1
|
Takano T, Takano C, Funakoshi H, Bando Y. Impact of Neuron-Derived HGF on c-Met and KAI-1 in CNS Glial Cells: Implications for Multiple Sclerosis Pathology. Int J Mol Sci 2024; 25:11261. [PMID: 39457044 PMCID: PMC11509024 DOI: 10.3390/ijms252011261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 10/10/2024] [Accepted: 10/16/2024] [Indexed: 10/28/2024] Open
Abstract
Demyelination and axonal degeneration are fundamental pathological characteristics of multiple sclerosis (MS), an inflammatory disease of the central nervous system (CNS). Although the molecular mechanisms driving these processes are not fully understood, hepatocyte growth factor (HGF) has emerged as a potential regulator of neuroinflammation and tissue protection in MS. Elevated HGF levels have been reported in MS patients receiving immunomodulatory therapy, indicating its relevance in disease modulation. This study investigated HGF's neuroprotective effects using transgenic mice that overexpressed HGF. The experimental autoimmune encephalomyelitis (EAE) model, which mimics MS pathology, was employed to assess demyelination and axonal damage in the CNS. HGF transgenic mice showed delayed EAE progression, with reduced CNS inflammation, decreased demyelination, and limited axonal degeneration. Scanning electron microscopy confirmed the preservation of myelin and axonal integrity in these mice. In addition, we explored HGF's effects using a cuprizone-induced demyelination model, which operates independently of the immune system. HGF transgenic mice exhibited significant protection against demyelination in this model as well. We also investigated the expression of key HGF receptors, particularly c-Met and KAI-1. While c-Met, which is associated with increased inflammation, was upregulated in EAE, its expression was significantly reduced in HGF transgenic mice, correlating with decreased neuroinflammation. Conversely, KAI-1, which has been linked to axonal protection and stability, showed enhanced expression in HGF transgenic mice, suggesting a protective mechanism against axonal degeneration. These findings underscore HGF's potential in preserving CNS structure and function, suggesting it may be a promising therapeutic target for MS, offering new hope for mitigating disease progression and enhancing neuroprotection.
Collapse
Affiliation(s)
- Takuma Takano
- Department of Functional Anatomy and Neuroscience, Asahikawa Medical University, Asahikawa 078-8510, Japan
- Department of Neurosurgery, Asahikawa Medical University, Asahikawa 078-8510, Japan
| | - Chie Takano
- Department of Functional Anatomy and Neuroscience, Asahikawa Medical University, Asahikawa 078-8510, Japan
- Department of Neurosurgery, Asahikawa Medical University, Asahikawa 078-8510, Japan
| | - Hiroshi Funakoshi
- Department of Advanced Medical Science, Asahikawa Medical University, Asahikawa 078-8510, Japan
| | - Yoshio Bando
- Department of Functional Anatomy and Neuroscience, Asahikawa Medical University, Asahikawa 078-8510, Japan
- Department of Anatomy, Akita University Graduate School of Medicine, Akita 010-08543, Japan
| |
Collapse
|
2
|
Bottero M, Pessina G, Bason C, Vigo T, Uccelli A, Ferrara G. Nerve-Glial antigen 2: unmasking the enigmatic cellular identity in the central nervous system. Front Immunol 2024; 15:1393842. [PMID: 39136008 PMCID: PMC11317297 DOI: 10.3389/fimmu.2024.1393842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 07/05/2024] [Indexed: 08/15/2024] Open
Abstract
Chondroitin sulfate proteoglycans (CSPGs) are fundamental components of the extracellular matrix in the central nervous system (CNS). Among these, the Nerve-Glial antigen 2 (NG2) stands out as a transmembrane CSPG exclusively expressed in a different population of cells collectively termed NG2-expressing cells. These enigmatic cells, found throughout the developing and adult CNS, have been indicated with various names, including NG2 progenitor cells, polydendrocytes, synantocytes, NG2 cells, and NG2-Glia, but are more commonly referred to as oligodendrocyte progenitor cells. Characterized by high proliferation rates and unique morphology, NG2-expressing cells stand apart from neurons, astrocytes, and oligodendrocytes. Intriguingly, some NG2-expressing cells form functional glutamatergic synapses with neurons, challenging the long-held belief that only neurons possess the intricate machinery required for neurotransmission. In the CNS, the complexity surrounding NG2-expressing cells extends to their classification. Additionally, NG2 expression has been documented in pericytes and immune cells, suggesting a role in regulating brain innate immunity and neuro-immune crosstalk in homeostasis. Ongoing debates revolve around their heterogeneity, potential as progenitors for various cell types, responses to neuroinflammation, and the role of NG2. Therefore, this review aims to shed light on the enigma of NG2-expressing cells by delving into their structure, functions, and signaling pathways. We will critically evaluate the literature on NG2 expression across the CNS, and address the contentious issues surrounding their classification and roles in neuroinflammation and neurodegeneration. By unraveling the intricacies of NG2-expressing cells, we hope to pave the way for a more comprehensive understanding of their contributions to CNS health and during neurological disorders.
Collapse
Affiliation(s)
- Marta Bottero
- IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Giada Pessina
- Department of Experimental Medicine, University of Genoa, Genoa, Italy
| | | | - Tiziana Vigo
- IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Antonio Uccelli
- IRCCS Ospedale Policlinico San Martino, Genoa, Italy
- Department of Neurology, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genoa, Genoa, Italy
| | | |
Collapse
|
3
|
Lin JP, Brake A, Donadieu M, Lee A, Kawaguchi R, Sati P, Geschwind DH, Jacobson S, Schafer DP, Reich DS. A 4D transcriptomic map for the evolution of multiple sclerosis-like lesions in the marmoset brain. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.25.559371. [PMID: 37808784 PMCID: PMC10557631 DOI: 10.1101/2023.09.25.559371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/10/2023]
Abstract
Single-time-point histopathological studies on postmortem multiple sclerosis (MS) tissue fail to capture lesion evolution dynamics, posing challenges for therapy development targeting development and repair of focal inflammatory demyelination. To close this gap, we studied experimental autoimmune encephalitis (EAE) in the common marmoset, the most faithful animal model of these processes. Using MRI-informed RNA profiling, we analyzed ~600,000 single-nucleus and ~55,000 spatial transcriptomes, comparing them against EAE inoculation status, longitudinal radiological signals, and histopathological features. We categorized 5 groups of microenvironments pertinent to neural function, immune and glial responses, tissue destruction and repair, and regulatory network at brain borders. Exploring perilesional microenvironment diversity, we uncovered central roles of EAE-associated astrocytes, oligodendrocyte precursor cells, and ependyma in lesion formation and resolution. We pinpointed imaging and molecular features capturing the pathological trajectory of WM, offering potential for assessing treatment outcomes using marmoset as a platform.
Collapse
Affiliation(s)
- Jing-Ping Lin
- Translational Neuroradiology Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD
| | - Alexis Brake
- Translational Neuroradiology Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD
| | - Maxime Donadieu
- Translational Neuroradiology Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD
| | - Amanda Lee
- Translational Neuroradiology Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD
| | - Riki Kawaguchi
- Departments of Neurology and Human Genetics, University of California, Los Angeles, Los Angeles, CA
| | - Pascal Sati
- Translational Neuroradiology Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD
- Department of Neurology, Cedars Sinai Medical Center, Los Angeles, CA
| | - Daniel H Geschwind
- Departments of Neurology and Human Genetics, University of California, Los Angeles, Los Angeles, CA
- Psychiatry, Semel Institute for Neuroscience and Human Behavior, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA
| | - Steven Jacobson
- Viral Immunology Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD
| | - Dorothy P Schafer
- Department of Neurobiology, Brudnick Neuropsychiatric Research Institute, University of Massachusetts Chan Medical School, Worcester, MA
| | - Daniel S Reich
- Translational Neuroradiology Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD
| |
Collapse
|
4
|
Allen CA, Goderie SK, Liu M, Kiehl TR, Farjood F, Wang Y, Boles NC, Temple S. Adult Mouse Leptomeninges Exhibit Regional and Age-related Cellular Heterogeneity Implicating Mental Disorders. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.10.557097. [PMID: 37745502 PMCID: PMC10515796 DOI: 10.1101/2023.09.10.557097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/26/2023]
Abstract
The leptomeninges envelop the central nervous system (CNS) and contribute to cerebrospinal fluid (CSF) production and homeostasis. We analyzed the meninges overlying the anterior or posterior forebrain in the adult mouse by single nuclear RNA-sequencing (snucRNA-seq). This revealed regional differences in fibroblast and endothelial cell composition and gene expression. Surprisingly, these non-neuronal cells co-expressed genes implicated in neural functions. The regional differences changed with aging, from 3 to 18 months. Cytokine analysis revealed specific soluble factor production from anterior vs posterior meninges that also altered with age. Secreted factors from the leptomeninges from different regions and ages differentially impacted the survival of anterior or posterior cortical neuronal subsets, neuron morphology, and glia proliferation. These findings suggest that meningeal dysfunction in different brain regions could contribute to specific neural pathologies. The disease-associations of meningeal cell genes differentially expressed with region and age were significantly enriched for mental and substance abuse disorders.
Collapse
Affiliation(s)
| | | | - Mo Liu
- Neural Stem Cell Institute, Rensselaer, NY 12144, USA
| | | | | | - Yue Wang
- Neural Stem Cell Institute, Rensselaer, NY 12144, USA
| | | | - Sally Temple
- Neural Stem Cell Institute, Rensselaer, NY 12144, USA
| |
Collapse
|
5
|
Wang L, Li Z, Liu Y, Chen S, Li L, Duan P, Wang X, Li W, Wang Q, Zhai J, Tian Y. A chromosome-level genome assembly of the potato grouper (Epinephelus tukula). Genomics 2022; 114:110473. [PMID: 36049667 DOI: 10.1016/j.ygeno.2022.110473] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 08/04/2022] [Accepted: 08/29/2022] [Indexed: 12/29/2022]
Abstract
The potato grouper, Epinephelus tukula, is one of the largest coral reef teleost, and it is an important germplasm resource for selection and cross breeding. Here we report a potato grouper genome assembly generated using PacBio long-read sequencing, Illumina sequencing and high-throughput chromatin conformation capture (Hi-C) technology. The genome size was 1.13 Gb, with a total of 508 contigs anchored into 24 chromosomes. The scaffold N50 was 42.65 Mb. For the genome models, our assembled genome contained 98.11% complete BUSCO with the vertebrata_odb9 database. One more copies of Gh and Hsp90b1 were identified in the E. tukula genome, which might contribute to its fast growth and high resistance to stress. In addition, 435 putative antimicrobial peptide (AMP) genes were identified in the potato grouper. This study provides a good reference for whole genome selective breeding of the potato grouper and for future development of novel marine drugs.
Collapse
Affiliation(s)
- Linna Wang
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266000, China
| | - Zhentong Li
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266000, China
| | - Yang Liu
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266000, China
| | - Shuai Chen
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China; College of Fisheries and Life Science, Shanghai Ocean University, Shanghai 201306, China
| | - Linlin Li
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China; Graduate School of Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Pengfei Duan
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China; College of Fisheries and Life Science, Shanghai Ocean University, Shanghai 201306, China
| | - Xinyi Wang
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China; College of Fisheries and Life Science, Shanghai Ocean University, Shanghai 201306, China
| | - Wensheng Li
- Mingbo Aquatic Co. Ltd., Laizhou 261400, China
| | | | | | - Yongsheng Tian
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266000, China.
| |
Collapse
|
6
|
Kiaie N, Gorabi AM, Loveless R, Teng Y, Jamialahmadi T, Sahebkar A. The regenerative potential of glial progenitor cells and reactive astrocytes in CNS injuries. Neurosci Biobehav Rev 2022; 140:104794. [PMID: 35902044 DOI: 10.1016/j.neubiorev.2022.104794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 07/20/2022] [Accepted: 07/21/2022] [Indexed: 10/16/2022]
Abstract
Cell therapeutic approaches focusing on the regeneration of damaged tissue have been a popular topic among researchers in recent years. In particular, self-repair scarring from the central nervous system (CNS) can significantly complicate the treatment of an injured patient. In CNS regeneration schemes, either glial progenitor cells or reactive glial cells have key roles to play. In this review, the contribution and underlying mechanisms of these progenitor/reactive glial cells during CNS regeneration are discussed, as well as their role in CNS-related diseases.
Collapse
Affiliation(s)
- Nasim Kiaie
- Research Center for Advanced Technologies in Cardiovascular Medicine, Tehran Heart Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Armita Mahdavi Gorabi
- Department of Tissue Engineering and Applied Cell Science, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Reid Loveless
- Department of Oral Biology and Diagnostic Sciences, Dental College of Georgia, Augusta University, Augusta, GA 30912, USA
| | - Yong Teng
- Department of Hematology and Medical Oncology, Winship Cancer Institute, Emory University School of Medicine, Atlanta, GA, USA
| | - Tannaz Jamialahmadi
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Nutrition, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amirhossein Sahebkar
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Biotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
7
|
Barber HM, Ali MF, Kucenas S. Glial Patchwork: Oligodendrocyte Progenitor Cells and Astrocytes Blanket the Central Nervous System. Front Cell Neurosci 2022; 15:803057. [PMID: 35069117 PMCID: PMC8766310 DOI: 10.3389/fncel.2021.803057] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Accepted: 12/06/2021] [Indexed: 12/20/2022] Open
Abstract
Tiling is a developmental process where cell populations become evenly distributed throughout a tissue. In this review, we discuss the developmental cellular tiling behaviors of the two major glial populations in the central nervous system (CNS)—oligodendrocyte progenitor cells (OPCs) and astrocytes. First, we discuss OPC tiling in the spinal cord, which is comprised of the three cellular behaviors of migration, proliferation, and contact-mediated repulsion (CMR). These cellular behaviors occur simultaneously during OPC development and converge to produce the emergent behavior of tiling which results in OPCs being evenly dispersed and occupying non-overlapping domains throughout the CNS. We next discuss astrocyte tiling in the cortex and hippocampus, where astrocytes migrate, proliferate, then ultimately determine their exclusive domains by gradual removal of overlap rather than sustained CMR. This results in domains that slightly overlap, allowing for both exclusive control of “synaptic islands” and astrocyte-astrocyte communication. We finally discuss the similarities and differences in the tiling behaviors of these glial populations and what remains unknown regarding glial tiling and how perturbations to this process may impact injury and disease.
Collapse
Affiliation(s)
- Heather M. Barber
- Program in Fundamental Neuroscience, University of Virginia, Charlottesville, VA, United States
- Cell & Developmental Biology Graduate Program, University of Virginia, Charlottesville, VA, United States
| | - Maria F. Ali
- Program in Fundamental Neuroscience, University of Virginia, Charlottesville, VA, United States
- Department of Biology, University of Virginia, Charlottesville, VA, United States
| | - Sarah Kucenas
- Program in Fundamental Neuroscience, University of Virginia, Charlottesville, VA, United States
- Cell & Developmental Biology Graduate Program, University of Virginia, Charlottesville, VA, United States
- Department of Biology, University of Virginia, Charlottesville, VA, United States
- *Correspondence: Sarah Kucenas
| |
Collapse
|
8
|
Ali MF, Latimer AJ, Wang Y, Hogenmiller L, Fontenas L, Isabella AJ, Moens CB, Yu G, Kucenas S. Met is required for oligodendrocyte progenitor cell migration in Danio rerio. G3 (BETHESDA, MD.) 2021; 11:jkab265. [PMID: 34568921 PMCID: PMC8473979 DOI: 10.1093/g3journal/jkab265] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Accepted: 07/22/2021] [Indexed: 11/13/2022]
Abstract
During vertebrate central nervous system development, most oligodendrocyte progenitor cells (OPCs) are specified in the ventral spinal cord and must migrate throughout the neural tube until they become evenly distributed, occupying non-overlapping domains. While this process of developmental OPC migration is well characterized, the nature of the molecular mediators that govern it remain largely unknown. Here, using zebrafish as a model, we demonstrate that Met signaling is required for initial developmental migration of OPCs, and, using cell-specific knock-down of Met signaling, show that Met acts cell-autonomously in OPCs. Taken together, these findings demonstrate in vivo, the role of Met signaling in OPC migration and provide new insight into how OPC migration is regulated during development.
Collapse
Affiliation(s)
- Maria F Ali
- Department of Biology, University of Virginia, Charlottesville, VA 22904, USA
| | - Andrew J Latimer
- Department of Biology, University of Virginia, Charlottesville, VA 22904, USA
| | - Yinxue Wang
- Department of Electrical and Computer Engineering, Virginia Polytechnic Institute and State University, Arlington, VA 22203, USA
| | - Leah Hogenmiller
- Department of Biology, University of Virginia, Charlottesville, VA 22904, USA
| | - Laura Fontenas
- Department of Biology, University of Virginia, Charlottesville, VA 22904, USA
| | - Adam J Isabella
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Cecilia B Moens
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Guoqiang Yu
- Department of Electrical and Computer Engineering, Virginia Polytechnic Institute and State University, Arlington, VA 22203, USA
| | - Sarah Kucenas
- Department of Biology, University of Virginia, Charlottesville, VA 22904, USA
| |
Collapse
|
9
|
Dual Roles of Microglia in the Basal Ganglia in Parkinson's Disease. Int J Mol Sci 2021; 22:ijms22083907. [PMID: 33918947 PMCID: PMC8070536 DOI: 10.3390/ijms22083907] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 03/30/2021] [Accepted: 04/07/2021] [Indexed: 12/12/2022] Open
Abstract
With the increasing age of the population, the incidence of Parkinson’s disease (PD) has increased exponentially. The development of novel therapeutic interventions requires an understanding of the involvement of senescent brain cells in the pathogenesis of PD. In this review, we highlight the roles played by microglia in the basal ganglia in the pathophysiological processes of PD. In PD, dopaminergic (DAergic) neuronal degeneration in the substantia nigra pars compacta (SNc) activates the microglia, which then promote DAergic neuronal degeneration by releasing potentially neurotoxic factors, including nitric oxide, cytokines, and reactive oxygen species. On the other hand, microglia are also activated in the basal ganglia outputs (the substantia nigra pars reticulata and the globus pallidus) in response to excess glutamate released from hyperactive subthalamic nuclei-derived synapses. The activated microglia then eliminate the hyperactive glutamatergic synapses. Synapse elimination may be the mechanism underlying the compensation that masks the appearance of PD symptoms despite substantial DAergic neuronal loss. Microglial senescence may correlate with their enhanced neurotoxicity in the SNc and the reduced compensatory actions in the basal ganglia outputs. The dual roles of microglia in different basal ganglia regions make it difficult to develop interventions targeting microglia for PD treatment.
Collapse
|
10
|
Pruvost M, Moyon S. Oligodendroglial Epigenetics, from Lineage Specification to Activity-Dependent Myelination. Life (Basel) 2021; 11:62. [PMID: 33467699 PMCID: PMC7830029 DOI: 10.3390/life11010062] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2020] [Revised: 01/08/2021] [Accepted: 01/10/2021] [Indexed: 12/25/2022] Open
Abstract
Oligodendroglial cells are the myelinating cells of the central nervous system. While myelination is crucial to axonal activity and conduction, oligodendrocyte progenitor cells and oligodendrocytes have also been shown to be essential for neuronal support and metabolism. Thus, a tight regulation of oligodendroglial cell specification, proliferation, and myelination is required for correct neuronal connectivity and function. Here, we review the role of epigenetic modifications in oligodendroglial lineage cells. First, we briefly describe the epigenetic modalities of gene regulation, which are known to have a role in oligodendroglial cells. We then address how epigenetic enzymes and/or marks have been associated with oligodendrocyte progenitor specification, survival and proliferation, differentiation, and finally, myelination. We finally mention how environmental cues, in particular, neuronal signals, are translated into epigenetic modifications, which can directly influence oligodendroglial biology.
Collapse
|
11
|
Zhang Z, Zhou H, Zhou J. Heterogeneity and Proliferative and Differential Regulators of NG2-glia in Physiological and Pathological States. Curr Med Chem 2021; 27:6384-6406. [PMID: 31333083 DOI: 10.2174/0929867326666190717112944] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Revised: 06/12/2019] [Accepted: 06/20/2019] [Indexed: 12/16/2022]
Abstract
NG2-glia, also called Oligodendrocyte Precursor Cells (OPCs), account for approximately 5%-10% of the cells in the developing and adult brain and constitute the fifth major cell population in the central nervous system. NG2-glia express receptors and ion channels involved in rapid modulation of neuronal activities and signaling with neuronal synapses, which have functional significance in both physiological and pathological states. NG2-glia participate in quick signaling with peripheral neurons via direct synaptic touches in the developing and mature central nervous system. These distinctive glia perform the unique function of proliferating and differentiating into oligodendrocytes in the early developing brain, which is critical for axon myelin formation. In response to injury, NG2-glia can proliferate, migrate to the lesions, and differentiate into oligodendrocytes to form new myelin sheaths, which wrap around damaged axons and result in functional recovery. The capacity of NG2-glia to regulate their behavior and dynamics in response to neuronal activity and disease indicate their critical role in myelin preservation and remodeling in the physiological state and in repair in the pathological state. In this review, we provide a detailed summary of the characteristics of NG2-glia, including their heterogeneity, the regulators of their proliferation, and the modulators of their differentiation into oligodendrocytes.
Collapse
Affiliation(s)
- Zuo Zhang
- National Drug Clinical Trial Institution, the Second Affiliated Hospital, Army Medical University, Chongqing 400037, China
| | - Hongli Zhou
- National Drug Clinical Trial Institution, the Second Affiliated Hospital, Army Medical University, Chongqing 400037, China
| | - Jiyin Zhou
- National Drug Clinical Trial Institution, the Second Affiliated Hospital, Army Medical University, Chongqing 400037, China
| |
Collapse
|
12
|
Vaes JEG, Brandt MJV, Wanders N, Benders MJNL, de Theije CGM, Gressens P, Nijboer CH. The impact of trophic and immunomodulatory factors on oligodendrocyte maturation: Potential treatments for encephalopathy of prematurity. Glia 2020; 69:1311-1340. [PMID: 33595855 PMCID: PMC8246971 DOI: 10.1002/glia.23939] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2020] [Revised: 11/11/2020] [Accepted: 11/12/2020] [Indexed: 12/11/2022]
Abstract
Encephalopathy of prematurity (EoP) is a major cause of morbidity in preterm neonates, causing neurodevelopmental adversities that can lead to lifelong impairments. Preterm birth-related insults, such as cerebral oxygen fluctuations and perinatal inflammation, are believed to negatively impact brain development, leading to a range of brain abnormalities. Diffuse white matter injury is a major hallmark of EoP and characterized by widespread hypomyelination, the result of disturbances in oligodendrocyte lineage development. At present, there are no treatment options available, despite the enormous burden of EoP on patients, their families, and society. Over the years, research in the field of neonatal brain injury and other white matter pathologies has led to the identification of several promising trophic factors and cytokines that contribute to the survival and maturation of oligodendrocytes, and/or dampening neuroinflammation. In this review, we discuss the current literature on selected factors and their therapeutic potential to combat EoP, covering a wide range of in vitro, preclinical and clinical studies. Furthermore, we offer a future perspective on the translatability of these factors into clinical practice.
Collapse
Affiliation(s)
- Josine E G Vaes
- Department for Developmental Origins of Disease, University Medical Center Utrecht Brain Center and Wilhelmina Children's Hospital, Utrecht University, Utrecht, The Netherlands.,Department of Neonatology, University Medical Center Utrecht Brain Center and Wilhelmina Children's Hospital, Utrecht University, Utrecht, The Netherlands
| | - Myrna J V Brandt
- Department for Developmental Origins of Disease, University Medical Center Utrecht Brain Center and Wilhelmina Children's Hospital, Utrecht University, Utrecht, The Netherlands
| | - Nikki Wanders
- Department for Developmental Origins of Disease, University Medical Center Utrecht Brain Center and Wilhelmina Children's Hospital, Utrecht University, Utrecht, The Netherlands
| | - Manon J N L Benders
- Department of Neonatology, University Medical Center Utrecht Brain Center and Wilhelmina Children's Hospital, Utrecht University, Utrecht, The Netherlands
| | - Caroline G M de Theije
- Department for Developmental Origins of Disease, University Medical Center Utrecht Brain Center and Wilhelmina Children's Hospital, Utrecht University, Utrecht, The Netherlands
| | | | - Cora H Nijboer
- Department for Developmental Origins of Disease, University Medical Center Utrecht Brain Center and Wilhelmina Children's Hospital, Utrecht University, Utrecht, The Netherlands
| |
Collapse
|
13
|
Wencel A, Ciezkowska M, Wisniewska M, Zakrzewska KE, Pijanowska DG, Pluta KD. Effects of genetically modified human skin fibroblasts, stably overexpressing hepatocyte growth factor, on hepatic functions of cocultured C3A cells. Biotechnol Bioeng 2020; 118:72-81. [PMID: 32880912 DOI: 10.1002/bit.27551] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 08/04/2020] [Accepted: 09/01/2020] [Indexed: 01/18/2023]
Abstract
Diseases leading to terminal hepatic failure are among the most common causes of death worldwide. Transplant of the whole organ is the only effective method to cure liver failure. Unfortunately, this treatment option is not available universally due to the serious shortage of donors. Thus, alternative methods have been developed that are aimed at prolonging the life of patients, including hepatic cells transplantation and bridging therapy based on hybrid bioartificial liver devices. Parenchymal liver cells are highly differentiated and perform many complex functions, such as detoxification and protein synthesis. Unfortunately, isolated hepatocytes display a rapid decline in viability and liver-specific functions. A number of methods have been developed to maintain hepatocytes in their highly differentiated state in vitro, amongst them the most promising being 3D growth scaffolds and decellularized tissues or coculture with other cell types required for the heterotypic cell-cell interactions. Here we present a novel approach to the hepatic cells culture based on the feeder layer cells genetically modified using lentiviral vector to stably produce additional amounts of hepatocyte growth factor and show the positive influence of these coculture conditions on the preservation of the hepatic functions of the liver parenchymal cells' model-C3A cells.
Collapse
Affiliation(s)
- Agnieszka Wencel
- Nalecz Institute of Biocybernetics and Biomedical Engineering, Polish Academy of Sciences, Warsaw, Poland
| | - Malgorzata Ciezkowska
- Nalecz Institute of Biocybernetics and Biomedical Engineering, Polish Academy of Sciences, Warsaw, Poland
| | - Monika Wisniewska
- Nalecz Institute of Biocybernetics and Biomedical Engineering, Polish Academy of Sciences, Warsaw, Poland
| | - Karolina E Zakrzewska
- Nalecz Institute of Biocybernetics and Biomedical Engineering, Polish Academy of Sciences, Warsaw, Poland.,Institute of Fundamental Technological Research, Polish Academy of Sciences, Warsaw, Poland
| | - Dorota G Pijanowska
- Nalecz Institute of Biocybernetics and Biomedical Engineering, Polish Academy of Sciences, Warsaw, Poland
| | - Krzysztof D Pluta
- Nalecz Institute of Biocybernetics and Biomedical Engineering, Polish Academy of Sciences, Warsaw, Poland
| |
Collapse
|
14
|
HGF/MET Signaling in Malignant Brain Tumors. Int J Mol Sci 2020; 21:ijms21207546. [PMID: 33066121 PMCID: PMC7590206 DOI: 10.3390/ijms21207546] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 10/08/2020] [Accepted: 10/11/2020] [Indexed: 12/13/2022] Open
Abstract
Hepatocyte growth factor (HGF) ligand and its receptor tyrosine kinase (RTK) mesenchymal-epithelial transition factor (MET) are important regulators of cellular processes such as proliferation, motility, angiogenesis, and tissue regeneration. In healthy adult somatic cells, this ligand and receptor pair is expressed at low levels and has little activity except when tissue injuries arise. In cancer cells, HGF/MET are often overexpressed, and this overexpression is found to correlate with tumorigenesis, metastasis, and poorer overall prognosis. This review focuses on the signaling of these molecules in the context of malignant brain tumors. RTK signaling pathways are among the most common and universally dysregulated pathways in gliomas. We focus on the role of HGF/MET in the following primary malignant brain tumors: astrocytomas, glioblastomas, oligodendrogliomas, ependymomas, and embryonal central nervous system tumors (including medulloblastomas and others). Brain metastasis, as well as current advances in targeted therapies, are also discussed.
Collapse
|
15
|
Abe N, Nishihara T, Yorozuya T, Tanaka J. Microglia and Macrophages in the Pathological Central and Peripheral Nervous Systems. Cells 2020; 9:cells9092132. [PMID: 32967118 PMCID: PMC7563796 DOI: 10.3390/cells9092132] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 09/05/2020] [Accepted: 09/17/2020] [Indexed: 02/07/2023] Open
Abstract
Microglia, the immunocompetent cells in the central nervous system (CNS), have long been studied as pathologically deteriorating players in various CNS diseases. However, microglia exert ameliorating neuroprotective effects, which prompted us to reconsider their roles in CNS and peripheral nervous system (PNS) pathophysiology. Moreover, recent findings showed that microglia play critical roles even in the healthy CNS. The microglial functions that normally contribute to the maintenance of homeostasis in the CNS are modified by other cells, such as astrocytes and infiltrated myeloid cells; thus, the microglial actions on neurons are extremely complex. For a deeper understanding of the pathophysiology of various diseases, including those of the PNS, it is important to understand microglial functioning. In this review, we discuss both the favorable and unfavorable roles of microglia in neuronal survival in various CNS and PNS disorders. We also discuss the roles of blood-borne macrophages in the pathogenesis of CNS and PNS injuries because they cooperatively modify the pathological processes of resident microglia. Finally, metabolic changes in glycolysis and oxidative phosphorylation, with special reference to the pro-/anti-inflammatory activation of microglia, are intensively addressed, because they are profoundly correlated with the generation of reactive oxygen species and changes in pro-/anti-inflammatory phenotypes.
Collapse
Affiliation(s)
- Naoki Abe
- Department of Anesthesia and Perioperative Medicine, Ehime University Graduate School of Medicine, Toon, Ehime 791-0295, Japan; (N.A.); (T.Y.)
| | - Tasuku Nishihara
- Department of Anesthesia and Perioperative Medicine, Ehime University Graduate School of Medicine, Toon, Ehime 791-0295, Japan; (N.A.); (T.Y.)
- Correspondence: ; Tel.: +81-89-960-5383; Fax: +81-89-960-5386
| | - Toshihiro Yorozuya
- Department of Anesthesia and Perioperative Medicine, Ehime University Graduate School of Medicine, Toon, Ehime 791-0295, Japan; (N.A.); (T.Y.)
| | - Junya Tanaka
- Department of Molecular and cellular Physiology, Ehime University Graduate School of Medicine, Toon, Ehime 791-0295, Japan;
| |
Collapse
|
16
|
Werkman IL, Lentferink DH, Baron W. Macroglial diversity: white and grey areas and relevance to remyelination. Cell Mol Life Sci 2020; 78:143-171. [PMID: 32648004 PMCID: PMC7867526 DOI: 10.1007/s00018-020-03586-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2020] [Revised: 06/20/2020] [Accepted: 06/23/2020] [Indexed: 02/06/2023]
Abstract
Macroglia, comprising astrocytes and oligodendroglial lineage cells, have long been regarded as uniform cell types of the central nervous system (CNS). Although regional morphological differences between these cell types were initially described after their identification a century ago, these differences were largely ignored. Recently, accumulating evidence suggests that macroglial cells form distinct populations throughout the CNS, based on both functional and morphological features. Moreover, with the use of refined techniques including single-cell and single-nucleus RNA sequencing, additional evidence is emerging for regional macroglial heterogeneity at the transcriptional level. In parallel, several studies revealed the existence of regional differences in remyelination capacity between CNS grey and white matter areas, both in experimental models for successful remyelination as well as in the chronic demyelinating disease multiple sclerosis (MS). In this review, we provide an overview of the diversity in oligodendroglial lineage cells and astrocytes from the grey and white matter, as well as their interplay in health and upon demyelination and successful remyelination. In addition, we discuss the implications of regional macroglial diversity for remyelination in light of its failure in MS. Since the etiology of MS remains unknown and only disease-modifying treatments altering the immune response are available for MS, the elucidation of macroglial diversity in grey and white matter and its putative contribution to the observed difference in remyelination efficiency between these regions may open therapeutic avenues aimed at enhancing endogenous remyelination in either area.
Collapse
Affiliation(s)
- Inge L Werkman
- Department of Biomedical Sciences of Cells and Systems, Section Molecular Neurobiology, University of Groningen, University Medical Center Groningen, A. Deusinglaan 1, 9713 AV, Groningen, the Netherlands
- Department of Biology, University of Virginia, Charlottesville, VA, 22904, USA
| | - Dennis H Lentferink
- Department of Biomedical Sciences of Cells and Systems, Section Molecular Neurobiology, University of Groningen, University Medical Center Groningen, A. Deusinglaan 1, 9713 AV, Groningen, the Netherlands
| | - Wia Baron
- Department of Biomedical Sciences of Cells and Systems, Section Molecular Neurobiology, University of Groningen, University Medical Center Groningen, A. Deusinglaan 1, 9713 AV, Groningen, the Netherlands.
| |
Collapse
|
17
|
Benkhoucha M, Senoner I, Lalive PH. c-Met is expressed by highly autoreactive encephalitogenic CD8+ cells. J Neuroinflammation 2020; 17:68. [PMID: 32075650 PMCID: PMC7031922 DOI: 10.1186/s12974-019-1676-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Accepted: 12/16/2019] [Indexed: 12/29/2022] Open
Abstract
Background CD8+ T lymphocytes are critical mediators of neuroinflammatory diseases. Understanding the mechanisms that govern the function of this T cell population is crucial to better understanding central nervous system autoimmune disease pathology. We recently identified a novel population of highly cytotoxic c-Met-expressing CD8+ T lymphocytes and found that hepatocyte growth factor (HGF) limits effective murine cytotoxic T cell responses in cancer models. Here, we examined the role of c-Met-expressing CD8+ T cells by using a MOG35–55 T cell-mediated EAE model. Methods Mice were subcutaneously immunized with myelin oligodendrocyte glycoprotein peptide (MOG)35–55 in complete Freund’s adjuvant (CFA). Peripheral and CNS inflammation was evaluated at peak disease and chronic phase, and c-Met expression by CD8 was evaluated by flow cytometry and immunofluorescence. Molecular, cellular, and killing function analysis were performed by real-time PCR, ELISA, flow cytometry, and killing assay. Results In the present study, we observed that a fraction of murine effector CD8+ T cells expressed c-Met receptor (c-Met+CD8+) in an experimental autoimmune encephalitis (EAE) model. Phenotypic and functional analysis of c-Met+CD8+ T cells revealed that they recognize the encephalitogenic epitope myelin oligodendrocyte glycoprotein37–50. We demonstrated that this T cell population produces higher levels of interferon-γ and granzyme B ex vivo and that HGF directly restrains the cytolytic function of c-Met+CD8+ T cells in cell-mediated cytotoxicity reactions Conclusions Altogether, our findings suggest that the HGF/c-Met pathway could be exploited to modulate CD8+ T cell-mediated neuroinflammation.
Collapse
Affiliation(s)
- Mahdia Benkhoucha
- Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Isis Senoner
- Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Patrice H Lalive
- Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, Geneva, Switzerland. .,Department of Neurosciences, Division of Neurology, University Hospital of Geneva, Geneva, Switzerland.
| |
Collapse
|
18
|
The neurorestorative effect of human amniotic fluid stem cells on the chronic phase of neonatal hypoxic-ischemic encephalopathy in mice. Pediatr Res 2019; 85:97-104. [PMID: 30120407 DOI: 10.1038/s41390-018-0131-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Revised: 06/25/2018] [Accepted: 07/22/2018] [Indexed: 12/24/2022]
Abstract
BACKGROUND Hypoxic-ischemic encephalopathy (HIE) remains a major cause of cerebral palsy. Increasing evidence has suggested that mesenchymal stem cells have a favorable effect on HIE. However, the efficacy of human amniotic fluid stem cells (hAFS) for HIE, especially in the chronic phase, remains unclear. The aim of this study was to determine the neurorestorative effect of hAFS on the chronic phase of HIE. METHODS hAFS were isolated from AF cells as CD117-positive cells. HI was induced in 9-day-old mice. Animals intranasally received hAFS or phosphate-buffered saline at 10 days post HI and were harvested for histological analysis after functional tests at 21 days post HI. We also implanted PKH26-positive hAFS to assess their migration to the brain. Finally, we determined gene expressions of trophic factors in hAFS co-cultured with HI brain extract. RESULTS hAFS improved sensorimotor deficits in HIE by gray and white matter restoration and neuroinflammation reduction followed by migration to the lesion. Brain-derived neurotrophic factor (BDNF), nerve growth factor (NGF), hepatocyte growth factor (HGF), and stromal cell-derived factor-1 (SDF-1) gene expressions in hAFS were elevated when exposed to HI-induced brain extract. CONCLUSION hAFS induced functional recovery by exerting neurorestorative effects in HIE mice, suggesting that intranasal administration of hAFS could be a novel treatment for HIE, especially in the chronic phase.
Collapse
|
19
|
Sekiya K, Nishihara T, Abe N, Konishi A, Nandate H, Hamada T, Ikemune K, Takasaki Y, Tanaka J, Asano M, Yorozuya T. Carbon monoxide poisoning-induced delayed encephalopathy accompanies decreased microglial cell numbers: Distinctive pathophysiological features from hypoxemia-induced brain damage. Brain Res 2018; 1710:22-32. [PMID: 30578768 DOI: 10.1016/j.brainres.2018.12.027] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Revised: 12/15/2018] [Accepted: 12/18/2018] [Indexed: 11/15/2022]
Abstract
Carbon monoxide (CO) causes not only acute fatal poisoning but also may cause a delayed neurologic syndrome called delayed encephalopathy (DE), which occasionally occurs after an interval of several days to several weeks post-exposure. However, the mechanisms of DE have not been fully elucidated. This study aimed to clarify the pathophysiology of CO-induced DE and its distinctive features compared with hypoxemic hypoxia. Rats were randomly assigned to three groups; the air group, the CO group (exposed to CO), and the low O2 group (exposed to low concentration of O2). Impairment of memory function was observed only in the CO group. The hippocampus tissues were collected and analyzed for assessment of CO-induced changes and microglial reaction. Demyelination was observed only in the CO group and it was more severe and persisted longer than that observed in the low O2 group. Moreover, in the CO group, decreased in microglial cell numbers were observed using flow cytometry, and microglia with detached branches were observed were observed using immunohistochemistry. Conversely, microglial cells with shortened branches and enlarged somata were observed in the low O2 group. Furthermore, mRNAs encoding several neurotrophic factors expressed by microglia were decreased in the CO group but were increased in the low O2 group. Thus, CO-induced DE displayed distinctive pathological features from those of simple hypoxic insults: prolonged demyelination accompanying a significant decrease in microglial cells. Decreased neurotrophic factor expression by microglial cells may be one of the causes of CO-induced DE.
Collapse
Affiliation(s)
- Keisuke Sekiya
- Department of Anesthesia and Perioperative Medicine, Ehime University Graduate School of Medicine, Shitsukawa, Toon, Ehime 791-0295, Japan; Department of Legal Medicine, Ehime University Graduate School of Medicine, Shitsukawa, Toon, Ehime 791-0295, Japan
| | - Tasuku Nishihara
- Department of Anesthesia and Perioperative Medicine, Ehime University Graduate School of Medicine, Shitsukawa, Toon, Ehime 791-0295, Japan.
| | - Naoki Abe
- Department of Anesthesia and Perioperative Medicine, Ehime University Graduate School of Medicine, Shitsukawa, Toon, Ehime 791-0295, Japan
| | - Amane Konishi
- Department of Anesthesia and Perioperative Medicine, Ehime University Graduate School of Medicine, Shitsukawa, Toon, Ehime 791-0295, Japan.
| | - Hideyuki Nandate
- Department of Anesthesia and Perioperative Medicine, Ehime University Graduate School of Medicine, Shitsukawa, Toon, Ehime 791-0295, Japan
| | - Taisuke Hamada
- Department of Anesthesia and Perioperative Medicine, Ehime University Graduate School of Medicine, Shitsukawa, Toon, Ehime 791-0295, Japan
| | - Keizo Ikemune
- Department of Anesthesia and Perioperative Medicine, Ehime University Graduate School of Medicine, Shitsukawa, Toon, Ehime 791-0295, Japan.
| | - Yasushi Takasaki
- Department of Anesthesia and Perioperative Medicine, Ehime University Graduate School of Medicine, Shitsukawa, Toon, Ehime 791-0295, Japan
| | - Junya Tanaka
- Department of Molecular and Cellular Physiology, Ehime University Graduate School of Medicine, Shitsukawa, Toon, Ehime 791-0295, Japan.
| | - Migiwa Asano
- Department of Legal Medicine, Ehime University Graduate School of Medicine, Shitsukawa, Toon, Ehime 791-0295, Japan.
| | - Toshihiro Yorozuya
- Department of Anesthesia and Perioperative Medicine, Ehime University Graduate School of Medicine, Shitsukawa, Toon, Ehime 791-0295, Japan.
| |
Collapse
|
20
|
Hu C, Lu Y, Cheng X, Cui Y, Wu Z, Zhang Q. Gene therapy for neuropathic pain induced by spared nerve injury with naked plasmid encoding hepatocyte growth factor. J Gene Med 2017; 19. [DOI: 10.1002/jgm.2994] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Revised: 09/22/2017] [Accepted: 10/07/2017] [Indexed: 11/05/2022] Open
Affiliation(s)
- Chunsheng Hu
- Department of Experimental Hematology; Beijing Institute of Radiation Medicine; Beijing China
- International Academy of Targeted Therapeutics and Innovation; Chongqing University of Arts and Sciences; Chongqing China
- College of Life Science and Bioengineering; Beijing University of Technology; Beijing China
| | - Yuxin Lu
- Department of Experimental Hematology; Beijing Institute of Radiation Medicine; Beijing China
| | - Xiaochen Cheng
- Department of Experimental Hematology; Beijing Institute of Radiation Medicine; Beijing China
| | - Yufang Cui
- Department of Experimental Hematology; Beijing Institute of Radiation Medicine; Beijing China
| | - Zuze Wu
- Department of Experimental Hematology; Beijing Institute of Radiation Medicine; Beijing China
- College of Life Science and Bioengineering; Beijing University of Technology; Beijing China
| | - Qinglin Zhang
- Department of Experimental Hematology; Beijing Institute of Radiation Medicine; Beijing China
| |
Collapse
|
21
|
Nakano M, Tamura Y, Yamato M, Kume S, Eguchi A, Takata K, Watanabe Y, Kataoka Y. NG2 glial cells regulate neuroimmunological responses to maintain neuronal function and survival. Sci Rep 2017; 7:42041. [PMID: 28195192 PMCID: PMC5307324 DOI: 10.1038/srep42041] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2016] [Accepted: 01/06/2017] [Indexed: 11/10/2022] Open
Abstract
NG2-expressing neural progenitor cells (i.e., NG2 glial cells) maintain their proliferative and migratory activities even in the adult mammalian central nervous system (CNS) and produce myelinating oligodendrocytes and astrocytes. Although NG2 glial cells have been observed in close proximity to neuronal cell bodies in order to receive synaptic inputs, substantive non-proliferative roles of NG2 glial cells in the adult CNS remain unclear. In the present study, we generated NG2-HSVtk transgenic rats and selectively ablated NG2 glial cells in the adult CNS. Ablation of NG2 glial cells produced defects in hippocampal neurons due to excessive neuroinflammation via activation of the interleukin-1 beta (IL-1β) pro-inflammatory pathway, resulting in hippocampal atrophy. Furthermore, we revealed that the loss of NG2 glial cell-derived hepatocyte growth factor (HGF) exacerbated these abnormalities. Our findings suggest that NG2 glial cells maintain neuronal function and survival via the control of neuroimmunological function.
Collapse
Affiliation(s)
- Masayuki Nakano
- Cellular Function Imaging Team, Center for Life Science Technologies, RIKEN, 6-7-3 Minatojima-minamimachi, Chuo-ku, Kobe 650-0047, Japan.,Department of Physiology, Osaka City University Graduate School of Medicine, 1-4-3 Asahimachi, Abeno-ku, Osaka 545-8585, Japan
| | - Yasuhisa Tamura
- Cellular Function Imaging Team, Center for Life Science Technologies, RIKEN, 6-7-3 Minatojima-minamimachi, Chuo-ku, Kobe 650-0047, Japan.,Multi-Modal Microstructure Analysis Unit, RIKEN CLST-JEOL Collaboration Center, RIKEN, 6-7-3 Minatojima-minamimachi, Chuo-ku, Kobe 650-0047, Japan
| | - Masanori Yamato
- Cellular Function Imaging Team, Center for Life Science Technologies, RIKEN, 6-7-3 Minatojima-minamimachi, Chuo-ku, Kobe 650-0047, Japan.,Multi-Modal Microstructure Analysis Unit, RIKEN CLST-JEOL Collaboration Center, RIKEN, 6-7-3 Minatojima-minamimachi, Chuo-ku, Kobe 650-0047, Japan
| | - Satoshi Kume
- Cellular Function Imaging Team, Center for Life Science Technologies, RIKEN, 6-7-3 Minatojima-minamimachi, Chuo-ku, Kobe 650-0047, Japan.,Multi-Modal Microstructure Analysis Unit, RIKEN CLST-JEOL Collaboration Center, RIKEN, 6-7-3 Minatojima-minamimachi, Chuo-ku, Kobe 650-0047, Japan
| | - Asami Eguchi
- Cellular Function Imaging Team, Center for Life Science Technologies, RIKEN, 6-7-3 Minatojima-minamimachi, Chuo-ku, Kobe 650-0047, Japan.,Multi-Modal Microstructure Analysis Unit, RIKEN CLST-JEOL Collaboration Center, RIKEN, 6-7-3 Minatojima-minamimachi, Chuo-ku, Kobe 650-0047, Japan
| | - Kumi Takata
- Cellular Function Imaging Team, Center for Life Science Technologies, RIKEN, 6-7-3 Minatojima-minamimachi, Chuo-ku, Kobe 650-0047, Japan
| | - Yasuyoshi Watanabe
- Department of Physiology, Osaka City University Graduate School of Medicine, 1-4-3 Asahimachi, Abeno-ku, Osaka 545-8585, Japan.,Pathophysiological and Health Science Team, Center for Life Science Technologies, RIKEN, 6-7-3 Minatojima-minamimachi, Chuo-ku, Kobe 650-0047, Japan
| | - Yosky Kataoka
- Cellular Function Imaging Team, Center for Life Science Technologies, RIKEN, 6-7-3 Minatojima-minamimachi, Chuo-ku, Kobe 650-0047, Japan.,Department of Physiology, Osaka City University Graduate School of Medicine, 1-4-3 Asahimachi, Abeno-ku, Osaka 545-8585, Japan.,Multi-Modal Microstructure Analysis Unit, RIKEN CLST-JEOL Collaboration Center, RIKEN, 6-7-3 Minatojima-minamimachi, Chuo-ku, Kobe 650-0047, Japan
| |
Collapse
|
22
|
Abstract
Demyelination of central nervous system axons, associated with traumatic injury and demyelinating diseases such as multiple sclerosis, causes impaired neural transmission and ultimately axon degeneration. Consequently, extensive research has focused on signaling systems that promote myelinating activity of oligodendrocytes or promote production of new oligodendrocytes from oligodendrocyte progenitor cells. Many receptor systems, notably including growth factor receptors and G protein-coupled receptors, control myelination. A number of recent clinical trials target these receptor signaling pathways.
Collapse
Affiliation(s)
- Mark Bothwell
- Department of Physiology and Biophysics, University of Washington, Seattle, Washington 98195;
| |
Collapse
|
23
|
Higaki H, Choudhury ME, Kawamoto C, Miyamoto K, Islam A, Ishii Y, Miyanishi K, Takeda H, Seo N, Sugimoto K, Takahashi H, Yano H, Tanaka J. The hypnotic bromovalerylurea ameliorates 6-hydroxydopamine-induced dopaminergic neuron loss while suppressing expression of interferon regulatory factors by microglia. Neurochem Int 2016; 99:158-168. [PMID: 27392596 DOI: 10.1016/j.neuint.2016.06.013] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2016] [Revised: 06/02/2016] [Accepted: 06/28/2016] [Indexed: 01/17/2023]
Abstract
The low molecular weight organic compound bromovalerylurea (BU) has long been used as a hypnotic/sedative. In the present study, we found that BU suppressed mRNA expression of proinflammatory factors and nitric oxide release in lipopolysaccharide (LPS)-treated rat primary microglial cell cultures. BU prevented neuronal degeneration in LPS-treated neuron-microglia cocultures. The anti-inflammatory effects of BU were as strong as those of a synthetic glucocorticoid, dexamethasone. A rat hemi-Parkinsonian model was prepared by injecting 6-hydroxydopamine into the right striatum. BU was orally administered to these rats for 7 days, which ameliorated the degeneration of dopaminergic neurons in the substantia nigra pars compacta (SNpc) and alleviated motor deficits. BU suppressed the expression of mRNAs for interferon regulatory factors (IRFs) 1, 7 and 8 in the right (lesioned) ventral midbrain as well as those for proinflammatory mediators. BU increased mRNA expression of various neuroprotective factors, including platelet-derived growth factor and hepatocyte growth factor, but it did not increase expression of alternative activation (M2) markers. In microglial culture, BU suppressed the LPS-induced increase in expression of IRFs 1 and 8, and it reduced LPS-induced phosphorylation of JAK1 and STATs 1 and 3. Knockdown of IRFs 1 and 8 suppressed LPS-induced NO release by microglial cells. These results suggest that suppression of microglial IRF expression by BU prevents neuronal cell death in the injured brain region, where microglial activation occurs. Because many Parkinsonian patients suffer from sleep disorders, BU administration before sleep may effectively ameliorate neurological symptoms and alleviate sleep dysfunction.
Collapse
Affiliation(s)
- Hiromi Higaki
- Department of Molecular and Cellular Physiology, Graduate School of Medicine, Ehime University, Japan
| | | | - Chisato Kawamoto
- Department of Molecular and Cellular Physiology, Graduate School of Medicine, Ehime University, Japan
| | - Keisuke Miyamoto
- Department of Molecular and Cellular Physiology, Graduate School of Medicine, Ehime University, Japan
| | - Afsana Islam
- Department of Molecular and Cellular Physiology, Graduate School of Medicine, Ehime University, Japan
| | - Yurika Ishii
- Department of Molecular and Cellular Physiology, Graduate School of Medicine, Ehime University, Japan
| | - Kazuya Miyanishi
- Department of Molecular and Cellular Physiology, Graduate School of Medicine, Ehime University, Japan
| | - Haruna Takeda
- Department of Molecular and Cellular Physiology, Graduate School of Medicine, Ehime University, Japan
| | - Naoto Seo
- Department of Molecular and Cellular Physiology, Graduate School of Medicine, Ehime University, Japan
| | - Kana Sugimoto
- Department of Molecular and Cellular Physiology, Graduate School of Medicine, Ehime University, Japan; Department of Legal Medicine, Graduate School of Medicine/Faculty of Medicine, Osaka University, Japan
| | - Hisaaki Takahashi
- Department of Molecular and Cellular Physiology, Graduate School of Medicine, Ehime University, Japan; Division of Pathophysiology, Faculty of Pharmaceutical Sciences, Hokuriku University, Japan
| | - Hajime Yano
- Department of Molecular and Cellular Physiology, Graduate School of Medicine, Ehime University, Japan
| | - Junya Tanaka
- Department of Molecular and Cellular Physiology, Graduate School of Medicine, Ehime University, Japan.
| |
Collapse
|
24
|
Moyon S, Liang J, Casaccia P. Epigenetics in NG2 glia cells. Brain Res 2016; 1638:183-198. [PMID: 26092401 PMCID: PMC4683112 DOI: 10.1016/j.brainres.2015.06.009] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2015] [Revised: 05/11/2015] [Accepted: 06/02/2015] [Indexed: 12/16/2022]
Abstract
The interplay of transcription and epigenetic marks is essential for oligodendrocyte progenitor cell (OPC) proliferation and differentiation during development. Here, we review the recent advances in this field and highlight mechanisms of transcriptional repression and activation involved in OPC proliferation, differentiation and plasticity. We also describe how dysregulation of these epigenetic events may affect demyelinating disorders, and consider potential ways to manipulate NG2 cell behavior through modulation of the epigenome. This article is part of a Special Issue entitled SI:NG2-glia(Invited only).
Collapse
Affiliation(s)
- Sarah Moyon
- Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Jialiang Liang
- Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Patrizia Casaccia
- Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Corinne Goldsmith Dickinson Center for Multiple Sclerosis, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.
| |
Collapse
|
25
|
Li S, Moore AK, Zhu J, Li X, Zhou H, Lin J, He Y, Xing F, Pan Y, Bohler HC, Ding J, Cooney AJ, Lan Z, Lei Z. Ggnbp2 Is Essential for Pregnancy Success via Regulation of Mouse Trophoblast Stem Cell Proliferation and Differentiation. Biol Reprod 2016; 94:41. [PMID: 26764350 PMCID: PMC4787627 DOI: 10.1095/biolreprod.115.136358] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2015] [Revised: 11/16/2015] [Accepted: 01/07/2016] [Indexed: 01/16/2023] Open
Abstract
The Ggnbp2 null mutant embryos died in utero between Embryonic Days 13.5 to 15.5 with dysmorphic placentae, characterized by excessive nonvascular cell nests consisting of proliferative trophoblastic tissue and abundant trophoblast stem cells (TSCs) in the labyrinth. Lethality of Ggnbp2 null embryos was caused by insufficient placental perfusion as a result of remarkable decreases in both fetal and maternal blood vessels in the labyrinth. These defects were accompanied by a significant elevation of c-Met expression and phosphorylation and its downstream effector Stat3 activation. Knockdown of Ggnbp2 in wild-type TSCs in vitro provoked the proliferation but delayed the differentiation with an upregulation of c-Met expression and an enhanced phosphorylation of c-Met and Stat3. In contrast, overexpression of Ggnbp2 in wild-type TSCs exhibited completely opposite effects compared to knockdown TSCs. These results suggest that loss of GGNBP2 in the placenta aberrantly overactivates c-Met-Stat3 signaling, alters TSC proliferation and differentiation, and ultimately compromises the structure of placental vascular labyrinth. Our studies for the first time demonstrate that GGNBP2 is an essential factor for pregnancy success acting through the maintenance of a balance of TSC proliferation and differentiation during placental development.
Collapse
Affiliation(s)
- Shengqiang Li
- Department of OB/GYN & Women's Health, University of Louisville School of Medicine, Louisville, Kentucky
| | - Andrew K Moore
- Department of OB/GYN & Women's Health, University of Louisville School of Medicine, Louisville, Kentucky
| | - Jia Zhu
- Department of OB/GYN & Women's Health, University of Louisville School of Medicine, Louisville, Kentucky
| | - Xian Li
- Department of OB/GYN & Women's Health, University of Louisville School of Medicine, Louisville, Kentucky
| | - Huaxin Zhou
- Birth Defects Center, Department of Molecular, Cellular and Craniofacial Biology, University of Louisville School of Dentistry, Louisville, Kentucky
| | - Jing Lin
- Department of OB/GYN & Women's Health, University of Louisville School of Medicine, Louisville, Kentucky
| | - Yan He
- Department of OB/GYN & Women's Health, University of Louisville School of Medicine, Louisville, Kentucky
| | - Fengying Xing
- Department of OB/GYN & Women's Health, University of Louisville School of Medicine, Louisville, Kentucky
| | - Yangbin Pan
- Department of OB/GYN & Women's Health, University of Louisville School of Medicine, Louisville, Kentucky
| | - Henry C Bohler
- Department of OB/GYN & Women's Health, University of Louisville School of Medicine, Louisville, Kentucky
| | - Jixiang Ding
- Birth Defects Center, Department of Molecular, Cellular and Craniofacial Biology, University of Louisville School of Dentistry, Louisville, Kentucky
| | - Austin J Cooney
- Department of Molecular and Cellular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, Texas
| | - Zijian Lan
- Division of Life Sciences and Center for Nutrigenomics & Applied Animal Nutrition, Alltech Inc., Nicholasville, Kentucky
| | - Zhenmin Lei
- Department of OB/GYN & Women's Health, University of Louisville School of Medicine, Louisville, Kentucky
| |
Collapse
|
26
|
Ilkhanizadeh S, Lau J, Huang M, Foster DJ, Wong R, Frantz A, Wang S, Weiss WA, Persson AI. Glial progenitors as targets for transformation in glioma. Adv Cancer Res 2015; 121:1-65. [PMID: 24889528 DOI: 10.1016/b978-0-12-800249-0.00001-9] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Glioma is the most common primary malignant brain tumor and arises throughout the central nervous system. Recent focus on stem-like glioma cells has implicated neural stem cells (NSCs), a minor precursor population restricted to germinal zones, as a potential source of gliomas. In this review, we focus on the relationship between oligodendrocyte progenitor cells (OPCs), the largest population of cycling glial progenitors in the postnatal brain, and gliomagenesis. OPCs can give rise to gliomas, with signaling pathways associated with NSCs also playing key roles during OPC lineage development. Gliomas can also undergo a switch from progenitor- to stem-like phenotype after therapy, consistent with an OPC-origin even for stem-like gliomas. Future in-depth studies of OPC biology may shed light on the etiology of OPC-derived gliomas and reveal new therapeutic avenues.
Collapse
Affiliation(s)
- Shirin Ilkhanizadeh
- Department of Neurology, University of California, San Francisco, California, USA; Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, California, USA
| | - Jasmine Lau
- Department of Neurology, University of California, San Francisco, California, USA; Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, California, USA
| | - Miller Huang
- Department of Neurology, University of California, San Francisco, California, USA; Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, California, USA
| | - Daniel J Foster
- Department of Neurology, University of California, San Francisco, California, USA; Department of Neurological Surgery and Brain Tumor Research Center, University of California, San Francisco, California, USA; Sandler Neurosciences Center, University of California, San Francisco, California, USA
| | - Robyn Wong
- Department of Neurology, University of California, San Francisco, California, USA; Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, California, USA
| | - Aaron Frantz
- Department of Neurology, University of California, San Francisco, California, USA; Department of Neurological Surgery and Brain Tumor Research Center, University of California, San Francisco, California, USA; Sandler Neurosciences Center, University of California, San Francisco, California, USA
| | - Susan Wang
- Department of Neurology, University of California, San Francisco, California, USA; Department of Neurological Surgery and Brain Tumor Research Center, University of California, San Francisco, California, USA; Sandler Neurosciences Center, University of California, San Francisco, California, USA
| | - William A Weiss
- Department of Neurology, University of California, San Francisco, California, USA; Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, California, USA; Department of Neurological Surgery and Brain Tumor Research Center, University of California, San Francisco, California, USA; Department of Neurology, University of California, San Francisco, California, USA
| | - Anders I Persson
- Department of Neurology, University of California, San Francisco, California, USA; Department of Neurological Surgery and Brain Tumor Research Center, University of California, San Francisco, California, USA; Sandler Neurosciences Center, University of California, San Francisco, California, USA.
| |
Collapse
|
27
|
Murcia-Belmonte V, Esteban PF, Martínez-Hernández J, Gruart A, Luján R, Delgado-García JM, de Castro F. Anosmin-1 over-expression regulates oligodendrocyte precursor cell proliferation, migration and myelin sheath thickness. Brain Struct Funct 2015; 221:1365-85. [PMID: 25662897 DOI: 10.1007/s00429-014-0977-4] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2014] [Accepted: 12/22/2014] [Indexed: 12/11/2022]
Abstract
During development of the central nervous system, anosmin-1 (A1) works as a chemotropic cue contributing to axonal outgrowth and collateralization, as well as modulating the migration of different cell types, fibroblast growth factor receptor 1 (FGFR1) being the main receptor involved in all these events. To further understand the role of A1 during development, we have analysed the over-expression of human A1 in a transgenic mouse line. Compared with control mice during development and in early adulthood, A1 over-expressing transgenic mice showed an enhanced oligodendrocyte precursor cell (OPC) proliferation and a higher number of OPCs in the subventricular zone and in the corpus callosum (CC). The migratory capacity of OPCs from the transgenic mice is increased in vitro due to a higher basal activation of ERK1/2 mediated through FGFR1 and they also produced more myelin basic protein (MBP). In vivo, the over-expression of A1 resulted in an elevated number of mature oligodendrocytes with higher levels of MBP mRNA and protein, as well as increased levels of activation of the ERK1/2 proteins, while electron microscopy revealed thicker myelin sheaths around the axons of the CC in adulthood. Also in the mature CC, the nodes of Ranvier were significantly longer and the conduction velocity of the nerve impulse in vivo was significantly increased in the CC of A1 over-expressing transgenic mice. Altogether, these data confirmed the involvement of A1 in oligodendrogliogenesis and its relevance for myelination.
Collapse
Affiliation(s)
- Verónica Murcia-Belmonte
- Grupo de Neurobiología del Desarrollo-GNDe, Hospital Nacional de Parapléjicos, Finca La Peraleda, s/n, 45071, Toledo, Spain.,Instituto de Neurociencias, Universidad Miguel Hernández-CSIC, Campus San Juan de Alicante, 03550, Alicante, Spain
| | - Pedro F Esteban
- Grupo de Neurobiología del Desarrollo-GNDe, Hospital Nacional de Parapléjicos, Finca La Peraleda, s/n, 45071, Toledo, Spain
| | - José Martínez-Hernández
- Departamento de Ciencias Médicas, CRIB-Facultad de Medicina, Universidad de Castilla-La Mancha, C/Almansa 14, 02006, Albacete, Spain
| | - Agnès Gruart
- División de Neurociencias, Universidad Pablo de Olavide, Ctra. De Utrera, Km.1, 41013, Seville, Spain
| | - Rafael Luján
- Departamento de Ciencias Médicas, CRIB-Facultad de Medicina, Universidad de Castilla-La Mancha, C/Almansa 14, 02006, Albacete, Spain
| | - José María Delgado-García
- División de Neurociencias, Universidad Pablo de Olavide, Ctra. De Utrera, Km.1, 41013, Seville, Spain
| | - Fernando de Castro
- Grupo de Neurobiología del Desarrollo-GNDe, Hospital Nacional de Parapléjicos, Finca La Peraleda, s/n, 45071, Toledo, Spain.
| |
Collapse
|
28
|
HGF-Met Pathway in Regeneration and Drug Discovery. Biomedicines 2014; 2:275-300. [PMID: 28548072 PMCID: PMC5344275 DOI: 10.3390/biomedicines2040275] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2014] [Revised: 09/15/2014] [Accepted: 10/13/2014] [Indexed: 12/26/2022] Open
Abstract
Hepatocyte growth factor (HGF) is composed of an α-chain and a β-chain, and these chains contain four kringle domains and a serine protease-like structure, respectively. Activation of the HGF–Met pathway evokes dynamic biological responses that support morphogenesis (e.g., epithelial tubulogenesis), regeneration, and the survival of cells and tissues. Characterizations of conditional Met knockout mice have indicated that the HGF–Met pathway plays important roles in regeneration, protection, and homeostasis in various cells and tissues, which includes hepatocytes, renal tubular cells, and neurons. Preclinical studies designed to address the therapeutic significance of HGF have been performed on injury/disease models, including acute tissue injury, chronic fibrosis, and cardiovascular and neurodegenerative diseases. The promotion of cell growth, survival, migration, and morphogenesis that is associated with extracellular matrix proteolysis are the biological activities that underlie the therapeutic actions of HGF. Recombinant HGF protein and the expression vectors for HGF are biological drug candidates for the treatment of patients with diseases and injuries that are associated with impaired tissue function. The intravenous/systemic administration of recombinant HGF protein has been well tolerated in phase I/II clinical trials. The phase-I and phase-I/II clinical trials of the intrathecal administration of HGF protein for the treatment of patients with amyotrophic lateral sclerosis and spinal cord injury, respectively, are ongoing.
Collapse
|
29
|
Gallo V, Deneen B. Glial development: the crossroads of regeneration and repair in the CNS. Neuron 2014; 83:283-308. [PMID: 25033178 DOI: 10.1016/j.neuron.2014.06.010] [Citation(s) in RCA: 150] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/11/2014] [Indexed: 02/07/2023]
Abstract
Given the complexities of the mammalian CNS, its regeneration is viewed as the holy grail of regenerative medicine. Extraordinary efforts have been made to understand developmental neurogenesis, with the hopes of clinically applying this knowledge. CNS regeneration also involves glia, which comprises at least 50% of the cellular constituency of the brain and is involved in all forms of injury and disease response, recovery, and regeneration. Recent developmental studies have given us unprecedented insight into the processes that regulate the generation of CNS glia. Because restorative processes often parallel those found in development, we will peer through the lens of developmental gliogenesis to gain a clearer understanding of the processes that underlie glial regeneration under pathological conditions. Specifically, this review will focus on key signaling pathways that regulate astrocyte and oligodendrocyte development and describe how these mechanisms are reutilized in these populations during regeneration and repair after CNS injury.
Collapse
Affiliation(s)
- Vittorio Gallo
- Center for Neuroscience Research, Children's National Medical Center, Washington, DC 20010, USA.
| | - Benjamin Deneen
- Department of Neuroscience and Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, TX 77030, USA.
| |
Collapse
|
30
|
LINGO-1 regulates oligodendrocyte differentiation by inhibiting ErbB2 translocation and activation in lipid rafts. Mol Cell Neurosci 2014; 60:36-42. [PMID: 24583087 DOI: 10.1016/j.mcn.2014.02.006] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2013] [Revised: 02/06/2014] [Accepted: 02/19/2014] [Indexed: 01/06/2023] Open
Abstract
Oligodendrocyte differentiation is negatively regulated by LINGO-1 and positively regulated by the ErbB2 receptor tyrosine kinase. In wild-type oligodendrocytes, inhibition of ErbB2 blocks differentiation, whereas activation of ErbB2 promotes differentiation. In LINGO-1(-/-) oligodendrocytes, inhibition of ErbB2 blocks oligodendrocyte differentiation; whereas activation of ErbB2 does not enhance differentiation. Biological and biochemical evidence showing that LINGO-1 can directly bind to ErbB2, block ErbB2 translocation into lipid rafts, and inhibit its phosphorylation for activation. The study demonstrates a novel regulatory mechanism of ErbB2 function whereby LINGO-1 suppresses oligodendrocyte differentiation by inhibiting ErbB2 translocation and activation in lipid rafts.
Collapse
|
31
|
Mesenchymal stem cell conditioning promotes rat oligodendroglial cell maturation. PLoS One 2013; 8:e71814. [PMID: 23951248 PMCID: PMC3741203 DOI: 10.1371/journal.pone.0071814] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2013] [Accepted: 07/02/2013] [Indexed: 12/15/2022] Open
Abstract
Oligodendroglial progenitor/precursor cells (OPCs) represent the main cellular source for the generation of new myelinating oligodendrocytes in the adult central nervous system (CNS). In demyelinating diseases such as multiple sclerosis (MS) myelin repair activities based on recruitment, activation and differentiation of resident OPCs can be observed. However, the overall degree of successful remyelination is limited and the existence of an MS-derived anti-oligodendrogenic milieu prevents OPCs from contributing to myelin repair. It is therefore of considerable interest to understand oligodendroglial homeostasis and maturation processes in order to enable the development of remyelination therapies. Mesenchymal stem cells (MSC) have been shown to exert positive immunomodulatory effects, reduce demyelination, increase neuroprotection and to promote adult neural stem cell differentiation towards the oligodendroglial lineage. We here addressed whether MSC secreted factors can boost the OPC’s oligodendrogenic capacity in a myelin non-permissive environment. To this end, we analyzed cellular morphologies, expression and regulation of key factors involved in oligodendroglial fate and maturation of primary rat cells upon incubation with MSC-conditioned medium. This demonstrated that MSC-derived soluble factors promote and accelerate oligodendroglial differentiation, even under astrocytic endorsing conditions. Accelerated maturation resulted in elevated levels of myelin expression, reduced glial fibrillary acidic protein expression and was accompanied by downregulation of prominent inhibitory differentiation factors such as Id2 and Id4. We thus conclude that apart from their suggested application as potential anti-inflammatory and immunomodulatory MS treatment, these cells might also be exploited to support endogenous myelin repair activities.
Collapse
|
32
|
CD82 blocks cMet activation and overcomes hepatocyte growth factor effects on oligodendrocyte precursor differentiation. J Neurosci 2013; 33:7952-60. [PMID: 23637186 DOI: 10.1523/jneurosci.5836-12.2013] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Mechanisms that regulate oligodendrocyte (OL) precursor migration and differentiation are important in normal development and in demyelinating/remyelinating conditions. We previously found that the tetraspanin CD82 is far more highly expressed in O4(+) OL precursors of the adult rat brain than those of the neonatal brain. CD82 has been physically linked to cMet, the hepatocyte growth factor (HGF) receptor, in tumor cells, and this interaction decreases downstream signaling. We show here that CD82 inhibits the HGF activation of cMet in neonatal and adult rat OL precursors. CD82 expression is sufficient to allow precursor differentiation into mature OLs even in the presence of HGF. In contrast, CD82 downregulation in adult O4(+)/CD82(+) cells inhibits their differentiation, decreases their accumulation of myelin proteins, and causes a reversion to less mature stages. CD82 expression in neonatal O4(+)/CD82(-) cells also blocks Rac1 activation, suggesting a possible regulatory effect on cytoskeletal organization and mobility. Thus, CD82 is a negative regulator of HGF/cMet during OL development and overcomes HGF inhibitory regulation of OL precursor maturation.
Collapse
|
33
|
Interferon-β induces hepatocyte growth factor in monocytes of multiple sclerosis patients. PLoS One 2012; 7:e49882. [PMID: 23166786 PMCID: PMC3498184 DOI: 10.1371/journal.pone.0049882] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2012] [Accepted: 10/15/2012] [Indexed: 12/24/2022] Open
Abstract
Interferon-β is a first-line therapy used to prevent relapses in relapsing-remitting multiple sclerosis. The clinical benefit of interferon-β in relapsing-remitting multiple sclerosis is attributed to its immunomodulatory effects on inflammatory mediators and T cell reactivity. Here, we evaluated the production of hepatocyte growth factor, a neuroprotective and neuroinflammation-suppressive mediator, by peripheral blood mononuclear cells collected from interferon-β−treated relapsing-remitting multiple sclerosis patients, relapsing remitting multiple sclerosis patients not treated with interferon-β, and healthy volunteers. Using intracellular flow cytometry analysis, increased production of hepatocyte growth factor was observed in circulating CD14+ monocytes from patients undergoing long-term treatment with interferon-β versus untreated patients. Complementary in vitro studies confirmed that treatment with interferon-β induced rapid and transient transcription of the hepatocyte growth factor gene in CD14+ monocytes and that intracellular and secreted monocytic hepatocyte growth factor protein levels were markedly stimulated by interferon-β treatment. Additional exploration revealed that “pro-inflammatory” (CD14+CD16+) monocytes produced similar levels of hepatocyte growth factor in response to interferon-β as “classical” (CD14+CD16−) monocytes, and that CD14+ monocytes but not CD4+ T cells express the hepatocyte growth factor receptor c-Met. Our findings suggest that interferon-β may mediate some of its therapeutic effects in relapsing-remitting multiple sclerosis through the induction of hepatocyte growth factor by blood monocytes by coupling immune regulation and neuroprotection.
Collapse
|
34
|
Liu WH, Liu ZC, You N, Zhang N, Wang T, Gong ZB, Liu HB, Dou KF. Several important in vitro improvements in the amplification, differentiation and tracing of fetal liver stem/progenitor cells. PLoS One 2012; 7:e47346. [PMID: 23056632 PMCID: PMC3467257 DOI: 10.1371/journal.pone.0047346] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2012] [Accepted: 09/11/2012] [Indexed: 01/12/2023] Open
Abstract
Objective We previously isolated fetal liver stem/progenitor cells (FLSPCs), but there is an urgent need to properly amplify FLSPCs, effectively induce FLSPCs differentiation, and steadily trace FLSPCs for in vivo therapeutic investigation. Methods FLSPCs were maintained in vitro as adherent culture or soft agar culture for large-scale amplification. To direct the differentiation of FLSPCs into hepatocytes, FLSPCs were randomly divided into four groups: control, 1% DMSO-treated, 20 ng/ml HGF-treated and 1% DMSO+20 ng/ml HGF-treated. To trace FLSPCs, the GFP gene was introduced into FLSPCs by liposome-mediated transfection. Results For amplifying FLSPCs, the soft agar culture were more suitable than the adherent culture, because the soft agar culture obtained more homogeneous cells. These cells were with high nuclear:cytoplasmic ratio, few cell organelles, high expression of CD90.1 and CD49f, and strong alkaline phosphatase staining. For inducing FLSPCs differentiation, treatment with HGF+DMSO was most effective (P<0.05), which was strongly supported by the typical morphological change and the significant decrease of OV-6 positive cells (P<0.01). In addition, the time of indocyanine green elimination, the percentage of glycogen synthetic cells, and the expressions of ALB, G-6-P, CK-8, CK-18 and CYP450-3A1 in HGF+DMSO-treated group were higher than in any other group. For tracing FLSPCs, after the selection of stable FLSPC transfectants, GFP expression continued over successive generations. Conclusions FLSPCs can properly self-renew in soft agar culture and effectively differentiate into hepatocyte-like cells by HGF+DMSO induction, and they can be reliably traced by GFP expression.
Collapse
Affiliation(s)
- Wei-hui Liu
- PLA Center of General Surgery, General Hospital of Chengdu Army Region, Chengdu, Sichuan Province, People's Republic of China
- Department of Hepatobiliary Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi Province, People's Republic of China
| | - Zheng-cai Liu
- Department of Hepatobiliary Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi Province, People's Republic of China
| | - Nan You
- Department of Hepatobiliary Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi Province, People's Republic of China
| | - Ning Zhang
- Department of Hepatobiliary Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi Province, People's Republic of China
| | - Tao Wang
- PLA Center of General Surgery, General Hospital of Chengdu Army Region, Chengdu, Sichuan Province, People's Republic of China
| | - Zhen-bin Gong
- Department of Hepatobiliary Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi Province, People's Republic of China
| | - Hong-bao Liu
- Department of Nephrology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi Province, People's Republic of China
- * E-mail: (K-fD); (H-bL)
| | - Ke-feng Dou
- Department of Hepatobiliary Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi Province, People's Republic of China
- * E-mail: (K-fD); (H-bL)
| |
Collapse
|
35
|
Wolchok JC, Tresco PA. Using growth factor conditioning to modify the properties of human cell derived extracellular matrix. Biotechnol Prog 2012; 28:1581-7. [PMID: 22915543 DOI: 10.1002/btpr.1625] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2012] [Revised: 08/09/2012] [Indexed: 11/07/2022]
Abstract
We have recently reported on a bench-top approach for isolating extracellular matrix (ECM) from pure populations of cells grown in culture using sacrificial, open-celled foams to concentrate and capture the ECM. To increase both the accumulation and the strength of the ECM harvested, cell-seeded polyurethane (PU) foams were cultured in media supplemented with either transforming growth factor β-1 (TGFβ1) or hepatocyte growth factor (HGF). At the end of a 3-week culture period, ECM yield was significantly increased for samples conditioned in supplemented media. Control foams yielded 48 ± 12 mg of material for every gram of PU foam seeded. Yield values increased to 102 ± 21 and 243 ± 25 mg for HGF and TGFβ1-treated samples, respectively. HGF supplementation increased the modulus by 59%, while TGFβ1 treatment increased the elastic modulus by 204%. TGFβ1-stimulated material was organized into a network that was markedly denser than control material, with HGF-stimulated network density intermediate to TGFβ1 and controls. Our study showed that TGFβ1-treated samples were collagen enriched while HGF samples had an increased gylcosaminoglycan concentration. The results demonstrate that growth factor supplementation, particularly with TGFβ1, can significantly alter the biomechanical properties of cell-derived ECM that may be used for therapeutic applications.
Collapse
Affiliation(s)
- Jeffrey C Wolchok
- Dept. of Biomedical Engineering, College of Engineering, University of Arkansas, Fayetteville, AR, USA.
| | | |
Collapse
|
36
|
Kato T, Funakoshi H, Kadoyama K, Noma S, Kanai M, Ohya-Shimada W, Mizuno S, Doe N, Taniguchi T, Nakamura T. Hepatocyte growth factor overexpression in the nervous system enhances learning and memory performance in mice. J Neurosci Res 2012; 90:1743-55. [PMID: 22535512 DOI: 10.1002/jnr.23065] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2011] [Revised: 03/01/2012] [Accepted: 03/13/2012] [Indexed: 12/27/2022]
Abstract
Hepatocyte growth factor (HGF) and its receptor, c-Met, play pivotal roles in the nervous system during development and in disease states. However, the physiological roles of HGF in the adult brain are not well understood. In the present study, to assess its role in learning and memory function, we used transgenic mice that overexpress HGF in a neuron-specific manner (HGF-Tg) to deliver HGF into the brain without injury. HGF-Tg mice displayed increased alternation rates in the Y-maze test compared with age-matched wild-type (WT) controls. In the Morris water maze (MWM) test, HGF-Tg mice took less time to find the platform on the first day, whereas the latency to escape to the hidden platform was decreased over training days compared with WT mice. A transfer test revealed that the incidence of arrival at the exact location of the platform was higher for HGF-Tg mice compared with WT mice. These results demonstrate that overexpression of HGF leads to an enhancement of both short- and long-term memory. Western blot analyses revealed that the levels of N-methyl-D-aspartate (NMDA) receptor subunits NR2A and NR2B, but not NR1, were increased in the hippocampus of HGF-Tg mice compared with WT controls, suggesting that an upregulation of NR2A and NR2B could represent one mechanism by which HGF enhances learning and memory performance. These results demonstrate that modulation of learning and memory performance is an important physiological function of HGF that contributes to normal CNS plasticity, and we propose HGF as a novel regulator of higher brain functions.
Collapse
Affiliation(s)
- Takashi Kato
- Kringle Pharma Joint Research Division for Regenerative Drug Discovery, Center for Advanced Science and Innovation, Osaka University, Osaka, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Noma S, Ohya-Shimada W, Kanai M, Ueda K, Nakamura T, Funakoshi H. Overexpression of HGF attenuates the degeneration of Purkinje cells and Bergmann glia in a knockin mouse model of spinocerebellar ataxia type 7. Neurosci Res 2012; 73:115-21. [PMID: 22426494 DOI: 10.1016/j.neures.2012.03.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2012] [Revised: 03/06/2012] [Accepted: 03/06/2012] [Indexed: 11/17/2022]
Abstract
Spinocerebellar ataxia type 7 (SCA7) is an autosomal dominant disorder associated with cerebellar neurodegeneration caused by expansion of a CAG repeat in the ataxin-7 gene. Hepatocyte growth factor (HGF), a pleiotrophic growth factor, displays highly potent neurotrophic activities on cerebellar neurons. A mutant c-met/HGF receptor knockin mouse model has revealed a role for HGF in the postnatal development of the cerebellum. The present study was designed to elucidate the effect of HGF on cerebellar neurodegeneration in a knockin mouse model of SCA7 (SCA7-KI mouse). SCA7-KI mice were crossed with transgenic mice overexpressing HGF (HGF-Tg mice) to produce SCA7-KI/HGF-Tg mice that were used to examine the phenotypic differences following HGF overexpression. The Purkinje cellular degeneration is thought to occur via cell-autonomous and non-cell autonomous mechanisms mediated by a reduction of glutamate transporter levels in Bergmann glia. The Purkinje cellular degeneration and reduced expression of glutamate transporters in the cerebellum of SCA7-KI mice were largely attenuated in the SCA7-KI/HGF-Tg mice. Moreover, phenotypic impairments exhibited by SCA7-KI mice during rotarod tests were alleviated in SCA7-KI/HGF-Tg mice. The bifunctional nature of HGF on both Purkinje cells and Bergmann glia highlight the potential therapeutic utility of this molecule for the treatment of SCA7 and related disorders.
Collapse
Affiliation(s)
- Satsuki Noma
- Center for Advanced Research and Education, Asahikawa Medical University, Asahikawa 078-8510, Japan
| | | | | | | | | | | |
Collapse
|
38
|
Hayakawa K, Seo JH, Pham LDD, Miyamoto N, Som AT, Guo S, Kim KW, Lo EH, Arai K. Cerebral endothelial derived vascular endothelial growth factor promotes the migration but not the proliferation of oligodendrocyte precursor cells in vitro. Neurosci Lett 2012; 513:42-6. [PMID: 22342913 DOI: 10.1016/j.neulet.2012.02.004] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2012] [Revised: 01/31/2012] [Accepted: 02/01/2012] [Indexed: 11/17/2022]
Abstract
In gray matter, cerebral endothelium is known to provide trophic support for neighboring cells such as neurons. However, signaling from cerebral endothelium to white matter cells remains to be elucidated. Here, we show that vascular endothelial growth factor (VEGF-A) secreted from cerebral endothelial cells promotes the migration but not the proliferation of oligodendrocyte precursor cells (OPCs). Cultured OPCs were obtained from newborn rat cortex, and treatment with conditioned culture media of cerebral endothelial cells increased the OPC proliferation and migration. Importantly, co-treatment with anti-neutralizing antibody for Flk-1 (VEGF-receptor2) inhibited OPC movement but did not affect OPC propagation. Western blot and flow cytometry analyses confirmed that our cultured cerebral endothelial cells produced VEGF-A and our cultured OPCs expressed Flk-1. Taken together, our current data suggest that cerebral endothelium is supportive for oligodendrocyte lineage cells and VEGF-A may participate in the endothelium-OPC cell-cell signaling. This phenomenon may be important for white matter homeostasis.
Collapse
Affiliation(s)
- Kazuhide Hayakawa
- Neuroprotection Research Laboratory, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA 02129, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Hepatocyte growth factor reduces astrocytic scar formation and promotes axonal growth beyond glial scars after spinal cord injury. Exp Neurol 2012; 233:312-22. [DOI: 10.1016/j.expneurol.2011.10.021] [Citation(s) in RCA: 77] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2011] [Revised: 10/19/2011] [Accepted: 10/25/2011] [Indexed: 11/19/2022]
|
40
|
Choudhury ME, Sugimoto K, Kubo M, Nagai M, Nomoto M, Takahashi H, Yano H, Tanaka J. A cytokine mixture of GM-CSF and IL-3 that induces a neuroprotective phenotype of microglia leading to amelioration of (6-OHDA)-induced Parkinsonism of rats. Brain Behav 2011; 1:26-43. [PMID: 22398979 PMCID: PMC3217672 DOI: 10.1002/brb3.11] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2011] [Revised: 06/02/2011] [Accepted: 06/16/2011] [Indexed: 01/09/2023] Open
Abstract
Dopamine (DA) agonists are widely used as primary treatments for Parkinson's disease. However, they do not prevent progressive degeneration of dopaminergic neurons, the central pathology of the disease. In this study, we found that subcutaneous injection of a cytokine mixture containing granulocyte macrophage colony-stimulating factor and interleukin-3 (IL-3) markedly suppressed dopaminergic neurodegeneration in 6-hydroxydopamine-lesioned rats, an animal model of Parkinson's disease. The cytokine mixture suppressed the decrease of DA content in the striatum, and ameliorated motor function in the lesioned rats. In response to the cytokine injection, dopaminergic neurons in the substantia nigra pars compacta increased expression of the antiapoptotic protein Bcl-xL. Microglial activation in the pars compacta was evident in both the saline- and cytokine-injected rats. However, the cytokine mixture suppressed expression of the proinflammatory cytokines IL-1β and tumor necrosis factors α, and upregulated the neuroprotective factors insulin-like growth factor-1 and hepatocyte growth factor. Similar responses were observed in cultured microglia. Detailed morphometric analyses revealed that NG2 proteoglycan-expressing glial cells increased in the cytokine-injected rats, while astrocytic activation with increased expression of antioxidative factors was evident only in the saline-injected rats. Thus, the present findings show that the cytokine mixture was markedly effective in suppressing neurodegeneration. Its neuroprotective effects may be mediated by increased expression of Bcl-xL in dopaminergic neurons, and the activation of beneficial actions of microglia that promote neuronal survival. Furthermore, this cytokine mixture may have indirect actions on NG2 proteoglycan-expressing glia, whose role may be implicated in neuronal survival.
Collapse
Affiliation(s)
| | - Kana Sugimoto
- Department of Molecular and Cellular Physiology, Graduate School of Medicine, Ehime University, Toon, Ehime, Japan
- Department of Basic and Clinical Neuroscience, Ehime Proteo‐Medicine Research Center, Ehime University, Toon, Ehime, Japan
| | - Madoka Kubo
- Department of Therapeutic Medicine, Graduate School of Medicine, Ehime University, Toon, Ehime, Japan
| | - Masahiro Nagai
- Department of Therapeutic Medicine, Graduate School of Medicine, Ehime University, Toon, Ehime, Japan
| | - Masahiro Nomoto
- Department of Therapeutic Medicine, Graduate School of Medicine, Ehime University, Toon, Ehime, Japan
| | - Hisaaki Takahashi
- Department of Molecular and Cellular Physiology, Graduate School of Medicine, Ehime University, Toon, Ehime, Japan
- Department of Basic and Clinical Neuroscience, Ehime Proteo‐Medicine Research Center, Ehime University, Toon, Ehime, Japan
| | - Hajime Yano
- Department of Molecular and Cellular Physiology, Graduate School of Medicine, Ehime University, Toon, Ehime, Japan
- Department of Basic and Clinical Neuroscience, Ehime Proteo‐Medicine Research Center, Ehime University, Toon, Ehime, Japan
| | - Junya Tanaka
- Department of Molecular and Cellular Physiology, Graduate School of Medicine, Ehime University, Toon, Ehime, Japan
- Department of Basic and Clinical Neuroscience, Ehime Proteo‐Medicine Research Center, Ehime University, Toon, Ehime, Japan
| |
Collapse
|
41
|
Nakamura T, Sakai K, Nakamura T, Matsumoto K. Hepatocyte growth factor twenty years on: Much more than a growth factor. J Gastroenterol Hepatol 2011; 26 Suppl 1:188-202. [PMID: 21199531 DOI: 10.1111/j.1440-1746.2010.06549.x] [Citation(s) in RCA: 347] [Impact Index Per Article: 26.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Liver regeneration depends on the proliferation of mature hepatocytes. In the 1980s, the method for the cultivation of mature hepatocytes provided an opportunity for the discovery of hepatocyte growth factor (HGF) as a protein that is structurally and functionally different from other growth factors. In 1991, the scatter factor, tumor cytotoxic factor, and 3-D epithelial morphogen were identified as HGF, and Met tyrosine kinase was identified as the receptor for HGF. Thus, the connection of apparently unrelated research projects rapidly enriched the research on HGF in different fields. The HGF-Met pathway plays important roles in the embryonic development of the liver and the placenta, in the migration of myogenic precursor cells, and in epithelial morphogenesis. The use of tissue-specific knockout mice demonstrated that in mature tissues the HGF-Met pathway plays a critical role in tissue protection and regeneration, and in providing less susceptibility to chronic inflammation and fibrosis. In various injury and disease models, HGF promotes cell survival, regeneration of tissues, and suppresses and improves chronic inflammation and fibrosis. Drug development using HGF has been challenging, but extensive preclinical studies to address its therapeutic effects have provided significant results sufficient for the development of HGF as a biological drug in the regeneration-based therapy of diseases. Clinical trials using recombinant human HGF protein, or HGF genes, are in progress for the treatment of diseases.
Collapse
|
42
|
Hepatocyte growth factor inhibits CNS autoimmunity by inducing tolerogenic dendritic cells and CD25+Foxp3+ regulatory T cells. Proc Natl Acad Sci U S A 2010; 107:6424-9. [PMID: 20332205 DOI: 10.1073/pnas.0912437107] [Citation(s) in RCA: 152] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Immune-mediated diseases of the CNS, such as multiple sclerosis and its animal model, experimental autoimmune encephalitis (EAE), are characterized by the activation of antigen-presenting cells and the infiltration of autoreactive lymphocytes within the CNS, leading to demyelination, axonal damage, and neurological deficits. Hepatocyte growth factor (HGF) is a pleiotropic factor known for both neuronal and oligodendrocytic protective properties. Here, we assess the effect of a selective overexpression of HGF by neurons in the CNS of C57BL/6 mice carrying an HGF transgene (HGF-Tg mice). EAE induced either by immunization with myelin oligodendrocyte glycoprotein peptide or by adoptive transfer of T cells was inhibited in HGF-Tg mice. Notably, the level of inflammatory cells infiltrating the CNS decreased, except for CD25(+)Foxp3(+) regulatory T (T(reg)) cells, which increased. A strong T-helper cell type 2 cytokine bias was observed: IFN-gamma and IL-12p70 decreased in the spinal cord of HGF-Tg mice, whereas IL-4 and IL-10 increased. Antigen-specific response assays showed that HGF is a potent immunomodulatory factor that inhibits dendritic cell (DC) function along with differentiation of IL-10-producing T(reg) cells, a decrease in IL-17-producing T cells, and down-regulation of surface markers of T-cell activation. These effects were reversed fully when DC were pretreated with anti-cMet (HGF receptor) antibodies. Our results suggest that, by combining both potentially neuroprotective and immunomodulatory effects, HGF is a promising candidate for the development of new treatments for immune-mediated demyelinating diseases associated with neurodegeneration such as multiple sclerosis.
Collapse
|
43
|
Bradl M, Lassmann H. Oligodendrocytes: biology and pathology. Acta Neuropathol 2010; 119:37-53. [PMID: 19847447 PMCID: PMC2799635 DOI: 10.1007/s00401-009-0601-5] [Citation(s) in RCA: 573] [Impact Index Per Article: 40.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2009] [Revised: 10/09/2009] [Accepted: 10/10/2009] [Indexed: 11/29/2022]
Abstract
Oligodendrocytes are the myelinating cells of the central nervous system (CNS). They are the end product of a cell lineage which has to undergo a complex and precisely timed program of proliferation, migration, differentiation, and myelination to finally produce the insulating sheath of axons. Due to this complex differentiation program, and due to their unique metabolism/physiology, oligodendrocytes count among the most vulnerable cells of the CNS. In this review, we first describe the different steps eventually culminating in the formation of mature oligodendrocytes and myelin sheaths, as they were revealed by studies in rodents. We will then show differences and similarities of human oligodendrocyte development. Finally, we will lay out the different pathways leading to oligodendrocyte and myelin loss in human CNS diseases, and we will reveal the different principles leading to the restoration of myelin sheaths or to a failure to do so.
Collapse
Affiliation(s)
- Monika Bradl
- Department of Neuroimmunology, Center for Brain Research, Medical University Vienna, Vienna, Austria.
| | | |
Collapse
|
44
|
The tetraspanin KAI1/CD82 is expressed by late-lineage oligodendrocyte precursors and may function to restrict precursor migration and promote oligodendrocyte differentiation and myelination. J Neurosci 2009; 29:11172-81. [PMID: 19741124 DOI: 10.1523/jneurosci.3075-09.2009] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
In the adult mammalian brain, oligodendrocyte progenitors can differentiate into mature oligodendrocytes during remyelination. Mechanisms that regulate migration and differentiation of progenitors are of great importance in understanding normal development and demyelinating/remyelinating conditions. In a microarray analysis comparing adult and neonatal O4-positive (+) cells, we found that the tetraspanin KAI1/CD82 is far more highly expressed in adult O4(+) cells than in neonatal O4(+) cells (Lin et al., 2009). CD82 is a metastasis suppressor, and its expression is often downregulated or lost in the advanced stages of metastatic cancer. We hypothesized that CD82 could be a factor that restricts migration and promotes differentiation of maturing oligodendrocytes. Western blot analysis of isolated adult O4(+) cells confirms the elevated levels of CD82, which continues to be expressed as these become O1(+) in vitro. In the adult rat white matter, CD82 is coexpressed with CC1 and olig2 but not with NG2 or GFAP. Immature cells of the neonatal forebrain subventricular zone (SVZ) infected in vivo with a retrovirus that constitutively expresses CD82 do not remain immature but differentiate into either CC1(+) and MBP(+) myelinating oligodendrocytes in the white matter or zebrinII(+) astrocytes in the cortex. Their migration from the SVZ is severely restricted. In contrast, downregulation of CD82 in SVZ cells in vivo, using retroviral-expressed short hairpin RNAs (shRNAs), prevents their differentiation into myelinating oligodendrocytes. shRNA-expressing cells remained PDGF receptor alpha positive, olig2(+), or NG2(+) or became CC1(+) nonmyelinating oligodendrocytes or GFAP(+) astrocytes. CD82 thus appears to be a critical molecule in the regulation of oligodendrocyte progenitor migration and myelination.
Collapse
|
45
|
Hu Z, Li T, Zhang X, Chen Y. Hepatocyte growth factor enhances the generation of high-purity oligodendrocytes from human embryonic stem cells. Differentiation 2009; 78:177-84. [DOI: 10.1016/j.diff.2009.05.008] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2008] [Revised: 04/23/2009] [Accepted: 05/20/2009] [Indexed: 01/25/2023]
|
46
|
Nicoleau C, Benzakour O, Agasse F, Thiriet N, Petit J, Prestoz L, Roger M, Jaber M, Coronas V. Endogenous hepatocyte growth factor is a niche signal for subventricular zone neural stem cell amplification and self-renewal. Stem Cells 2009; 27:408-19. [PMID: 18988709 DOI: 10.1634/stemcells.2008-0226] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Neural stem cells persist in the adult mammalian brain, within the subventricular zone (SVZ). The endogenous mechanisms underpinning SVZ neural stem cell proliferation, self-renewal, and differentiation are not fully elucidated. In the present report, we describe a growth-stimulatory activity of liver explant-conditioned media on SVZ cell cultures and identify hepatocyte growth factor (HGF) as a major player in this effect. HGF exhibited a mitogenic activity on SVZ cell cultures in a mitogen-activated protein kinase (MAPK) (ERK1/2)-dependent manner as U0126, a specific MAPK inhibitor, blocked it. Combining a functional neurosphere forming assay with immunostaining for c-Met, along with markers of SVZ cells subtypes, demonstrated that HGF promotes the expansion of neural stem-like cells that form neurospheres and self-renew. Immunostaining, HGF enzyme-linked immunosorbent assay and Madin-Darby canine kidney cell scattering assay indicated that SVZ cell cultures produce and release HGF. SVZ cell-conditioned media induced proliferation on SVZ cell cultures, which was blocked by HGF-neutralizing antibodies, hence implying that endogenously produced HGF accounts for a major part in SVZ mitogenic activity. Brain sections immunostaining revealed that HGF is produced by nestin-expressing cells and c-Met is expressed within the SVZ by immature cells. HGF intracerebroventricular injection promoted SVZ cell proliferation and increased the ability of these cells exposed in vivo to HGF to form neurospheres in vitro, whereas intracerebroventricular injection of HGF-neutralizing antibodies decreased SVZ cell proliferation. The present study unravels a major role, both in vitro and in vivo, for endogenous HGF in SVZ neural stem cell growth and self-renewal.
Collapse
Affiliation(s)
- Camille Nicoleau
- Institut de Physiologie et Biologie Cellulaires, University of Poitiers, Centre National de la Recherche Scientifique, Poitiers, France
| | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Helfer JL, Calizo LH, Dong WK, Goodlett CR, Greenough WT, Klintsova AY. Binge-like postnatal alcohol exposure triggers cortical gliogenesis in adolescent rats. J Comp Neurol 2009; 514:259-71. [PMID: 19296475 DOI: 10.1002/cne.22018] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The long-term effects of binge-like postnatal alcohol exposure on cell proliferation and differentiation in the adolescent rat neocortex were examined. Unlike the hippocampal dentate gyrus, where proliferation of progenitors results primarily in addition of granule cells in adulthood, the vast majority of newly generated cells in the intact mature rodent neocortex appear to be glial cells. The current study examined cytogenesis in the motor cortex of adolescent and adult rats that were exposed to 5.25 g/kg/day of alcohol on postnatal days (PD) 4-9 in a binge manner. Cytogenesis was examined at PD50 (through bromodeoxyuridine [BrdU] labeling) and survival of these newly generated cells was evaluated at PD80. At PD50, significantly more BrdU-positive cells were present in the motor cortex of alcohol-exposed rats than controls. Confocal analysis revealed that the majority (>60%) of these labeled cells also expressed NG2 chondroitin sulfate proteoglycan (NG2 glia). Additionally, survival of these newly generated cortical cells was affected by neonatal alcohol exposure, based on the greater reduction in the number of BrdU-labeled cells from PD50 to PD80 in the alcohol-exposed animals compared to controls. These findings demonstrate that neonatal alcohol exposure triggers an increase in gliogenesis in the adult motor cortex.
Collapse
Affiliation(s)
- Jennifer L Helfer
- Psychology Department, University of Delaware, Newark, DE 19716, USA
| | | | | | | | | | | |
Collapse
|
48
|
Judson MC, Bergman MY, Campbell DB, Eagleson KL, Levitt P. Dynamic gene and protein expression patterns of the autism-associated met receptor tyrosine kinase in the developing mouse forebrain. J Comp Neurol 2009; 513:511-31. [PMID: 19226509 DOI: 10.1002/cne.21969] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The establishment of appropriate neural circuitry depends on the coordination of multiple developmental events across space and time. These events include proliferation, migration, differentiation, and survival-all of which can be mediated by hepatocyte growth factor (HGF) signaling through the Met receptor tyrosine kinase. We previously found a functional promoter variant of the MET gene to be associated with autism spectrum disorder, suggesting that forebrain circuits governing social and emotional function may be especially vulnerable to developmental disruptions in HGF/Met signaling. However, little is known about the spatiotemporal distribution of Met expression in the forebrain during the development of such circuits. To advance our understanding of the neurodevelopmental influences of Met activation, we employed complementary Western blotting, in situ hybridization, and immunohistochemistry to comprehensively map Met transcript and protein expression throughout perinatal and postnatal development of the mouse forebrain. Our studies reveal complex and dynamic spatiotemporal patterns of expression during this period. Spatially, Met transcript is localized primarily to specific populations of projection neurons within the neocortex and in structures of the limbic system, including the amygdala, hippocampus, and septum. Met protein appears to be principally located in axon tracts. Temporally, peak expression of transcript and protein occurs during the second postnatal week. This period is characterized by extensive neurite outgrowth and synaptogenesis, supporting a role for the receptor in these processes. Collectively, these data suggest that Met signaling may be necessary for the appropriate wiring of forebrain circuits, with particular relevance to the social and emotional dimensions of behavior.
Collapse
Affiliation(s)
- Matthew C Judson
- Graduate Program in Neuroscience, Vanderbilt University Medical Center, Nashville, Tennessee 37203, USA
| | | | | | | | | |
Collapse
|
49
|
Hwang D, Lee IY, Yoo H, Gehlenborg N, Cho JH, Petritis B, Baxter D, Pitstick R, Young R, Spicer D, Price ND, Hohmann JG, Dearmond SJ, Carlson GA, Hood LE. A systems approach to prion disease. Mol Syst Biol 2009; 5:252. [PMID: 19308092 PMCID: PMC2671916 DOI: 10.1038/msb.2009.10] [Citation(s) in RCA: 211] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2008] [Accepted: 01/20/2009] [Indexed: 01/10/2023] Open
Abstract
Prions cause transmissible neurodegenerative diseases and replicate by conformational conversion of normal benign forms of prion protein (PrPC) to disease-causing PrPSc isoforms. A systems approach to disease postulates that disease arises from perturbation of biological networks in the relevant organ. We tracked global gene expression in the brains of eight distinct mouse strain–prion strain combinations throughout the progression of the disease to capture the effects of prion strain, host genetics, and PrP concentration on disease incubation time. Subtractive analyses exploiting various aspects of prion biology and infection identified a core of 333 differentially expressed genes (DEGs) that appeared central to prion disease. DEGs were mapped into functional pathways and networks reflecting defined neuropathological events and PrPSc replication and accumulation, enabling the identification of novel modules and modules that may be involved in genetic effects on incubation time and in prion strain specificity. Our systems analysis provides a comprehensive basis for developing models for prion replication and disease, and suggests some possible therapeutic approaches.
Collapse
Affiliation(s)
- Daehee Hwang
- Institute for Systems Biology, Seattle, WA 98103, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Kleiber ML, Singh SM. Divergence of the vertebrate sp1A/ryanodine receptor domain and SOCS box-containing (Spsb) gene family and its expression and regulation within the mouse brain. Genomics 2009; 93:358-66. [PMID: 19101625 DOI: 10.1016/j.ygeno.2008.11.011] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2008] [Accepted: 11/19/2008] [Indexed: 01/17/2023]
Abstract
The Spsb family of genes encode well-conserved proteins of unknown function. Mammalian Spsb genes are likely the result of three separate duplication and divergence events during vertebrate evolution. The phylogenetic relationship along with expression and regulation of Spsb genes may offer insight into the evolution and function of this gene family in vertebrates. We have established that Spsb genes are expressed in numerous tissues, however their pattern and level of expression is tissue-dependent. Further, only Spsb1 is responsive to stress caused by ethanol exposure in the mouse brain, which suggests that Spsb genes have acquired different regulatory mechanisms. Analysis of cis-regulatory elements supports this, but also reveals some common regulatory modules involved in cell proliferation and stress response. Our results contribute to the growing body of data on the expression and function of Spsb genes, which serve as a model for studies on the origin, divergence and specialization of eukaryotic gene families.
Collapse
Affiliation(s)
- Morgan L Kleiber
- Molecular Genetics Laboratories, Department of Biology, University of Western Ontario, London, Ontario, Canada N6A 5B7.
| | | |
Collapse
|