouse strain presents a new model for the study of mechanisms underlying otoconial formation and maintenance.
Collapse
Affiliation(s)
- Sarath Vijayakumar
- Department of Special Education and Communication Disorders, University of Nebraska-Lincoln, 301 Barkley Memorial Center, Lincoln, NE, 68583, USA
| | | | | | | | | | | | | | | |
Collapse
|
50
|
|